Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * PXA168 ethernet driver.
   3 * Most of the code is derived from mv643xx ethernet driver.
   4 *
   5 * Copyright (C) 2010 Marvell International Ltd.
   6 *		Sachin Sanap <ssanap@marvell.com>
   7 *		Zhangfei Gao <zgao6@marvell.com>
   8 *		Philip Rakity <prakity@marvell.com>
   9 *		Mark Brown <markb@marvell.com>
  10 *
  11 * This program is free software; you can redistribute it and/or
  12 * modify it under the terms of the GNU General Public License
  13 * as published by the Free Software Foundation; either version 2
  14 * of the License, or (at your option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  23 */
  24
  25#include <linux/bitops.h>
  26#include <linux/clk.h>
  27#include <linux/delay.h>
  28#include <linux/dma-mapping.h>
  29#include <linux/etherdevice.h>
  30#include <linux/ethtool.h>
  31#include <linux/in.h>
  32#include <linux/interrupt.h>
  33#include <linux/io.h>
  34#include <linux/ip.h>
  35#include <linux/kernel.h>
  36#include <linux/module.h>
  37#include <linux/of.h>
  38#include <linux/of_net.h>
  39#include <linux/phy.h>
  40#include <linux/platform_device.h>
  41#include <linux/pxa168_eth.h>
  42#include <linux/tcp.h>
  43#include <linux/types.h>
  44#include <linux/udp.h>
  45#include <linux/workqueue.h>
  46
  47#include <asm/pgtable.h>
  48#include <asm/cacheflush.h>
  49
  50#define DRIVER_NAME	"pxa168-eth"
  51#define DRIVER_VERSION	"0.3"
  52
  53/*
  54 * Registers
  55 */
  56
  57#define PHY_ADDRESS		0x0000
  58#define SMI			0x0010
  59#define PORT_CONFIG		0x0400
  60#define PORT_CONFIG_EXT		0x0408
  61#define PORT_COMMAND		0x0410
  62#define PORT_STATUS		0x0418
  63#define HTPR			0x0428
  64#define MAC_ADDR_LOW		0x0430
  65#define MAC_ADDR_HIGH		0x0438
  66#define SDMA_CONFIG		0x0440
  67#define SDMA_CMD		0x0448
  68#define INT_CAUSE		0x0450
  69#define INT_W_CLEAR		0x0454
  70#define INT_MASK		0x0458
  71#define ETH_F_RX_DESC_0		0x0480
  72#define ETH_C_RX_DESC_0		0x04A0
  73#define ETH_C_TX_DESC_1		0x04E4
  74
  75/* smi register */
  76#define SMI_BUSY		(1 << 28)	/* 0 - Write, 1 - Read  */
  77#define SMI_R_VALID		(1 << 27)	/* 0 - Write, 1 - Read  */
  78#define SMI_OP_W		(0 << 26)	/* Write operation      */
  79#define SMI_OP_R		(1 << 26)	/* Read operation */
  80
  81#define PHY_WAIT_ITERATIONS	10
  82
  83#define PXA168_ETH_PHY_ADDR_DEFAULT	0
  84/* RX & TX descriptor command */
  85#define BUF_OWNED_BY_DMA	(1 << 31)
  86
  87/* RX descriptor status */
  88#define RX_EN_INT		(1 << 23)
  89#define RX_FIRST_DESC		(1 << 17)
  90#define RX_LAST_DESC		(1 << 16)
  91#define RX_ERROR		(1 << 15)
  92
  93/* TX descriptor command */
  94#define TX_EN_INT		(1 << 23)
  95#define TX_GEN_CRC		(1 << 22)
  96#define TX_ZERO_PADDING		(1 << 18)
  97#define TX_FIRST_DESC		(1 << 17)
  98#define TX_LAST_DESC		(1 << 16)
  99#define TX_ERROR		(1 << 15)
 100
 101/* SDMA_CMD */
 102#define SDMA_CMD_AT		(1 << 31)
 103#define SDMA_CMD_TXDL		(1 << 24)
 104#define SDMA_CMD_TXDH		(1 << 23)
 105#define SDMA_CMD_AR		(1 << 15)
 106#define SDMA_CMD_ERD		(1 << 7)
 107
 108/* Bit definitions of the Port Config Reg */
 109#define PCR_DUPLEX_FULL		(1 << 15)
 110#define PCR_HS			(1 << 12)
 111#define PCR_EN			(1 << 7)
 112#define PCR_PM			(1 << 0)
 113
 114/* Bit definitions of the Port Config Extend Reg */
 115#define PCXR_2BSM		(1 << 28)
 116#define PCXR_DSCP_EN		(1 << 21)
 117#define PCXR_RMII_EN		(1 << 20)
 118#define PCXR_AN_SPEED_DIS	(1 << 19)
 119#define PCXR_SPEED_100		(1 << 18)
 120#define PCXR_MFL_1518		(0 << 14)
 121#define PCXR_MFL_1536		(1 << 14)
 122#define PCXR_MFL_2048		(2 << 14)
 123#define PCXR_MFL_64K		(3 << 14)
 124#define PCXR_FLOWCTL_DIS	(1 << 12)
 125#define PCXR_FLP		(1 << 11)
 126#define PCXR_AN_FLOWCTL_DIS	(1 << 10)
 127#define PCXR_AN_DUPLEX_DIS	(1 << 9)
 128#define PCXR_PRIO_TX_OFF	3
 129#define PCXR_TX_HIGH_PRI	(7 << PCXR_PRIO_TX_OFF)
 130
 131/* Bit definitions of the SDMA Config Reg */
 132#define SDCR_BSZ_OFF		12
 133#define SDCR_BSZ8		(3 << SDCR_BSZ_OFF)
 134#define SDCR_BSZ4		(2 << SDCR_BSZ_OFF)
 135#define SDCR_BSZ2		(1 << SDCR_BSZ_OFF)
 136#define SDCR_BSZ1		(0 << SDCR_BSZ_OFF)
 137#define SDCR_BLMR		(1 << 6)
 138#define SDCR_BLMT		(1 << 7)
 139#define SDCR_RIFB		(1 << 9)
 140#define SDCR_RC_OFF		2
 141#define SDCR_RC_MAX_RETRANS	(0xf << SDCR_RC_OFF)
 142
 143/*
 144 * Bit definitions of the Interrupt Cause Reg
 145 * and Interrupt MASK Reg is the same
 146 */
 147#define ICR_RXBUF		(1 << 0)
 148#define ICR_TXBUF_H		(1 << 2)
 149#define ICR_TXBUF_L		(1 << 3)
 150#define ICR_TXEND_H		(1 << 6)
 151#define ICR_TXEND_L		(1 << 7)
 152#define ICR_RXERR		(1 << 8)
 153#define ICR_TXERR_H		(1 << 10)
 154#define ICR_TXERR_L		(1 << 11)
 155#define ICR_TX_UDR		(1 << 13)
 156#define ICR_MII_CH		(1 << 28)
 157
 158#define ALL_INTS (ICR_TXBUF_H  | ICR_TXBUF_L  | ICR_TX_UDR |\
 159				ICR_TXERR_H  | ICR_TXERR_L |\
 160				ICR_TXEND_H  | ICR_TXEND_L |\
 161				ICR_RXBUF | ICR_RXERR  | ICR_MII_CH)
 162
 163#define ETH_HW_IP_ALIGN		2	/* hw aligns IP header */
 164
 165#define NUM_RX_DESCS		64
 166#define NUM_TX_DESCS		64
 167
 168#define HASH_ADD		0
 169#define HASH_DELETE		1
 170#define HASH_ADDR_TABLE_SIZE	0x4000	/* 16K (1/2K address - PCR_HS == 1) */
 171#define HOP_NUMBER		12
 172
 173/* Bit definitions for Port status */
 174#define PORT_SPEED_100		(1 << 0)
 175#define FULL_DUPLEX		(1 << 1)
 176#define FLOW_CONTROL_DISABLED	(1 << 2)
 177#define LINK_UP			(1 << 3)
 178
 179/* Bit definitions for work to be done */
 180#define WORK_TX_DONE		(1 << 1)
 181
 182/*
 183 * Misc definitions.
