Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1/*
   2	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   3	<http://rt2x00.serialmonkey.com>
   4
   5	This program is free software; you can redistribute it and/or modify
   6	it under the terms of the GNU General Public License as published by
   7	the Free Software Foundation; either version 2 of the License, or
   8	(at your option) any later version.
   9
  10	This program is distributed in the hope that it will be useful,
  11	but WITHOUT ANY WARRANTY; without even the implied warranty of
  12	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13	GNU General Public License for more details.
  14
  15	You should have received a copy of the GNU General Public License
  16	along with this program; if not, write to the
  17	Free Software Foundation, Inc.,
  18	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21/*
  22	Module: rt73usb
  23	Abstract: rt73usb device specific routines.
  24	Supported chipsets: rt2571W & rt2671.
  25 */
  26
  27#include <linux/crc-itu-t.h>
  28#include <linux/delay.h>
  29#include <linux/etherdevice.h>
  30#include <linux/init.h>
  31#include <linux/kernel.h>
  32#include <linux/module.h>
  33#include <linux/slab.h>
  34#include <linux/usb.h>
  35
  36#include "rt2x00.h"
  37#include "rt2x00usb.h"
  38#include "rt73usb.h"
  39
  40/*
  41 * Allow hardware encryption to be disabled.
  42 */
  43static int modparam_nohwcrypt;
  44module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  45MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  46
  47/*
  48 * Register access.
  49 * All access to the CSR registers will go through the methods
  50 * rt2x00usb_register_read and rt2x00usb_register_write.
  51 * BBP and RF register require indirect register access,
  52 * and use the CSR registers BBPCSR and RFCSR to achieve this.
  53 * These indirect registers work with busy bits,
  54 * and we will try maximal REGISTER_BUSY_COUNT times to access
  55 * the register while taking a REGISTER_BUSY_DELAY us delay
  56 * between each attampt. When the busy bit is still set at that time,
  57 * the access attempt is considered to have failed,
  58 * and we will print an error.
  59 * The _lock versions must be used if you already hold the csr_mutex
  60 */
  61#define WAIT_FOR_BBP(__dev, __reg) \
  62	rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
  63#define WAIT_FOR_RF(__dev, __reg) \
  64	rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
  65
  66static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
  67			      const unsigned int word, const u8 value)
  68{
  69	u32 reg;
  70
  71	mutex_lock(&rt2x00dev->csr_mutex);
  72
  73	/*
  74	 * Wait until the BBP becomes available, afterwards we
  75	 * can safely write the new data into the register.
  76	 */
  77	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  78		reg = 0;
  79		rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
  80		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  81		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  82		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
  83
  84		rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
  85	}
  86
  87	mutex_unlock(&rt2x00dev->csr_mutex);
  88}
  89
  90static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
  91			     const unsigned int word, u8 *value)
  92{
  93	u32 reg;
  94
  95	mutex_lock(&rt2x00dev->csr_mutex);
  96
  97	/*
  98	 * Wait until the BBP becomes available, afterwards we
  99	 * can safely write the read request into the register.
 100	 * After the data has been written, we wait until hardware
 101	 * returns the correct value, if at any time the register
 102	 * doesn't become available in time, reg will be 0xffffffff
 103	 * which means we return 0xff to the caller.
 104	 */
 105	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 106		reg = 0;
 107		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
 108		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
 109		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
 110
 111		rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
 112
 113		WAIT_FOR_BBP(rt2x00dev, &reg);
 114	}
 115
 116	*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
 117
 118	mutex_unlock(&rt2x00dev->csr_mutex);
 119}
 120
 121static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
 122			     const unsigned int word, const u32 value)
 123{
 124	u32 reg;
 125
 126	mutex_lock(&rt2x00dev->csr_mutex);
 127
 128	/*
 129	 * Wait until the RF becomes available, afterwards we
 130	 * can safely write the new data into the register.
 131	 */
 132	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 133		reg = 0;
 134		rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
 135		/*
 136		 * RF5225 and RF2527 contain 21 bits per RF register value,
 137		 * all others contain 20 bits.
 138		 */
 139		rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
 140				   20 + (rt2x00_rf(rt2x00dev, RF5225) ||
 141					 rt2x00_rf(rt2x00dev, RF2527)));
 142		rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
 143		rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
 144
 145		rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
 146		rt2x00_rf_write(rt2x00dev, word, value);
 147	}
 148
 149	mutex_unlock(&rt2x00dev->csr_mutex);
 150}
 151
 152#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 153static const struct rt2x00debug rt73usb_rt2x00debug = {
 154	.owner	= THIS_MODULE,
 155	.csr	= {
 156		.read		= rt2x00usb_register_read,
 157		.write		= rt2x00usb_register_write,
 158		.flags		= RT2X00DEBUGFS_OFFSET,
 159		.word_base	= CSR_REG_BASE,
 160		.word_size	= sizeof(u32),
 161		.word_count	= CSR_REG_SIZE / sizeof(u32),
 162	},
 163	.eeprom	= {
 164		.read		= rt2x00_eeprom_read,
 165		.write		= rt2x00_eeprom_write,
 166		.word_base	= EEPROM_BASE,
 167		.word_size	= sizeof(u16),
 168		.word_count	= EEPROM_SIZE / sizeof(u16),
 169	},
 170	.bbp	= {
 171		.read		= rt73usb_bbp_read,
 172		.write		= rt73usb_bbp_write,
 173		.word_base	= BBP_BASE,
 174		.word_size	= sizeof(u8),
 175		.word_count	= BBP_SIZE / sizeof(u8),
 176	},
 177	.rf	= {
 178		.read		= rt2x00_rf_read,
 179		.write		= rt73usb_rf_write,
 180		.word_base	= RF_BASE,
 181		.word_size	= sizeof(u32),
 182		.word_count	= RF_SIZE / sizeof(u32),
 183	},
 184};
 185#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 186
 187static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 188{
 189	u32 reg;
 190
 191	rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
 192	return rt2x00_get_field32(reg, MAC_CSR13_BIT7);
 193}
 194
 195#ifdef CONFIG_RT2X00_LIB_LEDS
 196static void rt73usb_brightness_set(struct led_classdev *led_cdev,
 197				   enum led_brightness brightness)
 198{
 199	struct rt2x00_led *led =
 200	   container_of(led_cdev, struct rt2x00_led, led_dev);
 201	unsigned int enabled = brightness != LED_OFF;
 202	unsigned int a_mode =
 203	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
 204	unsigned int bg_mode =
 205	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
 206
 207	if (led->type == LED_TYPE_RADIO) {
 208		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 209				   MCU_LEDCS_RADIO_STATUS, enabled);
 210
 211		rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
 212					    0, led->rt2x00dev->led_mcu_reg,
 213					    REGISTER_TIMEOUT);
 214	} else if (led->type == LED_TYPE_ASSOC) {
 215		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 216				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
 217		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 218				   MCU_LEDCS_LINK_A_STATUS, a_mode);
 219
 220		rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
 221					    0, led->rt2x00dev->led_mcu_reg,
 222					    REGISTER_TIMEOUT);
 223	} else if (led->type == LED_TYPE_QUALITY) {
 224		/*
 225		 * The brightness is divided into 6 levels (0 - 5),
 226		 * this means we need to convert the brightness
 227		 * argument into the matching level within that range.
 228		 */
 229		rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
 230					    brightness / (LED_FULL / 6),
 231					    led->rt2x00dev->led_mcu_reg,
 232					    REGISTER_TIMEOUT);
 233	}
 234}
 235
 236static int rt73usb_blink_set(struct led_classdev *led_cdev,
 237			     unsigned long *delay_on,
 238			     unsigned long *delay_off)
 239{
 240	struct rt2x00_led *led =
 241	    container_of(led_cdev, struct rt2x00_led, led_dev);
 242	u32 reg;
 243
 244	rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
 245	rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
 246	rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
 247	rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
 248
 249	return 0;
 250}
 251
 252static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
 253			     struct rt2x00_led *led,
 254			     enum led_type type)
 255{
 256	led->rt2x00dev = rt2x00dev;
 257	led->type = type;
 258	led->led_dev.brightness_set = rt73usb_brightness_set;
 259	led->led_dev.blink_set = rt73usb_blink_set;
 260	led->flags = LED_INITIALIZED;
 261}
 262#endif /* CONFIG_RT2X00_LIB_LEDS */
 263
 264/*
 265 * Configuration handlers.
 266 */
 267static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
 268				     struct rt2x00lib_crypto *crypto,
 269				     struct ieee80211_key_conf *key)
 270{
 271	struct hw_key_entry key_entry;
 272	struct rt2x00_field32 field;
 273	u32 mask;
 274	u32 reg;
 275
 276	if (crypto->cmd == SET_KEY) {
 277		/*
 278		 * rt2x00lib can't determine the correct free
 279		 * key_idx for shared keys. We have 1 register
 280		 * with key valid bits. The goal is simple, read
 281		 * the register, if that is full we have no slots
 282		 * left.
