Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Alchemy Semi Au1000 IrDA driver
  3 *
  4 * Copyright 2001 MontaVista Software Inc.
  5 * Author: MontaVista Software, Inc.
  6 *         	ppopov@mvista.com or source@mvista.com
  7 *
  8 *  This program is free software; you can distribute it and/or modify it
  9 *  under the terms of the GNU General Public License (Version 2) as
 10 *  published by the Free Software Foundation.
 11 *
 12 *  This program is distributed in the hope it will be useful, but WITHOUT
 13 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 14 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 15 *  for more details.
 16 *
 17 *  You should have received a copy of the GNU General Public License along
 18 *  with this program; if not, write to the Free Software Foundation, Inc.,
 19 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
 20 */
 
 
 21#include <linux/module.h>
 22#include <linux/types.h>
 23#include <linux/init.h>
 24#include <linux/errno.h>
 25#include <linux/netdevice.h>
 26#include <linux/slab.h>
 27#include <linux/rtnetlink.h>
 28#include <linux/interrupt.h>
 29#include <linux/pm.h>
 30#include <linux/bitops.h>
 31
 32#include <asm/irq.h>
 33#include <asm/io.h>
 34#include <asm/au1000.h>
 35#if defined(CONFIG_MIPS_PB1000) || defined(CONFIG_MIPS_PB1100)
 36#include <asm/pb1000.h>
 37#elif defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
 38#include <asm/db1x00.h>
 39#include <asm/mach-db1x00/bcsr.h>
 40#else 
 41#error au1k_ir: unsupported board
 42#endif
 43
 44#include <net/irda/irda.h>
 45#include <net/irda/irmod.h>
 46#include <net/irda/wrapper.h>
 47#include <net/irda/irda_device.h>
 48#include "au1000_ircc.h"
 49
 50static int au1k_irda_net_init(struct net_device *);
 51static int au1k_irda_start(struct net_device *);
 52static int au1k_irda_stop(struct net_device *dev);
 53static int au1k_irda_hard_xmit(struct sk_buff *, struct net_device *);
 54static int au1k_irda_rx(struct net_device *);
 55static void au1k_irda_interrupt(int, void *);
 56static void au1k_tx_timeout(struct net_device *);
 57static int au1k_irda_ioctl(struct net_device *, struct ifreq *, int);
 58static int au1k_irda_set_speed(struct net_device *dev, int speed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 59
 60static void *dma_alloc(size_t, dma_addr_t *);
 61static void dma_free(void *, size_t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 62
 63static int qos_mtt_bits = 0x07;  /* 1 ms or more */
 64static struct net_device *ir_devs[NUM_IR_IFF];
 65static char version[] __devinitdata =
 66    "au1k_ircc:1.2 ppopov@mvista.com\n";
 67
 68#define RUN_AT(x) (jiffies + (x))
 69
 70static DEFINE_SPINLOCK(ir_lock);
 
 
 
 
 71
 72/*
 73 * IrDA peripheral bug. You have to read the register
 74 * twice to get the right value.
 75 */
 76u32 read_ir_reg(u32 addr) 
 77{ 
 78	readl(addr);
 79	return readl(addr);
 
 80}
 81
 
 
 
 
 
 
 82
 83/*
 84 * Buffer allocation/deallocation routines. The buffer descriptor returned
 85 * has the virtual and dma address of a buffer suitable for 
 86 * both, receive and transmit operations.
 87 */
 88static db_dest_t *GetFreeDB(struct au1k_private *aup)
 89{
 90	db_dest_t *pDB;
 91	pDB = aup->pDBfree;
 92
 93	if (pDB) {
 94		aup->pDBfree = pDB->pnext;
 95	}
 96	return pDB;
 97}
 98
 99static void ReleaseDB(struct au1k_private *aup, db_dest_t *pDB)
100{
101	db_dest_t *pDBfree = aup->pDBfree;
102	if (pDBfree)
103		pDBfree->pnext = pDB;
104	aup->pDBfree = pDB;
105}
106
107
108/*
109  DMA memory allocation, derived from pci_alloc_consistent.
110  However, the Au1000 data cache is coherent (when programmed
111  so), therefore we return KSEG0 address, not KSEG1.
112*/
113static void *dma_alloc(size_t size, dma_addr_t * dma_handle)
114{
115	void *ret;
116	int gfp = GFP_ATOMIC | GFP_DMA;
117
118	ret = (void *) __get_free_pages(gfp, get_order(size));
119
120	if (ret != NULL) {
121		memset(ret, 0, size);
122		*dma_handle = virt_to_bus(ret);
123		ret = (void *)KSEG0ADDR(ret);
124	}
125	return ret;
126}
127
128
129static void dma_free(void *vaddr, size_t size)
130{
131	vaddr = (void *)KSEG0ADDR(vaddr);
132	free_pages((unsigned long) vaddr, get_order(size));
133}
134
135
136static void 
137setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base)
138{
139	int i;
140	for (i=0; i<NUM_IR_DESC; i++) {
141		aup->rx_ring[i] = (volatile ring_dest_t *) 
142			(rx_base + sizeof(ring_dest_t)*i);
143	}
144	for (i=0; i<NUM_IR_DESC; i++) {
145		aup->tx_ring[i] = (volatile ring_dest_t *) 
146			(tx_base + sizeof(ring_dest_t)*i);
147	}
148}
149
150static int au1k_irda_init(void)
151{
152	static unsigned version_printed = 0;
153	struct au1k_private *aup;
154	struct net_device *dev;
155	int err;
156
157	if (version_printed++ == 0) printk(version);
158
159	dev = alloc_irdadev(sizeof(struct au1k_private));
160	if (!dev)
161		return -ENOMEM;
162
163	dev->irq = AU1000_IRDA_RX_INT; /* TX has its own interrupt */
164	err = au1k_irda_net_init(dev);
165	if (err)
166		goto out;
167	err = register_netdev(dev);
168	if (err)
169		goto out1;
170	ir_devs[0] = dev;
171	printk(KERN_INFO "IrDA: Registered device %s\n", dev->name);
172	return 0;
173
174out1:
175	aup = netdev_priv(dev);
176	dma_free((void *)aup->db[0].vaddr,
177		MAX_BUF_SIZE * 2*NUM_IR_DESC);
178	dma_free((void *)aup->rx_ring[0],
179		2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
180	kfree(aup->rx_buff.head);
181out:
182	free_netdev(dev);
183	return err;
184}
185
186static int au1k_irda_init_iobuf(iobuff_t *io, int size)
187{
188	io->head = kmalloc(size, GFP_KERNEL);
189	if (io->head != NULL) {
190		io->truesize = size;
191		io->in_frame = FALSE;
192		io->state    = OUTSIDE_FRAME;
193		io->data     = io->head;
194	}
195	return io->head ? 0 : -ENOMEM;
196}
197
198static const struct net_device_ops au1k_irda_netdev_ops = {
199	.ndo_open		= au1k_irda_start,
200	.ndo_stop		= au1k_irda_stop,
201	.ndo_start_xmit		= au1k_irda_hard_xmit,
202	.ndo_tx_timeout		= au1k_tx_timeout,
203	.ndo_do_ioctl		= au1k_irda_ioctl,
204};
205
206static int au1k_irda_net_init(struct net_device *dev)
207{
208	struct au1k_private *aup = netdev_priv(dev);
209	int i, retval = 0, err;
210	db_dest_t *pDB, *pDBfree;
211	dma_addr_t temp;
212
213	err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
214	if (err)
215		goto out1;
216
217	dev->netdev_ops = &au1k_irda_netdev_ops;
 
 
218
219	irda_init_max_qos_capabilies(&aup->qos);
 
 
 
 
 
 
 
 
 
 
 
220
221	/* The only value we must override it the baudrate */
222	aup->qos.baud_rate.bits = IR_9600|IR_19200|IR_38400|IR_57600|
223		IR_115200|IR_576000 |(IR_4000000 << 8);
224	
225	aup->qos.min_turn_time.bits = qos_mtt_bits;
226	irda_qos_bits_to_value(&aup->qos);
227
228	retval = -ENOMEM;
 
