Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/* linux/drivers/usb/gadget/s3c-hsudc.c
   2 *
   3 * Copyright (c) 2010 Samsung Electronics Co., Ltd.
   4 *		http://www.samsung.com/
   5 *
   6 * S3C24XX USB 2.0 High-speed USB controller gadget driver
   7 *
   8 * The S3C24XX USB 2.0 high-speed USB controller supports upto 9 endpoints.
   9 * Each endpoint can be configured as either in or out endpoint. Endpoints
  10 * can be configured for Bulk or Interrupt transfer mode.
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15*/
  16
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/spinlock.h>
  20#include <linux/interrupt.h>
  21#include <linux/platform_device.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/delay.h>
  24#include <linux/io.h>
  25#include <linux/slab.h>
  26#include <linux/clk.h>
  27#include <linux/err.h>
  28#include <linux/usb/ch9.h>
  29#include <linux/usb/gadget.h>
  30#include <linux/usb/otg.h>
  31#include <linux/prefetch.h>
  32#include <linux/platform_data/s3c-hsudc.h>
  33#include <linux/regulator/consumer.h>
  34#include <linux/pm_runtime.h>
  35
  36#include <mach/regs-s3c2443-clock.h>
  37
  38#define S3C_HSUDC_REG(x)	(x)
  39
  40/* Non-Indexed Registers */
  41#define S3C_IR				S3C_HSUDC_REG(0x00) /* Index Register */
  42#define S3C_EIR				S3C_HSUDC_REG(0x04) /* EP Intr Status */
  43#define S3C_EIR_EP0			(1<<0)
  44#define S3C_EIER			S3C_HSUDC_REG(0x08) /* EP Intr Enable */
  45#define S3C_FAR				S3C_HSUDC_REG(0x0c) /* Gadget Address */
  46#define S3C_FNR				S3C_HSUDC_REG(0x10) /* Frame Number */
  47#define S3C_EDR				S3C_HSUDC_REG(0x14) /* EP Direction */
  48#define S3C_TR				S3C_HSUDC_REG(0x18) /* Test Register */
  49#define S3C_SSR				S3C_HSUDC_REG(0x1c) /* System Status */
  50#define S3C_SSR_DTZIEN_EN		(0xff8f)
  51#define S3C_SSR_ERR			(0xff80)
  52#define S3C_SSR_VBUSON			(1 << 8)
  53#define S3C_SSR_HSP			(1 << 4)
  54#define S3C_SSR_SDE			(1 << 3)
  55#define S3C_SSR_RESUME			(1 << 2)
  56#define S3C_SSR_SUSPEND			(1 << 1)
  57#define S3C_SSR_RESET			(1 << 0)
  58#define S3C_SCR				S3C_HSUDC_REG(0x20) /* System Control */
  59#define S3C_SCR_DTZIEN_EN		(1 << 14)
  60#define S3C_SCR_RRD_EN			(1 << 5)
  61#define S3C_SCR_SUS_EN			(1 << 1)
  62#define S3C_SCR_RST_EN			(1 << 0)
  63#define S3C_EP0SR			S3C_HSUDC_REG(0x24) /* EP0 Status */
  64#define S3C_EP0SR_EP0_LWO		(1 << 6)
  65#define S3C_EP0SR_STALL			(1 << 4)
  66#define S3C_EP0SR_TX_SUCCESS		(1 << 1)
  67#define S3C_EP0SR_RX_SUCCESS		(1 << 0)
  68#define S3C_EP0CR			S3C_HSUDC_REG(0x28) /* EP0 Control */
  69#define S3C_BR(_x)			S3C_HSUDC_REG(0x60 + (_x * 4))
  70
  71/* Indexed Registers */
  72#define S3C_ESR				S3C_HSUDC_REG(0x2c) /* EPn Status */
  73#define S3C_ESR_FLUSH			(1 << 6)
  74#define S3C_ESR_STALL			(1 << 5)
  75#define S3C_ESR_LWO			(1 << 4)
  76#define S3C_ESR_PSIF_ONE		(1 << 2)
  77#define S3C_ESR_PSIF_TWO		(2 << 2)
  78#define S3C_ESR_TX_SUCCESS		(1 << 1)
  79#define S3C_ESR_RX_SUCCESS		(1 << 0)
  80#define S3C_ECR				S3C_HSUDC_REG(0x30) /* EPn Control */
  81#define S3C_ECR_DUEN			(1 << 7)
  82#define S3C_ECR_FLUSH			(1 << 6)
  83#define S3C_ECR_STALL			(1 << 1)
  84#define S3C_ECR_IEMS			(1 << 0)
  85#define S3C_BRCR			S3C_HSUDC_REG(0x34) /* Read Count */
  86#define S3C_BWCR			S3C_HSUDC_REG(0x38) /* Write Count */
  87#define S3C_MPR				S3C_HSUDC_REG(0x3c) /* Max Pkt Size */
  88
  89#define WAIT_FOR_SETUP			(0)
  90#define DATA_STATE_XMIT			(1)
  91#define DATA_STATE_RECV			(2)
  92
  93static const char * const s3c_hsudc_supply_names[] = {
  94	"vdda",		/* analog phy supply, 3.3V */
  95	"vddi",		/* digital phy supply, 1.2V */
  96	"vddosc",	/* oscillator supply, 1.8V - 3.3V */
  97};
  98
  99/**
 100 * struct s3c_hsudc_ep - Endpoint representation used by driver.
 101 * @ep: USB gadget layer representation of device endpoint.
 102 * @name: Endpoint name (as required by ep autoconfiguration).
 103 * @dev: Reference to the device controller to which this EP belongs.
 104 * @desc: Endpoint descriptor obtained from the gadget driver.
 105 * @queue: Transfer request queue for the endpoint.
 106 * @stopped: Maintains state of endpoint, set if EP is halted.
 107 * @bEndpointAddress: EP address (including direction bit).
 108 * @fifo: Base address of EP FIFO.
 109 */
 110struct s3c_hsudc_ep {
 111	struct usb_ep ep;
 112	char name[20];
 113	struct s3c_hsudc *dev;
 114	struct list_head queue;
 115	u8 stopped;
 116	u8 wedge;
 117	u8 bEndpointAddress;
 118	void __iomem *fifo;
 119};
 120
 121/**
 122 * struct s3c_hsudc_req - Driver encapsulation of USB gadget transfer request.
 123 * @req: Reference to USB gadget transfer request.
 124 * @queue: Used for inserting this request to the endpoint request queue.
 125 */
 126struct s3c_hsudc_req {
 127	struct usb_request req;
 128	struct list_head queue;
 129};
 130
 131/**
 132 * struct s3c_hsudc - Driver's abstraction of the device controller.
 133 * @gadget: Instance of usb_gadget which is referenced by gadget driver.
 134 * @driver: Reference to currenty active gadget driver.
 135 * @dev: The device reference used by probe function.
 136 * @lock: Lock to synchronize the usage of Endpoints (EP's are indexed).
 137 * @regs: Remapped base address of controller's register space.
 138 * irq: IRQ number used by the controller.
 139 * uclk: Reference to the controller clock.
 140 * ep0state: Current state of EP0.
