Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * CAN bus driver for Bosch C_CAN controller
   3 *
   4 * Copyright (C) 2010 ST Microelectronics
   5 * Bhupesh Sharma <bhupesh.sharma@st.com>
   6 *
   7 * Borrowed heavily from the C_CAN driver originally written by:
   8 * Copyright (C) 2007
   9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
  10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
  11 *
  12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
  13 * written by:
  14 * Copyright
  15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
  16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
  17 *
  18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
  19 * Bosch C_CAN user manual can be obtained from:
  20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
  21 * users_manual_c_can.pdf
  22 *
  23 * This file is licensed under the terms of the GNU General Public
  24 * License version 2. This program is licensed "as is" without any
  25 * warranty of any kind, whether express or implied.
  26 */
  27
  28#include <linux/kernel.h>
  29#include <linux/module.h>
  30#include <linux/interrupt.h>
  31#include <linux/delay.h>
  32#include <linux/netdevice.h>
  33#include <linux/if_arp.h>
  34#include <linux/if_ether.h>
  35#include <linux/list.h>
  36#include <linux/io.h>
 
 
  37
  38#include <linux/can.h>
  39#include <linux/can/dev.h>
  40#include <linux/can/error.h>
 
  41
  42#include "c_can.h"
  43
 
 
 
 
 
 
 
  44/* control register */
  45#define CONTROL_TEST		BIT(7)
  46#define CONTROL_CCE		BIT(6)
  47#define CONTROL_DISABLE_AR	BIT(5)
  48#define CONTROL_ENABLE_AR	(0 << 5)
  49#define CONTROL_EIE		BIT(3)
  50#define CONTROL_SIE		BIT(2)
  51#define CONTROL_IE		BIT(1)
  52#define CONTROL_INIT		BIT(0)
  53
 
 
  54/* test register */
  55#define TEST_RX			BIT(7)
  56#define TEST_TX1		BIT(6)
  57#define TEST_TX2		BIT(5)
  58#define TEST_LBACK		BIT(4)
  59#define TEST_SILENT		BIT(3)
  60#define TEST_BASIC		BIT(2)
  61
  62/* status register */
 
  63#define STATUS_BOFF		BIT(7)
  64#define STATUS_EWARN		BIT(6)
  65#define STATUS_EPASS		BIT(5)
  66#define STATUS_RXOK		BIT(4)
  67#define STATUS_TXOK		BIT(3)
  68
  69/* error counter register */
  70#define ERR_CNT_TEC_MASK	0xff
  71#define ERR_CNT_TEC_SHIFT	0
  72#define ERR_CNT_REC_SHIFT	8
  73#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
  74#define ERR_CNT_RP_SHIFT	15
  75#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
  76
  77/* bit-timing register */
  78#define BTR_BRP_MASK		0x3f
  79#define BTR_BRP_SHIFT		0
  80#define BTR_SJW_SHIFT		6
  81#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
  82#define BTR_TSEG1_SHIFT		8
  83#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
  84#define BTR_TSEG2_SHIFT		12
  85#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
  86
  87/* brp extension register */
  88#define BRP_EXT_BRPE_MASK	0x0f
  89#define BRP_EXT_BRPE_SHIFT	0
  90
  91/* IFx command request */
  92#define IF_COMR_BUSY		BIT(15)
  93
  94/* IFx command mask */
  95#define IF_COMM_WR		BIT(7)
  96#define IF_COMM_MASK		BIT(6)
  97#define IF_COMM_ARB		BIT(5)
  98#define IF_COMM_CONTROL		BIT(4)
  99#define IF_COMM_CLR_INT_PND	BIT(3)
 100#define IF_COMM_TXRQST		BIT(2)
 