 283		 * Note that each BSS is allowed to have up to 4
 284		 * shared keys, so put a mask over the allowed
 285		 * entries.
 286		 */
 287		mask = (0xf << crypto->bssidx);
 288
 289		rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
 290		reg &= mask;
 291
 292		if (reg && reg == mask)
 293			return -ENOSPC;
 294
 295		key->hw_key_idx += reg ? ffz(reg) : 0;
 296
 297		/*
 298		 * Upload key to hardware
 299		 */
 300		memcpy(key_entry.key, crypto->key,
 301		       sizeof(key_entry.key));
 302		memcpy(key_entry.tx_mic, crypto->tx_mic,
 303		       sizeof(key_entry.tx_mic));
 304		memcpy(key_entry.rx_mic, crypto->rx_mic,
 305		       sizeof(key_entry.rx_mic));
 306
 307		reg = SHARED_KEY_ENTRY(key->hw_key_idx);
 308		rt2x00usb_register_multiwrite(rt2x00dev, reg,
 309					      &key_entry, sizeof(key_entry));
 310
 311		/*
 312		 * The cipher types are stored over 2 registers.
 313		 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
 314		 * bssidx 1 and 2 keys are stored in SEC_CSR5.
 315		 * Using the correct defines correctly will cause overhead,
 316		 * so just calculate the correct offset.
 317		 */
 318		if (key->hw_key_idx < 8) {
 319			field.bit_offset = (3 * key->hw_key_idx);
 320			field.bit_mask = 0x7 << field.bit_offset;
 321
 322			rt2x00usb_register_read(rt2x00dev, SEC_CSR1, &reg);
 323			rt2x00_set_field32(&reg, field, crypto->cipher);
 324			rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
 325		} else {
 326			field.bit_offset = (3 * (key->hw_key_idx - 8));
 327			field.bit_mask = 0x7 << field.bit_offset;
 328
 329			rt2x00usb_register_read(rt2x00dev, SEC_CSR5, &reg);
 330			rt2x00_set_field32(&reg, field, crypto->cipher);
 331			rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
 332		}
 333
 334		/*
 335		 * The driver does not support the IV/EIV generation
 336		 * in hardware. However it doesn't support the IV/EIV
 337		 * inside the ieee80211 frame either, but requires it
 338		 * to be provided separately for the descriptor.
 339		 * rt2x00lib will cut the IV/EIV data out of all frames
 340		 * given to us by mac80211, but we must tell mac80211
 341		 * to generate the IV/EIV data.
 342		 */
 343		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 344	}
 345
 346	/*
 347	 * SEC_CSR0 contains only single-bit fields to indicate
 348	 * a particular key is valid. Because using the FIELD32()
 349	 * defines directly will cause a lot of overhead we use
 350	 * a calculation to determine the correct bit directly.
 351	 */
 352	mask = 1 << key->hw_key_idx;
 353
 354	rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
 355	if (crypto->cmd == SET_KEY)
 356		reg |= mask;
 357	else if (crypto->cmd == DISABLE_KEY)
 358		reg &= ~mask;
 359	rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
 360
 361	return 0;
 362}
 363
 364static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
 365				       struct rt2x00lib_crypto *crypto,
 366				       struct ieee80211_key_conf *key)
 367{
 368	struct hw_pairwise_ta_entry addr_entry;
 369	struct hw_key_entry key_entry;
 370	u32 mask;
 371	u32 reg;
 372
 373	if (crypto->cmd == SET_KEY) {
 374		/*
 375		 * rt2x00lib can't determine the correct free
 376		 * key_idx for pairwise keys. We have 2 registers
 377		 * with key valid bits. The goal is simple, read
 378		 * the first register, if that is full move to
 379		 * the next register.
 380		 * When both registers are full, we drop the key,
 381		 * otherwise we use the first invalid entry.
 382		 */
 383		rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
 384		if (reg && reg == ~0) {
 385			key->hw_key_idx = 32;
 386			rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
 387			if (reg && reg == ~0)
 388				return -ENOSPC;
 389		}
 390
 391		key->hw_key_idx += reg ? ffz(reg) : 0;
 392
 393		/*
 394		 * Upload key to hardware
 395		 */
 396		memcpy(key_entry.key, crypto->key,
 397		       sizeof(key_entry.key));
 398		memcpy(key_entry.tx_mic, crypto->tx_mic,
 399		       sizeof(key_entry.tx_mic));
 400		memcpy(key_entry.rx_mic, crypto->rx_mic,
 401		       sizeof(key_entry.rx_mic));
 402
 403		reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
 404		rt2x00usb_register_multiwrite(rt2x00dev, reg,
 405					      &key_entry, sizeof(key_entry));
 406
 407		/*
 408		 * Send the address and cipher type to the hardware register.
 409		 */
 410		memset(&addr_entry, 0, sizeof(addr_entry));
 411		memcpy(&addr_entry, crypto->address, ETH_ALEN);
 412		addr_entry.cipher = crypto->cipher;
 413
 414		reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
 415		rt2x00usb_register_multiwrite(rt2x00dev, reg,
 416					    &addr_entry, sizeof(addr_entry));
 417
 418		/*
 419		 * Enable pairwise lookup table for given BSS idx,
 420		 * without this received frames will not be decrypted
 421		 * by the hardware.
 422		 */
 423		rt2x00usb_register_read(rt2x00dev, SEC_CSR4, &reg);
 424		reg |= (1 << crypto->bssidx);
 425		rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
 426
 427		/*
 428		 * The driver does not support the IV/EIV generation
 429		 * in hardware. However it doesn't support the IV/EIV
 430		 * inside the ieee80211 frame either, but requires it
 431		 * to be provided separately for the descriptor.
 432		 * rt2x00lib will cut the IV/EIV data out of all frames
 433		 * given to us by mac80211, but we must tell mac80211
 434		 * to generate the IV/EIV data.
 435		 */
 436		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 437	}
 438
 439	/*
 440	 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
 441	 * a particular key is valid. Because using the FIELD32()
 442	 * defines directly will cause a lot of overhead we use
 443	 * a calculation to determine the correct bit directly.
 444	 */
 445	if (key->hw_key_idx < 32) {
 446		mask = 1 << key->hw_key_idx;
 447
 448		rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
 449		if (crypto->cmd == SET_KEY)
 450			reg |= mask;
 451		else if (crypto->cmd == DISABLE_KEY)
 452			reg &= ~mask;
 453		rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
 454	} else {
 455		mask = 1 << (key->hw_key_idx - 32);
 456
 457		rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
 458		if (crypto->cmd == SET_KEY)
 459			reg |= mask;
 460		else if (crypto->cmd == DISABLE_KEY)
 461			reg &= ~mask;
 462		rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
 463	}
 464
 465	return 0;
 466}
 467
 468static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
 469				  const unsigned int filter_flags)
 470{
 471	u32 reg;
 472
 473	/*
 474	 * Start configuration steps.
 475	 * Note that the version error will always be dropped
 476	 * and broadcast frames will always be accepted since
 477	 * there is no filter for it at this time.
 478	 */
 479	rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
 480	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
 481			   !(filter_flags & FIF_FCSFAIL));
 482	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
 483			   !(filter_flags & FIF_PLCPFAIL));
 484	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
 485			   !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
 486	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
 487			   !(filter_flags & FIF_PROMISC_IN_BSS));
 488	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
 489			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
 490			   !rt2x00dev->intf_ap_count);
 491	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
 492	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
 493			   !(filter_flags & FIF_ALLMULTI));
 494	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
 495	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
 496			   !(filter_flags & FIF_CONTROL));
 497	rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
 498}
 499
 500static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
 501				struct rt2x00_intf *intf,
 502				struct rt2x00intf_conf *conf,
 503				const unsigned int flags)
 504{
 505	u32 reg;
 506
 507	if (flags & CONFIG_UPDATE_TYPE) {
 508		/*
 509		 * Enable synchronisation.
