Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
   2/*
   3	Written 1996-1999 by Donald Becker.
   4
   5	This software may be used and distributed according to the terms
   6	of the GNU General Public License, incorporated herein by reference.
   7
   8	This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
   9	Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
  10	and the EtherLink XL 3c900 and 3c905 cards.
  11
  12	Problem reports and questions should be directed to
  13	vortex@scyld.com
  14
  15	The author may be reached as becker@scyld.com, or C/O
  16	Scyld Computing Corporation
  17	410 Severn Ave., Suite 210
  18	Annapolis MD 21403
  19
  20*/
  21
  22/*
  23 * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
  24 * as well as other drivers
  25 *
  26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
  27 * due to dead code elimination.  There will be some performance benefits from this due to
  28 * elimination of all the tests and reduced cache footprint.
  29 */
  30
  31
  32#define DRV_NAME	"3c59x"
  33
  34
  35
  36/* A few values that may be tweaked. */
  37/* Keep the ring sizes a power of two for efficiency. */
  38#define TX_RING_SIZE	16
  39#define RX_RING_SIZE	32
  40#define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
  41
  42/* "Knobs" that adjust features and parameters. */
  43/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  44   Setting to > 1512 effectively disables this feature. */
  45#ifndef __arm__
  46static int rx_copybreak = 200;
  47#else
  48/* ARM systems perform better by disregarding the bus-master
  49   transfer capability of these cards. -- rmk */
  50static int rx_copybreak = 1513;
  51#endif
  52/* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
  53static const int mtu = 1500;
  54/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
  55static int max_interrupt_work = 32;
  56/* Tx timeout interval (millisecs) */
  57static int watchdog = 5000;
  58
  59/* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
  60 * of possible Tx stalls if the system is blocking interrupts
  61 * somewhere else.  Undefine this to disable.
  62 */
  63#define tx_interrupt_mitigation 1
  64
  65/* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
  66#define vortex_debug debug
  67#ifdef VORTEX_DEBUG
  68static int vortex_debug = VORTEX_DEBUG;
  69#else
  70static int vortex_debug = 1;
  71#endif
  72
  73#include <linux/module.h>
  74#include <linux/kernel.h>
  75#include <linux/string.h>
  76#include <linux/timer.h>
  77#include <linux/errno.h>
  78#include <linux/in.h>
  79#include <linux/ioport.h>
  80#include <linux/interrupt.h>
  81#include <linux/pci.h>
  82#include <linux/mii.h>
  83#include <linux/init.h>
  84#include <linux/netdevice.h>
  85#include <linux/etherdevice.h>
  86#include <linux/skbuff.h>
  87#include <linux/ethtool.h>
  88#include <linux/highmem.h>
  89#include <linux/eisa.h>
  90#include <linux/bitops.h>
  91#include <linux/jiffies.h>
  92#include <linux/gfp.h>
  93#include <asm/irq.h>			/* For nr_irqs only. */
  94#include <asm/io.h>
  95#include <asm/uaccess.h>
  96
  97/* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
  98   This is only in the support-all-kernels source code. */
  99
 100#define RUN_AT(x) (jiffies + (x))
 101
 102#include <linux/delay.h>
 103
 104
 105static const char version[] =
 106	DRV_NAME ": Donald Becker and others.\n";
 107
 108MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 109MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
 110MODULE_LICENSE("GPL");
 111
 112
 113/* Operational parameter that usually are not changed. */
 114
 115/* The Vortex size is twice that of the original EtherLinkIII series: the
 116   runtime register window, window 1, is now always mapped in.
 117   The Boomerang size is twice as large as the Vortex -- it has additional
 118   bus master control registers. */
 119#define VORTEX_TOTAL_SIZE 0x20
 120#define BOOMERANG_TOTAL_SIZE 0x40
 121
 122/* Set iff a MII transceiver on any interface requires mdio preamble.
 123   This only set with the original DP83840 on older 3c905 boards, so the extra
 124   code size of a per-interface flag is not worthwhile. */
 125static char mii_preamble_required;
 126
 127#define PFX DRV_NAME ": "
 128
 129
 130
 131/*
 132				Theory of Operation
 133
 134I. Board Compatibility
 135
 136This device driver is designed for the 3Com FastEtherLink and FastEtherLink
 137XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
 138versions of the FastEtherLink cards.  The supported product IDs are
 139  3c590, 3c592, 3c595, 3c597, 3c900, 3c905
 140
 141The related ISA 3c515 is supported with a separate driver, 3c515.c, included
 142with the kernel source or available from
 143    cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
 144
 145II. Board-specific settings
 146
 147PCI bus devices are configured by the system at boot time, so no jumpers
 148need to be set on the board.  The system BIOS should be set to assign the
 149PCI INTA signal to an otherwise unused system IRQ line.
 150
 151The EEPROM settings for media type and forced-full-duplex are observed.
 152The EEPROM media type should be left at the default "autoselect" unless using
 15310base2 or AUI connections which cannot be reliably detected.
 154
 155III. Driver operation
 156
 157The 3c59x series use an interface that's very similar to the previous 3c5x9
 158series.  The primary interface is two programmed-I/O FIFOs, with an
 159alternate single-contiguous-region bus-master transfer (see next).
 160
 161The 3c900 "Boomerang" series uses a full-bus-master interface with separate
 162lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
 163DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
 164programmed-I/O interface that has been removed in 'B' and subsequent board
 165revisions.
 166
 167One extension that is advertised in a very large font is that the adapters
 168are capable of being bus masters.  On the Vortex chip this capability was
 169only for a single contiguous region making it far less useful than the full
 170bus master capability.  There is a significant performance impact of taking
 171an extra interrupt or polling for the completion of each transfer, as well
 172as difficulty sharing the single transfer engine between the transmit and
 173receive threads.  Using DMA transfers is a win only with large blocks or
 174with the flawed versions of the Intel Orion motherboard PCI controller.
 175
 176The Boomerang chip's full-bus-master interface is useful, and has the
 177currently-unused advantages over other similar chips that queued transmit
 178packets may be reordered and receive buffer groups are associated with a
 179single frame.
 180
 181With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
 182Rather than a fixed intermediate receive buffer, this scheme allocates
 183full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
 184the copying breakpoint: it is chosen to trade-off the memory wasted by
 185passing the full-sized skbuff to the queue layer for all frames vs. the
 186copying cost of copying a frame to a correctly-sized skbuff.
 187
 188IIIC. Synchronization
 189The driver runs as two independent, single-threaded flows of control.  One
 190is the send-packet routine, which enforces single-threaded use by the
 191dev->tbusy flag.  The other thread is the interrupt handler, which is single
 192threaded by the hardware and other software.
 193
 194IV. Notes
 195
 196Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
 1973c590, 3c595, and 3c900 boards.
 198The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
 199the EISA version is called "Demon".  According to Terry these names come
 200from rides at the local amusement park.
 201
 202The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
 203This driver only supports ethernet packets because of the skbuff allocation
 204limit of 4K.
 205*/
 206
 207/* This table drives the PCI probe routines.  It's mostly boilerplate in all
 208   of the drivers, and will likely be provided by some future kernel.
 209*/
 210enum pci_flags_bit {
 211	PCI_USES_MASTER=4,
 212};
 213
 214enum {	IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
 215	EEPROM_8BIT=0x10,	/* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
 216	HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
 217	INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
 218	EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
 219	EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
 220
 221enum vortex_chips {
 222	CH_3C590 = 0,
 223	CH_3C592,
 224	CH_3C597,
 225	CH_3C595_1,
 226	CH_3C595_2,
 227
 228	CH_3C595_3,
 229	CH_3C900_1,
 230	CH_3C900_2,
 231	CH_3C900_3,
 232	CH_3C900_4,
 233
 234	CH_3C900_5,
 235	CH_3C900B_FL,
 236	CH_3C905_1,
 237	CH_3C905_2,
 238	CH_3C905B_TX,
 239	CH_3C905B_1,
 240
 241	CH_3C905B_2,
 242	CH_3C905B_FX,
 243	CH_3C905C,
 244	CH_3C9202,
 245	CH_3C980,
 246	CH_3C9805,
 247
 248	CH_3CSOHO100_TX,
 249	CH_3C555,
 250	CH_3C556,
 251	CH_3C556B,
 252	CH_3C575,
 253
 254	CH_3C575_1,
 255	CH_3CCFE575,
 256	CH_3CCFE575CT,
 257	CH_3CCFE656,
 258	CH_3CCFEM656,
 259
 260	CH_3CCFEM656_1,
 261	CH_3C450,
 262	CH_3C920,
 263	CH_3C982A,
 264	CH_3C982B,
 265
 266	CH_905BT4,
 267	CH_920B_EMB_WNM,
 268};
 269
 270
 271/* note: this array directly indexed by above enums, and MUST
 272 * be kept in sync with both the enums above, and the PCI device
 273 * table below
 274 */
 275static struct vortex_chip_info {
 276	const char *name;
 277	int flags;
 278	int drv_flags;
 279	int io_size;
 280} vortex_info_tbl[] = {
 281	{"3c590 Vortex 10Mbps",
 282	 PCI_USES_MASTER, IS_VORTEX, 32, },
 283	{"3c592 EISA 10Mbps Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
 284	 PCI_USES_MASTER, IS_VORTEX, 32, },
 285	{"3c597 EISA Fast Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
 286	 PCI_USES_MASTER, IS_VORTEX, 32, },
 287	{"3c595 Vortex 100baseTx",
 288	 PCI_USES_MASTER, IS_VORTEX, 32, },
 289	{"3c595 Vortex 100baseT4",
 290	 PCI_USES_MASTER, IS_VORTEX, 32, },
 291
 292	{"3c595 Vortex 100base-MII",
 293	 PCI_USES_MASTER, IS_VORTEX, 32, },
 294	{"3c900 Boomerang 10baseT",
 295	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 296	{"3c900 Boomerang 10Mbps Combo",
 297	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 298	{"3c900 Cyclone 10Mbps TPO",						/* AKPM: from Don's 0.99M */
 299	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 300	{"3c900 Cyclone 10Mbps Combo",
 301	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 302
 303	{"3c900 Cyclone 10Mbps TPC",						/* AKPM: from Don's 0.99M */
 304	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 305	{"3c900B-FL Cyclone 10base-FL",
 306	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 307	{"3c905 Boomerang 100baseTx",
 308	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 309	{"3c905 Boomerang 100baseT4",
 310	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 311	{"3C905B-TX Fast Etherlink XL PCI",
 312	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 313	{"3c905B Cyclone 100baseTx",
 314	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 315
 316	{"3c905B Cyclone 10/100/BNC",
 317	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 318	{"3c905B-FX Cyclone 100baseFx",
 319	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 320	{"3c905C Tornado",
 321	PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 322	{"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
 323	 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
 324	{"3c980 Cyclone",
 325	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 326
 327	{"3c980C Python-T",
 328	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 329	{"3cSOHO100-TX Hurricane",
 330	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 331	{"3c555 Laptop Hurricane",
 332	 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
 333	{"3c556 Laptop Tornado",
 334	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
 335									HAS_HWCKSM, 128, },
 336	{"3c556B Laptop Hurricane",
 337	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
 338	                                WNO_XCVR_PWR|HAS_HWCKSM, 128, },
 339
 340	{"3c575 [Megahertz] 10/100 LAN 	CardBus",
 341	PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 342	{"3c575 Boomerang CardBus",
 343	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 344	{"3CCFE575BT Cyclone CardBus",
 345	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
 346									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 347	{"3CCFE575CT Tornado CardBus",
 348	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 349									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 350	{"3CCFE656 Cyclone CardBus",
 351	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 352									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 353
 354	{"3CCFEM656B Cyclone+Winmodem CardBus",
 355	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 356									INVERT_LED_PWR|HAS_HWCKSM, 128, },
 357	{"3CXFEM656C Tornado+Winmodem CardBus",			/* From pcmcia-cs-3.1.5 */
 358	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 359									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 360	{"3c450 HomePNA Tornado",						/* AKPM: from Don's 0.99Q */
 361	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 362	{"3c920 Tornado",
 363	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 364	{"3c982 Hydra Dual Port A",
 365	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 366
 367	{"3c982 Hydra Dual Port B",
 368	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 369	{"3c905B-T4",
 370	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 371	{"3c920B-EMB-WNM Tornado",
 372	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 373
 374	{NULL,}, /* NULL terminated list. */
 375};
 376
 377
 378static const struct pci_device_id vortex_pci_tbl[] = {
 379	{ 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
 380	{ 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
 381	{ 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
 382	{ 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
 383	{ 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
 384
 385	{ 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
 386	{ 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
 387	{ 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
 388	{ 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
 389	{ 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
 390
 391	{ 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
 392	{ 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
 393	{ 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
 394	{ 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
 395	{ 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
 396	{ 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
 397
 398	{ 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
 399	{ 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
 400	{ 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
 401	{ 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
 402	{ 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
 403	{ 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
 404
 405	{ 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
 406	{ 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
 407	{ 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
 408	{ 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
 409	{ 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
 410
 411	{ 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
 412	{ 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
 413	{ 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
 414	{ 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
 415	{ 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
 416
 417	{ 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
 418	{ 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
 419	{ 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
 420	{ 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
 421	{ 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
 422
 423	{ 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
 424	{ 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
 425
 426	{0,}						/* 0 terminated list. */
 427};
 428MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
 429
 430
 431/* Operational definitions.
 432   These are not used by other compilation units and thus are not
 433   exported in a ".h" file.
 434
 435   First the windows.  There are eight register windows, with the command
 436   and status registers available in each.
 437   */
 438#define EL3_CMD 0x0e
 439#define EL3_STATUS 0x0e
 440
 441/* The top five bits written to EL3_CMD are a command, the lower
 442   11 bits are the parameter, if applicable.
