Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * 6pack.c	This module implements the 6pack protocol for kernel-based
   3 *		devices like TTY. It interfaces between a raw TTY and the
   4 *		kernel's AX.25 protocol layers.
   5 *
   6 * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
   7 *              Ralf Baechle DL5RB <ralf@linux-mips.org>
   8 *
   9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
  10 *
  11 *		Laurence Culhane, <loz@holmes.demon.co.uk>
  12 *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
  13 */
  14
  15#include <linux/module.h>
  16#include <asm/system.h>
  17#include <asm/uaccess.h>
  18#include <linux/bitops.h>
  19#include <linux/string.h>
  20#include <linux/mm.h>
  21#include <linux/interrupt.h>
  22#include <linux/in.h>
  23#include <linux/tty.h>
  24#include <linux/errno.h>
  25#include <linux/netdevice.h>
  26#include <linux/timer.h>
  27#include <linux/slab.h>
  28#include <net/ax25.h>
  29#include <linux/etherdevice.h>
  30#include <linux/skbuff.h>
  31#include <linux/rtnetlink.h>
  32#include <linux/spinlock.h>
  33#include <linux/if_arp.h>
  34#include <linux/init.h>
  35#include <linux/ip.h>
  36#include <linux/tcp.h>
  37#include <linux/semaphore.h>
  38#include <linux/compat.h>
  39#include <linux/atomic.h>
  40
  41#define SIXPACK_VERSION    "Revision: 0.3.0"
  42
  43/* sixpack priority commands */
  44#define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
  45#define SIXP_TX_URUN		0x48	/* transmit overrun */
  46#define SIXP_RX_ORUN		0x50	/* receive overrun */
  47#define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
  48
  49#define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
  50
  51/* masks to get certain bits out of the status bytes sent by the TNC */
  52
  53#define SIXP_CMD_MASK		0xC0
  54#define SIXP_CHN_MASK		0x07
  55#define SIXP_PRIO_CMD_MASK	0x80
  56#define SIXP_STD_CMD_MASK	0x40
  57#define SIXP_PRIO_DATA_MASK	0x38
  58#define SIXP_TX_MASK		0x20
  59#define SIXP_RX_MASK		0x10
  60#define SIXP_RX_DCD_MASK	0x18
  61#define SIXP_LEDS_ON		0x78
  62#define SIXP_LEDS_OFF		0x60
  63#define SIXP_CON		0x08
  64#define SIXP_STA		0x10
  65
  66#define SIXP_FOUND_TNC		0xe9
  67#define SIXP_CON_ON		0x68
  68#define SIXP_DCD_MASK		0x08
  69#define SIXP_DAMA_OFF		0
  70
  71/* default level 2 parameters */
  72#define SIXP_TXDELAY			(HZ/4)	/* in 1 s */
  73#define SIXP_PERSIST			50	/* in 256ths */
  74#define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */
  75#define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
  76#define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
  77
  78/* 6pack configuration. */
  79#define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
  80#define SIXP_MTU			256	/* Default MTU */
  81
  82enum sixpack_flags {
  83	SIXPF_ERROR,	/* Parity, etc. error	*/
  84};
  85
  86struct sixpack {
  87	/* Various fields. */
  88	struct tty_struct	*tty;		/* ptr to TTY structure	*/
  89	struct net_device	*dev;		/* easy for intr handling  */
  90
  91	/* These are pointers to the malloc()ed frame buffers. */
  92	unsigned char		*rbuff;		/* receiver buffer	*/
  93	int			rcount;         /* received chars counter  */
  94	unsigned char		*xbuff;		/* transmitter buffer	*/
  95	unsigned char		*xhead;         /* next byte to XMIT */
  96	int			xleft;          /* bytes left in XMIT queue  */
  97
  98	unsigned char		raw_buf[4];
  99	unsigned char		cooked_buf[400];
 100
 101	unsigned int		rx_count;
 102	unsigned int		rx_count_cooked;
 103
 104	int			mtu;		/* Our mtu (to spot changes!) */
 105	int			buffsize;       /* Max buffers sizes */
 106
 107	unsigned long		flags;		/* Flag values/ mode etc */
 108	unsigned char		mode;		/* 6pack mode */
 109
 110	/* 6pack stuff */
 111	unsigned char		tx_delay;
 112	unsigned char		persistence;
 113	unsigned char		slottime;
 114	unsigned char		duplex;
 115	unsigned char		led_state;
 116	unsigned char		status;
 117	unsigned char		status1;
 118	unsigned char		status2;
 119	unsigned char		tx_enable;
 120	unsigned char		tnc_state;
 121
 122	struct timer_list	tx_t;
 123	struct timer_list	resync_t;
 124	atomic_t		refcnt;
 125	struct semaphore	dead_sem;
 126	spinlock_t		lock;
 127};
 128
 129#define AX25_6PACK_HEADER_LEN 0
 130
 131static void sixpack_decode(struct sixpack *, unsigned char[], int);
 132static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
 133
 134/*
 135 * Perform the persistence/slottime algorithm for CSMA access. If the
 136 * persistence check was successful, write the data to the serial driver.
 137 * Note that in case of DAMA operation, the data is not sent here.
 138 */
 139
 140static void sp_xmit_on_air(unsigned long channel)
 141{
 142	struct sixpack *sp = (struct sixpack *) channel;
 143	int actual, when = sp->slottime;
 144	static unsigned char random;
 145
 146	random = random * 17 + 41;
 147
 148	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
 149		sp->led_state = 0x70;
 150		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 151		sp->tx_enable = 1;
 152		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
 153		sp->xleft -= actual;
 154		sp->xhead += actual;
 155		sp->led_state = 0x60;
 156		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 157		sp->status2 = 0;
 158	} else
 159		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
 160}
 161
 162/* ----> 6pack timer interrupt handler and friends. <---- */
 163
 164/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
 165static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
 166{
 167	unsigned char *msg, *p = icp;
 168	int actual, count;
 169
 170	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
 171		msg = "oversized transmit packet!";
 172		goto out_drop;
 173	}
 174
 175	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
 176		msg = "oversized transmit packet!";
 177		goto out_drop;
 178	}
 179
 180	if (p[0] > 5) {
 181		msg = "invalid KISS command";
 182		goto out_drop;
 183	}
 184
 185	if ((p[0] != 0) && (len > 2)) {
 186		msg = "KISS control packet too long";
 187		goto out_drop;
 188	}
 189
 190	if ((p[0] == 0) && (len < 15)) {
 191		msg = "bad AX.25 packet to transmit";
 192		goto out_drop;
 193	}
 194
 195	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
 196	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
 197
 198	switch (p[0]) {
 199	case 1:	sp->tx_delay = p[1];
 200		return;
 201	case 2:	sp->persistence = p[1];
 202		return;
 203	case 3:	sp->slottime = p[1];
 204		return;
 205	case 4:	/* ignored */
 206		return;
 207	case 5:	sp->duplex = p[1];
 208		return;
 209	}
 210
 211	if (p[0] != 0)
 212		return;
 213
 214	/*
 215	 * In case of fullduplex or DAMA operation, we don't take care about the
 216	 * state of the DCD or of any timers, as the determination of the
 217	 * correct time to send is the job of the AX.25 layer. We send
 218	 * immediately after data has arrived.
 219	 */
 220	if (sp->duplex == 1) {
 221		sp->led_state = 0x70;
 222		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 223		sp->tx_enable = 1;
 224		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
 225		sp->xleft = count - actual;
 226		sp->xhead = sp->xbuff + actual;
 227		sp->led_state = 0x60;
 228		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 229	} else {
 230		sp->xleft = count;
 231		sp->xhead = sp->xbuff;
 232		sp->status2 = count;
 233		sp_xmit_on_air((unsigned long)sp);
 234	}
 235
 236	return;
 237
 238out_drop:
 239	sp->dev->stats.tx_dropped++;
 240	netif_start_queue(sp->dev);
 241	if (net_ratelimit())
 242		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
 243}
 244
 245/* Encapsulate an IP datagram and kick it into a TTY queue. */
 246
 247static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
 248{
 249	struct sixpack *sp = netdev_priv(dev);
 250
 
