Linux Audio

Check our new training course

Loading...
v3.1
  1#include <linux/module.h>
  2#include <linux/string.h>
  3#include <linux/bitops.h>
  4#include <linux/slab.h>
  5#include <linux/init.h>
  6#include <linux/log2.h>
  7#include <linux/usb.h>
  8#include <linux/wait.h>
  9#include <linux/usb/hcd.h>
 
 10
 11#define to_urb(d) container_of(d, struct urb, kref)
 12
 13
 14static void urb_destroy(struct kref *kref)
 15{
 16	struct urb *urb = to_urb(kref);
 17
 18	if (urb->transfer_flags & URB_FREE_BUFFER)
 19		kfree(urb->transfer_buffer);
 20
 21	kfree(urb);
 22}
 23
 24/**
 25 * usb_init_urb - initializes a urb so that it can be used by a USB driver
 26 * @urb: pointer to the urb to initialize
 27 *
 28 * Initializes a urb so that the USB subsystem can use it properly.
 29 *
 30 * If a urb is created with a call to usb_alloc_urb() it is not
 31 * necessary to call this function.  Only use this if you allocate the
 32 * space for a struct urb on your own.  If you call this function, be
 33 * careful when freeing the memory for your urb that it is no longer in
 34 * use by the USB core.
 35 *
 36 * Only use this function if you _really_ understand what you are doing.
 37 */
 38void usb_init_urb(struct urb *urb)
 39{
 40	if (urb) {
 41		memset(urb, 0, sizeof(*urb));
 42		kref_init(&urb->kref);
 43		INIT_LIST_HEAD(&urb->anchor_list);
 44	}
 45}
 46EXPORT_SYMBOL_GPL(usb_init_urb);
 47
 48/**
 49 * usb_alloc_urb - creates a new urb for a USB driver to use
 50 * @iso_packets: number of iso packets for this urb
 51 * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
 52 *	valid options for this.
 53 *
 54 * Creates an urb for the USB driver to use, initializes a few internal
 55 * structures, incrementes the usage counter, and returns a pointer to it.
 56 *
 57 * If no memory is available, NULL is returned.
 58 *
 59 * If the driver want to use this urb for interrupt, control, or bulk
 60 * endpoints, pass '0' as the number of iso packets.
 61 *
 62 * The driver must call usb_free_urb() when it is finished with the urb.
 
 
 63 */
 64struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
 65{
 66	struct urb *urb;
 67
 68	urb = kmalloc(sizeof(struct urb) +
 69		iso_packets * sizeof(struct usb_iso_packet_descriptor),
 70		mem_flags);
 71	if (!urb) {
 72		printk(KERN_ERR "alloc_urb: kmalloc failed\n");
 73		return NULL;
 74	}
 75	usb_init_urb(urb);
 76	return urb;
 77}
 78EXPORT_SYMBOL_GPL(usb_alloc_urb);
 79
 80/**
 81 * usb_free_urb - frees the memory used by a urb when all users of it are finished
 82 * @urb: pointer to the urb to free, may be NULL
 83 *
 84 * Must be called when a user of a urb is finished with it.  When the last user
 85 * of the urb calls this function, the memory of the urb is freed.
 86 *
 87 * Note: The transfer buffer associated with the urb is not freed unless the
 88 * URB_FREE_BUFFER transfer flag is set.
 89 */
 90void usb_free_urb(struct urb *urb)
 91{
 92	if (urb)
 93		kref_put(&urb->kref, urb_destroy);
 94}
 95EXPORT_SYMBOL_GPL(usb_free_urb);
 96
 97/**
 98 * usb_get_urb - increments the reference count of the urb
 99 * @urb: pointer to the urb to modify, may be NULL
100 *
101 * This must be  called whenever a urb is transferred from a device driver to a
102 * host controller driver.  This allows proper reference counting to happen
103 * for urbs.
104 *
105 * A pointer to the urb with the incremented reference counter is returned.
106 */
107struct urb *usb_get_urb(struct urb *urb)
108{
109	if (urb)
110		kref_get(&urb->kref);
111	return urb;
112}
113EXPORT_SYMBOL_GPL(usb_get_urb);
114
115/**
116 * usb_anchor_urb - anchors an URB while it is processed
117 * @urb: pointer to the urb to anchor
118 * @anchor: pointer to the anchor
119 *
120 * This can be called to have access to URBs which are to be executed
121 * without bothering to track them
122 */
123void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
124{
125	unsigned long flags;
126
127	spin_lock_irqsave(&anchor->lock, flags);
128	usb_get_urb(urb);
129	list_add_tail(&urb->anchor_list, &anchor->urb_list);
130	urb->anchor = anchor;
131
132	if (unlikely(anchor->poisoned)) {
133		atomic_inc(&urb->reject);
134	}
135
136	spin_unlock_irqrestore(&anchor->lock, flags);
137}
138EXPORT_SYMBOL_GPL(usb_anchor_urb);
139
 
 
 
 
 
 
140/* Callers must hold anchor->lock */
141static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
142{
143	urb->anchor = NULL;
144	list_del(&urb->anchor_list);
145	usb_put_urb(urb);
146	if (list_empty(&anchor->urb_list))
147		wake_up(&anchor->wait);
148}
149
150/**
151 * usb_unanchor_urb - unanchors an URB
152 * @urb: pointer to the urb to anchor
153 *
154 * Call this to stop the system keeping track of this URB
155 */
156void usb_unanchor_urb(struct urb *urb)
157{
158	unsigned long flags;
159	struct usb_anchor *anchor;
160
161	if (!urb)
162		return;
163
164	anchor = urb->anchor;
165	if (!anchor)
166		return;
167
168	spin_lock_irqsave(&anchor->lock, flags);
169	/*
170	 * At this point, we could be competing with another thread which
171	 * has the same intention. To protect the urb from being unanchored
172	 * twice, only the winner of the race gets the job.
173	 */
174	if (likely(anchor == urb->anchor))
175		__usb_unanchor_urb(urb, anchor);
176	spin_unlock_irqrestore(&anchor->lock, flags);
177}
178EXPORT_SYMBOL_GPL(usb_unanchor_urb);
179
180/*-------------------------------------------------------------------*/
181
182/**
183 * usb_submit_urb - issue an asynchronous transfer request for an endpoint
184 * @urb: pointer to the urb describing the request
185 * @mem_flags: the type of memory to allocate, see kmalloc() for a list
186 *	of valid options for this.
187 *
188 * This submits a transfer request, and transfers control of the URB
189 * describing that request to the USB subsystem.  Request completion will
190 * be indicated later, asynchronously, by calling the completion handler.
191 * The three types of completion are success, error, and unlink
192 * (a software-induced fault, also called "request cancellation").
193 *
194 * URBs may be submitted in interrupt context.
195 *
196 * The caller must have correctly initialized the URB before submitting
197 * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
198 * available to ensure that most fields are correctly initialized, for
199 * the particular kind of transfer, although they will not initialize
200 * any transfer flags.
201 *
202 * Successful submissions return 0; otherwise this routine returns a
203 * negative error number.  If the submission is successful, the complete()
204 * callback from the URB will be called exactly once, when the USB core and
205 * Host Controller Driver (HCD) are finished with the URB.  When the completion
206 * function is called, control of the URB is returned to the device
207 * driver which issued the request.  The completion handler may then
208 * immediately free or reuse that URB.
209 *
210 * With few exceptions, USB device drivers should never access URB fields
211 * provided by usbcore or the HCD until its complete() is called.
212 * The exceptions relate to periodic transfer scheduling.  For both
213 * interrupt and isochronous urbs, as part of successful URB submission
214 * urb->interval is modified to reflect the actual transfer period used
215 * (normally some power of two units).  And for isochronous urbs,
216 * urb->start_frame is modified to reflect when the URB's transfers were
217 * scheduled to start.  Not all isochronous transfer scheduling policies
218 * will work, but most host controller drivers should easily handle ISO
219 * queues going from now until 10-200 msec into the future.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220 *
221 * For control endpoints, the synchronous usb_control_msg() call is
222 * often used (in non-interrupt context) instead of this call.
223 * That is often used through convenience wrappers, for the requests
224 * that are standardized in the USB 2.0 specification.  For bulk
225 * endpoints, a synchronous usb_bulk_msg() call is available.
226 *
 