 184 */
 185#define SKB_DMA_REALIGN		((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
 186
 187struct rx_desc {
 188	u32 cmd_sts;		/* Descriptor command status            */
 189	u16 byte_cnt;		/* Descriptor buffer byte count         */
 190	u16 buf_size;		/* Buffer size                          */
 191	u32 buf_ptr;		/* Descriptor buffer pointer            */
 192	u32 next_desc_ptr;	/* Next descriptor pointer              */
 193};
 194
 195struct tx_desc {
 196	u32 cmd_sts;		/* Command/status field                 */
 197	u16 reserved;
 198	u16 byte_cnt;		/* buffer byte count                    */
 199	u32 buf_ptr;		/* pointer to buffer for this descriptor */
 200	u32 next_desc_ptr;	/* Pointer to next descriptor           */
 201};
 202
 203struct pxa168_eth_private {
 204	int port_num;		/* User Ethernet port number    */
 205	int phy_addr;
 206	int phy_speed;
 207	int phy_duplex;
 208	phy_interface_t phy_intf;
 209
 210	int rx_resource_err;	/* Rx ring resource error flag */
 211
 212	/* Next available and first returning Rx resource */
 213	int rx_curr_desc_q, rx_used_desc_q;
 214
 215	/* Next available and first returning Tx resource */
 216	int tx_curr_desc_q, tx_used_desc_q;
 217
 218	struct rx_desc *p_rx_desc_area;
 219	dma_addr_t rx_desc_dma;
 220	int rx_desc_area_size;
 221	struct sk_buff **rx_skb;
 222
 223	struct tx_desc *p_tx_desc_area;
 224	dma_addr_t tx_desc_dma;
 225	int tx_desc_area_size;
 226	struct sk_buff **tx_skb;
 227
 228	struct work_struct tx_timeout_task;
 229
 230	struct net_device *dev;
 231	struct napi_struct napi;
 232	u8 work_todo;
 233	int skb_size;
 234
 235	/* Size of Tx Ring per queue */
 236	int tx_ring_size;
 237	/* Number of tx descriptors in use */
 238	int tx_desc_count;
 239	/* Size of Rx Ring per queue */
 240	int rx_ring_size;
 241	/* Number of rx descriptors in use */
 242	int rx_desc_count;
 243
 244	/*
 245	 * Used in case RX Ring is empty, which can occur when
 246	 * system does not have resources (skb's)
 247	 */
 248	struct timer_list timeout;
 249	struct mii_bus *smi_bus;
 250	struct phy_device *phy;
 251
 252	/* clock */
 253	struct clk *clk;
 254	struct pxa168_eth_platform_data *pd;
 255	/*
 256	 * Ethernet controller base address.
 257	 */
 258	void __iomem *base;
 259
 260	/* Pointer to the hardware address filter table */
 261	void *htpr;
 262	dma_addr_t htpr_dma;
 263};
 264
 265struct addr_table_entry {
 266	__le32 lo;
 267	__le32 hi;
 268};
 269
 270/* Bit fields of a Hash Table Entry */
 271enum hash_table_entry {
 272	HASH_ENTRY_VALID = 1,
 273	SKIP = 2,
 274	HASH_ENTRY_RECEIVE_DISCARD = 4,
 275	HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
 276};
 277
 278static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd);
 279static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd);
 280static int pxa168_init_hw(struct pxa168_eth_private *pep);
 281static int pxa168_init_phy(struct net_device *dev);
 282static void eth_port_reset(struct net_device *dev);
 283static void eth_port_start(struct net_device *dev);
 284static int pxa168_eth_open(struct net_device *dev);
 285static int pxa168_eth_stop(struct net_device *dev);
 286
 287static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
 288{
 289	return readl(pep->base + offset);
 290}
 291
 292static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
 293{
 294	writel(data, pep->base + offset);
 295}
 296
 297static void abort_dma(struct pxa168_eth_private *pep)
 298{
 299	int delay;
 300	int max_retries = 40;
 301
 302	do {
 303		wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
 304		udelay(100);
 305
 306		delay = 10;
 307		while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
 308		       && delay-- > 0) {
 309			udelay(10);
 310		}
 311	} while (max_retries-- > 0 && delay <= 0);
 312
 313	if (max_retries <= 0)
 314		netdev_err(pep->dev, "%s : DMA Stuck\n", __func__);
 315}
 316
 317static void rxq_refill(struct net_device *dev)
 318{
 319	struct pxa168_eth_private *pep = netdev_priv(dev);
 320	struct sk_buff *skb;
 321	struct rx_desc *p_used_rx_desc;
 322	int used_rx_desc;
 323
 324	while (pep->rx_desc_count < pep->rx_ring_size) {
 325		int size;
 326
 327		skb = netdev_alloc_skb(dev, pep->skb_size);
 328		if (!skb)
 329			break;
 330		if (SKB_DMA_REALIGN)
 331			skb_reserve(skb, SKB_DMA_REALIGN);
 332		pep->rx_desc_count++;
 333		/* Get 'used' Rx descriptor */
 334		used_rx_desc = pep->rx_used_desc_q;
 335		p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
 336		size = skb_end_pointer(skb) - skb->data;
 337		p_used_rx_desc->buf_ptr = dma_map_single(NULL,
 338							 skb->data,
 339							 size,
 340							 DMA_FROM_DEVICE);
 341		p_used_rx_desc->buf_size = size;
 342		pep->rx_skb[used_rx_desc] = skb;
 343
 344		/* Return the descriptor to DMA ownership */
 345		wmb();
 346		p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
 347		wmb();
 348
 349		/* Move the used descriptor pointer to the next descriptor */
 350		pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
 351
 352		/* Any Rx return cancels the Rx resource error status */
 353		pep->rx_resource_err = 0;
 354
 355		skb_reserve(skb, ETH_HW_IP_ALIGN);
 356	}
 357
 358	/*
 359	 * If RX ring is empty of SKB, set a timer to try allocating
 360	 * again at a later time.
 361	 */
 362	if (pep->rx_desc_count == 0) {
 363		pep->timeout.expires = jiffies + (HZ / 10);
 364		add_timer(&pep->timeout);
 365	}
 366}
 367
 368static inline void rxq_refill_timer_wrapper(unsigned long data)
 369{
 370	struct pxa168_eth_private *pep = (void *)data;
 371	napi_schedule(&pep->napi);
 372}
 373
 374static inline u8 flip_8_bits(u8 x)
 375{
 376	return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
 377	    | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
 378	    | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
 379	    | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
 380}
 381
 382static void nibble_swap_every_byte(unsigned char *mac_addr)
 383{
 384	int i;
 385	for (i = 0; i < ETH_ALEN; i++) {
 386		mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
 387				((mac_addr[i] & 0xf0) >> 4);
 388	}
 389}
 390
 391static void inverse_every_nibble(unsigned char *mac_addr)
 392{
 393	int i;
 394	for (i = 0; i < ETH_ALEN; i++)
 395		mac_addr[i] = flip_8_bits(mac_addr[i]);
 396}
 397
 398/*
 399 * ----------------------------------------------------------------------------
 400 * This function will calculate the hash function of the address.