 510		 */
 511		rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
 512		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
 513		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
 514	}
 515
 516	if (flags & CONFIG_UPDATE_MAC) {
 517		reg = le32_to_cpu(conf->mac[1]);
 518		rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
 519		conf->mac[1] = cpu_to_le32(reg);
 520
 521		rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
 522					    conf->mac, sizeof(conf->mac));
 523	}
 524
 525	if (flags & CONFIG_UPDATE_BSSID) {
 526		reg = le32_to_cpu(conf->bssid[1]);
 527		rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
 528		conf->bssid[1] = cpu_to_le32(reg);
 529
 530		rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
 531					    conf->bssid, sizeof(conf->bssid));
 532	}
 533}
 534
 535static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
 536			       struct rt2x00lib_erp *erp,
 537			       u32 changed)
 538{
 539	u32 reg;
 540
 541	rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
 542	rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
 543	rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
 544	rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
 545
 546	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 547		rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
 548		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
 549		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
 550				   !!erp->short_preamble);
 551		rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
 552	}
 553
 554	if (changed & BSS_CHANGED_BASIC_RATES)
 555		rt2x00usb_register_write(rt2x00dev, TXRX_CSR5,
 556					 erp->basic_rates);
 557
 558	if (changed & BSS_CHANGED_BEACON_INT) {
 559		rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
 560		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
 561				   erp->beacon_int * 16);
 562		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
 563	}
 564
 565	if (changed & BSS_CHANGED_ERP_SLOT) {
 566		rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
 567		rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
 568		rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
 569
 570		rt2x00usb_register_read(rt2x00dev, MAC_CSR8, &reg);
 571		rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
 572		rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
 573		rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
 574		rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
 575	}
 576}
 577
 578static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
 579				      struct antenna_setup *ant)
 580{
 581	u8 r3;
 582	u8 r4;
 583	u8 r77;
 584	u8 temp;
 585
 586	rt73usb_bbp_read(rt2x00dev, 3, &r3);
 587	rt73usb_bbp_read(rt2x00dev, 4, &r4);
 588	rt73usb_bbp_read(rt2x00dev, 77, &r77);
 589
 590	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
 591
 592	/*
 593	 * Configure the RX antenna.
 594	 */
 595	switch (ant->rx) {
 596	case ANTENNA_HW_DIVERSITY:
 597		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 598		temp = !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags)
 599		       && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
 600		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
 601		break;
 602	case ANTENNA_A:
 603		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 604		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 605		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
 606			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 607		else
 608			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 609		break;
 610	case ANTENNA_B:
 611	default:
 612		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 613		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 614		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
 615			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 616		else
 617			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 618		break;
 619	}
 620
 621	rt73usb_bbp_write(rt2x00dev, 77, r77);
 622	rt73usb_bbp_write(rt2x00dev, 3, r3);
 623	rt73usb_bbp_write(rt2x00dev, 4, r4);
 624}
 625
 626static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
 627				      struct antenna_setup *ant)
 628{
 629	u8 r3;
 630	u8 r4;
 631	u8 r77;
 632
 633	rt73usb_bbp_read(rt2x00dev, 3, &r3);
 634	rt73usb_bbp_read(rt2x00dev, 4, &r4);
 635	rt73usb_bbp_read(rt2x00dev, 77, &r77);
 636
 637	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
 638	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
 639			  !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags));
 640
 641	/*
 642	 * Configure the RX antenna.
 643	 */
 644	switch (ant->rx) {
 645	case ANTENNA_HW_DIVERSITY:
 646		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 647		break;
 648	case ANTENNA_A:
 649		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 650		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 651		break;
 652	case ANTENNA_B:
 653	default:
 654		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 655		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 656		break;
 657	}
 658
 659	rt73usb_bbp_write(rt2x00dev, 77, r77);
 660	rt73usb_bbp_write(rt2x00dev, 3, r3);
 661	rt73usb_bbp_write(rt2x00dev, 4, r4);
 662}
 663
 664struct antenna_sel {
 665	u8 word;
 666	/*
 667	 * value[0] -> non-LNA
 668	 * value[1] -> LNA
 669	 */
 670	u8 value[2];
 671};
 672
 673static const struct antenna_sel antenna_sel_a[] = {
 674	{ 96,  { 0x58, 0x78 } },
 675	{ 104, { 0x38, 0x48 } },
 676	{ 75,  { 0xfe, 0x80 } },
 677	{ 86,  { 0xfe, 0x80 } },
 678	{ 88,  { 0xfe, 0x80 } },
 679	{ 35,  { 0x60, 0x60 } },
 680	{ 97,  { 0x58, 0x58 } },
 681	{ 98,  { 0x58, 0x58 } },
 682};
 683
 684static const struct antenna_sel antenna_sel_bg[] = {
 685	{ 96,  { 0x48, 0x68 } },
 686	{ 104, { 0x2c, 0x3c } },
 687	{ 75,  { 0xfe, 0x80 } },
 688	{ 86,  { 0xfe, 0x80 } },
 689	{ 88,  { 0xfe, 0x80 } },
 690	{ 35,  { 0x50, 0x50 } },
 691	{ 97,  { 0x48, 0x48 } },
 692	{ 98,  { 0x48, 0x48 } },
 693};
 694
 695static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
 696			       struct antenna_setup *ant)
 697{
 698	const struct antenna_sel *sel;
 699	unsigned int lna;
 700	unsigned int i;
 701	u32 reg;
 702
 703	/*
 704	 * We should never come here because rt2x00lib is supposed
 705	 * to catch this and send us the correct antenna explicitely.
 706	 */
 707	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 708	       ant->tx == ANTENNA_SW_DIVERSITY);
 709
 710	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
 711		sel = antenna_sel_a;
 712		lna = test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
 713	} else {
 714		sel = antenna_sel_bg;
 715		lna = test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
 716	}
 717
 718	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
 719		rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
 720
 721	rt2x00usb_register_read(rt2x00dev, PHY_CSR0, &reg);
 722
 723	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
 724			   (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
 725	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
 726			   (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
 727
 728	rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
 729
 730	if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225))
 731		rt73usb_config_antenna_5x(rt2x00dev, ant);
 732	else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527))
 733		rt73usb_config_antenna_2x(rt2x00dev, ant);
 734}
 735
 736static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
 737				    struct rt2x00lib_conf *libconf)
 738{
 739	u16 eeprom;
 740	short lna_gain = 0;
 741
 742	if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
 743		if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags))
 744			lna_gain += 14;
 745
 746		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
 747		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
 748	} else {
 749		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
 750		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
 751	}
 752
 753	rt2x00dev->lna_gain = lna_gain;
 754}
 755
 756static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
 757				   struct rf_channel *rf, const int txpower)
 758{
 759	u8 r3;
 760	u8 r94;
 761	u8 smart;
 762
 763	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 764	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
 765
 766	smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
 767
 768	rt73usb_bbp_read(rt2x00dev, 3, &r3);
 769	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
 770	rt73usb_bbp_write(rt2x00dev, 3, r3);
 771
 772	r94 = 6;
 773	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
 774		r94 += txpower - MAX_TXPOWER;
 775	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
 776		r94 += txpower;
 777	rt73usb_bbp_write(rt2x00dev, 94, r94);
 778
 779	rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
 780	rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
 781	rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 782	rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
 783
 784	rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
 785	rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
 786	rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
 787	rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
 788
 789	rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
 790	rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
 791	rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 792	rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
 793
 794	udelay(10);
 795}
 796
 797static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
 798				   const int txpower)
 799{
 800	struct rf_channel rf;
 801
 802	rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
 803	rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
 804	rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
 805	rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
 806
 807	rt73usb_config_channel(rt2x00dev, &rf, txpower);
 808}
 809
 810static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 811				       struct rt2x00lib_conf *libconf)
 812{
 813	u32 reg;
 814
 815	rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
 816	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
 817	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
 818	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
 819	rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
 820			   libconf->conf->long_frame_max_tx_count);
 821	rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
 822			   libconf->conf->short_frame_max_tx_count);
 823	rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
 824}
 825
 826static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
 827				struct rt2x00lib_conf *libconf)
 828{
 829	enum dev_state state =
 830	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
 831		STATE_SLEEP : STATE_AWAKE;
 832	u32 reg;
 833
 834	if (state == STATE_SLEEP) {
 835		rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
 836		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
 837				   rt2x00dev->beacon_int - 10);
 838		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
 839				   libconf->conf->listen_interval - 1);
 840		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
 841
 842		/* We must first disable autowake before it can be enabled */
 843		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
 844		rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
 845
 846		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
 847		rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
 848
 849		rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
 850					    USB_MODE_SLEEP, REGISTER_TIMEOUT);
 851	} else {
 852		rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
 853		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
 854		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
 855		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
 856		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
 857		rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
 858
 859		rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
 860					    USB_MODE_WAKEUP, REGISTER_TIMEOUT);
 861	}
 862}
 863
 864static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
 865			   struct rt2x00lib_conf *libconf,
 866			   const unsigned int flags)
 867{
 868	/* Always recalculate LNA gain before changing configuration */
 869	rt73usb_config_lna_gain(rt2x00dev, libconf);
 870
 871	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 872		rt73usb_config_channel(rt2x00dev, &libconf->rf,
 873				       libconf->conf->power_level);
 874	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 875	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 876		rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
 877	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
 878		rt73usb_config_retry_limit(rt2x00dev, libconf);
 879	if (flags & IEEE80211_CONF_CHANGE_PS)
 880		rt73usb_config_ps(rt2x00dev, libconf);
 881}
 882
 883/*
 884 * Link tuning
 885 */
 886static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
 887			       struct link_qual *qual)
 888{
 889	u32 reg;
 890
 891	/*
 892	 * Update FCS error count from register.