 
 
 
 
 
 
229
230	/* Tx ring follows rx ring + 512 bytes */
231	/* we need a 1k aligned buffer */
232	aup->rx_ring[0] = (ring_dest_t *)
233		dma_alloc(2*MAX_NUM_IR_DESC*(sizeof(ring_dest_t)), &temp);
234	if (!aup->rx_ring[0])
235		goto out2;
236
237	/* allocate the data buffers */
238	aup->db[0].vaddr = 
239		(void *)dma_alloc(MAX_BUF_SIZE * 2*NUM_IR_DESC, &temp);
240	if (!aup->db[0].vaddr)
241		goto out3;
242
243	setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244
245	pDBfree = NULL;
246	pDB = aup->db;
247	for (i=0; i<(2*NUM_IR_DESC); i++) {
248		pDB->pnext = pDBfree;
249		pDBfree = pDB;
250		pDB->vaddr = 
251			(u32 *)((unsigned)aup->db[0].vaddr + MAX_BUF_SIZE*i);
252		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
253		pDB++;
 
 
 
 
 
 
 
 
 
 
254	}
255	aup->pDBfree = pDBfree;
256
257	/* attach a data buffer to each descriptor */
258	for (i=0; i<NUM_IR_DESC; i++) {
259		pDB = GetFreeDB(aup);
260		if (!pDB) goto out;
261		aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
262		aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr>>8) & 0xff);
263		aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr>>16) & 0xff);
264		aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr>>24) & 0xff);
265		aup->rx_db_inuse[i] = pDB;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266	}
267	for (i=0; i<NUM_IR_DESC; i++) {
268		pDB = GetFreeDB(aup);
269		if (!pDB) goto out;
270		aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
271		aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr>>8) & 0xff);
272		aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr>>16) & 0xff);
273		aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr>>24) & 0xff);
274		aup->tx_ring[i]->count_0 = 0;
275		aup->tx_ring[i]->count_1 = 0;
276		aup->tx_ring[i]->flags = 0;
277		aup->tx_db_inuse[i] = pDB;
 
 
 
 
 
 
 
 
 
 
278	}
279
280#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
281	/* power on */
282	bcsr_mod(BCSR_RESETS, BCSR_RESETS_IRDA_MODE_MASK,
283			      BCSR_RESETS_IRDA_MODE_FULL);
284#endif
 
 
 
 
 
 
 
 
285
286	return 0;
 
 
 
 
 
 
287
288out3:
289	dma_free((void *)aup->rx_ring[0],
290		2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
291out2:
292	kfree(aup->rx_buff.head);
293out1:
294	printk(KERN_ERR "au1k_init_module failed.  Returns %d\n", retval);
295	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296}
297
 
 
 
 
 
 
 
 
 
 
 
 
298
299static int au1k_init(struct net_device *dev)
300{
301	struct au1k_private *aup = netdev_priv(dev);
 
 
302	int i;
303	u32 control;
304	u32 ring_address;
305
306	/* bring the device out of reset */
307	control = 0xe; /* coherent, clock enable, one half system clock */
308			  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
309#ifndef CONFIG_CPU_LITTLE_ENDIAN
310	control |= 1;
311#endif
312	aup->tx_head = 0;
313	aup->tx_tail = 0;
314	aup->rx_head = 0;
315
316	for (i=0; i<NUM_IR_DESC; i++) {
317		aup->rx_ring[i]->flags = AU_OWN;
318	}
319
320	writel(control, IR_INTERFACE_CONFIG);
321	au_sync_delay(10);
322
323	writel(read_ir_reg(IR_ENABLE) & ~0x8000, IR_ENABLE); /* disable PHY */
324	au_sync_delay(1);
 
 
325
326	writel(MAX_BUF_SIZE, IR_MAX_PKT_LEN);
327
328	ring_address = (u32)virt_to_phys((void *)aup->rx_ring[0]);
329	writel(ring_address >> 26, IR_RING_BASE_ADDR_H);
330	writel((ring_address >> 10) & 0xffff, IR_RING_BASE_ADDR_L);
331
332	writel(RING_SIZE_64<<8 | RING_SIZE_64<<12, IR_RING_SIZE);
 
333
334	writel(1<<2 | IR_ONE_PIN, IR_CONFIG_2); /* 48MHz */
335	writel(0, IR_RING_ADDR_CMPR);
336
337	au1k_irda_set_speed(dev, 9600);
338	return 0;
339}
340
341static int au1k_irda_start(struct net_device *dev)
342{
343	int retval;
344	char hwname[32];
345	struct au1k_private *aup = netdev_priv(dev);
 
 
346
347	if ((retval = au1k_init(dev))) {
 
348		printk(KERN_ERR "%s: error in au1k_init\n", dev->name);
349		return retval;
350	}
351
352	if ((retval = request_irq(AU1000_IRDA_TX_INT, au1k_irda_interrupt, 
353					0, dev->name, dev))) {
354		printk(KERN_ERR "%s: unable to get IRQ %d\n", 
 
355				dev->name, dev->irq);
356		return retval;
357	}
358	if ((retval = request_irq(AU1000_IRDA_RX_INT, au1k_irda_interrupt, 
359					0, dev->name, dev))) {
360		free_irq(AU1000_IRDA_TX_INT, dev);
361		printk(KERN_ERR "%s: unable to get IRQ %d\n", 
 
362				dev->name, dev->irq);
363		return retval;
364	}
365
366	/* Give self a hardware name */
367	sprintf(hwname, "Au1000 SIR/FIR");
368	aup->irlap = irlap_open(dev, &aup->qos, hwname);
369	netif_start_queue(dev);
370
371	writel(read_ir_reg(IR_CONFIG_2) | 1<<8, IR_CONFIG_2); /* int enable */
 
 
 
 
372
373	aup->timer.expires = RUN_AT((3*HZ)); 
374	aup->timer.data = (unsigned long)dev;
375	return 0;
376}
377
378static int au1k_irda_stop(struct net_device *dev)
379{
380	struct au1k_private *aup = netdev_priv(dev);
381
 
 
382	/* disable interrupts */
383	writel(read_ir_reg(IR_CONFIG_2) & ~(1<<8), IR_CONFIG_2);
384	writel(0, IR_CONFIG_1); 
385	writel(0, IR_INTERFACE_CONFIG); /* disable clock */
386	au_sync();
387
388	if (aup->irlap) {
389		irlap_close(aup->irlap);
390		aup->irlap = NULL;
391	}
392
393	netif_stop_queue(dev);
394	del_timer(&aup->timer);
395
396	/* disable the interrupt */
397	free_irq(AU1000_IRDA_TX_INT, dev);
398	free_irq(AU1000_IRDA_RX_INT, dev);
399	return 0;
400}
401
402static void __exit au1k_irda_exit(void)
403{
404	struct net_device *dev = ir_devs[0];
405	struct au1k_private *aup = netdev_priv(dev);
406
407	unregister_netdev(dev);
408
409	dma_free((void *)aup->db[0].vaddr,
410		MAX_BUF_SIZE * 2*NUM_IR_DESC);
411	dma_free((void *)aup->rx_ring[0],
412		2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
413	kfree(aup->rx_buff.head);
414	free_netdev(dev);
415}
416
417
418static inline void 
419update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
420{
421	struct au1k_private *aup = netdev_priv(dev);
422	struct net_device_stats *ps = &aup->stats;
423
424	ps->tx_packets++;
425	ps->tx_bytes += pkt_len;
426
427	if (status & IR_TX_ERROR) {
428		ps->tx_errors++;
429		ps->tx_aborted_errors++;
430	}
431}
432
433
434static void au1k_tx_ack(struct net_device *dev)
435{
436	struct au1k_private *aup = netdev_priv(dev);
437	volatile ring_dest_t *ptxd;
438
439	ptxd = aup->tx_ring[aup->tx_tail];
440	while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) {
441		update_tx_stats(dev, ptxd->flags, 
442				ptxd->count_1<<8 | ptxd->count_0);
443		ptxd->count_0 = 0;
444		ptxd->count_1 = 0;
445		au_sync();
446
447		aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1);
448		ptxd = aup->tx_ring[aup->tx_tail];
449
450		if (aup->tx_full) {
451			aup->tx_full = 0;
452			netif_wake_queue(dev);
453		}
454	}
455
456	if (aup->tx_tail == aup->tx_head) {
457		if (aup->newspeed) {
458			au1k_irda_set_speed(dev, aup->newspeed);
459			aup->newspeed = 0;
460		}
461		else {
462			writel(read_ir_reg(IR_CONFIG_1) & ~IR_TX_ENABLE, 
463					IR_CONFIG_1); 
464			au_sync();
465			writel(read_ir_reg(IR_CONFIG_1) | IR_RX_ENABLE, 
466					IR_CONFIG_1); 
467			writel(0, IR_RING_PROMPT);
468			au_sync();
469		}
470	}
471}
472
473
474/*
475 * Au1000 transmit routine.
476 */
477static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
478{
479	struct au1k_private *aup = netdev_priv(dev);
480	int speed = irda_get_next_speed(skb);
481	volatile ring_dest_t *ptxd;
482	u32 len;
 