 
 
227 * Request Queuing:
228 *
229 * URBs may be submitted to endpoints before previous ones complete, to
230 * minimize the impact of interrupt latencies and system overhead on data
231 * throughput.  With that queuing policy, an endpoint's queue would never
232 * be empty.  This is required for continuous isochronous data streams,
233 * and may also be required for some kinds of interrupt transfers. Such
234 * queuing also maximizes bandwidth utilization by letting USB controllers
235 * start work on later requests before driver software has finished the
236 * completion processing for earlier (successful) requests.
237 *
238 * As of Linux 2.6, all USB endpoint transfer queues support depths greater
239 * than one.  This was previously a HCD-specific behavior, except for ISO
240 * transfers.  Non-isochronous endpoint queues are inactive during cleanup
241 * after faults (transfer errors or cancellation).
242 *
243 * Reserved Bandwidth Transfers:
244 *
245 * Periodic transfers (interrupt or isochronous) are performed repeatedly,
246 * using the interval specified in the urb.  Submitting the first urb to
247 * the endpoint reserves the bandwidth necessary to make those transfers.
248 * If the USB subsystem can't allocate sufficient bandwidth to perform
249 * the periodic request, submitting such a periodic request should fail.
250 *
251 * For devices under xHCI, the bandwidth is reserved at configuration time, or
252 * when the alt setting is selected.  If there is not enough bus bandwidth, the
253 * configuration/alt setting request will fail.  Therefore, submissions to
254 * periodic endpoints on devices under xHCI should never fail due to bandwidth
255 * constraints.
256 *
257 * Device drivers must explicitly request that repetition, by ensuring that
258 * some URB is always on the endpoint's queue (except possibly for short
259 * periods during completion callacks).  When there is no longer an urb
260 * queued, the endpoint's bandwidth reservation is canceled.  This means
261 * drivers can use their completion handlers to ensure they keep bandwidth
262 * they need, by reinitializing and resubmitting the just-completed urb
263 * until the driver longer needs that periodic bandwidth.
264 *
265 * Memory Flags:
266 *
267 * The general rules for how to decide which mem_flags to use
268 * are the same as for kmalloc.  There are four
269 * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
270 * GFP_ATOMIC.
271 *
272 * GFP_NOFS is not ever used, as it has not been implemented yet.
273 *
274 * GFP_ATOMIC is used when
275 *   (a) you are inside a completion handler, an interrupt, bottom half,
276 *       tasklet or timer, or
277 *   (b) you are holding a spinlock or rwlock (does not apply to
278 *       semaphores), or
279 *   (c) current->state != TASK_RUNNING, this is the case only after
280 *       you've changed it.
281 *
282 * GFP_NOIO is used in the block io path and error handling of storage
283 * devices.
284 *
285 * All other situations use GFP_KERNEL.
286 *
287 * Some more specific rules for mem_flags can be inferred, such as
288 *  (1) start_xmit, timeout, and receive methods of network drivers must
289 *      use GFP_ATOMIC (they are called with a spinlock held);
290 *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
291 *      called with a spinlock held);
292 *  (3) If you use a kernel thread with a network driver you must use
293 *      GFP_NOIO, unless (b) or (c) apply;
294 *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
295 *      apply or your are in a storage driver's block io path;
296 *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
297 *  (6) changing firmware on a running storage or net device uses
298 *      GFP_NOIO, unless b) or c) apply
299 *
300 */
301int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
302{
 
 
 
303	int				xfertype, max;
304	struct usb_device		*dev;
305	struct usb_host_endpoint	*ep;
306	int				is_out;
 
307
308	if (!urb || urb->hcpriv || !urb->complete)
309		return -EINVAL;
 
 
 
 
 
310	dev = urb->dev;
311	if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
312		return -ENODEV;
313
314	/* For now, get the endpoint from the pipe.  Eventually drivers
315	 * will be required to set urb->ep directly and we will eliminate
316	 * urb->pipe.
317	 */
318	ep = usb_pipe_endpoint(dev, urb->pipe);
319	if (!ep)
320		return -ENOENT;
321
322	urb->ep = ep;
323	urb->status = -EINPROGRESS;
324	urb->actual_length = 0;
325
326	/* Lots of sanity checks, so HCDs can rely on clean data
327	 * and don't need to duplicate tests
328	 */
329	xfertype = usb_endpoint_type(&ep->desc);
330	if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
331		struct usb_ctrlrequest *setup =
332				(struct usb_ctrlrequest *) urb->setup_packet;
333
334		if (!setup)
335			return -ENOEXEC;
336		is_out = !(setup->bRequestType & USB_DIR_IN) ||
337				!setup->wLength;
338	} else {
339		is_out = usb_endpoint_dir_out(&ep->desc);
340	}
341
342	/* Clear the internal flags and cache the direction for later use */
343	urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
344			URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
345			URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
346			URB_DMA_SG_COMBINED);
347	urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
348
349	if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
350			dev->state < USB_STATE_CONFIGURED)
351		return -ENODEV;
352
353	max = le16_to_cpu(ep->desc.wMaxPacketSize);
354	if (max <= 0) {
355		dev_dbg(&dev->dev,
356			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
357			usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
358			__func__, max);
359		return -EMSGSIZE;
360	}
361
362	/* periodic transfers limit size per frame/uframe,
363	 * but drivers only control those sizes for ISO.
364	 * while we're checking, initialize return status.
365	 */
366	if (xfertype == USB_ENDPOINT_XFER_ISOC) {
367		int	n, len;
368
369		/* SuperSpeed isoc endpoints have up to 16 bursts of up to
370		 * 3 packets each
371		 */
372		if (dev->speed == USB_SPEED_SUPER) {
373			int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
374			int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
375			max *= burst;
376			max *= mult;
377		}
378
379		/* "high bandwidth" mode, 1-3 packets/uframe? */
380		if (dev->speed == USB_SPEED_HIGH) {
381			int	mult = 1 + ((max >> 11) & 0x03);
382			max &= 0x07ff;
383			max *= mult;
384		}
385
386		if (urb->number_of_packets <= 0)
387			return -EINVAL;
388		for (n = 0; n < urb->number_of_packets; n++) {
389			len = urb->iso_frame_desc[n].length;
390			if (len < 0 || len > max)
391				return -EMSGSIZE;
392			urb->iso_frame_desc[n].status = -EXDEV;
393			urb->iso_frame_desc[n].actual_length = 0;
394		}
 
 
 
 
 
 
 
 
395	}
396
397	/* the I/O buffer must be mapped/unmapped, except when length=0 */
398	if (urb->transfer_buffer_length > INT_MAX)
399		return -EMSGSIZE;
400
401#ifdef DEBUG
402	/* stuff that drivers shouldn't do, but which shouldn't
403	 * cause problems in HCDs if they get it wrong.
404	 */
405	{
406	unsigned int	orig_flags = urb->transfer_flags;
407	unsigned int	allowed;
408	static int pipetypes[4] = {
409		PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
410	};
411
412	/* Check that the pipe's type matches the endpoint's type */
413	if (usb_pipetype(urb->pipe) != pipetypes[xfertype]) {
414		dev_err(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
415			usb_pipetype(urb->pipe), pipetypes[xfertype]);
416		return -EPIPE;		/* The most suitable error code :-) */
417	}
418
419	/* enforce simple/standard policy */
420	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
421			URB_FREE_BUFFER);
422	switch (xfertype) {
423	case USB_ENDPOINT_XFER_BULK:
 
424		if (is_out)
425			allowed |= URB_ZERO_PACKET;
426		/* FALLTHROUGH */
427	case USB_ENDPOINT_XFER_CONTROL:
428		allowed |= URB_NO_FSBR;	/* only affects UHCI */
429		/* FALLTHROUGH */
430	default:			/* all non-iso endpoints */
431		if (!is_out)
432			allowed |= URB_SHORT_NOT_OK;
433		break;
434	case USB_ENDPOINT_XFER_ISOC:
435		allowed |= URB_ISO_ASAP;
436		break;
437	}
438	urb->transfer_flags &= allowed;
 