 101#define IF_COMM_DATAA		BIT(1)
 102#define IF_COMM_DATAB		BIT(0)
 103#define IF_COMM_ALL		(IF_COMM_MASK | IF_COMM_ARB | \
 104				IF_COMM_CONTROL | IF_COMM_TXRQST | \
 105				IF_COMM_DATAA | IF_COMM_DATAB)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106
 107/* IFx arbitration */
 108#define IF_ARB_MSGVAL		BIT(15)
 109#define IF_ARB_MSGXTD		BIT(14)
 110#define IF_ARB_TRANSMIT		BIT(13)
 111
 112/* IFx message control */
 113#define IF_MCONT_NEWDAT		BIT(15)
 114#define IF_MCONT_MSGLST		BIT(14)
 115#define IF_MCONT_CLR_MSGLST	(0 << 14)
 116#define IF_MCONT_INTPND		BIT(13)
 117#define IF_MCONT_UMASK		BIT(12)
 118#define IF_MCONT_TXIE		BIT(11)
 119#define IF_MCONT_RXIE		BIT(10)
 120#define IF_MCONT_RMTEN		BIT(9)
 121#define IF_MCONT_TXRQST		BIT(8)
 122#define IF_MCONT_EOB		BIT(7)
 123#define IF_MCONT_DLC_MASK	0xf
 124
 
 
 
 
 
 125/*
 126 * IFx register masks:
 127 * allow easy operation on 16-bit registers when the
 128 * argument is 32-bit instead
 129 */
 130#define IFX_WRITE_LOW_16BIT(x)	((x) & 0xFFFF)
 131#define IFX_WRITE_HIGH_16BIT(x)	(((x) & 0xFFFF0000) >> 16)
 132
 133/* message object split */
 134#define C_CAN_NO_OF_OBJECTS	32
 135#define C_CAN_MSG_OBJ_RX_NUM	16
 136#define C_CAN_MSG_OBJ_TX_NUM	16
 137
 138#define C_CAN_MSG_OBJ_RX_FIRST	1
 139#define C_CAN_MSG_OBJ_RX_LAST	(C_CAN_MSG_OBJ_RX_FIRST + \
 140				C_CAN_MSG_OBJ_RX_NUM - 1)
 141
 142#define C_CAN_MSG_OBJ_TX_FIRST	(C_CAN_MSG_OBJ_RX_LAST + 1)
 143#define C_CAN_MSG_OBJ_TX_LAST	(C_CAN_MSG_OBJ_TX_FIRST + \
 144				C_CAN_MSG_OBJ_TX_NUM - 1)
 145
 146#define C_CAN_MSG_OBJ_RX_SPLIT	9
 147#define C_CAN_MSG_RX_LOW_LAST	(C_CAN_MSG_OBJ_RX_SPLIT - 1)
 148
 149#define C_CAN_NEXT_MSG_OBJ_MASK	(C_CAN_MSG_OBJ_TX_NUM - 1)
 150#define RECEIVE_OBJECT_BITS	0x0000ffff
 151
 152/* status interrupt */
 153#define STATUS_INTERRUPT	0x8000
 154
 155/* global interrupt masks */
 156#define ENABLE_ALL_INTERRUPTS	1
 157#define DISABLE_ALL_INTERRUPTS	0
 158
 159/* minimum timeout for checking BUSY status */
 160#define MIN_TIMEOUT_VALUE	6
 161
 
 
 
 162/* napi related */
 163#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
 164
 165/* c_can lec values */
 166enum c_can_lec_type {
 167	LEC_NO_ERROR = 0,
 168	LEC_STUFF_ERROR,
 169	LEC_FORM_ERROR,
 170	LEC_ACK_ERROR,
 171	LEC_BIT1_ERROR,
 172	LEC_BIT0_ERROR,
 173	LEC_CRC_ERROR,
 174	LEC_UNUSED,
 
 175};
 176
 177/*
 178 * c_can error types:
 179 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
 180 */
 181enum c_can_bus_error_types {
 182	C_CAN_NO_ERROR = 0,
 183	C_CAN_BUS_OFF,
 184	C_CAN_ERROR_WARNING,
 185	C_CAN_ERROR_PASSIVE,
 186};
 187
 188static struct can_bittiming_const c_can_bittiming_const = {
 189	.name = KBUILD_MODNAME,
 190	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
 191	.tseg1_max = 16,
 192	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
 193	.tseg2_max = 8,
 194	.sjw_max = 4,
 195	.brp_min = 1,
 196	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
 197	.brp_inc = 1,
 198};
 199
 200static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
 
 
 
 
 
 
 
 
 
 
 