 443   Note that 11 parameters bits was fine for ethernet, but the new chip
 444   can handle FDDI length frames (~4500 octets) and now parameters count
 445   32-bit 'Dwords' rather than octets. */
 446
 447enum vortex_cmd {
 448	TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
 449	RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
 450	UpStall = 6<<11, UpUnstall = (6<<11)+1,
 451	DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
 452	RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
 453	FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
 454	SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
 455	SetTxThreshold = 18<<11, SetTxStart = 19<<11,
 456	StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
 457	StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
 458
 459/* The SetRxFilter command accepts the following classes: */
 460enum RxFilter {
 461	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
 462
 463/* Bits in the general status register. */
 464enum vortex_status {
 465	IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
 466	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
 467	IntReq = 0x0040, StatsFull = 0x0080,
 468	DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
 469	DMAInProgress = 1<<11,			/* DMA controller is still busy.*/
 470	CmdInProgress = 1<<12,			/* EL3_CMD is still busy.*/
 471};
 472
 473/* Register window 1 offsets, the window used in normal operation.
 474   On the Vortex this window is always mapped at offsets 0x10-0x1f. */
 475enum Window1 {
 476	TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
 477	RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
 478	TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
 479};
 480enum Window0 {
 481	Wn0EepromCmd = 10,		/* Window 0: EEPROM command register. */
 482	Wn0EepromData = 12,		/* Window 0: EEPROM results register. */
 483	IntrStatus=0x0E,		/* Valid in all windows. */
 484};
 485enum Win0_EEPROM_bits {
 486	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
 487	EEPROM_EWENB = 0x30,		/* Enable erasing/writing for 10 msec. */
 488	EEPROM_EWDIS = 0x00,		/* Disable EWENB before 10 msec timeout. */
 489};
 490/* EEPROM locations. */
 491enum eeprom_offset {
 492	PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
 493	EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
 494	NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
 495	DriverTune=13, Checksum=15};
 496
 497enum Window2 {			/* Window 2. */
 498	Wn2_ResetOptions=12,
 499};
 500enum Window3 {			/* Window 3: MAC/config bits. */
 501	Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
 502};
 503
 504#define BFEXT(value, offset, bitcount)  \
 505    ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
 506
 507#define BFINS(lhs, rhs, offset, bitcount)					\
 508	(((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |	\
 509	(((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
 510
 511#define RAM_SIZE(v)		BFEXT(v, 0, 3)
 512#define RAM_WIDTH(v)	BFEXT(v, 3, 1)
 513#define RAM_SPEED(v)	BFEXT(v, 4, 2)
 514#define ROM_SIZE(v)		BFEXT(v, 6, 2)
 515#define RAM_SPLIT(v)	BFEXT(v, 16, 2)
 516#define XCVR(v)			BFEXT(v, 20, 4)
 517#define AUTOSELECT(v)	BFEXT(v, 24, 1)
 518
 519enum Window4 {		/* Window 4: Xcvr/media bits. */
 520	Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
 521};
 522enum Win4_Media_bits {
 523	Media_SQE = 0x0008,		/* Enable SQE error counting for AUI. */
 524	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
 525	Media_Lnk = 0x0080,		/* Enable just link beat for 100TX/100FX. */
 526	Media_LnkBeat = 0x0800,
 527};
 528enum Window7 {					/* Window 7: Bus Master control. */
 529	Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
 530	Wn7_MasterStatus = 12,
 531};
 532/* Boomerang bus master control registers. */
 533enum MasterCtrl {
 534	PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
 535	TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
 536};
 537
 538/* The Rx and Tx descriptor lists.
 539   Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
 540   alignment contraint on tx_ring[] and rx_ring[]. */
 541#define LAST_FRAG 	0x80000000			/* Last Addr/Len pair in descriptor. */
 542#define DN_COMPLETE	0x00010000			/* This packet has been downloaded */
 543struct boom_rx_desc {
 544	__le32 next;					/* Last entry points to 0.   */
 545	__le32 status;
 546	__le32 addr;					/* Up to 63 addr/len pairs possible. */
 547	__le32 length;					/* Set LAST_FRAG to indicate last pair. */
 548};
 549/* Values for the Rx status entry. */
 550enum rx_desc_status {
 551	RxDComplete=0x00008000, RxDError=0x4000,
 552	/* See boomerang_rx() for actual error bits */
 553	IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
 554	IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
 555};
 556
 557#ifdef MAX_SKB_FRAGS
 558#define DO_ZEROCOPY 1
 559#else
 560#define DO_ZEROCOPY 0
 561#endif
 562
 563struct boom_tx_desc {
 564	__le32 next;					/* Last entry points to 0.   */
 565	__le32 status;					/* bits 0:12 length, others see below.  */
 566#if DO_ZEROCOPY
 567	struct {
 568		__le32 addr;
 569		__le32 length;
 570	} frag[1+MAX_SKB_FRAGS];
 571#else
 572		__le32 addr;
 573		__le32 length;
 574#endif
 575};
 576
 577/* Values for the Tx status entry. */
 578enum tx_desc_status {
 579	CRCDisable=0x2000, TxDComplete=0x8000,
 580	AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
 581	TxIntrUploaded=0x80000000,		/* IRQ when in FIFO, but maybe not sent. */
 582};
 583
 584/* Chip features we care about in vp->capabilities, read from the EEPROM. */
 585enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
 586
 587struct vortex_extra_stats {
 588	unsigned long tx_deferred;
 589	unsigned long tx_max_collisions;
 590	unsigned long tx_multiple_collisions;
 591	unsigned long tx_single_collisions;
 592	unsigned long rx_bad_ssd;
 593};
 594
 595struct vortex_private {
 596	/* The Rx and Tx rings should be quad-word-aligned. */
 597	struct boom_rx_desc* rx_ring;
 598	struct boom_tx_desc* tx_ring;
 599	dma_addr_t rx_ring_dma;
 600	dma_addr_t tx_ring_dma;
 601	/* The addresses of transmit- and receive-in-place skbuffs. */
 602	struct sk_buff* rx_skbuff[RX_RING_SIZE];
 603	struct sk_buff* tx_skbuff[TX_RING_SIZE];
 604	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
 605	unsigned int dirty_rx, dirty_tx;	/* The ring entries to be free()ed. */
 606	struct vortex_extra_stats xstats;	/* NIC-specific extra stats */
 607	struct sk_buff *tx_skb;				/* Packet being eaten by bus master ctrl.  */
 608	dma_addr_t tx_skb_dma;				/* Allocated DMA address for bus master ctrl DMA.   */
 609
 610	/* PCI configuration space information. */
 611	struct device *gendev;
 612	void __iomem *ioaddr;			/* IO address space */
 613	void __iomem *cb_fn_base;		/* CardBus function status addr space. */
 614
 615	/* Some values here only for performance evaluation and path-coverage */
 616	int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
 617	int card_idx;
 618
 619	/* The remainder are related to chip state, mostly media selection. */
 620	struct timer_list timer;			/* Media selection timer. */
 621	struct timer_list rx_oom_timer;		/* Rx skb allocation retry timer */
 622	int options;						/* User-settable misc. driver options. */
 623	unsigned int media_override:4, 		/* Passed-in media type. */
 624		default_media:4,				/* Read from the EEPROM/Wn3_Config. */
 625		full_duplex:1, autoselect:1,
 626		bus_master:1,					/* Vortex can only do a fragment bus-m. */
 627		full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
 628		flow_ctrl:1,					/* Use 802.3x flow control (PAUSE only) */
 629		partner_flow_ctrl:1,			/* Partner supports flow control */
 630		has_nway:1,
 631		enable_wol:1,					/* Wake-on-LAN is enabled */
 632		pm_state_valid:1,				/* pci_dev->saved_config_space has sane contents */
 633		open:1,
 634		medialock:1,
 635		large_frames:1,			/* accept large frames */
 636		handling_irq:1;			/* private in_irq indicator */
 637	/* {get|set}_wol operations are already serialized by rtnl.
 638	 * no additional locking is required for the enable_wol and acpi_set_WOL()
 639	 */
 640	int drv_flags;
 641	u16 status_enable;
 642	u16 intr_enable;
 643	u16 available_media;				/* From Wn3_Options. */
 644	u16 capabilities, info1, info2;		/* Various, from EEPROM. */
 645	u16 advertising;					/* NWay media advertisement */
 646	unsigned char phys[2];				/* MII device addresses. */
 647	u16 deferred;						/* Resend these interrupts when we
 648										 * bale from the ISR */
 649	u16 io_size;						/* Size of PCI region (for release_region) */
 650
 651	/* Serialises access to hardware other than MII and variables below.
 652	 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
 653	spinlock_t lock;
 654
 655	spinlock_t mii_lock;		/* Serialises access to MII */
 656	struct mii_if_info mii;		/* MII lib hooks/info */
 657	spinlock_t window_lock;		/* Serialises access to windowed regs */
 658	int window;			/* Register window */
 659};
 660
 661static void window_set(struct vortex_private *vp, int window)
 662{
 663	if (window != vp->window) {
 664		iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
 665		vp->window = window;
 666	}
 667}
 668
 669#define DEFINE_WINDOW_IO(size)						\
 670static u ## size							\
 671window_read ## size(struct vortex_private *vp, int window, int addr)	\
 672{									\
 673	unsigned long flags;						\
 674	u ## size ret;							\
 675	spin_lock_irqsave(&vp->window_lock, flags);			\
 676	window_set(vp, window);						\
 677	ret = ioread ## size(vp->ioaddr + addr);			\
 678	spin_unlock_irqrestore(&vp->window_lock, flags);		\
 679	return ret;							\
 680}									\
 681static void								\
 682window_write ## size(struct vortex_private *vp, u ## size value,	\
 683		     int window, int addr)				\
 684{									\
 685	unsigned long flags;						\
 686	spin_lock_irqsave(&vp->window_lock, flags);			\
 687	window_set(vp, window);						\
 688	iowrite ## size(value, vp->ioaddr + addr);			\
 689	spin_unlock_irqrestore(&vp->window_lock, flags);		\
 690}
 691DEFINE_WINDOW_IO(8)
 692DEFINE_WINDOW_IO(16)
 693DEFINE_WINDOW_IO(32)
 694
 695#ifdef CONFIG_PCI
 696#define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
 697#else
 698#define DEVICE_PCI(dev) NULL
 699#endif
 700
 701#define VORTEX_PCI(vp)							\
 702	((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
 703
 704#ifdef CONFIG_EISA
 705#define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
 706#else
 707#define DEVICE_EISA(dev) NULL
 708#endif
 709
 710#define VORTEX_EISA(vp)							\
 711	((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
 712
 713/* The action to take with a media selection timer tick.