 
 
 
 
439
440	/* fail if submitter gave bogus flags */
441	if (urb->transfer_flags != orig_flags) {
442		dev_err(&dev->dev, "BOGUS urb flags, %x --> %x\n",
443			orig_flags, urb->transfer_flags);
444		return -EINVAL;
445	}
446	}
447#endif
448	/*
449	 * Force periodic transfer intervals to be legal values that are
450	 * a power of two (so HCDs don't need to).
451	 *
452	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
453	 * supports different values... this uses EHCI/UHCI defaults (and
454	 * EHCI can use smaller non-default values).
455	 */
456	switch (xfertype) {
457	case USB_ENDPOINT_XFER_ISOC:
458	case USB_ENDPOINT_XFER_INT:
459		/* too small? */
460		switch (dev->speed) {
461		case USB_SPEED_WIRELESS:
462			if (urb->interval < 6)
 
463				return -EINVAL;
464			break;
465		default:
466			if (urb->interval <= 0)
467				return -EINVAL;
468			break;
469		}
470		/* too big? */
471		switch (dev->speed) {
 
472		case USB_SPEED_SUPER:	/* units are 125us */
473			/* Handle up to 2^(16-1) microframes */
474			if (urb->interval > (1 << 15))
475				return -EINVAL;
476			max = 1 << 15;
477			break;
478		case USB_SPEED_WIRELESS:
479			if (urb->interval > 16)
480				return -EINVAL;
481			break;
482		case USB_SPEED_HIGH:	/* units are microframes */
483			/* NOTE usb handles 2^15 */
484			if (urb->interval > (1024 * 8))
485				urb->interval = 1024 * 8;
486			max = 1024 * 8;
487			break;
488		case USB_SPEED_FULL:	/* units are frames/msec */
489		case USB_SPEED_LOW:
490			if (xfertype == USB_ENDPOINT_XFER_INT) {
491				if (urb->interval > 255)
492					return -EINVAL;
493				/* NOTE ohci only handles up to 32 */
494				max = 128;
495			} else {
496				if (urb->interval > 1024)
497					urb->interval = 1024;
498				/* NOTE usb and ohci handle up to 2^15 */
499				max = 1024;
500			}
501			break;
502		default:
503			return -EINVAL;
504		}
505		if (dev->speed != USB_SPEED_WIRELESS) {
506			/* Round down to a power of 2, no more than max */
507			urb->interval = min(max, 1 << ilog2(urb->interval));
508		}
509	}
510
511	return usb_hcd_submit_urb(urb, mem_flags);
512}
513EXPORT_SYMBOL_GPL(usb_submit_urb);
514
515/*-------------------------------------------------------------------*/
516
517/**
518 * usb_unlink_urb - abort/cancel a transfer request for an endpoint
519 * @urb: pointer to urb describing a previously submitted request,
520 *	may be NULL
521 *
522 * This routine cancels an in-progress request.  URBs complete only once
523 * per submission, and may be canceled only once per submission.
524 * Successful cancellation means termination of @urb will be expedited
525 * and the completion handler will be called with a status code
526 * indicating that the request has been canceled (rather than any other
527 * code).
528 *
529 * Drivers should not call this routine or related routines, such as
530 * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
531 * method has returned.  The disconnect function should synchronize with
532 * a driver's I/O routines to insure that all URB-related activity has
533 * completed before it returns.
534 *
535 * This request is always asynchronous.  Success is indicated by
536 * returning -EINPROGRESS, at which time the URB will probably not yet
537 * have been given back to the device driver.  When it is eventually
538 * called, the completion function will see @urb->status == -ECONNRESET.
 
 
 
539 * Failure is indicated by usb_unlink_urb() returning any other value.
540 * Unlinking will fail when @urb is not currently "linked" (i.e., it was
541 * never submitted, or it was unlinked before, or the hardware is already
542 * finished with it), even if the completion handler has not yet run.
543 *
 
 
 
 
 
 
 
544 * Unlinking and Endpoint Queues:
545 *
546 * [The behaviors and guarantees described below do not apply to virtual
547 * root hubs but only to endpoint queues for physical USB devices.]
548 *
549 * Host Controller Drivers (HCDs) place all the URBs for a particular
550 * endpoint in a queue.  Normally the queue advances as the controller
551 * hardware processes each request.  But when an URB terminates with an
552 * error its queue generally stops (see below), at least until that URB's
553 * completion routine returns.  It is guaranteed that a stopped queue
554 * will not restart until all its unlinked URBs have been fully retired,
555 * with their completion routines run, even if that's not until some time
556 * after the original completion handler returns.  The same behavior and
557 * guarantee apply when an URB terminates because it was unlinked.
558 *
559 * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
560 * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
561 * and -EREMOTEIO.  Control endpoint queues behave the same way except
562 * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
563 * for isochronous endpoints are treated differently, because they must
564 * advance at fixed rates.  Such queues do not stop when an URB
565 * encounters an error or is unlinked.  An unlinked isochronous URB may
566 * leave a gap in the stream of packets; it is undefined whether such
567 * gaps can be filled in.
568 *
569 * Note that early termination of an URB because a short packet was
570 * received will generate a -EREMOTEIO error if and only if the
571 * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
572 * drivers can build deep queues for large or complex bulk transfers
573 * and clean them up reliably after any sort of aborted transfer by
574 * unlinking all pending URBs at the first fault.
575 *
576 * When a control URB terminates with an error other than -EREMOTEIO, it
577 * is quite likely that the status stage of the transfer will not take
578 * place.
579 */
580int usb_unlink_urb(struct urb *urb)
581{
582	if (!urb)
583		return -EINVAL;
584	if (!urb->dev)
585		return -ENODEV;
586	if (!urb->ep)
587		return -EIDRM;
588	return usb_hcd_unlink_urb(urb, -ECONNRESET);
589}
590EXPORT_SYMBOL_GPL(usb_unlink_urb);
591
592/**
593 * usb_kill_urb - cancel a transfer request and wait for it to finish
594 * @urb: pointer to URB describing a previously submitted request,
595 *	may be NULL
596 *
597 * This routine cancels an in-progress request.  It is guaranteed that
598 * upon return all completion handlers will have finished and the URB
599 * will be totally idle and available for reuse.  These features make
600 * this an ideal way to stop I/O in a disconnect() callback or close()
601 * function.  If the request has not already finished or been unlinked
602 * the completion handler will see urb->status == -ENOENT.
603 *
604 * While the routine is running, attempts to resubmit the URB will fail
605 * with error -EPERM.  Thus even if the URB's completion handler always
606 * tries to resubmit, it will not succeed and the URB will become idle.
607 *
 
 
 
 
608 * This routine may not be used in an interrupt context (such as a bottom
609 * half or a completion handler), or when holding a spinlock, or in other
610 * situations where the caller can't schedule().
611 *
612 * This routine should not be called by a driver after its disconnect
613 * method has returned.
614 */
615void usb_kill_urb(struct urb *urb)
616{
617	might_sleep();
618	if (!(urb && urb->dev && urb->ep))
619		return;
620	atomic_inc(&urb->reject);
621
622	usb_hcd_unlink_urb(urb, -ENOENT);
623	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
624
625	atomic_dec(&urb->reject);
626}
627EXPORT_SYMBOL_GPL(usb_kill_urb);
628
629/**
630 * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
631 * @urb: pointer to URB describing a previously submitted request,
632 *	may be NULL
633 *
634 * This routine cancels an in-progress request.  It is guaranteed that
635 * upon return all completion handlers will have finished and the URB
636 * will be totally idle and cannot be reused.  These features make
637 * this an ideal way to stop I/O in a disconnect() callback.
638 * If the request has not already finished or been unlinked
639 * the completion handler will see urb->status == -ENOENT.
640 *
641 * After and while the routine runs, attempts to resubmit the URB will fail
642 * with error -EPERM.  Thus even if the URB's completion handler always
643 * tries to resubmit, it will not succeed and the URB will become idle.
644 *
 
 
 