 401 * Inputs
 402 * mac_addr_orig    - MAC address.
 403 * Outputs
 404 * return the calculated entry.
 405 */
 406static u32 hash_function(unsigned char *mac_addr_orig)
 407{
 408	u32 hash_result;
 409	u32 addr0;
 410	u32 addr1;
 411	u32 addr2;
 412	u32 addr3;
 413	unsigned char mac_addr[ETH_ALEN];
 414
 415	/* Make a copy of MAC address since we are going to performe bit
 416	 * operations on it
 417	 */
 418	memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
 419
 420	nibble_swap_every_byte(mac_addr);
 421	inverse_every_nibble(mac_addr);
 422
 423	addr0 = (mac_addr[5] >> 2) & 0x3f;
 424	addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
 425	addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
 426	addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
 427
 428	hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
 429	hash_result = hash_result & 0x07ff;
 430	return hash_result;
 431}
 432
 433/*
 434 * ----------------------------------------------------------------------------
 435 * This function will add/del an entry to the address table.
 436 * Inputs
 437 * pep - ETHERNET .
 438 * mac_addr - MAC address.
 439 * skip - if 1, skip this address.Used in case of deleting an entry which is a
 440 *	  part of chain in the hash table.We can't just delete the entry since
 441 *	  that will break the chain.We need to defragment the tables time to
 442 *	  time.
 443 * rd   - 0 Discard packet upon match.
 444 *	- 1 Receive packet upon match.
 445 * Outputs
 446 * address table entry is added/deleted.
 447 * 0 if success.
 448 * -ENOSPC if table full
 449 */
 450static int add_del_hash_entry(struct pxa168_eth_private *pep,
 451			      unsigned char *mac_addr,
 452			      u32 rd, u32 skip, int del)
 453{
 454	struct addr_table_entry *entry, *start;
 455	u32 new_high;
 456	u32 new_low;
 457	u32 i;
 458
 459	new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
 460	    | (((mac_addr[1] >> 0) & 0xf) << 11)
 461	    | (((mac_addr[0] >> 4) & 0xf) << 7)
 462	    | (((mac_addr[0] >> 0) & 0xf) << 3)
 463	    | (((mac_addr[3] >> 4) & 0x1) << 31)
 464	    | (((mac_addr[3] >> 0) & 0xf) << 27)
 465	    | (((mac_addr[2] >> 4) & 0xf) << 23)
 466	    | (((mac_addr[2] >> 0) & 0xf) << 19)
 467	    | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
 468	    | HASH_ENTRY_VALID;
 469
 470	new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
 471	    | (((mac_addr[5] >> 0) & 0xf) << 11)
 472	    | (((mac_addr[4] >> 4) & 0xf) << 7)
 473	    | (((mac_addr[4] >> 0) & 0xf) << 3)
 474	    | (((mac_addr[3] >> 5) & 0x7) << 0);
 475
 476	/*
 477	 * Pick the appropriate table, start scanning for free/reusable
 478	 * entries at the index obtained by hashing the specified MAC address
 479	 */
 480	start = pep->htpr;
 481	entry = start + hash_function(mac_addr);
 482	for (i = 0; i < HOP_NUMBER; i++) {
 483		if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
 484			break;
 485		} else {
 486			/* if same address put in same position */
 487			if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
 488				(new_low & 0xfffffff8)) &&
 489				(le32_to_cpu(entry->hi) == new_high)) {
 490				break;
 491			}
 492		}
 493		if (entry == start + 0x7ff)
 494			entry = start;
 495		else
 496			entry++;
 497	}
 498
 499	if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
 500	    (le32_to_cpu(entry->hi) != new_high) && del)
 501		return 0;
 502
 503	if (i == HOP_NUMBER) {
 504		if (!del) {
 505			netdev_info(pep->dev,
 506				    "%s: table section is full, need to "
 507				    "move to 16kB implementation?\n",
 508				    __FILE__);
 509			return -ENOSPC;
 510		} else
 511			return 0;
 512	}
 513
 514	/*
 515	 * Update the selected entry
 516	 */
 517	if (del) {
 518		entry->hi = 0;
 519		entry->lo = 0;
 520	} else {
 521		entry->hi = cpu_to_le32(new_high);
 522		entry->lo = cpu_to_le32(new_low);
 523	}
 524
 525	return 0;
 526}
 527
 528/*
 529 * ----------------------------------------------------------------------------
 530 *  Create an addressTable entry from MAC address info
 531 *  found in the specifed net_device struct
 532 *
 533 *  Input : pointer to ethernet interface network device structure
 534 *  Output : N/A
 535 */
 536static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
 537					  unsigned char *oaddr,
 538					  unsigned char *addr)
 539{
 540	/* Delete old entry */
 541	if (oaddr)
 542		add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
 543	/* Add new entry */
 544	add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
 545}
 546
 547static int init_hash_table(struct pxa168_eth_private *pep)
 548{
 549	/*
 550	 * Hardware expects CPU to build a hash table based on a predefined
 551	 * hash function and populate it based on hardware address. The
 552	 * location of the hash table is identified by 32-bit pointer stored
 553	 * in HTPR internal register. Two possible sizes exists for the hash
 554	 * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
 555	 * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
 556	 * 1/2kB.
 557	 */
 558	/* TODO: Add support for 8kB hash table and alternative hash
 559	 * function.Driver can dynamically switch to them if the 1/2kB hash
 560	 * table is full.
 561	 */
 562	if (pep->htpr == NULL) {
 563		pep->htpr = dma_zalloc_coherent(pep->dev->dev.parent,
 564						HASH_ADDR_TABLE_SIZE,
 565						&pep->htpr_dma, GFP_KERNEL);
 566		if (pep->htpr == NULL)
 567			return -ENOMEM;
 568	} else {
 569		memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
 570	}
 571	wrl(pep, HTPR, pep->htpr_dma);
 572	return 0;
 573}
 574
 575static void pxa168_eth_set_rx_mode(struct net_device *dev)
 576{
 577	struct pxa168_eth_private *pep = netdev_priv(dev);
 578	struct netdev_hw_addr *ha;
 579	u32 val;
 580
 581	val = rdl(pep, PORT_CONFIG);
 582	if (dev->flags & IFF_PROMISC)
 583		val |= PCR_PM;
 584	else
 585		val &= ~PCR_PM;
 586	wrl(pep, PORT_CONFIG, val);
 587
 588	/*
 589	 * Remove the old list of MAC address and add dev->addr
 590	 * and multicast address.