483
484	u32 flags;
485	db_dest_t *pDB;
486
487	if (speed != aup->speed && speed != -1) {
488		aup->newspeed = speed;
489	}
490
491	if ((skb->len == 0) && (aup->newspeed)) {
492		if (aup->tx_tail == aup->tx_head) {
493			au1k_irda_set_speed(dev, speed);
494			aup->newspeed = 0;
495		}
496		dev_kfree_skb(skb);
497		return NETDEV_TX_OK;
498	}
499
500	ptxd = aup->tx_ring[aup->tx_head];
501	flags = ptxd->flags;
502
503	if (flags & AU_OWN) {
504		printk(KERN_DEBUG "%s: tx_full\n", dev->name);
505		netif_stop_queue(dev);
506		aup->tx_full = 1;
507		return NETDEV_TX_BUSY;
508	}
509	else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
510		printk(KERN_DEBUG "%s: tx_full\n", dev->name);
511		netif_stop_queue(dev);
512		aup->tx_full = 1;
513		return NETDEV_TX_BUSY;
514	}
515
516	pDB = aup->tx_db_inuse[aup->tx_head];
517
518#if 0
519	if (read_ir_reg(IR_RX_BYTE_CNT) != 0) {
520		printk("tx warning: rx byte cnt %x\n", 
521				read_ir_reg(IR_RX_BYTE_CNT));
522	}
523#endif
524	
525	if (aup->speed == 4000000) {
526		/* FIR */
527		skb_copy_from_linear_data(skb, pDB->vaddr, skb->len);
528		ptxd->count_0 = skb->len & 0xff;
529		ptxd->count_1 = (skb->len >> 8) & 0xff;
530
531	}
532	else {
533		/* SIR */
534		len = async_wrap_skb(skb, (u8 *)pDB->vaddr, MAX_BUF_SIZE);
535		ptxd->count_0 = len & 0xff;
536		ptxd->count_1 = (len >> 8) & 0xff;
537		ptxd->flags |= IR_DIS_CRC;
538		au_writel(au_readl(0xae00000c) & ~(1<<13), 0xae00000c);
539	}
540	ptxd->flags |= AU_OWN;
541	au_sync();
542
543	writel(read_ir_reg(IR_CONFIG_1) | IR_TX_ENABLE, IR_CONFIG_1); 
544	writel(0, IR_RING_PROMPT);
545	au_sync();
546
547	dev_kfree_skb(skb);
548	aup->tx_head = (aup->tx_head + 1) & (NUM_IR_DESC - 1);
549	return NETDEV_TX_OK;
550}
551
552
553static inline void 
554update_rx_stats(struct net_device *dev, u32 status, u32 count)
555{
556	struct au1k_private *aup = netdev_priv(dev);
557	struct net_device_stats *ps = &aup->stats;
558
559	ps->rx_packets++;
560
561	if (status & IR_RX_ERROR) {
562		ps->rx_errors++;
563		if (status & (IR_PHY_ERROR|IR_FIFO_OVER))
564			ps->rx_missed_errors++;
565		if (status & IR_MAX_LEN)
566			ps->rx_length_errors++;
567		if (status & IR_CRC_ERROR)
568			ps->rx_crc_errors++;
569	}
570	else 
571		ps->rx_bytes += count;
572}
573
574/*
575 * Au1000 receive routine.
576 */
577static int au1k_irda_rx(struct net_device *dev)
578{
579	struct au1k_private *aup = netdev_priv(dev);
580	struct sk_buff *skb;
581	volatile ring_dest_t *prxd;
582	u32 flags, count;
583	db_dest_t *pDB;
584
585	prxd = aup->rx_ring[aup->rx_head];
586	flags = prxd->flags;
587
588	while (!(flags & AU_OWN))  {
589		pDB = aup->rx_db_inuse[aup->rx_head];
590		count = prxd->count_1<<8 | prxd->count_0;
591		if (!(flags & IR_RX_ERROR))  {
592			/* good frame */
593			update_rx_stats(dev, flags, count);
594			skb=alloc_skb(count+1,GFP_ATOMIC);
595			if (skb == NULL) {
596				aup->netdev->stats.rx_dropped++;
597				continue;
598			}
599			skb_reserve(skb, 1);
600			if (aup->speed == 4000000)
601				skb_put(skb, count);
602			else
603				skb_put(skb, count-2);
604			skb_copy_to_linear_data(skb, pDB->vaddr, count - 2);
605			skb->dev = dev;
606			skb_reset_mac_header(skb);
607			skb->protocol = htons(ETH_P_IRDA);
608			netif_rx(skb);
609			prxd->count_0 = 0;
610			prxd->count_1 = 0;
611		}
612		prxd->flags |= AU_OWN;
613		aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1);
614		writel(0, IR_RING_PROMPT);
615		au_sync();
616
617		/* next descriptor */
618		prxd = aup->rx_ring[aup->rx_head];
619		flags = prxd->flags;
620
621	}
622	return 0;
623}
624
625
626static irqreturn_t au1k_irda_interrupt(int dummy, void *dev_id)
627{
628	struct net_device *dev = dev_id;
629
630	writel(0, IR_INT_CLEAR); /* ack irda interrupts */
631
632	au1k_irda_rx(dev);
633	au1k_tx_ack(dev);
634
635	return IRQ_HANDLED;
636}
637
638
639/*
640 * The Tx ring has been full longer than the watchdog timeout
641 * value. The transmitter must be hung?
642 */
643static void au1k_tx_timeout(struct net_device *dev)
644{
645	u32 speed;
646	struct au1k_private *aup = netdev_priv(dev);
647
648	printk(KERN_ERR "%s: tx timeout\n", dev->name);
649	speed = aup->speed;
650	aup->speed = 0;
651	au1k_irda_set_speed(dev, speed);
652	aup->tx_full = 0;
653	netif_wake_queue(dev);
654}
655
656
657/*
658 * Set the IrDA communications speed.
659 */
660static int 
661au1k_irda_set_speed(struct net_device *dev, int speed)
662{
663	unsigned long flags;
664	struct au1k_private *aup = netdev_priv(dev);
665	u32 control;
666	int ret = 0, timeout = 10, i;
667	volatile ring_dest_t *ptxd;
668#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
669	unsigned long irda_resets;
670#endif
671
672	if (speed == aup->speed)
673		return ret;
674
675	spin_lock_irqsave(&ir_lock, flags);
676
677	/* disable PHY first */
678	writel(read_ir_reg(IR_ENABLE) & ~0x8000, IR_ENABLE);
679
680	/* disable RX/TX */