 141 * ep: List of endpoints supported by the controller.
 142 */
 143struct s3c_hsudc {
 144	struct usb_gadget gadget;
 145	struct usb_gadget_driver *driver;
 146	struct device *dev;
 147	struct s3c24xx_hsudc_platdata *pd;
 148	struct usb_phy *transceiver;
 149	struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsudc_supply_names)];
 150	spinlock_t lock;
 151	void __iomem *regs;
 152	int irq;
 153	struct clk *uclk;
 154	int ep0state;
 155	struct s3c_hsudc_ep ep[];
 156};
 157
 158#define ep_maxpacket(_ep)	((_ep)->ep.maxpacket)
 159#define ep_is_in(_ep)		((_ep)->bEndpointAddress & USB_DIR_IN)
 160#define ep_index(_ep)		((_ep)->bEndpointAddress & \
 161					USB_ENDPOINT_NUMBER_MASK)
 162
 163static const char driver_name[] = "s3c-udc";
 164static const char ep0name[] = "ep0-control";
 165
 166static inline struct s3c_hsudc_req *our_req(struct usb_request *req)
 167{
 168	return container_of(req, struct s3c_hsudc_req, req);
 169}
 170
 171static inline struct s3c_hsudc_ep *our_ep(struct usb_ep *ep)
 172{
 173	return container_of(ep, struct s3c_hsudc_ep, ep);
 174}
 175
 176static inline struct s3c_hsudc *to_hsudc(struct usb_gadget *gadget)
 177{
 178	return container_of(gadget, struct s3c_hsudc, gadget);
 179}
 180
 181static inline void set_index(struct s3c_hsudc *hsudc, int ep_addr)
 182{
 183	ep_addr &= USB_ENDPOINT_NUMBER_MASK;
 184	writel(ep_addr, hsudc->regs + S3C_IR);
 185}
 186
 187static inline void __orr32(void __iomem *ptr, u32 val)
 188{
 189	writel(readl(ptr) | val, ptr);
 190}
 191
 192static void s3c_hsudc_init_phy(void)
 193{
 194	u32 cfg;
 195
 196	cfg = readl(S3C2443_PWRCFG) | S3C2443_PWRCFG_USBPHY;
 197	writel(cfg, S3C2443_PWRCFG);
 198
 199	cfg = readl(S3C2443_URSTCON);
 200	cfg |= (S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
 201	writel(cfg, S3C2443_URSTCON);
 202	mdelay(1);
 203
 204	cfg = readl(S3C2443_URSTCON);
 205	cfg &= ~(S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
 206	writel(cfg, S3C2443_URSTCON);
 207
 208	cfg = readl(S3C2443_PHYCTRL);
 209	cfg &= ~(S3C2443_PHYCTRL_CLKSEL | S3C2443_PHYCTRL_DSPORT);
 210	cfg |= (S3C2443_PHYCTRL_EXTCLK | S3C2443_PHYCTRL_PLLSEL);
 211	writel(cfg, S3C2443_PHYCTRL);
 212
 213	cfg = readl(S3C2443_PHYPWR);
 214	cfg &= ~(S3C2443_PHYPWR_FSUSPEND | S3C2443_PHYPWR_PLL_PWRDN |
 215		S3C2443_PHYPWR_XO_ON | S3C2443_PHYPWR_PLL_REFCLK |
 216		S3C2443_PHYPWR_ANALOG_PD);
 217	cfg |= S3C2443_PHYPWR_COMMON_ON;
 218	writel(cfg, S3C2443_PHYPWR);
 219
 220	cfg = readl(S3C2443_UCLKCON);
 221	cfg |= (S3C2443_UCLKCON_DETECT_VBUS | S3C2443_UCLKCON_FUNC_CLKEN |
 222		S3C2443_UCLKCON_TCLKEN);
 223	writel(cfg, S3C2443_UCLKCON);
 224}
 225
 226static void s3c_hsudc_uninit_phy(void)
 227{
 228	u32 cfg;
 229
 230	cfg = readl(S3C2443_PWRCFG) & ~S3C2443_PWRCFG_USBPHY;
 231	writel(cfg, S3C2443_PWRCFG);
 232
 233	writel(S3C2443_PHYPWR_FSUSPEND, S3C2443_PHYPWR);
 234
 235	cfg = readl(S3C2443_UCLKCON) & ~S3C2443_UCLKCON_FUNC_CLKEN;
 236	writel(cfg, S3C2443_UCLKCON);
 237}
 238
 239/**
 240 * s3c_hsudc_complete_request - Complete a transfer request.
 241 * @hsep: Endpoint to which the request belongs.
 242 * @hsreq: Transfer request to be completed.
 243 * @status: Transfer completion status for the transfer request.
 244 */
 245static void s3c_hsudc_complete_request(struct s3c_hsudc_ep *hsep,
 246				struct s3c_hsudc_req *hsreq, int status)
 247{
 248	unsigned int stopped = hsep->stopped;
 249	struct s3c_hsudc *hsudc = hsep->dev;
 250
 251	list_del_init(&hsreq->queue);
 252	hsreq->req.status = status;
 253
 254	if (!ep_index(hsep)) {
 255		hsudc->ep0state = WAIT_FOR_SETUP;
 256		hsep->bEndpointAddress &= ~USB_DIR_IN;
 257	}
 258
 259	hsep->stopped = 1;
 260	spin_unlock(&hsudc->lock);
 261	usb_gadget_giveback_request(&hsep->ep, &hsreq->req);
 262	spin_lock(&hsudc->lock);
 263	hsep->stopped = stopped;
 264}
 265
 266/**
 267 * s3c_hsudc_nuke_ep - Terminate all requests queued for a endpoint.
 268 * @hsep: Endpoint for which queued requests have to be terminated.
 269 * @status: Transfer completion status for the transfer request.
 270 */
 271static void s3c_hsudc_nuke_ep(struct s3c_hsudc_ep *hsep, int status)
 272{
 273	struct s3c_hsudc_req *hsreq;
 274
 275	while (!list_empty(&hsep->queue)) {
 276		hsreq = list_entry(hsep->queue.next,
 277				struct s3c_hsudc_req, queue);
 278		s3c_hsudc_complete_request(hsep, hsreq, status);
 279	}
 280}
 281
 282/**
 283 * s3c_hsudc_stop_activity - Stop activity on all endpoints.
 284 * @hsudc: Device controller for which EP activity is to be stopped.
 285 *
 286 * All the endpoints are stopped and any pending transfer requests if any on
 287 * the endpoint are terminated.
 288 */
 289static void s3c_hsudc_stop_activity(struct s3c_hsudc *hsudc)
 290{
 291	struct s3c_hsudc_ep *hsep;
 292	int epnum;
 293
 294	hsudc->gadget.speed = USB_SPEED_UNKNOWN;
 295
 296	for (epnum = 0; epnum < hsudc->pd->epnum; epnum++) {
 297		hsep = &hsudc->ep[epnum];
 298		hsep->stopped = 1;
 299		s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
 300	}
 301}
 302
 303/**
 304 * s3c_hsudc_read_setup_pkt - Read the received setup packet from EP0 fifo.