 
 201{
 202	return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
 203			C_CAN_MSG_OBJ_TX_FIRST;
 204}
 205
 206static inline int get_tx_echo_msg_obj(const struct c_can_priv *priv)
 207{
 208	return (priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) +
 209			C_CAN_MSG_OBJ_TX_FIRST;
 210}
 211
 212static u32 c_can_read_reg32(struct c_can_priv *priv, void *reg)
 213{
 214	u32 val = priv->read_reg(priv, reg);
 215	val |= ((u32) priv->read_reg(priv, reg + 2)) << 16;
 216	return val;
 217}
 218
 219static void c_can_enable_all_interrupts(struct c_can_priv *priv,
 220						int enable)
 221{
 222	unsigned int cntrl_save = priv->read_reg(priv,
 223						&priv->regs->control);
 224
 225	if (enable)
 226		cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
 227	else
 228		cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);
 229
 230	priv->write_reg(priv, &priv->regs->control, cntrl_save);
 231}
 232
 233static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
 234{
 235	int count = MIN_TIMEOUT_VALUE;
 
 
 
 236
 237	while (count && priv->read_reg(priv,
 238				&priv->regs->ifregs[iface].com_req) &
 239				IF_COMR_BUSY) {
 240		count--;
 241		udelay(1);
 242	}
 
 243
 244	if (!count)
 245		return 1;
 246
 247	return 0;
 
 
 
 248}
 249
 250static inline void c_can_object_get(struct net_device *dev,
 251					int iface, int objno, int mask)
 252{
 253	struct c_can_priv *priv = netdev_priv(dev);
 
 254
 255	/*
 256	 * As per specs, after writting the message object number in the
 257	 * IF command request register the transfer b/w interface
 258	 * register and message RAM must be complete in 6 CAN-CLK
 259	 * period.
 260	 */
 261	priv->write_reg(priv, &priv->regs->ifregs[iface].com_mask,
 262			IFX_WRITE_LOW_16BIT(mask));
 263	priv->write_reg(priv, &priv->regs->ifregs[iface].com_req,
 264			IFX_WRITE_LOW_16BIT(objno));
 265
 266	if (c_can_msg_obj_is_busy(priv, iface))
 267		netdev_err(dev, "timed out in object get\n");
 268}
 269
 270static inline void c_can_object_put(struct net_device *dev,
 271					int iface, int objno, int mask)
 272{
 273	struct c_can_priv *priv = netdev_priv(dev);
 274
 275	/*
 276	 * As per specs, after writting the message object number in the
 277	 * IF command request register the transfer b/w interface
 278	 * register and message RAM must be complete in 6 CAN-CLK
 279	 * period.
 280	 */
 281	priv->write_reg(priv, &priv->regs->ifregs[iface].com_mask,
 282			(IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
 283	priv->write_reg(priv, &priv->regs->ifregs[iface].com_req,
 284			IFX_WRITE_LOW_16BIT(objno));
 285
 286	if (c_can_msg_obj_is_busy(priv, iface))
 287		netdev_err(dev, "timed out in object put\n");
 288}
 289
 290static void c_can_write_msg_object(struct net_device *dev,
 291			int iface, struct can_frame *frame, int objno)
 292{
 293	int i;
 294	u16 flags = 0;
 295	unsigned int id;
 296	struct c_can_priv *priv = netdev_priv(dev);
 297
 298	if (!(frame->can_id & CAN_RTR_FLAG))
 299		flags |= IF_ARB_TRANSMIT;
 
 300
 301	if (frame->can_id & CAN_EFF_FLAG) {
 302		id = frame->can_id & CAN_EFF_MASK;
 303		flags |= IF_ARB_MSGXTD;
 304	} else
 305		id = ((frame->can_id & CAN_SFF_MASK) << 18);
 306
 307	flags |= IF_ARB_MSGVAL;
 308
 309	priv->write_reg(priv, &priv->regs->ifregs[iface].arb1,
 310				IFX_WRITE_LOW_16BIT(id));
 311	priv->write_reg(priv, &priv->regs->ifregs[iface].arb2, flags |
 312				IFX_WRITE_HIGH_16BIT(id));
 313
 314	for (i = 0; i < frame->can_dlc; i += 2) {
 315		priv->write_reg(priv, &priv->regs->ifregs[iface].data[i / 2],
 316				frame->data[i] | (frame->data[i + 1] << 8));
 317	}
 318
 319	/* enable interrupt for this message object */
 320	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
 321			IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
 322			frame->can_dlc);
 323	c_can_object_put(dev, iface, objno, IF_COMM_ALL);
 324}
 325
 326static inline void c_can_mark_rx_msg_obj(struct net_device *dev,
 327						int iface, int ctrl_mask,
 328						int obj)
 329{
 330	struct c_can_priv *priv = netdev_priv(dev);
 