681	writel(read_ir_reg(IR_CONFIG_1) & ~(IR_RX_ENABLE|IR_TX_ENABLE), 
682			IR_CONFIG_1);
683	au_sync_delay(1);
684	while (read_ir_reg(IR_ENABLE) & (IR_RX_STATUS | IR_TX_STATUS)) {
685		mdelay(1);
686		if (!timeout--) {
687			printk(KERN_ERR "%s: rx/tx disable timeout\n",
688					dev->name);
689			break;
690		}
691	}
692
693	/* disable DMA */
694	writel(read_ir_reg(IR_CONFIG_1) & ~IR_DMA_ENABLE, IR_CONFIG_1);
695	au_sync_delay(1);
696
697	/* 
698	 *  After we disable tx/rx. the index pointers
699 	 * go back to zero.
700	 */
701	aup->tx_head = aup->tx_tail = aup->rx_head = 0;
702	for (i=0; i<NUM_IR_DESC; i++) {
703		ptxd = aup->tx_ring[i];
704		ptxd->flags = 0;
705		ptxd->count_0 = 0;
706		ptxd->count_1 = 0;
707	}
708
709	for (i=0; i<NUM_IR_DESC; i++) {
710		ptxd = aup->rx_ring[i];
711		ptxd->count_0 = 0;
712		ptxd->count_1 = 0;
713		ptxd->flags = AU_OWN;
714	}
715
716	if (speed == 4000000) {
717#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
718		bcsr_mod(BCSR_RESETS, 0, BCSR_RESETS_FIR_SEL);
719#else /* Pb1000 and Pb1100 */
720		writel(1<<13, CPLD_AUX1);
721#endif
722	}
723	else {
724#if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
725		bcsr_mod(BCSR_RESETS, BCSR_RESETS_FIR_SEL, 0);
726#else /* Pb1000 and Pb1100 */
727		writel(readl(CPLD_AUX1) & ~(1<<13), CPLD_AUX1);
728#endif
729	}
730
731	switch (speed) {
732	case 9600:	
733		writel(11<<10 | 12<<5, IR_WRITE_PHY_CONFIG); 
734		writel(IR_SIR_MODE, IR_CONFIG_1); 
735		break;
736	case 19200:	
737		writel(5<<10 | 12<<5, IR_WRITE_PHY_CONFIG); 
738		writel(IR_SIR_MODE, IR_CONFIG_1); 
739		break;
740	case 38400:
741		writel(2<<10 | 12<<5, IR_WRITE_PHY_CONFIG); 
742		writel(IR_SIR_MODE, IR_CONFIG_1); 
743		break;
744	case 57600:	
745		writel(1<<10 | 12<<5, IR_WRITE_PHY_CONFIG); 
746		writel(IR_SIR_MODE, IR_CONFIG_1); 
747		break;
748	case 115200: 
749		writel(12<<5, IR_WRITE_PHY_CONFIG); 
750		writel(IR_SIR_MODE, IR_CONFIG_1); 
751		break;
752	case 4000000:
753		writel(0xF, IR_WRITE_PHY_CONFIG);
754		writel(IR_FIR|IR_DMA_ENABLE|IR_RX_ENABLE, IR_CONFIG_1); 
755		break;
756	default:
757		printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed);
758		ret = -EINVAL;
759		break;
760	}
761
762	aup->speed = speed;
763	writel(read_ir_reg(IR_ENABLE) | 0x8000, IR_ENABLE);
764	au_sync();
765
766	control = read_ir_reg(IR_ENABLE);
767	writel(0, IR_RING_PROMPT);
768	au_sync();
769
770	if (control & (1<<14)) {
771		printk(KERN_ERR "%s: configuration error\n", dev->name);
772	}
773	else {
774		if (control & (1<<11))
775			printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
776		if (control & (1<<12))
777			printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
778		if (control & (1<<13))
779			printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
780		if (control & (1<<10))
781			printk(KERN_DEBUG "%s TX enabled\n", dev->name);
782		if (control & (1<<9))
783			printk(KERN_DEBUG "%s RX enabled\n", dev->name);
784	}
785
786	spin_unlock_irqrestore(&ir_lock, flags);
787	return ret;
788}
789
790static int 
791au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
792{
793	struct if_irda_req *rq = (struct if_irda_req *)ifreq;
794	struct au1k_private *aup = netdev_priv(dev);
795	int ret = -EOPNOTSUPP;
796
797	switch (cmd) {
798	case SIOCSBANDWIDTH:
799		if (capable(CAP_NET_ADMIN)) {
800			/*
801			 * We are unable to set the speed if the
802			 * device is not running.
803			 */
804			if (aup->open)
805				ret = au1k_irda_set_speed(dev,
806						rq->ifr_baudrate);
807			else {
808				printk(KERN_ERR "%s ioctl: !netif_running\n",
809						dev->name);
810				ret = 0;
811			}
812		}
813		break;
814
815	case SIOCSMEDIABUSY:
816		ret = -EPERM;
817		if (capable(CAP_NET_ADMIN)) {
818			irda_device_set_media_busy(dev, TRUE);
819			ret = 0;
820		}
821		break;
822
823	case SIOCGRECEIVING:
824		rq->ifr_receiving = 0;
825		break;
826	default:
827		break;
828	}
829	return ret;
830}
831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
832MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
833MODULE_DESCRIPTION("Au1000 IrDA Device Driver");
834
835module_init(au1k_irda_init);
836module_exit(au1k_irda_exit);
v4.6
  1/*
  2 * Alchemy Semi Au1000 IrDA driver
  3 *
  4 * Copyright 2001 MontaVista Software Inc.
  5 * Author: MontaVista Software, Inc.
  6 *         	ppopov@mvista.com or source@mvista.com
  7 *
  8 *  This program is free software; you can distribute it and/or modify it
  9 *  under the terms of the GNU General Public License (Version 2) as
 10 *  published by the Free Software Foundation.
 11 *
 12 *  This program is distributed in the hope it will be useful, but WITHOUT
 13 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 14 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 15 *  for more details.
 16 *
 17 *  You should have received a copy of the GNU General Public License along
 18 *  with this program; if not, see <http://www.gnu.org/licenses/>.
 