 591	 */
 592	memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
 593	update_hash_table_mac_address(pep, NULL, dev->dev_addr);
 594
 595	netdev_for_each_mc_addr(ha, dev)
 596		update_hash_table_mac_address(pep, NULL, ha->addr);
 597}
 598
 599static void pxa168_eth_get_mac_address(struct net_device *dev,
 600				       unsigned char *addr)
 601{
 602	struct pxa168_eth_private *pep = netdev_priv(dev);
 603	unsigned int mac_h = rdl(pep, MAC_ADDR_HIGH);
 604	unsigned int mac_l = rdl(pep, MAC_ADDR_LOW);
 605
 606	addr[0] = (mac_h >> 24) & 0xff;
 607	addr[1] = (mac_h >> 16) & 0xff;
 608	addr[2] = (mac_h >> 8) & 0xff;
 609	addr[3] = mac_h & 0xff;
 610	addr[4] = (mac_l >> 8) & 0xff;
 611	addr[5] = mac_l & 0xff;
 612}
 613
 614static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
 615{
 616	struct sockaddr *sa = addr;
 617	struct pxa168_eth_private *pep = netdev_priv(dev);
 618	unsigned char oldMac[ETH_ALEN];
 619	u32 mac_h, mac_l;
 620
 621	if (!is_valid_ether_addr(sa->sa_data))
 622		return -EADDRNOTAVAIL;
 623	memcpy(oldMac, dev->dev_addr, ETH_ALEN);
 624	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
 625
 626	mac_h = dev->dev_addr[0] << 24;
 627	mac_h |= dev->dev_addr[1] << 16;
 628	mac_h |= dev->dev_addr[2] << 8;
 629	mac_h |= dev->dev_addr[3];
 630	mac_l = dev->dev_addr[4] << 8;
 631	mac_l |= dev->dev_addr[5];
 632	wrl(pep, MAC_ADDR_HIGH, mac_h);
 633	wrl(pep, MAC_ADDR_LOW, mac_l);
 634
 635	netif_addr_lock_bh(dev);
 636	update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
 637	netif_addr_unlock_bh(dev);
 638	return 0;
 639}
 640
 641static void eth_port_start(struct net_device *dev)
 642{
 643	unsigned int val = 0;
 644	struct pxa168_eth_private *pep = netdev_priv(dev);
 645	int tx_curr_desc, rx_curr_desc;
 646
 647	phy_start(pep->phy);
 648
 649	/* Assignment of Tx CTRP of given queue */
 650	tx_curr_desc = pep->tx_curr_desc_q;
 651	wrl(pep, ETH_C_TX_DESC_1,
 652	    (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
 653
 654	/* Assignment of Rx CRDP of given queue */
 655	rx_curr_desc = pep->rx_curr_desc_q;
 656	wrl(pep, ETH_C_RX_DESC_0,
 657	    (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
 658
 659	wrl(pep, ETH_F_RX_DESC_0,
 660	    (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
 661
 662	/* Clear all interrupts */
 663	wrl(pep, INT_CAUSE, 0);
 664
 665	/* Enable all interrupts for receive, transmit and error. */
 666	wrl(pep, INT_MASK, ALL_INTS);
 667
 668	val = rdl(pep, PORT_CONFIG);
 669	val |= PCR_EN;
 670	wrl(pep, PORT_CONFIG, val);
 671
 672	/* Start RX DMA engine */
 673	val = rdl(pep, SDMA_CMD);
 674	val |= SDMA_CMD_ERD;
 675	wrl(pep, SDMA_CMD, val);
 676}
 677
 678static void eth_port_reset(struct net_device *dev)
 679{
 680	struct pxa168_eth_private *pep = netdev_priv(dev);
 681	unsigned int val = 0;
 682
 683	/* Stop all interrupts for receive, transmit and error. */
 684	wrl(pep, INT_MASK, 0);
 685
 686	/* Clear all interrupts */
 687	wrl(pep, INT_CAUSE, 0);
 688
 689	/* Stop RX DMA */
 690	val = rdl(pep, SDMA_CMD);
 691	val &= ~SDMA_CMD_ERD;	/* abort dma command */
 692
 693	/* Abort any transmit and receive operations and put DMA
 694	 * in idle state.
 695	 */
 696	abort_dma(pep);
 697
 698	/* Disable port */
 699	val = rdl(pep, PORT_CONFIG);
 700	val &= ~PCR_EN;
 701	wrl(pep, PORT_CONFIG, val);
 702
 703	phy_stop(pep->phy);
 704}
 705
 706/*
 707 * txq_reclaim - Free the tx desc data for completed descriptors
 708 * If force is non-zero, frees uncompleted descriptors as well
 709 */
 710static int txq_reclaim(struct net_device *dev, int force)
 711{
 712	struct pxa168_eth_private *pep = netdev_priv(dev);
 713	struct tx_desc *desc;
 714	u32 cmd_sts;
 715	struct sk_buff *skb;
 716	int tx_index;
 717	dma_addr_t addr;
 718	int count;
 719	int released = 0;
 720
 721	netif_tx_lock(dev);
 722
 723	pep->work_todo &= ~WORK_TX_DONE;
 724	while (pep->tx_desc_count > 0) {
 725		tx_index = pep->tx_used_desc_q;
 726		desc = &pep->p_tx_desc_area[tx_index];
 727		cmd_sts = desc->cmd_sts;
 728		if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
 729			if (released > 0) {
 730				goto txq_reclaim_end;
 731			} else {
 732				released = -1;
 733				goto txq_reclaim_end;
 734			}
 735		}
 736		pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
 737		pep->tx_desc_count--;
 738		addr = desc->buf_ptr;
 739		count = desc->byte_cnt;
 740		skb = pep->tx_skb[tx_index];
 741		if (skb)
 742			pep->tx_skb[tx_index] = NULL;
 743
 744		if (cmd_sts & TX_ERROR) {
 745			if (net_ratelimit())
 746				netdev_err(dev, "Error in TX\n");
 747			dev->stats.tx_errors++;
 748		}
 749		dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
 750		if (skb)
 751			dev_kfree_skb_irq(skb);
 752		released++;
 753	}
 754txq_reclaim_end:
 755	netif_tx_unlock(dev);
 756	return released;
 757}
 758
 759static void pxa168_eth_tx_timeout(struct net_device *dev)
 760{
 761	struct pxa168_eth_private *pep = netdev_priv(dev);
 762
 763	netdev_info(dev, "TX timeout  desc_count %d\n", pep->tx_desc_count);
 764
 765	schedule_work(&pep->tx_timeout_task);
 766}
 767
 768static void pxa168_eth_tx_timeout_task(struct work_struct *work)
 769{
 770	struct pxa168_eth_private *pep = container_of(work,
 771						 struct pxa168_eth_private,
 772						 tx_timeout_task);
 773	struct net_device *dev = pep->dev;
 774	pxa168_eth_stop(dev);
 775	pxa168_eth_open(dev);
 776}
 777
 778static int rxq_process(struct net_device *dev, int budget)
 779{
 780	struct pxa168_eth_private *pep = netdev_priv(dev);
 781	struct net_device_stats *stats = &dev->stats;
 782	unsigned int received_packets = 0;
 783	struct sk_buff *skb;
 784
 785	while (budget-- > 0) {
 786		int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
 787		struct rx_desc *rx_desc;
 788		unsigned int cmd_sts;
 789
 790		/* Do not process Rx ring in case of Rx ring resource error */
 791		if (pep->rx_resource_err)
 792			break;
 793		rx_curr_desc = pep->rx_curr_desc_q;
 794		rx_used_desc = pep->rx_used_desc_q;
 795		rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
 796		cmd_sts = rx_desc->cmd_sts;
 797		rmb();
 798		if (cmd_sts & (BUF_OWNED_BY_DMA))
 799			break;
 800		skb = pep->rx_skb[rx_curr_desc];
 801		pep->rx_skb[rx_curr_desc] = NULL;
 802
 803		rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
 804		pep->rx_curr_desc_q = rx_next_curr_desc;
 805
 806		/* Rx descriptors exhausted. */
 807		/* Set the Rx ring resource error flag */
 808		if (rx_next_curr_desc == rx_used_desc)
 809			pep->rx_resource_err = 1;
 810		pep->rx_desc_count--;
 811		dma_unmap_single(NULL, rx_desc->buf_ptr,
 812				 rx_desc->buf_size,
 813				 DMA_FROM_DEVICE);
 814		received_packets++;
 815		/*
 816		 * Update statistics.