 
645 * This routine may not be used in an interrupt context (such as a bottom
646 * half or a completion handler), or when holding a spinlock, or in other
647 * situations where the caller can't schedule().
648 *
649 * This routine should not be called by a driver after its disconnect
650 * method has returned.
651 */
652void usb_poison_urb(struct urb *urb)
653{
654	might_sleep();
655	if (!(urb && urb->dev && urb->ep))
656		return;
657	atomic_inc(&urb->reject);
658
 
 
 
659	usb_hcd_unlink_urb(urb, -ENOENT);
660	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
661}
662EXPORT_SYMBOL_GPL(usb_poison_urb);
663
664void usb_unpoison_urb(struct urb *urb)
665{
666	if (!urb)
667		return;
668
669	atomic_dec(&urb->reject);
670}
671EXPORT_SYMBOL_GPL(usb_unpoison_urb);
672
673/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
674 * usb_kill_anchored_urbs - cancel transfer requests en masse
675 * @anchor: anchor the requests are bound to
676 *
677 * this allows all outstanding URBs to be killed starting
678 * from the back of the queue
679 *
680 * This routine should not be called by a driver after its disconnect
681 * method has returned.
682 */
683void usb_kill_anchored_urbs(struct usb_anchor *anchor)
684{
685	struct urb *victim;
686
687	spin_lock_irq(&anchor->lock);
688	while (!list_empty(&anchor->urb_list)) {
689		victim = list_entry(anchor->urb_list.prev, struct urb,
690				    anchor_list);
691		/* we must make sure the URB isn't freed before we kill it*/
692		usb_get_urb(victim);
693		spin_unlock_irq(&anchor->lock);
694		/* this will unanchor the URB */
695		usb_kill_urb(victim);
696		usb_put_urb(victim);
697		spin_lock_irq(&anchor->lock);
698	}
699	spin_unlock_irq(&anchor->lock);
700}
701EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
702
703
704/**
705 * usb_poison_anchored_urbs - cease all traffic from an anchor
706 * @anchor: anchor the requests are bound to
707 *
708 * this allows all outstanding URBs to be poisoned starting
709 * from the back of the queue. Newly added URBs will also be
710 * poisoned
711 *
712 * This routine should not be called by a driver after its disconnect
713 * method has returned.
714 */
715void usb_poison_anchored_urbs(struct usb_anchor *anchor)
716{
717	struct urb *victim;
718
719	spin_lock_irq(&anchor->lock);
720	anchor->poisoned = 1;
721	while (!list_empty(&anchor->urb_list)) {
722		victim = list_entry(anchor->urb_list.prev, struct urb,
723				    anchor_list);
724		/* we must make sure the URB isn't freed before we kill it*/
725		usb_get_urb(victim);
726		spin_unlock_irq(&anchor->lock);
727		/* this will unanchor the URB */
728		usb_poison_urb(victim);
729		usb_put_urb(victim);
730		spin_lock_irq(&anchor->lock);
731	}
732	spin_unlock_irq(&anchor->lock);
733}
734EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
735
736/**
737 * usb_unpoison_anchored_urbs - let an anchor be used successfully again
738 * @anchor: anchor the requests are bound to
739 *
740 * Reverses the effect of usb_poison_anchored_urbs
741 * the anchor can be used normally after it returns
742 */
743void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
744{
745	unsigned long flags;
746	struct urb *lazarus;
747
748	spin_lock_irqsave(&anchor->lock, flags);
749	list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
750		usb_unpoison_urb(lazarus);
751	}
752	anchor->poisoned = 0;
753	spin_unlock_irqrestore(&anchor->lock, flags);
754}
755EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
756/**
757 * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
758 * @anchor: anchor the requests are bound to
759 *
760 * this allows all outstanding URBs to be unlinked starting
761 * from the back of the queue. This function is asynchronous.
762 * The unlinking is just tiggered. It may happen after this
763 * function has returned.
764 *
765 * This routine should not be called by a driver after its disconnect
766 * method has returned.
767 */
768void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
769{
770	struct urb *victim;
771
772	while ((victim = usb_get_from_anchor(anchor)) != NULL) {
773		usb_unlink_urb(victim);
774		usb_put_urb(victim);
775	}
776}
777EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
778
779/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
780 * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
781 * @anchor: the anchor you want to become unused
782 * @timeout: how long you are willing to wait in milliseconds
783 *
784 * Call this is you want to be sure all an anchor's
785 * URBs have finished
 
 
786 */
787int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
788				  unsigned int timeout)
789{
790	return wait_event_timeout(anchor->wait, list_empty(&anchor->urb_list),
 
791				  msecs_to_jiffies(timeout));
792}
793EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
794
795/**
796 * usb_get_from_anchor - get an anchor's oldest urb
797 * @anchor: the anchor whose urb you want
798 *
799 * this will take the oldest urb from an anchor,
800 * unanchor and return it
 
 
 
801 */
802struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
803{
804	struct urb *victim;
805	unsigned long flags;
806
807	spin_lock_irqsave(&anchor->lock, flags);
808	if (!list_empty(&anchor->urb_list)) {
809		victim = list_entry(anchor->urb_list.next, struct urb,
810				    anchor_list);
811		usb_get_urb(victim);
812		__usb_unanchor_urb(victim, anchor);
813	} else {
814		victim = NULL;
815	}
816	spin_unlock_irqrestore(&anchor->lock, flags);
817
818	return victim;
819}
820
821EXPORT_SYMBOL_GPL(usb_get_from_anchor);
822
823/**
824 * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
825 * @anchor: the anchor whose urbs you want to unanchor
826 *
827 * use this to get rid of all an anchor's urbs
828 */
829void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
830{
831	struct urb *victim;
832	unsigned long flags;
833
834	spin_lock_irqsave(&anchor->lock, flags);
835	while (!list_empty(&anchor->urb_list)) {
836		victim = list_entry(anchor->urb_list.prev, struct urb,
837				    anchor_list);
838		__usb_unanchor_urb(victim, anchor);
839	}
840	spin_unlock_irqrestore(&anchor->lock, flags);
841}
842
843EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
844
845/**
846 * usb_anchor_empty - is an anchor empty
847 * @anchor: the anchor you want to query
848 *
849 * returns 1 if the anchor has no urbs associated with it
850 */
851int usb_anchor_empty(struct usb_anchor *anchor)
852{
853	return list_empty(&anchor->urb_list);
854}
855
856EXPORT_SYMBOL_GPL(usb_anchor_empty);
857
v4.6
  1#include <linux/module.h>
  2#include <linux/string.h>
  3#include <linux/bitops.h>
  4#include <linux/slab.h>
 
  5#include <linux/log2.h>
  6#include <linux/usb.h>
  7#include <linux/wait.h>
  8#include <linux/usb/hcd.h>
  9#include <linux/scatterlist.h>
 10
 11#define to_urb(d) container_of(d, struct urb, kref)
 12
 13
 14static void urb_destroy(struct kref *kref)
 15{
 16	struct urb *urb = to_urb(kref);
 17
 18	if (urb->transfer_flags & URB_FREE_BUFFER)
 19		kfree(urb->transfer_buffer);
 20
 21	kfree(urb);
 22}
 23
 24/**
 25 * usb_init_urb - initializes a urb so that it can be used by a USB driver
 26 * @urb: pointer to the urb to initialize
 27 *
 28 * Initializes a urb so that the USB subsystem can use it properly.
 29 *
 30 * If a urb is created with a call to usb_alloc_urb() it is not
 31 * necessary to call this function.  Only use this if you allocate the
 32 * space for a struct urb on your own.  If you call this function, be
 33 * careful when freeing the memory for your urb that it is no longer in
 34 * use by the USB core.
 35 *
 36 * Only use this function if you _really_ understand what you are doing.
 37 */
 38void usb_init_urb(struct urb *urb)
 39{
 40	if (urb) {
 41		memset(urb, 0, sizeof(*urb));
 42		kref_init(&urb->kref);
 43		INIT_LIST_HEAD(&urb->anchor_list);
 44	}
 45}
 46EXPORT_SYMBOL_GPL(usb_init_urb);
 47
 48/**
 49 * usb_alloc_urb - creates a new urb for a USB driver to use
 50 * @iso_packets: number of iso packets for this urb
 51 * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
 52 *	valid options for this.
 53 *
 54 * Creates an urb for the USB driver to use, initializes a few internal
 55 * structures, increments the usage counter, and returns a pointer to it.
 