 19 */
 20
 21#include <linux/clk.h>
 22#include <linux/module.h>
 
 
 
 23#include <linux/netdevice.h>
 
 
 24#include <linux/interrupt.h>
 25#include <linux/platform_device.h>
 26#include <linux/slab.h>
 27#include <linux/types.h>
 28#include <linux/ioport.h>
 
 
 
 
 
 
 
 
 
 
 29
 30#include <net/irda/irda.h>
 31#include <net/irda/irmod.h>
 32#include <net/irda/wrapper.h>
 33#include <net/irda/irda_device.h>
 34#include <asm/mach-au1x00/au1000.h>
 35
 36/* registers */
 37#define IR_RING_PTR_STATUS	0x00
 38#define IR_RING_BASE_ADDR_H	0x04
 39#define IR_RING_BASE_ADDR_L	0x08
 40#define IR_RING_SIZE		0x0C
 41#define IR_RING_PROMPT		0x10
 42#define IR_RING_ADDR_CMPR	0x14
 43#define IR_INT_CLEAR		0x18
 44#define IR_CONFIG_1		0x20
 45#define IR_SIR_FLAGS		0x24
 46#define IR_STATUS		0x28
 47#define IR_READ_PHY_CONFIG	0x2C
 48#define IR_WRITE_PHY_CONFIG	0x30
 49#define IR_MAX_PKT_LEN		0x34
 50#define IR_RX_BYTE_CNT		0x38
 51#define IR_CONFIG_2		0x3C
 52#define IR_ENABLE		0x40
 53
 54/* Config1 */
 55#define IR_RX_INVERT_LED	(1 << 0)
 56#define IR_TX_INVERT_LED	(1 << 1)
 57#define IR_ST			(1 << 2)
 58#define IR_SF			(1 << 3)
 59#define IR_SIR			(1 << 4)
 60#define IR_MIR			(1 << 5)
 61#define IR_FIR			(1 << 6)
 62#define IR_16CRC		(1 << 7)
 63#define IR_TD			(1 << 8)
 64#define IR_RX_ALL		(1 << 9)
 65#define IR_DMA_ENABLE		(1 << 10)
 66#define IR_RX_ENABLE		(1 << 11)
 67#define IR_TX_ENABLE		(1 << 12)
 68#define IR_LOOPBACK		(1 << 14)
 69#define IR_SIR_MODE		(IR_SIR | IR_DMA_ENABLE | \
 70				 IR_RX_ALL | IR_RX_ENABLE | IR_SF | \
 71				 IR_16CRC)
 72
 73/* ir_status */
 74#define IR_RX_STATUS		(1 << 9)
 75#define IR_TX_STATUS		(1 << 10)
 76#define IR_PHYEN		(1 << 15)
 77
 78/* ir_write_phy_config */
 79#define IR_BR(x)		(((x) & 0x3f) << 10)	/* baud rate */
 80#define IR_PW(x)		(((x) & 0x1f) << 5)	/* pulse width */
 81#define IR_P(x)			((x) & 0x1f)		/* preamble bits */
 82
 83/* Config2 */
 84#define IR_MODE_INV		(1 << 0)
 85#define IR_ONE_PIN		(1 << 1)
 86#define IR_PHYCLK_40MHZ		(0 << 2)
 87#define IR_PHYCLK_48MHZ		(1 << 2)
 88#define IR_PHYCLK_56MHZ		(2 << 2)
 89#define IR_PHYCLK_64MHZ		(3 << 2)
 90#define IR_DP			(1 << 4)
 91#define IR_DA			(1 << 5)
 92#define IR_FLT_HIGH		(0 << 6)
 93#define IR_FLT_MEDHI		(1 << 6)
 94#define IR_FLT_MEDLO		(2 << 6)
 95#define IR_FLT_LO		(3 << 6)
 96#define IR_IEN			(1 << 8)
 97
 98/* ir_enable */
 99#define IR_HC			(1 << 3)	/* divide SBUS clock by 2 */
100#define IR_CE			(1 << 2)	/* clock enable */
101#define IR_C			(1 << 1)	/* coherency bit */
102#define IR_BE			(1 << 0)	/* set in big endian mode */
103
104#define NUM_IR_DESC	64
105#define RING_SIZE_4	0x0
106#define RING_SIZE_16	0x3
107#define RING_SIZE_64	0xF
108#define MAX_NUM_IR_DESC	64
109#define MAX_BUF_SIZE	2048
110
111/* Ring descriptor flags */
112#define AU_OWN		(1 << 7) /* tx,rx */
113#define IR_DIS_CRC	(1 << 6) /* tx */
114#define IR_BAD_CRC	(1 << 5) /* tx */
115#define IR_NEED_PULSE	(1 << 4) /* tx */
116#define IR_FORCE_UNDER	(1 << 3) /* tx */
117#define IR_DISABLE_TX	(1 << 2) /* tx */
118#define IR_HW_UNDER	(1 << 0) /* tx */
119#define IR_TX_ERROR	(IR_DIS_CRC | IR_BAD_CRC | IR_HW_UNDER)
120
121#define IR_PHY_ERROR	(1 << 6) /* rx */
122#define IR_CRC_ERROR	(1 << 5) /* rx */
123#define IR_MAX_LEN	(1 << 4) /* rx */
124#define IR_FIFO_OVER	(1 << 3) /* rx */
125#define IR_SIR_ERROR	(1 << 2) /* rx */
126#define IR_RX_ERROR	(IR_PHY_ERROR | IR_CRC_ERROR | \
127			 IR_MAX_LEN | IR_FIFO_OVER | IR_SIR_ERROR)
128
129struct db_dest {
130	struct db_dest *pnext;
131	volatile u32 *vaddr;
132	dma_addr_t dma_addr;
133};
134
135struct ring_dest {
136	u8 count_0;	/* 7:0  */
137	u8 count_1;	/* 12:8 */
138	u8 reserved;
139	u8 flags;
140	u8 addr_0;	/* 7:0   */
141	u8 addr_1;	/* 15:8  */
142	u8 addr_2;	/* 23:16 */
143	u8 addr_3;	/* 31:24 */
144};
145
146/* Private data for each instance */
147struct au1k_private {
148	void __iomem *iobase;
149	int irq_rx, irq_tx;
150
151	struct db_dest *pDBfree;
152	struct db_dest db[2 * NUM_IR_DESC];
153	volatile struct ring_dest *rx_ring[NUM_IR_DESC];
154	volatile struct ring_dest *tx_ring[NUM_IR_DESC];
155	struct db_dest *rx_db_inuse[NUM_IR_DESC];
156	struct db_dest *tx_db_inuse[NUM_IR_DESC];
157	u32 rx_head;
158	u32 tx_head;
159	u32 tx_tail;
160	u32 tx_full;
161
162	iobuff_t rx_buff;
163
164	struct net_device *netdev;
165	struct qos_info qos;
166	struct irlap_cb *irlap;
167
168	u8 open;
169	u32 speed;
170	u32 newspeed;
171
172	struct timer_list timer;
173
174	struct resource *ioarea;
175	struct au1k_irda_platform_data *platdata;
176	struct clk *irda_clk;
177};
178
179static int qos_mtt_bits = 0x07;  /* 1 ms or more */
 
 
 
180
181#define RUN_AT(x) (jiffies + (x))
182
183static void au1k_irda_plat_set_phy_mode(struct au1k_private *p, int mode)
184{
185	if (p->platdata && p->platdata->set_phy_mode)
186		p->platdata->set_phy_mode(mode);
187}
188
189static inline unsigned long irda_read(struct au1k_private *p,
190				      unsigned long ofs)
191{
192	/*
193	* IrDA peripheral bug. You have to read the register
194	* twice to get the right value.
195	*/
196	(void)__raw_readl(p->iobase + ofs);
197	return __raw_readl(p->iobase + ofs);
198}
199
200static inline void irda_write(struct au1k_private *p, unsigned long ofs,
201			      unsigned long val)
202{
203	__raw_writel(val, p->iobase + ofs);
204	wmb();
205}
206
207/*
208 * Buffer allocation/deallocation routines. The buffer descriptor returned
209 * has the virtual and dma address of a buffer suitable for
210 * both, receive and transmit operations.
211 */
212static struct db_dest *GetFreeDB(struct au1k_private *aup)
213{
214	struct db_dest *db;
215	db = aup->pDBfree;
 
 
 
 
 
 
216
217	if (db)
218		aup->pDBfree = db->pnext;
219	return db;
 
 
 
220}
221
 
222/*
223  DMA memory allocation, derived from pci_alloc_consistent.
224  However, the Au1000 data cache is coherent (when programmed
225  so), therefore we return KSEG0 address, not KSEG1.
226*/
227static void *dma_alloc(size_t size, dma_addr_t *dma_handle)
228{
229	void *ret;
230	int gfp = GFP_ATOMIC | GFP_DMA;
231
232	ret = (void *)__get_free_pages(gfp, get_order(size));
233
234	if (ret != NULL) {
235		memset(ret, 0, size);
236		*dma_handle = virt_to_bus(ret);
237		ret = (void *)KSEG0ADDR(ret);
238	}
239	return ret;
240}
241
 
242static void dma_free(void *vaddr, size_t size)
243{
244	vaddr = (void *)KSEG0ADDR(vaddr);
245	free_pages((unsigned long) vaddr, get_order(size));
246}
247
248
249static void setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base)
 