 714   Note that we deviate from the 3Com order by checking 10base2 before AUI.
 715 */
 716enum xcvr_types {
 717	XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
 718	XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
 719};
 720
 721static const struct media_table {
 722	char *name;
 723	unsigned int media_bits:16,		/* Bits to set in Wn4_Media register. */
 724		mask:8,						/* The transceiver-present bit in Wn3_Config.*/
 725		next:8;						/* The media type to try next. */
 726	int wait;						/* Time before we check media status. */
 727} media_tbl[] = {
 728  {	"10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
 729  { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
 730  { "undefined", 0,			0x80, XCVR_10baseT, 10000},
 731  { "10base2",   0,			0x10, XCVR_AUI,		(1*HZ)/10},
 732  { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
 733  { "100baseFX", Media_Lnk, 0x04, XCVR_MII,		(14*HZ)/10},
 734  { "MII",		 0,			0x41, XCVR_10baseT, 3*HZ },
 735  { "undefined", 0,			0x01, XCVR_10baseT, 10000},
 736  { "Autonegotiate", 0,		0x41, XCVR_10baseT, 3*HZ},
 737  { "MII-External",	 0,		0x41, XCVR_10baseT, 3*HZ },
 738  { "Default",	 0,			0xFF, XCVR_10baseT, 10000},
 739};
 740
 741static struct {
 742	const char str[ETH_GSTRING_LEN];
 743} ethtool_stats_keys[] = {
 744	{ "tx_deferred" },
 745	{ "tx_max_collisions" },
 746	{ "tx_multiple_collisions" },
 747	{ "tx_single_collisions" },
 748	{ "rx_bad_ssd" },
 749};
 750
 751/* number of ETHTOOL_GSTATS u64's */
 752#define VORTEX_NUM_STATS    5
 753
 754static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
 755				   int chip_idx, int card_idx);
 756static int vortex_up(struct net_device *dev);
 757static void vortex_down(struct net_device *dev, int final);
 758static int vortex_open(struct net_device *dev);
 759static void mdio_sync(struct vortex_private *vp, int bits);
 760static int mdio_read(struct net_device *dev, int phy_id, int location);
 761static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
 762static void vortex_timer(unsigned long arg);
 763static void rx_oom_timer(unsigned long arg);
 764static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
 765				     struct net_device *dev);
 766static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
 767					struct net_device *dev);
 768static int vortex_rx(struct net_device *dev);
 769static int boomerang_rx(struct net_device *dev);
 770static irqreturn_t vortex_interrupt(int irq, void *dev_id);
 771static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
 772static int vortex_close(struct net_device *dev);
 773static void dump_tx_ring(struct net_device *dev);
 774static void update_stats(void __iomem *ioaddr, struct net_device *dev);
 775static struct net_device_stats *vortex_get_stats(struct net_device *dev);
 776static void set_rx_mode(struct net_device *dev);
 777#ifdef CONFIG_PCI
 778static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 779#endif
 780static void vortex_tx_timeout(struct net_device *dev);
 781static void acpi_set_WOL(struct net_device *dev);
 782static const struct ethtool_ops vortex_ethtool_ops;
 783static void set_8021q_mode(struct net_device *dev, int enable);
 784
 785/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
 786/* Option count limit only -- unlimited interfaces are supported. */
 787#define MAX_UNITS 8
 788static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
 789static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 790static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 791static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 792static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 793static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 794static int global_options = -1;
 795static int global_full_duplex = -1;
 796static int global_enable_wol = -1;
 797static int global_use_mmio = -1;
 798
 799/* Variables to work-around the Compaq PCI BIOS32 problem. */
 800static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
 801static struct net_device *compaq_net_device;
 802
 803static int vortex_cards_found;
 804
 805module_param(debug, int, 0);
 806module_param(global_options, int, 0);
 807module_param_array(options, int, NULL, 0);
 808module_param(global_full_duplex, int, 0);
 809module_param_array(full_duplex, int, NULL, 0);
 810module_param_array(hw_checksums, int, NULL, 0);
 811module_param_array(flow_ctrl, int, NULL, 0);
 812module_param(global_enable_wol, int, 0);
 813module_param_array(enable_wol, int, NULL, 0);
 814module_param(rx_copybreak, int, 0);
 815module_param(max_interrupt_work, int, 0);
 816module_param(compaq_ioaddr, int, 0);
 817module_param(compaq_irq, int, 0);
 818module_param(compaq_device_id, int, 0);
 819module_param(watchdog, int, 0);
 820module_param(global_use_mmio, int, 0);
 821module_param_array(use_mmio, int, NULL, 0);
 822MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
 823MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
 824MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
 825MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
 826MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
 827MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
 828MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
 829MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
 830MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
 831MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
 832MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
 833MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
 834MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
 835MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
 836MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
 837MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
 838MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
 839
 840#ifdef CONFIG_NET_POLL_CONTROLLER
 841static void poll_vortex(struct net_device *dev)
 842{
 843	struct vortex_private *vp = netdev_priv(dev);
 844	unsigned long flags;
 845	local_irq_save(flags);
 846	(vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
 847	local_irq_restore(flags);
 848}
 849#endif
 850
 851#ifdef CONFIG_PM
 852
 853static int vortex_suspend(struct device *dev)
 854{
 855	struct pci_dev *pdev = to_pci_dev(dev);
 856	struct net_device *ndev = pci_get_drvdata(pdev);
 857
 858	if (!ndev || !netif_running(ndev))
 859		return 0;
 860
 861	netif_device_detach(ndev);
 862	vortex_down(ndev, 1);
 863
 864	return 0;
 865}
 866
 867static int vortex_resume(struct device *dev)
 868{
 869	struct pci_dev *pdev = to_pci_dev(dev);
 870	struct net_device *ndev = pci_get_drvdata(pdev);
 871	int err;
 872
 873	if (!ndev || !netif_running(ndev))
 874		return 0;
 875
 876	err = vortex_up(ndev);
 877	if (err)
 878		return err;
 879
 880	netif_device_attach(ndev);
 881
 882	return 0;
 883}
 884
 885static const struct dev_pm_ops vortex_pm_ops = {
 886	.suspend = vortex_suspend,
 887	.resume = vortex_resume,
 888	.freeze = vortex_suspend,
 889	.thaw = vortex_resume,
 890	.poweroff = vortex_suspend,
 891	.restore = vortex_resume,
 892};
 893
 894#define VORTEX_PM_OPS (&vortex_pm_ops)
 895
 896#else /* !CONFIG_PM */
 897
 898#define VORTEX_PM_OPS NULL
 899
 900#endif /* !CONFIG_PM */
 901
 902#ifdef CONFIG_EISA
 903static struct eisa_device_id vortex_eisa_ids[] = {
 904	{ "TCM5920", CH_3C592 },
 905	{ "TCM5970", CH_3C597 },
 906	{ "" }
 907};
 908MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
 909
 910static int vortex_eisa_probe(struct device *device)
 911{
 912	void __iomem *ioaddr;
 913	struct eisa_device *edev;
 914
 915	edev = to_eisa_device(device);
 916
 917	if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
 918		return -EBUSY;
 919
 920	ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
 921
 922	if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
 923					  edev->id.driver_data, vortex_cards_found)) {
 924		release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 925		return -ENODEV;
 926	}
 927
 928	vortex_cards_found++;
 929
 930	return 0;
 931}
 932
 933static int vortex_eisa_remove(struct device *device)
 934{
 935	struct eisa_device *edev;
 936	struct net_device *dev;
 937	struct vortex_private *vp;
 938	void __iomem *ioaddr;
 939
 940	edev = to_eisa_device(device);
 941	dev = eisa_get_drvdata(edev);
 942
 943	if (!dev) {
 944		pr_err("vortex_eisa_remove called for Compaq device!\n");
 945		BUG();
 946	}
 947
 948	vp = netdev_priv(dev);
 949	ioaddr = vp->ioaddr;
 950
 951	unregister_netdev(dev);
 952	iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
 953	release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 954
 955	free_netdev(dev);
 956	return 0;
 957}
 958
 959static struct eisa_driver vortex_eisa_driver = {
 960	.id_table = vortex_eisa_ids,
 961	.driver   = {
 962		.name    = "3c59x",
 963		.probe   = vortex_eisa_probe,
 964		.remove  = vortex_eisa_remove
 965	}
 966};
 967
 968#endif /* CONFIG_EISA */
 969
 970/* returns count found (>= 0), or negative on error */
 971static int __init vortex_eisa_init(void)
 972{
 973	int eisa_found = 0;
 974	int orig_cards_found = vortex_cards_found;
 975
 976#ifdef CONFIG_EISA
 977	int err;
 978
 979	err = eisa_driver_register (&vortex_eisa_driver);
 980	if (!err) {
 981		/*
 982		 * Because of the way EISA bus is probed, we cannot assume
 983		 * any device have been found when we exit from
 984		 * eisa_driver_register (the bus root driver may not be
 985		 * initialized yet). So we blindly assume something was
 986		 * found, and let the sysfs magic happened...
 987		 */
 988		eisa_found = 1;
 989	}
 990#endif
 991
 992	/* Special code to work-around the Compaq PCI BIOS32 problem. */
 993	if (compaq_ioaddr) {
 994		vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
 995			      compaq_irq, compaq_device_id, vortex_cards_found++);
 996	}
 997
 998	return vortex_cards_found - orig_cards_found + eisa_found;
 999}
1000
1001/* returns count (>= 0), or negative on error */
1002static int vortex_init_one(struct pci_dev *pdev,
1003			   const struct pci_device_id *ent)
1004{
1005	int rc, unit, pci_bar;
1006	struct vortex_chip_info *vci;
1007	void __iomem *ioaddr;
1008
1009	/* wake up and enable device */
1010	rc = pci_enable_device(pdev);
1011	if (rc < 0)
1012		goto out;
1013
1014	rc = pci_request_regions(pdev, DRV_NAME);
1015	if (rc < 0)
1016		goto out_disable;
1017
1018	unit = vortex_cards_found;
1019
1020	if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1021		/* Determine the default if the user didn't override us */
1022		vci = &vortex_info_tbl[ent->driver_data];
1023		pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1024	} else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1025		pci_bar = use_mmio[unit] ? 1 : 0;
1026	else
1027		pci_bar = global_use_mmio ? 1 : 0;
1028
1029	ioaddr = pci_iomap(pdev, pci_bar, 0);
1030	if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1031		ioaddr = pci_iomap(pdev, 0, 0);
1032	if (!ioaddr) {
1033		rc = -ENOMEM;
1034		goto out_release;
1035	}
1036
1037	rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1038			   ent->driver_data, unit);
1039	if (rc < 0)
1040		goto out_iounmap;
1041
1042	vortex_cards_found++;
1043	goto out;
1044
1045out_iounmap:
1046	pci_iounmap(pdev, ioaddr);
1047out_release:
1048	pci_release_regions(pdev);
1049out_disable:
1050	pci_disable_device(pdev);
1051out:
1052	return rc;
1053}
1054
1055static const struct net_device_ops boomrang_netdev_ops = {
1056	.ndo_open		= vortex_open,
1057	.ndo_stop		= vortex_close,
1058	.ndo_start_xmit		= boomerang_start_xmit,
1059	.ndo_tx_timeout		= vortex_tx_timeout,
1060	.ndo_get_stats		= vortex_get_stats,
1061#ifdef CONFIG_PCI
1062	.ndo_do_ioctl 		= vortex_ioctl,
1063#endif
1064	.ndo_set_rx_mode	= set_rx_mode,
1065	.ndo_change_mtu		= eth_change_mtu,
1066	.ndo_set_mac_address 	= eth_mac_addr,
1067	.ndo_validate_addr	= eth_validate_addr,
1068#ifdef CONFIG_NET_POLL_CONTROLLER
1069	.ndo_poll_controller	= poll_vortex,
1070#endif
1071};
1072
1073static const struct net_device_ops vortex_netdev_ops = {
1074	.ndo_open		= vortex_open,
1075	.ndo_stop		= vortex_close,
1076	.ndo_start_xmit		= vortex_start_xmit,
1077	.ndo_tx_timeout		= vortex_tx_timeout,
1078	.ndo_get_stats		= vortex_get_stats,
1079#ifdef CONFIG_PCI
1080	.ndo_do_ioctl 		= vortex_ioctl,
1081#endif
1082	.ndo_set_rx_mode	= set_rx_mode,
1083	.ndo_change_mtu		= eth_change_mtu,
1084	.ndo_set_mac_address 	= eth_mac_addr,
1085	.ndo_validate_addr	= eth_validate_addr,
1086#ifdef CONFIG_NET_POLL_CONTROLLER
1087	.ndo_poll_controller	= poll_vortex,
1088#endif
1089};
1090
1091/*
1092 * Start up the PCI/EISA device which is described by *gendev.
1093 * Return 0 on success.
1094 *
1095 * NOTE: pdev can be NULL, for the case of a Compaq device
1096 */
1097static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1098			 int chip_idx, int card_idx)
1099{
1100	struct vortex_private *vp;
1101	int option;
1102	unsigned int eeprom[0x40], checksum = 0;		/* EEPROM contents */
1103	int i, step;
1104	struct net_device *dev;
1105	static int printed_version;
1106	int retval, print_info;
1107	struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1108	const char *print_name = "3c59x";
1109	struct pci_dev *pdev = NULL;
1110	struct eisa_device *edev = NULL;
1111
1112	if (!printed_version) {
1113		pr_info("%s", version);
1114		printed_version = 1;
1115	}
1116
1117	if (gendev) {
1118		if ((pdev = DEVICE_PCI(gendev))) {
1119			print_name = pci_name(pdev);
1120		}
1121
1122		if ((edev = DEVICE_EISA(gendev))) {
1123			print_name = dev_name(&edev->dev);
1124		}
1125	}
1126
1127	dev = alloc_etherdev(sizeof(*vp));