 
 56 *
 57 * If the driver want to use this urb for interrupt, control, or bulk
 58 * endpoints, pass '0' as the number of iso packets.
 59 *
 60 * The driver must call usb_free_urb() when it is finished with the urb.
 61 *
 62 * Return: A pointer to the new urb, or %NULL if no memory is available.
 63 */
 64struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
 65{
 66	struct urb *urb;
 67
 68	urb = kmalloc(sizeof(struct urb) +
 69		iso_packets * sizeof(struct usb_iso_packet_descriptor),
 70		mem_flags);
 71	if (!urb) {
 72		printk(KERN_ERR "alloc_urb: kmalloc failed\n");
 73		return NULL;
 74	}
 75	usb_init_urb(urb);
 76	return urb;
 77}
 78EXPORT_SYMBOL_GPL(usb_alloc_urb);
 79
 80/**
 81 * usb_free_urb - frees the memory used by a urb when all users of it are finished
 82 * @urb: pointer to the urb to free, may be NULL
 83 *
 84 * Must be called when a user of a urb is finished with it.  When the last user
 85 * of the urb calls this function, the memory of the urb is freed.
 86 *
 87 * Note: The transfer buffer associated with the urb is not freed unless the
 88 * URB_FREE_BUFFER transfer flag is set.
 89 */
 90void usb_free_urb(struct urb *urb)
 91{
 92	if (urb)
 93		kref_put(&urb->kref, urb_destroy);
 94}
 95EXPORT_SYMBOL_GPL(usb_free_urb);
 96
 97/**
 98 * usb_get_urb - increments the reference count of the urb
 99 * @urb: pointer to the urb to modify, may be NULL
100 *
101 * This must be  called whenever a urb is transferred from a device driver to a
102 * host controller driver.  This allows proper reference counting to happen
103 * for urbs.
104 *
105 * Return: A pointer to the urb with the incremented reference counter.
106 */
107struct urb *usb_get_urb(struct urb *urb)
108{
109	if (urb)
110		kref_get(&urb->kref);
111	return urb;
112}
113EXPORT_SYMBOL_GPL(usb_get_urb);
114
115/**
116 * usb_anchor_urb - anchors an URB while it is processed
117 * @urb: pointer to the urb to anchor
118 * @anchor: pointer to the anchor
119 *
120 * This can be called to have access to URBs which are to be executed
121 * without bothering to track them
122 */
123void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
124{
125	unsigned long flags;
126
127	spin_lock_irqsave(&anchor->lock, flags);
128	usb_get_urb(urb);
129	list_add_tail(&urb->anchor_list, &anchor->urb_list);
130	urb->anchor = anchor;
131
132	if (unlikely(anchor->poisoned))
133		atomic_inc(&urb->reject);
 
134
135	spin_unlock_irqrestore(&anchor->lock, flags);
136}
137EXPORT_SYMBOL_GPL(usb_anchor_urb);
138
139static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
140{
141	return atomic_read(&anchor->suspend_wakeups) == 0 &&
142		list_empty(&anchor->urb_list);
143}
144
145/* Callers must hold anchor->lock */
146static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
147{
148	urb->anchor = NULL;
149	list_del(&urb->anchor_list);
150	usb_put_urb(urb);
151	if (usb_anchor_check_wakeup(anchor))
152		wake_up(&anchor->wait);
153}
154
155/**
156 * usb_unanchor_urb - unanchors an URB
157 * @urb: pointer to the urb to anchor
158 *
159 * Call this to stop the system keeping track of this URB
160 */
161void usb_unanchor_urb(struct urb *urb)
162{
163	unsigned long flags;
164	struct usb_anchor *anchor;
165
166	if (!urb)
167		return;
168
169	anchor = urb->anchor;
170	if (!anchor)
171		return;
172
173	spin_lock_irqsave(&anchor->lock, flags);
174	/*
175	 * At this point, we could be competing with another thread which
176	 * has the same intention. To protect the urb from being unanchored
177	 * twice, only the winner of the race gets the job.
178	 */
179	if (likely(anchor == urb->anchor))
180		__usb_unanchor_urb(urb, anchor);
181	spin_unlock_irqrestore(&anchor->lock, flags);
182}
183EXPORT_SYMBOL_GPL(usb_unanchor_urb);
184
185/*-------------------------------------------------------------------*/
186
187/**
188 * usb_submit_urb - issue an asynchronous transfer request for an endpoint
189 * @urb: pointer to the urb describing the request
190 * @mem_flags: the type of memory to allocate, see kmalloc() for a list
191 *	of valid options for this.
192 *
193 * This submits a transfer request, and transfers control of the URB
194 * describing that request to the USB subsystem.  Request completion will
195 * be indicated later, asynchronously, by calling the completion handler.
196 * The three types of completion are success, error, and unlink
197 * (a software-induced fault, also called "request cancellation").
198 *
199 * URBs may be submitted in interrupt context.
200 *
201 * The caller must have correctly initialized the URB before submitting
202 * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
203 * available to ensure that most fields are correctly initialized, for
204 * the particular kind of transfer, although they will not initialize
205 * any transfer flags.
206 *
207 * If the submission is successful, the complete() callback from the URB
208 * will be called exactly once, when the USB core and Host Controller Driver
209 * (HCD) are finished with the URB.  When the completion function is called,
210 * control of the URB is returned to the device driver which issued the
211 * request.  The completion handler may then immediately free or reuse that
212 * URB.
 