 331
 332	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
 333			ctrl_mask & ~(IF_MCONT_MSGLST | IF_MCONT_INTPND));
 334	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
 335
 336}
 337
 338static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
 339						int iface,
 340						int ctrl_mask)
 341{
 342	int i;
 343	struct c_can_priv *priv = netdev_priv(dev);
 344
 345	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
 346		priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
 347				ctrl_mask & ~(IF_MCONT_MSGLST |
 348					IF_MCONT_INTPND | IF_MCONT_NEWDAT));
 349		c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
 350	}
 351}
 352
 353static inline void c_can_activate_rx_msg_obj(struct net_device *dev,
 354						int iface, int ctrl_mask,
 355						int obj)
 356{
 357	struct c_can_priv *priv = netdev_priv(dev);
 358
 359	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
 360			ctrl_mask & ~(IF_MCONT_MSGLST |
 361				IF_MCONT_INTPND | IF_MCONT_NEWDAT));
 362	c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
 363}
 364
 365static void c_can_handle_lost_msg_obj(struct net_device *dev,
 366					int iface, int objno)
 367{
 368	struct c_can_priv *priv = netdev_priv(dev);
 369	struct net_device_stats *stats = &dev->stats;
 370	struct sk_buff *skb;
 371	struct can_frame *frame;
 
 372
 373	netdev_err(dev, "msg lost in buffer %d\n", objno);
 374
 375	c_can_object_get(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
 376
 377	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
 378			IF_MCONT_CLR_MSGLST);
 379
 380	c_can_object_put(dev, 0, objno, IF_COMM_CONTROL);
 
 381
 382	/* create an error msg */
 383	skb = alloc_can_err_skb(dev, &frame);
 384	if (unlikely(!skb))
 385		return;
 386
 387	frame->can_id |= CAN_ERR_CRTL;
 388	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
 389	stats->rx_errors++;
 390	stats->rx_over_errors++;
 391
 392	netif_receive_skb(skb);
 
 393}
 394
 395static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
 396{
 397	u16 flags, data;
 398	int i;
 399	unsigned int val;
 400	struct c_can_priv *priv = netdev_priv(dev);
 401	struct net_device_stats *stats = &dev->stats;
 402	struct sk_buff *skb;
 403	struct can_frame *frame;
 
 
 404
 405	skb = alloc_can_skb(dev, &frame);
 406	if (!skb) {
 407		stats->rx_dropped++;
 408		return -ENOMEM;
 409	}
 410
 411	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
 412
 413	flags =	priv->read_reg(priv, &priv->regs->ifregs[iface].arb2);
 414	val = priv->read_reg(priv, &priv->regs->ifregs[iface].arb1) |
 415		(flags << 16);
 416
 417	if (flags & IF_ARB_MSGXTD)
 418		frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
 419	else
 420		frame->can_id = (val >> 18) & CAN_SFF_MASK;
 421
 422	if (flags & IF_ARB_TRANSMIT)
 423		frame->can_id |= CAN_RTR_FLAG;
 424	else {
 425		for (i = 0; i < frame->can_dlc; i += 2) {
 426			data = priv->read_reg(priv,
 427				&priv->regs->ifregs[iface].data[i / 2]);
 
 428			frame->data[i] = data;
 429			frame->data[i + 1] = data >> 8;
 430		}
 431	}
 432
 433	netif_receive_skb(skb);
 434
 435	stats->rx_packets++;
 436	stats->rx_bytes += frame->can_dlc;
 437
 