1128	retval = -ENOMEM;
1129	if (!dev)
1130		goto out;
1131
1132	SET_NETDEV_DEV(dev, gendev);
1133	vp = netdev_priv(dev);
1134
1135	option = global_options;
1136
1137	/* The lower four bits are the media type. */
1138	if (dev->mem_start) {
1139		/*
1140		 * The 'options' param is passed in as the third arg to the
1141		 * LILO 'ether=' argument for non-modular use
1142		 */
1143		option = dev->mem_start;
1144	}
1145	else if (card_idx < MAX_UNITS) {
1146		if (options[card_idx] >= 0)
1147			option = options[card_idx];
1148	}
1149
1150	if (option > 0) {
1151		if (option & 0x8000)
1152			vortex_debug = 7;
1153		if (option & 0x4000)
1154			vortex_debug = 2;
1155		if (option & 0x0400)
1156			vp->enable_wol = 1;
1157	}
1158
1159	print_info = (vortex_debug > 1);
1160	if (print_info)
1161		pr_info("See Documentation/networking/vortex.txt\n");
1162
1163	pr_info("%s: 3Com %s %s at %p.\n",
1164	       print_name,
1165	       pdev ? "PCI" : "EISA",
1166	       vci->name,
1167	       ioaddr);
1168
1169	dev->base_addr = (unsigned long)ioaddr;
1170	dev->irq = irq;
1171	dev->mtu = mtu;
1172	vp->ioaddr = ioaddr;
1173	vp->large_frames = mtu > 1500;
1174	vp->drv_flags = vci->drv_flags;
1175	vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1176	vp->io_size = vci->io_size;
1177	vp->card_idx = card_idx;
1178	vp->window = -1;
1179
1180	/* module list only for Compaq device */
1181	if (gendev == NULL) {
1182		compaq_net_device = dev;
1183	}
1184
1185	/* PCI-only startup logic */
1186	if (pdev) {
1187		/* enable bus-mastering if necessary */
1188		if (vci->flags & PCI_USES_MASTER)
1189			pci_set_master(pdev);
1190
1191		if (vci->drv_flags & IS_VORTEX) {
1192			u8 pci_latency;
1193			u8 new_latency = 248;
1194
1195			/* Check the PCI latency value.  On the 3c590 series the latency timer
1196			   must be set to the maximum value to avoid data corruption that occurs
1197			   when the timer expires during a transfer.  This bug exists the Vortex
1198			   chip only. */
1199			pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1200			if (pci_latency < new_latency) {
1201				pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1202					print_name, pci_latency, new_latency);
1203				pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1204			}
1205		}
1206	}
1207
1208	spin_lock_init(&vp->lock);
1209	spin_lock_init(&vp->mii_lock);
1210	spin_lock_init(&vp->window_lock);
1211	vp->gendev = gendev;
1212	vp->mii.dev = dev;
1213	vp->mii.mdio_read = mdio_read;
1214	vp->mii.mdio_write = mdio_write;
1215	vp->mii.phy_id_mask = 0x1f;
1216	vp->mii.reg_num_mask = 0x1f;
1217
1218	/* Makes sure rings are at least 16 byte aligned. */
1219	vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1220					   + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1221					   &vp->rx_ring_dma);
1222	retval = -ENOMEM;
1223	if (!vp->rx_ring)
1224		goto free_device;
1225
1226	vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1227	vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1228
1229	/* if we are a PCI driver, we store info in pdev->driver_data
1230	 * instead of a module list */
1231	if (pdev)
1232		pci_set_drvdata(pdev, dev);
1233	if (edev)
1234		eisa_set_drvdata(edev, dev);
1235
1236	vp->media_override = 7;
1237	if (option >= 0) {
1238		vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1239		if (vp->media_override != 7)
1240			vp->medialock = 1;
1241		vp->full_duplex = (option & 0x200) ? 1 : 0;
1242		vp->bus_master = (option & 16) ? 1 : 0;
1243	}
1244
1245	if (global_full_duplex > 0)
1246		vp->full_duplex = 1;
1247	if (global_enable_wol > 0)
1248		vp->enable_wol = 1;
1249
1250	if (card_idx < MAX_UNITS) {
1251		if (full_duplex[card_idx] > 0)
1252			vp->full_duplex = 1;
1253		if (flow_ctrl[card_idx] > 0)
1254			vp->flow_ctrl = 1;
1255		if (enable_wol[card_idx] > 0)
1256			vp->enable_wol = 1;
1257	}
1258
1259	vp->mii.force_media = vp->full_duplex;
1260	vp->options = option;
1261	/* Read the station address from the EEPROM. */
1262	{
1263		int base;
1264
1265		if (vci->drv_flags & EEPROM_8BIT)
1266			base = 0x230;
1267		else if (vci->drv_flags & EEPROM_OFFSET)
1268			base = EEPROM_Read + 0x30;
1269		else
1270			base = EEPROM_Read;
1271
1272		for (i = 0; i < 0x40; i++) {
1273			int timer;
1274			window_write16(vp, base + i, 0, Wn0EepromCmd);
1275			/* Pause for at least 162 us. for the read to take place. */
1276			for (timer = 10; timer >= 0; timer--) {
1277				udelay(162);
1278				if ((window_read16(vp, 0, Wn0EepromCmd) &
1279				     0x8000) == 0)
1280					break;
1281			}
1282			eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1283		}
1284	}
1285	for (i = 0; i < 0x18; i++)
1286		checksum ^= eeprom[i];
1287	checksum = (checksum ^ (checksum >> 8)) & 0xff;
1288	if (checksum != 0x00) {		/* Grrr, needless incompatible change 3Com. */
1289		while (i < 0x21)
1290			checksum ^= eeprom[i++];
1291		checksum = (checksum ^ (checksum >> 8)) & 0xff;
1292	}
1293	if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1294		pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1295	for (i = 0; i < 3; i++)
1296		((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1297	if (print_info)
1298		pr_cont(" %pM", dev->dev_addr);
1299	/* Unfortunately an all zero eeprom passes the checksum and this
1300	   gets found in the wild in failure cases. Crypto is hard 8) */
1301	if (!is_valid_ether_addr(dev->dev_addr)) {
1302		retval = -EINVAL;
1303		pr_err("*** EEPROM MAC address is invalid.\n");
1304		goto free_ring;	/* With every pack */
1305	}
1306	for (i = 0; i < 6; i++)
1307		window_write8(vp, dev->dev_addr[i], 2, i);
1308
1309	if (print_info)
1310		pr_cont(", IRQ %d\n", dev->irq);
1311	/* Tell them about an invalid IRQ. */
1312	if (dev->irq <= 0 || dev->irq >= nr_irqs)
1313		pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n",
1314			dev->irq);
1315
1316	step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1317	if (print_info) {
1318		pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1319			eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1320			step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1321	}
1322
1323
1324	if (pdev && vci->drv_flags & HAS_CB_FNS) {
1325		unsigned short n;
1326
1327		vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1328		if (!vp->cb_fn_base) {
1329			retval = -ENOMEM;
1330			goto free_ring;
1331		}
1332
1333		if (print_info) {
1334			pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1335				print_name,
1336				(unsigned long long)pci_resource_start(pdev, 2),
1337				vp->cb_fn_base);
1338		}
1339
1340		n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1341		if (vp->drv_flags & INVERT_LED_PWR)
1342			n |= 0x10;
1343		if (vp->drv_flags & INVERT_MII_PWR)
1344			n |= 0x4000;
1345		window_write16(vp, n, 2, Wn2_ResetOptions);
1346		if (vp->drv_flags & WNO_XCVR_PWR) {
1347			window_write16(vp, 0x0800, 0, 0);
1348		}
1349	}
1350
1351	/* Extract our information from the EEPROM data. */
1352	vp->info1 = eeprom[13];
1353	vp->info2 = eeprom[15];
1354	vp->capabilities = eeprom[16];
1355
1356	if (vp->info1 & 0x8000) {
1357		vp->full_duplex = 1;
1358		if (print_info)
1359			pr_info("Full duplex capable\n");
1360	}
1361
1362	{
1363		static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1364		unsigned int config;
1365		vp->available_media = window_read16(vp, 3, Wn3_Options);
1366		if ((vp->available_media & 0xff) == 0)		/* Broken 3c916 */
1367			vp->available_media = 0x40;
1368		config = window_read32(vp, 3, Wn3_Config);
1369		if (print_info) {
1370			pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1371				config, window_read16(vp, 3, Wn3_Options));
1372			pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1373				   8 << RAM_SIZE(config),
1374				   RAM_WIDTH(config) ? "word" : "byte",
1375				   ram_split[RAM_SPLIT(config)],
1376				   AUTOSELECT(config) ? "autoselect/" : "",
1377				   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1378				   media_tbl[XCVR(config)].name);
1379		}
1380		vp->default_media = XCVR(config);
1381		if (vp->default_media == XCVR_NWAY)
1382			vp->has_nway = 1;
1383		vp->autoselect = AUTOSELECT(config);
1384	}
1385
1386	if (vp->media_override != 7) {
1387		pr_info("%s:  Media override to transceiver type %d (%s).\n",
1388				print_name, vp->media_override,
1389				media_tbl[vp->media_override].name);
1390		dev->if_port = vp->media_override;
1391	} else
1392		dev->if_port = vp->default_media;
1393
1394	if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1395		dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1396		int phy, phy_idx = 0;
1397		mii_preamble_required++;
1398		if (vp->drv_flags & EXTRA_PREAMBLE)
1399			mii_preamble_required++;
1400		mdio_sync(vp, 32);
1401		mdio_read(dev, 24, MII_BMSR);
1402		for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1403			int mii_status, phyx;
1404
1405			/*
1406			 * For the 3c905CX we look at index 24 first, because it bogusly
1407			 * reports an external PHY at all indices
1408			 */
1409			if (phy == 0)
1410				phyx = 24;
1411			else if (phy <= 24)
1412				phyx = phy - 1;
1413			else
1414				phyx = phy;
1415			mii_status = mdio_read(dev, phyx, MII_BMSR);
1416			if (mii_status  &&  mii_status != 0xffff) {
1417				vp->phys[phy_idx++] = phyx;
1418				if (print_info) {
1419					pr_info("  MII transceiver found at address %d, status %4x.\n",
1420						phyx, mii_status);
1421				}
1422				if ((mii_status & 0x0040) == 0)
1423					mii_preamble_required++;
1424			}
1425		}
1426		mii_preamble_required--;
1427		if (phy_idx == 0) {
1428			pr_warn("  ***WARNING*** No MII transceivers found!\n");
1429			vp->phys[0] = 24;
1430		} else {
1431			vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1432			if (vp->full_duplex) {
1433				/* Only advertise the FD media types. */
1434				vp->advertising &= ~0x02A0;
1435				mdio_write(dev, vp->phys[0], 4, vp->advertising);
1436			}
1437		}
1438		vp->mii.phy_id = vp->phys[0];
1439	}
1440
1441	if (vp->capabilities & CapBusMaster) {
1442		vp->full_bus_master_tx = 1;
1443		if (print_info) {
1444			pr_info("  Enabling bus-master transmits and %s receives.\n",
1445			(vp->info2 & 1) ? "early" : "whole-frame" );
1446		}
1447		vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1448		vp->bus_master = 0;		/* AKPM: vortex only */
1449	}
1450
1451	/* The 3c59x-specific entries in the device structure. */
1452	if (vp->full_bus_master_tx) {
1453		dev->netdev_ops = &boomrang_netdev_ops;
1454		/* Actually, it still should work with iommu. */
1455		if (card_idx < MAX_UNITS &&
1456		    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1457				hw_checksums[card_idx] == 1)) {
1458			dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1459		}
1460	} else
1461		dev->netdev_ops =  &vortex_netdev_ops;
1462
1463	if (print_info) {
1464		pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1465				print_name,
1466				(dev->features & NETIF_F_SG) ? "en":"dis",
1467				(dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1468	}
1469
1470	dev->ethtool_ops = &vortex_ethtool_ops;
1471	dev->watchdog_timeo = (watchdog * HZ) / 1000;
1472
1473	if (pdev) {
1474		vp->pm_state_valid = 1;
1475		pci_save_state(pdev);
1476 		acpi_set_WOL(dev);
1477	}
1478	retval = register_netdev(dev);
1479	if (retval == 0)
1480		return 0;
1481
1482free_ring:
1483	pci_free_consistent(pdev,
1484						sizeof(struct boom_rx_desc) * RX_RING_SIZE
1485							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1486						vp->rx_ring,
1487						vp->rx_ring_dma);
1488free_device:
1489	free_netdev(dev);
1490	pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1491out:
1492	return retval;
1493}
1494
1495static void
1496issue_and_wait(struct net_device *dev, int cmd)
1497{
1498	struct vortex_private *vp = netdev_priv(dev);
1499	void __iomem *ioaddr = vp->ioaddr;
1500	int i;
1501
1502	iowrite16(cmd, ioaddr + EL3_CMD);
1503	for (i = 0; i < 2000; i++) {
1504		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1505			return;
1506	}
1507
1508	/* OK, that didn't work.  Do it the slow way.  One second */
1509	for (i = 0; i < 100000; i++) {
1510		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1511			if (vortex_debug > 1)
1512				pr_info("%s: command 0x%04x took %d usecs\n",
1513					   dev->name, cmd, i * 10);
1514			return;
1515		}
1516		udelay(10);
1517	}
1518	pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1519			   dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1520}
1521
1522static void
1523vortex_set_duplex(struct net_device *dev)
1524{
1525	struct vortex_private *vp = netdev_priv(dev);
1526
1527	pr_info("%s:  setting %s-duplex.\n",
1528		dev->name, (vp->full_duplex) ? "full" : "half");
1529
1530	/* Set the full-duplex bit. */
1531	window_write16(vp,
1532		       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1533		       (vp->large_frames ? 0x40 : 0) |
1534		       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1535			0x100 : 0),
1536		       3, Wn3_MAC_Ctrl);
1537}
1538
1539static void vortex_check_media(struct net_device *dev, unsigned int init)
1540{
1541	struct vortex_private *vp = netdev_priv(dev);
1542	unsigned int ok_to_print = 0;
1543
1544	if (vortex_debug > 3)
1545		ok_to_print = 1;
1546
1547	if (mii_check_media(&vp->mii, ok_to_print, init)) {
1548		vp->full_duplex = vp->mii.full_duplex;
1549		vortex_set_duplex(dev);
1550	} else if (init) {
1551		vortex_set_duplex(dev);
1552	}
1553}
1554
1555static int
1556vortex_up(struct net_device *dev)
1557{
1558	struct vortex_private *vp = netdev_priv(dev);
1559	void __iomem *ioaddr = vp->ioaddr;
1560	unsigned int config;
1561	int i, mii_reg1, mii_reg5, err = 0;
1562
1563	if (VORTEX_PCI(vp)) {