 893	 */
 894	rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
 895	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
 896
 897	/*
 898	 * Update False CCA count from register.
 899	 */
 900	rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
 901	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
 902}
 903
 904static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
 905				   struct link_qual *qual, u8 vgc_level)
 906{
 907	if (qual->vgc_level != vgc_level) {
 908		rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
 909		qual->vgc_level = vgc_level;
 910		qual->vgc_level_reg = vgc_level;
 911	}
 912}
 913
 914static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
 915				struct link_qual *qual)
 916{
 917	rt73usb_set_vgc(rt2x00dev, qual, 0x20);
 918}
 919
 920static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
 921			       struct link_qual *qual, const u32 count)
 922{
 923	u8 up_bound;
 924	u8 low_bound;
 925
 926	/*
 927	 * Determine r17 bounds.
 928	 */
 929	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
 930		low_bound = 0x28;
 931		up_bound = 0x48;
 932
 933		if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) {
 934			low_bound += 0x10;
 935			up_bound += 0x10;
 936		}
 937	} else {
 938		if (qual->rssi > -82) {
 939			low_bound = 0x1c;
 940			up_bound = 0x40;
 941		} else if (qual->rssi > -84) {
 942			low_bound = 0x1c;
 943			up_bound = 0x20;
 944		} else {
 945			low_bound = 0x1c;
 946			up_bound = 0x1c;
 947		}
 948
 949		if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) {
 950			low_bound += 0x14;
 951			up_bound += 0x10;
 952		}
 953	}
 954
 955	/*
 956	 * If we are not associated, we should go straight to the
 957	 * dynamic CCA tuning.
 958	 */
 959	if (!rt2x00dev->intf_associated)
 960		goto dynamic_cca_tune;
 961
 962	/*
 963	 * Special big-R17 for very short distance
 964	 */
 965	if (qual->rssi > -35) {
 966		rt73usb_set_vgc(rt2x00dev, qual, 0x60);
 967		return;
 968	}
 969
 970	/*
 971	 * Special big-R17 for short distance
 972	 */
 973	if (qual->rssi >= -58) {
 974		rt73usb_set_vgc(rt2x00dev, qual, up_bound);
 975		return;
 976	}
 977
 978	/*
 979	 * Special big-R17 for middle-short distance
 980	 */
 981	if (qual->rssi >= -66) {
 982		rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
 983		return;
 984	}
 985
 986	/*
 987	 * Special mid-R17 for middle distance
 988	 */
 989	if (qual->rssi >= -74) {
 990		rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
 991		return;
 992	}
 993
 994	/*
 995	 * Special case: Change up_bound based on the rssi.
 996	 * Lower up_bound when rssi is weaker then -74 dBm.
 997	 */
 998	up_bound -= 2 * (-74 - qual->rssi);
 999	if (low_bound > up_bound)
1000		up_bound = low_bound;
1001
1002	if (qual->vgc_level > up_bound) {
1003		rt73usb_set_vgc(rt2x00dev, qual, up_bound);
1004		return;
1005	}
1006
1007dynamic_cca_tune:
1008
1009	/*
1010	 * r17 does not yet exceed upper limit, continue and base
1011	 * the r17 tuning on the false CCA count.
1012	 */
1013	if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1014		rt73usb_set_vgc(rt2x00dev, qual,
1015				min_t(u8, qual->vgc_level + 4, up_bound));
1016	else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1017		rt73usb_set_vgc(rt2x00dev, qual,
1018				max_t(u8, qual->vgc_level - 4, low_bound));
1019}
1020
1021/*
1022 * Queue handlers.
1023 */
1024static void rt73usb_start_queue(struct data_queue *queue)
1025{
1026	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1027	u32 reg;
1028
1029	switch (queue->qid) {
1030	case QID_RX:
1031		rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1032		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1033		rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1034		break;
1035	case QID_BEACON:
1036		rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1037		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1038		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1039		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1040		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1041		break;
1042	default:
1043		break;
1044	}
1045}
1046
1047static void rt73usb_stop_queue(struct data_queue *queue)
1048{
1049	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1050	u32 reg;
1051
1052	switch (queue->qid) {
1053	case QID_RX:
1054		rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1055		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1056		rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1057		break;
1058	case QID_BEACON:
1059		rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1060		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1061		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1062		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1063		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1064		break;
1065	default:
1066		break;
1067	}
1068}
1069
1070/*
1071 * Firmware functions
1072 */
1073static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1074{
1075	return FIRMWARE_RT2571;
1076}
1077
1078static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev,
1079				  const u8 *data, const size_t len)
1080{
1081	u16 fw_crc;
1082	u16 crc;
1083
1084	/*
1085	 * Only support 2kb firmware files.
1086	 */
1087	if (len != 2048)
1088		return FW_BAD_LENGTH;
1089
1090	/*
1091	 * The last 2 bytes in the firmware array are the crc checksum itself,
1092	 * this means that we should never pass those 2 bytes to the crc
1093	 * algorithm.
1094	 */
1095	fw_crc = (data[len - 2] << 8 | data[len - 1]);
1096
1097	/*
1098	 * Use the crc itu-t algorithm.
1099	 */
1100	crc = crc_itu_t(0, data, len - 2);
1101	crc = crc_itu_t_byte(crc, 0);
1102	crc = crc_itu_t_byte(crc, 0);
1103
1104	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1105}
1106
1107static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev,
1108				 const u8 *data, const size_t len)
1109{
1110	unsigned int i;
1111	int status;
1112	u32 reg;
1113
1114	/*
1115	 * Wait for stable hardware.
1116	 */
1117	for (i = 0; i < 100; i++) {
1118		rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1119		if (reg)
1120			break;
1121		msleep(1);
1122	}
1123
1124	if (!reg) {
1125		ERROR(rt2x00dev, "Unstable hardware.\n");
1126		return -EBUSY;
1127	}
1128
1129	/*
1130	 * Write firmware to device.
1131	 */
1132	rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len);
1133
1134	/*
1135	 * Send firmware request to device to load firmware,
1136	 * we need to specify a long timeout time.
1137	 */
1138	status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1139					     0, USB_MODE_FIRMWARE,
1140					     REGISTER_TIMEOUT_FIRMWARE);
1141	if (status < 0) {
1142		ERROR(rt2x00dev, "Failed to write Firmware to device.\n");
1143		return status;
1144	}
1145
1146	return 0;
1147}
1148
1149/*
1150 * Initialization functions.
1151 */
1152static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1153{
1154	u32 reg;
1155
1156	rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1157	rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1158	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1159	rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1160	rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1161
1162	rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
1163	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1164	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1165	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1166	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1167	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1168	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1169	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1170	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1171	rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1172
1173	/*
1174	 * CCK TXD BBP registers
1175	 */
1176	rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1177	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1178	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1179	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1180	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1181	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1182	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1183	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1184	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1185	rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1186
1187	/*
1188	 * OFDM TXD BBP registers
1189	 */
1190	rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
1191	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1192	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1193	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1194	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1195	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1196	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1197	rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1198
1199	rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
1200	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1201	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1202	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1203	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1204	rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1205
1206	rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
1207	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1208	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1209	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1210	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1211	rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1212
1213	rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1214	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1215	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1216	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1217	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1218	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1219	rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1220	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1221
1222	rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1223
1224	rt2x00usb_register_read(rt2x00dev, MAC_CSR6, &reg);
1225	rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1226	rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1227
1228	rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1229
1230	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1231		return -EBUSY;
1232
1233	rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1234
1235	/*
1236	 * Invalidate all Shared Keys (SEC_CSR0),
1237	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1238	 */
1239	rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1240	rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1241	rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1242
1243	reg = 0x000023b0;
1244	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527))
1245		rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1246	rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1247
1248	rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1249	rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1250	rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1251
1252	rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
1253	rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1254	rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1255
1256	/*
1257	 * Clear all beacons
1258	 * For the Beacon base registers we only need to clear
1259	 * the first byte since that byte contains the VALID and OWNER
1260	 * bits which (when set to 0) will invalidate the entire beacon.
1261	 */
1262	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1263	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1264	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1265	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1266
1267	/*
1268	 * We must clear the error counters.
1269	 * These registers are cleared on read,
1270	 * so we may pass a useless variable to store the value.
1271	 */
1272	rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
1273	rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
1274	rt2x00usb_register_read(rt2x00dev, STA_CSR2, &reg);
1275
1276	/*
1277	 * Reset MAC and BBP registers.