 305 * @hsudc: Device controller from which setup packet is to be read.
 306 * @buf: The buffer into which the setup packet is read.
 307 *
 308 * The setup packet received in the EP0 fifo is read and stored into a
 309 * given buffer address.
 310 */
 311
 312static void s3c_hsudc_read_setup_pkt(struct s3c_hsudc *hsudc, u16 *buf)
 313{
 314	int count;
 315
 316	count = readl(hsudc->regs + S3C_BRCR);
 317	while (count--)
 318		*buf++ = (u16)readl(hsudc->regs + S3C_BR(0));
 319
 320	writel(S3C_EP0SR_RX_SUCCESS, hsudc->regs + S3C_EP0SR);
 321}
 322
 323/**
 324 * s3c_hsudc_write_fifo - Write next chunk of transfer data to EP fifo.
 325 * @hsep: Endpoint to which the data is to be written.
 326 * @hsreq: Transfer request from which the next chunk of data is written.
 327 *
 328 * Write the next chunk of data from a transfer request to the endpoint FIFO.
 329 * If the transfer request completes, 1 is returned, otherwise 0 is returned.
 330 */
 331static int s3c_hsudc_write_fifo(struct s3c_hsudc_ep *hsep,
 332				struct s3c_hsudc_req *hsreq)
 333{
 334	u16 *buf;
 335	u32 max = ep_maxpacket(hsep);
 336	u32 count, length;
 337	bool is_last;
 338	void __iomem *fifo = hsep->fifo;
 339
 340	buf = hsreq->req.buf + hsreq->req.actual;
 341	prefetch(buf);
 342
 343	length = hsreq->req.length - hsreq->req.actual;
 344	length = min(length, max);
 345	hsreq->req.actual += length;
 346
 347	writel(length, hsep->dev->regs + S3C_BWCR);
 348	for (count = 0; count < length; count += 2)
 349		writel(*buf++, fifo);
 350
 351	if (count != max) {
 352		is_last = true;
 353	} else {
 354		if (hsreq->req.length != hsreq->req.actual || hsreq->req.zero)
 355			is_last = false;
 356		else
 357			is_last = true;
 358	}
 359
 360	if (is_last) {
 361		s3c_hsudc_complete_request(hsep, hsreq, 0);
 362		return 1;
 363	}
 364
 365	return 0;
 366}
 367
 368/**
 369 * s3c_hsudc_read_fifo - Read the next chunk of data from EP fifo.
 370 * @hsep: Endpoint from which the data is to be read.
 371 * @hsreq: Transfer request to which the next chunk of data read is written.
 372 *
 373 * Read the next chunk of data from the endpoint FIFO and a write it to the
 374 * transfer request buffer. If the transfer request completes, 1 is returned,
 375 * otherwise 0 is returned.
 376 */
 377static int s3c_hsudc_read_fifo(struct s3c_hsudc_ep *hsep,
 378				struct s3c_hsudc_req *hsreq)
 379{
 380	struct s3c_hsudc *hsudc = hsep->dev;
 381	u32 csr, offset;
 382	u16 *buf, word;
 383	u32 buflen, rcnt, rlen;
 384	void __iomem *fifo = hsep->fifo;
 385	u32 is_short = 0;
 386
 387	offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
 388	csr = readl(hsudc->regs + offset);
 389	if (!(csr & S3C_ESR_RX_SUCCESS))
 390		return -EINVAL;
 391
 392	buf = hsreq->req.buf + hsreq->req.actual;
 393	prefetchw(buf);
 394	buflen = hsreq->req.length - hsreq->req.actual;
 395
 396	rcnt = readl(hsudc->regs + S3C_BRCR);
 397	rlen = (csr & S3C_ESR_LWO) ? (rcnt * 2 - 1) : (rcnt * 2);
 398
 399	hsreq->req.actual += min(rlen, buflen);
 400	is_short = (rlen < hsep->ep.maxpacket);
 401
 402	while (rcnt-- != 0) {
 403		word = (u16)readl(fifo);
 404		if (buflen) {
 405			*buf++ = word;
 406			buflen--;
 407		} else {
 408			hsreq->req.status = -EOVERFLOW;
 409		}
 410	}
 411
 412	writel(S3C_ESR_RX_SUCCESS, hsudc->regs + offset);
 413
 414	if (is_short || hsreq->req.actual == hsreq->req.length) {
 415		s3c_hsudc_complete_request(hsep, hsreq, 0);
 416		return 1;
 417	}
 418
 419	return 0;
 420}
 421
 422/**
 423 * s3c_hsudc_epin_intr - Handle in-endpoint interrupt.
 424 * @hsudc - Device controller for which the interrupt is to be handled.
 425 * @ep_idx - Endpoint number on which an interrupt is pending.
 426 *
 427 * Handles interrupt for a in-endpoint. The interrupts that are handled are
 428 * stall and data transmit complete interrupt.
 429 */
 430static void s3c_hsudc_epin_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
 431{
 432	struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
 433	struct s3c_hsudc_req *hsreq;
 434	u32 csr;
 435
 436	csr = readl(hsudc->regs + S3C_ESR);
 437	if (csr & S3C_ESR_STALL) {
 438		writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
 439		return;
 440	}
 441
 442	if (csr & S3C_ESR_TX_SUCCESS) {
 443		writel(S3C_ESR_TX_SUCCESS, hsudc->regs + S3C_ESR);
 444		if (list_empty(&hsep->queue))
 445			return;
 446
 447		hsreq = list_entry(hsep->queue.next,
 448				struct s3c_hsudc_req, queue);
 449		if ((s3c_hsudc_write_fifo(hsep, hsreq) == 0) &&
 450				(csr & S3C_ESR_PSIF_TWO))
 451			s3c_hsudc_write_fifo(hsep, hsreq);
 452	}
 453}
 454
 455/**
 456 * s3c_hsudc_epout_intr - Handle out-endpoint interrupt.
 457 * @hsudc - Device controller for which the interrupt is to be handled.
 458 * @ep_idx - Endpoint number on which an interrupt is pending.
 459 *
 460 * Handles interrupt for a out-endpoint. The interrupts that are handled are
 461 * stall, flush and data ready interrupt.
 462 */
 463static void s3c_hsudc_epout_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
 464{
 465	struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
 466	struct s3c_hsudc_req *hsreq;
 467	u32 csr;
 468
 469	csr = readl(hsudc->regs + S3C_ESR);
 470	if (csr & S3C_ESR_STALL) {
 471		writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
 472		return;
 473	}
 474
 475	if (csr & S3C_ESR_FLUSH) {
 476		__orr32(hsudc->regs + S3C_ECR, S3C_ECR_FLUSH);
 477		return;
 478	}
 479
 480	if (csr & S3C_ESR_RX_SUCCESS) {
 481		if (list_empty(&hsep->queue))
 482			return;
 483
 484		hsreq = list_entry(hsep->queue.next,
 485				struct s3c_hsudc_req, queue);
 486		if (((s3c_hsudc_read_fifo(hsep, hsreq)) == 0) &&
 487				(csr & S3C_ESR_PSIF_TWO))
 488			s3c_hsudc_read_fifo(hsep, hsreq);
 489	}
 490}
 491
 492/** s3c_hsudc_set_halt - Set or clear a endpoint halt.