250{
251	int i;
252	for (i = 0; i < NUM_IR_DESC; i++) {
253		aup->rx_ring[i] = (volatile struct ring_dest *)
254			(rx_base + sizeof(struct ring_dest) * i);
255	}
256	for (i = 0; i < NUM_IR_DESC; i++) {
257		aup->tx_ring[i] = (volatile struct ring_dest *)
258			(tx_base + sizeof(struct ring_dest) * i);
259	}
260}
261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262static int au1k_irda_init_iobuf(iobuff_t *io, int size)
263{
264	io->head = kmalloc(size, GFP_KERNEL);
265	if (io->head != NULL) {
266		io->truesize	= size;
267		io->in_frame	= FALSE;
268		io->state	= OUTSIDE_FRAME;
269		io->data	= io->head;
270	}
271	return io->head ? 0 : -ENOMEM;
272}
273
274/*
275 * Set the IrDA communications speed.
276 */
277static int au1k_irda_set_speed(struct net_device *dev, int speed)
 
 
 
 
 
278{
279	struct au1k_private *aup = netdev_priv(dev);
280	volatile struct ring_dest *ptxd;
281	unsigned long control;
282	int ret = 0, timeout = 10, i;
283
284	if (speed == aup->speed)
285		return ret;
 
286
287	/* disable PHY first */
288	au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
289	irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
290
291	/* disable RX/TX */
292	irda_write(aup, IR_CONFIG_1,
293	    irda_read(aup, IR_CONFIG_1) & ~(IR_RX_ENABLE | IR_TX_ENABLE));
294	msleep(20);
295	while (irda_read(aup, IR_STATUS) & (IR_RX_STATUS | IR_TX_STATUS)) {
296		msleep(20);
297		if (!timeout--) {
298			printk(KERN_ERR "%s: rx/tx disable timeout\n",
299					dev->name);
300			break;
301		}
302	}
303
304	/* disable DMA */
305	irda_write(aup, IR_CONFIG_1,
306		   irda_read(aup, IR_CONFIG_1) & ~IR_DMA_ENABLE);
307	msleep(20);
 
 
308
309	/* After we disable tx/rx. the index pointers go back to zero. */
310	aup->tx_head = aup->tx_tail = aup->rx_head = 0;
311	for (i = 0; i < NUM_IR_DESC; i++) {
312		ptxd = aup->tx_ring[i];
313		ptxd->flags = 0;
314		ptxd->count_0 = 0;
315		ptxd->count_1 = 0;
316	}
317
318	for (i = 0; i < NUM_IR_DESC; i++) {
319		ptxd = aup->rx_ring[i];
320		ptxd->count_0 = 0;
321		ptxd->count_1 = 0;
322		ptxd->flags = AU_OWN;
323	}
324
325	if (speed == 4000000)
326		au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_FIR);
327	else
328		au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
 
329
330	switch (speed) {
331	case 9600:
332		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(11) | IR_PW(12));
333		irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
334		break;
335	case 19200:
336		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(5) | IR_PW(12));
337		irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
338		break;
339	case 38400:
340		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(2) | IR_PW(12));
341		irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
342		break;
343	case 57600:
344		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(1) | IR_PW(12));
345		irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
346		break;
347	case 115200:
348		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_PW(12));
349		irda_write(aup, IR_CONFIG_1, IR_SIR_MODE);
350		break;
351	case 4000000:
352		irda_write(aup, IR_WRITE_PHY_CONFIG, IR_P(15));
353		irda_write(aup, IR_CONFIG_1, IR_FIR | IR_DMA_ENABLE |
354				IR_RX_ENABLE);
355		break;
356	default:
357		printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed);
358		ret = -EINVAL;
359		break;
360	}
361
362	aup->speed = speed;
363	irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) | IR_PHYEN);
364
365	control = irda_read(aup, IR_STATUS);
366	irda_write(aup, IR_RING_PROMPT, 0);
367
368	if (control & (1 << 14)) {
369		printk(KERN_ERR "%s: configuration error\n", dev->name);
370	} else {
371		if (control & (1 << 11))
372			printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
373		if (control & (1 << 12))
374			printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
375		if (control & (1 << 13))
376			printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
377		if (control & (1 << 10))
378			printk(KERN_DEBUG "%s TX enabled\n", dev->name);
379		if (control & (1 << 9))
380			printk(KERN_DEBUG "%s RX enabled\n", dev->name);
381	}
 
382
383	return ret;
384}
385
386static void update_rx_stats(struct net_device *dev, u32 status, u32 count)
387{
388	struct net_device_stats *ps = &dev->stats;
389
390	ps->rx_packets++;
391
392	if (status & IR_RX_ERROR) {
393		ps->rx_errors++;
394		if (status & (IR_PHY_ERROR | IR_FIFO_OVER))
395			ps->rx_missed_errors++;
396		if (status & IR_MAX_LEN)
397			ps->rx_length_errors++;
398		if (status & IR_CRC_ERROR)
399			ps->rx_crc_errors++;
400	} else
401		ps->rx_bytes += count;
402}
403
404static void update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
405{
406	struct net_device_stats *ps = &dev->stats;
407
408	ps->tx_packets++;
409	ps->tx_bytes += pkt_len;
410
411	if (status & IR_TX_ERROR) {
412		ps->tx_errors++;
413		ps->tx_aborted_errors++;
414	}
415}
416
417static void au1k_tx_ack(struct net_device *dev)
418{
419	struct au1k_private *aup = netdev_priv(dev);
420	volatile struct ring_dest *ptxd;
421
422	ptxd = aup->tx_ring[aup->tx_tail];
423	while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) {
424		update_tx_stats(dev, ptxd->flags,
425				(ptxd->count_1 << 8) | ptxd->count_0);
426		ptxd->count_0 = 0;
427		ptxd->count_1 = 0;
428		wmb();
429		aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1);
430		ptxd = aup->tx_ring[aup->tx_tail];
431
432		if (aup->tx_full) {
433			aup->tx_full = 0;
434			netif_wake_queue(dev);
435		}
436	}
437
438	if (aup->tx_tail == aup->tx_head) {
439		if (aup->newspeed) {
440			au1k_irda_set_speed(dev, aup->newspeed);
441			aup->newspeed = 0;
442		} else {
443			irda_write(aup, IR_CONFIG_1,
444			    irda_read(aup, IR_CONFIG_1) & ~IR_TX_ENABLE);
445			irda_write(aup, IR_CONFIG_1,
446			    irda_read(aup, IR_CONFIG_1) | IR_RX_ENABLE);
447			irda_write(aup, IR_RING_PROMPT, 0);
448		}
449	}
450}
451
452static int au1k_irda_rx(struct net_device *dev)
453{
454	struct au1k_private *aup = netdev_priv(dev);
455	volatile struct ring_dest *prxd;
456	struct sk_buff *skb;
457	struct db_dest *pDB;
458	u32 flags, count;
459
460	prxd = aup->rx_ring[aup->rx_head];
461	flags = prxd->flags;
462
463	while (!(flags & AU_OWN))  {
464		pDB = aup->rx_db_inuse[aup->rx_head];
465		count = (prxd->count_1 << 8) | prxd->count_0;
466		if (!(flags & IR_RX_ERROR)) {
467			/* good frame */
468			update_rx_stats(dev, flags, count);
469			skb = alloc_skb(count + 1, GFP_ATOMIC);
470			if (skb == NULL) {
471				dev->stats.rx_dropped++;
472				continue;
473			}
474			skb_reserve(skb, 1);
475			if (aup->speed == 4000000)
476				skb_put(skb, count);
477			else
478				skb_put(skb, count - 2);
479			skb_copy_to_linear_data(skb, (void *)pDB->vaddr,
480						count - 2);
481			skb->dev = dev;
482			skb_reset_mac_header(skb);
483			skb->protocol = htons(ETH_P_IRDA);
484			netif_rx(skb);
485			prxd->count_0 = 0;
486			prxd->count_1 = 0;
487		}
488		prxd->flags |= AU_OWN;
489		aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1);
490		irda_write(aup, IR_RING_PROMPT, 0);
491
492		/* next descriptor */
493		prxd = aup->rx_ring[aup->rx_head];
494		flags = prxd->flags;
495
496	}
497	return 0;
498}
499
500static irqreturn_t au1k_irda_interrupt(int dummy, void *dev_id)
501{
502	struct net_device *dev = dev_id;
503	struct au1k_private *aup = netdev_priv(dev);
504
505	irda_write(aup, IR_INT_CLEAR, 0); /* ack irda interrupts */
506
507	au1k_irda_rx(dev);
508	au1k_tx_ack(dev);
509
510	return IRQ_HANDLED;
511}
512
513static int au1k_init(struct net_device *dev)
514{
515	struct au1k_private *aup = netdev_priv(dev);
516	u32 enable, ring_address, phyck;
517	struct clk *c;
518	int i;
 
