Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
   2 *           auto carrier detecting ethernet driver.  Also known as the
   3 *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
   4 *
   5 * Copyright (C) 1996, 1998, 1999, 2002, 2003,
   6 *		2006, 2008 David S. Miller (davem@davemloft.net)
   7 *
   8 * Changes :
   9 * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
  10 *   - port to non-sparc architectures. Tested only on x86 and
  11 *     only currently works with QFE PCI cards.
  12 *   - ability to specify the MAC address at module load time by passing this
  13 *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
  14 */
  15
  16#include <linux/module.h>
  17#include <linux/kernel.h>
  18#include <linux/types.h>
  19#include <linux/fcntl.h>
  20#include <linux/interrupt.h>
  21#include <linux/ioport.h>
  22#include <linux/in.h>
  23#include <linux/slab.h>
  24#include <linux/string.h>
  25#include <linux/delay.h>
  26#include <linux/init.h>
  27#include <linux/ethtool.h>
  28#include <linux/mii.h>
  29#include <linux/crc32.h>
  30#include <linux/random.h>
  31#include <linux/errno.h>
  32#include <linux/netdevice.h>
  33#include <linux/etherdevice.h>
  34#include <linux/skbuff.h>
  35#include <linux/mm.h>
  36#include <linux/bitops.h>
  37#include <linux/dma-mapping.h>
  38
  39#include <asm/io.h>
  40#include <asm/dma.h>
  41#include <asm/byteorder.h>
  42
  43#ifdef CONFIG_SPARC
  44#include <linux/of.h>
  45#include <linux/of_device.h>
  46#include <asm/idprom.h>
  47#include <asm/openprom.h>
  48#include <asm/oplib.h>
  49#include <asm/prom.h>
  50#include <asm/auxio.h>
  51#endif
  52#include <asm/uaccess.h>
  53
  54#include <asm/pgtable.h>
  55#include <asm/irq.h>
  56
  57#ifdef CONFIG_PCI
  58#include <linux/pci.h>
  59#endif
  60
  61#include "sunhme.h"
  62
  63#define DRV_NAME	"sunhme"
  64#define DRV_VERSION	"3.10"
  65#define DRV_RELDATE	"August 26, 2008"
  66#define DRV_AUTHOR	"David S. Miller (davem@davemloft.net)"
  67
  68static char version[] =
  69	DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
  70
  71MODULE_VERSION(DRV_VERSION);
  72MODULE_AUTHOR(DRV_AUTHOR);
  73MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
  74MODULE_LICENSE("GPL");
  75
  76static int macaddr[6];
  77
  78/* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
  79module_param_array(macaddr, int, NULL, 0);
  80MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
  81
  82#ifdef CONFIG_SBUS
  83static struct quattro *qfe_sbus_list;
  84#endif
  85
  86#ifdef CONFIG_PCI
  87static struct quattro *qfe_pci_list;
  88#endif
  89
  90#undef HMEDEBUG
  91#undef SXDEBUG
  92#undef RXDEBUG
  93#undef TXDEBUG
  94#undef TXLOGGING
  95
  96#ifdef TXLOGGING
  97struct hme_tx_logent {
  98	unsigned int tstamp;
  99	int tx_new, tx_old;
 100	unsigned int action;
 101#define TXLOG_ACTION_IRQ	0x01
 102#define TXLOG_ACTION_TXMIT	0x02
 103#define TXLOG_ACTION_TBUSY	0x04
 104#define TXLOG_ACTION_NBUFS	0x08
 105	unsigned int status;
 106};
 107#define TX_LOG_LEN	128
 108static struct hme_tx_logent tx_log[TX_LOG_LEN];
 109static int txlog_cur_entry;
 110static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
 111{
 112	struct hme_tx_logent *tlp;
 113	unsigned long flags;
 114
 115	local_irq_save(flags);
 116	tlp = &tx_log[txlog_cur_entry];
 117	tlp->tstamp = (unsigned int)jiffies;
 118	tlp->tx_new = hp->tx_new;
 119	tlp->tx_old = hp->tx_old;
 120	tlp->action = a;
 121	tlp->status = s;
 122	txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
 123	local_irq_restore(flags);
 124}
 125static __inline__ void tx_dump_log(void)
 126{
 127	int i, this;
 128
 129	this = txlog_cur_entry;
 130	for (i = 0; i < TX_LOG_LEN; i++) {
 131		printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
 132		       tx_log[this].tstamp,
 133		       tx_log[this].tx_new, tx_log[this].tx_old,
 134		       tx_log[this].action, tx_log[this].status);
 135		this = (this + 1) & (TX_LOG_LEN - 1);
 136	}
 137}
 138static __inline__ void tx_dump_ring(struct happy_meal *hp)
 139{
 140	struct hmeal_init_block *hb = hp->happy_block;
 141	struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
 142	int i;
 143
 144	for (i = 0; i < TX_RING_SIZE; i+=4) {
 145		printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
 146		       i, i + 4,
 147		       le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
 148		       le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
 149		       le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
 150		       le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
 151	}
 152}
 153#else
 154#define tx_add_log(hp, a, s)		do { } while(0)
 155#define tx_dump_log()			do { } while(0)
 156#define tx_dump_ring(hp)		do { } while(0)
 157#endif
 158
 159#ifdef HMEDEBUG
 160#define HMD(x)  printk x
 161#else
 162#define HMD(x)
 163#endif
 164
 165/* #define AUTO_SWITCH_DEBUG */
 166
 167#ifdef AUTO_SWITCH_DEBUG
 168#define ASD(x)  printk x
 169#else
 170#define ASD(x)
 171#endif
 172
 173#define DEFAULT_IPG0      16 /* For lance-mode only */
 174#define DEFAULT_IPG1       8 /* For all modes */
 175#define DEFAULT_IPG2       4 /* For all modes */
 176#define DEFAULT_JAMSIZE    4 /* Toe jam */
 177
 178/* NOTE: In the descriptor writes one _must_ write the address
 179 *	 member _first_.  The card must not be allowed to see
 180 *	 the updated descriptor flags until the address is
 181 *	 correct.  I've added a write memory barrier between
 182 *	 the two stores so that I can sleep well at night... -DaveM
 183 */
 184
 185#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
 186static void sbus_hme_write32(void __iomem *reg, u32 val)
 187{
 188	sbus_writel(val, reg);
 189}
 190
 191static u32 sbus_hme_read32(void __iomem *reg)
 192{
 193	return sbus_readl(reg);
 194}
 195
 196static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
 197{
 198	rxd->rx_addr = (__force hme32)addr;
 199	dma_wmb();
 200	rxd->rx_flags = (__force hme32)flags;
 201}
 202
 203static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
 204{
 205	txd->tx_addr = (__force hme32)addr;
 206	dma_wmb();
 207	txd->tx_flags = (__force hme32)flags;
 208}
 209
 210static u32 sbus_hme_read_desc32(hme32 *p)
 211{
 212	return (__force u32)*p;
 213}
 214
 215static void pci_hme_write32(void __iomem *reg, u32 val)
 216{
 217	writel(val, reg);
 218}
 219
 220static u32 pci_hme_read32(void __iomem *reg)
 221{
 222	return readl(reg);
 223}
 224
 225static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
 226{
 227	rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
 228	dma_wmb();
 229	rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
 230}
 231
 232static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
 233{
 234	txd->tx_addr = (__force hme32)cpu_to_le32(addr);
 235	dma_wmb();
 236	txd->tx_flags = (__force hme32)cpu_to_le32(flags);
 237}
 238
 239static u32 pci_hme_read_desc32(hme32 *p)
 240{
 241	return le32_to_cpup((__le32 *)p);
 242}
 243
 244#define hme_write32(__hp, __reg, __val) \
 245	((__hp)->write32((__reg), (__val)))
 246#define hme_read32(__hp, __reg) \
 247	((__hp)->read32(__reg))
 248#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
 249	((__hp)->write_rxd((__rxd), (__flags), (__addr)))
 250#define hme_write_txd(__hp, __txd, __flags, __addr) \
 251	((__hp)->write_txd((__txd), (__flags), (__addr)))
 252#define hme_read_desc32(__hp, __p) \
 253	((__hp)->read_desc32(__p))
 254#define hme_dma_map(__hp, __ptr, __size, __dir) \
 255	((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir)))
 256#define hme_dma_unmap(__hp, __addr, __size, __dir) \
 257	((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir)))
 258#define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
 259	((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)))
 260#define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
 261	((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)))
 262#else
 263#ifdef CONFIG_SBUS
 264/* SBUS only compilation */
 265#define hme_write32(__hp, __reg, __val) \
 266	sbus_writel((__val), (__reg))
 267#define hme_read32(__hp, __reg) \
 268	sbus_readl(__reg)
 269#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
 270do {	(__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
 271	dma_wmb(); \
 272	(__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
 273} while(0)
 274#define hme_write_txd(__hp, __txd, __flags, __addr) \
 275do {	(__txd)->tx_addr = (__force hme32)(u32)(__addr); \
 276	dma_wmb(); \
 277	(__txd)->tx_flags = (__force hme32)(u32)(__flags); \
 278} while(0)
 279#define hme_read_desc32(__hp, __p)	((__force u32)(hme32)*(__p))
 280#define hme_dma_map(__hp, __ptr, __size, __dir) \
 281	dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
 282#define hme_dma_unmap(__hp, __addr, __size, __dir) \
 283	dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
 284#define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
 285	dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
 286#define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
 287	dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
 288#else
 289/* PCI only compilation */
 290#define hme_write32(__hp, __reg, __val) \
 291	writel((__val), (__reg))
 292#define hme_read32(__hp, __reg) \
 293	readl(__reg)
 294#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
 295do {	(__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
 296	dma_wmb(); \
 297	(__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
 298} while(0)
 299#define hme_write_txd(__hp, __txd, __flags, __addr) \
 300do {	(__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
 301	dma_wmb(); \
 302	(__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
 303} while(0)
 304static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
 305{
 306	return le32_to_cpup((__le32 *)p);
 307}
 308#define hme_dma_map(__hp, __ptr, __size, __dir) \
 309	pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
 310#define hme_dma_unmap(__hp, __addr, __size, __dir) \
 311	pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
 312#define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
 313	pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
 314#define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
 315	pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
 316#endif
 317#endif
 318
 319
 320/* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
 321static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
 322{
 323	hme_write32(hp, tregs + TCVR_BBDATA, bit);
 324	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
 325	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
 326}
 327
 328#if 0
 329static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
 330{
 331	u32 ret;
 332
 333	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
 334	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
 335	ret = hme_read32(hp, tregs + TCVR_CFG);
 336	if (internal)
 337		ret &= TCV_CFG_MDIO0;
 338	else
 339		ret &= TCV_CFG_MDIO1;
 340
 341	return ret;
 342}
 343#endif
 344
 345static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
 346{
 347	u32 retval;
 348
 349	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
 350	udelay(1);
 351	retval = hme_read32(hp, tregs + TCVR_CFG);
 352	if (internal)
 353		retval &= TCV_CFG_MDIO0;
 354	else
 355		retval &= TCV_CFG_MDIO1;
 356	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
 357
 358	return retval;
 359}
 360
 361#define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
 362
 363static int happy_meal_bb_read(struct happy_meal *hp,
 364			      void __iomem *tregs, int reg)
 365{
 366	u32 tmp;
 367	int retval = 0;
 368	int i;
 369
 370	ASD(("happy_meal_bb_read: reg=%d ", reg));
 371
 372	/* Enable the MIF BitBang outputs. */
 373	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
 374
 375	/* Force BitBang into the idle state. */
 376	for (i = 0; i < 32; i++)
 377		BB_PUT_BIT(hp, tregs, 1);
 378
 379	/* Give it the read sequence. */
 380	BB_PUT_BIT(hp, tregs, 0);
 381	BB_PUT_BIT(hp, tregs, 1);
 382	BB_PUT_BIT(hp, tregs, 1);
 383	BB_PUT_BIT(hp, tregs, 0);
 384
 385	/* Give it the PHY address. */
 386	tmp = hp->paddr & 0xff;
 387	for (i = 4; i >= 0; i--)
 388		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 389
 390	/* Tell it what register we want to read. */
 391	tmp = (reg & 0xff);
 392	for (i = 4; i >= 0; i--)
 393		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 394
 395	/* Close down the MIF BitBang outputs. */
 396	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
 397
 398	/* Now read in the value. */
 399	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 400	for (i = 15; i >= 0; i--)
 401		retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 402	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 403	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 404	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 405	ASD(("value=%x\n", retval));
 406	return retval;
 407}
 408
 409static void happy_meal_bb_write(struct happy_meal *hp,
 410				void __iomem *tregs, int reg,
 411				unsigned short value)
 412{
 413	u32 tmp;
 414	int i;
 415
 416	ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
 417
 418	/* Enable the MIF BitBang outputs. */
 419	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
 420
 421	/* Force BitBang into the idle state. */
 422	for (i = 0; i < 32; i++)
 423		BB_PUT_BIT(hp, tregs, 1);
 424
 425	/* Give it write sequence. */
 426	BB_PUT_BIT(hp, tregs, 0);
 427	BB_PUT_BIT(hp, tregs, 1);
 428	BB_PUT_BIT(hp, tregs, 0);
 429	BB_PUT_BIT(hp, tregs, 1);
 430
 431	/* Give it the PHY address. */
 432	tmp = (hp->paddr & 0xff);
 433	for (i = 4; i >= 0; i--)
 434		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 435
 436	/* Tell it what register we will be writing. */
 437	tmp = (reg & 0xff);
 438	for (i = 4; i >= 0; i--)
 439		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 440
 441	/* Tell it to become ready for the bits. */
 442	BB_PUT_BIT(hp, tregs, 1);
 443	BB_PUT_BIT(hp, tregs, 0);
 444
 445	for (i = 15; i >= 0; i--)
 446		BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
 447
 448	/* Close down the MIF BitBang outputs. */
 449	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
 450}
 451
 452#define TCVR_READ_TRIES   16
 453
 454static int happy_meal_tcvr_read(struct happy_meal *hp,
 455				void __iomem *tregs, int reg)
 456{
 457	int tries = TCVR_READ_TRIES;
 458	int retval;
 459
 460	ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
 461	if (hp->tcvr_type == none) {
 462		ASD(("no transceiver, value=TCVR_FAILURE\n"));
 463		return TCVR_FAILURE;
 464	}
 465
 466	if (!(hp->happy_flags & HFLAG_FENABLE)) {
 467		ASD(("doing bit bang\n"));
 468		return happy_meal_bb_read(hp, tregs, reg);
 469	}
 470
 471	hme_write32(hp, tregs + TCVR_FRAME,
 472		    (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
 473	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
 474		udelay(20);
 475	if (!tries) {
 476		printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
 477		return TCVR_FAILURE;
 478	}
 479	retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
 480	ASD(("value=%04x\n", retval));
 481	return retval;
 482}
 483
 484#define TCVR_WRITE_TRIES  16
 485
 486static void happy_meal_tcvr_write(struct happy_meal *hp,
 487				  void __iomem *tregs, int reg,
 488				  unsigned short value)
 489{
 490	int tries = TCVR_WRITE_TRIES;
 491
 492	ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
 493
 494	/* Welcome to Sun Microsystems, can I take your order please? */
 495	if (!(hp->happy_flags & HFLAG_FENABLE)) {
 496		happy_meal_bb_write(hp, tregs, reg, value);
 497		return;
 498	}
 499
 500	/* Would you like fries with that? */
 501	hme_write32(hp, tregs + TCVR_FRAME,
 502		    (FRAME_WRITE | (hp->paddr << 23) |
 503		     ((reg & 0xff) << 18) | (value & 0xffff)));
 504	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
 505		udelay(20);
 506
 507	/* Anything else? */
 508	if (!tries)
 509		printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
 510
 511	/* Fifty-two cents is your change, have a nice day. */
 512}
 513
 514/* Auto negotiation.  The scheme is very simple.  We have a timer routine
 515 * that keeps watching the auto negotiation process as it progresses.