1278	 */
1279	rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1280	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1281	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1282	rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1283
1284	rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1285	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1286	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1287	rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1288
1289	rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1290	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1291	rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1292
1293	return 0;
1294}
1295
1296static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1297{
1298	unsigned int i;
1299	u8 value;
1300
1301	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1302		rt73usb_bbp_read(rt2x00dev, 0, &value);
1303		if ((value != 0xff) && (value != 0x00))
1304			return 0;
1305		udelay(REGISTER_BUSY_DELAY);
1306	}
1307
1308	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1309	return -EACCES;
1310}
1311
1312static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1313{
1314	unsigned int i;
1315	u16 eeprom;
1316	u8 reg_id;
1317	u8 value;
1318
1319	if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1320		return -EACCES;
1321
1322	rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1323	rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1324	rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1325	rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1326	rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1327	rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1328	rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1329	rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1330	rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1331	rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1332	rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1333	rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1334	rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1335	rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1336	rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1337	rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1338	rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1339	rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1340	rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1341	rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1342	rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1343	rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1344	rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1345	rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1346	rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1347
1348	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1349		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1350
1351		if (eeprom != 0xffff && eeprom != 0x0000) {
1352			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1353			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1354			rt73usb_bbp_write(rt2x00dev, reg_id, value);
1355		}
1356	}
1357
1358	return 0;
1359}
1360
1361/*
1362 * Device state switch handlers.
1363 */
1364static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1365{
1366	/*
1367	 * Initialize all registers.
1368	 */
1369	if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1370		     rt73usb_init_bbp(rt2x00dev)))
1371		return -EIO;
1372
1373	return 0;
1374}
1375
1376static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1377{
1378	rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1379
1380	/*
1381	 * Disable synchronisation.
1382	 */
1383	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1384
1385	rt2x00usb_disable_radio(rt2x00dev);
1386}
1387
1388static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1389{
1390	u32 reg, reg2;
1391	unsigned int i;
1392	char put_to_sleep;
1393
1394	put_to_sleep = (state != STATE_AWAKE);
1395
1396	rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1397	rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1398	rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1399	rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1400
1401	/*
1402	 * Device is not guaranteed to be in the requested state yet.
1403	 * We must wait until the register indicates that the
1404	 * device has entered the correct state.
1405	 */
1406	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1407		rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg2);
1408		state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1409		if (state == !put_to_sleep)
1410			return 0;
1411		rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1412		msleep(10);
1413	}
1414
1415	return -EBUSY;
1416}
1417
1418static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1419				    enum dev_state state)
1420{
1421	int retval = 0;
1422
1423	switch (state) {
1424	case STATE_RADIO_ON:
1425		retval = rt73usb_enable_radio(rt2x00dev);
1426		break;
1427	case STATE_RADIO_OFF:
1428		rt73usb_disable_radio(rt2x00dev);
1429		break;
1430	case STATE_RADIO_IRQ_ON:
1431	case STATE_RADIO_IRQ_OFF:
1432		/* No support, but no error either */
1433		break;
1434	case STATE_DEEP_SLEEP:
1435	case STATE_SLEEP:
1436	case STATE_STANDBY:
1437	case STATE_AWAKE:
1438		retval = rt73usb_set_state(rt2x00dev, state);
1439		break;
1440	default:
1441		retval = -ENOTSUPP;
1442		break;
1443	}
1444
1445	if (unlikely(retval))
1446		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1447		      state, retval);
1448
1449	return retval;
1450}
1451
1452/*
1453 * TX descriptor initialization
1454 */
1455static void rt73usb_write_tx_desc(struct queue_entry *entry,
1456				  struct txentry_desc *txdesc)
1457{
1458	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1459	__le32 *txd = (__le32 *) entry->skb->data;
1460	u32 word;
1461
1462	/*
1463	 * Start writing the descriptor words.
1464	 */
1465	rt2x00_desc_read(txd, 0, &word);
1466	rt2x00_set_field32(&word, TXD_W0_BURST,
1467			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1468	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1469	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1470			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1471	rt2x00_set_field32(&word, TXD_W0_ACK,
1472			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1473	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1474			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1475	rt2x00_set_field32(&word, TXD_W0_OFDM,
1476			   (txdesc->rate_mode == RATE_MODE_OFDM));
1477	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1478	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1479			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1480	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1481			   test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1482	rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1483			   test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1484	rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1485	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1486	rt2x00_set_field32(&word, TXD_W0_BURST2,
1487			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1488	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1489	rt2x00_desc_write(txd, 0, word);
1490
1491	rt2x00_desc_read(txd, 1, &word);
1492	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1493	rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1494	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1495	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1496	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1497	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1498			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1499	rt2x00_desc_write(txd, 1, word);
1500
1501	rt2x00_desc_read(txd, 2, &word);
1502	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1503	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1504	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1505			   txdesc->u.plcp.length_low);
1506	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1507			   txdesc->u.plcp.length_high);
1508	rt2x00_desc_write(txd, 2, word);
1509
1510	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1511		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1512		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1513	}
1514
1515	rt2x00_desc_read(txd, 5, &word);
1516	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1517			   TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1518	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1519	rt2x00_desc_write(txd, 5, word);
1520
1521	/*
1522	 * Register descriptor details in skb frame descriptor.
1523	 */
1524	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1525	skbdesc->desc = txd;
1526	skbdesc->desc_len = TXD_DESC_SIZE;
1527}
1528
1529/*
1530 * TX data initialization
1531 */
1532static void rt73usb_write_beacon(struct queue_entry *entry,
1533				 struct txentry_desc *txdesc)
1534{
1535	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1536	unsigned int beacon_base;
1537	unsigned int padding_len;
1538	u32 orig_reg, reg;
1539
1540	/*
1541	 * Disable beaconing while we are reloading the beacon data,
1542	 * otherwise we might be sending out invalid data.
1543	 */
1544	rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1545	orig_reg = reg;
1546	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1547	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1548
1549	/*
1550	 * Add space for the descriptor in front of the skb.
1551	 */
1552	skb_push(entry->skb, TXD_DESC_SIZE);
1553	memset(entry->skb->data, 0, TXD_DESC_SIZE);
1554
1555	/*
1556	 * Write the TX descriptor for the beacon.
1557	 */
1558	rt73usb_write_tx_desc(entry, txdesc);
1559
1560	/*
1561	 * Dump beacon to userspace through debugfs.
1562	 */
1563	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1564
1565	/*
1566	 * Write entire beacon with descriptor and padding to register.
1567	 */
1568	padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1569	if (padding_len && skb_pad(entry->skb, padding_len)) {
1570		ERROR(rt2x00dev, "Failure padding beacon, aborting\n");
1571		/* skb freed by skb_pad() on failure */
1572		entry->skb = NULL;
1573		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1574		return;
1575	}
1576
1577	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1578	rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
1579				      entry->skb->len + padding_len);
1580
1581	/*
1582	 * Enable beaconing again.
1583	 *
1584	 * For Wi-Fi faily generated beacons between participating stations.
1585	 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1586	 */
1587	rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1588
1589	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1590	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1591
1592	/*
1593	 * Clean up the beacon skb.
1594	 */
1595	dev_kfree_skb(entry->skb);
1596	entry->skb = NULL;
1597}
1598
1599static void rt73usb_clear_beacon(struct queue_entry *entry)
1600{
1601	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1602	unsigned int beacon_base;
1603	u32 reg;
1604
1605	/*
1606	 * Disable beaconing while we are reloading the beacon data,
1607	 * otherwise we might be sending out invalid data.
1608	 */
1609	rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1610	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1611	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1612
1613	/*
1614	 * Clear beacon.
1615	 */
1616	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1617	rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
1618
1619	/*
1620	 * Enable beaconing again.
1621	 */
1622	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1623	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1624}
1625
1626static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1627{
1628	int length;
1629
1630	/*
1631	 * The length _must_ be a multiple of 4,
1632	 * but it must _not_ be a multiple of the USB packet size.
1633	 */
1634	length = roundup(entry->skb->len, 4);
1635	length += (4 * !(length % entry->queue->usb_maxpacket));
1636
1637	return length;
1638}
1639
1640/*
1641 * RX control handlers
1642 */
1643static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1644{
1645	u8 offset = rt2x00dev->lna_gain;
1646	u8 lna;
1647
1648	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1649	switch (lna) {
1650	case 3:
1651		offset += 90;
1652		break;
1653	case 2:
1654		offset += 74;
1655		break;
1656	case 1:
1657		offset += 64;
1658		break;
1659	default:
1660		return 0;
1661	}
1662
1663	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1664		if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) {
1665			if (lna == 3 || lna == 2)
1666				offset += 10;
1667		} else {
1668			if (lna == 3)
1669				offset += 6;
1670			else if (lna == 2)
1671				offset += 8;
1672		}
1673	}
1674
1675	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1676}
1677
1678static void rt73usb_fill_rxdone(struct queue_entry *entry,
1679				struct rxdone_entry_desc *rxdesc)
1680{
1681	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1682	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1683	__le32 *rxd = (__le32 *)entry->skb->data;
1684	u32 word0;
1685	u32 word1;
1686
1687	/*
1688	 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1689	 * frame data in rt2x00usb.