 
 
 251	spin_lock_bh(&sp->lock);
 252	/* We were not busy, so we are now... :-) */
 253	netif_stop_queue(dev);
 254	dev->stats.tx_bytes += skb->len;
 255	sp_encaps(sp, skb->data, skb->len);
 256	spin_unlock_bh(&sp->lock);
 257
 258	dev_kfree_skb(skb);
 259
 260	return NETDEV_TX_OK;
 261}
 262
 263static int sp_open_dev(struct net_device *dev)
 264{
 265	struct sixpack *sp = netdev_priv(dev);
 266
 267	if (sp->tty == NULL)
 268		return -ENODEV;
 269	return 0;
 270}
 271
 272/* Close the low-level part of the 6pack channel. */
 273static int sp_close(struct net_device *dev)
 274{
 275	struct sixpack *sp = netdev_priv(dev);
 276
 277	spin_lock_bh(&sp->lock);
 278	if (sp->tty) {
 279		/* TTY discipline is running. */
 280		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
 281	}
 282	netif_stop_queue(dev);
 283	spin_unlock_bh(&sp->lock);
 284
 285	return 0;
 286}
 287
 288/* Return the frame type ID */
 289static int sp_header(struct sk_buff *skb, struct net_device *dev,
 290		     unsigned short type, const void *daddr,
 291		     const void *saddr, unsigned len)
 292{
 293#ifdef CONFIG_INET
 294	if (type != ETH_P_AX25)
 295		return ax25_hard_header(skb, dev, type, daddr, saddr, len);
 296#endif
 297	return 0;
 298}
 299
 300static int sp_set_mac_address(struct net_device *dev, void *addr)
 301{
 302	struct sockaddr_ax25 *sa = addr;
 303
 304	netif_tx_lock_bh(dev);
 305	netif_addr_lock(dev);
 306	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
 307	netif_addr_unlock(dev);
 308	netif_tx_unlock_bh(dev);
 309
 310	return 0;
 311}
 312
 313static int sp_rebuild_header(struct sk_buff *skb)
 314{
 315#ifdef CONFIG_INET
 316	return ax25_rebuild_header(skb);
 317#else
 318	return 0;
 319#endif
 320}
 321
 322static const struct header_ops sp_header_ops = {
 323	.create		= sp_header,
 324	.rebuild	= sp_rebuild_header,
 325};
 326
 327static const struct net_device_ops sp_netdev_ops = {
 328	.ndo_open		= sp_open_dev,
 329	.ndo_stop		= sp_close,
 330	.ndo_start_xmit		= sp_xmit,
 331	.ndo_set_mac_address    = sp_set_mac_address,
 332};
 333
 334static void sp_setup(struct net_device *dev)
 335{
 336	/* Finish setting up the DEVICE info. */
 337	dev->netdev_ops		= &sp_netdev_ops;
 338	dev->destructor		= free_netdev;
 339	dev->mtu		= SIXP_MTU;
 340	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
 341	dev->header_ops 	= &sp_header_ops;
 342
 343	dev->addr_len		= AX25_ADDR_LEN;
 344	dev->type		= ARPHRD_AX25;
 345	dev->tx_queue_len	= 10;
 346
 347	/* Only activated in AX.25 mode */
 348	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
 349	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
 350
 351	dev->flags		= 0;
 352}
 353
 354/* Send one completely decapsulated IP datagram to the IP layer. */
 355
 356/*
 357 * This is the routine that sends the received data to the kernel AX.25.
 358 * 'cmd' is the KISS command. For AX.25 data, it is zero.
 359 */
 360
 361static void sp_bump(struct sixpack *sp, char cmd)
 362{
 363	struct sk_buff *skb;
 364	int count;
 365	unsigned char *ptr;
 366
 367	count = sp->rcount + 1;
 368
 369	sp->dev->stats.rx_bytes += count;
 370
 371	if ((skb = dev_alloc_skb(count)) == NULL)
 372		goto out_mem;
 373
 374	ptr = skb_put(skb, count);
 375	*ptr++ = cmd;	/* KISS command */
 376
 377	memcpy(ptr, sp->cooked_buf + 1, count);
 378	skb->protocol = ax25_type_trans(skb, sp->dev);
 379	netif_rx(skb);
 380	sp->dev->stats.rx_packets++;
 381
 382	return;
 383
 384out_mem:
 385	sp->dev->stats.rx_dropped++;
 386}
 387
 388
 389/* ----------------------------------------------------------------------- */
 390
 391/*
 392 * We have a potential race on dereferencing tty->disc_data, because the tty
 393 * layer provides no locking at all - thus one cpu could be running
 394 * sixpack_receive_buf while another calls sixpack_close, which zeroes
 395 * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
 396 * best way to fix this is to use a rwlock in the tty struct, but for now we
 397 * use a single global rwlock for all ttys in ppp line discipline.
 398 */
 399static DEFINE_RWLOCK(disc_data_lock);
 400                                                                                
 401static struct sixpack *sp_get(struct tty_struct *tty)
 402{
 403	struct sixpack *sp;
 404
 405	read_lock(&disc_data_lock);
 406	sp = tty->disc_data;
 407	if (sp)
 408		atomic_inc(&sp->refcnt);
 409	read_unlock(&disc_data_lock);
 410
 411	return sp;
 412}
 413
 414static void sp_put(struct sixpack *sp)
 415{
 416	if (atomic_dec_and_test(&sp->refcnt))
 417		up(&sp->dead_sem);
 418}
 419
 420/*
 421 * Called by the TTY driver when there's room for more data.  If we have
 422 * more packets to send, we send them here.
 423 */
 424static void sixpack_write_wakeup(struct tty_struct *tty)
 425{
 426	struct sixpack *sp = sp_get(tty);
 427	int actual;
 428
 429	if (!sp)
 430		return;
 431	if (sp->xleft <= 0)  {
 432		/* Now serial buffer is almost free & we can start
 433		 * transmission of another packet */
 434		sp->dev->stats.tx_packets++;
 435		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 436		sp->tx_enable = 0;
 437		netif_wake_queue(sp->dev);
 438		goto out;
 439	}
 440
 441	if (sp->tx_enable) {
 442		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
 443		sp->xleft -= actual;
 444		sp->xhead += actual;
 445	}
 446
 447out:
 448	sp_put(sp);
 449}
 450
 451/* ----------------------------------------------------------------------- */
 452
 453/*
 454 * Handle the 'receiver data ready' interrupt.
 455 * This function is called by the 'tty_io' module in the kernel when
 456 * a block of 6pack data has been received, which can now be decapsulated
 457 * and sent on to some IP layer for further processing.
 458 */
 459static void sixpack_receive_buf(struct tty_struct *tty,
 460	const unsigned char *cp, char *fp, int count)
 461{
 462	struct sixpack *sp;
 463	unsigned char buf[512];
 464	int count1;
 465
 466	if (!count)
 467		return;
 468
 469	sp = sp_get(tty);
 470	if (!sp)
 471		return;
 472
 473	memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));
 474
 475	/* Read the characters out of the buffer */
 476
 477	count1 = count;
 478	while (count) {
 479		count--;
 480		if (fp && *fp++) {
 481			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
 482				sp->dev->stats.rx_errors++;
 483			continue;
 484		}
 485	}
 486	sixpack_decode(sp, buf, count1);
 487
 488	sp_put(sp);
 489	tty_unthrottle(tty);
 490}
 491
 492/*
 493 * Try to resync the TNC. Called by the resync timer defined in
 494 * decode_prio_command
 495 */
 496
 497#define TNC_UNINITIALIZED	0
 498#define TNC_UNSYNC_STARTUP	1
 499#define TNC_UNSYNCED		2
 500#define TNC_IN_SYNC		3
 501
 502static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
 503{
 504	char *msg;
 505
 506	switch (new_tnc_state) {
 507	default:			/* gcc oh piece-o-crap ... */
 508	case TNC_UNSYNC_STARTUP:
 509		msg = "Synchronizing with TNC";
 510		break;
 511	case TNC_UNSYNCED:
 512		msg = "Lost synchronization with TNC\n";
 513		break;
 514	case TNC_IN_SYNC:
 515		msg = "Found TNC";
 516		break;
 517	}
 518
 519	sp->tnc_state = new_tnc_state;
 520	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
 521}
 522
 523static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
 524{
 525	int old_tnc_state = sp->tnc_state;
 526
 527	if (old_tnc_state != new_tnc_state)
 528		__tnc_set_sync_state(sp, new_tnc_state);
 529}
 530
 531static void resync_tnc(unsigned long channel)
 532{
 533	struct sixpack *sp = (struct sixpack *) channel;
 534	static char resync_cmd = 0xe8;
 535
 536	/* clear any data that might have been received */
 537
 538	sp->rx_count = 0;
 539	sp->rx_count_cooked = 0;
 540
 541	/* reset state machine */
 542
 543	sp->status = 1;
 544	sp->status1 = 1;
 545	sp->status2 = 0;
 546
 547	/* resync the TNC */
 548
 549	sp->led_state = 0x60;
 550	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 551	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
 552
 553
 554	/* Start resync timer again -- the TNC might be still absent */
 555
 556	del_timer(&sp->resync_t);
 557	sp->resync_t.data	= (unsigned long) sp;
 558	sp->resync_t.function	= resync_tnc;
 559	sp->resync_t.expires	= jiffies + SIXP_RESYNC_TIMEOUT;
 560	add_timer(&sp->resync_t);
 561}
 562
 563static inline int tnc_init(struct sixpack *sp)
 564{
 565	unsigned char inbyte = 0xe8;
 566
 567	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
 568
 569	sp->tty->ops->write(sp->tty, &inbyte, 1);
 570
 571	del_timer(&sp->resync_t);
 572	sp->resync_t.data = (unsigned long) sp;
 573	sp->resync_t.function = resync_tnc;
 574	sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
 575	add_timer(&sp->resync_t);
 576
 577	return 0;
 578}
 579
 580/*
 581 * Open the high-level part of the 6pack channel.
 582 * This function is called by the TTY module when the
 583 * 6pack line discipline is called for.  Because we are
 584 * sure the tty line exists, we only have to link it to
 585 * a free 6pcack channel...
 586 */
 587static int sixpack_open(struct tty_struct *tty)
 588{
 589	char *rbuff = NULL, *xbuff = NULL;
 590	struct net_device *dev;
 591	struct sixpack *sp;
 592	unsigned long len;
 593	int err = 0;
 594
 595	if (!capable(CAP_NET_ADMIN))
 596		return -EPERM;
 597	if (tty->ops->write == NULL)
 598		return -EOPNOTSUPP;
 599
 600	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup);
 