 516 * The DP83840 is first told to start doing it's thing, we set up the time
 517 * and place the timer state machine in it's initial state.
 518 *
 519 * Here the timer peeks at the DP83840 status registers at each click to see
 520 * if the auto negotiation has completed, we assume here that the DP83840 PHY
 521 * will time out at some point and just tell us what (didn't) happen.  For
 522 * complete coverage we only allow so many of the ticks at this level to run,
 523 * when this has expired we print a warning message and try another strategy.
 524 * This "other" strategy is to force the interface into various speed/duplex
 525 * configurations and we stop when we see a link-up condition before the
 526 * maximum number of "peek" ticks have occurred.
 527 *
 528 * Once a valid link status has been detected we configure the BigMAC and
 529 * the rest of the Happy Meal to speak the most efficient protocol we could
 530 * get a clean link for.  The priority for link configurations, highest first
 531 * is:
 532 *                 100 Base-T Full Duplex
 533 *                 100 Base-T Half Duplex
 534 *                 10 Base-T Full Duplex
 535 *                 10 Base-T Half Duplex
 536 *
 537 * We start a new timer now, after a successful auto negotiation status has
 538 * been detected.  This timer just waits for the link-up bit to get set in
 539 * the BMCR of the DP83840.  When this occurs we print a kernel log message
 540 * describing the link type in use and the fact that it is up.
 541 *
 542 * If a fatal error of some sort is signalled and detected in the interrupt
 543 * service routine, and the chip is reset, or the link is ifconfig'd down
 544 * and then back up, this entire process repeats itself all over again.
 545 */
 546static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
 547{
 548	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 549
 550	/* Downgrade from full to half duplex.  Only possible
 551	 * via ethtool.
 552	 */
 553	if (hp->sw_bmcr & BMCR_FULLDPLX) {
 554		hp->sw_bmcr &= ~(BMCR_FULLDPLX);
 555		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 556		return 0;
 557	}
 558
 559	/* Downgrade from 100 to 10. */
 560	if (hp->sw_bmcr & BMCR_SPEED100) {
 561		hp->sw_bmcr &= ~(BMCR_SPEED100);
 562		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 563		return 0;
 564	}
 565
 566	/* We've tried everything. */
 567	return -1;
 568}
 569
 570static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
 571{
 572	printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
 573	if (hp->tcvr_type == external)
 574		printk("external ");
 575	else
 576		printk("internal ");
 577	printk("transceiver at ");
 578	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
 579	if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
 580		if (hp->sw_lpa & LPA_100FULL)
 581			printk("100Mb/s, Full Duplex.\n");
 582		else
 583			printk("100Mb/s, Half Duplex.\n");
 584	} else {
 585		if (hp->sw_lpa & LPA_10FULL)
 586			printk("10Mb/s, Full Duplex.\n");
 587		else
 588			printk("10Mb/s, Half Duplex.\n");
 589	}
 590}
 591
 592static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
 593{
 594	printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
 595	if (hp->tcvr_type == external)
 596		printk("external ");
 597	else
 598		printk("internal ");
 599	printk("transceiver at ");
 600	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 601	if (hp->sw_bmcr & BMCR_SPEED100)
 602		printk("100Mb/s, ");
 603	else
 604		printk("10Mb/s, ");
 605	if (hp->sw_bmcr & BMCR_FULLDPLX)
 606		printk("Full Duplex.\n");
 607	else
 608		printk("Half Duplex.\n");
 609}
 610
 611static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
 612{
 613	int full;
 614
 615	/* All we care about is making sure the bigmac tx_cfg has a
 616	 * proper duplex setting.
 617	 */
 618	if (hp->timer_state == arbwait) {
 619		hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
 620		if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
 621			goto no_response;
 622		if (hp->sw_lpa & LPA_100FULL)
 623			full = 1;
 624		else if (hp->sw_lpa & LPA_100HALF)
 625			full = 0;
 626		else if (hp->sw_lpa & LPA_10FULL)
 627			full = 1;
 628		else
 629			full = 0;
 630	} else {
 631		/* Forcing a link mode. */
 632		hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 633		if (hp->sw_bmcr & BMCR_FULLDPLX)
 634			full = 1;
 635		else
 636			full = 0;
 637	}
 638
 639	/* Before changing other bits in the tx_cfg register, and in
 640	 * general any of other the TX config registers too, you
 641	 * must:
 642	 * 1) Clear Enable
 643	 * 2) Poll with reads until that bit reads back as zero
 644	 * 3) Make TX configuration changes
 645	 * 4) Set Enable once more
 646	 */
 647	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 648		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
 649		    ~(BIGMAC_TXCFG_ENABLE));
 650	while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
 651		barrier();
 652	if (full) {
 653		hp->happy_flags |= HFLAG_FULL;
 654		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 655			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
 656			    BIGMAC_TXCFG_FULLDPLX);
 657	} else {
 658		hp->happy_flags &= ~(HFLAG_FULL);
 659		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 660			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
 661			    ~(BIGMAC_TXCFG_FULLDPLX));
 662	}
 663	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 664		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
 665		    BIGMAC_TXCFG_ENABLE);
 666	return 0;
 667no_response:
 668	return 1;
 669}
 670
 671static int happy_meal_init(struct happy_meal *hp);
 672
 673static int is_lucent_phy(struct happy_meal *hp)
 674{
 675	void __iomem *tregs = hp->tcvregs;
 676	unsigned short mr2, mr3;
 677	int ret = 0;
 678
 679	mr2 = happy_meal_tcvr_read(hp, tregs, 2);
 680	mr3 = happy_meal_tcvr_read(hp, tregs, 3);
 681	if ((mr2 & 0xffff) == 0x0180 &&
 682	    ((mr3 & 0xffff) >> 10) == 0x1d)
 683		ret = 1;
 684
 685	return ret;
 686}
 687
 688static void happy_meal_timer(unsigned long data)
 689{
 690	struct happy_meal *hp = (struct happy_meal *) data;
 691	void __iomem *tregs = hp->tcvregs;
 692	int restart_timer = 0;
 693
 694	spin_lock_irq(&hp->happy_lock);
 695
 696	hp->timer_ticks++;
 697	switch(hp->timer_state) {
 698	case arbwait:
 699		/* Only allow for 5 ticks, thats 10 seconds and much too
 700		 * long to wait for arbitration to complete.
 701		 */
 702		if (hp->timer_ticks >= 10) {
 703			/* Enter force mode. */
 704	do_force_mode:
 705			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 706			printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
 707			       hp->dev->name);
 708			hp->sw_bmcr = BMCR_SPEED100;
 709			happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 710
 711			if (!is_lucent_phy(hp)) {
 712				/* OK, seems we need do disable the transceiver for the first
 713				 * tick to make sure we get an accurate link state at the
 714				 * second tick.
 715				 */
 716				hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
 717				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
 718				happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
 719			}
 720			hp->timer_state = ltrywait;
 721			hp->timer_ticks = 0;
 722			restart_timer = 1;
 723		} else {
 724			/* Anything interesting happen? */
 725			hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 726			if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
 727				int ret;
 728
 729				/* Just what we've been waiting for... */
 730				ret = set_happy_link_modes(hp, tregs);
 731				if (ret) {
 732					/* Ooops, something bad happened, go to force
 733					 * mode.
 734					 *
 735					 * XXX Broken hubs which don't support 802.3u
 736					 * XXX auto-negotiation make this happen as well.
 737					 */
 738					goto do_force_mode;
 739				}
 740
 741				/* Success, at least so far, advance our state engine. */
 742				hp->timer_state = lupwait;
 743				restart_timer = 1;
 744			} else {
 745				restart_timer = 1;
 746			}
 747		}
 748		break;
 749
 750	case lupwait:
 751		/* Auto negotiation was successful and we are awaiting a
 752		 * link up status.  I have decided to let this timer run
 753		 * forever until some sort of error is signalled, reporting
 754		 * a message to the user at 10 second intervals.
 755		 */
 756		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 757		if (hp->sw_bmsr & BMSR_LSTATUS) {
 758			/* Wheee, it's up, display the link mode in use and put
 759			 * the timer to sleep.
 760			 */
 761			display_link_mode(hp, tregs);
 762			hp->timer_state = asleep;
 763			restart_timer = 0;
 764		} else {
 765			if (hp->timer_ticks >= 10) {
 766				printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
 767				       "not completely up.\n", hp->dev->name);
 768				hp->timer_ticks = 0;
 769				restart_timer = 1;
 770			} else {
 771				restart_timer = 1;
 772			}
 773		}
 774		break;
 775
 776	case ltrywait:
 777		/* Making the timeout here too long can make it take
 778		 * annoyingly long to attempt all of the link mode
 779		 * permutations, but then again this is essentially
 780		 * error recovery code for the most part.
 781		 */
 782		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 783		hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
 784		if (hp->timer_ticks == 1) {
 785			if (!is_lucent_phy(hp)) {
 786				/* Re-enable transceiver, we'll re-enable the transceiver next
 787				 * tick, then check link state on the following tick.
 788				 */
 789				hp->sw_csconfig |= CSCONFIG_TCVDISAB;
 790				happy_meal_tcvr_write(hp, tregs,
 791						      DP83840_CSCONFIG, hp->sw_csconfig);
 792			}
 793			restart_timer = 1;
 794			break;
 795		}
 796		if (hp->timer_ticks == 2) {
 797			if (!is_lucent_phy(hp)) {
 798				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
 799				happy_meal_tcvr_write(hp, tregs,
 800						      DP83840_CSCONFIG, hp->sw_csconfig);
 801			}
 802			restart_timer = 1;
 803			break;
 804		}
 805		if (hp->sw_bmsr & BMSR_LSTATUS) {
 806			/* Force mode selection success. */
 807			display_forced_link_mode(hp, tregs);
 808			set_happy_link_modes(hp, tregs); /* XXX error? then what? */
 809			hp->timer_state = asleep;
 810			restart_timer = 0;
 811		} else {
 812			if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
 813				int ret;
 814
 815				ret = try_next_permutation(hp, tregs);
 816				if (ret == -1) {
 817					/* Aieee, tried them all, reset the
 818					 * chip and try all over again.