1690	 */
1691	memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1692	rxd = (__le32 *)skbdesc->desc;
1693
1694	/*
1695	 * It is now safe to read the descriptor on all architectures.
1696	 */
1697	rt2x00_desc_read(rxd, 0, &word0);
1698	rt2x00_desc_read(rxd, 1, &word1);
1699
1700	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1701		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1702
1703	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1704	rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1705
1706	if (rxdesc->cipher != CIPHER_NONE) {
1707		_rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1708		_rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1709		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1710
1711		_rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1712		rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1713
1714		/*
1715		 * Hardware has stripped IV/EIV data from 802.11 frame during
1716		 * decryption. It has provided the data separately but rt2x00lib
1717		 * should decide if it should be reinserted.
1718		 */
1719		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1720
1721		/*
1722		 * The hardware has already checked the Michael Mic and has
1723		 * stripped it from the frame. Signal this to mac80211.
1724		 */
1725		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1726
1727		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1728			rxdesc->flags |= RX_FLAG_DECRYPTED;
1729		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1730			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1731	}
1732
1733	/*
1734	 * Obtain the status about this packet.
1735	 * When frame was received with an OFDM bitrate,
1736	 * the signal is the PLCP value. If it was received with
1737	 * a CCK bitrate the signal is the rate in 100kbit/s.
1738	 */
1739	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1740	rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1741	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1742
1743	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1744		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1745	else
1746		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1747	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1748		rxdesc->dev_flags |= RXDONE_MY_BSS;
1749
1750	/*
1751	 * Set skb pointers, and update frame information.
1752	 */
1753	skb_pull(entry->skb, entry->queue->desc_size);
1754	skb_trim(entry->skb, rxdesc->size);
1755}
1756
1757/*
1758 * Device probe functions.
1759 */
1760static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1761{
1762	u16 word;
1763	u8 *mac;
1764	s8 value;
1765
1766	rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1767
1768	/*
1769	 * Start validation of the data that has been read.
1770	 */
1771	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1772	if (!is_valid_ether_addr(mac)) {
1773		random_ether_addr(mac);
1774		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1775	}
1776
1777	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1778	if (word == 0xffff) {
1779		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1780		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1781				   ANTENNA_B);
1782		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1783				   ANTENNA_B);
1784		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1785		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1786		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1787		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1788		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1789		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1790	}
1791
1792	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1793	if (word == 0xffff) {
1794		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1795		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1796		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1797	}
1798
1799	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1800	if (word == 0xffff) {
1801		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1802		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1803		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1804		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1805		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1806		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1807		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1808		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1809		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1810				   LED_MODE_DEFAULT);
1811		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1812		EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1813	}
1814
1815	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1816	if (word == 0xffff) {
1817		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1818		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1819		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1820		EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1821	}
1822
1823	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1824	if (word == 0xffff) {
1825		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1826		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1827		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1828		EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1829	} else {
1830		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1831		if (value < -10 || value > 10)
1832			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1833		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1834		if (value < -10 || value > 10)
1835			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1836		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1837	}
1838
1839	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1840	if (word == 0xffff) {
1841		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1842		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1843		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1844		EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1845	} else {
1846		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1847		if (value < -10 || value > 10)
1848			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1849		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1850		if (value < -10 || value > 10)
1851			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1852		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1853	}
1854
1855	return 0;
1856}
1857
1858static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1859{
1860	u32 reg;
1861	u16 value;
1862	u16 eeprom;
1863
1864	/*
1865	 * Read EEPROM word for configuration.
1866	 */
1867	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1868
1869	/*
1870	 * Identify RF chipset.
1871	 */
1872	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1873	rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1874	rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
1875			value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
1876
1877	if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) {
1878		ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1879		return -ENODEV;
1880	}
1881
1882	if (!rt2x00_rf(rt2x00dev, RF5226) &&
1883	    !rt2x00_rf(rt2x00dev, RF2528) &&
1884	    !rt2x00_rf(rt2x00dev, RF5225) &&
1885	    !rt2x00_rf(rt2x00dev, RF2527)) {
1886		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1887		return -ENODEV;
1888	}
1889
1890	/*
1891	 * Identify default antenna configuration.
1892	 */
1893	rt2x00dev->default_ant.tx =
1894	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1895	rt2x00dev->default_ant.rx =
1896	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1897
1898	/*
1899	 * Read the Frame type.
1900	 */
1901	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1902		__set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
1903
1904	/*
1905	 * Detect if this device has an hardware controlled radio.
1906	 */
1907	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1908		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1909
1910	/*
1911	 * Read frequency offset.
1912	 */
1913	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1914	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1915
1916	/*
1917	 * Read external LNA informations.
1918	 */
1919	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1920
1921	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1922		__set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
1923		__set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
1924	}
1925
1926	/*
1927	 * Store led settings, for correct led behaviour.
1928	 */
1929#ifdef CONFIG_RT2X00_LIB_LEDS
1930	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1931
1932	rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1933	rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1934	if (value == LED_MODE_SIGNAL_STRENGTH)
1935		rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1936				 LED_TYPE_QUALITY);
1937
1938	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1939	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1940			   rt2x00_get_field16(eeprom,
1941					      EEPROM_LED_POLARITY_GPIO_0));
1942	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1943			   rt2x00_get_field16(eeprom,
1944					      EEPROM_LED_POLARITY_GPIO_1));
1945	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1946			   rt2x00_get_field16(eeprom,
1947					      EEPROM_LED_POLARITY_GPIO_2));
1948	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1949			   rt2x00_get_field16(eeprom,
1950					      EEPROM_LED_POLARITY_GPIO_3));
1951	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1952			   rt2x00_get_field16(eeprom,
1953					      EEPROM_LED_POLARITY_GPIO_4));
1954	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1955			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1956	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1957			   rt2x00_get_field16(eeprom,
1958					      EEPROM_LED_POLARITY_RDY_G));
1959	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1960			   rt2x00_get_field16(eeprom,
1961					      EEPROM_LED_POLARITY_RDY_A));
1962#endif /* CONFIG_RT2X00_LIB_LEDS */
1963
1964	return 0;
1965}
1966
1967/*
1968 * RF value list for RF2528
1969 * Supports: 2.4 GHz
1970 */
1971static const struct rf_channel rf_vals_bg_2528[] = {
1972	{ 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1973	{ 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1974	{ 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1975	{ 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1976	{ 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1977	{ 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1978	{ 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1979	{ 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1980	{ 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1981	{ 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1982	{ 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1983	{ 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1984	{ 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1985	{ 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1986};
1987
1988/*
1989 * RF value list for RF5226
1990 * Supports: 2.4 GHz & 5.2 GHz
1991 */
1992static const struct rf_channel rf_vals_5226[] = {
1993	{ 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1994	{ 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1995	{ 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1996	{ 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1997	{ 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1998	{ 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1999	{ 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
2000	{ 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
2001	{ 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
2002	{ 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
2003	{ 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
2004	{ 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
2005	{ 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
2006	{ 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
2007
2008	/* 802.11 UNI / HyperLan 2 */
2009	{ 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
2010	{ 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
2011	{ 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
2012	{ 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
2013	{ 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
2014	{ 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
2015	{ 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
2016	{ 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
2017
2018	/* 802.11 HyperLan 2 */
2019	{ 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
2020	{ 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
2021	{ 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
2022	{ 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
2023	{ 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
2024	{ 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
2025	{ 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
2026	{ 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
2027	{ 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
2028	{ 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
2029
2030	/* 802.11 UNII */
2031	{ 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
2032	{ 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
2033	{ 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
2034	{ 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
2035	{ 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
2036	{ 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
2037
2038	/* MMAC(Japan)J52 ch 34,38,42,46 */
2039	{ 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2040	{ 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2041	{ 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2042	{ 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2043};
2044
2045/*
2046 * RF value list for RF5225 & RF2527
2047 * Supports: 2.4 GHz & 5.2 GHz
2048 */
2049static const struct rf_channel rf_vals_5225_2527[] = {
2050	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2051	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2052	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2053	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2054	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2055	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2056	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2057	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2058	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2059	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2060	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2061	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2062	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2063	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2064
2065	/* 802.11 UNI / HyperLan 2 */
2066	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2067	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2068	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2069	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2070	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2071	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2072	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2073	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2074
2075	/* 802.11 HyperLan 2 */
2076	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2077	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2078	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2079	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2080	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2081	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2082	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2083	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2084	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2085	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2086
2087	/* 802.11 UNII */
2088	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2089	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2090	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2091	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2092	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2093	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2094
2095	/* MMAC(Japan)J52 ch 34,38,42,46 */
2096	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2097	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2098	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2099	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2100};
2101
2102
2103static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2104{
2105	struct hw_mode_spec *spec = &rt2x00dev->spec;
2106	struct channel_info *info;
2107	char *tx_power;
2108	unsigned int i;
2109
2110	/*
2111	 * Initialize all hw fields.