213 *
214 * With few exceptions, USB device drivers should never access URB fields
215 * provided by usbcore or the HCD until its complete() is called.
216 * The exceptions relate to periodic transfer scheduling.  For both
217 * interrupt and isochronous urbs, as part of successful URB submission
218 * urb->interval is modified to reflect the actual transfer period used
219 * (normally some power of two units).  And for isochronous urbs,
220 * urb->start_frame is modified to reflect when the URB's transfers were
221 * scheduled to start.
222 *
223 * Not all isochronous transfer scheduling policies will work, but most
224 * host controller drivers should easily handle ISO queues going from now
225 * until 10-200 msec into the future.  Drivers should try to keep at
226 * least one or two msec of data in the queue; many controllers require
227 * that new transfers start at least 1 msec in the future when they are
228 * added.  If the driver is unable to keep up and the queue empties out,
229 * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
230 * If the flag is set, or if the queue is idle, then the URB is always
231 * assigned to the first available (and not yet expired) slot in the
232 * endpoint's schedule.  If the flag is not set and the queue is active
233 * then the URB is always assigned to the next slot in the schedule
234 * following the end of the endpoint's previous URB, even if that slot is
235 * in the past.  When a packet is assigned in this way to a slot that has
236 * already expired, the packet is not transmitted and the corresponding
237 * usb_iso_packet_descriptor's status field will return -EXDEV.  If this
238 * would happen to all the packets in the URB, submission fails with a
239 * -EXDEV error code.
240 *
241 * For control endpoints, the synchronous usb_control_msg() call is
242 * often used (in non-interrupt context) instead of this call.
243 * That is often used through convenience wrappers, for the requests
244 * that are standardized in the USB 2.0 specification.  For bulk
245 * endpoints, a synchronous usb_bulk_msg() call is available.
246 *
247 * Return:
248 * 0 on successful submissions. A negative error number otherwise.
249 *
250 * Request Queuing:
251 *
252 * URBs may be submitted to endpoints before previous ones complete, to
253 * minimize the impact of interrupt latencies and system overhead on data
254 * throughput.  With that queuing policy, an endpoint's queue would never
255 * be empty.  This is required for continuous isochronous data streams,
256 * and may also be required for some kinds of interrupt transfers. Such
257 * queuing also maximizes bandwidth utilization by letting USB controllers
258 * start work on later requests before driver software has finished the
259 * completion processing for earlier (successful) requests.
260 *
261 * As of Linux 2.6, all USB endpoint transfer queues support depths greater
262 * than one.  This was previously a HCD-specific behavior, except for ISO
263 * transfers.  Non-isochronous endpoint queues are inactive during cleanup
264 * after faults (transfer errors or cancellation).
265 *
266 * Reserved Bandwidth Transfers:
267 *
268 * Periodic transfers (interrupt or isochronous) are performed repeatedly,
269 * using the interval specified in the urb.  Submitting the first urb to
270 * the endpoint reserves the bandwidth necessary to make those transfers.
271 * If the USB subsystem can't allocate sufficient bandwidth to perform
272 * the periodic request, submitting such a periodic request should fail.
273 *
274 * For devices under xHCI, the bandwidth is reserved at configuration time, or
275 * when the alt setting is selected.  If there is not enough bus bandwidth, the
276 * configuration/alt setting request will fail.  Therefore, submissions to
277 * periodic endpoints on devices under xHCI should never fail due to bandwidth
278 * constraints.
279 *
280 * Device drivers must explicitly request that repetition, by ensuring that
281 * some URB is always on the endpoint's queue (except possibly for short
282 * periods during completion callbacks).  When there is no longer an urb
283 * queued, the endpoint's bandwidth reservation is canceled.  This means
284 * drivers can use their completion handlers to ensure they keep bandwidth
285 * they need, by reinitializing and resubmitting the just-completed urb
286 * until the driver longer needs that periodic bandwidth.
287 *
288 * Memory Flags:
289 *
290 * The general rules for how to decide which mem_flags to use
291 * are the same as for kmalloc.  There are four
292 * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
293 * GFP_ATOMIC.
294 *
295 * GFP_NOFS is not ever used, as it has not been implemented yet.
296 *
297 * GFP_ATOMIC is used when
298 *   (a) you are inside a completion handler, an interrupt, bottom half,
299 *       tasklet or timer, or
300 *   (b) you are holding a spinlock or rwlock (does not apply to
301 *       semaphores), or
302 *   (c) current->state != TASK_RUNNING, this is the case only after
303 *       you've changed it.
304 *
305 * GFP_NOIO is used in the block io path and error handling of storage
306 * devices.
307 *
308 * All other situations use GFP_KERNEL.
309 *
310 * Some more specific rules for mem_flags can be inferred, such as
311 *  (1) start_xmit, timeout, and receive methods of network drivers must
312 *      use GFP_ATOMIC (they are called with a spinlock held);
313 *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
314 *      called with a spinlock held);
315 *  (3) If you use a kernel thread with a network driver you must use
316 *      GFP_NOIO, unless (b) or (c) apply;
317 *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
318 *      apply or your are in a storage driver's block io path;
319 *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
320 *  (6) changing firmware on a running storage or net device uses
321 *      GFP_NOIO, unless b) or c) apply
322 *
323 */
324int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
325{
326	static int			pipetypes[4] = {
327		PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
328	};
329	int				xfertype, max;
330	struct usb_device		*dev;
331	struct usb_host_endpoint	*ep;
332	int				is_out;
333	unsigned int			allowed;
334
335	if (!urb || !urb->complete)
336		return -EINVAL;
337	if (urb->hcpriv) {
338		WARN_ONCE(1, "URB %p submitted while active\n", urb);
339		return -EBUSY;
340	}
341
342	dev = urb->dev;
343	if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
344		return -ENODEV;
345
346	/* For now, get the endpoint from the pipe.  Eventually drivers
347	 * will be required to set urb->ep directly and we will eliminate
348	 * urb->pipe.
349	 */
350	ep = usb_pipe_endpoint(dev, urb->pipe);
351	if (!ep)
352		return -ENOENT;
353
354	urb->ep = ep;
355	urb->status = -EINPROGRESS;
356	urb->actual_length = 0;
357
358	/* Lots of sanity checks, so HCDs can rely on clean data
359	 * and don't need to duplicate tests
360	 */
361	xfertype = usb_endpoint_type(&ep->desc);
362	if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
363		struct usb_ctrlrequest *setup =
364				(struct usb_ctrlrequest *) urb->setup_packet;
365
366		if (!setup)
367			return -ENOEXEC;
368		is_out = !(setup->bRequestType & USB_DIR_IN) ||
369				!setup->wLength;
370	} else {
371		is_out = usb_endpoint_dir_out(&ep->desc);
372	}
373
374	/* Clear the internal flags and cache the direction for later use */
375	urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
376			URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
377			URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
378			URB_DMA_SG_COMBINED);
379	urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
380
381	if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
382			dev->state < USB_STATE_CONFIGURED)
383		return -ENODEV;
384
385	max = usb_endpoint_maxp(&ep->desc);
386	if (max <= 0) {
387		dev_dbg(&dev->dev,
388			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
389			usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
390			__func__, max);
391		return -EMSGSIZE;
392	}
393
394	/* periodic transfers limit size per frame/uframe,
395	 * but drivers only control those sizes for ISO.
396	 * while we're checking, initialize return status.
397	 */
398	if (xfertype == USB_ENDPOINT_XFER_ISOC) {
399		int	n, len;
400
401		/* SuperSpeed isoc endpoints have up to 16 bursts of up to
402		 * 3 packets each
403		 */
404		if (dev->speed >= USB_SPEED_SUPER) {
405			int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
406			int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
407			max *= burst;
408			max *= mult;
409		}
410
411		/* "high bandwidth" mode, 1-3 packets/uframe? */
412		if (dev->speed == USB_SPEED_HIGH) {
413			int	mult = 1 + ((max >> 11) & 0x03);
414			max &= 0x07ff;
415			max *= mult;
416		}
417
418		if (urb->number_of_packets <= 0)
419			return -EINVAL;
420		for (n = 0; n < urb->number_of_packets; n++) {
421			len = urb->iso_frame_desc[n].length;
422			if (len < 0 || len > max)
423				return -EMSGSIZE;
424			urb->iso_frame_desc[n].status = -EXDEV;
425			urb->iso_frame_desc[n].actual_length = 0;
426		}
427	} else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
428			dev->speed != USB_SPEED_WIRELESS) {
429		struct scatterlist *sg;
430		int i;
431
432		for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
433			if (sg->length % max)
434				return -EINVAL;
435	}
436
437	/* the I/O buffer must be mapped/unmapped, except when length=0 */
438	if (urb->transfer_buffer_length > INT_MAX)
439		return -EMSGSIZE;
440
441	/*
442	 * stuff that drivers shouldn't do, but which shouldn't
443	 * cause problems in HCDs if they get it wrong.
444	 */
 
 
 
 
 
 
445
446	/* Check that the pipe's type matches the endpoint's type */
447	if (usb_pipetype(urb->pipe) != pipetypes[xfertype])
448		dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
449			usb_pipetype(urb->pipe), pipetypes[xfertype]);
 
 
450
451	/* Check against a simple/standard policy */
452	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
453			URB_FREE_BUFFER);
454	switch (xfertype) {
455	case USB_ENDPOINT_XFER_BULK:
456	case USB_ENDPOINT_XFER_INT:
457		if (is_out)
458			allowed |= URB_ZERO_PACKET;
459		/* FALLTHROUGH */
460	case USB_ENDPOINT_XFER_CONTROL:
461		allowed |= URB_NO_FSBR;	/* only affects UHCI */
462		/* FALLTHROUGH */
463	default:			/* all non-iso endpoints */
464		if (!is_out)
465			allowed |= URB_SHORT_NOT_OK;
466		break;
467	case USB_ENDPOINT_XFER_ISOC:
468		allowed |= URB_ISO_ASAP;
469		break;
470	}
471	allowed &= urb->transfer_flags;
472
473	/* warn if submitter gave bogus flags */
474	if (allowed != urb->transfer_flags)
475		dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
476			urb->transfer_flags, allowed);
477
 
 
 
 
 
 
 
 
478	/*
479	 * Force periodic transfer intervals to be legal values that are
480	 * a power of two (so HCDs don't need to).
481	 *
482	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
483	 * supports different values... this uses EHCI/UHCI defaults (and
484	 * EHCI can use smaller non-default values).
485	 */
486	switch (xfertype) {
487	case USB_ENDPOINT_XFER_ISOC:
488	case USB_ENDPOINT_XFER_INT:
489		/* too small? */
490		switch (dev->speed) {
491		case USB_SPEED_WIRELESS:
492			if ((urb->interval < 6)
493				&& (xfertype == USB_ENDPOINT_XFER_INT))
494				return -EINVAL;
 