 438	return 0;
 439}
 440
 441static void c_can_setup_receive_object(struct net_device *dev, int iface,
 442					int objno, unsigned int mask,
 443					unsigned int id, unsigned int mcont)
 444{
 445	struct c_can_priv *priv = netdev_priv(dev);
 446
 447	priv->write_reg(priv, &priv->regs->ifregs[iface].mask1,
 448			IFX_WRITE_LOW_16BIT(mask));
 449	priv->write_reg(priv, &priv->regs->ifregs[iface].mask2,
 450			IFX_WRITE_HIGH_16BIT(mask));
 451
 452	priv->write_reg(priv, &priv->regs->ifregs[iface].arb1,
 453			IFX_WRITE_LOW_16BIT(id));
 454	priv->write_reg(priv, &priv->regs->ifregs[iface].arb2,
 455			(IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));
 456
 457	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl, mcont);
 458	c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
 459
 460	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
 461			c_can_read_reg32(priv, &priv->regs->msgval1));
 462}
 463
 464static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
 465{
 466	struct c_can_priv *priv = netdev_priv(dev);
 467
 468	priv->write_reg(priv, &priv->regs->ifregs[iface].arb1, 0);
 469	priv->write_reg(priv, &priv->regs->ifregs[iface].arb2, 0);
 470	priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl, 0);
 471
 472	c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
 473
 474	netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
 475			c_can_read_reg32(priv, &priv->regs->msgval1));
 476}
 477
 478static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
 479{
 480	int val = c_can_read_reg32(priv, &priv->regs->txrqst1);
 481
 482	/*
 483	 * as transmission request register's bit n-1 corresponds to
 484	 * message object n, we need to handle the same properly.
 485	 */
 486	if (val & (1 << (objno - 1)))
 487		return 1;
 488
 489	return 0;
 490}
 491
 492static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
 493					struct net_device *dev)
 494{
 495	u32 msg_obj_no;
 496	struct c_can_priv *priv = netdev_priv(dev);
 497	struct can_frame *frame = (struct can_frame *)skb->data;
 
 
 498
 499	if (can_dropped_invalid_skb(dev, skb))
 500		return NETDEV_TX_OK;
 501
 502	msg_obj_no = get_tx_next_msg_obj(priv);
 503
 504	/* prepare message object for transmission */
 505	c_can_write_msg_object(dev, 0, frame, msg_obj_no);
 506	can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
 507
 508	/*
 509	 * we have to stop the queue in case of a wrap around or
 510	 * if the next TX message object is still in use
 511	 */
 512	priv->tx_next++;
 513	if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
 514			(priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
 
 
 515		netif_stop_queue(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 516
 517	return NETDEV_TX_OK;
 518}
 519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520static int c_can_set_bittiming(struct net_device *dev)
 521{
 522	unsigned int reg_btr, reg_brpe, ctrl_save;
 523	u8 brp, brpe, sjw, tseg1, tseg2;
 524	u32 ten_bit_brp;
 525	struct c_can_priv *priv = netdev_priv(dev);
 526	const struct can_bittiming *bt = &priv->can.bittiming;
 
 527
 528	/* c_can provides a 6-bit brp and 4-bit brpe fields */
 529	ten_bit_brp = bt->brp - 1;
 530	brp = ten_bit_brp & BTR_BRP_MASK;
 531	brpe = ten_bit_brp >> 6;
 532
 533	sjw = bt->sjw - 1;
 534	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
 535	tseg2 = bt->phase_seg2 - 1;
 536	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
 537			(tseg2 << BTR_TSEG2_SHIFT);
 538	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
 539
 540	netdev_info(dev,
 541		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
 542
 543	ctrl_save = priv->read_reg(priv, &priv->regs->control);
 544	priv->write_reg(priv, &priv->regs->control,
 545			ctrl_save | CONTROL_CCE | CONTROL_INIT);
 546	priv->write_reg(priv, &priv->regs->btr, reg_btr);
 547	priv->write_reg(priv, &priv->regs->brp_ext, reg_brpe);
 548	priv->write_reg(priv, &priv->regs->control, ctrl_save);
 
 
 