 817		 * Note byte count includes 4 byte CRC count
 818		 */
 819		stats->rx_packets++;
 820		stats->rx_bytes += rx_desc->byte_cnt;
 821		/*
 822		 * In case received a packet without first / last bits on OR
 823		 * the error summary bit is on, the packets needs to be droped.
 824		 */
 825		if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
 826		     (RX_FIRST_DESC | RX_LAST_DESC))
 827		    || (cmd_sts & RX_ERROR)) {
 828
 829			stats->rx_dropped++;
 830			if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
 831			    (RX_FIRST_DESC | RX_LAST_DESC)) {
 832				if (net_ratelimit())
 833					netdev_err(dev,
 834						   "Rx pkt on multiple desc\n");
 835			}
 836			if (cmd_sts & RX_ERROR)
 837				stats->rx_errors++;
 838			dev_kfree_skb_irq(skb);
 839		} else {
 840			/*
 841			 * The -4 is for the CRC in the trailer of the
 842			 * received packet
 843			 */
 844			skb_put(skb, rx_desc->byte_cnt - 4);
 845			skb->protocol = eth_type_trans(skb, dev);
 846			netif_receive_skb(skb);
 847		}
 848	}
 849	/* Fill RX ring with skb's */
 850	rxq_refill(dev);
 851	return received_packets;
 852}
 853
 854static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
 855				     struct net_device *dev)
 856{
 857	u32 icr;
 858	int ret = 0;
 859
 860	icr = rdl(pep, INT_CAUSE);
 861	if (icr == 0)
 862		return IRQ_NONE;
 863
 864	wrl(pep, INT_CAUSE, ~icr);
 865	if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
 866		pep->work_todo |= WORK_TX_DONE;
 867		ret = 1;
 868	}
 869	if (icr & ICR_RXBUF)
 870		ret = 1;
 871	return ret;
 872}
 873
 874static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
 875{
 876	struct net_device *dev = (struct net_device *)dev_id;
 877	struct pxa168_eth_private *pep = netdev_priv(dev);
 878
 879	if (unlikely(!pxa168_eth_collect_events(pep, dev)))
 880		return IRQ_NONE;
 881	/* Disable interrupts */
 882	wrl(pep, INT_MASK, 0);
 883	napi_schedule(&pep->napi);
 884	return IRQ_HANDLED;
 885}
 886
 887static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
 888{
 889	int skb_size;
 890
 891	/*
 892	 * Reserve 2+14 bytes for an ethernet header (the hardware
 893	 * automatically prepends 2 bytes of dummy data to each
 894	 * received packet), 16 bytes for up to four VLAN tags, and
 895	 * 4 bytes for the trailing FCS -- 36 bytes total.
 896	 */
 897	skb_size = pep->dev->mtu + 36;
 898
 899	/*
 900	 * Make sure that the skb size is a multiple of 8 bytes, as
 901	 * the lower three bits of the receive descriptor's buffer
 902	 * size field are ignored by the hardware.
 903	 */
 904	pep->skb_size = (skb_size + 7) & ~7;
 905
 906	/*
 907	 * If NET_SKB_PAD is smaller than a cache line,
 908	 * netdev_alloc_skb() will cause skb->data to be misaligned
 909	 * to a cache line boundary.  If this is the case, include
 910	 * some extra space to allow re-aligning the data area.
 911	 */
 912	pep->skb_size += SKB_DMA_REALIGN;
 913
 914}
 915
 916static int set_port_config_ext(struct pxa168_eth_private *pep)
 917{
 918	int skb_size;
 919
 920	pxa168_eth_recalc_skb_size(pep);
 921	if  (pep->skb_size <= 1518)
 922		skb_size = PCXR_MFL_1518;
 923	else if (pep->skb_size <= 1536)
 924		skb_size = PCXR_MFL_1536;
 925	else if (pep->skb_size <= 2048)
 926		skb_size = PCXR_MFL_2048;
 927	else
 928		skb_size = PCXR_MFL_64K;
 929
 930	/* Extended Port Configuration */
 931	wrl(pep, PORT_CONFIG_EXT,
 932	    PCXR_AN_SPEED_DIS |		 /* Disable HW AN */
 933	    PCXR_AN_DUPLEX_DIS |
 934	    PCXR_AN_FLOWCTL_DIS |
 935	    PCXR_2BSM |			 /* Two byte prefix aligns IP hdr */
 936	    PCXR_DSCP_EN |		 /* Enable DSCP in IP */
 937	    skb_size | PCXR_FLP |	 /* do not force link pass */
 938	    PCXR_TX_HIGH_PRI);		 /* Transmit - high priority queue */
 939
 940	return 0;
 941}
 942
 943static void pxa168_eth_adjust_link(struct net_device *dev)
 944{
 945	struct pxa168_eth_private *pep = netdev_priv(dev);
 946	struct phy_device *phy = pep->phy;
 947	u32 cfg, cfg_o = rdl(pep, PORT_CONFIG);
 948	u32 cfgext, cfgext_o = rdl(pep, PORT_CONFIG_EXT);
 949
 950	cfg = cfg_o & ~PCR_DUPLEX_FULL;
 951	cfgext = cfgext_o & ~(PCXR_SPEED_100 | PCXR_FLOWCTL_DIS | PCXR_RMII_EN);
 952
 953	if (phy->interface == PHY_INTERFACE_MODE_RMII)
 954		cfgext |= PCXR_RMII_EN;
 955	if (phy->speed == SPEED_100)
 956		cfgext |= PCXR_SPEED_100;
 957	if (phy->duplex)
 958		cfg |= PCR_DUPLEX_FULL;
 959	if (!phy->pause)
 960		cfgext |= PCXR_FLOWCTL_DIS;
 961
 962	/* Bail out if there has nothing changed */
 963	if (cfg == cfg_o && cfgext == cfgext_o)
 964		return;
 965
 966	wrl(pep, PORT_CONFIG, cfg);
 967	wrl(pep, PORT_CONFIG_EXT, cfgext);
 968
 969	phy_print_status(phy);
 970}
 971
 972static int pxa168_init_phy(struct net_device *dev)
 973{
 974	struct pxa168_eth_private *pep = netdev_priv(dev);
 975	struct ethtool_cmd cmd;
 976	int err;
 977
 978	if (pep->phy)
 979		return 0;
 980
 981	pep->phy = mdiobus_scan(pep->smi_bus, pep->phy_addr);
 982	if (IS_ERR(pep->phy))
 983		return PTR_ERR(pep->phy);
 984	if (!pep->phy)
 985		return -ENODEV;
 986
 987	err = phy_connect_direct(dev, pep->phy, pxa168_eth_adjust_link,
 988				 pep->phy_intf);
 989	if (err)
 990		return err;
 991
 992	err = pxa168_get_settings(dev, &cmd);
 993	if (err)
 994		return err;
 995
 996	cmd.phy_address = pep->phy_addr;
 997	cmd.speed = pep->phy_speed;
 998	cmd.duplex = pep->phy_duplex;
 999	cmd.advertising = PHY_BASIC_FEATURES;
1000	cmd.autoneg = AUTONEG_ENABLE;
1001
1002	if (cmd.speed != 0)
1003		cmd.autoneg = AUTONEG_DISABLE;
1004
1005	return pxa168_set_settings(dev, &cmd);
1006}
1007
1008static int pxa168_init_hw(struct pxa168_eth_private *pep)
1009{
1010	int err = 0;
1011
1012	/* Disable interrupts */
1013	wrl(pep, INT_MASK, 0);
1014	wrl(pep, INT_CAUSE, 0);
1015	/* Write to ICR to clear interrupts. */
1016	wrl(pep, INT_W_CLEAR, 0);
1017	/* Abort any transmit and receive operations and put DMA
1018	 * in idle state.