 
519
520	c = clk_get(NULL, "irda_clk");
521	if (IS_ERR(c))
522		return PTR_ERR(c);
523	i = clk_prepare_enable(c);
524	if (i) {
525		clk_put(c);
526		return i;
527	}
528
529	switch (clk_get_rate(c)) {
530	case 40000000:
531		phyck = IR_PHYCLK_40MHZ;
532		break;
533	case 48000000:
534		phyck = IR_PHYCLK_48MHZ;
535		break;
536	case 56000000:
537		phyck = IR_PHYCLK_56MHZ;
538		break;
539	case 64000000:
540		phyck = IR_PHYCLK_64MHZ;
541		break;
542	default:
543		clk_disable_unprepare(c);
544		clk_put(c);
545		return -EINVAL;
546	}
547	aup->irda_clk = c;
548
549	enable = IR_HC | IR_CE | IR_C;
550#ifndef CONFIG_CPU_LITTLE_ENDIAN
551	enable |= IR_BE;
552#endif
553	aup->tx_head = 0;
554	aup->tx_tail = 0;
555	aup->rx_head = 0;
556
557	for (i = 0; i < NUM_IR_DESC; i++)
558		aup->rx_ring[i]->flags = AU_OWN;
 
559
560	irda_write(aup, IR_ENABLE, enable);
561	msleep(20);
562
563	/* disable PHY */
564	au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
565	irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN);
566	msleep(20);
567
568	irda_write(aup, IR_MAX_PKT_LEN, MAX_BUF_SIZE);
569
570	ring_address = (u32)virt_to_phys((void *)aup->rx_ring[0]);
571	irda_write(aup, IR_RING_BASE_ADDR_H, ring_address >> 26);
572	irda_write(aup, IR_RING_BASE_ADDR_L, (ring_address >> 10) & 0xffff);
573
574	irda_write(aup, IR_RING_SIZE,
575				(RING_SIZE_64 << 8) | (RING_SIZE_64 << 12));
576
577	irda_write(aup, IR_CONFIG_2, phyck | IR_ONE_PIN);
578	irda_write(aup, IR_RING_ADDR_CMPR, 0);
579
580	au1k_irda_set_speed(dev, 9600);
581	return 0;
582}
583
584static int au1k_irda_start(struct net_device *dev)
585{
 
 
586	struct au1k_private *aup = netdev_priv(dev);
587	char hwname[32];
588	int retval;
589
590	retval = au1k_init(dev);
591	if (retval) {
592		printk(KERN_ERR "%s: error in au1k_init\n", dev->name);
593		return retval;
594	}
595
596	retval = request_irq(aup->irq_tx, &au1k_irda_interrupt, 0,
597			     dev->name, dev);
598	if (retval) {
599		printk(KERN_ERR "%s: unable to get IRQ %d\n",
600				dev->name, dev->irq);
601		return retval;
602	}
603	retval = request_irq(aup->irq_rx, &au1k_irda_interrupt, 0,
604			     dev->name, dev);
605	if (retval) {
606		free_irq(aup->irq_tx, dev);
607		printk(KERN_ERR "%s: unable to get IRQ %d\n",
608				dev->name, dev->irq);
609		return retval;
610	}
611
612	/* Give self a hardware name */
613	sprintf(hwname, "Au1000 SIR/FIR");
614	aup->irlap = irlap_open(dev, &aup->qos, hwname);
615	netif_start_queue(dev);
616
617	/* int enable */
618	irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) | IR_IEN);
619
620	/* power up */
621	au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR);
622
623	aup->timer.expires = RUN_AT((3 * HZ));
624	aup->timer.data = (unsigned long)dev;
625	return 0;
626}
627
628static int au1k_irda_stop(struct net_device *dev)
629{
630	struct au1k_private *aup = netdev_priv(dev);
631
632	au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF);
633
634	/* disable interrupts */
635	irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) & ~IR_IEN);
636	irda_write(aup, IR_CONFIG_1, 0);
637	irda_write(aup, IR_ENABLE, 0); /* disable clock */
 
638
639	if (aup->irlap) {
640		irlap_close(aup->irlap);
641		aup->irlap = NULL;
642	}
643
644	netif_stop_queue(dev);
645	del_timer(&aup->timer);
646
647	/* disable the interrupt */
648	free_irq(aup->irq_tx, dev);
649	free_irq(aup->irq_rx, dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
650
651	clk_disable_unprepare(aup->irda_clk);
652	clk_put(aup->irda_clk);
 
 
 
 
 
 
653
654	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
655}
656
 
657/*
658 * Au1000 transmit routine.
659 */
660static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
661{
662	struct au1k_private *aup = netdev_priv(dev);
663	int speed = irda_get_next_speed(skb);
664	volatile struct ring_dest *ptxd;
665	struct db_dest *pDB;
666	u32 len, flags;
667
668	if (speed != aup->speed && speed != -1)
 
 
 
669		aup->newspeed = speed;
 
670
671	if ((skb->len == 0) && (aup->newspeed)) {
672		if (aup->tx_tail == aup->tx_head) {
673			au1k_irda_set_speed(dev, speed);
674			aup->newspeed = 0;
675		}
676		dev_kfree_skb(skb);
677		return NETDEV_TX_OK;
678	}
679
680	ptxd = aup->tx_ring[aup->tx_head];
681	flags = ptxd->flags;
682
683	if (flags & AU_OWN) {
684		printk(KERN_DEBUG "%s: tx_full\n", dev->name);
685		netif_stop_queue(dev);
686		aup->tx_full = 1;
687		return 1;
688	} else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
 
689		printk(KERN_DEBUG "%s: tx_full\n", dev->name);
690		netif_stop_queue(dev);
691		aup->tx_full = 1;
692		return 1;
693	}
694
695	pDB = aup->tx_db_inuse[aup->tx_head];
696
697#if 0
698	if (irda_read(aup, IR_RX_BYTE_CNT) != 0) {
699		printk(KERN_DEBUG "tx warning: rx byte cnt %x\n",
700				irda_read(aup, IR_RX_BYTE_CNT));
701	}
702#endif
703
704	if (aup->speed == 4000000) {
705		/* FIR */
706		skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
707		ptxd->count_0 = skb->len & 0xff;
708		ptxd->count_1 = (skb->len >> 8) & 0xff;
709	} else {
 
 
710		/* SIR */
711		len = async_wrap_skb(skb, (u8 *)pDB->vaddr, MAX_BUF_SIZE);
712		ptxd->count_0 = len & 0xff;
713		ptxd->count_1 = (len >> 8) & 0xff;
714		ptxd->flags |= IR_DIS_CRC;
 