 601	if (!dev) {
 602		err = -ENOMEM;
 603		goto out;
 604	}
 605
 606	sp = netdev_priv(dev);
 607	sp->dev = dev;
 608
 609	spin_lock_init(&sp->lock);
 610	atomic_set(&sp->refcnt, 1);
 611	sema_init(&sp->dead_sem, 0);
 612
 613	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
 614
 615	len = dev->mtu * 2;
 616
 617	rbuff = kmalloc(len + 4, GFP_KERNEL);
 618	xbuff = kmalloc(len + 4, GFP_KERNEL);
 619
 620	if (rbuff == NULL || xbuff == NULL) {
 621		err = -ENOBUFS;
 622		goto out_free;
 623	}
 624
 625	spin_lock_bh(&sp->lock);
 626
 627	sp->tty = tty;
 628
 629	sp->rbuff	= rbuff;
 630	sp->xbuff	= xbuff;
 631
 632	sp->mtu		= AX25_MTU + 73;
 633	sp->buffsize	= len;
 634	sp->rcount	= 0;
 635	sp->rx_count	= 0;
 636	sp->rx_count_cooked = 0;
 637	sp->xleft	= 0;
 638
 639	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
 640
 641	sp->duplex	= 0;
 642	sp->tx_delay    = SIXP_TXDELAY;
 643	sp->persistence = SIXP_PERSIST;
 644	sp->slottime    = SIXP_SLOTTIME;
 645	sp->led_state   = 0x60;
 646	sp->status      = 1;
 647	sp->status1     = 1;
 648	sp->status2     = 0;
 649	sp->tx_enable   = 0;
 650
 651	netif_start_queue(dev);
 652
 653	init_timer(&sp->tx_t);
 654	sp->tx_t.function = sp_xmit_on_air;
 655	sp->tx_t.data = (unsigned long) sp;
 656
 657	init_timer(&sp->resync_t);
 658
 659	spin_unlock_bh(&sp->lock);
 660
 661	/* Done.  We have linked the TTY line to a channel. */
 662	tty->disc_data = sp;
 663	tty->receive_room = 65536;
 664
 665	/* Now we're ready to register. */
 666	if (register_netdev(dev))
 
 667		goto out_free;
 668
 669	tnc_init(sp);
 670
 671	return 0;
 672
 673out_free:
 674	kfree(xbuff);
 675	kfree(rbuff);
 676
 677	if (dev)
 678		free_netdev(dev);
 679
 680out:
 681	return err;
 682}
 683
 684
 685/*
 686 * Close down a 6pack channel.
 687 * This means flushing out any pending queues, and then restoring the
 688 * TTY line discipline to what it was before it got hooked to 6pack
 689 * (which usually is TTY again).
 690 */
 691static void sixpack_close(struct tty_struct *tty)
 692{
 693	struct sixpack *sp;
 694
 695	write_lock_bh(&disc_data_lock);
 696	sp = tty->disc_data;
 697	tty->disc_data = NULL;
 698	write_unlock_bh(&disc_data_lock);
 699	if (!sp)
 700		return;
 701
 702	/*
 703	 * We have now ensured that nobody can start using ap from now on, but
 704	 * we have to wait for all existing users to finish.
 705	 */
 706	if (!atomic_dec_and_test(&sp->refcnt))
 707		down(&sp->dead_sem);
 708
 709	unregister_netdev(sp->dev);
 
 
 
 
 710
 711	del_timer(&sp->tx_t);
 712	del_timer(&sp->resync_t);
 713
 714	/* Free all 6pack frame buffers. */
 715	kfree(sp->rbuff);
 716	kfree(sp->xbuff);
 