 819					 */
 820
 821					/* Let the user know... */
 822					printk(KERN_NOTICE "%s: Link down, cable problem?\n",
 823					       hp->dev->name);
 824
 825					ret = happy_meal_init(hp);
 826					if (ret) {
 827						/* ho hum... */
 828						printk(KERN_ERR "%s: Error, cannot re-init the "
 829						       "Happy Meal.\n", hp->dev->name);
 830					}
 831					goto out;
 832				}
 833				if (!is_lucent_phy(hp)) {
 834					hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
 835									       DP83840_CSCONFIG);
 836					hp->sw_csconfig |= CSCONFIG_TCVDISAB;
 837					happy_meal_tcvr_write(hp, tregs,
 838							      DP83840_CSCONFIG, hp->sw_csconfig);
 839				}
 840				hp->timer_ticks = 0;
 841				restart_timer = 1;
 842			} else {
 843				restart_timer = 1;
 844			}
 845		}
 846		break;
 847
 848	case asleep:
 849	default:
 850		/* Can't happens.... */
 851		printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
 852		       hp->dev->name);
 853		restart_timer = 0;
 854		hp->timer_ticks = 0;
 855		hp->timer_state = asleep; /* foo on you */
 856		break;
 857	}
 858
 859	if (restart_timer) {
 860		hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
 861		add_timer(&hp->happy_timer);
 862	}
 863
 864out:
 865	spin_unlock_irq(&hp->happy_lock);
 866}
 867
 868#define TX_RESET_TRIES     32
 869#define RX_RESET_TRIES     32
 870
 871/* hp->happy_lock must be held */
 872static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
 873{
 874	int tries = TX_RESET_TRIES;
 875
 876	HMD(("happy_meal_tx_reset: reset, "));
 877
 878	/* Would you like to try our SMCC Delux? */
 879	hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
 880	while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
 881		udelay(20);
 882
 883	/* Lettuce, tomato, buggy hardware (no extra charge)? */
 884	if (!tries)
 885		printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
 886
 887	/* Take care. */
 888	HMD(("done\n"));
 889}
 890
 891/* hp->happy_lock must be held */
 892static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
 893{
 894	int tries = RX_RESET_TRIES;
 895
 896	HMD(("happy_meal_rx_reset: reset, "));
 897
 898	/* We have a special on GNU/Viking hardware bugs today. */
 899	hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
 900	while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
 901		udelay(20);
 902
 903	/* Will that be all? */
 904	if (!tries)
 905		printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
 906
 907	/* Don't forget your vik_1137125_wa.  Have a nice day. */
 908	HMD(("done\n"));
 909}
 910
 911#define STOP_TRIES         16
 912
 913/* hp->happy_lock must be held */
 914static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
 915{
 916	int tries = STOP_TRIES;
 917
 918	HMD(("happy_meal_stop: reset, "));
 919
 920	/* We're consolidating our STB products, it's your lucky day. */
 921	hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
 922	while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
 923		udelay(20);
 924
 925	/* Come back next week when we are "Sun Microelectronics". */
 926	if (!tries)
 927		printk(KERN_ERR "happy meal: Fry guys.");
 928
 929	/* Remember: "Different name, same old buggy as shit hardware." */
 930	HMD(("done\n"));
 931}
 932
 933/* hp->happy_lock must be held */
 934static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
 935{
 936	struct net_device_stats *stats = &hp->net_stats;
 937
 938	stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
 939	hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
 940
 941	stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
 942	hme_write32(hp, bregs + BMAC_UNALECTR, 0);
 943
 944	stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
 945	hme_write32(hp, bregs + BMAC_GLECTR, 0);
 946
 947	stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
 948
 949	stats->collisions +=
 950		(hme_read32(hp, bregs + BMAC_EXCTR) +
 951		 hme_read32(hp, bregs + BMAC_LTCTR));
 952	hme_write32(hp, bregs + BMAC_EXCTR, 0);
 953	hme_write32(hp, bregs + BMAC_LTCTR, 0);
 954}
 955
 956/* hp->happy_lock must be held */
 957static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
 958{
 959	ASD(("happy_meal_poll_stop: "));
 960
 961	/* If polling disabled or not polling already, nothing to do. */
 962	if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
 963	   (HFLAG_POLLENABLE | HFLAG_POLL)) {
 964		HMD(("not polling, return\n"));
 965		return;
 966	}
 967
 968	/* Shut up the MIF. */
 969	ASD(("were polling, mif ints off, "));
 970	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
 971
 972	/* Turn off polling. */
 973	ASD(("polling off, "));
 974	hme_write32(hp, tregs + TCVR_CFG,
 975		    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
 976
 977	/* We are no longer polling. */
 978	hp->happy_flags &= ~(HFLAG_POLL);
 979
 980	/* Let the bits set. */
 981	udelay(200);
 982	ASD(("done\n"));
 983}
 984
 985/* Only Sun can take such nice parts and fuck up the programming interface
 986 * like this.  Good job guys...
 987 */
 988#define TCVR_RESET_TRIES       16 /* It should reset quickly        */
 989#define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
 990
 991/* hp->happy_lock must be held */
 992static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
 993{
 994	u32 tconfig;
 995	int result, tries = TCVR_RESET_TRIES;
 996
 997	tconfig = hme_read32(hp, tregs + TCVR_CFG);
 998	ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
 999	if (hp->tcvr_type == external) {
1000		ASD(("external<"));
1001		hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1002		hp->tcvr_type = internal;
1003		hp->paddr = TCV_PADDR_ITX;
1004		ASD(("ISOLATE,"));
1005		happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1006				      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1007		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1008		if (result == TCVR_FAILURE) {
1009			ASD(("phyread_fail>\n"));
1010			return -1;
1011		}
1012		ASD(("phyread_ok,PSELECT>"));
1013		hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1014		hp->tcvr_type = external;
1015		hp->paddr = TCV_PADDR_ETX;
1016	} else {
1017		if (tconfig & TCV_CFG_MDIO1) {
1018			ASD(("internal<PSELECT,"));
1019			hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1020			ASD(("ISOLATE,"));
1021			happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1022					      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1023			result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1024			if (result == TCVR_FAILURE) {
1025				ASD(("phyread_fail>\n"));
1026				return -1;
1027			}
1028			ASD(("phyread_ok,~PSELECT>"));
1029			hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1030			hp->tcvr_type = internal;
1031			hp->paddr = TCV_PADDR_ITX;
1032		}
1033	}
1034
1035	ASD(("BMCR_RESET "));
1036	happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1037
1038	while (--tries) {
1039		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1040		if (result == TCVR_FAILURE)
1041			return -1;
1042		hp->sw_bmcr = result;
1043		if (!(result & BMCR_RESET))
1044			break;
1045		udelay(20);
1046	}
1047	if (!tries) {
1048		ASD(("BMCR RESET FAILED!\n"));
1049		return -1;
1050	}
1051	ASD(("RESET_OK\n"));
1052
1053	/* Get fresh copies of the PHY registers. */
1054	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1055	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1056	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1057	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1058
1059	ASD(("UNISOLATE"));
1060	hp->sw_bmcr &= ~(BMCR_ISOLATE);
1061	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1062
1063	tries = TCVR_UNISOLATE_TRIES;
1064	while (--tries) {
1065		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1066		if (result == TCVR_FAILURE)
1067			return -1;
1068		if (!(result & BMCR_ISOLATE))
1069			break;
1070		udelay(20);
1071	}
1072	if (!tries) {
1073		ASD((" FAILED!\n"));
1074		return -1;
1075	}
1076	ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1077	if (!is_lucent_phy(hp)) {
1078		result = happy_meal_tcvr_read(hp, tregs,
1079					      DP83840_CSCONFIG);
1080		happy_meal_tcvr_write(hp, tregs,
1081				      DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1082	}
1083	return 0;
1084}
1085
1086/* Figure out whether we have an internal or external transceiver.
1087 *
1088 * hp->happy_lock must be held
1089 */
1090static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1091{
1092	unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1093
1094	ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1095	if (hp->happy_flags & HFLAG_POLL) {
1096		/* If we are polling, we must stop to get the transceiver type. */
1097		ASD(("<polling> "));
1098		if (hp->tcvr_type == internal) {
1099			if (tconfig & TCV_CFG_MDIO1) {
1100				ASD(("<internal> <poll stop> "));
1101				happy_meal_poll_stop(hp, tregs);
1102				hp->paddr = TCV_PADDR_ETX;
1103				hp->tcvr_type = external;
1104				ASD(("<external>\n"));
1105				tconfig &= ~(TCV_CFG_PENABLE);
1106				tconfig |= TCV_CFG_PSELECT;
1107				hme_write32(hp, tregs + TCVR_CFG, tconfig);
1108			}
1109		} else {
1110			if (hp->tcvr_type == external) {
1111				ASD(("<external> "));
1112				if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1113					ASD(("<poll stop> "));
1114					happy_meal_poll_stop(hp, tregs);
1115					hp->paddr = TCV_PADDR_ITX;
1116					hp->tcvr_type = internal;
1117					ASD(("<internal>\n"));
1118					hme_write32(hp, tregs + TCVR_CFG,
1119						    hme_read32(hp, tregs + TCVR_CFG) &
1120						    ~(TCV_CFG_PSELECT));
1121				}
1122				ASD(("\n"));
1123			} else {
1124				ASD(("<none>\n"));
1125			}
1126		}
1127	} else {
1128		u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1129
1130		/* Else we can just work off of the MDIO bits. */
1131		ASD(("<not polling> "));
1132		if (reread & TCV_CFG_MDIO1) {
1133			hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1134			hp->paddr = TCV_PADDR_ETX;
1135			hp->tcvr_type = external;
1136			ASD(("<external>\n"));
1137		} else {
1138			if (reread & TCV_CFG_MDIO0) {
1139				hme_write32(hp, tregs + TCVR_CFG,
1140					    tconfig & ~(TCV_CFG_PSELECT));
1141				hp->paddr = TCV_PADDR_ITX;
1142				hp->tcvr_type = internal;
1143				ASD(("<internal>\n"));
1144			} else {
1145				printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1146				hp->tcvr_type = none; /* Grrr... */
1147				ASD(("<none>\n"));
1148			}
1149		}
1150	}
1151}
1152
1153/* The receive ring buffers are a bit tricky to get right.  Here goes...
1154 *
1155 * The buffers we dma into must be 64 byte aligned.  So we use a special
1156 * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1157 * we really need.
1158 *
1159 * We use skb_reserve() to align the data block we get in the skb.  We
1160 * also program the etxregs->cfg register to use an offset of 2.  This
1161 * imperical constant plus the ethernet header size will always leave
1162 * us with a nicely aligned ip header once we pass things up to the
1163 * protocol layers.
1164 *
1165 * The numbers work out to:
1166 *
1167 *         Max ethernet frame size         1518
1168 *         Ethernet header size              14
1169 *         Happy Meal base offset             2
1170 *
1171 * Say a skb data area is at 0xf001b010, and its size alloced is
1172 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1173 *
1174 * First our alloc_skb() routine aligns the data base to a 64 byte
1175 * boundary.  We now have 0xf001b040 as our skb data address.  We
1176 * plug this into the receive descriptor address.
1177 *
1178 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1179 * So now the data we will end up looking at starts at 0xf001b042.  When
1180 * the packet arrives, we will check out the size received and subtract
1181 * this from the skb->length.  Then we just pass the packet up to the
1182 * protocols as is, and allocate a new skb to replace this slot we have
1183 * just received from.
1184 *
1185 * The ethernet layer will strip the ether header from the front of the
1186 * skb we just sent to it, this leaves us with the ip header sitting
1187 * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
1188 * Happy Meal has even checksummed the tcp/udp data for us.  The 16
1189 * bit checksum is obtained from the low bits of the receive descriptor
1190 * flags, thus:
1191 *
1192 * 	skb->csum = rxd->rx_flags & 0xffff;
1193 * 	skb->ip_summed = CHECKSUM_COMPLETE;
1194 *
1195 * before sending off the skb to the protocols, and we are good as gold.
1196 */
1197static void happy_meal_clean_rings(struct happy_meal *hp)
1198{
1199	int i;
1200
1201	for (i = 0; i < RX_RING_SIZE; i++) {
1202		if (hp->rx_skbs[i] != NULL) {
1203			struct sk_buff *skb = hp->rx_skbs[i];
1204			struct happy_meal_rxd *rxd;
1205			u32 dma_addr;
1206
1207			rxd = &hp->happy_block->happy_meal_rxd[i];
1208			dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1209			dma_unmap_single(hp->dma_dev, dma_addr,
1210					 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1211			dev_kfree_skb_any(skb);
1212			hp->rx_skbs[i] = NULL;
1213		}
1214	}
1215
1216	for (i = 0; i < TX_RING_SIZE; i++) {
1217		if (hp->tx_skbs[i] != NULL) {
1218			struct sk_buff *skb = hp->tx_skbs[i];
1219			struct happy_meal_txd *txd;
1220			u32 dma_addr;
1221			int frag;
1222
1223			hp->tx_skbs[i] = NULL;
1224
1225			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1226				txd = &hp->happy_block->happy_meal_txd[i];
1227				dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1228				if (!frag)
1229					dma_unmap_single(hp->dma_dev, dma_addr,
1230							 (hme_read_desc32(hp, &txd->tx_flags)
1231							  & TXFLAG_SIZE),
1232							 DMA_TO_DEVICE);
1233				else
1234					dma_unmap_page(hp->dma_dev, dma_addr,
1235							 (hme_read_desc32(hp, &txd->tx_flags)
1236							  & TXFLAG_SIZE),
1237							 DMA_TO_DEVICE);
1238
1239				if (frag != skb_shinfo(skb)->nr_frags)
1240					i++;
1241			}
1242
1243			dev_kfree_skb_any(skb);
1244		}
1245	}
1246}
1247
1248/* hp->happy_lock must be held */
1249static void happy_meal_init_rings(struct happy_meal *hp)
1250{
1251	struct hmeal_init_block *hb = hp->happy_block;
1252	int i;
1253
1254	HMD(("happy_meal_init_rings: counters to zero, "));
1255	hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1256
1257	/* Free any skippy bufs left around in the rings. */
1258	HMD(("clean, "));
1259	happy_meal_clean_rings(hp);
1260
1261	/* Now get new skippy bufs for the receive ring. */
1262	HMD(("init rxring, "));
1263	for (i = 0; i < RX_RING_SIZE; i++) {
1264		struct sk_buff *skb;
1265		u32 mapping;
1266
1267		skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1268		if (!skb) {
1269			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1270			continue;
1271		}
1272		hp->rx_skbs[i] = skb;
1273
1274		/* Because we reserve afterwards. */
1275		skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1276		mapping = dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
1277					 DMA_FROM_DEVICE);
1278		if (dma_mapping_error(hp->dma_dev, mapping)) {
1279			dev_kfree_skb_any(skb);
1280			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1281			continue;
1282		}
1283		hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1284			      (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1285			      mapping);
1286		skb_reserve(skb, RX_OFFSET);
1287	}
1288
1289	HMD(("init txring, "));
1290	for (i = 0; i < TX_RING_SIZE; i++)
1291		hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1292
1293	HMD(("done\n"));
1294}
1295
1296/* hp->happy_lock must be held */
1297static void happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1298					      void __iomem *tregs,
1299					      struct ethtool_cmd *ep)
1300{
1301	int timeout;
1302
1303	/* Read all of the registers we are interested in now. */
1304	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1305	hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1306	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1307	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1308
1309	/* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1310
1311	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1312	if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1313		/* Advertise everything we can support. */
1314		if (hp->sw_bmsr & BMSR_10HALF)
1315			hp->sw_advertise |= (ADVERTISE_10HALF);
1316		else
1317			hp->sw_advertise &= ~(ADVERTISE_10HALF);
1318
1319		if (hp->sw_bmsr & BMSR_10FULL)
1320			hp->sw_advertise |= (ADVERTISE_10FULL);
1321		else
1322			hp->sw_advertise &= ~(ADVERTISE_10FULL);
1323		if (hp->sw_bmsr & BMSR_100HALF)
1324			hp->sw_advertise |= (ADVERTISE_100HALF);
1325		else
1326			hp->sw_advertise &= ~(ADVERTISE_100HALF);
1327		if (hp->sw_bmsr & BMSR_100FULL)
1328			hp->sw_advertise |= (ADVERTISE_100FULL);
1329		else
1330			hp->sw_advertise &= ~(ADVERTISE_100FULL);
1331		happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1332
1333		/* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1334		 * XXX and this is because the DP83840 does not support it, changes
1335		 * XXX would need to be made to the tx/rx logic in the driver as well
1336		 * XXX so I completely skip checking for it in the BMSR for now.