1564		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
1565		if (vp->pm_state_valid)
1566			pci_restore_state(VORTEX_PCI(vp));
1567		err = pci_enable_device(VORTEX_PCI(vp));
1568		if (err) {
1569			pr_warn("%s: Could not enable device\n", dev->name);
1570			goto err_out;
1571		}
1572	}
1573
1574	/* Before initializing select the active media port. */
1575	config = window_read32(vp, 3, Wn3_Config);
1576
1577	if (vp->media_override != 7) {
1578		pr_info("%s: Media override to transceiver %d (%s).\n",
1579			   dev->name, vp->media_override,
1580			   media_tbl[vp->media_override].name);
1581		dev->if_port = vp->media_override;
1582	} else if (vp->autoselect) {
1583		if (vp->has_nway) {
1584			if (vortex_debug > 1)
1585				pr_info("%s: using NWAY device table, not %d\n",
1586								dev->name, dev->if_port);
1587			dev->if_port = XCVR_NWAY;
1588		} else {
1589			/* Find first available media type, starting with 100baseTx. */
1590			dev->if_port = XCVR_100baseTx;
1591			while (! (vp->available_media & media_tbl[dev->if_port].mask))
1592				dev->if_port = media_tbl[dev->if_port].next;
1593			if (vortex_debug > 1)
1594				pr_info("%s: first available media type: %s\n",
1595					dev->name, media_tbl[dev->if_port].name);
1596		}
1597	} else {
1598		dev->if_port = vp->default_media;
1599		if (vortex_debug > 1)
1600			pr_info("%s: using default media %s\n",
1601				dev->name, media_tbl[dev->if_port].name);
1602	}
1603
1604	setup_timer(&vp->timer, vortex_timer, (unsigned long)dev);
1605	mod_timer(&vp->timer, RUN_AT(media_tbl[dev->if_port].wait));
1606	setup_timer(&vp->rx_oom_timer, rx_oom_timer, (unsigned long)dev);
1607
1608	if (vortex_debug > 1)
1609		pr_debug("%s: Initial media type %s.\n",
1610			   dev->name, media_tbl[dev->if_port].name);
1611
1612	vp->full_duplex = vp->mii.force_media;
1613	config = BFINS(config, dev->if_port, 20, 4);
1614	if (vortex_debug > 6)
1615		pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1616	window_write32(vp, config, 3, Wn3_Config);
1617
1618	if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1619		mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1620		mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1621		vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1622		vp->mii.full_duplex = vp->full_duplex;
1623
1624		vortex_check_media(dev, 1);
1625	}
1626	else
1627		vortex_set_duplex(dev);
1628
1629	issue_and_wait(dev, TxReset);
1630	/*
1631	 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1632	 */
1633	issue_and_wait(dev, RxReset|0x04);
1634
1635
1636	iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1637
1638	if (vortex_debug > 1) {
1639		pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1640			   dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1641	}
1642
1643	/* Set the station address and mask in window 2 each time opened. */
1644	for (i = 0; i < 6; i++)
1645		window_write8(vp, dev->dev_addr[i], 2, i);
1646	for (; i < 12; i+=2)
1647		window_write16(vp, 0, 2, i);
1648
1649	if (vp->cb_fn_base) {
1650		unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1651		if (vp->drv_flags & INVERT_LED_PWR)
1652			n |= 0x10;
1653		if (vp->drv_flags & INVERT_MII_PWR)
1654			n |= 0x4000;
1655		window_write16(vp, n, 2, Wn2_ResetOptions);
1656	}
1657
1658	if (dev->if_port == XCVR_10base2)
1659		/* Start the thinnet transceiver. We should really wait 50ms...*/
1660		iowrite16(StartCoax, ioaddr + EL3_CMD);
1661	if (dev->if_port != XCVR_NWAY) {
1662		window_write16(vp,
1663			       (window_read16(vp, 4, Wn4_Media) &
1664				~(Media_10TP|Media_SQE)) |
1665			       media_tbl[dev->if_port].media_bits,
1666			       4, Wn4_Media);
1667	}
1668
1669	/* Switch to the stats window, and clear all stats by reading. */
1670	iowrite16(StatsDisable, ioaddr + EL3_CMD);
1671	for (i = 0; i < 10; i++)
1672		window_read8(vp, 6, i);
1673	window_read16(vp, 6, 10);
1674	window_read16(vp, 6, 12);
1675	/* New: On the Vortex we must also clear the BadSSD counter. */
1676	window_read8(vp, 4, 12);
1677	/* ..and on the Boomerang we enable the extra statistics bits. */
1678	window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1679
1680	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1681		vp->cur_rx = vp->dirty_rx = 0;
1682		/* Initialize the RxEarly register as recommended. */
1683		iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1684		iowrite32(0x0020, ioaddr + PktStatus);
1685		iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1686	}
1687	if (vp->full_bus_master_tx) { 		/* Boomerang bus master Tx. */
1688		vp->cur_tx = vp->dirty_tx = 0;
1689		if (vp->drv_flags & IS_BOOMERANG)
1690			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1691		/* Clear the Rx, Tx rings. */
1692		for (i = 0; i < RX_RING_SIZE; i++)	/* AKPM: this is done in vortex_open, too */
1693			vp->rx_ring[i].status = 0;
1694		for (i = 0; i < TX_RING_SIZE; i++)
1695			vp->tx_skbuff[i] = NULL;
1696		iowrite32(0, ioaddr + DownListPtr);
1697	}
1698	/* Set receiver mode: presumably accept b-case and phys addr only. */
1699	set_rx_mode(dev);
1700	/* enable 802.1q tagged frames */
1701	set_8021q_mode(dev, 1);
1702	iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1703
1704	iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1705	iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1706	/* Allow status bits to be seen. */
1707	vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1708		(vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1709		(vp->full_bus_master_rx ? UpComplete : RxComplete) |
1710		(vp->bus_master ? DMADone : 0);
1711	vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1712		(vp->full_bus_master_rx ? 0 : RxComplete) |
1713		StatsFull | HostError | TxComplete | IntReq
1714		| (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1715	iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1716	/* Ack all pending events, and set active indicator mask. */
1717	iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1718		 ioaddr + EL3_CMD);
1719	iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1720	if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
1721		iowrite32(0x8000, vp->cb_fn_base + 4);
1722	netif_start_queue (dev);
1723	netdev_reset_queue(dev);
1724err_out:
1725	return err;
1726}
1727
1728static int
1729vortex_open(struct net_device *dev)
1730{
1731	struct vortex_private *vp = netdev_priv(dev);
1732	int i;
1733	int retval;
1734
1735	/* Use the now-standard shared IRQ implementation. */
1736	if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1737				boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1738		pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1739		goto err;
1740	}
1741
1742	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1743		if (vortex_debug > 2)
1744			pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1745		for (i = 0; i < RX_RING_SIZE; i++) {
1746			struct sk_buff *skb;
1747			vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1748			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
1749			vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1750
1751			skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1752						 GFP_KERNEL);
1753			vp->rx_skbuff[i] = skb;
1754			if (skb == NULL)
1755				break;			/* Bad news!  */
1756
1757			skb_reserve(skb, NET_IP_ALIGN);	/* Align IP on 16 byte boundaries */
1758			vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1759		}
1760		if (i != RX_RING_SIZE) {
1761			pr_emerg("%s: no memory for rx ring\n", dev->name);
1762			retval = -ENOMEM;
1763			goto err_free_skb;
1764		}
1765		/* Wrap the ring. */
1766		vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1767	}
1768
1769	retval = vortex_up(dev);
1770	if (!retval)
1771		goto out;
1772
1773err_free_skb:
1774	for (i = 0; i < RX_RING_SIZE; i++) {
1775		if (vp->rx_skbuff[i]) {
1776			dev_kfree_skb(vp->rx_skbuff[i]);
1777			vp->rx_skbuff[i] = NULL;
1778		}
1779	}
1780	free_irq(dev->irq, dev);
1781err:
1782	if (vortex_debug > 1)
1783		pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1784out:
1785	return retval;
1786}
1787
1788static void
1789vortex_timer(unsigned long data)
1790{
1791	struct net_device *dev = (struct net_device *)data;
1792	struct vortex_private *vp = netdev_priv(dev);
1793	void __iomem *ioaddr = vp->ioaddr;
1794	int next_tick = 60*HZ;
1795	int ok = 0;
1796	int media_status;
1797
1798	if (vortex_debug > 2) {
1799		pr_debug("%s: Media selection timer tick happened, %s.\n",
1800			   dev->name, media_tbl[dev->if_port].name);
1801		pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1802	}
1803
1804	media_status = window_read16(vp, 4, Wn4_Media);
1805	switch (dev->if_port) {
1806	case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1807		if (media_status & Media_LnkBeat) {
1808			netif_carrier_on(dev);
1809			ok = 1;
1810			if (vortex_debug > 1)
1811				pr_debug("%s: Media %s has link beat, %x.\n",
1812					   dev->name, media_tbl[dev->if_port].name, media_status);
1813		} else {
1814			netif_carrier_off(dev);
1815			if (vortex_debug > 1) {
1816				pr_debug("%s: Media %s has no link beat, %x.\n",
1817					   dev->name, media_tbl[dev->if_port].name, media_status);
1818			}
1819		}
1820		break;
1821	case XCVR_MII: case XCVR_NWAY:
1822		{
1823			ok = 1;
1824			vortex_check_media(dev, 0);
1825		}
1826		break;
1827	  default:					/* Other media types handled by Tx timeouts. */
1828		if (vortex_debug > 1)
1829		  pr_debug("%s: Media %s has no indication, %x.\n",
1830				 dev->name, media_tbl[dev->if_port].name, media_status);
1831		ok = 1;
1832	}
1833
1834	if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1835		next_tick = 5*HZ;
1836
1837	if (vp->medialock)
1838		goto leave_media_alone;
1839
1840	if (!ok) {
1841		unsigned int config;
1842
1843		spin_lock_irq(&vp->lock);
1844
1845		do {
1846			dev->if_port = media_tbl[dev->if_port].next;
1847		} while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1848		if (dev->if_port == XCVR_Default) { /* Go back to default. */
1849		  dev->if_port = vp->default_media;
1850		  if (vortex_debug > 1)
1851			pr_debug("%s: Media selection failing, using default %s port.\n",
1852				   dev->name, media_tbl[dev->if_port].name);
1853		} else {
1854			if (vortex_debug > 1)
1855				pr_debug("%s: Media selection failed, now trying %s port.\n",
1856					   dev->name, media_tbl[dev->if_port].name);
1857			next_tick = media_tbl[dev->if_port].wait;
1858		}
1859		window_write16(vp,
1860			       (media_status & ~(Media_10TP|Media_SQE)) |
1861			       media_tbl[dev->if_port].media_bits,
1862			       4, Wn4_Media);
1863
1864		config = window_read32(vp, 3, Wn3_Config);
1865		config = BFINS(config, dev->if_port, 20, 4);
1866		window_write32(vp, config, 3, Wn3_Config);
1867
1868		iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1869			 ioaddr + EL3_CMD);
1870		if (vortex_debug > 1)
1871			pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1872		/* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1873
1874		spin_unlock_irq(&vp->lock);
1875	}
1876
1877leave_media_alone:
1878	if (vortex_debug > 2)
1879	  pr_debug("%s: Media selection timer finished, %s.\n",
1880			 dev->name, media_tbl[dev->if_port].name);
1881
1882	mod_timer(&vp->timer, RUN_AT(next_tick));
1883	if (vp->deferred)
1884		iowrite16(FakeIntr, ioaddr + EL3_CMD);
1885}
1886
1887static void vortex_tx_timeout(struct net_device *dev)
1888{
1889	struct vortex_private *vp = netdev_priv(dev);
1890	void __iomem *ioaddr = vp->ioaddr;
1891
1892	pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1893		   dev->name, ioread8(ioaddr + TxStatus),
1894		   ioread16(ioaddr + EL3_STATUS));
1895	pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1896			window_read16(vp, 4, Wn4_NetDiag),
1897			window_read16(vp, 4, Wn4_Media),
1898			ioread32(ioaddr + PktStatus),
1899			window_read16(vp, 4, Wn4_FIFODiag));
1900	/* Slight code bloat to be user friendly. */
1901	if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1902		pr_err("%s: Transmitter encountered 16 collisions --"
1903			   " network cable problem?\n", dev->name);
1904	if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1905		pr_err("%s: Interrupt posted but not delivered --"
1906			   " IRQ blocked by another device?\n", dev->name);
1907		/* Bad idea here.. but we might as well handle a few events. */
1908		{
1909			/*
1910			 * Block interrupts because vortex_interrupt does a bare spin_lock()
1911			 */
1912			unsigned long flags;
1913			local_irq_save(flags);
1914			if (vp->full_bus_master_tx)
1915				boomerang_interrupt(dev->irq, dev);
1916			else
1917				vortex_interrupt(dev->irq, dev);
1918			local_irq_restore(flags);
1919		}
1920	}
1921
1922	if (vortex_debug > 0)
1923		dump_tx_ring(dev);
1924
1925	issue_and_wait(dev, TxReset);
1926
1927	dev->stats.tx_errors++;
1928	if (vp->full_bus_master_tx) {
1929		pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1930		if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1931			iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1932				 ioaddr + DownListPtr);
1933		if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) {
1934			netif_wake_queue (dev);
1935			netdev_reset_queue (dev);
1936		}
1937		if (vp->drv_flags & IS_BOOMERANG)
1938			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1939		iowrite16(DownUnstall, ioaddr + EL3_CMD);
1940	} else {
1941		dev->stats.tx_dropped++;
1942		netif_wake_queue(dev);
1943		netdev_reset_queue(dev);
1944	}
1945	/* Issue Tx Enable */
1946	iowrite16(TxEnable, ioaddr + EL3_CMD);
1947	dev->trans_start = jiffies; /* prevent tx timeout */
1948}
1949
1950/*
1951 * Handle uncommon interrupt sources.  This is a separate routine to minimize
1952 * the cache impact.