 
 717}
 718
 719/* Perform I/O control on an active 6pack channel. */
 720static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
 721	unsigned int cmd, unsigned long arg)
 722{
 723	struct sixpack *sp = sp_get(tty);
 724	struct net_device *dev;
 725	unsigned int tmp, err;
 726
 727	if (!sp)
 728		return -ENXIO;
 729	dev = sp->dev;
 730
 731	switch(cmd) {
 732	case SIOCGIFNAME:
 733		err = copy_to_user((void __user *) arg, dev->name,
 734		                   strlen(dev->name) + 1) ? -EFAULT : 0;
 735		break;
 736
 737	case SIOCGIFENCAP:
 738		err = put_user(0, (int __user *) arg);
 739		break;
 740
 741	case SIOCSIFENCAP:
 742		if (get_user(tmp, (int __user *) arg)) {
 743			err = -EFAULT;
 744			break;
 745		}
 746
 747		sp->mode = tmp;
 748		dev->addr_len        = AX25_ADDR_LEN;
 749		dev->hard_header_len = AX25_KISS_HEADER_LEN +
 750		                       AX25_MAX_HEADER_LEN + 3;
 751		dev->type            = ARPHRD_AX25;
 752
 753		err = 0;
 754		break;
 755
 756	 case SIOCSIFHWADDR: {
 757		char addr[AX25_ADDR_LEN];
 758
 759		if (copy_from_user(&addr,
 760		                   (void __user *) arg, AX25_ADDR_LEN)) {
 761				err = -EFAULT;
 762				break;
 763			}
 764
 765			netif_tx_lock_bh(dev);
 766			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
 767			netif_tx_unlock_bh(dev);
 768
 769			err = 0;
 770			break;
 771		}
 772
 773	default:
 774		err = tty_mode_ioctl(tty, file, cmd, arg);
 775	}
 776
 777	sp_put(sp);
 778
 779	return err;
 780}
 781
 782#ifdef CONFIG_COMPAT
 783static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file,
 784				unsigned int cmd, unsigned long arg)
 785{
 786	switch (cmd) {
 787	case SIOCGIFNAME:
 788	case SIOCGIFENCAP:
 789	case SIOCSIFENCAP:
 790	case SIOCSIFHWADDR:
 791		return sixpack_ioctl(tty, file, cmd,
 792				(unsigned long)compat_ptr(arg));
 793	}
 794
 795	return -ENOIOCTLCMD;
 796}
 797#endif
 798
 799static struct tty_ldisc_ops sp_ldisc = {
 800	.owner		= THIS_MODULE,
 801	.magic		= TTY_LDISC_MAGIC,
 802	.name		= "6pack",
 803	.open		= sixpack_open,
 804	.close		= sixpack_close,
 805	.ioctl		= sixpack_ioctl,
 806#ifdef CONFIG_COMPAT
 807	.compat_ioctl	= sixpack_compat_ioctl,
 808#endif
 809	.receive_buf	= sixpack_receive_buf,
 810	.write_wakeup	= sixpack_write_wakeup,
 811};
 812
 813/* Initialize 6pack control device -- register 6pack line discipline */
 814
 815static const char msg_banner[]  __initdata = KERN_INFO \
 816	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
 817static const char msg_regfail[] __initdata = KERN_ERR  \
 818	"6pack: can't register line discipline (err = %d)\n";
 819
 820static int __init sixpack_init_driver(void)
 821{
 822	int status;
 823
 824	printk(msg_banner);
 825
 826	/* Register the provided line protocol discipline */
 827	if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
 828		printk(msg_regfail, status);
 829
 830	return status;
 831}
 832
 833static const char msg_unregfail[] __exitdata = KERN_ERR \
 834	"6pack: can't unregister line discipline (err = %d)\n";
 835
 836static void __exit sixpack_exit_driver(void)
 837{
 838	int ret;
 839
 840	if ((ret = tty_unregister_ldisc(N_6PACK)))
 841		printk(msg_unregfail, ret);
 842}
 843
 844/* encode an AX.25 packet into 6pack */
 845
 846static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
 847	int length, unsigned char tx_delay)
 848{
 849	int count = 0;
 850	unsigned char checksum = 0, buf[400];
 851	int raw_count = 0;
 852
 853	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
 854	tx_buf_raw[raw_count++] = SIXP_SEOF;
 855
 856	buf[0] = tx_delay;
 857	for (count = 1; count < length; count++)
 858		buf[count] = tx_buf[count];
 859
 860	for (count = 0; count < length; count++)
 861		checksum += buf[count];
 862	buf[length] = (unsigned char) 0xff - checksum;
 863
 864	for (count = 0; count <= length; count++) {
 865		if ((count % 3) == 0) {
 866			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
 867			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
 868		} else if ((count % 3) == 1) {
 869			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
 870			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
 871		} else {
 872			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
 873			tx_buf_raw[raw_count++] = (buf[count] >> 2);
 874		}
 875	}
 876	if ((length % 3) != 2)
 877		raw_count++;
 878	tx_buf_raw[raw_count++] = SIXP_SEOF;
 879	return raw_count;
 880}
 881
 882/* decode 4 sixpack-encoded bytes into 3 data bytes */
 883
 884static void decode_data(struct sixpack *sp, unsigned char inbyte)
 885{
 886	unsigned char *buf;
 887
 888	if (sp->rx_count != 3) {
 889		sp->raw_buf[sp->rx_count++] = inbyte;
 890
 891		return;
 892	}
 893
 894	buf = sp->raw_buf;
 895	sp->cooked_buf[sp->rx_count_cooked++] =
 896		buf[0] | ((buf[1] << 2) & 0xc0);
 897	sp->cooked_buf[sp->rx_count_cooked++] =
 898		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
 899	sp->cooked_buf[sp->rx_count_cooked++] =
 900		(buf[2] & 0x03) | (inbyte << 2);
 901	sp->rx_count = 0;
 902}
 903
 904/* identify and execute a 6pack priority command byte */
 905
 906static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
 907{
 908	unsigned char channel;
 909	int actual;
 910
 911	channel = cmd & SIXP_CHN_MASK;
 912	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
 913
 914	/* RX and DCD flags can only be set in the same prio command,
 915	   if the DCD flag has been set without the RX flag in the previous
 916	   prio command. If DCD has not been set before, something in the
 917	   transmission has gone wrong. In this case, RX and DCD are
 918	   cleared in order to prevent the decode_data routine from
 919	   reading further data that might be corrupt. */
 920
 921		if (((sp->status & SIXP_DCD_MASK) == 0) &&
 922			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
 923				if (sp->status != 1)
 924					printk(KERN_DEBUG "6pack: protocol violation\n");
 925				else
 926					sp->status = 0;
 927				cmd &= ~SIXP_RX_DCD_MASK;
 928		}
 929		sp->status = cmd & SIXP_PRIO_DATA_MASK;
 930	} else { /* output watchdog char if idle */
 931		if ((sp->status2 != 0) && (sp->duplex == 1)) {
 932			sp->led_state = 0x70;
 933			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 934			sp->tx_enable = 1;
 935			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
 936			sp->xleft -= actual;
 937			sp->xhead += actual;
 938			sp->led_state = 0x60;
 939			sp->status2 = 0;
 940
 941		}
 942	}
 943
 944	/* needed to trigger the TNC watchdog */
 945	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 946
 947        /* if the state byte has been received, the TNC is present,
 948           so the resync timer can be reset. */
 949
 950	if (sp->tnc_state == TNC_IN_SYNC) {
 951		del_timer(&sp->resync_t);
 952		sp->resync_t.data	= (unsigned long) sp;
 953		sp->resync_t.function	= resync_tnc;
 954		sp->resync_t.expires	= jiffies + SIXP_INIT_RESYNC_TIMEOUT;
 955		add_timer(&sp->resync_t);
 956	}
 957
 958	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
 959}
 960
 961/* identify and execute a standard 6pack command byte */
 962
 963static void decode_std_command(struct sixpack *sp, unsigned char cmd)
 964{
 965	unsigned char checksum = 0, rest = 0, channel;
 966	short i;
 967
 968	channel = cmd & SIXP_CHN_MASK;
 969	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
 970	case SIXP_SEOF:
 971		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
 972			if ((sp->status & SIXP_RX_DCD_MASK) ==
 973				SIXP_RX_DCD_MASK) {
 974				sp->led_state = 0x68;
 975				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 976			}
 977		} else {
 978			sp->led_state = 0x60;
 979			/* fill trailing bytes with zeroes */
 980			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 981			rest = sp->rx_count;
 982			if (rest != 0)
 983				 for (i = rest; i <= 3; i++)
 984					decode_data(sp, 0);
 985			if (rest == 2)
 986				sp->rx_count_cooked -= 2;
 987			else if (rest == 3)
 988				sp->rx_count_cooked -= 1;
 989			for (i = 0; i < sp->rx_count_cooked; i++)
 990				checksum += sp->cooked_buf[i];
 991			if (checksum != SIXP_CHKSUM) {
 992				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
 993			} else {
 994				sp->rcount = sp->rx_count_cooked-2;
 995				sp_bump(sp, 0);
 996			}
 997			sp->rx_count_cooked = 0;
 998		}
 999		break;
1000	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
1001		break;
1002	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
1003		break;
1004	case SIXP_RX_BUF_OVL:
1005		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
1006	}
1007}
1008
1009/* decode a 6pack packet */
1010
1011static void
1012sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
1013{
1014	unsigned char inbyte;
1015	int count1;
1016
1017	for (count1 = 0; count1 < count; count1++) {
1018		inbyte = pre_rbuff[count1];
1019		if (inbyte == SIXP_FOUND_TNC) {
1020			tnc_set_sync_state(sp, TNC_IN_SYNC);
1021			del_timer(&sp->resync_t);
1022		}
1023		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1024			decode_prio_command(sp, inbyte);
1025		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1026			decode_std_command(sp, inbyte);
1027		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
1028			decode_data(sp, inbyte);
1029	}
1030}
1031
1032MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1033MODULE_DESCRIPTION("6pack driver for AX.25");
1034MODULE_LICENSE("GPL");
1035MODULE_ALIAS_LDISC(N_6PACK);
1036
1037module_init(sixpack_init_driver);
1038module_exit(sixpack_exit_driver);
v4.6
   1/*
   2 * 6pack.c	This module implements the 6pack protocol for kernel-based
   3 *		devices like TTY. It interfaces between a raw TTY and the
   4 *		kernel's AX.25 protocol layers.
   5 *
   6 * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
   7 *              Ralf Baechle DL5RB <ralf@linux-mips.org>
   8 *
   9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
  10 *
  11 *		Laurence Culhane, <loz@holmes.demon.co.uk>
  12 *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
  13 */
  14
  15#include <linux/module.h>
 