 
 549
 550	return 0;
 551}
 552
 553/*
 554 * Configure C_CAN message objects for Tx and Rx purposes:
 555 * C_CAN provides a total of 32 message objects that can be configured
 556 * either for Tx or Rx purposes. Here the first 16 message objects are used as
 557 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
 558 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
 559 * See user guide document for further details on configuring message
 560 * objects.
 561 */
 562static void c_can_configure_msg_objects(struct net_device *dev)
 563{
 564	int i;
 565
 566	/* first invalidate all message objects */
 567	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
 568		c_can_inval_msg_object(dev, 0, i);
 569
 570	/* setup receive message objects */
 571	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
 572		c_can_setup_receive_object(dev, 0, i, 0, 0,
 573			(IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);
 574
 575	c_can_setup_receive_object(dev, 0, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
 576			IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
 577}
 578
 579/*
 580 * Configure C_CAN chip:
 581 * - enable/disable auto-retransmission
 582 * - set operating mode
 583 * - configure message objects
 584 */
 585static void c_can_chip_config(struct net_device *dev)
 586{
 587	struct c_can_priv *priv = netdev_priv(dev);
 588
 589	/* enable automatic retransmission */
 590	priv->write_reg(priv, &priv->regs->control,
 591			CONTROL_ENABLE_AR);
 592
 593	if (priv->can.ctrlmode & (CAN_CTRLMODE_LISTENONLY &
 594					CAN_CTRLMODE_LOOPBACK)) {
 595		/* loopback + silent mode : useful for hot self-test */
 596		priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
 597				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
 598		priv->write_reg(priv, &priv->regs->test,
 599				TEST_LBACK | TEST_SILENT);
 600	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 601		/* loopback mode : useful for self-test function */
 602		priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
 603				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
 604		priv->write_reg(priv, &priv->regs->test, TEST_LBACK);
 605	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 606		/* silent mode : bus-monitoring mode */
 607		priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
 608				CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
 609		priv->write_reg(priv, &priv->regs->test, TEST_SILENT);
 610	} else
 611		/* normal mode*/
 612		priv->write_reg(priv, &priv->regs->control,
 613				CONTROL_EIE | CONTROL_SIE | CONTROL_IE);
 614
 615	/* configure message objects */
 616	c_can_configure_msg_objects(dev);
 617
 618	/* set a `lec` value so that we can check for updates later */
 619	priv->write_reg(priv, &priv->regs->status, LEC_UNUSED);
 
 
 
 
 
 620
 621	/* set bittiming params */
 622	c_can_set_bittiming(dev);
 623}
 624
 625static void c_can_start(struct net_device *dev)
 626{
 627	struct c_can_priv *priv = netdev_priv(dev);
 
 
 628
 629	/* basic c_can configuration */
 630	c_can_chip_config(dev);
 
 
 
 
 
 
 631
 632	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 633
 634	/* reset tx helper pointers */
 635	priv->tx_next = priv->tx_echo = 0;
 
 
 
 
 636
 637	/* enable status change, error and module interrupts */
 638	c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
 639}
 640
 641static void c_can_stop(struct net_device *dev)
 642{
 643	struct c_can_priv *priv = netdev_priv(dev);
 644
 645	/* disable all interrupts */
 646	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
 647
 648	/* set the state as STOPPED */
 
 
 
 
 649	priv->can.state = CAN_STATE_STOPPED;
 650}
 651
 652static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
 653{
 
 
 
 654	switch (mode) {
 655	case CAN_MODE_START:
 656		c_can_start(dev);
 
 
 657		netif_wake_queue(dev);
 
 658		break;
 659	default:
 660		return -EOPNOTSUPP;
 661	}
 662
 663	return 0;
 664}
 665
 666static int c_can_get_berr_counter(const struct net_device *dev,
 667					struct can_berr_counter *bec)
 668{
 669	unsigned int reg_err_counter;
 670	struct c_can_priv *priv = netdev_priv(dev);
 671
 672	reg_err_counter = priv->read_reg(priv, &priv->regs->err_cnt);
 673	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
 674				ERR_CNT_REC_SHIFT;
 675	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
 676
 677	return 0;
 678}
 679
 680/*
 681 * theory of operation:
 682 *
 683 * priv->tx_echo holds the number of the oldest can_frame put for
 684 * transmission into the hardware, but not yet ACKed by the CAN tx
 685 * complete IRQ.
 686 *
 687 * We iterate from priv->tx_echo to priv->tx_next and check if the
 688 * packet has been transmitted, echo it back to the CAN framework.
 689 * If we discover a not yet transmitted package, stop looking for more.
 690 */
 