715	}
716	ptxd->flags |= AU_OWN;
717	wmb();
718
719	irda_write(aup, IR_CONFIG_1,
720		   irda_read(aup, IR_CONFIG_1) | IR_TX_ENABLE);
721	irda_write(aup, IR_RING_PROMPT, 0);
722
723	dev_kfree_skb(skb);
724	aup->tx_head = (aup->tx_head + 1) & (NUM_IR_DESC - 1);
725	return NETDEV_TX_OK;
726}
727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
728/*
729 * The Tx ring has been full longer than the watchdog timeout
730 * value. The transmitter must be hung?
731 */
732static void au1k_tx_timeout(struct net_device *dev)
733{
734	u32 speed;
735	struct au1k_private *aup = netdev_priv(dev);
736
737	printk(KERN_ERR "%s: tx timeout\n", dev->name);
738	speed = aup->speed;
739	aup->speed = 0;
740	au1k_irda_set_speed(dev, speed);
741	aup->tx_full = 0;
742	netif_wake_queue(dev);
743}
744
745static int au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
746{
747	struct if_irda_req *rq = (struct if_irda_req *)ifreq;
748	struct au1k_private *aup = netdev_priv(dev);
749	int ret = -EOPNOTSUPP;
750
751	switch (cmd) {
752	case SIOCSBANDWIDTH:
753		if (capable(CAP_NET_ADMIN)) {
754			/*
755			 * We are unable to set the speed if the
756			 * device is not running.
757			 */
758			if (aup->open)
759				ret = au1k_irda_set_speed(dev,
760						rq->ifr_baudrate);
761			else {
762				printk(KERN_ERR "%s ioctl: !netif_running\n",
763						dev->name);
764				ret = 0;
765			}
766		}
767		break;
768
769	case SIOCSMEDIABUSY:
770		ret = -EPERM;
771		if (capable(CAP_NET_ADMIN)) {
772			irda_device_set_media_busy(dev, TRUE);
773			ret = 0;
774		}
775		break;
776
777	case SIOCGRECEIVING:
778		rq->ifr_receiving = 0;
779		break;
780	default:
781		break;
782	}
783	return ret;
784}
785
786static const struct net_device_ops au1k_irda_netdev_ops = {
787	.ndo_open		= au1k_irda_start,
788	.ndo_stop		= au1k_irda_stop,
789	.ndo_start_xmit		= au1k_irda_hard_xmit,
790	.ndo_tx_timeout		= au1k_tx_timeout,
791	.ndo_do_ioctl		= au1k_irda_ioctl,
792};
793
794static int au1k_irda_net_init(struct net_device *dev)
795{
796	struct au1k_private *aup = netdev_priv(dev);
797	struct db_dest *pDB, *pDBfree;
798	int i, err, retval = 0;
799	dma_addr_t temp;
800
801	err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
802	if (err)
803		goto out1;
804
805	dev->netdev_ops = &au1k_irda_netdev_ops;
806
807	irda_init_max_qos_capabilies(&aup->qos);
808
809	/* The only value we must override it the baudrate */
810	aup->qos.baud_rate.bits = IR_9600 | IR_19200 | IR_38400 |
811		IR_57600 | IR_115200 | IR_576000 | (IR_4000000 << 8);
812
813	aup->qos.min_turn_time.bits = qos_mtt_bits;
814	irda_qos_bits_to_value(&aup->qos);
815
816	retval = -ENOMEM;
817
818	/* Tx ring follows rx ring + 512 bytes */
819	/* we need a 1k aligned buffer */
820	aup->rx_ring[0] = (struct ring_dest *)
821		dma_alloc(2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)),
822			  &temp);
823	if (!aup->rx_ring[0])
824		goto out2;
825
826	/* allocate the data buffers */
827	aup->db[0].vaddr =
828		dma_alloc(MAX_BUF_SIZE * 2 * NUM_IR_DESC, &temp);
829	if (!aup->db[0].vaddr)
830		goto out3;
831
832	setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512);
833
834	pDBfree = NULL;
835	pDB = aup->db;
836	for (i = 0; i < (2 * NUM_IR_DESC); i++) {
837		pDB->pnext = pDBfree;
838		pDBfree = pDB;
839		pDB->vaddr =
840		       (u32 *)((unsigned)aup->db[0].vaddr + (MAX_BUF_SIZE * i));
841		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
842		pDB++;
843	}
844	aup->pDBfree = pDBfree;
845
846	/* attach a data buffer to each descriptor */
847	for (i = 0; i < NUM_IR_DESC; i++) {
848		pDB = GetFreeDB(aup);
849		if (!pDB)
850			goto out3;
851		aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
852		aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr >>  8) & 0xff);
853		aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
854		aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
855		aup->rx_db_inuse[i] = pDB;
856	}
857	for (i = 0; i < NUM_IR_DESC; i++) {
858		pDB = GetFreeDB(aup);
859		if (!pDB)
860			goto out3;
861		aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
862		aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr >>  8) & 0xff);
863		aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff);
864		aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff);
865		aup->tx_ring[i]->count_0 = 0;
866		aup->tx_ring[i]->count_1 = 0;
867		aup->tx_ring[i]->flags = 0;
868		aup->tx_db_inuse[i] = pDB;
869	}
870
871	return 0;
872
873out3:
874	dma_free((void *)aup->rx_ring[0],
875		2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
876out2:
877	kfree(aup->rx_buff.head);
878out1:
879	printk(KERN_ERR "au1k_irda_net_init() failed.  Returns %d\n", retval);
880	return retval;
881}
882
883static int au1k_irda_probe(struct platform_device *pdev)
884{
885	struct au1k_private *aup;
886	struct net_device *dev;
887	struct resource *r;
888	struct clk *c;
889	int err;
890
891	dev = alloc_irdadev(sizeof(struct au1k_private));
892	if (!dev)
893		return -ENOMEM;
894
895	aup = netdev_priv(dev);
896
897	aup->platdata = pdev->dev.platform_data;
898
899	err = -EINVAL;
900	r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
901	if (!r)
902		goto out;
903
904	aup->irq_tx = r->start;
905
906	r = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
907	if (!r)
908		goto out;
909
910	aup->irq_rx = r->start;
911
912	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
913	if (!r)
914		goto out;
915
916	err = -EBUSY;
917	aup->ioarea = request_mem_region(r->start, resource_size(r),
918					 pdev->name);
919	if (!aup->ioarea)
920		goto out;
921
922	/* bail out early if clock doesn't exist */
923	c = clk_get(NULL, "irda_clk");
924	if (IS_ERR(c)) {
925		err = PTR_ERR(c);
926		goto out;
927	}
928	clk_put(c);
929
930	aup->iobase = ioremap_nocache(r->start, resource_size(r));
931	if (!aup->iobase)
932		goto out2;
933
934	dev->irq = aup->irq_rx;
935
936	err = au1k_irda_net_init(dev);
937	if (err)
938		goto out3;
939	err = register_netdev(dev);
940	if (err)
941		goto out4;
942
943	platform_set_drvdata(pdev, dev);
944
945	printk(KERN_INFO "IrDA: Registered device %s\n", dev->name);
946	return 0;
947
948out4:
949	dma_free((void *)aup->db[0].vaddr,
950		MAX_BUF_SIZE * 2 * NUM_IR_DESC);
951	dma_free((void *)aup->rx_ring[0],
952		2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
953	kfree(aup->rx_buff.head);
954out3:
955	iounmap(aup->iobase);
956out2:
957	release_resource(aup->ioarea);
958	kfree(aup->ioarea);
959out:
960	free_netdev(dev);
961	return err;
962}
963
964static int au1k_irda_remove(struct platform_device *pdev)
965{
966	struct net_device *dev = platform_get_drvdata(pdev);
967	struct au1k_private *aup = netdev_priv(dev);
968
969	unregister_netdev(dev);
970
971	dma_free((void *)aup->db[0].vaddr,
972		MAX_BUF_SIZE * 2 * NUM_IR_DESC);
973	dma_free((void *)aup->rx_ring[0],
974		2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)));
975	kfree(aup->rx_buff.head);
976
977	iounmap(aup->iobase);
978	release_resource(aup->ioarea);
979	kfree(aup->ioarea);
980
981	free_netdev(dev);
982
983	return 0;
984}
985
986static struct platform_driver au1k_irda_driver = {
987	.driver	= {
988		.name	= "au1000-irda",
989	},
990	.probe		= au1k_irda_probe,
991	.remove		= au1k_irda_remove,
992};
993
994module_platform_driver(au1k_irda_driver);
995
996MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
997MODULE_DESCRIPTION("Au1000 IrDA Device Driver");