495		default:
496			if (urb->interval <= 0)
497				return -EINVAL;
498			break;
499		}
500		/* too big? */
501		switch (dev->speed) {
502		case USB_SPEED_SUPER_PLUS:
503		case USB_SPEED_SUPER:	/* units are 125us */
504			/* Handle up to 2^(16-1) microframes */
505			if (urb->interval > (1 << 15))
506				return -EINVAL;
507			max = 1 << 15;
508			break;
509		case USB_SPEED_WIRELESS:
510			if (urb->interval > 16)
511				return -EINVAL;
512			break;
513		case USB_SPEED_HIGH:	/* units are microframes */
514			/* NOTE usb handles 2^15 */
515			if (urb->interval > (1024 * 8))
516				urb->interval = 1024 * 8;
517			max = 1024 * 8;
518			break;
519		case USB_SPEED_FULL:	/* units are frames/msec */
520		case USB_SPEED_LOW:
521			if (xfertype == USB_ENDPOINT_XFER_INT) {
522				if (urb->interval > 255)
523					return -EINVAL;
524				/* NOTE ohci only handles up to 32 */
525				max = 128;
526			} else {
527				if (urb->interval > 1024)
528					urb->interval = 1024;
529				/* NOTE usb and ohci handle up to 2^15 */
530				max = 1024;
531			}
532			break;
533		default:
534			return -EINVAL;
535		}
536		if (dev->speed != USB_SPEED_WIRELESS) {
537			/* Round down to a power of 2, no more than max */
538			urb->interval = min(max, 1 << ilog2(urb->interval));
539		}
540	}
541
542	return usb_hcd_submit_urb(urb, mem_flags);
543}
544EXPORT_SYMBOL_GPL(usb_submit_urb);
545
546/*-------------------------------------------------------------------*/
547
548/**
549 * usb_unlink_urb - abort/cancel a transfer request for an endpoint
550 * @urb: pointer to urb describing a previously submitted request,
551 *	may be NULL
552 *
553 * This routine cancels an in-progress request.  URBs complete only once
554 * per submission, and may be canceled only once per submission.
555 * Successful cancellation means termination of @urb will be expedited
556 * and the completion handler will be called with a status code
557 * indicating that the request has been canceled (rather than any other
558 * code).
559 *
560 * Drivers should not call this routine or related routines, such as
561 * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
562 * method has returned.  The disconnect function should synchronize with
563 * a driver's I/O routines to insure that all URB-related activity has
564 * completed before it returns.
565 *
566 * This request is asynchronous, however the HCD might call the ->complete()
567 * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
568 * must not hold any locks that may be taken by the completion function.
569 * Success is indicated by returning -EINPROGRESS, at which time the URB will
570 * probably not yet have been given back to the device driver. When it is
571 * eventually called, the completion function will see @urb->status ==
572 * -ECONNRESET.
573 * Failure is indicated by usb_unlink_urb() returning any other value.
574 * Unlinking will fail when @urb is not currently "linked" (i.e., it was
575 * never submitted, or it was unlinked before, or the hardware is already
576 * finished with it), even if the completion handler has not yet run.
577 *
578 * The URB must not be deallocated while this routine is running.  In
579 * particular, when a driver calls this routine, it must insure that the
580 * completion handler cannot deallocate the URB.
581 *
582 * Return: -EINPROGRESS on success. See description for other values on
583 * failure.
584 *
585 * Unlinking and Endpoint Queues:
586 *
587 * [The behaviors and guarantees described below do not apply to virtual
588 * root hubs but only to endpoint queues for physical USB devices.]
589 *
590 * Host Controller Drivers (HCDs) place all the URBs for a particular
591 * endpoint in a queue.  Normally the queue advances as the controller
592 * hardware processes each request.  But when an URB terminates with an
593 * error its queue generally stops (see below), at least until that URB's
594 * completion routine returns.  It is guaranteed that a stopped queue
595 * will not restart until all its unlinked URBs have been fully retired,
596 * with their completion routines run, even if that's not until some time
597 * after the original completion handler returns.  The same behavior and
598 * guarantee apply when an URB terminates because it was unlinked.
599 *
600 * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
601 * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
602 * and -EREMOTEIO.  Control endpoint queues behave the same way except
603 * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
604 * for isochronous endpoints are treated differently, because they must
605 * advance at fixed rates.  Such queues do not stop when an URB
606 * encounters an error or is unlinked.  An unlinked isochronous URB may
607 * leave a gap in the stream of packets; it is undefined whether such
608 * gaps can be filled in.
609 *
610 * Note that early termination of an URB because a short packet was
611 * received will generate a -EREMOTEIO error if and only if the
612 * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
613 * drivers can build deep queues for large or complex bulk transfers
614 * and clean them up reliably after any sort of aborted transfer by
615 * unlinking all pending URBs at the first fault.
616 *
617 * When a control URB terminates with an error other than -EREMOTEIO, it
618 * is quite likely that the status stage of the transfer will not take
619 * place.
620 */
621int usb_unlink_urb(struct urb *urb)
622{
623	if (!urb)
624		return -EINVAL;
625	if (!urb->dev)
626		return -ENODEV;
627	if (!urb->ep)
628		return -EIDRM;
629	return usb_hcd_unlink_urb(urb, -ECONNRESET);
630}
631EXPORT_SYMBOL_GPL(usb_unlink_urb);
632
633/**
634 * usb_kill_urb - cancel a transfer request and wait for it to finish
635 * @urb: pointer to URB describing a previously submitted request,
636 *	may be NULL
637 *
638 * This routine cancels an in-progress request.  It is guaranteed that
639 * upon return all completion handlers will have finished and the URB
640 * will be totally idle and available for reuse.  These features make
641 * this an ideal way to stop I/O in a disconnect() callback or close()
642 * function.  If the request has not already finished or been unlinked
643 * the completion handler will see urb->status == -ENOENT.
644 *
645 * While the routine is running, attempts to resubmit the URB will fail
646 * with error -EPERM.  Thus even if the URB's completion handler always
647 * tries to resubmit, it will not succeed and the URB will become idle.
648 *
649 * The URB must not be deallocated while this routine is running.  In
650 * particular, when a driver calls this routine, it must insure that the
651 * completion handler cannot deallocate the URB.
652 *
653 * This routine may not be used in an interrupt context (such as a bottom
654 * half or a completion handler), or when holding a spinlock, or in other
655 * situations where the caller can't schedule().
656 *
657 * This routine should not be called by a driver after its disconnect
658 * method has returned.
659 */
660void usb_kill_urb(struct urb *urb)
661{
662	might_sleep();
663	if (!(urb && urb->dev && urb->ep))
664		return;
665	atomic_inc(&urb->reject);
666
667	usb_hcd_unlink_urb(urb, -ENOENT);
668	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
669
670	atomic_dec(&urb->reject);
671}
672EXPORT_SYMBOL_GPL(usb_kill_urb);
673
674/**
675 * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
676 * @urb: pointer to URB describing a previously submitted request,
677 *	may be NULL
678 *
679 * This routine cancels an in-progress request.  It is guaranteed that
680 * upon return all completion handlers will have finished and the URB
681 * will be totally idle and cannot be reused.  These features make
682 * this an ideal way to stop I/O in a disconnect() callback.
683 * If the request has not already finished or been unlinked
684 * the completion handler will see urb->status == -ENOENT.
685 *
686 * After and while the routine runs, attempts to resubmit the URB will fail
687 * with error -EPERM.  Thus even if the URB's completion handler always
688 * tries to resubmit, it will not succeed and the URB will become idle.
689 *
690 * The URB must not be deallocated while this routine is running.  In
691 * particular, when a driver calls this routine, it must insure that the
692 * completion handler cannot deallocate the URB.