 
 691static void c_can_do_tx(struct net_device *dev)
 692{
 693	u32 val;
 694	u32 msg_obj_no;
 695	struct c_can_priv *priv = netdev_priv(dev);
 696	struct net_device_stats *stats = &dev->stats;
 
 697
 698	for (/* nix */; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
 699		msg_obj_no = get_tx_echo_msg_obj(priv);
 700		val = c_can_read_reg32(priv, &priv->regs->txrqst1);
 701		if (!(val & (1 << msg_obj_no))) {
 702			can_get_echo_skb(dev,
 703					msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
 704			stats->tx_bytes += priv->read_reg(priv,
 705					&priv->regs->ifregs[0].msg_cntrl)
 706					& IF_MCONT_DLC_MASK;
 707			stats->tx_packets++;
 708			c_can_inval_msg_object(dev, 0, msg_obj_no);
 709		}
 710	}
 711
 712	/* restart queue if wrap-up or if queue stalled on last pkt */
 713	if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
 714			((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
 
 715		netif_wake_queue(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 716}
 717
 718/*
 719 * theory of operation:
 720 *
 721 * c_can core saves a received CAN message into the first free message
 722 * object it finds free (starting with the lowest). Bits NEWDAT and
 723 * INTPND are set for this message object indicating that a new message
 724 * has arrived. To work-around this issue, we keep two groups of message
 725 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
 726 *
 727 * To ensure in-order frame reception we use the following
 728 * approach while re-activating a message object to receive further
 729 * frames:
 730 * - if the current message object number is lower than
 731 *   C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
 732 *   the INTPND bit.
 733 * - if the current message object number is equal to
 734 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
 735 *   receive message objects.
 736 * - if the current message object number is greater than
 737 *   C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
 738 *   only this message object.
 739 */
 740static int c_can_do_rx_poll(struct net_device *dev, int quota)
 741{
 742	u32 num_rx_pkts = 0;
 743	unsigned int msg_obj, msg_ctrl_save;
 744	struct c_can_priv *priv = netdev_priv(dev);
 745	u32 val = c_can_read_reg32(priv, &priv->regs->intpnd1);
 746
 747	for (msg_obj = C_CAN_MSG_OBJ_RX_FIRST;
 748			msg_obj <= C_CAN_MSG_OBJ_RX_LAST && quota > 0;
 749			val = c_can_read_reg32(priv, &priv->regs->intpnd1),
 750			msg_obj++) {
 751		/*
 752		 * as interrupt pending register's bit n-1 corresponds to
 753		 * message object n, we need to handle the same properly.
 754		 */
 755		if (val & (1 << (msg_obj - 1))) {
 756			c_can_object_get(dev, 0, msg_obj, IF_COMM_ALL &
 757					~IF_COMM_TXRQST);
 758			msg_ctrl_save = priv->read_reg(priv,
 759					&priv->regs->ifregs[0].msg_cntrl);
 760
 761			if (msg_ctrl_save & IF_MCONT_EOB)
 762				return num_rx_pkts;
 763
 764			if (msg_ctrl_save & IF_MCONT_MSGLST) {
 765				c_can_handle_lost_msg_obj(dev, 0, msg_obj);
 766				num_rx_pkts++;
 767				quota--;
 768				continue;
 769			}
 770
 771			if (!(msg_ctrl_save & IF_MCONT_NEWDAT))
 772				continue;
 773
 774			/* read the data from the message object */
 775			c_can_read_msg_object(dev, 0, msg_ctrl_save);
 776
 777			if (msg_obj < C_CAN_MSG_RX_LOW_LAST)
 778				c_can_mark_rx_msg_obj(dev, 0,
 779						msg_ctrl_save, msg_obj);
 780			else if (msg_obj > C_CAN_MSG_RX_LOW_LAST)
 781				/* activate this msg obj */
 782				c_can_activate_rx_msg_obj(dev, 0,
 783						msg_ctrl_save, msg_obj);
 784			else if (msg_obj == C_CAN_MSG_RX_LOW_LAST)
 785				/* activate all lower message objects */
 786				c_can_activate_all_lower_rx_msg_obj(dev,
 787						0, msg_ctrl_save);
 788
 789			num_rx_pkts++;
 790			quota--;
 