 493 * @_ep: Endpoint on which halt has to be set or cleared.
 494 * @value: 1 for setting halt on endpoint, 0 to clear halt.
 495 *
 496 * Set or clear endpoint halt. If halt is set, the endpoint is stopped.
 497 * If halt is cleared, for in-endpoints, if there are any pending
 498 * transfer requests, transfers are started.
 499 */
 500static int s3c_hsudc_set_halt(struct usb_ep *_ep, int value)
 501{
 502	struct s3c_hsudc_ep *hsep = our_ep(_ep);
 503	struct s3c_hsudc *hsudc = hsep->dev;
 504	struct s3c_hsudc_req *hsreq;
 505	unsigned long irqflags;
 506	u32 ecr;
 507	u32 offset;
 508
 509	if (value && ep_is_in(hsep) && !list_empty(&hsep->queue))
 510		return -EAGAIN;
 511
 512	spin_lock_irqsave(&hsudc->lock, irqflags);
 513	set_index(hsudc, ep_index(hsep));
 514	offset = (ep_index(hsep)) ? S3C_ECR : S3C_EP0CR;
 515	ecr = readl(hsudc->regs + offset);
 516
 517	if (value) {
 518		ecr |= S3C_ECR_STALL;
 519		if (ep_index(hsep))
 520			ecr |= S3C_ECR_FLUSH;
 521		hsep->stopped = 1;
 522	} else {
 523		ecr &= ~S3C_ECR_STALL;
 524		hsep->stopped = hsep->wedge = 0;
 525	}
 526	writel(ecr, hsudc->regs + offset);
 527
 528	if (ep_is_in(hsep) && !list_empty(&hsep->queue) && !value) {
 529		hsreq = list_entry(hsep->queue.next,
 530			struct s3c_hsudc_req, queue);
 531		if (hsreq)
 532			s3c_hsudc_write_fifo(hsep, hsreq);
 533	}
 534
 535	spin_unlock_irqrestore(&hsudc->lock, irqflags);
 536	return 0;
 537}
 538
 539/** s3c_hsudc_set_wedge - Sets the halt feature with the clear requests ignored
 540 * @_ep: Endpoint on which wedge has to be set.
 541 *
 542 * Sets the halt feature with the clear requests ignored.
 543 */
 544static int s3c_hsudc_set_wedge(struct usb_ep *_ep)
 545{
 546	struct s3c_hsudc_ep *hsep = our_ep(_ep);
 547
 548	if (!hsep)
 549		return -EINVAL;
 550
 551	hsep->wedge = 1;
 552	return usb_ep_set_halt(_ep);
 553}
 554
 555/** s3c_hsudc_handle_reqfeat - Handle set feature or clear feature requests.
 556 * @_ep: Device controller on which the set/clear feature needs to be handled.
 557 * @ctrl: Control request as received on the endpoint 0.
 558 *
 559 * Handle set feature or clear feature control requests on the control endpoint.
 560 */
 561static int s3c_hsudc_handle_reqfeat(struct s3c_hsudc *hsudc,
 562					struct usb_ctrlrequest *ctrl)
 563{
 564	struct s3c_hsudc_ep *hsep;
 565	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
 566	u8 ep_num = ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK;
 567
 568	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
 569		hsep = &hsudc->ep[ep_num];
 570		switch (le16_to_cpu(ctrl->wValue)) {
 571		case USB_ENDPOINT_HALT:
 572			if (set || !hsep->wedge)
 573				s3c_hsudc_set_halt(&hsep->ep, set);
 574			return 0;
 575		}
 576	}
 577
 578	return -ENOENT;
 579}
 580
 581/**
 582 * s3c_hsudc_process_req_status - Handle get status control request.
 583 * @hsudc: Device controller on which get status request has be handled.
 584 * @ctrl: Control request as received on the endpoint 0.
 585 *
 586 * Handle get status control request received on control endpoint.
 587 */
 588static void s3c_hsudc_process_req_status(struct s3c_hsudc *hsudc,
 589					struct usb_ctrlrequest *ctrl)
 590{
 591	struct s3c_hsudc_ep *hsep0 = &hsudc->ep[0];
 592	struct s3c_hsudc_req hsreq;
 593	struct s3c_hsudc_ep *hsep;
 594	__le16 reply;
 595	u8 epnum;
 596
 597	switch (ctrl->bRequestType & USB_RECIP_MASK) {
 598	case USB_RECIP_DEVICE:
 599		reply = cpu_to_le16(0);
 600		break;
 601
 602	case USB_RECIP_INTERFACE:
 603		reply = cpu_to_le16(0);
 604		break;
 605
 606	case USB_RECIP_ENDPOINT:
 607		epnum = le16_to_cpu(ctrl->wIndex) & USB_ENDPOINT_NUMBER_MASK;
 608		hsep = &hsudc->ep[epnum];
 609		reply = cpu_to_le16(hsep->stopped ? 1 : 0);
 610		break;
 611	}
 612
 613	INIT_LIST_HEAD(&hsreq.queue);
 614	hsreq.req.length = 2;
 615	hsreq.req.buf = &reply;
 616	hsreq.req.actual = 0;
 617	hsreq.req.complete = NULL;
 618	s3c_hsudc_write_fifo(hsep0, &hsreq);
 619}
 620
 621/**
 622 * s3c_hsudc_process_setup - Process control request received on endpoint 0.
 623 * @hsudc: Device controller on which control request has been received.
 624 *
 625 * Read the control request received on endpoint 0, decode it and handle
 626 * the request.
 627 */
 628static void s3c_hsudc_process_setup(struct s3c_hsudc *hsudc)
 629{
 630	struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
 631	struct usb_ctrlrequest ctrl = {0};
 632	int ret;
 633
 634	s3c_hsudc_nuke_ep(hsep, -EPROTO);
 635	s3c_hsudc_read_setup_pkt(hsudc, (u16 *)&ctrl);
 636
 637	if (ctrl.bRequestType & USB_DIR_IN) {
 638		hsep->bEndpointAddress |= USB_DIR_IN;
 639		hsudc->ep0state = DATA_STATE_XMIT;
 640	} else {
 641		hsep->bEndpointAddress &= ~USB_DIR_IN;
 642		hsudc->ep0state = DATA_STATE_RECV;
 643	}
 644
 645	switch (ctrl.bRequest) {
 646	case USB_REQ_SET_ADDRESS:
 647		if (ctrl.bRequestType != (USB_TYPE_STANDARD | USB_RECIP_DEVICE))
 648			break;
 649		hsudc->ep0state = WAIT_FOR_SETUP;
 650		return;
 651
 652	case USB_REQ_GET_STATUS:
 653		if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
 654			break;
 655		s3c_hsudc_process_req_status(hsudc, &ctrl);
 656		return;
 657
 658	case USB_REQ_SET_FEATURE:
 659	case USB_REQ_CLEAR_FEATURE:
 660		if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
 661			break;
 662		s3c_hsudc_handle_reqfeat(hsudc, &ctrl);
 663		hsudc->ep0state = WAIT_FOR_SETUP;
 664		return;
 665	}
 666
 667	if (hsudc->driver) {
 668		spin_unlock(&hsudc->lock);
 669		ret = hsudc->driver->setup(&hsudc->gadget, &ctrl);
 670		spin_lock(&hsudc->lock);
 671
 672		if (ctrl.bRequest == USB_REQ_SET_CONFIGURATION) {
 673			hsep->bEndpointAddress &= ~USB_DIR_IN;
 674			hsudc->ep0state = WAIT_FOR_SETUP;
 675		}
 676
 677		if (ret < 0) {
 678			dev_err(hsudc->dev, "setup failed, returned %d\n",
 679						ret);
 680			s3c_hsudc_set_halt(&hsep->ep, 1);
 681			hsudc->ep0state = WAIT_FOR_SETUP;
 682			hsep->bEndpointAddress &= ~USB_DIR_IN;
 683		}
 684	}
 685}
 686
 687/** s3c_hsudc_handle_ep0_intr - Handle endpoint 0 interrupt.