693 *
694 * This routine may not be used in an interrupt context (such as a bottom
695 * half or a completion handler), or when holding a spinlock, or in other
696 * situations where the caller can't schedule().
697 *
698 * This routine should not be called by a driver after its disconnect
699 * method has returned.
700 */
701void usb_poison_urb(struct urb *urb)
702{
703	might_sleep();
704	if (!urb)
705		return;
706	atomic_inc(&urb->reject);
707
708	if (!urb->dev || !urb->ep)
709		return;
710
711	usb_hcd_unlink_urb(urb, -ENOENT);
712	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
713}
714EXPORT_SYMBOL_GPL(usb_poison_urb);
715
716void usb_unpoison_urb(struct urb *urb)
717{
718	if (!urb)
719		return;
720
721	atomic_dec(&urb->reject);
722}
723EXPORT_SYMBOL_GPL(usb_unpoison_urb);
724
725/**
726 * usb_block_urb - reliably prevent further use of an URB
727 * @urb: pointer to URB to be blocked, may be NULL
728 *
729 * After the routine has run, attempts to resubmit the URB will fail
730 * with error -EPERM.  Thus even if the URB's completion handler always
731 * tries to resubmit, it will not succeed and the URB will become idle.
732 *
733 * The URB must not be deallocated while this routine is running.  In
734 * particular, when a driver calls this routine, it must insure that the
735 * completion handler cannot deallocate the URB.
736 */
737void usb_block_urb(struct urb *urb)
738{
739	if (!urb)
740		return;
741
742	atomic_inc(&urb->reject);
743}
744EXPORT_SYMBOL_GPL(usb_block_urb);
745
746/**
747 * usb_kill_anchored_urbs - cancel transfer requests en masse
748 * @anchor: anchor the requests are bound to
749 *
750 * this allows all outstanding URBs to be killed starting
751 * from the back of the queue
752 *
753 * This routine should not be called by a driver after its disconnect
754 * method has returned.
755 */
756void usb_kill_anchored_urbs(struct usb_anchor *anchor)
757{
758	struct urb *victim;
759
760	spin_lock_irq(&anchor->lock);
761	while (!list_empty(&anchor->urb_list)) {
762		victim = list_entry(anchor->urb_list.prev, struct urb,
763				    anchor_list);
764		/* we must make sure the URB isn't freed before we kill it*/
765		usb_get_urb(victim);
766		spin_unlock_irq(&anchor->lock);
767		/* this will unanchor the URB */
768		usb_kill_urb(victim);
769		usb_put_urb(victim);
770		spin_lock_irq(&anchor->lock);
771	}
772	spin_unlock_irq(&anchor->lock);
773}
774EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
775
776
777/**
778 * usb_poison_anchored_urbs - cease all traffic from an anchor
779 * @anchor: anchor the requests are bound to
780 *
781 * this allows all outstanding URBs to be poisoned starting
782 * from the back of the queue. Newly added URBs will also be
783 * poisoned
784 *
785 * This routine should not be called by a driver after its disconnect
786 * method has returned.
787 */
788void usb_poison_anchored_urbs(struct usb_anchor *anchor)
789{
790	struct urb *victim;
791
792	spin_lock_irq(&anchor->lock);
793	anchor->poisoned = 1;
794	while (!list_empty(&anchor->urb_list)) {
795		victim = list_entry(anchor->urb_list.prev, struct urb,
796				    anchor_list);
797		/* we must make sure the URB isn't freed before we kill it*/
798		usb_get_urb(victim);
799		spin_unlock_irq(&anchor->lock);
800		/* this will unanchor the URB */
801		usb_poison_urb(victim);
802		usb_put_urb(victim);
803		spin_lock_irq(&anchor->lock);
804	}
805	spin_unlock_irq(&anchor->lock);
806}
807EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
808
809/**
810 * usb_unpoison_anchored_urbs - let an anchor be used successfully again
811 * @anchor: anchor the requests are bound to
812 *
813 * Reverses the effect of usb_poison_anchored_urbs
814 * the anchor can be used normally after it returns
815 */
816void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
817{
818	unsigned long flags;
819	struct urb *lazarus;
820
821	spin_lock_irqsave(&anchor->lock, flags);
822	list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
823		usb_unpoison_urb(lazarus);
824	}
825	anchor->poisoned = 0;
826	spin_unlock_irqrestore(&anchor->lock, flags);
827}
828EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
829/**
830 * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
831 * @anchor: anchor the requests are bound to
832 *
833 * this allows all outstanding URBs to be unlinked starting
834 * from the back of the queue. This function is asynchronous.
835 * The unlinking is just triggered. It may happen after this
836 * function has returned.
837 *
838 * This routine should not be called by a driver after its disconnect
839 * method has returned.
840 */
841void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
842{
843	struct urb *victim;
844
845	while ((victim = usb_get_from_anchor(anchor)) != NULL) {
846		usb_unlink_urb(victim);
847		usb_put_urb(victim);
848	}
849}
850EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
851
852/**
853 * usb_anchor_suspend_wakeups
854 * @anchor: the anchor you want to suspend wakeups on
855 *
856 * Call this to stop the last urb being unanchored from waking up any
857 * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
858 * back path to delay waking up until after the completion handler has run.
859 */
860void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
861{
862	if (anchor)
863		atomic_inc(&anchor->suspend_wakeups);
864}
865EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
866
867/**
868 * usb_anchor_resume_wakeups
869 * @anchor: the anchor you want to resume wakeups on
870 *
871 * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
872 * wake up any current waiters if the anchor is empty.
873 */
874void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
875{
876	if (!anchor)
877		return;
878
879	atomic_dec(&anchor->suspend_wakeups);
880	if (usb_anchor_check_wakeup(anchor))
881		wake_up(&anchor->wait);
882}
883EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
884
885/**
886 * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
887 * @anchor: the anchor you want to become unused
888 * @timeout: how long you are willing to wait in milliseconds
889 *
890 * Call this is you want to be sure all an anchor's
891 * URBs have finished
892 *
893 * Return: Non-zero if the anchor became unused. Zero on timeout.
894 */
895int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
896				  unsigned int timeout)
897{
898	return wait_event_timeout(anchor->wait,
899				  usb_anchor_check_wakeup(anchor),
900				  msecs_to_jiffies(timeout));
901}
902EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
903
904/**
905 * usb_get_from_anchor - get an anchor's oldest urb
906 * @anchor: the anchor whose urb you want
907 *
908 * This will take the oldest urb from an anchor,
909 * unanchor and return it
910 *
911 * Return: The oldest urb from @anchor, or %NULL if @anchor has no
912 * urbs associated with it.
913 */
914struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
915{
916	struct urb *victim;
917	unsigned long flags;
918
919	spin_lock_irqsave(&anchor->lock, flags);
920	if (!list_empty(&anchor->urb_list)) {
921		victim = list_entry(anchor->urb_list.next, struct urb,
922				    anchor_list);
923		usb_get_urb(victim);
924		__usb_unanchor_urb(victim, anchor);
925	} else {
926		victim = NULL;
927	}
928	spin_unlock_irqrestore(&anchor->lock, flags);
929
930	return victim;
931}
932
933EXPORT_SYMBOL_GPL(usb_get_from_anchor);
934
935/**
936 * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
937 * @anchor: the anchor whose urbs you want to unanchor
938 *
939 * use this to get rid of all an anchor's urbs
940 */
941void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
942{
943	struct urb *victim;
944	unsigned long flags;
945
946	spin_lock_irqsave(&anchor->lock, flags);
947	while (!list_empty(&anchor->urb_list)) {
948		victim = list_entry(anchor->urb_list.prev, struct urb,
949				    anchor_list);
950		__usb_unanchor_urb(victim, anchor);
951	}
952	spin_unlock_irqrestore(&anchor->lock, flags);
953}
954
955EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
956
957/**
958 * usb_anchor_empty - is an anchor empty
959 * @anchor: the anchor you want to query
960 *
961 * Return: 1 if the anchor has no urbs associated with it.
962 */
963int usb_anchor_empty(struct usb_anchor *anchor)
964{
965	return list_empty(&anchor->urb_list);
966}
967
968EXPORT_SYMBOL_GPL(usb_anchor_empty);
969