1019	 */
1020	abort_dma(pep);
1021	/* Initialize address hash table */
1022	err = init_hash_table(pep);
1023	if (err)
1024		return err;
1025	/* SDMA configuration */
1026	wrl(pep, SDMA_CONFIG, SDCR_BSZ8 |	/* Burst size = 32 bytes */
1027	    SDCR_RIFB |				/* Rx interrupt on frame */
1028	    SDCR_BLMT |				/* Little endian transmit */
1029	    SDCR_BLMR |				/* Little endian receive */
1030	    SDCR_RC_MAX_RETRANS);		/* Max retransmit count */
1031	/* Port Configuration */
1032	wrl(pep, PORT_CONFIG, PCR_HS);		/* Hash size is 1/2kb */
1033	set_port_config_ext(pep);
1034
1035	return err;
1036}
1037
1038static int rxq_init(struct net_device *dev)
1039{
1040	struct pxa168_eth_private *pep = netdev_priv(dev);
1041	struct rx_desc *p_rx_desc;
1042	int size = 0, i = 0;
1043	int rx_desc_num = pep->rx_ring_size;
1044
1045	/* Allocate RX skb rings */
1046	pep->rx_skb = kzalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size,
1047			     GFP_KERNEL);
1048	if (!pep->rx_skb)
1049		return -ENOMEM;
1050
1051	/* Allocate RX ring */
1052	pep->rx_desc_count = 0;
1053	size = pep->rx_ring_size * sizeof(struct rx_desc);
1054	pep->rx_desc_area_size = size;
1055	pep->p_rx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1056						  &pep->rx_desc_dma,
1057						  GFP_KERNEL);
1058	if (!pep->p_rx_desc_area)
1059		goto out;
1060
1061	/* initialize the next_desc_ptr links in the Rx descriptors ring */
1062	p_rx_desc = pep->p_rx_desc_area;
1063	for (i = 0; i < rx_desc_num; i++) {
1064		p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1065		    ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1066	}
1067	/* Save Rx desc pointer to driver struct. */
1068	pep->rx_curr_desc_q = 0;
1069	pep->rx_used_desc_q = 0;
1070	pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1071	return 0;
1072out:
1073	kfree(pep->rx_skb);
1074	return -ENOMEM;
1075}
1076
1077static void rxq_deinit(struct net_device *dev)
1078{
1079	struct pxa168_eth_private *pep = netdev_priv(dev);
1080	int curr;
1081
1082	/* Free preallocated skb's on RX rings */
1083	for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1084		if (pep->rx_skb[curr]) {
1085			dev_kfree_skb(pep->rx_skb[curr]);
1086			pep->rx_desc_count--;
1087		}
1088	}
1089	if (pep->rx_desc_count)
1090		netdev_err(dev, "Error in freeing Rx Ring. %d skb's still\n",
1091			   pep->rx_desc_count);
1092	/* Free RX ring */
1093	if (pep->p_rx_desc_area)
1094		dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1095				  pep->p_rx_desc_area, pep->rx_desc_dma);
1096	kfree(pep->rx_skb);
1097}
1098
1099static int txq_init(struct net_device *dev)
1100{
1101	struct pxa168_eth_private *pep = netdev_priv(dev);
1102	struct tx_desc *p_tx_desc;
1103	int size = 0, i = 0;
1104	int tx_desc_num = pep->tx_ring_size;
1105
1106	pep->tx_skb = kzalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size,
1107			     GFP_KERNEL);
1108	if (!pep->tx_skb)
1109		return -ENOMEM;
1110
1111	/* Allocate TX ring */
1112	pep->tx_desc_count = 0;
1113	size = pep->tx_ring_size * sizeof(struct tx_desc);
1114	pep->tx_desc_area_size = size;
1115	pep->p_tx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1116						  &pep->tx_desc_dma,
1117						  GFP_KERNEL);
1118	if (!pep->p_tx_desc_area)
1119		goto out;
1120	/* Initialize the next_desc_ptr links in the Tx descriptors ring */
1121	p_tx_desc = pep->p_tx_desc_area;
1122	for (i = 0; i < tx_desc_num; i++) {
1123		p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1124		    ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1125	}
1126	pep->tx_curr_desc_q = 0;
1127	pep->tx_used_desc_q = 0;
1128	pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1129	return 0;
1130out:
1131	kfree(pep->tx_skb);
1132	return -ENOMEM;
1133}
1134
1135static void txq_deinit(struct net_device *dev)
1136{
1137	struct pxa168_eth_private *pep = netdev_priv(dev);
1138
1139	/* Free outstanding skb's on TX ring */
1140	txq_reclaim(dev, 1);
1141	BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1142	/* Free TX ring */
1143	if (pep->p_tx_desc_area)
1144		dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1145				  pep->p_tx_desc_area, pep->tx_desc_dma);
1146	kfree(pep->tx_skb);
1147}
1148
1149static int pxa168_eth_open(struct net_device *dev)
1150{
1151	struct pxa168_eth_private *pep = netdev_priv(dev);
1152	int err;
1153
1154	err = pxa168_init_phy(dev);
1155	if (err)
1156		return err;
1157
1158	err = request_irq(dev->irq, pxa168_eth_int_handler, 0, dev->name, dev);
1159	if (err) {
1160		dev_err(&dev->dev, "can't assign irq\n");
1161		return -EAGAIN;
1162	}
1163	pep->rx_resource_err = 0;
1164	err = rxq_init(dev);
1165	if (err != 0)
1166		goto out_free_irq;
1167	err = txq_init(dev);
1168	if (err != 0)
1169		goto out_free_rx_skb;
1170	pep->rx_used_desc_q = 0;
1171	pep->rx_curr_desc_q = 0;
1172
1173	/* Fill RX ring with skb's */
1174	rxq_refill(dev);
1175	pep->rx_used_desc_q = 0;
1176	pep->rx_curr_desc_q = 0;
1177	netif_carrier_off(dev);
1178	napi_enable(&pep->napi);
1179	eth_port_start(dev);
1180	return 0;
1181out_free_rx_skb:
1182	rxq_deinit(dev);
1183out_free_irq:
1184	free_irq(dev->irq, dev);
1185	return err;
1186}
1187
1188static int pxa168_eth_stop(struct net_device *dev)
1189{
1190	struct pxa168_eth_private *pep = netdev_priv(dev);
1191	eth_port_reset(dev);
1192
1193	/* Disable interrupts */
1194	wrl(pep, INT_MASK, 0);
1195	wrl(pep, INT_CAUSE, 0);
1196	/* Write to ICR to clear interrupts. */
1197	wrl(pep, INT_W_CLEAR, 0);
1198	napi_disable(&pep->napi);
1199	del_timer_sync(&pep->timeout);
1200	netif_carrier_off(dev);
1201	free_irq(dev->irq, dev);
1202	rxq_deinit(dev);
1203	txq_deinit(dev);
1204
1205	return 0;
1206}
1207
1208static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1209{
1210	int retval;
1211	struct pxa168_eth_private *pep = netdev_priv(dev);
1212
1213	if ((mtu > 9500) || (mtu < 68))
1214		return -EINVAL;
1215
1216	dev->mtu = mtu;
1217	retval = set_port_config_ext(pep);
1218
1219	if (!netif_running(dev))
1220		return 0;
1221
1222	/*
1223	 * Stop and then re-open the interface. This will allocate RX
1224	 * skbs of the new MTU.