 688 * @hsudc: Device controller on which endpoint 0 interrupt has occured.
 689 *
 690 * Handle endpoint 0 interrupt when it occurs. EP0 interrupt could occur
 691 * when a stall handshake is sent to host or data is sent/received on
 692 * endpoint 0.
 693 */
 694static void s3c_hsudc_handle_ep0_intr(struct s3c_hsudc *hsudc)
 695{
 696	struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
 697	struct s3c_hsudc_req *hsreq;
 698	u32 csr = readl(hsudc->regs + S3C_EP0SR);
 699	u32 ecr;
 700
 701	if (csr & S3C_EP0SR_STALL) {
 702		ecr = readl(hsudc->regs + S3C_EP0CR);
 703		ecr &= ~(S3C_ECR_STALL | S3C_ECR_FLUSH);
 704		writel(ecr, hsudc->regs + S3C_EP0CR);
 705
 706		writel(S3C_EP0SR_STALL, hsudc->regs + S3C_EP0SR);
 707		hsep->stopped = 0;
 708
 709		s3c_hsudc_nuke_ep(hsep, -ECONNABORTED);
 710		hsudc->ep0state = WAIT_FOR_SETUP;
 711		hsep->bEndpointAddress &= ~USB_DIR_IN;
 712		return;
 713	}
 714
 715	if (csr & S3C_EP0SR_TX_SUCCESS) {
 716		writel(S3C_EP0SR_TX_SUCCESS, hsudc->regs + S3C_EP0SR);
 717		if (ep_is_in(hsep)) {
 718			if (list_empty(&hsep->queue))
 719				return;
 720
 721			hsreq = list_entry(hsep->queue.next,
 722					struct s3c_hsudc_req, queue);
 723			s3c_hsudc_write_fifo(hsep, hsreq);
 724		}
 725	}
 726
 727	if (csr & S3C_EP0SR_RX_SUCCESS) {
 728		if (hsudc->ep0state == WAIT_FOR_SETUP)
 729			s3c_hsudc_process_setup(hsudc);
 730		else {
 731			if (!ep_is_in(hsep)) {
 732				if (list_empty(&hsep->queue))
 733					return;
 734				hsreq = list_entry(hsep->queue.next,
 735					struct s3c_hsudc_req, queue);
 736				s3c_hsudc_read_fifo(hsep, hsreq);
 737			}
 738		}
 739	}
 740}
 741
 742/**
 743 * s3c_hsudc_ep_enable - Enable a endpoint.
 744 * @_ep: The endpoint to be enabled.
 745 * @desc: Endpoint descriptor.
 746 *
 747 * Enables a endpoint when called from the gadget driver. Endpoint stall if
 748 * any is cleared, transfer type is configured and endpoint interrupt is
 749 * enabled.
 750 */
 751static int s3c_hsudc_ep_enable(struct usb_ep *_ep,
 752				const struct usb_endpoint_descriptor *desc)
 753{
 754	struct s3c_hsudc_ep *hsep;
 755	struct s3c_hsudc *hsudc;
 756	unsigned long flags;
 757	u32 ecr = 0;
 758
 759	hsep = our_ep(_ep);
 760	if (!_ep || !desc || _ep->name == ep0name
 761		|| desc->bDescriptorType != USB_DT_ENDPOINT
 762		|| hsep->bEndpointAddress != desc->bEndpointAddress
 763		|| ep_maxpacket(hsep) < usb_endpoint_maxp(desc))
 764		return -EINVAL;
 765
 766	if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
 767		&& usb_endpoint_maxp(desc) != ep_maxpacket(hsep))
 768		|| !desc->wMaxPacketSize)
 769		return -ERANGE;
 770
 771	hsudc = hsep->dev;
 772	if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
 773		return -ESHUTDOWN;
 774
 775	spin_lock_irqsave(&hsudc->lock, flags);
 776
 777	set_index(hsudc, hsep->bEndpointAddress);
 778	ecr |= ((usb_endpoint_xfer_int(desc)) ? S3C_ECR_IEMS : S3C_ECR_DUEN);
 779	writel(ecr, hsudc->regs + S3C_ECR);
 780
 781	hsep->stopped = hsep->wedge = 0;
 782	hsep->ep.desc = desc;
 783	hsep->ep.maxpacket = usb_endpoint_maxp(desc);
 784
 785	s3c_hsudc_set_halt(_ep, 0);
 786	__set_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
 787
 788	spin_unlock_irqrestore(&hsudc->lock, flags);
 789	return 0;
 790}
 791
 792/**
 793 * s3c_hsudc_ep_disable - Disable a endpoint.
 794 * @_ep: The endpoint to be disabled.
 795 * @desc: Endpoint descriptor.
 796 *
 797 * Disables a endpoint when called from the gadget driver.
 798 */
 799static int s3c_hsudc_ep_disable(struct usb_ep *_ep)
 800{
 801	struct s3c_hsudc_ep *hsep = our_ep(_ep);
 802	struct s3c_hsudc *hsudc = hsep->dev;
 803	unsigned long flags;
 804
 805	if (!_ep || !hsep->ep.desc)
 806		return -EINVAL;
 807
 808	spin_lock_irqsave(&hsudc->lock, flags);
 809
 810	set_index(hsudc, hsep->bEndpointAddress);
 811	__clear_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
 812
 813	s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
 814
 815	hsep->ep.desc = NULL;
 816	hsep->stopped = 1;
 817
 818	spin_unlock_irqrestore(&hsudc->lock, flags);
 819	return 0;
 820}
 821
 822/**
 823 * s3c_hsudc_alloc_request - Allocate a new request.
 824 * @_ep: Endpoint for which request is allocated (not used).
 825 * @gfp_flags: Flags used for the allocation.
 826 *
 827 * Allocates a single transfer request structure when called from gadget driver.
 828 */
 829static struct usb_request *s3c_hsudc_alloc_request(struct usb_ep *_ep,
 830						gfp_t gfp_flags)
 831{
 832	struct s3c_hsudc_req *hsreq;
 833
 834	hsreq = kzalloc(sizeof(*hsreq), gfp_flags);
 835	if (!hsreq)
 836		return NULL;
 837
 838	INIT_LIST_HEAD(&hsreq->queue);
 839	return &hsreq->req;
 840}
 841
 842/**
 843 * s3c_hsudc_free_request - Deallocate a request.