1953 */
1954static void
1955vortex_error(struct net_device *dev, int status)
1956{
1957	struct vortex_private *vp = netdev_priv(dev);
1958	void __iomem *ioaddr = vp->ioaddr;
1959	int do_tx_reset = 0, reset_mask = 0;
1960	unsigned char tx_status = 0;
1961
1962	if (vortex_debug > 2) {
1963		pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1964	}
1965
1966	if (status & TxComplete) {			/* Really "TxError" for us. */
1967		tx_status = ioread8(ioaddr + TxStatus);
1968		/* Presumably a tx-timeout. We must merely re-enable. */
1969		if (vortex_debug > 2 ||
1970		    (tx_status != 0x88 && vortex_debug > 0)) {
1971			pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1972				   dev->name, tx_status);
1973			if (tx_status == 0x82) {
1974				pr_err("Probably a duplex mismatch.  See "
1975						"Documentation/networking/vortex.txt\n");
1976			}
1977			dump_tx_ring(dev);
1978		}
1979		if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1980		if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1981		if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1982		iowrite8(0, ioaddr + TxStatus);
1983		if (tx_status & 0x30) {			/* txJabber or txUnderrun */
1984			do_tx_reset = 1;
1985		} else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {	/* maxCollisions */
1986			do_tx_reset = 1;
1987			reset_mask = 0x0108;		/* Reset interface logic, but not download logic */
1988		} else {				/* Merely re-enable the transmitter. */
1989			iowrite16(TxEnable, ioaddr + EL3_CMD);
1990		}
1991	}
1992
1993	if (status & RxEarly)				/* Rx early is unused. */
1994		iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1995
1996	if (status & StatsFull) {			/* Empty statistics. */
1997		static int DoneDidThat;
1998		if (vortex_debug > 4)
1999			pr_debug("%s: Updating stats.\n", dev->name);
2000		update_stats(ioaddr, dev);
2001		/* HACK: Disable statistics as an interrupt source. */
2002		/* This occurs when we have the wrong media type! */
2003		if (DoneDidThat == 0  &&
2004			ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2005			pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n",
2006				dev->name);
2007			iowrite16(SetIntrEnb |
2008				  (window_read16(vp, 5, 10) & ~StatsFull),
2009				  ioaddr + EL3_CMD);
2010			vp->intr_enable &= ~StatsFull;
2011			DoneDidThat++;
2012		}
2013	}
2014	if (status & IntReq) {		/* Restore all interrupt sources.  */
2015		iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2016		iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2017	}
2018	if (status & HostError) {
2019		u16 fifo_diag;
2020		fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2021		pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2022			   dev->name, fifo_diag);
2023		/* Adapter failure requires Tx/Rx reset and reinit. */
2024		if (vp->full_bus_master_tx) {
2025			int bus_status = ioread32(ioaddr + PktStatus);
2026			/* 0x80000000 PCI master abort. */
2027			/* 0x40000000 PCI target abort. */
2028			if (vortex_debug)
2029				pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2030
2031			/* In this case, blow the card away */
2032			/* Must not enter D3 or we can't legally issue the reset! */
2033			vortex_down(dev, 0);
2034			issue_and_wait(dev, TotalReset | 0xff);
2035			vortex_up(dev);		/* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2036		} else if (fifo_diag & 0x0400)
2037			do_tx_reset = 1;
2038		if (fifo_diag & 0x3000) {
2039			/* Reset Rx fifo and upload logic */
2040			issue_and_wait(dev, RxReset|0x07);
2041			/* Set the Rx filter to the current state. */
2042			set_rx_mode(dev);
2043			/* enable 802.1q VLAN tagged frames */
2044			set_8021q_mode(dev, 1);
2045			iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2046			iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2047		}
2048	}
2049
2050	if (do_tx_reset) {
2051		issue_and_wait(dev, TxReset|reset_mask);
2052		iowrite16(TxEnable, ioaddr + EL3_CMD);
2053		if (!vp->full_bus_master_tx)
2054			netif_wake_queue(dev);
2055	}
2056}
2057
2058static netdev_tx_t
2059vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2060{
2061	struct vortex_private *vp = netdev_priv(dev);
2062	void __iomem *ioaddr = vp->ioaddr;
2063	int skblen = skb->len;
2064
2065	/* Put out the doubleword header... */
2066	iowrite32(skb->len, ioaddr + TX_FIFO);
2067	if (vp->bus_master) {
2068		/* Set the bus-master controller to transfer the packet. */
2069		int len = (skb->len + 3) & ~3;
2070		vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len,
2071						PCI_DMA_TODEVICE);
2072		spin_lock_irq(&vp->window_lock);
2073		window_set(vp, 7);
2074		iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2075		iowrite16(len, ioaddr + Wn7_MasterLen);
2076		spin_unlock_irq(&vp->window_lock);
2077		vp->tx_skb = skb;
2078		skb_tx_timestamp(skb);
2079		iowrite16(StartDMADown, ioaddr + EL3_CMD);
2080		/* netif_wake_queue() will be called at the DMADone interrupt. */
2081	} else {
2082		/* ... and the packet rounded to a doubleword. */
2083		skb_tx_timestamp(skb);
2084		iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2085		dev_consume_skb_any (skb);
2086		if (ioread16(ioaddr + TxFree) > 1536) {
2087			netif_start_queue (dev);	/* AKPM: redundant? */
2088		} else {
2089			/* Interrupt us when the FIFO has room for max-sized packet. */
2090			netif_stop_queue(dev);
2091			iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2092		}
2093	}
2094
2095	netdev_sent_queue(dev, skblen);
2096
2097	/* Clear the Tx status stack. */
2098	{
2099		int tx_status;
2100		int i = 32;
2101
2102		while (--i > 0	&&	(tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2103			if (tx_status & 0x3C) {		/* A Tx-disabling error occurred.  */
2104				if (vortex_debug > 2)
2105				  pr_debug("%s: Tx error, status %2.2x.\n",
2106						 dev->name, tx_status);
2107				if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2108				if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2109				if (tx_status & 0x30) {
2110					issue_and_wait(dev, TxReset);
2111				}
2112				iowrite16(TxEnable, ioaddr + EL3_CMD);
2113			}
2114			iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2115		}
2116	}
2117	return NETDEV_TX_OK;
2118}
2119
2120static netdev_tx_t
2121boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2122{
2123	struct vortex_private *vp = netdev_priv(dev);
2124	void __iomem *ioaddr = vp->ioaddr;
2125	/* Calculate the next Tx descriptor entry. */
2126	int entry = vp->cur_tx % TX_RING_SIZE;
2127	int skblen = skb->len;
2128	struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2129	unsigned long flags;
2130	dma_addr_t dma_addr;
2131
2132	if (vortex_debug > 6) {
2133		pr_debug("boomerang_start_xmit()\n");
2134		pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2135			   dev->name, vp->cur_tx);
2136	}
2137
2138	/*
2139	 * We can't allow a recursion from our interrupt handler back into the
2140	 * tx routine, as they take the same spin lock, and that causes
2141	 * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2142	 * a bit
2143	 */
2144	if (vp->handling_irq)
2145		return NETDEV_TX_BUSY;
2146
2147	if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2148		if (vortex_debug > 0)
2149			pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n",
2150				dev->name);
2151		netif_stop_queue(dev);
2152		return NETDEV_TX_BUSY;
2153	}
2154
2155	vp->tx_skbuff[entry] = skb;
2156
2157	vp->tx_ring[entry].next = 0;
2158#if DO_ZEROCOPY
2159	if (skb->ip_summed != CHECKSUM_PARTIAL)
2160			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2161	else
2162			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2163
2164	if (!skb_shinfo(skb)->nr_frags) {
2165		dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len,
2166					  PCI_DMA_TODEVICE);
2167		if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2168			goto out_dma_err;
2169
2170		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2171		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2172	} else {
2173		int i;
2174
2175		dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data,
2176					  skb_headlen(skb), PCI_DMA_TODEVICE);
2177		if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2178			goto out_dma_err;
2179
2180		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2181		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2182
2183		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2184			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2185
2186			dma_addr = skb_frag_dma_map(&VORTEX_PCI(vp)->dev, frag,
2187						    0,
2188						    frag->size,
2189						    DMA_TO_DEVICE);
2190			if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) {
2191				for(i = i-1; i >= 0; i--)
2192					dma_unmap_page(&VORTEX_PCI(vp)->dev,
2193						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr),
2194						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].length),
2195						       DMA_TO_DEVICE);
2196
2197				pci_unmap_single(VORTEX_PCI(vp),
2198						 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2199						 le32_to_cpu(vp->tx_ring[entry].frag[0].length),
2200						 PCI_DMA_TODEVICE);
2201
2202				goto out_dma_err;
2203			}
2204
2205			vp->tx_ring[entry].frag[i+1].addr =
2206						cpu_to_le32(dma_addr);
2207
2208			if (i == skb_shinfo(skb)->nr_frags-1)
2209					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2210			else
2211					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2212		}
2213	}
2214#else
2215	dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE);
2216	if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2217		goto out_dma_err;
2218	vp->tx_ring[entry].addr = cpu_to_le32(dma_addr);
2219	vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2220	vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2221#endif
2222
2223	spin_lock_irqsave(&vp->lock, flags);
2224	/* Wait for the stall to complete. */
2225	issue_and_wait(dev, DownStall);
2226	prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2227	if (ioread32(ioaddr + DownListPtr) == 0) {
2228		iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2229		vp->queued_packet++;
2230	}
2231
2232	vp->cur_tx++;
2233	netdev_sent_queue(dev, skblen);
2234
2235	if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2236		netif_stop_queue (dev);
2237	} else {					/* Clear previous interrupt enable. */
2238#if defined(tx_interrupt_mitigation)
2239		/* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2240		 * were selected, this would corrupt DN_COMPLETE. No?
2241		 */
2242		prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2243#endif
2244	}
2245	skb_tx_timestamp(skb);
2246	iowrite16(DownUnstall, ioaddr + EL3_CMD);
2247	spin_unlock_irqrestore(&vp->lock, flags);
2248out:
2249	return NETDEV_TX_OK;
2250out_dma_err:
2251	dev_err(&VORTEX_PCI(vp)->dev, "Error mapping dma buffer\n");
2252	goto out;
2253}
2254
2255/* The interrupt handler does all of the Rx thread work and cleans up
2256   after the Tx thread. */
2257
2258/*
2259 * This is the ISR for the vortex series chips.
2260 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2261 */
2262
2263static irqreturn_t
2264vortex_interrupt(int irq, void *dev_id)
2265{
2266	struct net_device *dev = dev_id;
2267	struct vortex_private *vp = netdev_priv(dev);
2268	void __iomem *ioaddr;
2269	int status;
2270	int work_done = max_interrupt_work;
2271	int handled = 0;
2272	unsigned int bytes_compl = 0, pkts_compl = 0;
2273
2274	ioaddr = vp->ioaddr;
2275	spin_lock(&vp->lock);
2276
2277	status = ioread16(ioaddr + EL3_STATUS);
2278
2279	if (vortex_debug > 6)
2280		pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2281
2282	if ((status & IntLatch) == 0)
2283		goto handler_exit;		/* No interrupt: shared IRQs cause this */
2284	handled = 1;
2285
2286	if (status & IntReq) {
2287		status |= vp->deferred;
2288		vp->deferred = 0;
2289	}
2290
2291	if (status == 0xffff)		/* h/w no longer present (hotplug)? */
2292		goto handler_exit;
2293
2294	if (vortex_debug > 4)
2295		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2296			   dev->name, status, ioread8(ioaddr + Timer));
2297
2298	spin_lock(&vp->window_lock);
2299	window_set(vp, 7);
2300
2301	do {
2302		if (vortex_debug > 5)
2303				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2304					   dev->name, status);
2305		if (status & RxComplete)
2306			vortex_rx(dev);
2307
2308		if (status & TxAvailable) {
2309			if (vortex_debug > 5)
2310				pr_debug("	TX room bit was handled.\n");
2311			/* There's room in the FIFO for a full-sized packet. */
2312			iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2313			netif_wake_queue (dev);
2314		}
2315
2316		if (status & DMADone) {
2317			if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2318				iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2319				pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2320				pkts_compl++;
2321				bytes_compl += vp->tx_skb->len;
2322				dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2323				if (ioread16(ioaddr + TxFree) > 1536) {
2324					/*
2325					 * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2326					 * insufficient FIFO room, the TxAvailable test will succeed and call
2327					 * netif_wake_queue()
2328					 */
2329					netif_wake_queue(dev);
2330				} else { /* Interrupt when FIFO has room for max-sized packet. */
2331					iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2332					netif_stop_queue(dev);
2333				}
2334			}
2335		}
2336		/* Check for all uncommon interrupts at once. */
2337		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2338			if (status == 0xffff)
2339				break;
2340			if (status & RxEarly)
2341				vortex_rx(dev);
2342			spin_unlock(&vp->window_lock);
2343			vortex_error(dev, status);
2344			spin_lock(&vp->window_lock);
2345			window_set(vp, 7);
2346		}
2347
2348		if (--work_done < 0) {
2349			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2350				dev->name, status);
2351			/* Disable all pending interrupts. */
2352			do {
2353				vp->deferred |= status;
2354				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2355					 ioaddr + EL3_CMD);
2356				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2357			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2358			/* The timer will reenable interrupts. */
2359			mod_timer(&vp->timer, jiffies + 1*HZ);
2360			break;
2361		}
2362		/* Acknowledge the IRQ. */
2363		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2364	} while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2365
2366	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2367	spin_unlock(&vp->window_lock);
2368
2369	if (vortex_debug > 4)
2370		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2371			   dev->name, status);
2372handler_exit:
2373	spin_unlock(&vp->lock);
2374	return IRQ_RETVAL(handled);
2375}
2376
2377/*
2378 * This is the ISR for the boomerang series chips.