1225	 * There is a possible danger that the open will not succeed,
1226	 * due to memory being full.
1227	 */
1228	pxa168_eth_stop(dev);
1229	if (pxa168_eth_open(dev)) {
1230		dev_err(&dev->dev,
1231			"fatal error on re-opening device after MTU change\n");
1232	}
1233
1234	return 0;
1235}
1236
1237static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1238{
1239	int tx_desc_curr;
1240
1241	tx_desc_curr = pep->tx_curr_desc_q;
1242	pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1243	BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1244	pep->tx_desc_count++;
1245
1246	return tx_desc_curr;
1247}
1248
1249static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1250{
1251	struct pxa168_eth_private *pep =
1252	    container_of(napi, struct pxa168_eth_private, napi);
1253	struct net_device *dev = pep->dev;
1254	int work_done = 0;
1255
1256	/*
1257	 * We call txq_reclaim every time since in NAPI interupts are disabled
1258	 * and due to this we miss the TX_DONE interrupt,which is not updated in
1259	 * interrupt status register.
1260	 */
1261	txq_reclaim(dev, 0);
1262	if (netif_queue_stopped(dev)
1263	    && pep->tx_ring_size - pep->tx_desc_count > 1) {
1264		netif_wake_queue(dev);
1265	}
1266	work_done = rxq_process(dev, budget);
1267	if (work_done < budget) {
1268		napi_complete(napi);
1269		wrl(pep, INT_MASK, ALL_INTS);
1270	}
1271
1272	return work_done;
1273}
1274
1275static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1276{
1277	struct pxa168_eth_private *pep = netdev_priv(dev);
1278	struct net_device_stats *stats = &dev->stats;
1279	struct tx_desc *desc;
1280	int tx_index;
1281	int length;
1282
1283	tx_index = eth_alloc_tx_desc_index(pep);
1284	desc = &pep->p_tx_desc_area[tx_index];
1285	length = skb->len;
1286	pep->tx_skb[tx_index] = skb;
1287	desc->byte_cnt = length;
1288	desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1289
1290	skb_tx_timestamp(skb);
1291
1292	wmb();
1293	desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1294			TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1295	wmb();
1296	wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1297
1298	stats->tx_bytes += length;
1299	stats->tx_packets++;
1300	dev->trans_start = jiffies;
1301	if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1302		/* We handled the current skb, but now we are out of space.*/
1303		netif_stop_queue(dev);
1304	}
1305
1306	return NETDEV_TX_OK;
1307}
1308
1309static int smi_wait_ready(struct pxa168_eth_private *pep)
1310{
1311	int i = 0;
1312
1313	/* wait for the SMI register to become available */
1314	for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1315		if (i == PHY_WAIT_ITERATIONS)
1316			return -ETIMEDOUT;
1317		msleep(10);
1318	}
1319
1320	return 0;
1321}
1322
1323static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1324{
1325	struct pxa168_eth_private *pep = bus->priv;
1326	int i = 0;
1327	int val;
1328
1329	if (smi_wait_ready(pep)) {
1330		netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1331		return -ETIMEDOUT;
1332	}
1333	wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1334	/* now wait for the data to be valid */
1335	for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1336		if (i == PHY_WAIT_ITERATIONS) {
1337			netdev_warn(pep->dev,
1338				    "pxa168_eth: SMI bus read not valid\n");
1339			return -ENODEV;
1340		}
1341		msleep(10);
1342	}
1343
1344	return val & 0xffff;
1345}
1346
1347static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1348			    u16 value)
1349{
1350	struct pxa168_eth_private *pep = bus->priv;
1351
1352	if (smi_wait_ready(pep)) {
1353		netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1354		return -ETIMEDOUT;
1355	}
1356
1357	wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1358	    SMI_OP_W | (value & 0xffff));
1359
1360	if (smi_wait_ready(pep)) {
1361		netdev_err(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1362		return -ETIMEDOUT;
1363	}
1364
1365	return 0;
1366}
1367
1368static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
1369			       int cmd)
1370{
1371	struct pxa168_eth_private *pep = netdev_priv(dev);
1372	if (pep->phy != NULL)
1373		return phy_mii_ioctl(pep->phy, ifr, cmd);
1374
1375	return -EOPNOTSUPP;
1376}
1377
1378static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1379{
1380	struct pxa168_eth_private *pep = netdev_priv(dev);
1381	int err;
1382
1383	err = phy_read_status(pep->phy);
1384	if (err == 0)
1385		err = phy_ethtool_gset(pep->phy, cmd);
1386
1387	return err;
1388}
1389
1390static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1391{
1392	struct pxa168_eth_private *pep = netdev_priv(dev);
1393
1394	return phy_ethtool_sset(pep->phy, cmd);
1395}
1396
1397static void pxa168_get_drvinfo(struct net_device *dev,
1398			       struct ethtool_drvinfo *info)
1399{
1400	strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1401	strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
1402	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
1403	strlcpy(info->bus_info, "N/A", sizeof(info->bus_info));
1404}
1405
1406static const struct ethtool_ops pxa168_ethtool_ops = {
1407	.get_settings	= pxa168_get_settings,
1408	.set_settings	= pxa168_set_settings,
1409	.get_drvinfo	= pxa168_get_drvinfo,
1410	.get_link	= ethtool_op_get_link,
1411	.get_ts_info	= ethtool_op_get_ts_info,
1412};
1413
1414static const struct net_device_ops pxa168_eth_netdev_ops = {
1415	.ndo_open		= pxa168_eth_open,
1416	.ndo_stop		= pxa168_eth_stop,
1417	.ndo_start_xmit		= pxa168_eth_start_xmit,
1418	.ndo_set_rx_mode	= pxa168_eth_set_rx_mode,
1419	.ndo_set_mac_address	= pxa168_eth_set_mac_address,
1420	.ndo_validate_addr	= eth_validate_addr,
1421	.ndo_do_ioctl		= pxa168_eth_do_ioctl,
1422	.ndo_change_mtu		= pxa168_eth_change_mtu,
1423	.ndo_tx_timeout		= pxa168_eth_tx_timeout,
1424};
1425
1426static int pxa168_eth_probe(struct platform_device *pdev)