1337		 */
1338
1339#ifdef AUTO_SWITCH_DEBUG
1340		ASD(("%s: Advertising [ ", hp->dev->name));
1341		if (hp->sw_advertise & ADVERTISE_10HALF)
1342			ASD(("10H "));
1343		if (hp->sw_advertise & ADVERTISE_10FULL)
1344			ASD(("10F "));
1345		if (hp->sw_advertise & ADVERTISE_100HALF)
1346			ASD(("100H "));
1347		if (hp->sw_advertise & ADVERTISE_100FULL)
1348			ASD(("100F "));
1349#endif
1350
1351		/* Enable Auto-Negotiation, this is usually on already... */
1352		hp->sw_bmcr |= BMCR_ANENABLE;
1353		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1354
1355		/* Restart it to make sure it is going. */
1356		hp->sw_bmcr |= BMCR_ANRESTART;
1357		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1358
1359		/* BMCR_ANRESTART self clears when the process has begun. */
1360
1361		timeout = 64;  /* More than enough. */
1362		while (--timeout) {
1363			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1364			if (!(hp->sw_bmcr & BMCR_ANRESTART))
1365				break; /* got it. */
1366			udelay(10);
1367		}
1368		if (!timeout) {
1369			printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1370			       "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1371			printk(KERN_NOTICE "%s: Performing force link detection.\n",
1372			       hp->dev->name);
1373			goto force_link;
1374		} else {
1375			hp->timer_state = arbwait;
1376		}
1377	} else {
1378force_link:
1379		/* Force the link up, trying first a particular mode.
1380		 * Either we are here at the request of ethtool or
1381		 * because the Happy Meal would not start to autoneg.
1382		 */
1383
1384		/* Disable auto-negotiation in BMCR, enable the duplex and
1385		 * speed setting, init the timer state machine, and fire it off.
1386		 */
1387		if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1388			hp->sw_bmcr = BMCR_SPEED100;
1389		} else {
1390			if (ethtool_cmd_speed(ep) == SPEED_100)
1391				hp->sw_bmcr = BMCR_SPEED100;
1392			else
1393				hp->sw_bmcr = 0;
1394			if (ep->duplex == DUPLEX_FULL)
1395				hp->sw_bmcr |= BMCR_FULLDPLX;
1396		}
1397		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1398
1399		if (!is_lucent_phy(hp)) {
1400			/* OK, seems we need do disable the transceiver for the first
1401			 * tick to make sure we get an accurate link state at the
1402			 * second tick.
1403			 */
1404			hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1405							       DP83840_CSCONFIG);
1406			hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1407			happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1408					      hp->sw_csconfig);
1409		}
1410		hp->timer_state = ltrywait;
1411	}
1412
1413	hp->timer_ticks = 0;
1414	hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
1415	hp->happy_timer.data = (unsigned long) hp;
1416	hp->happy_timer.function = happy_meal_timer;
1417	add_timer(&hp->happy_timer);
1418}
1419
1420/* hp->happy_lock must be held */
1421static int happy_meal_init(struct happy_meal *hp)
1422{
1423	void __iomem *gregs        = hp->gregs;
1424	void __iomem *etxregs      = hp->etxregs;
1425	void __iomem *erxregs      = hp->erxregs;
1426	void __iomem *bregs        = hp->bigmacregs;
1427	void __iomem *tregs        = hp->tcvregs;
1428	u32 regtmp, rxcfg;
1429	unsigned char *e = &hp->dev->dev_addr[0];
1430
1431	/* If auto-negotiation timer is running, kill it. */
1432	del_timer(&hp->happy_timer);
1433
1434	HMD(("happy_meal_init: happy_flags[%08x] ",
1435	     hp->happy_flags));
1436	if (!(hp->happy_flags & HFLAG_INIT)) {
1437		HMD(("set HFLAG_INIT, "));
1438		hp->happy_flags |= HFLAG_INIT;
1439		happy_meal_get_counters(hp, bregs);
1440	}
1441
1442	/* Stop polling. */
1443	HMD(("to happy_meal_poll_stop\n"));
1444	happy_meal_poll_stop(hp, tregs);
1445
1446	/* Stop transmitter and receiver. */
1447	HMD(("happy_meal_init: to happy_meal_stop\n"));
1448	happy_meal_stop(hp, gregs);
1449
1450	/* Alloc and reset the tx/rx descriptor chains. */
1451	HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1452	happy_meal_init_rings(hp);
1453
1454	/* Shut up the MIF. */
1455	HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1456	     hme_read32(hp, tregs + TCVR_IMASK)));
1457	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1458
1459	/* See if we can enable the MIF frame on this card to speak to the DP83840. */
1460	if (hp->happy_flags & HFLAG_FENABLE) {
1461		HMD(("use frame old[%08x], ",
1462		     hme_read32(hp, tregs + TCVR_CFG)));
1463		hme_write32(hp, tregs + TCVR_CFG,
1464			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1465	} else {
1466		HMD(("use bitbang old[%08x], ",
1467		     hme_read32(hp, tregs + TCVR_CFG)));
1468		hme_write32(hp, tregs + TCVR_CFG,
1469			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1470	}
1471
1472	/* Check the state of the transceiver. */
1473	HMD(("to happy_meal_transceiver_check\n"));
1474	happy_meal_transceiver_check(hp, tregs);
1475
1476	/* Put the Big Mac into a sane state. */
1477	HMD(("happy_meal_init: "));
1478	switch(hp->tcvr_type) {
1479	case none:
1480		/* Cannot operate if we don't know the transceiver type! */
1481		HMD(("AAIEEE no transceiver type, EAGAIN"));
1482		return -EAGAIN;
1483
1484	case internal:
1485		/* Using the MII buffers. */
1486		HMD(("internal, using MII, "));
1487		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1488		break;
1489
1490	case external:
1491		/* Not using the MII, disable it. */
1492		HMD(("external, disable MII, "));
1493		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1494		break;
1495	}
1496
1497	if (happy_meal_tcvr_reset(hp, tregs))
1498		return -EAGAIN;
1499
1500	/* Reset the Happy Meal Big Mac transceiver and the receiver. */
1501	HMD(("tx/rx reset, "));
1502	happy_meal_tx_reset(hp, bregs);
1503	happy_meal_rx_reset(hp, bregs);
1504
1505	/* Set jam size and inter-packet gaps to reasonable defaults. */
1506	HMD(("jsize/ipg1/ipg2, "));
1507	hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1508	hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1509	hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1510
1511	/* Load up the MAC address and random seed. */
1512	HMD(("rseed/macaddr, "));
1513
1514	/* The docs recommend to use the 10LSB of our MAC here. */
1515	hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1516
1517	hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1518	hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1519	hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1520
1521	HMD(("htable, "));
1522	if ((hp->dev->flags & IFF_ALLMULTI) ||
1523	    (netdev_mc_count(hp->dev) > 64)) {
1524		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1525		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1526		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1527		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1528	} else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1529		u16 hash_table[4];
1530		struct netdev_hw_addr *ha;
1531		u32 crc;
1532
1533		memset(hash_table, 0, sizeof(hash_table));
1534		netdev_for_each_mc_addr(ha, hp->dev) {
1535			crc = ether_crc_le(6, ha->addr);
1536			crc >>= 26;
1537			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1538		}
1539		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1540		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1541		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1542		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1543	} else {
1544		hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1545		hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1546		hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1547		hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1548	}
1549
1550	/* Set the RX and TX ring ptrs. */
1551	HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1552	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1553	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1554	hme_write32(hp, erxregs + ERX_RING,
1555		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1556	hme_write32(hp, etxregs + ETX_RING,
1557		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1558
1559	/* Parity issues in the ERX unit of some HME revisions can cause some
1560	 * registers to not be written unless their parity is even.  Detect such
1561	 * lost writes and simply rewrite with a low bit set (which will be ignored
1562	 * since the rxring needs to be 2K aligned).
1563	 */
1564	if (hme_read32(hp, erxregs + ERX_RING) !=
1565	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1566		hme_write32(hp, erxregs + ERX_RING,
1567			    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1568			    | 0x4);
1569
1570	/* Set the supported burst sizes. */
1571	HMD(("happy_meal_init: old[%08x] bursts<",
1572	     hme_read32(hp, gregs + GREG_CFG)));
1573
1574#ifndef CONFIG_SPARC
1575	/* It is always PCI and can handle 64byte bursts. */
1576	hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1577#else
1578	if ((hp->happy_bursts & DMA_BURST64) &&
1579	    ((hp->happy_flags & HFLAG_PCI) != 0
1580#ifdef CONFIG_SBUS
1581	     || sbus_can_burst64()
1582#endif
1583	     || 0)) {
1584		u32 gcfg = GREG_CFG_BURST64;
1585
1586		/* I have no idea if I should set the extended
1587		 * transfer mode bit for Cheerio, so for now I
1588		 * do not.  -DaveM
1589		 */
1590#ifdef CONFIG_SBUS
1591		if ((hp->happy_flags & HFLAG_PCI) == 0) {
1592			struct platform_device *op = hp->happy_dev;
1593			if (sbus_can_dma_64bit()) {
1594				sbus_set_sbus64(&op->dev,
1595						hp->happy_bursts);
1596				gcfg |= GREG_CFG_64BIT;
1597			}
1598		}
1599#endif
1600
1601		HMD(("64>"));
1602		hme_write32(hp, gregs + GREG_CFG, gcfg);
1603	} else if (hp->happy_bursts & DMA_BURST32) {
1604		HMD(("32>"));
1605		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1606	} else if (hp->happy_bursts & DMA_BURST16) {
1607		HMD(("16>"));
1608		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1609	} else {
1610		HMD(("XXX>"));
1611		hme_write32(hp, gregs + GREG_CFG, 0);
1612	}
1613#endif /* CONFIG_SPARC */
1614
1615	/* Turn off interrupts we do not want to hear. */
1616	HMD((", enable global interrupts, "));
1617	hme_write32(hp, gregs + GREG_IMASK,
1618		    (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1619		     GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1620
1621	/* Set the transmit ring buffer size. */
1622	HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1623	     hme_read32(hp, etxregs + ETX_RSIZE)));
1624	hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1625
1626	/* Enable transmitter DVMA. */
1627	HMD(("tx dma enable old[%08x], ",
1628	     hme_read32(hp, etxregs + ETX_CFG)));
1629	hme_write32(hp, etxregs + ETX_CFG,
1630		    hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1631
1632	/* This chip really rots, for the receiver sometimes when you
1633	 * write to its control registers not all the bits get there
1634	 * properly.  I cannot think of a sane way to provide complete
1635	 * coverage for this hardware bug yet.
1636	 */
1637	HMD(("erx regs bug old[%08x]\n",
1638	     hme_read32(hp, erxregs + ERX_CFG)));
1639	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1640	regtmp = hme_read32(hp, erxregs + ERX_CFG);
1641	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1642	if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1643		printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1644		printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1645		       ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1646		/* XXX Should return failure here... */
1647	}
1648
1649	/* Enable Big Mac hash table filter. */
1650	HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1651	     hme_read32(hp, bregs + BMAC_RXCFG)));
1652	rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1653	if (hp->dev->flags & IFF_PROMISC)
1654		rxcfg |= BIGMAC_RXCFG_PMISC;
1655	hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1656
1657	/* Let the bits settle in the chip. */
1658	udelay(10);
1659
1660	/* Ok, configure the Big Mac transmitter. */
1661	HMD(("BIGMAC init, "));
1662	regtmp = 0;
1663	if (hp->happy_flags & HFLAG_FULL)
1664		regtmp |= BIGMAC_TXCFG_FULLDPLX;
1665
1666	/* Don't turn on the "don't give up" bit for now.  It could cause hme
1667	 * to deadlock with the PHY if a Jabber occurs.