2379 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2380 */
2381
2382static irqreturn_t
2383boomerang_interrupt(int irq, void *dev_id)
2384{
2385	struct net_device *dev = dev_id;
2386	struct vortex_private *vp = netdev_priv(dev);
2387	void __iomem *ioaddr;
2388	int status;
2389	int work_done = max_interrupt_work;
2390	int handled = 0;
2391	unsigned int bytes_compl = 0, pkts_compl = 0;
2392
2393	ioaddr = vp->ioaddr;
2394
2395
2396	/*
2397	 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2398	 * and boomerang_start_xmit
2399	 */
2400	spin_lock(&vp->lock);
2401	vp->handling_irq = 1;
2402
2403	status = ioread16(ioaddr + EL3_STATUS);
2404
2405	if (vortex_debug > 6)
2406		pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2407
2408	if ((status & IntLatch) == 0)
2409		goto handler_exit;		/* No interrupt: shared IRQs can cause this */
2410	handled = 1;
2411
2412	if (status == 0xffff) {		/* h/w no longer present (hotplug)? */
2413		if (vortex_debug > 1)
2414			pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2415		goto handler_exit;
2416	}
2417
2418	if (status & IntReq) {
2419		status |= vp->deferred;
2420		vp->deferred = 0;
2421	}
2422
2423	if (vortex_debug > 4)
2424		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2425			   dev->name, status, ioread8(ioaddr + Timer));
2426	do {
2427		if (vortex_debug > 5)
2428				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2429					   dev->name, status);
2430		if (status & UpComplete) {
2431			iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2432			if (vortex_debug > 5)
2433				pr_debug("boomerang_interrupt->boomerang_rx\n");
2434			boomerang_rx(dev);
2435		}
2436
2437		if (status & DownComplete) {
2438			unsigned int dirty_tx = vp->dirty_tx;
2439
2440			iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2441			while (vp->cur_tx - dirty_tx > 0) {
2442				int entry = dirty_tx % TX_RING_SIZE;
2443#if 1	/* AKPM: the latter is faster, but cyclone-only */
2444				if (ioread32(ioaddr + DownListPtr) ==
2445					vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2446					break;			/* It still hasn't been processed. */
2447#else
2448				if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2449					break;			/* It still hasn't been processed. */
2450#endif
2451
2452				if (vp->tx_skbuff[entry]) {
2453					struct sk_buff *skb = vp->tx_skbuff[entry];
2454#if DO_ZEROCOPY
2455					int i;
2456					pci_unmap_single(VORTEX_PCI(vp),
2457							le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2458							le32_to_cpu(vp->tx_ring[entry].frag[0].length)&0xFFF,
2459							PCI_DMA_TODEVICE);
2460
2461					for (i=1; i<=skb_shinfo(skb)->nr_frags; i++)
2462							pci_unmap_page(VORTEX_PCI(vp),
2463											 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2464											 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2465											 PCI_DMA_TODEVICE);
2466#else
2467					pci_unmap_single(VORTEX_PCI(vp),
2468						le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2469#endif
2470					pkts_compl++;
2471					bytes_compl += skb->len;
2472					dev_kfree_skb_irq(skb);
2473					vp->tx_skbuff[entry] = NULL;
2474				} else {
2475					pr_debug("boomerang_interrupt: no skb!\n");
2476				}
2477				/* dev->stats.tx_packets++;  Counted below. */
2478				dirty_tx++;
2479			}
2480			vp->dirty_tx = dirty_tx;
2481			if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2482				if (vortex_debug > 6)
2483					pr_debug("boomerang_interrupt: wake queue\n");
2484				netif_wake_queue (dev);
2485			}
2486		}
2487
2488		/* Check for all uncommon interrupts at once. */
2489		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2490			vortex_error(dev, status);
2491
2492		if (--work_done < 0) {
2493			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2494				dev->name, status);
2495			/* Disable all pending interrupts. */
2496			do {
2497				vp->deferred |= status;
2498				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2499					 ioaddr + EL3_CMD);
2500				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2501			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2502			/* The timer will reenable interrupts. */
2503			mod_timer(&vp->timer, jiffies + 1*HZ);
2504			break;
2505		}
2506		/* Acknowledge the IRQ. */
2507		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2508		if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
2509			iowrite32(0x8000, vp->cb_fn_base + 4);
2510
2511	} while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2512	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2513
2514	if (vortex_debug > 4)
2515		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2516			   dev->name, status);
2517handler_exit:
2518	vp->handling_irq = 0;
2519	spin_unlock(&vp->lock);
2520	return IRQ_RETVAL(handled);
2521}
2522
2523static int vortex_rx(struct net_device *dev)
2524{
2525	struct vortex_private *vp = netdev_priv(dev);
2526	void __iomem *ioaddr = vp->ioaddr;
2527	int i;
2528	short rx_status;
2529
2530	if (vortex_debug > 5)
2531		pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2532			   ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2533	while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2534		if (rx_status & 0x4000) { /* Error, update stats. */
2535			unsigned char rx_error = ioread8(ioaddr + RxErrors);
2536			if (vortex_debug > 2)
2537				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2538			dev->stats.rx_errors++;
2539			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2540			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2541			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2542			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2543			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2544		} else {
2545			/* The packet length: up to 4.5K!. */
2546			int pkt_len = rx_status & 0x1fff;
2547			struct sk_buff *skb;
2548
2549			skb = netdev_alloc_skb(dev, pkt_len + 5);
2550			if (vortex_debug > 4)
2551				pr_debug("Receiving packet size %d status %4.4x.\n",
2552					   pkt_len, rx_status);
2553			if (skb != NULL) {
2554				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2555				/* 'skb_put()' points to the start of sk_buff data area. */
2556				if (vp->bus_master &&
2557					! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2558					dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2559									   pkt_len, PCI_DMA_FROMDEVICE);
2560					iowrite32(dma, ioaddr + Wn7_MasterAddr);
2561					iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2562					iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2563					while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2564						;
2565					pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2566				} else {
2567					ioread32_rep(ioaddr + RX_FIFO,
2568					             skb_put(skb, pkt_len),
2569						     (pkt_len + 3) >> 2);
2570				}
2571				iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2572				skb->protocol = eth_type_trans(skb, dev);
2573				netif_rx(skb);
2574				dev->stats.rx_packets++;
2575				/* Wait a limited time to go to next packet. */
2576				for (i = 200; i >= 0; i--)
2577					if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2578						break;
2579				continue;
2580			} else if (vortex_debug > 0)
2581				pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2582					dev->name, pkt_len);
2583			dev->stats.rx_dropped++;
2584		}
2585		issue_and_wait(dev, RxDiscard);
2586	}
2587
2588	return 0;
2589}
2590
2591static int
2592boomerang_rx(struct net_device *dev)
2593{
2594	struct vortex_private *vp = netdev_priv(dev);
2595	int entry = vp->cur_rx % RX_RING_SIZE;
2596	void __iomem *ioaddr = vp->ioaddr;
2597	int rx_status;
2598	int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2599
2600	if (vortex_debug > 5)
2601		pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2602
2603	while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2604		if (--rx_work_limit < 0)
2605			break;
2606		if (rx_status & RxDError) { /* Error, update stats. */
2607			unsigned char rx_error = rx_status >> 16;
2608			if (vortex_debug > 2)
2609				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2610			dev->stats.rx_errors++;
2611			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2612			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2613			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2614			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2615			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2616		} else {
2617			/* The packet length: up to 4.5K!. */
2618			int pkt_len = rx_status & 0x1fff;
2619			struct sk_buff *skb;
2620			dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2621
2622			if (vortex_debug > 4)
2623				pr_debug("Receiving packet size %d status %4.4x.\n",
2624					   pkt_len, rx_status);
2625
2626			/* Check if the packet is long enough to just accept without
2627			   copying to a properly sized skbuff. */
2628			if (pkt_len < rx_copybreak &&
2629			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2630				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2631				pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2632				/* 'skb_put()' points to the start of sk_buff data area. */
2633				memcpy(skb_put(skb, pkt_len),
2634					   vp->rx_skbuff[entry]->data,
2635					   pkt_len);
2636				pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2637				vp->rx_copy++;
2638			} else {
2639				/* Pass up the skbuff already on the Rx ring. */
2640				skb = vp->rx_skbuff[entry];
2641				vp->rx_skbuff[entry] = NULL;
2642				skb_put(skb, pkt_len);
2643				pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2644				vp->rx_nocopy++;
2645			}
2646			skb->protocol = eth_type_trans(skb, dev);
2647			{					/* Use hardware checksum info. */
2648				int csum_bits = rx_status & 0xee000000;
2649				if (csum_bits &&
2650					(csum_bits == (IPChksumValid | TCPChksumValid) ||
2651					 csum_bits == (IPChksumValid | UDPChksumValid))) {
2652					skb->ip_summed = CHECKSUM_UNNECESSARY;
2653					vp->rx_csumhits++;
2654				}
2655			}
2656			netif_rx(skb);
2657			dev->stats.rx_packets++;
2658		}
2659		entry = (++vp->cur_rx) % RX_RING_SIZE;
2660	}
2661	/* Refill the Rx ring buffers. */
2662	for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2663		struct sk_buff *skb;
2664		entry = vp->dirty_rx % RX_RING_SIZE;
2665		if (vp->rx_skbuff[entry] == NULL) {
2666			skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2667			if (skb == NULL) {
2668				static unsigned long last_jif;
2669				if (time_after(jiffies, last_jif + 10 * HZ)) {
2670					pr_warn("%s: memory shortage\n",
2671						dev->name);
2672					last_jif = jiffies;
2673				}
2674				if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2675					mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2676				break;			/* Bad news!  */
2677			}
2678
2679			vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2680			vp->rx_skbuff[entry] = skb;
2681		}
2682		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
2683		iowrite16(UpUnstall, ioaddr + EL3_CMD);
2684	}
2685	return 0;
2686}
2687
2688/*
2689 * If we've hit a total OOM refilling the Rx ring we poll once a second
2690 * for some memory.  Otherwise there is no way to restart the rx process.
2691 */
2692static void
2693rx_oom_timer(unsigned long arg)
2694{
2695	struct net_device *dev = (struct net_device *)arg;
2696	struct vortex_private *vp = netdev_priv(dev);
2697
2698	spin_lock_irq(&vp->lock);
2699	if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)	/* This test is redundant, but makes me feel good */
2700		boomerang_rx(dev);
2701	if (vortex_debug > 1) {
2702		pr_debug("%s: rx_oom_timer %s\n", dev->name,
2703			((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2704	}
2705	spin_unlock_irq(&vp->lock);
2706}
2707
2708static void
2709vortex_down(struct net_device *dev, int final_down)
2710{
2711	struct vortex_private *vp = netdev_priv(dev);
2712	void __iomem *ioaddr = vp->ioaddr;
2713
2714	netdev_reset_queue(dev);
2715	netif_stop_queue(dev);
2716
2717	del_timer_sync(&vp->rx_oom_timer);
2718	del_timer_sync(&vp->timer);
2719
2720	/* Turn off statistics ASAP.  We update dev->stats below. */
2721	iowrite16(StatsDisable, ioaddr + EL3_CMD);
2722
2723	/* Disable the receiver and transmitter. */
2724	iowrite16(RxDisable, ioaddr + EL3_CMD);
2725	iowrite16(TxDisable, ioaddr + EL3_CMD);
2726
2727	/* Disable receiving 802.1q tagged frames */
2728	set_8021q_mode(dev, 0);
2729
2730	if (dev->if_port == XCVR_10base2)
2731		/* Turn off thinnet power.  Green! */
2732		iowrite16(StopCoax, ioaddr + EL3_CMD);
2733
2734	iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2735
2736	update_stats(ioaddr, dev);
2737	if (vp->full_bus_master_rx)
2738		iowrite32(0, ioaddr + UpListPtr);
2739	if (vp->full_bus_master_tx)
2740		iowrite32(0, ioaddr + DownListPtr);
2741
2742	if (final_down && VORTEX_PCI(vp)) {
2743		vp->pm_state_valid = 1;
2744		pci_save_state(VORTEX_PCI(vp));
2745		acpi_set_WOL(dev);
2746	}
2747}
2748
2749static int
2750vortex_close(struct net_device *dev)
2751{
2752	struct vortex_private *vp = netdev_priv(dev);
2753	void __iomem *ioaddr = vp->ioaddr;
2754	int i;
2755
2756	if (netif_device_present(dev))
2757		vortex_down(dev, 1);
2758
2759	if (vortex_debug > 1) {
2760		pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2761			   dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2762		pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2763			   " tx_queued %d Rx pre-checksummed %d.\n",
2764			   dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2765	}
2766
2767#if DO_ZEROCOPY
2768	if (vp->rx_csumhits &&
2769	    (vp->drv_flags & HAS_HWCKSM) == 0 &&
2770	    (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2771		pr_warn("%s supports hardware checksums, and we're not using them!\n",
2772			dev->name);
2773	}
2774#endif
2775
2776	free_irq(dev->irq, dev);
2777
2778	if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2779		for (i = 0; i < RX_RING_SIZE; i++)
2780			if (vp->rx_skbuff[i]) {
2781				pci_unmap_single(	VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2782									PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2783				dev_kfree_skb(vp->rx_skbuff[i]);
2784				vp->rx_skbuff[i] = NULL;
2785			}
2786	}
2787	if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2788		for (i = 0; i < TX_RING_SIZE; i++) {
2789			if (vp->tx_skbuff[i]) {
2790				struct sk_buff *skb = vp->tx_skbuff[i];
2791#if DO_ZEROCOPY
2792				int k;
2793
2794				for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2795						pci_unmap_single(VORTEX_PCI(vp),
2796										 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2797										 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2798										 PCI_DMA_TODEVICE);
2799#else
2800				pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2801#endif
2802				dev_kfree_skb(skb);
2803				vp->tx_skbuff[i] = NULL;
2804			}
2805		}
2806	}
2807
2808	return 0;
2809}
2810
2811static void
2812dump_tx_ring(struct net_device *dev)
2813{
2814	if (vortex_debug > 0) {
2815	struct vortex_private *vp = netdev_priv(dev);
2816		void __iomem *ioaddr = vp->ioaddr;
2817
2818		if (vp->full_bus_master_tx) {
2819			int i;
2820			int stalled = ioread32(ioaddr + PktStatus) & 0x04;	/* Possible racy. But it's only debug stuff */
2821
2822			pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2823					vp->full_bus_master_tx,
2824					vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2825					vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2826			pr_err("  Transmit list %8.8x vs. %p.\n",
2827				   ioread32(ioaddr + DownListPtr),
2828				   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2829			issue_and_wait(dev, DownStall);
2830			for (i = 0; i < TX_RING_SIZE; i++) {
2831				unsigned int length;
2832
2833#if DO_ZEROCOPY
2834				length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2835#else
2836				length = le32_to_cpu(vp->tx_ring[i].length);
2837#endif
2838				pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2839					   i, &vp->tx_ring[i], length,
2840					   le32_to_cpu(vp->tx_ring[i].status));
2841			}
2842			if (!stalled)
2843				iowrite16(DownUnstall, ioaddr + EL3_CMD);
2844		}
2845	}
2846}
2847
2848static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2849{
2850	struct vortex_private *vp = netdev_priv(dev);
2851	void __iomem *ioaddr = vp->ioaddr;
2852	unsigned long flags;
2853
2854	if (netif_device_present(dev)) {	/* AKPM: Used to be netif_running */
2855		spin_lock_irqsave (&vp->lock, flags);
2856		update_stats(ioaddr, dev);
2857		spin_unlock_irqrestore (&vp->lock, flags);
2858	}
2859	return &dev->stats;
2860}
2861
2862/*  Update statistics.
2863	Unlike with the EL3 we need not worry about interrupts changing
2864	the window setting from underneath us, but we must still guard
2865	against a race condition with a StatsUpdate interrupt updating the
2866	table.  This is done by checking that the ASM (!) code generated uses
2867	atomic updates with '+='.
2868	*/
2869static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2870{
2871	struct vortex_private *vp = netdev_priv(dev);
2872
2873	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2874	/* Switch to the stats window, and read everything. */
2875	dev->stats.tx_carrier_errors		+= window_read8(vp, 6, 0);
2876	dev->stats.tx_heartbeat_errors		+= window_read8(vp, 6, 1);
2877	dev->stats.tx_window_errors		+= window_read8(vp, 6, 4);
2878	dev->stats.rx_fifo_errors		+= window_read8(vp, 6, 5);
2879	dev->stats.tx_packets			+= window_read8(vp, 6, 6);
2880	dev->stats.tx_packets			+= (window_read8(vp, 6, 9) &
2881						    0x30) << 4;
2882	/* Rx packets	*/			window_read8(vp, 6, 7);   /* Must read to clear */
2883	/* Don't bother with register 9, an extension of registers 6&7.