1427{
1428	struct pxa168_eth_private *pep = NULL;
1429	struct net_device *dev = NULL;
1430	struct resource *res;
1431	struct clk *clk;
1432	struct device_node *np;
1433	const unsigned char *mac_addr = NULL;
1434	int err;
1435
1436	printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1437
1438	clk = devm_clk_get(&pdev->dev, NULL);
1439	if (IS_ERR(clk)) {
1440		dev_err(&pdev->dev, "Fast Ethernet failed to get clock\n");
1441		return -ENODEV;
1442	}
1443	clk_prepare_enable(clk);
1444
1445	dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1446	if (!dev) {
1447		err = -ENOMEM;
1448		goto err_clk;
1449	}
1450
1451	platform_set_drvdata(pdev, dev);
1452	pep = netdev_priv(dev);
1453	pep->dev = dev;
1454	pep->clk = clk;
1455
1456	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1457	pep->base = devm_ioremap_resource(&pdev->dev, res);
1458	if (IS_ERR(pep->base)) {
1459		err = -ENOMEM;
1460		goto err_netdev;
1461	}
1462
1463	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1464	BUG_ON(!res);
1465	dev->irq = res->start;
1466	dev->netdev_ops = &pxa168_eth_netdev_ops;
1467	dev->watchdog_timeo = 2 * HZ;
1468	dev->base_addr = 0;
1469	dev->ethtool_ops = &pxa168_ethtool_ops;
1470
1471	INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1472
1473	if (pdev->dev.of_node)
1474		mac_addr = of_get_mac_address(pdev->dev.of_node);
1475
1476	if (mac_addr && is_valid_ether_addr(mac_addr)) {
1477		ether_addr_copy(dev->dev_addr, mac_addr);
1478	} else {
1479		/* try reading the mac address, if set by the bootloader */
1480		pxa168_eth_get_mac_address(dev, dev->dev_addr);
1481		if (!is_valid_ether_addr(dev->dev_addr)) {
1482			dev_info(&pdev->dev, "Using random mac address\n");
1483			eth_hw_addr_random(dev);
1484		}
1485	}
1486
1487	pep->rx_ring_size = NUM_RX_DESCS;
1488	pep->tx_ring_size = NUM_TX_DESCS;
1489
1490	pep->pd = dev_get_platdata(&pdev->dev);
1491	if (pep->pd) {
1492		if (pep->pd->rx_queue_size)
1493			pep->rx_ring_size = pep->pd->rx_queue_size;
1494
1495		if (pep->pd->tx_queue_size)
1496			pep->tx_ring_size = pep->pd->tx_queue_size;
1497
1498		pep->port_num = pep->pd->port_number;
1499		pep->phy_addr = pep->pd->phy_addr;
1500		pep->phy_speed = pep->pd->speed;
1501		pep->phy_duplex = pep->pd->duplex;
1502		pep->phy_intf = pep->pd->intf;
1503
1504		if (pep->pd->init)
1505			pep->pd->init();
1506	} else if (pdev->dev.of_node) {
1507		of_property_read_u32(pdev->dev.of_node, "port-id",
1508				     &pep->port_num);
1509
1510		np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1511		if (!np) {
1512			dev_err(&pdev->dev, "missing phy-handle\n");
1513			err = -EINVAL;
1514			goto err_netdev;
1515		}
1516		of_property_read_u32(np, "reg", &pep->phy_addr);
1517		pep->phy_intf = of_get_phy_mode(pdev->dev.of_node);
1518	}
1519
1520	/* Hardware supports only 3 ports */
1521	BUG_ON(pep->port_num > 2);
1522	netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
1523
1524	memset(&pep->timeout, 0, sizeof(struct timer_list));
1525	init_timer(&pep->timeout);
1526	pep->timeout.function = rxq_refill_timer_wrapper;
1527	pep->timeout.data = (unsigned long)pep;
1528
1529	pep->smi_bus = mdiobus_alloc();
1530	if (pep->smi_bus == NULL) {
1531		err = -ENOMEM;
1532		goto err_netdev;
1533	}
1534	pep->smi_bus->priv = pep;
1535	pep->smi_bus->name = "pxa168_eth smi";
1536	pep->smi_bus->read = pxa168_smi_read;
1537	pep->smi_bus->write = pxa168_smi_write;
1538	snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1539		pdev->name, pdev->id);
1540	pep->smi_bus->parent = &pdev->dev;
1541	pep->smi_bus->phy_mask = 0xffffffff;
1542	err = mdiobus_register(pep->smi_bus);
1543	if (err)
1544		goto err_free_mdio;
1545
1546	SET_NETDEV_DEV(dev, &pdev->dev);
1547	pxa168_init_hw(pep);
1548	err = register_netdev(dev);
1549	if (err)
1550		goto err_mdiobus;
1551	return 0;
1552
1553err_mdiobus:
1554	mdiobus_unregister(pep->smi_bus);
1555err_free_mdio:
1556	mdiobus_free(pep->smi_bus);
1557err_netdev:
1558	free_netdev(dev);
1559err_clk:
1560	clk_disable_unprepare(clk);
1561	return err;
1562}
1563
1564static int pxa168_eth_remove(struct platform_device *pdev)
1565{
1566	struct net_device *dev = platform_get_drvdata(pdev);
1567	struct pxa168_eth_private *pep = netdev_priv(dev);
1568
1569	if (pep->htpr) {
1570		dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1571				  pep->htpr, pep->htpr_dma);
1572		pep->htpr = NULL;
1573	}
1574	if (pep->phy)
1575		phy_disconnect(pep->phy);
1576	if (pep->clk) {
1577		clk_disable_unprepare(pep->clk);
1578	}
1579
1580	mdiobus_unregister(pep->smi_bus);
1581	mdiobus_free(pep->smi_bus);
1582	unregister_netdev(dev);
1583	cancel_work_sync(&pep->tx_timeout_task);
1584	free_netdev(dev);
1585	return 0;
1586}
1587
1588static void pxa168_eth_shutdown(struct platform_device *pdev)
1589{
1590	struct net_device *dev = platform_get_drvdata(pdev);
1591	eth_port_reset(dev);
1592}
1593
1594#ifdef CONFIG_PM
1595static int pxa168_eth_resume(struct platform_device *pdev)
1596{
1597	return -ENOSYS;
1598}
1599
1600static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1601{
1602	return -ENOSYS;
1603}
1604
1605#else
1606#define pxa168_eth_resume NULL
1607#define pxa168_eth_suspend NULL
1608#endif
1609
1610static const struct of_device_id pxa168_eth_of_match[] = {
1611	{ .compatible = "marvell,pxa168-eth" },
1612	{ },
1613};
1614MODULE_DEVICE_TABLE(of, pxa168_eth_of_match);
1615
1616static struct platform_driver pxa168_eth_driver = {
1617	.probe = pxa168_eth_probe,
1618	.remove = pxa168_eth_remove,
1619	.shutdown = pxa168_eth_shutdown,
1620	.resume = pxa168_eth_resume,
1621	.suspend = pxa168_eth_suspend,
1622	.driver = {
1623		.name		= DRIVER_NAME,
1624		.of_match_table	= of_match_ptr(pxa168_eth_of_match),
1625	},
1626};
1627
1628module_platform_driver(pxa168_eth_driver);
1629
1630MODULE_LICENSE("GPL");
1631MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1632MODULE_ALIAS("platform:pxa168_eth");