1668	 */
1669	hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1670
1671	/* Give up after 16 TX attempts. */
1672	hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1673
1674	/* Enable the output drivers no matter what. */
1675	regtmp = BIGMAC_XCFG_ODENABLE;
1676
1677	/* If card can do lance mode, enable it. */
1678	if (hp->happy_flags & HFLAG_LANCE)
1679		regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1680
1681	/* Disable the MII buffers if using external transceiver. */
1682	if (hp->tcvr_type == external)
1683		regtmp |= BIGMAC_XCFG_MIIDISAB;
1684
1685	HMD(("XIF config old[%08x], ",
1686	     hme_read32(hp, bregs + BMAC_XIFCFG)));
1687	hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1688
1689	/* Start things up. */
1690	HMD(("tx old[%08x] and rx [%08x] ON!\n",
1691	     hme_read32(hp, bregs + BMAC_TXCFG),
1692	     hme_read32(hp, bregs + BMAC_RXCFG)));
1693
1694	/* Set larger TX/RX size to allow for 802.1q */
1695	hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1696	hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1697
1698	hme_write32(hp, bregs + BMAC_TXCFG,
1699		    hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1700	hme_write32(hp, bregs + BMAC_RXCFG,
1701		    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1702
1703	/* Get the autonegotiation started, and the watch timer ticking. */
1704	happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1705
1706	/* Success. */
1707	return 0;
1708}
1709
1710/* hp->happy_lock must be held */
1711static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1712{
1713	void __iomem *tregs	= hp->tcvregs;
1714	void __iomem *bregs	= hp->bigmacregs;
1715	void __iomem *gregs	= hp->gregs;
1716
1717	happy_meal_stop(hp, gregs);
1718	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1719	if (hp->happy_flags & HFLAG_FENABLE)
1720		hme_write32(hp, tregs + TCVR_CFG,
1721			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1722	else
1723		hme_write32(hp, tregs + TCVR_CFG,
1724			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1725	happy_meal_transceiver_check(hp, tregs);
1726	switch(hp->tcvr_type) {
1727	case none:
1728		return;
1729	case internal:
1730		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1731		break;
1732	case external:
1733		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1734		break;
1735	}
1736	if (happy_meal_tcvr_reset(hp, tregs))
1737		return;
1738
1739	/* Latch PHY registers as of now. */
1740	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1741	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1742
1743	/* Advertise everything we can support. */
1744	if (hp->sw_bmsr & BMSR_10HALF)
1745		hp->sw_advertise |= (ADVERTISE_10HALF);
1746	else
1747		hp->sw_advertise &= ~(ADVERTISE_10HALF);
1748
1749	if (hp->sw_bmsr & BMSR_10FULL)
1750		hp->sw_advertise |= (ADVERTISE_10FULL);
1751	else
1752		hp->sw_advertise &= ~(ADVERTISE_10FULL);
1753	if (hp->sw_bmsr & BMSR_100HALF)
1754		hp->sw_advertise |= (ADVERTISE_100HALF);
1755	else
1756		hp->sw_advertise &= ~(ADVERTISE_100HALF);
1757	if (hp->sw_bmsr & BMSR_100FULL)
1758		hp->sw_advertise |= (ADVERTISE_100FULL);
1759	else
1760		hp->sw_advertise &= ~(ADVERTISE_100FULL);
1761
1762	/* Update the PHY advertisement register. */
1763	happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1764}
1765
1766/* Once status is latched (by happy_meal_interrupt) it is cleared by
1767 * the hardware, so we cannot re-read it and get a correct value.
1768 *
1769 * hp->happy_lock must be held
1770 */
1771static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1772{
1773	int reset = 0;
1774
1775	/* Only print messages for non-counter related interrupts. */
1776	if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1777		      GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1778		      GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1779		      GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1780		      GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1781		      GREG_STAT_SLVPERR))
1782		printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1783		       hp->dev->name, status);
1784
1785	if (status & GREG_STAT_RFIFOVF) {
1786		/* Receive FIFO overflow is harmless and the hardware will take
1787		   care of it, just some packets are lost. Who cares. */
1788		printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1789	}
1790
1791	if (status & GREG_STAT_STSTERR) {
1792		/* BigMAC SQE link test failed. */
1793		printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1794		reset = 1;
1795	}
1796
1797	if (status & GREG_STAT_TFIFO_UND) {
1798		/* Transmit FIFO underrun, again DMA error likely. */
1799		printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1800		       hp->dev->name);
1801		reset = 1;
1802	}
1803
1804	if (status & GREG_STAT_MAXPKTERR) {
1805		/* Driver error, tried to transmit something larger
1806		 * than ethernet max mtu.
1807		 */
1808		printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1809		reset = 1;
1810	}
1811
1812	if (status & GREG_STAT_NORXD) {
1813		/* This is harmless, it just means the system is
1814		 * quite loaded and the incoming packet rate was
1815		 * faster than the interrupt handler could keep up
1816		 * with.
1817		 */
1818		printk(KERN_INFO "%s: Happy Meal out of receive "
1819		       "descriptors, packet dropped.\n",
1820		       hp->dev->name);
1821	}
1822
1823	if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1824		/* All sorts of DMA receive errors. */
1825		printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1826		if (status & GREG_STAT_RXERR)
1827			printk("GenericError ");
1828		if (status & GREG_STAT_RXPERR)
1829			printk("ParityError ");
1830		if (status & GREG_STAT_RXTERR)
1831			printk("RxTagBotch ");
1832		printk("]\n");
1833		reset = 1;
1834	}
1835
1836	if (status & GREG_STAT_EOPERR) {
1837		/* Driver bug, didn't set EOP bit in tx descriptor given
1838		 * to the happy meal.
1839		 */
1840		printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1841		       hp->dev->name);
1842		reset = 1;
1843	}
1844
1845	if (status & GREG_STAT_MIFIRQ) {
1846		/* MIF signalled an interrupt, were we polling it? */
1847		printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1848	}
1849
1850	if (status &
1851	    (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1852		/* All sorts of transmit DMA errors. */
1853		printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1854		if (status & GREG_STAT_TXEACK)
1855			printk("GenericError ");
1856		if (status & GREG_STAT_TXLERR)
1857			printk("LateError ");
1858		if (status & GREG_STAT_TXPERR)
1859			printk("ParityErro ");
1860		if (status & GREG_STAT_TXTERR)
1861			printk("TagBotch ");
1862		printk("]\n");
1863		reset = 1;
1864	}
1865
1866	if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1867		/* Bus or parity error when cpu accessed happy meal registers
1868		 * or it's internal FIFO's.  Should never see this.
1869		 */
1870		printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1871		       hp->dev->name,
1872		       (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1873		reset = 1;
1874	}
1875
1876	if (reset) {
1877		printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1878		happy_meal_init(hp);
1879		return 1;
1880	}
1881	return 0;
1882}
1883
1884/* hp->happy_lock must be held */
1885static void happy_meal_mif_interrupt(struct happy_meal *hp)
1886{
1887	void __iomem *tregs = hp->tcvregs;
1888
1889	printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1890	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1891	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1892
1893	/* Use the fastest transmission protocol possible. */
1894	if (hp->sw_lpa & LPA_100FULL) {
1895		printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1896		hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1897	} else if (hp->sw_lpa & LPA_100HALF) {
1898		printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1899		hp->sw_bmcr |= BMCR_SPEED100;
1900	} else if (hp->sw_lpa & LPA_10FULL) {
1901		printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1902		hp->sw_bmcr |= BMCR_FULLDPLX;
1903	} else {
1904		printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1905	}
1906	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1907
1908	/* Finally stop polling and shut up the MIF. */
1909	happy_meal_poll_stop(hp, tregs);
1910}
1911
1912#ifdef TXDEBUG
1913#define TXD(x) printk x
1914#else
1915#define TXD(x)
1916#endif
1917
1918/* hp->happy_lock must be held */
1919static void happy_meal_tx(struct happy_meal *hp)
1920{
1921	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1922	struct happy_meal_txd *this;
1923	struct net_device *dev = hp->dev;
1924	int elem;
1925
1926	elem = hp->tx_old;
1927	TXD(("TX<"));
1928	while (elem != hp->tx_new) {
1929		struct sk_buff *skb;
1930		u32 flags, dma_addr, dma_len;
1931		int frag;
1932
1933		TXD(("[%d]", elem));
1934		this = &txbase[elem];
1935		flags = hme_read_desc32(hp, &this->tx_flags);
1936		if (flags & TXFLAG_OWN)
1937			break;
1938		skb = hp->tx_skbs[elem];
1939		if (skb_shinfo(skb)->nr_frags) {
1940			int last;
1941
1942			last = elem + skb_shinfo(skb)->nr_frags;
1943			last &= (TX_RING_SIZE - 1);
1944			flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1945			if (flags & TXFLAG_OWN)
1946				break;
1947		}
1948		hp->tx_skbs[elem] = NULL;
1949		hp->net_stats.tx_bytes += skb->len;
1950
1951		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1952			dma_addr = hme_read_desc32(hp, &this->tx_addr);
1953			dma_len = hme_read_desc32(hp, &this->tx_flags);
1954
1955			dma_len &= TXFLAG_SIZE;
1956			if (!frag)
1957				dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1958			else
1959				dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1960
1961			elem = NEXT_TX(elem);
1962			this = &txbase[elem];
1963		}
1964
1965		dev_kfree_skb_irq(skb);
1966		hp->net_stats.tx_packets++;
1967	}
1968	hp->tx_old = elem;
1969	TXD((">"));
1970
1971	if (netif_queue_stopped(dev) &&
1972	    TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1973		netif_wake_queue(dev);
1974}
1975
1976#ifdef RXDEBUG
1977#define RXD(x) printk x
1978#else
1979#define RXD(x)
1980#endif
1981
1982/* Originally I used to handle the allocation failure by just giving back just
1983 * that one ring buffer to the happy meal.  Problem is that usually when that
1984 * condition is triggered, the happy meal expects you to do something reasonable
1985 * with all of the packets it has DMA'd in.  So now I just drop the entire
1986 * ring when we cannot get a new skb and give them all back to the happy meal,
1987 * maybe things will be "happier" now.