2884	   If we do use the 6&7 values the atomic update assumption above
2885	   is invalid. */
2886	dev->stats.rx_bytes 			+= window_read16(vp, 6, 10);
2887	dev->stats.tx_bytes 			+= window_read16(vp, 6, 12);
2888	/* Extra stats for get_ethtool_stats() */
2889	vp->xstats.tx_multiple_collisions	+= window_read8(vp, 6, 2);
2890	vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2891	vp->xstats.tx_deferred			+= window_read8(vp, 6, 8);
2892	vp->xstats.rx_bad_ssd			+= window_read8(vp, 4, 12);
2893
2894	dev->stats.collisions = vp->xstats.tx_multiple_collisions
2895		+ vp->xstats.tx_single_collisions
2896		+ vp->xstats.tx_max_collisions;
2897
2898	{
2899		u8 up = window_read8(vp, 4, 13);
2900		dev->stats.rx_bytes += (up & 0x0f) << 16;
2901		dev->stats.tx_bytes += (up & 0xf0) << 12;
2902	}
2903}
2904
2905static int vortex_nway_reset(struct net_device *dev)
2906{
2907	struct vortex_private *vp = netdev_priv(dev);
2908
2909	return mii_nway_restart(&vp->mii);
2910}
2911
2912static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2913{
2914	struct vortex_private *vp = netdev_priv(dev);
2915
2916	return mii_ethtool_gset(&vp->mii, cmd);
2917}
2918
2919static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2920{
2921	struct vortex_private *vp = netdev_priv(dev);
2922
2923	return mii_ethtool_sset(&vp->mii, cmd);
2924}
2925
2926static u32 vortex_get_msglevel(struct net_device *dev)
2927{
2928	return vortex_debug;
2929}
2930
2931static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2932{
2933	vortex_debug = dbg;
2934}
2935
2936static int vortex_get_sset_count(struct net_device *dev, int sset)
2937{
2938	switch (sset) {
2939	case ETH_SS_STATS:
2940		return VORTEX_NUM_STATS;
2941	default:
2942		return -EOPNOTSUPP;
2943	}
2944}
2945
2946static void vortex_get_ethtool_stats(struct net_device *dev,
2947	struct ethtool_stats *stats, u64 *data)
2948{
2949	struct vortex_private *vp = netdev_priv(dev);
2950	void __iomem *ioaddr = vp->ioaddr;
2951	unsigned long flags;
2952
2953	spin_lock_irqsave(&vp->lock, flags);
2954	update_stats(ioaddr, dev);
2955	spin_unlock_irqrestore(&vp->lock, flags);
2956
2957	data[0] = vp->xstats.tx_deferred;
2958	data[1] = vp->xstats.tx_max_collisions;
2959	data[2] = vp->xstats.tx_multiple_collisions;
2960	data[3] = vp->xstats.tx_single_collisions;
2961	data[4] = vp->xstats.rx_bad_ssd;
2962}
2963
2964
2965static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2966{
2967	switch (stringset) {
2968	case ETH_SS_STATS:
2969		memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2970		break;
2971	default:
2972		WARN_ON(1);
2973		break;
2974	}
2975}
2976
2977static void vortex_get_drvinfo(struct net_device *dev,
2978					struct ethtool_drvinfo *info)
2979{
2980	struct vortex_private *vp = netdev_priv(dev);
2981
2982	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2983	if (VORTEX_PCI(vp)) {
2984		strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2985			sizeof(info->bus_info));
2986	} else {
2987		if (VORTEX_EISA(vp))
2988			strlcpy(info->bus_info, dev_name(vp->gendev),
2989				sizeof(info->bus_info));
2990		else
2991			snprintf(info->bus_info, sizeof(info->bus_info),
2992				"EISA 0x%lx %d", dev->base_addr, dev->irq);
2993	}
2994}
2995
2996static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2997{
2998	struct vortex_private *vp = netdev_priv(dev);
2999
3000	if (!VORTEX_PCI(vp))
3001		return;
3002
3003	wol->supported = WAKE_MAGIC;
3004
3005	wol->wolopts = 0;
3006	if (vp->enable_wol)
3007		wol->wolopts |= WAKE_MAGIC;
3008}
3009
3010static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3011{
3012	struct vortex_private *vp = netdev_priv(dev);
3013
3014	if (!VORTEX_PCI(vp))
3015		return -EOPNOTSUPP;
3016
3017	if (wol->wolopts & ~WAKE_MAGIC)
3018		return -EINVAL;
3019
3020	if (wol->wolopts & WAKE_MAGIC)
3021		vp->enable_wol = 1;
3022	else
3023		vp->enable_wol = 0;
3024	acpi_set_WOL(dev);
3025
3026	return 0;
3027}
3028
3029static const struct ethtool_ops vortex_ethtool_ops = {
3030	.get_drvinfo		= vortex_get_drvinfo,
3031	.get_strings            = vortex_get_strings,
3032	.get_msglevel           = vortex_get_msglevel,
3033	.set_msglevel           = vortex_set_msglevel,
3034	.get_ethtool_stats      = vortex_get_ethtool_stats,
3035	.get_sset_count		= vortex_get_sset_count,
3036	.get_settings           = vortex_get_settings,
3037	.set_settings           = vortex_set_settings,
3038	.get_link               = ethtool_op_get_link,
3039	.nway_reset             = vortex_nway_reset,
3040	.get_wol                = vortex_get_wol,
3041	.set_wol                = vortex_set_wol,
3042	.get_ts_info		= ethtool_op_get_ts_info,
3043};
3044
3045#ifdef CONFIG_PCI
3046/*
3047 *	Must power the device up to do MDIO operations
3048 */
3049static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3050{
3051	int err;
3052	struct vortex_private *vp = netdev_priv(dev);
3053	pci_power_t state = 0;
3054
3055	if(VORTEX_PCI(vp))
3056		state = VORTEX_PCI(vp)->current_state;
3057
3058	/* The kernel core really should have pci_get_power_state() */
3059
3060	if(state != 0)
3061		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3062	err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3063	if(state != 0)
3064		pci_set_power_state(VORTEX_PCI(vp), state);
3065
3066	return err;
3067}
3068#endif
3069
3070
3071/* Pre-Cyclone chips have no documented multicast filter, so the only
3072   multicast setting is to receive all multicast frames.  At least
3073   the chip has a very clean way to set the mode, unlike many others. */
3074static void set_rx_mode(struct net_device *dev)
3075{
3076	struct vortex_private *vp = netdev_priv(dev);
3077	void __iomem *ioaddr = vp->ioaddr;
3078	int new_mode;
3079
3080	if (dev->flags & IFF_PROMISC) {
3081		if (vortex_debug > 3)
3082			pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3083		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3084	} else	if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3085		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3086	} else
3087		new_mode = SetRxFilter | RxStation | RxBroadcast;
3088
3089	iowrite16(new_mode, ioaddr + EL3_CMD);
3090}
3091
3092#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3093/* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3094   Note that this must be done after each RxReset due to some backwards
3095   compatibility logic in the Cyclone and Tornado ASICs */
3096
3097/* The Ethernet Type used for 802.1q tagged frames */
3098#define VLAN_ETHER_TYPE 0x8100
3099
3100static void set_8021q_mode(struct net_device *dev, int enable)
3101{
3102	struct vortex_private *vp = netdev_priv(dev);
3103	int mac_ctrl;
3104
3105	if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3106		/* cyclone and tornado chipsets can recognize 802.1q
3107		 * tagged frames and treat them correctly */
3108
3109		int max_pkt_size = dev->mtu+14;	/* MTU+Ethernet header */
3110		if (enable)
3111			max_pkt_size += 4;	/* 802.1Q VLAN tag */
3112
3113		window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3114
3115		/* set VlanEtherType to let the hardware checksumming
3116		   treat tagged frames correctly */
3117		window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3118	} else {
3119		/* on older cards we have to enable large frames */
3120
3121		vp->large_frames = dev->mtu > 1500 || enable;
3122
3123		mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3124		if (vp->large_frames)
3125			mac_ctrl |= 0x40;
3126		else
3127			mac_ctrl &= ~0x40;
3128		window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3129	}
3130}
3131#else
3132
3133static void set_8021q_mode(struct net_device *dev, int enable)
3134{
3135}
3136
3137
3138#endif
3139
3140/* MII transceiver control section.
3141   Read and write the MII registers using software-generated serial
3142   MDIO protocol.  See the MII specifications or DP83840A data sheet
3143   for details. */
3144
3145/* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3146   met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3147   "overclocking" issues. */
3148static void mdio_delay(struct vortex_private *vp)
3149{
3150	window_read32(vp, 4, Wn4_PhysicalMgmt);
3151}
3152
3153#define MDIO_SHIFT_CLK	0x01
3154#define MDIO_DIR_WRITE	0x04
3155#define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3156#define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3157#define MDIO_DATA_READ	0x02
3158#define MDIO_ENB_IN		0x00
3159
3160/* Generate the preamble required for initial synchronization and
3161   a few older transceivers. */
3162static void mdio_sync(struct vortex_private *vp, int bits)
3163{
3164	/* Establish sync by sending at least 32 logic ones. */
3165	while (-- bits >= 0) {
3166		window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3167		mdio_delay(vp);
3168		window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3169			       4, Wn4_PhysicalMgmt);
3170		mdio_delay(vp);
3171	}
3172}
3173
3174static int mdio_read(struct net_device *dev, int phy_id, int location)
3175{
3176	int i;
3177	struct vortex_private *vp = netdev_priv(dev);
3178	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3179	unsigned int retval = 0;
3180
3181	spin_lock_bh(&vp->mii_lock);
3182
3183	if (mii_preamble_required)
3184		mdio_sync(vp, 32);
3185
3186	/* Shift the read command bits out. */
3187	for (i = 14; i >= 0; i--) {
3188		int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3189		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3190		mdio_delay(vp);
3191		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3192			       4, Wn4_PhysicalMgmt);
3193		mdio_delay(vp);
3194	}
3195	/* Read the two transition, 16 data, and wire-idle bits. */
3196	for (i = 19; i > 0; i--) {
3197		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3198		mdio_delay(vp);
3199		retval = (retval << 1) |
3200			((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3201			  MDIO_DATA_READ) ? 1 : 0);
3202		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3203			       4, Wn4_PhysicalMgmt);
3204		mdio_delay(vp);
3205	}
3206
3207	spin_unlock_bh(&vp->mii_lock);
3208
3209	return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3210}
3211
3212static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3213{
3214	struct vortex_private *vp = netdev_priv(dev);
3215	int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3216	int i;
3217
3218	spin_lock_bh(&vp->mii_lock);
3219
3220	if (mii_preamble_required)
3221		mdio_sync(vp, 32);
3222
3223	/* Shift the command bits out. */
3224	for (i = 31; i >= 0; i--) {
3225		int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3226		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3227		mdio_delay(vp);
3228		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3229			       4, Wn4_PhysicalMgmt);
3230		mdio_delay(vp);
3231	}
3232	/* Leave the interface idle. */
3233	for (i = 1; i >= 0; i--) {
3234		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3235		mdio_delay(vp);
3236		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3237			       4, Wn4_PhysicalMgmt);
3238		mdio_delay(vp);
3239	}
3240
3241	spin_unlock_bh(&vp->mii_lock);
3242}
3243
3244/* ACPI: Advanced Configuration and Power Interface. */
3245/* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3246static void acpi_set_WOL(struct net_device *dev)
3247{
3248	struct vortex_private *vp = netdev_priv(dev);
3249	void __iomem *ioaddr = vp->ioaddr;
3250
3251	device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3252
3253	if (vp->enable_wol) {
3254		/* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3255		window_write16(vp, 2, 7, 0x0c);
3256		/* The RxFilter must accept the WOL frames. */
3257		iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3258		iowrite16(RxEnable, ioaddr + EL3_CMD);
3259
3260		if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3261			pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3262
3263			vp->enable_wol = 0;
3264			return;
3265		}
3266
3267		if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3268			return;
3269
3270		/* Change the power state to D3; RxEnable doesn't take effect. */
3271		pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3272	}
3273}
3274
3275
3276static void vortex_remove_one(struct pci_dev *pdev)
3277{
3278	struct net_device *dev = pci_get_drvdata(pdev);
3279	struct vortex_private *vp;
3280
3281	if (!dev) {
3282		pr_err("vortex_remove_one called for Compaq device!\n");
3283		BUG();
3284	}
3285
3286	vp = netdev_priv(dev);
3287
3288	if (vp->cb_fn_base)
3289		pci_iounmap(pdev, vp->cb_fn_base);
3290
3291	unregister_netdev(dev);
3292
3293	pci_set_power_state(pdev, PCI_D0);	/* Go active */
3294	if (vp->pm_state_valid)
3295		pci_restore_state(pdev);
3296	pci_disable_device(pdev);
3297
3298	/* Should really use issue_and_wait() here */
3299	iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3300	     vp->ioaddr + EL3_CMD);
3301
3302	pci_iounmap(pdev, vp->ioaddr);
3303
3304	pci_free_consistent(pdev,
3305						sizeof(struct boom_rx_desc) * RX_RING_SIZE
3306							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3307						vp->rx_ring,
3308						vp->rx_ring_dma);
3309
3310	pci_release_regions(pdev);
3311
3312	free_netdev(dev);
3313}
3314
3315
3316static struct pci_driver vortex_driver = {
3317	.name		= "3c59x",
3318	.probe		= vortex_init_one,
3319	.remove		= vortex_remove_one,
3320	.id_table	= vortex_pci_tbl,
3321	.driver.pm	= VORTEX_PM_OPS,
3322};
3323
3324
3325static int vortex_have_pci;
3326static int vortex_have_eisa;
3327
3328
3329static int __init vortex_init(void)
3330{
3331	int pci_rc, eisa_rc;
3332
3333	pci_rc = pci_register_driver(&vortex_driver);
3334	eisa_rc = vortex_eisa_init();
3335
3336	if (pci_rc == 0)
3337		vortex_have_pci = 1;
3338	if (eisa_rc > 0)
3339		vortex_have_eisa = 1;
3340
3341	return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3342}
3343
3344
3345static void __exit vortex_eisa_cleanup(void)
3346{
3347	void __iomem *ioaddr;
3348
3349#ifdef CONFIG_EISA
3350	/* Take care of the EISA devices */
3351	eisa_driver_unregister(&vortex_eisa_driver);
3352#endif
3353
3354	if (compaq_net_device) {
3355		ioaddr = ioport_map(compaq_net_device->base_addr,
3356		                    VORTEX_TOTAL_SIZE);
3357
3358		unregister_netdev(compaq_net_device);
3359		iowrite16(TotalReset, ioaddr + EL3_CMD);
3360		release_region(compaq_net_device->base_addr,
3361		               VORTEX_TOTAL_SIZE);
3362
3363		free_netdev(compaq_net_device);
3364	}
3365}
3366
3367
3368static void __exit vortex_cleanup(void)
3369{
3370	if (vortex_have_pci)
3371		pci_unregister_driver(&vortex_driver);
3372	if (vortex_have_eisa)
3373		vortex_eisa_cleanup();
3374}
3375
3376
3377module_init(vortex_init);
3378module_exit(vortex_cleanup);