 844 * @ep: Endpoint for which request is deallocated (not used).
 845 * @_req: Request to be deallocated.
 846 *
 847 * Allocates a single transfer request structure when called from gadget driver.
 848 */
 849static void s3c_hsudc_free_request(struct usb_ep *ep, struct usb_request *_req)
 850{
 851	struct s3c_hsudc_req *hsreq;
 852
 853	hsreq = our_req(_req);
 854	WARN_ON(!list_empty(&hsreq->queue));
 855	kfree(hsreq);
 856}
 857
 858/**
 859 * s3c_hsudc_queue - Queue a transfer request for the endpoint.
 860 * @_ep: Endpoint for which the request is queued.
 861 * @_req: Request to be queued.
 862 * @gfp_flags: Not used.
 863 *
 864 * Start or enqueue a request for a endpoint when called from gadget driver.
 865 */
 866static int s3c_hsudc_queue(struct usb_ep *_ep, struct usb_request *_req,
 867			gfp_t gfp_flags)
 868{
 869	struct s3c_hsudc_req *hsreq;
 870	struct s3c_hsudc_ep *hsep;
 871	struct s3c_hsudc *hsudc;
 872	unsigned long flags;
 873	u32 offset;
 874	u32 csr;
 875
 876	hsreq = our_req(_req);
 877	if ((!_req || !_req->complete || !_req->buf ||
 878		!list_empty(&hsreq->queue)))
 879		return -EINVAL;
 880
 881	hsep = our_ep(_ep);
 882	hsudc = hsep->dev;
 883	if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
 884		return -ESHUTDOWN;
 885
 886	spin_lock_irqsave(&hsudc->lock, flags);
 887	set_index(hsudc, hsep->bEndpointAddress);
 888
 889	_req->status = -EINPROGRESS;
 890	_req->actual = 0;
 891
 892	if (!ep_index(hsep) && _req->length == 0) {
 893		hsudc->ep0state = WAIT_FOR_SETUP;
 894		s3c_hsudc_complete_request(hsep, hsreq, 0);
 895		spin_unlock_irqrestore(&hsudc->lock, flags);
 896		return 0;
 897	}
 898
 899	if (list_empty(&hsep->queue) && !hsep->stopped) {
 900		offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
 901		if (ep_is_in(hsep)) {
 902			csr = readl(hsudc->regs + offset);
 903			if (!(csr & S3C_ESR_TX_SUCCESS) &&
 904				(s3c_hsudc_write_fifo(hsep, hsreq) == 1))
 905				hsreq = NULL;
 906		} else {
 907			csr = readl(hsudc->regs + offset);
 908			if ((csr & S3C_ESR_RX_SUCCESS)
 909				   && (s3c_hsudc_read_fifo(hsep, hsreq) == 1))
 910				hsreq = NULL;
 911		}
 912	}
 913
 914	if (hsreq)
 915		list_add_tail(&hsreq->queue, &hsep->queue);
 916
 917	spin_unlock_irqrestore(&hsudc->lock, flags);
 918	return 0;
 919}
 920
 921/**
 922 * s3c_hsudc_dequeue - Dequeue a transfer request from an endpoint.
 923 * @_ep: Endpoint from which the request is dequeued.
 924 * @_req: Request to be dequeued.
 925 *
 926 * Dequeue a request from a endpoint when called from gadget driver.
 927 */
 928static int s3c_hsudc_dequeue(struct usb_ep *_ep, struct usb_request *_req)
 929{
 930	struct s3c_hsudc_ep *hsep = our_ep(_ep);
 931	struct s3c_hsudc *hsudc = hsep->dev;
 932	struct s3c_hsudc_req *hsreq;
 933	unsigned long flags;
 934
 935	hsep = our_ep(_ep);
 936	if (!_ep || hsep->ep.name == ep0name)
 937		return -EINVAL;
 938
 939	spin_lock_irqsave(&hsudc->lock, flags);
 940
 941	list_for_each_entry(hsreq, &hsep->queue, queue) {
 942		if (&hsreq->req == _req)
 943			break;
 944	}
 945	if (&hsreq->req != _req) {
 946		spin_unlock_irqrestore(&hsudc->lock, flags);
 947		return -EINVAL;
 948	}
 949
 950	set_index(hsudc, hsep->bEndpointAddress);
 951	s3c_hsudc_complete_request(hsep, hsreq, -ECONNRESET);
 952
 953	spin_unlock_irqrestore(&hsudc->lock, flags);
 954	return 0;
 955}
 956
 957static struct usb_ep_ops s3c_hsudc_ep_ops = {
 958	.enable = s3c_hsudc_ep_enable,
 959	.disable = s3c_hsudc_ep_disable,
 960	.alloc_request = s3c_hsudc_alloc_request,
 961	.free_request = s3c_hsudc_free_request,
 962	.queue = s3c_hsudc_queue,
 963	.dequeue = s3c_hsudc_dequeue,
 964	.set_halt = s3c_hsudc_set_halt,
 965	.set_wedge = s3c_hsudc_set_wedge,
 966};
 967
 968/**
 969 * s3c_hsudc_initep - Initialize a endpoint to default state.
 970 * @hsudc - Reference to the device controller.
 971 * @hsep - Endpoint to be initialized.
 972 * @epnum - Address to be assigned to the endpoint.
 973 *
 974 * Initialize a endpoint with default configuration.
 975 */
 976static void s3c_hsudc_initep(struct s3c_hsudc *hsudc,
 977				struct s3c_hsudc_ep *hsep, int epnum)
 978{
 979	char *dir;
 980
 981	if ((epnum % 2) == 0) {
 982		dir = "out";
 983	} else {
 984		dir = "in";
 985		hsep->bEndpointAddress = USB_DIR_IN;
 986	}
 987
 988	hsep->bEndpointAddress |= epnum;
 989	if (epnum)
 990		snprintf(hsep->name, sizeof(hsep->name), "ep%d%s", epnum, dir);
 991	else
 992		snprintf(hsep->name, sizeof(hsep->name), "%s", ep0name);
 993
 994	INIT_LIST_HEAD(&hsep->queue);
 995	INIT_LIST_HEAD(&hsep->ep.ep_list);
 996	if (epnum)
 997		list_add_tail(&hsep->ep.ep_list, &hsudc->gadget.ep_list);
 998
 999	hsep->dev = hsudc;
1000	hsep->ep.name = hsep->name;
1001	usb_ep_set_maxpacket_limit(&hsep->ep, epnum ? 512 : 64);
1002	hsep->ep.ops = &s3c_hsudc_ep_ops;
1003	hsep->fifo = hsudc->regs + S3C_BR(epnum);
1004	hsep->ep.desc = NULL;
1005	hsep->stopped = 0;
1006	hsep->wedge = 0;
1007
1008	if (epnum == 0) {
1009		hsep->ep.caps.type_control = true;
1010		hsep->ep.caps.dir_in = true;
1011		hsep->ep.caps.dir_out = true;
1012	} else {
1013		hsep->ep.caps.type_iso = true;
1014		hsep->ep.caps.type_bulk = true;
1015		hsep->ep.caps.type_int = true;
1016	}
1017
1018	if (epnum & 1)
1019		hsep->ep.caps.dir_in = true;
1020	else
1021		hsep->ep.caps.dir_out = true;
1022
1023	set_index(hsudc, epnum);
1024	writel(hsep->ep.maxpacket, hsudc->regs + S3C_MPR);
1025}
1026
1027/**
1028 * s3c_hsudc_setup_ep - Configure all endpoints to default state.