  16#include <asm/uaccess.h>
  17#include <linux/bitops.h>
  18#include <linux/string.h>
  19#include <linux/mm.h>
  20#include <linux/interrupt.h>
  21#include <linux/in.h>
  22#include <linux/tty.h>
  23#include <linux/errno.h>
  24#include <linux/netdevice.h>
  25#include <linux/timer.h>
  26#include <linux/slab.h>
  27#include <net/ax25.h>
  28#include <linux/etherdevice.h>
  29#include <linux/skbuff.h>
  30#include <linux/rtnetlink.h>
  31#include <linux/spinlock.h>
  32#include <linux/if_arp.h>
  33#include <linux/init.h>
  34#include <linux/ip.h>
  35#include <linux/tcp.h>
  36#include <linux/semaphore.h>
  37#include <linux/compat.h>
  38#include <linux/atomic.h>
  39
  40#define SIXPACK_VERSION    "Revision: 0.3.0"
  41
  42/* sixpack priority commands */
  43#define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
  44#define SIXP_TX_URUN		0x48	/* transmit overrun */
  45#define SIXP_RX_ORUN		0x50	/* receive overrun */
  46#define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
  47
  48#define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
  49
  50/* masks to get certain bits out of the status bytes sent by the TNC */
  51
  52#define SIXP_CMD_MASK		0xC0
  53#define SIXP_CHN_MASK		0x07
  54#define SIXP_PRIO_CMD_MASK	0x80
  55#define SIXP_STD_CMD_MASK	0x40
  56#define SIXP_PRIO_DATA_MASK	0x38
  57#define SIXP_TX_MASK		0x20
  58#define SIXP_RX_MASK		0x10
  59#define SIXP_RX_DCD_MASK	0x18
  60#define SIXP_LEDS_ON		0x78
  61#define SIXP_LEDS_OFF		0x60
  62#define SIXP_CON		0x08
  63#define SIXP_STA		0x10
  64
  65#define SIXP_FOUND_TNC		0xe9
  66#define SIXP_CON_ON		0x68
  67#define SIXP_DCD_MASK		0x08
  68#define SIXP_DAMA_OFF		0
  69
  70/* default level 2 parameters */
  71#define SIXP_TXDELAY			(HZ/4)	/* in 1 s */
  72#define SIXP_PERSIST			50	/* in 256ths */
  73#define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */
  74#define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
  75#define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
  76
  77/* 6pack configuration. */
  78#define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
  79#define SIXP_MTU			256	/* Default MTU */
  80
  81enum sixpack_flags {
  82	SIXPF_ERROR,	/* Parity, etc. error	*/
  83};
  84
  85struct sixpack {
  86	/* Various fields. */
  87	struct tty_struct	*tty;		/* ptr to TTY structure	*/
  88	struct net_device	*dev;		/* easy for intr handling  */
  89
  90	/* These are pointers to the malloc()ed frame buffers. */
  91	unsigned char		*rbuff;		/* receiver buffer	*/
  92	int			rcount;         /* received chars counter  */
  93	unsigned char		*xbuff;		/* transmitter buffer	*/
  94	unsigned char		*xhead;         /* next byte to XMIT */
  95	int			xleft;          /* bytes left in XMIT queue  */
  96
  97	unsigned char		raw_buf[4];
  98	unsigned char		cooked_buf[400];
  99
 100	unsigned int		rx_count;
 101	unsigned int		rx_count_cooked;
 102
 103	int			mtu;		/* Our mtu (to spot changes!) */
 104	int			buffsize;       /* Max buffers sizes */
 105
 106	unsigned long		flags;		/* Flag values/ mode etc */
 107	unsigned char		mode;		/* 6pack mode */
 108
 109	/* 6pack stuff */
 110	unsigned char		tx_delay;
 111	unsigned char		persistence;
 112	unsigned char		slottime;
 113	unsigned char		duplex;
 114	unsigned char		led_state;
 115	unsigned char		status;
 116	unsigned char		status1;
 117	unsigned char		status2;
 118	unsigned char		tx_enable;
 119	unsigned char		tnc_state;
 120
 121	struct timer_list	tx_t;
 122	struct timer_list	resync_t;
 123	atomic_t		refcnt;
 124	struct semaphore	dead_sem;
 125	spinlock_t		lock;
 126};
 127
 128#define AX25_6PACK_HEADER_LEN 0
 129
 130static void sixpack_decode(struct sixpack *, unsigned char[], int);
 131static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
 132
 133/*
 134 * Perform the persistence/slottime algorithm for CSMA access. If the
 135 * persistence check was successful, write the data to the serial driver.
 136 * Note that in case of DAMA operation, the data is not sent here.
 137 */
 138
 139static void sp_xmit_on_air(unsigned long channel)
 140{
 141	struct sixpack *sp = (struct sixpack *) channel;
 142	int actual, when = sp->slottime;
 143	static unsigned char random;
 144
 145	random = random * 17 + 41;
 146
 147	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
 148		sp->led_state = 0x70;
 149		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 150		sp->tx_enable = 1;
 151		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
 152		sp->xleft -= actual;
 153		sp->xhead += actual;
 154		sp->led_state = 0x60;
 155		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 156		sp->status2 = 0;
 157	} else
 158		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
 159}
 160
 161/* ----> 6pack timer interrupt handler and friends. <---- */
 162
 163/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
 164static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
 165{
 166	unsigned char *msg, *p = icp;
 167	int actual, count;
 168
 169	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
 170		msg = "oversized transmit packet!";
 171		goto out_drop;
 172	}
 173
 174	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
 175		msg = "oversized transmit packet!";
 176		goto out_drop;
 177	}
 178
 179	if (p[0] > 5) {
 180		msg = "invalid KISS command";
 181		goto out_drop;
 182	}
 183
 184	if ((p[0] != 0) && (len > 2)) {
 185		msg = "KISS control packet too long";
 186		goto out_drop;
 187	}
 188
 189	if ((p[0] == 0) && (len < 15)) {
 190		msg = "bad AX.25 packet to transmit";
 191		goto out_drop;
 192	}
 193
 194	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
 195	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
 196
 197	switch (p[0]) {
 198	case 1:	sp->tx_delay = p[1];
 199		return;
 200	case 2:	sp->persistence = p[1];
 201		return;
 202	case 3:	sp->slottime = p[1];
 203		return;
 204	case 4:	/* ignored */
 205		return;
 206	case 5:	sp->duplex = p[1];
 207		return;
 208	}
 209
 210	if (p[0] != 0)
 211		return;
 212
 213	/*
 214	 * In case of fullduplex or DAMA operation, we don't take care about the
 215	 * state of the DCD or of any timers, as the determination of the
 216	 * correct time to send is the job of the AX.25 layer. We send
 217	 * immediately after data has arrived.
 218	 */
 219	if (sp->duplex == 1) {
 220		sp->led_state = 0x70;
 221		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 222		sp->tx_enable = 1;
 223		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
 224		sp->xleft = count - actual;
 225		sp->xhead = sp->xbuff + actual;
 226		sp->led_state = 0x60;
 227		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 228	} else {
 229		sp->xleft = count;
 230		sp->xhead = sp->xbuff;
 231		sp->status2 = count;
 232		sp_xmit_on_air((unsigned long)sp);
 233	}
 234
 235	return;
 236
 237out_drop:
 238	sp->dev->stats.tx_dropped++;
 239	netif_start_queue(sp->dev);
 240	if (net_ratelimit())
 241		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
 242}
 243
 244/* Encapsulate an IP datagram and kick it into a TTY queue. */
 245
 246static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
 247{
 248	struct sixpack *sp = netdev_priv(dev);
 249
 250	if (skb->protocol == htons(ETH_P_IP))
 251		return ax25_ip_xmit(skb);
 252
 253	spin_lock_bh(&sp->lock);
 254	/* We were not busy, so we are now... :-) */
 255	netif_stop_queue(dev);
 256	dev->stats.tx_bytes += skb->len;
 257	sp_encaps(sp, skb->data, skb->len);
 258	spin_unlock_bh(&sp->lock);
 259
 260	dev_kfree_skb(skb);
 261
 262	return NETDEV_TX_OK;
 263}
 264
 265static int sp_open_dev(struct net_device *dev)
 266{
 267	struct sixpack *sp = netdev_priv(dev);
 268
 269	if (sp->tty == NULL)
 270		return -ENODEV;
 271	return 0;
 272}
 273
 274/* Close the low-level part of the 6pack channel. */
 275static int sp_close(struct net_device *dev)
 276{
 277	struct sixpack *sp = netdev_priv(dev);
 278
 279	spin_lock_bh(&sp->lock);
 280	if (sp->tty) {
 281		/* TTY discipline is running. */
 282		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
 283	}
 284	netif_stop_queue(dev);
 285	spin_unlock_bh(&sp->lock);
 286
 287	return 0;
 288}
 289
 