1988 *
1989 * hp->happy_lock must be held
1990 */
1991static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1992{
1993	struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1994	struct happy_meal_rxd *this;
1995	int elem = hp->rx_new, drops = 0;
1996	u32 flags;
1997
1998	RXD(("RX<"));
1999	this = &rxbase[elem];
2000	while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
2001		struct sk_buff *skb;
2002		int len = flags >> 16;
2003		u16 csum = flags & RXFLAG_CSUM;
2004		u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
2005
2006		RXD(("[%d ", elem));
2007
2008		/* Check for errors. */
2009		if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2010			RXD(("ERR(%08x)]", flags));
2011			hp->net_stats.rx_errors++;
2012			if (len < ETH_ZLEN)
2013				hp->net_stats.rx_length_errors++;
2014			if (len & (RXFLAG_OVERFLOW >> 16)) {
2015				hp->net_stats.rx_over_errors++;
2016				hp->net_stats.rx_fifo_errors++;
2017			}
2018
2019			/* Return it to the Happy meal. */
2020	drop_it:
2021			hp->net_stats.rx_dropped++;
2022			hme_write_rxd(hp, this,
2023				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2024				      dma_addr);
2025			goto next;
2026		}
2027		skb = hp->rx_skbs[elem];
2028		if (len > RX_COPY_THRESHOLD) {
2029			struct sk_buff *new_skb;
2030			u32 mapping;
2031
2032			/* Now refill the entry, if we can. */
2033			new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2034			if (new_skb == NULL) {
2035				drops++;
2036				goto drop_it;
2037			}
2038			skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
2039			mapping = dma_map_single(hp->dma_dev, new_skb->data,
2040						 RX_BUF_ALLOC_SIZE,
2041						 DMA_FROM_DEVICE);
2042			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2043				dev_kfree_skb_any(new_skb);
2044				drops++;
2045				goto drop_it;
2046			}
2047
2048			dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
2049			hp->rx_skbs[elem] = new_skb;
2050			hme_write_rxd(hp, this,
2051				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2052				      mapping);
2053			skb_reserve(new_skb, RX_OFFSET);
2054
2055			/* Trim the original skb for the netif. */
2056			skb_trim(skb, len);
2057		} else {
2058			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
2059
2060			if (copy_skb == NULL) {
2061				drops++;
2062				goto drop_it;
2063			}
2064
2065			skb_reserve(copy_skb, 2);
2066			skb_put(copy_skb, len);
2067			dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2068			skb_copy_from_linear_data(skb, copy_skb->data, len);
2069			dma_sync_single_for_device(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2070			/* Reuse original ring buffer. */
2071			hme_write_rxd(hp, this,
2072				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2073				      dma_addr);
2074
2075			skb = copy_skb;
2076		}
2077
2078		/* This card is _fucking_ hot... */
2079		skb->csum = csum_unfold(~(__force __sum16)htons(csum));
2080		skb->ip_summed = CHECKSUM_COMPLETE;
2081
2082		RXD(("len=%d csum=%4x]", len, csum));
2083		skb->protocol = eth_type_trans(skb, dev);
2084		netif_rx(skb);
2085
2086		hp->net_stats.rx_packets++;
2087		hp->net_stats.rx_bytes += len;
2088	next:
2089		elem = NEXT_RX(elem);
2090		this = &rxbase[elem];
2091	}
2092	hp->rx_new = elem;
2093	if (drops)
2094		printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2095	RXD((">"));
2096}
2097
2098static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2099{
2100	struct net_device *dev = dev_id;
2101	struct happy_meal *hp  = netdev_priv(dev);
2102	u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2103
2104	HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2105
2106	spin_lock(&hp->happy_lock);
2107
2108	if (happy_status & GREG_STAT_ERRORS) {
2109		HMD(("ERRORS "));
2110		if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2111			goto out;
2112	}
2113
2114	if (happy_status & GREG_STAT_MIFIRQ) {
2115		HMD(("MIFIRQ "));
2116		happy_meal_mif_interrupt(hp);
2117	}
2118
2119	if (happy_status & GREG_STAT_TXALL) {
2120		HMD(("TXALL "));
2121		happy_meal_tx(hp);
2122	}
2123
2124	if (happy_status & GREG_STAT_RXTOHOST) {
2125		HMD(("RXTOHOST "));
2126		happy_meal_rx(hp, dev);
2127	}
2128
2129	HMD(("done\n"));
2130out:
2131	spin_unlock(&hp->happy_lock);
2132
2133	return IRQ_HANDLED;
2134}
2135
2136#ifdef CONFIG_SBUS
2137static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2138{
2139	struct quattro *qp = (struct quattro *) cookie;
2140	int i;
2141
2142	for (i = 0; i < 4; i++) {
2143		struct net_device *dev = qp->happy_meals[i];
2144		struct happy_meal *hp  = netdev_priv(dev);
2145		u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2146
2147		HMD(("quattro_interrupt: status=%08x ", happy_status));
2148
2149		if (!(happy_status & (GREG_STAT_ERRORS |
2150				      GREG_STAT_MIFIRQ |
2151				      GREG_STAT_TXALL |
2152				      GREG_STAT_RXTOHOST)))
2153			continue;
2154
2155		spin_lock(&hp->happy_lock);
2156
2157		if (happy_status & GREG_STAT_ERRORS) {
2158			HMD(("ERRORS "));
2159			if (happy_meal_is_not_so_happy(hp, happy_status))
2160				goto next;
2161		}
2162
2163		if (happy_status & GREG_STAT_MIFIRQ) {
2164			HMD(("MIFIRQ "));
2165			happy_meal_mif_interrupt(hp);
2166		}
2167
2168		if (happy_status & GREG_STAT_TXALL) {
2169			HMD(("TXALL "));
2170			happy_meal_tx(hp);
2171		}
2172
2173		if (happy_status & GREG_STAT_RXTOHOST) {
2174			HMD(("RXTOHOST "));
2175			happy_meal_rx(hp, dev);
2176		}
2177
2178	next:
2179		spin_unlock(&hp->happy_lock);
2180	}
2181	HMD(("done\n"));
2182
2183	return IRQ_HANDLED;
2184}
2185#endif
2186
2187static int happy_meal_open(struct net_device *dev)
2188{
2189	struct happy_meal *hp = netdev_priv(dev);
2190	int res;
2191
2192	HMD(("happy_meal_open: "));
2193
2194	/* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2195	 * into a single source which we register handling at probe time.
2196	 */
2197	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2198		res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED,
2199				  dev->name, dev);
2200		if (res) {
2201			HMD(("EAGAIN\n"));
2202			printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2203			       hp->irq);
2204
2205			return -EAGAIN;
2206		}
2207	}
2208
2209	HMD(("to happy_meal_init\n"));
2210
2211	spin_lock_irq(&hp->happy_lock);
2212	res = happy_meal_init(hp);
2213	spin_unlock_irq(&hp->happy_lock);
2214
2215	if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2216		free_irq(hp->irq, dev);
2217	return res;
2218}
2219
2220static int happy_meal_close(struct net_device *dev)
2221{
2222	struct happy_meal *hp = netdev_priv(dev);
2223
2224	spin_lock_irq(&hp->happy_lock);
2225	happy_meal_stop(hp, hp->gregs);
2226	happy_meal_clean_rings(hp);
2227
2228	/* If auto-negotiation timer is running, kill it. */
2229	del_timer(&hp->happy_timer);
2230
2231	spin_unlock_irq(&hp->happy_lock);
2232
2233	/* On Quattro QFE cards, all hme interrupts are concentrated
2234	 * into a single source which we register handling at probe
2235	 * time and never unregister.
2236	 */
2237	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2238		free_irq(hp->irq, dev);
2239
2240	return 0;
2241}
2242
2243#ifdef SXDEBUG
2244#define SXD(x) printk x
2245#else
2246#define SXD(x)
2247#endif
2248
2249static void happy_meal_tx_timeout(struct net_device *dev)
2250{
2251	struct happy_meal *hp = netdev_priv(dev);
2252
2253	printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2254	tx_dump_log();
2255	printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2256		hme_read32(hp, hp->gregs + GREG_STAT),
2257		hme_read32(hp, hp->etxregs + ETX_CFG),
2258		hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2259
2260	spin_lock_irq(&hp->happy_lock);
2261	happy_meal_init(hp);
2262	spin_unlock_irq(&hp->happy_lock);
2263
2264	netif_wake_queue(dev);
2265}
2266
2267static void unmap_partial_tx_skb(struct happy_meal *hp, u32 first_mapping,
2268				 u32 first_len, u32 first_entry, u32 entry)
2269{
2270	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
2271
2272	dma_unmap_single(hp->dma_dev, first_mapping, first_len, DMA_TO_DEVICE);
2273
2274	first_entry = NEXT_TX(first_entry);
2275	while (first_entry != entry) {
2276		struct happy_meal_txd *this = &txbase[first_entry];
2277		u32 addr, len;
2278
2279		addr = hme_read_desc32(hp, &this->tx_addr);
2280		len = hme_read_desc32(hp, &this->tx_flags);
2281		len &= TXFLAG_SIZE;
2282		dma_unmap_page(hp->dma_dev, addr, len, DMA_TO_DEVICE);
2283	}
2284}
2285
2286static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
2287					 struct net_device *dev)
2288{
2289	struct happy_meal *hp = netdev_priv(dev);
2290 	int entry;
2291 	u32 tx_flags;
2292
2293	tx_flags = TXFLAG_OWN;
2294	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2295		const u32 csum_start_off = skb_checksum_start_offset(skb);
2296		const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2297
2298		tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2299			    ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2300			    ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2301	}
2302
2303	spin_lock_irq(&hp->happy_lock);
2304
2305 	if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2306		netif_stop_queue(dev);
2307		spin_unlock_irq(&hp->happy_lock);
2308		printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2309		       dev->name);
2310		return NETDEV_TX_BUSY;
2311	}
2312
2313	entry = hp->tx_new;
2314	SXD(("SX<l[%d]e[%d]>", len, entry));
2315	hp->tx_skbs[entry] = skb;
2316
2317	if (skb_shinfo(skb)->nr_frags == 0) {
2318		u32 mapping, len;
2319
2320		len = skb->len;
2321		mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2322		if (unlikely(dma_mapping_error(hp->dma_dev, mapping)))
2323			goto out_dma_error;
2324		tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2325		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2326			      (tx_flags | (len & TXFLAG_SIZE)),
2327			      mapping);
2328		entry = NEXT_TX(entry);
2329	} else {
2330		u32 first_len, first_mapping;
2331		int frag, first_entry = entry;
2332
2333		/* We must give this initial chunk to the device last.
2334		 * Otherwise we could race with the device.
2335		 */
2336		first_len = skb_headlen(skb);
2337		first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2338					       DMA_TO_DEVICE);
2339		if (unlikely(dma_mapping_error(hp->dma_dev, first_mapping)))
2340			goto out_dma_error;
2341		entry = NEXT_TX(entry);
2342
2343		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2344			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2345			u32 len, mapping, this_txflags;
2346
2347			len = skb_frag_size(this_frag);
2348			mapping = skb_frag_dma_map(hp->dma_dev, this_frag,
2349						   0, len, DMA_TO_DEVICE);
2350			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2351				unmap_partial_tx_skb(hp, first_mapping, first_len,
2352						     first_entry, entry);
2353				goto out_dma_error;
2354			}
2355			this_txflags = tx_flags;
2356			if (frag == skb_shinfo(skb)->nr_frags - 1)
2357				this_txflags |= TXFLAG_EOP;
2358			hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2359				      (this_txflags | (len & TXFLAG_SIZE)),
2360				      mapping);
2361			entry = NEXT_TX(entry);
2362		}
2363		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2364			      (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2365			      first_mapping);
2366	}
2367
2368	hp->tx_new = entry;
2369
2370	if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2371		netif_stop_queue(dev);
2372
2373	/* Get it going. */
2374	hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2375
2376	spin_unlock_irq(&hp->happy_lock);
2377
2378	tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2379	return NETDEV_TX_OK;
2380
2381out_dma_error:
2382	hp->tx_skbs[hp->tx_new] = NULL;
2383	spin_unlock_irq(&hp->happy_lock);
2384
2385	dev_kfree_skb_any(skb);
2386	dev->stats.tx_dropped++;
2387	return NETDEV_TX_OK;
2388}
2389
2390static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2391{
2392	struct happy_meal *hp = netdev_priv(dev);
2393
2394	spin_lock_irq(&hp->happy_lock);
2395	happy_meal_get_counters(hp, hp->bigmacregs);
2396	spin_unlock_irq(&hp->happy_lock);
2397
2398	return &hp->net_stats;
2399}
2400
2401static void happy_meal_set_multicast(struct net_device *dev)
2402{
2403	struct happy_meal *hp = netdev_priv(dev);
2404	void __iomem *bregs = hp->bigmacregs;
2405	struct netdev_hw_addr *ha;
2406	u32 crc;
2407
2408	spin_lock_irq(&hp->happy_lock);
2409
2410	if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
2411		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2412		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2413		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2414		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2415	} else if (dev->flags & IFF_PROMISC) {
2416		hme_write32(hp, bregs + BMAC_RXCFG,
2417			    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2418	} else {
2419		u16 hash_table[4];
2420
2421		memset(hash_table, 0, sizeof(hash_table));
2422		netdev_for_each_mc_addr(ha, dev) {
2423			crc = ether_crc_le(6, ha->addr);
2424			crc >>= 26;
2425			hash_table[crc >> 4] |= 1 << (crc & 0xf);
2426		}
2427		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2428		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2429		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2430		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2431	}
2432
2433	spin_unlock_irq(&hp->happy_lock);
2434}
2435
2436/* Ethtool support... */
2437static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2438{
2439	struct happy_meal *hp = netdev_priv(dev);
2440	u32 speed;
2441
2442	cmd->supported =
2443		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2444		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2445		 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2446
2447	/* XXX hardcoded stuff for now */
2448	cmd->port = PORT_TP; /* XXX no MII support */
2449	cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */
2450	cmd->phy_address = 0; /* XXX fixed PHYAD */
2451
2452	/* Record PHY settings. */
2453	spin_lock_irq(&hp->happy_lock);
2454	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2455	hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2456	spin_unlock_irq(&hp->happy_lock);
2457
2458	if (hp->sw_bmcr & BMCR_ANENABLE) {
2459		cmd->autoneg = AUTONEG_ENABLE;
2460		speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2461			 SPEED_100 : SPEED_10);
2462		if (speed == SPEED_100)
2463			cmd->duplex =
2464				(hp->sw_lpa & (LPA_100FULL)) ?
2465				DUPLEX_FULL : DUPLEX_HALF;
2466		else
2467			cmd->duplex =
2468				(hp->sw_lpa & (LPA_10FULL)) ?
2469				DUPLEX_FULL : DUPLEX_HALF;
2470	} else {
2471		cmd->autoneg = AUTONEG_DISABLE;
2472		speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
2473		cmd->duplex =
2474			(hp->sw_bmcr & BMCR_FULLDPLX) ?
2475			DUPLEX_FULL : DUPLEX_HALF;
2476	}
2477	ethtool_cmd_speed_set(cmd, speed);
2478	return 0;
2479}
2480
2481static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2482{
2483	struct happy_meal *hp = netdev_priv(dev);
2484
2485	/* Verify the settings we care about. */
2486	if (cmd->autoneg != AUTONEG_ENABLE &&
2487	    cmd->autoneg != AUTONEG_DISABLE)
2488		return -EINVAL;
2489	if (cmd->autoneg == AUTONEG_DISABLE &&
2490	    ((ethtool_cmd_speed(cmd) != SPEED_100 &&
2491	      ethtool_cmd_speed(cmd) != SPEED_10) ||
2492	     (cmd->duplex != DUPLEX_HALF &&
2493	      cmd->duplex != DUPLEX_FULL)))
2494		return -EINVAL;
2495
2496	/* Ok, do it to it. */
2497	spin_lock_irq(&hp->happy_lock);
2498	del_timer(&hp->happy_timer);
2499	happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2500	spin_unlock_irq(&hp->happy_lock);
2501
2502	return 0;
2503}
2504
2505static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2506{
2507	struct happy_meal *hp = netdev_priv(dev);
2508
2509	strlcpy(info->driver, "sunhme", sizeof(info->driver));
2510	strlcpy(info->version, "2.02", sizeof(info->version));
2511	if (hp->happy_flags & HFLAG_PCI) {
2512		struct pci_dev *pdev = hp->happy_dev;
2513		strlcpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info));
2514	}
2515#ifdef CONFIG_SBUS
2516	else {
2517		const struct linux_prom_registers *regs;
2518		struct platform_device *op = hp->happy_dev;
2519		regs = of_get_property(op->dev.of_node, "regs", NULL);
2520		if (regs)
2521			snprintf(info->bus_info, sizeof(info->bus_info),
2522				"SBUS:%d",
2523				regs->which_io);
2524	}
2525#endif
2526}
2527
2528static u32 hme_get_link(struct net_device *dev)
2529{
2530	struct happy_meal *hp = netdev_priv(dev);
2531
2532	spin_lock_irq(&hp->happy_lock);
2533	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2534	spin_unlock_irq(&hp->happy_lock);
2535
2536	return hp->sw_bmsr & BMSR_LSTATUS;
2537}
2538
2539static const struct ethtool_ops hme_ethtool_ops = {
2540	.get_settings		= hme_get_settings,
2541	.set_settings		= hme_set_settings,
2542	.get_drvinfo		= hme_get_drvinfo,
2543	.get_link		= hme_get_link,
2544};
2545
2546static int hme_version_printed;
2547
2548#ifdef CONFIG_SBUS
2549/* Given a happy meal sbus device, find it's quattro parent.