1029 * @hsudc: Reference to device controller.
1030 *
1031 * Configures all endpoints to default state.
1032 */
1033static void s3c_hsudc_setup_ep(struct s3c_hsudc *hsudc)
1034{
1035	int epnum;
1036
1037	hsudc->ep0state = WAIT_FOR_SETUP;
1038	INIT_LIST_HEAD(&hsudc->gadget.ep_list);
1039	for (epnum = 0; epnum < hsudc->pd->epnum; epnum++)
1040		s3c_hsudc_initep(hsudc, &hsudc->ep[epnum], epnum);
1041}
1042
1043/**
1044 * s3c_hsudc_reconfig - Reconfigure the device controller to default state.
1045 * @hsudc: Reference to device controller.
1046 *
1047 * Reconfigures the device controller registers to a default state.
1048 */
1049static void s3c_hsudc_reconfig(struct s3c_hsudc *hsudc)
1050{
1051	writel(0xAA, hsudc->regs + S3C_EDR);
1052	writel(1, hsudc->regs + S3C_EIER);
1053	writel(0, hsudc->regs + S3C_TR);
1054	writel(S3C_SCR_DTZIEN_EN | S3C_SCR_RRD_EN | S3C_SCR_SUS_EN |
1055			S3C_SCR_RST_EN, hsudc->regs + S3C_SCR);
1056	writel(0, hsudc->regs + S3C_EP0CR);
1057
1058	s3c_hsudc_setup_ep(hsudc);
1059}
1060
1061/**
1062 * s3c_hsudc_irq - Interrupt handler for device controller.
1063 * @irq: Not used.
1064 * @_dev: Reference to the device controller.
1065 *
1066 * Interrupt handler for the device controller. This handler handles controller
1067 * interrupts and endpoint interrupts.
1068 */
1069static irqreturn_t s3c_hsudc_irq(int irq, void *_dev)
1070{
1071	struct s3c_hsudc *hsudc = _dev;
1072	struct s3c_hsudc_ep *hsep;
1073	u32 ep_intr;
1074	u32 sys_status;
1075	u32 ep_idx;
1076
1077	spin_lock(&hsudc->lock);
1078
1079	sys_status = readl(hsudc->regs + S3C_SSR);
1080	ep_intr = readl(hsudc->regs + S3C_EIR) & 0x3FF;
1081
1082	if (!ep_intr && !(sys_status & S3C_SSR_DTZIEN_EN)) {
1083		spin_unlock(&hsudc->lock);
1084		return IRQ_HANDLED;
1085	}
1086
1087	if (sys_status) {
1088		if (sys_status & S3C_SSR_VBUSON)
1089			writel(S3C_SSR_VBUSON, hsudc->regs + S3C_SSR);
1090
1091		if (sys_status & S3C_SSR_ERR)
1092			writel(S3C_SSR_ERR, hsudc->regs + S3C_SSR);
1093
1094		if (sys_status & S3C_SSR_SDE) {
1095			writel(S3C_SSR_SDE, hsudc->regs + S3C_SSR);
1096			hsudc->gadget.speed = (sys_status & S3C_SSR_HSP) ?
1097				USB_SPEED_HIGH : USB_SPEED_FULL;
1098		}
1099
1100		if (sys_status & S3C_SSR_SUSPEND) {
1101			writel(S3C_SSR_SUSPEND, hsudc->regs + S3C_SSR);
1102			if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1103				&& hsudc->driver && hsudc->driver->suspend)
1104				hsudc->driver->suspend(&hsudc->gadget);
1105		}
1106
1107		if (sys_status & S3C_SSR_RESUME) {
1108			writel(S3C_SSR_RESUME, hsudc->regs + S3C_SSR);
1109			if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1110				&& hsudc->driver && hsudc->driver->resume)
1111				hsudc->driver->resume(&hsudc->gadget);
1112		}
1113
1114		if (sys_status & S3C_SSR_RESET) {
1115			writel(S3C_SSR_RESET, hsudc->regs + S3C_SSR);
1116			for (ep_idx = 0; ep_idx < hsudc->pd->epnum; ep_idx++) {
1117				hsep = &hsudc->ep[ep_idx];
1118				hsep->stopped = 1;
1119				s3c_hsudc_nuke_ep(hsep, -ECONNRESET);
1120			}
1121			s3c_hsudc_reconfig(hsudc);
1122			hsudc->ep0state = WAIT_FOR_SETUP;
1123		}
1124	}
1125
1126	if (ep_intr & S3C_EIR_EP0) {
1127		writel(S3C_EIR_EP0, hsudc->regs + S3C_EIR);
1128		set_index(hsudc, 0);
1129		s3c_hsudc_handle_ep0_intr(hsudc);
1130	}
1131
1132	ep_intr >>= 1;
1133	ep_idx = 1;
1134	while (ep_intr) {
1135		if (ep_intr & 1)  {
1136			hsep = &hsudc->ep[ep_idx];
1137			set_index(hsudc, ep_idx);
1138			writel(1 << ep_idx, hsudc->regs + S3C_EIR);
1139			if (ep_is_in(hsep))
1140				s3c_hsudc_epin_intr(hsudc, ep_idx);
1141			else
1142				s3c_hsudc_epout_intr(hsudc, ep_idx);
1143		}
1144		ep_intr >>= 1;
1145		ep_idx++;
1146	}
1147
1148	spin_unlock(&hsudc->lock);
1149	return IRQ_HANDLED;
1150}
1151
1152static int s3c_hsudc_start(struct usb_gadget *gadget,
1153		struct usb_gadget_driver *driver)
1154{
1155	struct s3c_hsudc *hsudc = to_hsudc(gadget);
1156	int ret;
1157
1158	if (!driver
1159		|| driver->max_speed < USB_SPEED_FULL
1160		|| !driver->setup)
1161		return -EINVAL;
1162
1163	if (!hsudc)
1164		return -ENODEV;
1165
1166	if (hsudc->driver)
1167		return -EBUSY;
1168
1169	hsudc->driver = driver;
1170
1171	ret = regulator_bulk_enable(ARRAY_SIZE(hsudc->supplies),
1172				    hsudc->supplies);
1173	if (ret != 0) {
1174		dev_err(hsudc->dev, "failed to enable supplies: %d\n", ret);
1175		goto err_supplies;
1176	}
1177
1178	/* connect to bus through transceiver */
1179	if (!IS_ERR_OR_NULL(hsudc->transceiver)) {
1180		ret = otg_set_peripheral(hsudc->transceiver->otg,
1181					&hsudc->gadget);
1182		if (ret) {
1183			dev_err(hsudc->dev, "%s: can't bind to transceiver\n",
1184					hsudc->gadget.name);
1185			goto err_otg;
1186		}
1187	}
1188
1189	enable_irq(hsudc->irq);
1190	s3c_hsudc_reconfig(hsudc);
1191
1192	pm_runtime_get_sync(hsudc->dev);
1193
1194	s3c_hsudc_init_phy();
1195	if (hsudc->pd->gpio_init)