 
 
 
 
 
 
 
 
 
 
 
 290static int sp_set_mac_address(struct net_device *dev, void *addr)
 291{
 292	struct sockaddr_ax25 *sa = addr;
 293
 294	netif_tx_lock_bh(dev);
 295	netif_addr_lock(dev);
 296	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
 297	netif_addr_unlock(dev);
 298	netif_tx_unlock_bh(dev);
 299
 300	return 0;
 301}
 302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 303static const struct net_device_ops sp_netdev_ops = {
 304	.ndo_open		= sp_open_dev,
 305	.ndo_stop		= sp_close,
 306	.ndo_start_xmit		= sp_xmit,
 307	.ndo_set_mac_address    = sp_set_mac_address,
 308};
 309
 310static void sp_setup(struct net_device *dev)
 311{
 312	/* Finish setting up the DEVICE info. */
 313	dev->netdev_ops		= &sp_netdev_ops;
 314	dev->destructor		= free_netdev;
 315	dev->mtu		= SIXP_MTU;
 316	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
 317	dev->header_ops 	= &ax25_header_ops;
 318
 319	dev->addr_len		= AX25_ADDR_LEN;
 320	dev->type		= ARPHRD_AX25;
 321	dev->tx_queue_len	= 10;
 322
 323	/* Only activated in AX.25 mode */
 324	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
 325	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
 326
 327	dev->flags		= 0;
 328}
 329
 330/* Send one completely decapsulated IP datagram to the IP layer. */
 331
 332/*
 333 * This is the routine that sends the received data to the kernel AX.25.
 334 * 'cmd' is the KISS command. For AX.25 data, it is zero.
 335 */
 336
 337static void sp_bump(struct sixpack *sp, char cmd)
 338{
 339	struct sk_buff *skb;
 340	int count;
 341	unsigned char *ptr;
 342
 343	count = sp->rcount + 1;
 344
 345	sp->dev->stats.rx_bytes += count;
 346
 347	if ((skb = dev_alloc_skb(count)) == NULL)
 348		goto out_mem;
 349
 350	ptr = skb_put(skb, count);
 351	*ptr++ = cmd;	/* KISS command */
 352
 353	memcpy(ptr, sp->cooked_buf + 1, count);
 354	skb->protocol = ax25_type_trans(skb, sp->dev);
 355	netif_rx(skb);
 356	sp->dev->stats.rx_packets++;
 357
 358	return;
 359
 360out_mem:
 361	sp->dev->stats.rx_dropped++;
 362}
 363
 364
 365/* ----------------------------------------------------------------------- */
 366
 367/*
 368 * We have a potential race on dereferencing tty->disc_data, because the tty
 369 * layer provides no locking at all - thus one cpu could be running
 370 * sixpack_receive_buf while another calls sixpack_close, which zeroes
 371 * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
 372 * best way to fix this is to use a rwlock in the tty struct, but for now we
 373 * use a single global rwlock for all ttys in ppp line discipline.
 374 */
 375static DEFINE_RWLOCK(disc_data_lock);
 376                                                                                
 377static struct sixpack *sp_get(struct tty_struct *tty)
 378{
 379	struct sixpack *sp;
 380
 381	read_lock(&disc_data_lock);
 382	sp = tty->disc_data;
 383	if (sp)
 384		atomic_inc(&sp->refcnt);
 385	read_unlock(&disc_data_lock);
 386
 387	return sp;
 388}
 389
 390static void sp_put(struct sixpack *sp)
 391{
 392	if (atomic_dec_and_test(&sp->refcnt))
 393		up(&sp->dead_sem);
 394}
 395
 396/*
 397 * Called by the TTY driver when there's room for more data.  If we have
 398 * more packets to send, we send them here.
 399 */
 400static void sixpack_write_wakeup(struct tty_struct *tty)
 401{
 402	struct sixpack *sp = sp_get(tty);
 403	int actual;
 404
 405	if (!sp)
 406		return;
 407	if (sp->xleft <= 0)  {
 408		/* Now serial buffer is almost free & we can start
 409		 * transmission of another packet */
 410		sp->dev->stats.tx_packets++;
 411		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 412		sp->tx_enable = 0;
 413		netif_wake_queue(sp->dev);
 414		goto out;
 415	}
 416
 417	if (sp->tx_enable) {
 418		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
 419		sp->xleft -= actual;
 420		sp->xhead += actual;
 421	}
 422
 423out:
 424	sp_put(sp);
 425}
 426
 427/* ----------------------------------------------------------------------- */
 428
 429/*
 430 * Handle the 'receiver data ready' interrupt.
 431 * This function is called by the 'tty_io' module in the kernel when
 432 * a block of 6pack data has been received, which can now be decapsulated
 433 * and sent on to some IP layer for further processing.
 434 */
 435static void sixpack_receive_buf(struct tty_struct *tty,
 436	const unsigned char *cp, char *fp, int count)
 437{
 438	struct sixpack *sp;
 439	unsigned char buf[512];
 440	int count1;
 441
 442	if (!count)
 443		return;
 444
 445	sp = sp_get(tty);
 446	if (!sp)
 447		return;
 448
 449	memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));
 450
 451	/* Read the characters out of the buffer */
 452
 453	count1 = count;
 454	while (count) {
 455		count--;
 456		if (fp && *fp++) {
 457			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
 458				sp->dev->stats.rx_errors++;
 459			continue;
 460		}
 461	}
 462	sixpack_decode(sp, buf, count1);
 463
 464	sp_put(sp);
 465	tty_unthrottle(tty);
 466}
 467
 468/*
 469 * Try to resync the TNC. Called by the resync timer defined in
 470 * decode_prio_command
 471 */
 472
 473#define TNC_UNINITIALIZED	0
 474#define TNC_UNSYNC_STARTUP	1
 475#define TNC_UNSYNCED		2
 476#define TNC_IN_SYNC		3
 477
 478static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
 479{
 480	char *msg;
 481
 482	switch (new_tnc_state) {
 483	default:			/* gcc oh piece-o-crap ... */
 484	case TNC_UNSYNC_STARTUP:
 485		msg = "Synchronizing with TNC";
 486		break;
 487	case TNC_UNSYNCED:
 488		msg = "Lost synchronization with TNC\n";
 489		break;
 490	case TNC_IN_SYNC:
 491		msg = "Found TNC";
 492		break;
 493	}
 494
 495	sp->tnc_state = new_tnc_state;
 496	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
 497}
 498
 499static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
 500{
 501	int old_tnc_state = sp->tnc_state;
 502
 503	if (old_tnc_state != new_tnc_state)
 504		__tnc_set_sync_state(sp, new_tnc_state);
 505}
 506
 507static void resync_tnc(unsigned long channel)
 508{
 509	struct sixpack *sp = (struct sixpack *) channel;
 510	static char resync_cmd = 0xe8;
 511
 512	/* clear any data that might have been received */
 513
 514	sp->rx_count = 0;
 515	sp->rx_count_cooked = 0;
 516
 517	/* reset state machine */
 518
 519	sp->status = 1;
 520	sp->status1 = 1;
 521	sp->status2 = 0;
 522
 523	/* resync the TNC */
 524
 525	sp->led_state = 0x60;
 526	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 527	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
 528
 529
 530	/* Start resync timer again -- the TNC might be still absent */
 531
 532	del_timer(&sp->resync_t);
 533	sp->resync_t.data	= (unsigned long) sp;
 534	sp->resync_t.function	= resync_tnc;
 535	sp->resync_t.expires	= jiffies + SIXP_RESYNC_TIMEOUT;
 536	add_timer(&sp->resync_t);
 537}
 538
 539static inline int tnc_init(struct sixpack *sp)
 540{
 541	unsigned char inbyte = 0xe8;
 542
 543	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
 544
 545	sp->tty->ops->write(sp->tty, &inbyte, 1);
 546
 547	del_timer(&sp->resync_t);
 548	sp->resync_t.data = (unsigned long) sp;
 549	sp->resync_t.function = resync_tnc;
 550	sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
 551	add_timer(&sp->resync_t);
 552
 553	return 0;
 554}
 555
 556/*
 557 * Open the high-level part of the 6pack channel.
 558 * This function is called by the TTY module when the
 559 * 6pack line discipline is called for.  Because we are
 560 * sure the tty line exists, we only have to link it to
 561 * a free 6pcack channel...
 562 */
 563static int sixpack_open(struct tty_struct *tty)
 564{
 565	char *rbuff = NULL, *xbuff = NULL;
 566	struct net_device *dev;
 567	struct sixpack *sp;
 568	unsigned long len;
 569	int err = 0;
 570
 571	if (!capable(CAP_NET_ADMIN))
 572		return -EPERM;
 573	if (tty->ops->write == NULL)
 574		return -EOPNOTSUPP;
 575
 576	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
 577			   sp_setup);
 578	if (!dev) {
 579		err = -ENOMEM;
 580		goto out;
 581	}
 582
 583	sp = netdev_priv(dev);
 584	sp->dev = dev;
 585
 586	spin_lock_init(&sp->lock);
 587	atomic_set(&sp->refcnt, 1);
 588	sema_init(&sp->dead_sem, 0);
 589
 590	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
 591
 592	len = dev->mtu * 2;
 593
 594	rbuff = kmalloc(len + 4, GFP_KERNEL);
 595	xbuff = kmalloc(len + 4, GFP_KERNEL);
 596
 597	if (rbuff == NULL || xbuff == NULL) {
 598		err = -ENOBUFS;
 599		goto out_free;
 600	}
 601
 602	spin_lock_bh(&sp->lock);
 603
 604	sp->tty = tty;
 605
 606	sp->rbuff	= rbuff;
 607	sp->xbuff	= xbuff;
 608
 609	sp->mtu		= AX25_MTU + 73;
 610	sp->buffsize	= len;
 611	sp->rcount	= 0;
 612	sp->rx_count	= 0;
 613	sp->rx_count_cooked = 0;
 614	sp->xleft	= 0;
 615
 616	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
 617
 618	sp->duplex	= 0;
 619	sp->tx_delay    = SIXP_TXDELAY;
 620	sp->persistence = SIXP_PERSIST;
 621	sp->slottime    = SIXP_SLOTTIME;
 622	sp->led_state   = 0x60;
 623	sp->status      = 1;
 624	sp->status1     = 1;
 625	sp->status2     = 0;
 626	sp->tx_enable   = 0;
 627
 628	netif_start_queue(dev);
 629
 630	init_timer(&sp->tx_t);
 631	sp->tx_t.function = sp_xmit_on_air;
 632	sp->tx_t.data = (unsigned long) sp;
 633
 634	init_timer(&sp->resync_t);
 635
 636	spin_unlock_bh(&sp->lock);
 637
 638	/* Done.  We have linked the TTY line to a channel. */
 639	tty->disc_data = sp;
 640	tty->receive_room = 65536;
 641
 642	/* Now we're ready to register. */
 643	err = register_netdev(dev);
 644	if (err)
 645		goto out_free;
 646
 647	tnc_init(sp);
 648
 649	return 0;
 650
 651out_free:
 652	kfree(xbuff);
 653	kfree(rbuff);
 654
 655	free_netdev(dev);
 