2550 * If none exist, allocate and return a new one.
2551 *
2552 * Return NULL on failure.
2553 */
2554static struct quattro *quattro_sbus_find(struct platform_device *child)
2555{
2556	struct device *parent = child->dev.parent;
2557	struct platform_device *op;
2558	struct quattro *qp;
2559
2560	op = to_platform_device(parent);
2561	qp = platform_get_drvdata(op);
2562	if (qp)
2563		return qp;
2564
2565	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2566	if (qp != NULL) {
2567		int i;
2568
2569		for (i = 0; i < 4; i++)
2570			qp->happy_meals[i] = NULL;
2571
2572		qp->quattro_dev = child;
2573		qp->next = qfe_sbus_list;
2574		qfe_sbus_list = qp;
2575
2576		platform_set_drvdata(op, qp);
2577	}
2578	return qp;
2579}
2580
2581/* After all quattro cards have been probed, we call these functions
2582 * to register the IRQ handlers for the cards that have been
2583 * successfully probed and skip the cards that failed to initialize
2584 */
2585static int __init quattro_sbus_register_irqs(void)
2586{
2587	struct quattro *qp;
2588
2589	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2590		struct platform_device *op = qp->quattro_dev;
2591		int err, qfe_slot, skip = 0;
2592
2593		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2594			if (!qp->happy_meals[qfe_slot])
2595				skip = 1;
2596		}
2597		if (skip)
2598			continue;
2599
2600		err = request_irq(op->archdata.irqs[0],
2601				  quattro_sbus_interrupt,
2602				  IRQF_SHARED, "Quattro",
2603				  qp);
2604		if (err != 0) {
2605			printk(KERN_ERR "Quattro HME: IRQ registration "
2606			       "error %d.\n", err);
2607			return err;
2608		}
2609	}
2610
2611	return 0;
2612}
2613
2614static void quattro_sbus_free_irqs(void)
2615{
2616	struct quattro *qp;
2617
2618	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2619		struct platform_device *op = qp->quattro_dev;
2620		int qfe_slot, skip = 0;
2621
2622		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2623			if (!qp->happy_meals[qfe_slot])
2624				skip = 1;
2625		}
2626		if (skip)
2627			continue;
2628
2629		free_irq(op->archdata.irqs[0], qp);
2630	}
2631}
2632#endif /* CONFIG_SBUS */
2633
2634#ifdef CONFIG_PCI
2635static struct quattro *quattro_pci_find(struct pci_dev *pdev)
2636{
2637	struct pci_dev *bdev = pdev->bus->self;
2638	struct quattro *qp;
2639
2640	if (!bdev) return NULL;
2641	for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2642		struct pci_dev *qpdev = qp->quattro_dev;
2643
2644		if (qpdev == bdev)
2645			return qp;
2646	}
2647	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2648	if (qp != NULL) {
2649		int i;
2650
2651		for (i = 0; i < 4; i++)
2652			qp->happy_meals[i] = NULL;
2653
2654		qp->quattro_dev = bdev;
2655		qp->next = qfe_pci_list;
2656		qfe_pci_list = qp;
2657
2658		/* No range tricks necessary on PCI. */
2659		qp->nranges = 0;
2660	}
2661	return qp;
2662}
2663#endif /* CONFIG_PCI */
2664
2665static const struct net_device_ops hme_netdev_ops = {
2666	.ndo_open		= happy_meal_open,
2667	.ndo_stop		= happy_meal_close,
2668	.ndo_start_xmit		= happy_meal_start_xmit,
2669	.ndo_tx_timeout		= happy_meal_tx_timeout,
2670	.ndo_get_stats		= happy_meal_get_stats,
2671	.ndo_set_rx_mode	= happy_meal_set_multicast,
2672	.ndo_change_mtu		= eth_change_mtu,
2673	.ndo_set_mac_address 	= eth_mac_addr,
2674	.ndo_validate_addr	= eth_validate_addr,
2675};
2676
2677#ifdef CONFIG_SBUS
2678static int happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe)
2679{
2680	struct device_node *dp = op->dev.of_node, *sbus_dp;
2681	struct quattro *qp = NULL;
2682	struct happy_meal *hp;
2683	struct net_device *dev;
2684	int i, qfe_slot = -1;
2685	int err = -ENODEV;
2686
2687	sbus_dp = op->dev.parent->of_node;
2688
2689	/* We can match PCI devices too, do not accept those here. */
2690	if (strcmp(sbus_dp->name, "sbus") && strcmp(sbus_dp->name, "sbi"))
2691		return err;
2692
2693	if (is_qfe) {
2694		qp = quattro_sbus_find(op);
2695		if (qp == NULL)
2696			goto err_out;
2697		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2698			if (qp->happy_meals[qfe_slot] == NULL)
2699				break;
2700		if (qfe_slot == 4)
2701			goto err_out;
2702	}
2703
2704	err = -ENOMEM;
2705	dev = alloc_etherdev(sizeof(struct happy_meal));
2706	if (!dev)
2707		goto err_out;
2708	SET_NETDEV_DEV(dev, &op->dev);
2709
2710	if (hme_version_printed++ == 0)
2711		printk(KERN_INFO "%s", version);
2712
2713	/* If user did not specify a MAC address specifically, use
2714	 * the Quattro local-mac-address property...
2715	 */
2716	for (i = 0; i < 6; i++) {
2717		if (macaddr[i] != 0)
2718			break;
2719	}
2720	if (i < 6) { /* a mac address was given */
2721		for (i = 0; i < 6; i++)
2722			dev->dev_addr[i] = macaddr[i];
2723		macaddr[5]++;
2724	} else {
2725		const unsigned char *addr;
2726		int len;
2727
2728		addr = of_get_property(dp, "local-mac-address", &len);
2729
2730		if (qfe_slot != -1 && addr && len == ETH_ALEN)
2731			memcpy(dev->dev_addr, addr, ETH_ALEN);
2732		else
2733			memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
2734	}
2735
2736	hp = netdev_priv(dev);
2737
2738	hp->happy_dev = op;
2739	hp->dma_dev = &op->dev;
2740
2741	spin_lock_init(&hp->happy_lock);
2742
2743	err = -ENODEV;
2744	if (qp != NULL) {
2745		hp->qfe_parent = qp;
2746		hp->qfe_ent = qfe_slot;
2747		qp->happy_meals[qfe_slot] = dev;
2748	}
2749
2750	hp->gregs = of_ioremap(&op->resource[0], 0,
2751			       GREG_REG_SIZE, "HME Global Regs");
2752	if (!hp->gregs) {
2753		printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2754		goto err_out_free_netdev;
2755	}
2756
2757	hp->etxregs = of_ioremap(&op->resource[1], 0,
2758				 ETX_REG_SIZE, "HME TX Regs");
2759	if (!hp->etxregs) {
2760		printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2761		goto err_out_iounmap;
2762	}
2763
2764	hp->erxregs = of_ioremap(&op->resource[2], 0,
2765				 ERX_REG_SIZE, "HME RX Regs");
2766	if (!hp->erxregs) {
2767		printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2768		goto err_out_iounmap;
2769	}
2770
2771	hp->bigmacregs = of_ioremap(&op->resource[3], 0,
2772				    BMAC_REG_SIZE, "HME BIGMAC Regs");
2773	if (!hp->bigmacregs) {
2774		printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2775		goto err_out_iounmap;
2776	}
2777
2778	hp->tcvregs = of_ioremap(&op->resource[4], 0,
2779				 TCVR_REG_SIZE, "HME Tranceiver Regs");
2780	if (!hp->tcvregs) {
2781		printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2782		goto err_out_iounmap;
2783	}
2784
2785	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2786	if (hp->hm_revision == 0xff)
2787		hp->hm_revision = 0xa0;
2788
2789	/* Now enable the feature flags we can. */
2790	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2791		hp->happy_flags = HFLAG_20_21;
2792	else if (hp->hm_revision != 0xa0)
2793		hp->happy_flags = HFLAG_NOT_A0;
2794
2795	if (qp != NULL)
2796		hp->happy_flags |= HFLAG_QUATTRO;
2797
2798	/* Get the supported DVMA burst sizes from our Happy SBUS. */
2799	hp->happy_bursts = of_getintprop_default(sbus_dp,
2800						 "burst-sizes", 0x00);
2801
2802	hp->happy_block = dma_alloc_coherent(hp->dma_dev,
2803					     PAGE_SIZE,
2804					     &hp->hblock_dvma,
2805					     GFP_ATOMIC);
2806	err = -ENOMEM;
2807	if (!hp->happy_block)
2808		goto err_out_iounmap;
2809
2810	/* Force check of the link first time we are brought up. */
2811	hp->linkcheck = 0;
2812
2813	/* Force timer state to 'asleep' with count of zero. */
2814	hp->timer_state = asleep;
2815	hp->timer_ticks = 0;
2816
2817	init_timer(&hp->happy_timer);
2818
2819	hp->dev = dev;
2820	dev->netdev_ops = &hme_netdev_ops;
2821	dev->watchdog_timeo = 5*HZ;
2822	dev->ethtool_ops = &hme_ethtool_ops;
2823
2824	/* Happy Meal can do it all... */
2825	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2826	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2827
2828	hp->irq = op->archdata.irqs[0];
2829
2830#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2831	/* Hook up SBUS register/descriptor accessors. */
2832	hp->read_desc32 = sbus_hme_read_desc32;
2833	hp->write_txd = sbus_hme_write_txd;
2834	hp->write_rxd = sbus_hme_write_rxd;
2835	hp->read32 = sbus_hme_read32;
2836	hp->write32 = sbus_hme_write32;
2837#endif
2838
2839	/* Grrr, Happy Meal comes up by default not advertising
2840	 * full duplex 100baseT capabilities, fix this.