1196		hsudc->pd->gpio_init();
1197
1198	return 0;
1199err_otg:
1200	regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1201err_supplies:
1202	hsudc->driver = NULL;
1203	return ret;
1204}
1205
1206static int s3c_hsudc_stop(struct usb_gadget *gadget)
1207{
1208	struct s3c_hsudc *hsudc = to_hsudc(gadget);
1209	unsigned long flags;
1210
1211	if (!hsudc)
1212		return -ENODEV;
1213
1214	spin_lock_irqsave(&hsudc->lock, flags);
1215	hsudc->gadget.speed = USB_SPEED_UNKNOWN;
1216	s3c_hsudc_uninit_phy();
1217
1218	pm_runtime_put(hsudc->dev);
1219
1220	if (hsudc->pd->gpio_uninit)
1221		hsudc->pd->gpio_uninit();
1222	s3c_hsudc_stop_activity(hsudc);
1223	spin_unlock_irqrestore(&hsudc->lock, flags);
1224
1225	if (!IS_ERR_OR_NULL(hsudc->transceiver))
1226		(void) otg_set_peripheral(hsudc->transceiver->otg, NULL);
1227
1228	disable_irq(hsudc->irq);
1229
1230	regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1231	hsudc->driver = NULL;
1232
1233	return 0;
1234}
1235
1236static inline u32 s3c_hsudc_read_frameno(struct s3c_hsudc *hsudc)
1237{
1238	return readl(hsudc->regs + S3C_FNR) & 0x3FF;
1239}
1240
1241static int s3c_hsudc_gadget_getframe(struct usb_gadget *gadget)
1242{
1243	return s3c_hsudc_read_frameno(to_hsudc(gadget));
1244}
1245
1246static int s3c_hsudc_vbus_draw(struct usb_gadget *gadget, unsigned mA)
1247{
1248	struct s3c_hsudc *hsudc = to_hsudc(gadget);
1249
1250	if (!hsudc)
1251		return -ENODEV;
1252
1253	if (!IS_ERR_OR_NULL(hsudc->transceiver))
1254		return usb_phy_set_power(hsudc->transceiver, mA);
1255
1256	return -EOPNOTSUPP;
1257}
1258
1259static const struct usb_gadget_ops s3c_hsudc_gadget_ops = {
1260	.get_frame	= s3c_hsudc_gadget_getframe,
1261	.udc_start	= s3c_hsudc_start,
1262	.udc_stop	= s3c_hsudc_stop,
1263	.vbus_draw	= s3c_hsudc_vbus_draw,
1264};
1265
1266static int s3c_hsudc_probe(struct platform_device *pdev)
1267{
1268	struct device *dev = &pdev->dev;
1269	struct resource *res;
1270	struct s3c_hsudc *hsudc;
1271	struct s3c24xx_hsudc_platdata *pd = dev_get_platdata(&pdev->dev);
1272	int ret, i;
1273
1274	hsudc = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsudc) +
1275			sizeof(struct s3c_hsudc_ep) * pd->epnum,
1276			GFP_KERNEL);
1277	if (!hsudc)
1278		return -ENOMEM;
1279
1280	platform_set_drvdata(pdev, dev);
1281	hsudc->dev = dev;
1282	hsudc->pd = dev_get_platdata(&pdev->dev);
1283
1284	hsudc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
1285
1286	for (i = 0; i < ARRAY_SIZE(hsudc->supplies); i++)
1287		hsudc->supplies[i].supply = s3c_hsudc_supply_names[i];
1288
1289	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsudc->supplies),
1290				 hsudc->supplies);
1291	if (ret != 0) {
1292		dev_err(dev, "failed to request supplies: %d\n", ret);
1293		goto err_supplies;
1294	}
1295
1296	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1297
1298	hsudc->regs = devm_ioremap_resource(&pdev->dev, res);
1299	if (IS_ERR(hsudc->regs)) {
1300		ret = PTR_ERR(hsudc->regs);
1301		goto err_res;
1302	}
1303
1304	spin_lock_init(&hsudc->lock);
1305
1306	hsudc->gadget.max_speed = USB_SPEED_HIGH;
1307	hsudc->gadget.ops = &s3c_hsudc_gadget_ops;
1308	hsudc->gadget.name = dev_name(dev);
1309	hsudc->gadget.ep0 = &hsudc->ep[0].ep;
1310	hsudc->gadget.is_otg = 0;
1311	hsudc->gadget.is_a_peripheral = 0;
1312	hsudc->gadget.speed = USB_SPEED_UNKNOWN;
1313
1314	s3c_hsudc_setup_ep(hsudc);
1315
1316	ret = platform_get_irq(pdev, 0);
1317	if (ret < 0) {
1318		dev_err(dev, "unable to obtain IRQ number\n");
1319		goto err_res;
1320	}
1321	hsudc->irq = ret;
1322
1323	ret = devm_request_irq(&pdev->dev, hsudc->irq, s3c_hsudc_irq, 0,
1324				driver_name, hsudc);
1325	if (ret < 0) {
1326		dev_err(dev, "irq request failed\n");
1327		goto err_res;
1328	}
1329
1330	hsudc->uclk = devm_clk_get(&pdev->dev, "usb-device");
1331	if (IS_ERR(hsudc->uclk)) {
1332		dev_err(dev, "failed to find usb-device clock source\n");
1333		ret = PTR_ERR(hsudc->uclk);
1334		goto err_res;
1335	}
1336	clk_enable(hsudc->uclk);
1337
1338	local_irq_disable();
1339
1340	disable_irq(hsudc->irq);
1341	local_irq_enable();
1342
1343	ret = usb_add_gadget_udc(&pdev->dev, &hsudc->gadget);
1344	if (ret)
1345		goto err_add_udc;
1346
1347	pm_runtime_enable(dev);
1348
1349	return 0;
1350err_add_udc:
1351	clk_disable(hsudc->uclk);
1352err_res:
1353	if (!IS_ERR_OR_NULL(hsudc->transceiver))
1354		usb_put_phy(hsudc->transceiver);
1355
1356err_supplies:
1357	return ret;
1358}
1359
1360static struct platform_driver s3c_hsudc_driver = {
1361	.driver		= {
1362		.name	= "s3c-hsudc",
1363	},
1364	.probe		= s3c_hsudc_probe,
1365};
1366
1367module_platform_driver(s3c_hsudc_driver);
1368
1369MODULE_DESCRIPTION("Samsung S3C24XX USB high-speed controller driver");
1370MODULE_AUTHOR("Thomas Abraham <thomas.ab@samsung.com>");
1371MODULE_LICENSE("GPL");
1372MODULE_ALIAS("platform:s3c-hsudc");