2112	 *
2113	 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
2114	 * capable of sending the buffered frames out after the DTIM
2115	 * transmission using rt2x00lib_beacondone. This will send out
2116	 * multicast and broadcast traffic immediately instead of buffering it
2117	 * infinitly and thus dropping it after some time.
2118	 */
2119	rt2x00dev->hw->flags =
2120	    IEEE80211_HW_SIGNAL_DBM |
2121	    IEEE80211_HW_SUPPORTS_PS |
2122	    IEEE80211_HW_PS_NULLFUNC_STACK;
2123
2124	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2125	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2126				rt2x00_eeprom_addr(rt2x00dev,
2127						   EEPROM_MAC_ADDR_0));
2128
2129	/*
2130	 * Initialize hw_mode information.
2131	 */
2132	spec->supported_bands = SUPPORT_BAND_2GHZ;
2133	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2134
2135	if (rt2x00_rf(rt2x00dev, RF2528)) {
2136		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2137		spec->channels = rf_vals_bg_2528;
2138	} else if (rt2x00_rf(rt2x00dev, RF5226)) {
2139		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2140		spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2141		spec->channels = rf_vals_5226;
2142	} else if (rt2x00_rf(rt2x00dev, RF2527)) {
2143		spec->num_channels = 14;
2144		spec->channels = rf_vals_5225_2527;
2145	} else if (rt2x00_rf(rt2x00dev, RF5225)) {
2146		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2147		spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2148		spec->channels = rf_vals_5225_2527;
2149	}
2150
2151	/*
2152	 * Create channel information array
2153	 */
2154	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2155	if (!info)
2156		return -ENOMEM;
2157
2158	spec->channels_info = info;
2159
2160	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2161	for (i = 0; i < 14; i++) {
2162		info[i].max_power = MAX_TXPOWER;
2163		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2164	}
2165
2166	if (spec->num_channels > 14) {
2167		tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2168		for (i = 14; i < spec->num_channels; i++) {
2169			info[i].max_power = MAX_TXPOWER;
2170			info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2171		}
2172	}
2173
2174	return 0;
2175}
2176
2177static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2178{
2179	int retval;
2180
2181	/*
2182	 * Allocate eeprom data.
2183	 */
2184	retval = rt73usb_validate_eeprom(rt2x00dev);
2185	if (retval)
2186		return retval;
2187
2188	retval = rt73usb_init_eeprom(rt2x00dev);
2189	if (retval)
2190		return retval;
2191
2192	/*
2193	 * Initialize hw specifications.
2194	 */
2195	retval = rt73usb_probe_hw_mode(rt2x00dev);
2196	if (retval)
2197		return retval;
2198
2199	/*
2200	 * This device has multiple filters for control frames,
2201	 * but has no a separate filter for PS Poll frames.
2202	 */
2203	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2204
2205	/*
2206	 * This device requires firmware.
2207	 */
2208	__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2209	if (!modparam_nohwcrypt)
2210		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2211	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2212	__set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
2213
2214	/*
2215	 * Set the rssi offset.
2216	 */
2217	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2218
2219	return 0;
2220}
2221
2222/*
2223 * IEEE80211 stack callback functions.
2224 */
2225static int rt73usb_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2226			   const struct ieee80211_tx_queue_params *params)
2227{
2228	struct rt2x00_dev *rt2x00dev = hw->priv;
2229	struct data_queue *queue;
2230	struct rt2x00_field32 field;
2231	int retval;
2232	u32 reg;
2233	u32 offset;
2234
2235	/*
2236	 * First pass the configuration through rt2x00lib, that will
2237	 * update the queue settings and validate the input. After that
2238	 * we are free to update the registers based on the value
2239	 * in the queue parameter.
2240	 */
2241	retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2242	if (retval)
2243		return retval;
2244
2245	/*
2246	 * We only need to perform additional register initialization
2247	 * for WMM queues/
2248	 */
2249	if (queue_idx >= 4)
2250		return 0;
2251
2252	queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2253
2254	/* Update WMM TXOP register */
2255	offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2256	field.bit_offset = (queue_idx & 1) * 16;
2257	field.bit_mask = 0xffff << field.bit_offset;
2258
2259	rt2x00usb_register_read(rt2x00dev, offset, &reg);
2260	rt2x00_set_field32(&reg, field, queue->txop);
2261	rt2x00usb_register_write(rt2x00dev, offset, reg);
2262
2263	/* Update WMM registers */
2264	field.bit_offset = queue_idx * 4;
2265	field.bit_mask = 0xf << field.bit_offset;
2266
2267	rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, &reg);
2268	rt2x00_set_field32(&reg, field, queue->aifs);
2269	rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2270
2271	rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, &reg);
2272	rt2x00_set_field32(&reg, field, queue->cw_min);
2273	rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2274
2275	rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, &reg);
2276	rt2x00_set_field32(&reg, field, queue->cw_max);
2277	rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2278
2279	return 0;
2280}
2281
2282static u64 rt73usb_get_tsf(struct ieee80211_hw *hw)
2283{
2284	struct rt2x00_dev *rt2x00dev = hw->priv;
2285	u64 tsf;
2286	u32 reg;
2287
2288	rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
2289	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2290	rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
2291	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2292
2293	return tsf;
2294}
2295
2296static const struct ieee80211_ops rt73usb_mac80211_ops = {
2297	.tx			= rt2x00mac_tx,
2298	.start			= rt2x00mac_start,
2299	.stop			= rt2x00mac_stop,
2300	.add_interface		= rt2x00mac_add_interface,
2301	.remove_interface	= rt2x00mac_remove_interface,
2302	.config			= rt2x00mac_config,
2303	.configure_filter	= rt2x00mac_configure_filter,
2304	.set_tim		= rt2x00mac_set_tim,
2305	.set_key		= rt2x00mac_set_key,
2306	.sw_scan_start		= rt2x00mac_sw_scan_start,
2307	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2308	.get_stats		= rt2x00mac_get_stats,
2309	.bss_info_changed	= rt2x00mac_bss_info_changed,
2310	.conf_tx		= rt73usb_conf_tx,
2311	.get_tsf		= rt73usb_get_tsf,
2312	.rfkill_poll		= rt2x00mac_rfkill_poll,
2313	.flush			= rt2x00mac_flush,
2314	.set_antenna		= rt2x00mac_set_antenna,
2315	.get_antenna		= rt2x00mac_get_antenna,
2316	.get_ringparam		= rt2x00mac_get_ringparam,
2317	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2318};
2319
2320static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2321	.probe_hw		= rt73usb_probe_hw,
2322	.get_firmware_name	= rt73usb_get_firmware_name,
2323	.check_firmware		= rt73usb_check_firmware,
2324	.load_firmware		= rt73usb_load_firmware,
2325	.initialize		= rt2x00usb_initialize,
2326	.uninitialize		= rt2x00usb_uninitialize,
2327	.clear_entry		= rt2x00usb_clear_entry,
2328	.set_device_state	= rt73usb_set_device_state,
2329	.rfkill_poll		= rt73usb_rfkill_poll,
2330	.link_stats		= rt73usb_link_stats,
2331	.reset_tuner		= rt73usb_reset_tuner,
2332	.link_tuner		= rt73usb_link_tuner,
2333	.watchdog		= rt2x00usb_watchdog,
2334	.start_queue		= rt73usb_start_queue,
2335	.kick_queue		= rt2x00usb_kick_queue,
2336	.stop_queue		= rt73usb_stop_queue,
2337	.flush_queue		= rt2x00usb_flush_queue,
2338	.write_tx_desc		= rt73usb_write_tx_desc,
2339	.write_beacon		= rt73usb_write_beacon,
2340	.clear_beacon		= rt73usb_clear_beacon,
2341	.get_tx_data_len	= rt73usb_get_tx_data_len,
2342	.fill_rxdone		= rt73usb_fill_rxdone,
2343	.config_shared_key	= rt73usb_config_shared_key,
2344	.config_pairwise_key	= rt73usb_config_pairwise_key,
2345	.config_filter		= rt73usb_config_filter,
2346	.config_intf		= rt73usb_config_intf,
2347	.config_erp		= rt73usb_config_erp,
2348	.config_ant		= rt73usb_config_ant,
2349	.config			= rt73usb_config,
2350};
2351
2352static const struct data_queue_desc rt73usb_queue_rx = {
2353	.entry_num		= 32,
2354	.data_size		= DATA_FRAME_SIZE,
2355	.desc_size		= RXD_DESC_SIZE,
2356	.priv_size		= sizeof(struct queue_entry_priv_usb),
2357};
2358
2359static const struct data_queue_desc rt73usb_queue_tx = {
2360	.entry_num		= 32,
2361	.data_size		= DATA_FRAME_SIZE,
2362	.desc_size		= TXD_DESC_SIZE,
2363	.priv_size		= sizeof(struct queue_entry_priv_usb),
2364};
2365
2366static const struct data_queue_desc rt73usb_queue_bcn = {
2367	.entry_num		= 4,
2368	.data_size		= MGMT_FRAME_SIZE,
2369	.desc_size		= TXINFO_SIZE,
2370	.priv_size		= sizeof(struct queue_entry_priv_usb),
2371};
2372
2373static const struct rt2x00_ops rt73usb_ops = {
2374	.name			= KBUILD_MODNAME,
2375	.max_sta_intf		= 1,
2376	.max_ap_intf		= 4,
2377	.eeprom_size		= EEPROM_SIZE,
2378	.rf_size		= RF_SIZE,
2379	.tx_queues		= NUM_TX_QUEUES,
2380	.extra_tx_headroom	= TXD_DESC_SIZE,
2381	.rx			= &rt73usb_queue_rx,
2382	.tx			= &rt73usb_queue_tx,
2383	.bcn			= &rt73usb_queue_bcn,
2384	.lib			= &rt73usb_rt2x00_ops,
2385	.hw			= &rt73usb_mac80211_ops,
2386#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2387	.debugfs		= &rt73usb_rt2x00debug,
2388#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2389};
2390
2391/*
2392 * rt73usb module information.