 656
 657out:
 658	return err;
 659}
 660
 661
 662/*
 663 * Close down a 6pack channel.
 664 * This means flushing out any pending queues, and then restoring the
 665 * TTY line discipline to what it was before it got hooked to 6pack
 666 * (which usually is TTY again).
 667 */
 668static void sixpack_close(struct tty_struct *tty)
 669{
 670	struct sixpack *sp;
 671
 672	write_lock_bh(&disc_data_lock);
 673	sp = tty->disc_data;
 674	tty->disc_data = NULL;
 675	write_unlock_bh(&disc_data_lock);
 676	if (!sp)
 677		return;
 678
 679	/*
 680	 * We have now ensured that nobody can start using ap from now on, but
 681	 * we have to wait for all existing users to finish.
 682	 */
 683	if (!atomic_dec_and_test(&sp->refcnt))
 684		down(&sp->dead_sem);
 685
 686	/* We must stop the queue to avoid potentially scribbling
 687	 * on the free buffers. The sp->dead_sem is not sufficient
 688	 * to protect us from sp->xbuff access.
 689	 */
 690	netif_stop_queue(sp->dev);
 691
 692	del_timer_sync(&sp->tx_t);
 693	del_timer_sync(&sp->resync_t);
 694
 695	/* Free all 6pack frame buffers. */
 696	kfree(sp->rbuff);
 697	kfree(sp->xbuff);
 698
 699	unregister_netdev(sp->dev);
 700}
 701
 702/* Perform I/O control on an active 6pack channel. */
 703static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
 704	unsigned int cmd, unsigned long arg)
 705{
 706	struct sixpack *sp = sp_get(tty);
 707	struct net_device *dev;
 708	unsigned int tmp, err;
 709
 710	if (!sp)
 711		return -ENXIO;
 712	dev = sp->dev;
 713
 714	switch(cmd) {
 715	case SIOCGIFNAME:
 716		err = copy_to_user((void __user *) arg, dev->name,
 717		                   strlen(dev->name) + 1) ? -EFAULT : 0;
 718		break;
 719
 720	case SIOCGIFENCAP:
 721		err = put_user(0, (int __user *) arg);
 722		break;
 723
 724	case SIOCSIFENCAP:
 725		if (get_user(tmp, (int __user *) arg)) {
 726			err = -EFAULT;
 727			break;
 728		}
 729
 730		sp->mode = tmp;
 731		dev->addr_len        = AX25_ADDR_LEN;
 732		dev->hard_header_len = AX25_KISS_HEADER_LEN +
 733		                       AX25_MAX_HEADER_LEN + 3;
 734		dev->type            = ARPHRD_AX25;
 735
 736		err = 0;
 737		break;
 738
 739	 case SIOCSIFHWADDR: {
 740		char addr[AX25_ADDR_LEN];
 741
 742		if (copy_from_user(&addr,
 743		                   (void __user *) arg, AX25_ADDR_LEN)) {
 744				err = -EFAULT;
 745				break;
 746			}
 747
 748			netif_tx_lock_bh(dev);
 749			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
 750			netif_tx_unlock_bh(dev);
 751
 752			err = 0;
 753			break;
 754		}
 755
 756	default:
 757		err = tty_mode_ioctl(tty, file, cmd, arg);
 758	}
 759
 760	sp_put(sp);
 761
 762	return err;
 763}
 764
 765#ifdef CONFIG_COMPAT
 766static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file,
 767				unsigned int cmd, unsigned long arg)
 768{
 769	switch (cmd) {
 770	case SIOCGIFNAME:
 771	case SIOCGIFENCAP:
 772	case SIOCSIFENCAP:
 773	case SIOCSIFHWADDR:
 774		return sixpack_ioctl(tty, file, cmd,
 775				(unsigned long)compat_ptr(arg));
 776	}
 777
 778	return -ENOIOCTLCMD;
 779}
 780#endif
 781
 782static struct tty_ldisc_ops sp_ldisc = {
 783	.owner		= THIS_MODULE,
 784	.magic		= TTY_LDISC_MAGIC,
 785	.name		= "6pack",
 786	.open		= sixpack_open,
 787	.close		= sixpack_close,
 788	.ioctl		= sixpack_ioctl,
 789#ifdef CONFIG_COMPAT
 790	.compat_ioctl	= sixpack_compat_ioctl,
 791#endif
 792	.receive_buf	= sixpack_receive_buf,
 793	.write_wakeup	= sixpack_write_wakeup,
 794};
 795
 796/* Initialize 6pack control device -- register 6pack line discipline */
 797
 798static const char msg_banner[]  __initconst = KERN_INFO \
 799	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
 800static const char msg_regfail[] __initconst = KERN_ERR  \
 801	"6pack: can't register line discipline (err = %d)\n";
 802
 803static int __init sixpack_init_driver(void)
 804{
 805	int status;
 806
 807	printk(msg_banner);
 808
 809	/* Register the provided line protocol discipline */
 810	if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
 811		printk(msg_regfail, status);
 812
 813	return status;
 814}
 815
 816static const char msg_unregfail[] = KERN_ERR \
 817	"6pack: can't unregister line discipline (err = %d)\n";
 818
 819static void __exit sixpack_exit_driver(void)
 820{
 821	int ret;
 822
 823	if ((ret = tty_unregister_ldisc(N_6PACK)))
 824		printk(msg_unregfail, ret);
 825}
 826
 827/* encode an AX.25 packet into 6pack */
 828
 829static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
 830	int length, unsigned char tx_delay)
 831{
 832	int count = 0;
 833	unsigned char checksum = 0, buf[400];
 834	int raw_count = 0;
 835
 836	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
 837	tx_buf_raw[raw_count++] = SIXP_SEOF;
 838
 839	buf[0] = tx_delay;
 840	for (count = 1; count < length; count++)
 841		buf[count] = tx_buf[count];
 842
 843	for (count = 0; count < length; count++)
 844		checksum += buf[count];
 845	buf[length] = (unsigned char) 0xff - checksum;
 846
 847	for (count = 0; count <= length; count++) {
 848		if ((count % 3) == 0) {
 849			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
 850			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
 851		} else if ((count % 3) == 1) {
 852			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
 853			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