2841	 */
2842	spin_lock_irq(&hp->happy_lock);
2843	happy_meal_set_initial_advertisement(hp);
2844	spin_unlock_irq(&hp->happy_lock);
2845
2846	err = register_netdev(hp->dev);
2847	if (err) {
2848		printk(KERN_ERR "happymeal: Cannot register net device, "
2849		       "aborting.\n");
2850		goto err_out_free_coherent;
2851	}
2852
2853	platform_set_drvdata(op, hp);
2854
2855	if (qfe_slot != -1)
2856		printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2857		       dev->name, qfe_slot);
2858	else
2859		printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2860		       dev->name);
2861
2862	printk("%pM\n", dev->dev_addr);
2863
2864	return 0;
2865
2866err_out_free_coherent:
2867	dma_free_coherent(hp->dma_dev,
2868			  PAGE_SIZE,
2869			  hp->happy_block,
2870			  hp->hblock_dvma);
2871
2872err_out_iounmap:
2873	if (hp->gregs)
2874		of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
2875	if (hp->etxregs)
2876		of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
2877	if (hp->erxregs)
2878		of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
2879	if (hp->bigmacregs)
2880		of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
2881	if (hp->tcvregs)
2882		of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
2883
2884	if (qp)
2885		qp->happy_meals[qfe_slot] = NULL;
2886
2887err_out_free_netdev:
2888	free_netdev(dev);
2889
2890err_out:
2891	return err;
2892}
2893#endif
2894
2895#ifdef CONFIG_PCI
2896#ifndef CONFIG_SPARC
2897static int is_quattro_p(struct pci_dev *pdev)
2898{
2899	struct pci_dev *busdev = pdev->bus->self;
2900	struct pci_dev *this_pdev;
2901	int n_hmes;
2902
2903	if (busdev == NULL ||
2904	    busdev->vendor != PCI_VENDOR_ID_DEC ||
2905	    busdev->device != PCI_DEVICE_ID_DEC_21153)
2906		return 0;
2907
2908	n_hmes = 0;
2909	list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) {
2910		if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2911		    this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2912			n_hmes++;
2913	}
2914
2915	if (n_hmes != 4)
2916		return 0;
2917
2918	return 1;
2919}
2920
2921/* Fetch MAC address from vital product data of PCI ROM. */
2922static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2923{
2924	int this_offset;
2925
2926	for (this_offset = 0x20; this_offset < len; this_offset++) {
2927		void __iomem *p = rom_base + this_offset;
2928
2929		if (readb(p + 0) != 0x90 ||
2930		    readb(p + 1) != 0x00 ||
2931		    readb(p + 2) != 0x09 ||
2932		    readb(p + 3) != 0x4e ||
2933		    readb(p + 4) != 0x41 ||
2934		    readb(p + 5) != 0x06)
2935			continue;
2936
2937		this_offset += 6;
2938		p += 6;
2939
2940		if (index == 0) {
2941			int i;
2942
2943			for (i = 0; i < 6; i++)
2944				dev_addr[i] = readb(p + i);
2945			return 1;
2946		}
2947		index--;
2948	}
2949	return 0;
2950}
2951
2952static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2953{
2954	size_t size;
2955	void __iomem *p = pci_map_rom(pdev, &size);
2956
2957	if (p) {
2958		int index = 0;
2959		int found;
2960
2961		if (is_quattro_p(pdev))
2962			index = PCI_SLOT(pdev->devfn);
2963
2964		found = readb(p) == 0x55 &&
2965			readb(p + 1) == 0xaa &&
2966			find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2967		pci_unmap_rom(pdev, p);
2968		if (found)
2969			return;
2970	}
2971
2972	/* Sun MAC prefix then 3 random bytes. */
2973	dev_addr[0] = 0x08;
2974	dev_addr[1] = 0x00;
2975	dev_addr[2] = 0x20;
2976	get_random_bytes(&dev_addr[3], 3);
2977}
2978#endif /* !(CONFIG_SPARC) */
2979
2980static int happy_meal_pci_probe(struct pci_dev *pdev,
2981				const struct pci_device_id *ent)
2982{
2983	struct quattro *qp = NULL;
2984#ifdef CONFIG_SPARC
2985	struct device_node *dp;
2986#endif
2987	struct happy_meal *hp;
2988	struct net_device *dev;
2989	void __iomem *hpreg_base;
2990	unsigned long hpreg_res;
2991	int i, qfe_slot = -1;
2992	char prom_name[64];
2993	int err;
2994
2995	/* Now make sure pci_dev cookie is there. */
2996#ifdef CONFIG_SPARC
2997	dp = pci_device_to_OF_node(pdev);
2998	strcpy(prom_name, dp->name);
2999#else
3000	if (is_quattro_p(pdev))
3001		strcpy(prom_name, "SUNW,qfe");
3002	else
3003		strcpy(prom_name, "SUNW,hme");
3004#endif
3005
3006	err = -ENODEV;
3007
3008	if (pci_enable_device(pdev))
3009		goto err_out;
3010	pci_set_master(pdev);
3011
3012	if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
3013		qp = quattro_pci_find(pdev);
3014		if (qp == NULL)
3015			goto err_out;
3016		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
3017			if (qp->happy_meals[qfe_slot] == NULL)
3018				break;
3019		if (qfe_slot == 4)
3020			goto err_out;
3021	}
3022
3023	dev = alloc_etherdev(sizeof(struct happy_meal));
3024	err = -ENOMEM;
3025	if (!dev)
3026		goto err_out;
3027	SET_NETDEV_DEV(dev, &pdev->dev);
3028
3029	if (hme_version_printed++ == 0)
3030		printk(KERN_INFO "%s", version);
3031
3032	hp = netdev_priv(dev);
3033
3034	hp->happy_dev = pdev;
3035	hp->dma_dev = &pdev->dev;
3036
3037	spin_lock_init(&hp->happy_lock);
3038
3039	if (qp != NULL) {
3040		hp->qfe_parent = qp;
3041		hp->qfe_ent = qfe_slot;
3042		qp->happy_meals[qfe_slot] = dev;
3043	}
3044
3045	hpreg_res = pci_resource_start(pdev, 0);
3046	err = -ENODEV;
3047	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3048		printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3049		goto err_out_clear_quattro;
3050	}
3051	if (pci_request_regions(pdev, DRV_NAME)) {
3052		printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3053		       "aborting.\n");
3054		goto err_out_clear_quattro;
3055	}
3056
3057	if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) {
3058		printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3059		goto err_out_free_res;
3060	}
3061
3062	for (i = 0; i < 6; i++) {
3063		if (macaddr[i] != 0)
3064			break;
3065	}
3066	if (i < 6) { /* a mac address was given */
3067		for (i = 0; i < 6; i++)
3068			dev->dev_addr[i] = macaddr[i];
3069		macaddr[5]++;
3070	} else {
3071#ifdef CONFIG_SPARC
3072		const unsigned char *addr;
3073		int len;
3074
3075		if (qfe_slot != -1 &&
3076		    (addr = of_get_property(dp, "local-mac-address", &len))
3077			!= NULL &&
3078		    len == 6) {
3079			memcpy(dev->dev_addr, addr, ETH_ALEN);
3080		} else {
3081			memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
3082		}
3083#else
3084		get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3085#endif
3086	}
3087
3088	/* Layout registers. */
3089	hp->gregs      = (hpreg_base + 0x0000UL);
3090	hp->etxregs    = (hpreg_base + 0x2000UL);
3091	hp->erxregs    = (hpreg_base + 0x4000UL);
3092	hp->bigmacregs = (hpreg_base + 0x6000UL);
3093	hp->tcvregs    = (hpreg_base + 0x7000UL);
3094
3095#ifdef CONFIG_SPARC
3096	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3097	if (hp->hm_revision == 0xff)
3098		hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3099#else
3100	/* works with this on non-sparc hosts */
3101	hp->hm_revision = 0x20;
3102#endif
3103
3104	/* Now enable the feature flags we can. */
3105	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3106		hp->happy_flags = HFLAG_20_21;
3107	else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3108		hp->happy_flags = HFLAG_NOT_A0;
3109
3110	if (qp != NULL)
3111		hp->happy_flags |= HFLAG_QUATTRO;
3112
3113	/* And of course, indicate this is PCI. */
3114	hp->happy_flags |= HFLAG_PCI;
3115
3116#ifdef CONFIG_SPARC
3117	/* Assume PCI happy meals can handle all burst sizes. */
3118	hp->happy_bursts = DMA_BURSTBITS;
3119#endif
3120
3121	hp->happy_block = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3122					     &hp->hblock_dvma, GFP_KERNEL);
3123	err = -ENODEV;
3124	if (!hp->happy_block)
3125		goto err_out_iounmap;
3126
3127	hp->linkcheck = 0;
3128	hp->timer_state = asleep;
3129	hp->timer_ticks = 0;
3130
3131	init_timer(&hp->happy_timer);
3132
3133	hp->irq = pdev->irq;
3134	hp->dev = dev;
3135	dev->netdev_ops = &hme_netdev_ops;
3136	dev->watchdog_timeo = 5*HZ;
3137	dev->ethtool_ops = &hme_ethtool_ops;
3138
3139	/* Happy Meal can do it all... */
3140	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
3141	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
3142
3143#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3144	/* Hook up PCI register/descriptor accessors. */
3145	hp->read_desc32 = pci_hme_read_desc32;
3146	hp->write_txd = pci_hme_write_txd;
3147	hp->write_rxd = pci_hme_write_rxd;
3148	hp->read32 = pci_hme_read32;
3149	hp->write32 = pci_hme_write32;
3150#endif
3151
3152	/* Grrr, Happy Meal comes up by default not advertising
3153	 * full duplex 100baseT capabilities, fix this.
3154	 */
3155	spin_lock_irq(&hp->happy_lock);
3156	happy_meal_set_initial_advertisement(hp);
3157	spin_unlock_irq(&hp->happy_lock);
3158
3159	err = register_netdev(hp->dev);
3160	if (err) {
3161		printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3162		       "aborting.\n");
3163		goto err_out_iounmap;
3164	}
3165
3166	pci_set_drvdata(pdev, hp);
3167
3168	if (!qfe_slot) {
3169		struct pci_dev *qpdev = qp->quattro_dev;
3170
3171		prom_name[0] = 0;
3172		if (!strncmp(dev->name, "eth", 3)) {
3173			int i = simple_strtoul(dev->name + 3, NULL, 10);
3174			sprintf(prom_name, "-%d", i + 3);
3175		}
3176		printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3177		if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3178		    qpdev->device == PCI_DEVICE_ID_DEC_21153)
3179			printk("DEC 21153 PCI Bridge\n");
3180		else
3181			printk("unknown bridge %04x.%04x\n",
3182				qpdev->vendor, qpdev->device);
3183	}
3184
3185	if (qfe_slot != -1)
3186		printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3187		       dev->name, qfe_slot);
3188	else
3189		printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3190		       dev->name);
3191
3192	printk("%pM\n", dev->dev_addr);
3193
3194	return 0;
3195
3196err_out_iounmap:
3197	iounmap(hp->gregs);
3198
3199err_out_free_res:
3200	pci_release_regions(pdev);
3201
3202err_out_clear_quattro:
3203	if (qp != NULL)
3204		qp->happy_meals[qfe_slot] = NULL;
3205
3206	free_netdev(dev);
3207
3208err_out:
3209	return err;
3210}
3211
3212static void happy_meal_pci_remove(struct pci_dev *pdev)
3213{
3214	struct happy_meal *hp = pci_get_drvdata(pdev);
3215	struct net_device *net_dev = hp->dev;
3216
3217	unregister_netdev(net_dev);
3218
3219	dma_free_coherent(hp->dma_dev, PAGE_SIZE,
3220			  hp->happy_block, hp->hblock_dvma);
3221	iounmap(hp->gregs);
3222	pci_release_regions(hp->happy_dev);
3223
3224	free_netdev(net_dev);
3225}
3226
3227static const struct pci_device_id happymeal_pci_ids[] = {
3228	{ PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3229	{ }			/* Terminating entry */
3230};
3231
3232MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3233
3234static struct pci_driver hme_pci_driver = {
3235	.name		= "hme",
3236	.id_table	= happymeal_pci_ids,
3237	.probe		= happy_meal_pci_probe,
3238	.remove		= happy_meal_pci_remove,
3239};
3240
3241static int __init happy_meal_pci_init(void)
3242{
3243	return pci_register_driver(&hme_pci_driver);
3244}
3245
3246static void happy_meal_pci_exit(void)
3247{
3248	pci_unregister_driver(&hme_pci_driver);
3249
3250	while (qfe_pci_list) {
3251		struct quattro *qfe = qfe_pci_list;
3252		struct quattro *next = qfe->next;
3253
3254		kfree(qfe);
3255
3256		qfe_pci_list = next;
3257	}
3258}
3259
3260#endif
3261
3262#ifdef CONFIG_SBUS
3263static const struct of_device_id hme_sbus_match[];
3264static int hme_sbus_probe(struct platform_device *op)
3265{
3266	const struct of_device_id *match;
3267	struct device_node *dp = op->dev.of_node;
3268	const char *model = of_get_property(dp, "model", NULL);
3269	int is_qfe;
3270
3271	match = of_match_device(hme_sbus_match, &op->dev);
3272	if (!match)
3273		return -EINVAL;
3274	is_qfe = (match->data != NULL);
3275
3276	if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3277		is_qfe = 1;
3278
3279	return happy_meal_sbus_probe_one(op, is_qfe);
3280}
3281
3282static int hme_sbus_remove(struct platform_device *op)
3283{
3284	struct happy_meal *hp = platform_get_drvdata(op);
3285	struct net_device *net_dev = hp->dev;
3286
3287	unregister_netdev(net_dev);
3288
3289	/* XXX qfe parent interrupt... */
3290
3291	of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
3292	of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
3293	of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
3294	of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
3295	of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
3296	dma_free_coherent(hp->dma_dev,
3297			  PAGE_SIZE,
3298			  hp->happy_block,
3299			  hp->hblock_dvma);
3300
3301	free_netdev(net_dev);
3302
3303	return 0;
3304}
3305
3306static const struct of_device_id hme_sbus_match[] = {
3307	{
3308		.name = "SUNW,hme",
3309	},
3310	{
3311		.name = "SUNW,qfe",
3312		.data = (void *) 1,
3313	},
3314	{
3315		.name = "qfe",
3316		.data = (void *) 1,
3317	},
3318	{},
3319};
3320
3321MODULE_DEVICE_TABLE(of, hme_sbus_match);
3322
3323static struct platform_driver hme_sbus_driver = {
3324	.driver = {
3325		.name = "hme",
3326		.of_match_table = hme_sbus_match,
3327	},
3328	.probe		= hme_sbus_probe,
3329	.remove		= hme_sbus_remove,
3330};
3331
3332static int __init happy_meal_sbus_init(void)
3333{
3334	int err;
3335
3336	err = platform_driver_register(&hme_sbus_driver);
3337	if (!err)
3338		err = quattro_sbus_register_irqs();
3339
3340	return err;
3341}
3342
3343static void happy_meal_sbus_exit(void)
3344{
3345	platform_driver_unregister(&hme_sbus_driver);
3346	quattro_sbus_free_irqs();
3347
3348	while (qfe_sbus_list) {
3349		struct quattro *qfe = qfe_sbus_list;
3350		struct quattro *next = qfe->next;
3351
3352		kfree(qfe);
3353
3354		qfe_sbus_list = next;
3355	}
3356}
3357#endif
3358
3359static int __init happy_meal_probe(void)
3360{
3361	int err = 0;
3362
3363#ifdef CONFIG_SBUS
3364	err = happy_meal_sbus_init();
3365#endif
3366#ifdef CONFIG_PCI
3367	if (!err) {
3368		err = happy_meal_pci_init();
3369#ifdef CONFIG_SBUS
3370		if (err)
3371			happy_meal_sbus_exit();
3372#endif
3373	}
3374#endif
3375
3376	return err;
3377}
3378
3379
3380static void __exit happy_meal_exit(void)
3381{
3382#ifdef CONFIG_SBUS
3383	happy_meal_sbus_exit();
3384#endif
3385#ifdef CONFIG_PCI
3386	happy_meal_pci_exit();
3387#endif
3388}
3389
3390module_init(happy_meal_probe);
3391module_exit(happy_meal_exit);