2393 */
2394static struct usb_device_id rt73usb_device_table[] = {
2395	/* AboCom */
2396	{ USB_DEVICE(0x07b8, 0xb21b) },
2397	{ USB_DEVICE(0x07b8, 0xb21c) },
2398	{ USB_DEVICE(0x07b8, 0xb21d) },
2399	{ USB_DEVICE(0x07b8, 0xb21e) },
2400	{ USB_DEVICE(0x07b8, 0xb21f) },
2401	/* AL */
2402	{ USB_DEVICE(0x14b2, 0x3c10) },
2403	/* Amigo */
2404	{ USB_DEVICE(0x148f, 0x9021) },
2405	{ USB_DEVICE(0x0eb0, 0x9021) },
2406	/* AMIT  */
2407	{ USB_DEVICE(0x18c5, 0x0002) },
2408	/* Askey */
2409	{ USB_DEVICE(0x1690, 0x0722) },
2410	/* ASUS */
2411	{ USB_DEVICE(0x0b05, 0x1723) },
2412	{ USB_DEVICE(0x0b05, 0x1724) },
2413	/* Belkin */
2414	{ USB_DEVICE(0x050d, 0x705a) },
2415	{ USB_DEVICE(0x050d, 0x905b) },
2416	{ USB_DEVICE(0x050d, 0x905c) },
2417	/* Billionton */
2418	{ USB_DEVICE(0x1631, 0xc019) },
2419	{ USB_DEVICE(0x08dd, 0x0120) },
2420	/* Buffalo */
2421	{ USB_DEVICE(0x0411, 0x00d8) },
2422	{ USB_DEVICE(0x0411, 0x00d9) },
2423	{ USB_DEVICE(0x0411, 0x00e6) },
2424	{ USB_DEVICE(0x0411, 0x00f4) },
2425	{ USB_DEVICE(0x0411, 0x0116) },
2426	{ USB_DEVICE(0x0411, 0x0119) },
2427	{ USB_DEVICE(0x0411, 0x0137) },
2428	/* CEIVA */
2429	{ USB_DEVICE(0x178d, 0x02be) },
2430	/* CNet */
2431	{ USB_DEVICE(0x1371, 0x9022) },
2432	{ USB_DEVICE(0x1371, 0x9032) },
2433	/* Conceptronic */
2434	{ USB_DEVICE(0x14b2, 0x3c22) },
2435	/* Corega */
2436	{ USB_DEVICE(0x07aa, 0x002e) },
2437	/* D-Link */
2438	{ USB_DEVICE(0x07d1, 0x3c03) },
2439	{ USB_DEVICE(0x07d1, 0x3c04) },
2440	{ USB_DEVICE(0x07d1, 0x3c06) },
2441	{ USB_DEVICE(0x07d1, 0x3c07) },
2442	/* Edimax */
2443	{ USB_DEVICE(0x7392, 0x7318) },
2444	{ USB_DEVICE(0x7392, 0x7618) },
2445	/* EnGenius */
2446	{ USB_DEVICE(0x1740, 0x3701) },
2447	/* Gemtek */
2448	{ USB_DEVICE(0x15a9, 0x0004) },
2449	/* Gigabyte */
2450	{ USB_DEVICE(0x1044, 0x8008) },
2451	{ USB_DEVICE(0x1044, 0x800a) },
2452	/* Huawei-3Com */
2453	{ USB_DEVICE(0x1472, 0x0009) },
2454	/* Hercules */
2455	{ USB_DEVICE(0x06f8, 0xe002) },
2456	{ USB_DEVICE(0x06f8, 0xe010) },
2457	{ USB_DEVICE(0x06f8, 0xe020) },
2458	/* Linksys */
2459	{ USB_DEVICE(0x13b1, 0x0020) },
2460	{ USB_DEVICE(0x13b1, 0x0023) },
2461	{ USB_DEVICE(0x13b1, 0x0028) },
2462	/* MSI */
2463	{ USB_DEVICE(0x0db0, 0x4600) },
2464	{ USB_DEVICE(0x0db0, 0x6877) },
2465	{ USB_DEVICE(0x0db0, 0x6874) },
2466	{ USB_DEVICE(0x0db0, 0xa861) },
2467	{ USB_DEVICE(0x0db0, 0xa874) },
2468	/* Ovislink */
2469	{ USB_DEVICE(0x1b75, 0x7318) },
2470	/* Ralink */
2471	{ USB_DEVICE(0x04bb, 0x093d) },
2472	{ USB_DEVICE(0x148f, 0x2573) },
2473	{ USB_DEVICE(0x148f, 0x2671) },
2474	{ USB_DEVICE(0x0812, 0x3101) },
2475	/* Qcom */
2476	{ USB_DEVICE(0x18e8, 0x6196) },
2477	{ USB_DEVICE(0x18e8, 0x6229) },
2478	{ USB_DEVICE(0x18e8, 0x6238) },
2479	/* Samsung */
2480	{ USB_DEVICE(0x04e8, 0x4471) },
2481	/* Senao */
2482	{ USB_DEVICE(0x1740, 0x7100) },
2483	/* Sitecom */
2484	{ USB_DEVICE(0x0df6, 0x0024) },
2485	{ USB_DEVICE(0x0df6, 0x0027) },
2486	{ USB_DEVICE(0x0df6, 0x002f) },
2487	{ USB_DEVICE(0x0df6, 0x90ac) },
2488	{ USB_DEVICE(0x0df6, 0x9712) },
2489	/* Surecom */
2490	{ USB_DEVICE(0x0769, 0x31f3) },
2491	/* Tilgin */
2492	{ USB_DEVICE(0x6933, 0x5001) },
2493	/* Philips */
2494	{ USB_DEVICE(0x0471, 0x200a) },
2495	/* Planex */
2496	{ USB_DEVICE(0x2019, 0xab01) },
2497	{ USB_DEVICE(0x2019, 0xab50) },
2498	/* WideTell */
2499	{ USB_DEVICE(0x7167, 0x3840) },
2500	/* Zcom */
2501	{ USB_DEVICE(0x0cde, 0x001c) },
2502	/* ZyXEL */
2503	{ USB_DEVICE(0x0586, 0x3415) },
2504	{ 0, }
2505};
2506
2507MODULE_AUTHOR(DRV_PROJECT);
2508MODULE_VERSION(DRV_VERSION);
2509MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2510MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2511MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2512MODULE_FIRMWARE(FIRMWARE_RT2571);
2513MODULE_LICENSE("GPL");
2514
2515static int rt73usb_probe(struct usb_interface *usb_intf,
2516			 const struct usb_device_id *id)
2517{
2518	return rt2x00usb_probe(usb_intf, &rt73usb_ops);
2519}
2520
2521static struct usb_driver rt73usb_driver = {
2522	.name		= KBUILD_MODNAME,
2523	.id_table	= rt73usb_device_table,
2524	.probe		= rt73usb_probe,
2525	.disconnect	= rt2x00usb_disconnect,
2526	.suspend	= rt2x00usb_suspend,
2527	.resume		= rt2x00usb_resume,
2528};
2529
2530static int __init rt73usb_init(void)
2531{
2532	return usb_register(&rt73usb_driver);
2533}
2534
2535static void __exit rt73usb_exit(void)
2536{
2537	usb_deregister(&rt73usb_driver);
2538}
2539
2540module_init(rt73usb_init);
2541module_exit(rt73usb_exit);