 854		} else {
 855			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
 856			tx_buf_raw[raw_count++] = (buf[count] >> 2);
 857		}
 858	}
 859	if ((length % 3) != 2)
 860		raw_count++;
 861	tx_buf_raw[raw_count++] = SIXP_SEOF;
 862	return raw_count;
 863}
 864
 865/* decode 4 sixpack-encoded bytes into 3 data bytes */
 866
 867static void decode_data(struct sixpack *sp, unsigned char inbyte)
 868{
 869	unsigned char *buf;
 870
 871	if (sp->rx_count != 3) {
 872		sp->raw_buf[sp->rx_count++] = inbyte;
 873
 874		return;
 875	}
 876
 877	buf = sp->raw_buf;
 878	sp->cooked_buf[sp->rx_count_cooked++] =
 879		buf[0] | ((buf[1] << 2) & 0xc0);
 880	sp->cooked_buf[sp->rx_count_cooked++] =
 881		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
 882	sp->cooked_buf[sp->rx_count_cooked++] =
 883		(buf[2] & 0x03) | (inbyte << 2);
 884	sp->rx_count = 0;
 885}
 886
 887/* identify and execute a 6pack priority command byte */
 888
 889static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
 890{
 891	unsigned char channel;
 892	int actual;
 893
 894	channel = cmd & SIXP_CHN_MASK;
 895	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
 896
 897	/* RX and DCD flags can only be set in the same prio command,
 898	   if the DCD flag has been set without the RX flag in the previous
 899	   prio command. If DCD has not been set before, something in the
 900	   transmission has gone wrong. In this case, RX and DCD are
 901	   cleared in order to prevent the decode_data routine from
 902	   reading further data that might be corrupt. */
 903
 904		if (((sp->status & SIXP_DCD_MASK) == 0) &&
 905			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
 906				if (sp->status != 1)
 907					printk(KERN_DEBUG "6pack: protocol violation\n");
 908				else
 909					sp->status = 0;
 910				cmd &= ~SIXP_RX_DCD_MASK;
 911		}
 912		sp->status = cmd & SIXP_PRIO_DATA_MASK;
 913	} else { /* output watchdog char if idle */
 914		if ((sp->status2 != 0) && (sp->duplex == 1)) {
 915			sp->led_state = 0x70;
 916			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 917			sp->tx_enable = 1;
 918			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
 919			sp->xleft -= actual;
 920			sp->xhead += actual;
 921			sp->led_state = 0x60;
 922			sp->status2 = 0;
 923
 924		}
 925	}
 926
 927	/* needed to trigger the TNC watchdog */
 928	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 929
 930        /* if the state byte has been received, the TNC is present,
 931           so the resync timer can be reset. */
 932
 933	if (sp->tnc_state == TNC_IN_SYNC) {
 934		del_timer(&sp->resync_t);
 935		sp->resync_t.data	= (unsigned long) sp;
 936		sp->resync_t.function	= resync_tnc;
 937		sp->resync_t.expires	= jiffies + SIXP_INIT_RESYNC_TIMEOUT;
 938		add_timer(&sp->resync_t);
 939	}
 940
 941	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
 942}
 943
 944/* identify and execute a standard 6pack command byte */
 945
 946static void decode_std_command(struct sixpack *sp, unsigned char cmd)
 947{
 948	unsigned char checksum = 0, rest = 0, channel;
 949	short i;
 950
 951	channel = cmd & SIXP_CHN_MASK;
 952	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
 953	case SIXP_SEOF:
 954		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
 955			if ((sp->status & SIXP_RX_DCD_MASK) ==
 956				SIXP_RX_DCD_MASK) {
 957				sp->led_state = 0x68;
 958				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 959			}
 960		} else {
 961			sp->led_state = 0x60;
 962			/* fill trailing bytes with zeroes */
 963			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 964			rest = sp->rx_count;
 965			if (rest != 0)
 966				 for (i = rest; i <= 3; i++)
 967					decode_data(sp, 0);
 968			if (rest == 2)
 969				sp->rx_count_cooked -= 2;
 970			else if (rest == 3)
 971				sp->rx_count_cooked -= 1;
 972			for (i = 0; i < sp->rx_count_cooked; i++)
 973				checksum += sp->cooked_buf[i];
 974			if (checksum != SIXP_CHKSUM) {
 975				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
 976			} else {
 977				sp->rcount = sp->rx_count_cooked-2;
 978				sp_bump(sp, 0);
 979			}
 980			sp->rx_count_cooked = 0;
 981		}
 982		break;
 983	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
 984		break;
 985	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
 986		break;
 987	case SIXP_RX_BUF_OVL:
 988		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
 989	}
 990}
 991
 992/* decode a 6pack packet */
 993
 994static void
 995sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
 996{
 997	unsigned char inbyte;
 998	int count1;
 999
1000	for (count1 = 0; count1 < count; count1++) {
1001		inbyte = pre_rbuff[count1];
1002		if (inbyte == SIXP_FOUND_TNC) {
1003			tnc_set_sync_state(sp, TNC_IN_SYNC);
1004			del_timer(&sp->resync_t);
1005		}
1006		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1007			decode_prio_command(sp, inbyte);
1008		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1009			decode_std_command(sp, inbyte);
1010		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
1011			decode_data(sp, inbyte);
1012	}
1013}
1014
1015MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1016MODULE_DESCRIPTION("6pack driver for AX.25");
1017MODULE_LICENSE("GPL");
1018MODULE_ALIAS_LDISC(N_6PACK);
1019
1020module_init(sixpack_init_driver);
1021module_exit(sixpack_exit_driver);