 
 
 
 
 
 
 
 
 
 791		}
 
 
 
 
 
 
 792	}
 793
 794	return num_rx_pkts;
 795}
 796
 797static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
 798{
 799	return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
 800		(priv->current_status & LEC_UNUSED);
 801}
 802
 803static int c_can_handle_state_change(struct net_device *dev,
 804				enum c_can_bus_error_types error_type)
 805{
 806	unsigned int reg_err_counter;
 807	unsigned int rx_err_passive;
 808	struct c_can_priv *priv = netdev_priv(dev);
 809	struct net_device_stats *stats = &dev->stats;
 810	struct can_frame *cf;
 811	struct sk_buff *skb;
 812	struct can_berr_counter bec;
 813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 814	/* propagate the error condition to the CAN stack */
 815	skb = alloc_can_err_skb(dev, &cf);
 816	if (unlikely(!skb))
 817		return 0;
 818
 819	c_can_get_berr_counter(dev, &bec);
 820	reg_err_counter = priv->read_reg(priv, &priv->regs->err_cnt);
 821	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
 822				ERR_CNT_RP_SHIFT;
 823
 824	switch (error_type) {
 825	case C_CAN_ERROR_WARNING:
 826		/* error warning state */
 827		priv->can.can_stats.error_warning++;
 828		priv->can.state = CAN_STATE_ERROR_WARNING;
 829		cf->can_id |= CAN_ERR_CRTL;
 830		cf->data[1] = (bec.txerr > bec.rxerr) ?
 831			CAN_ERR_CRTL_TX_WARNING :
 832			CAN_ERR_CRTL_RX_WARNING;
 833		cf->data[6] = bec.txerr;
 834		cf->data[7] = bec.rxerr;
 835
 836		break;
 837	case C_CAN_ERROR_PASSIVE:
 838		/* error passive state */
 839		priv->can.can_stats.error_passive++;
 840		priv->can.state = CAN_STATE_ERROR_PASSIVE;
 841		cf->can_id |= CAN_ERR_CRTL;
 842		if (rx_err_passive)
 843			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
 844		if (bec.txerr > 127)
 845			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
 846
 847		cf->data[6] = bec.txerr;
 848		cf->data[7] = bec.rxerr;
 849		break;
 850	case C_CAN_BUS_OFF:
 851		/* bus-off state */
 852		priv->can.state = CAN_STATE_BUS_OFF;
 853		cf->can_id |= CAN_ERR_BUSOFF;
 854		/*
 855		 * disable all interrupts in bus-off mode to ensure that
 856		 * the CPU is not hogged down
 857		 */
 858		c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
 859		can_bus_off(dev);
 860		break;
 861	default:
 862		break;
 863	}
 864
 865	netif_receive_skb(skb);
 866	stats->rx_packets++;
 867	stats->rx_bytes += cf->can_dlc;
 
 868
 869	return 1;
 870}
 871
 872static int c_can_handle_bus_err(struct net_device *dev,
 873				enum c_can_lec_type lec_type)
 874{
 875	struct c_can_priv *priv = netdev_priv(dev);
 876	struct net_device_stats *stats = &dev->stats;
 877	struct can_frame *cf;
 878	struct sk_buff *skb;
 879
 880	/*
 881	 * early exit if no lec update or no error.
 882	 * no lec update means that no CAN bus event has been detected
 883	 * since CPU wrote 0x7 value to status reg.
 884	 */
 885	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
 886		return 0;
 887
 
 
 
 
 
 
 
 888	/* propagate the error condition to the CAN stack */
 889	skb = alloc_can_err_skb(dev, &cf);
 890	if (unlikely(!skb))
 891		return 0;
 892
 893	/*
 894	 * check for 'last error code' which tells us the
 895	 * type of the last error to occur on the CAN bus
 896	 */
 897
 898	/* common for all type of bus errors */
 899	priv->can.can_stats.bus_error++;
 900	stats->rx_errors++;
 901	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
 902	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
 903
 904	switch (lec_type) {
 905	case LEC_STUFF_ERROR:
 906		netdev_dbg(dev, "stuff error\n");
 907		cf->data[2] |= CAN_ERR_PROT_STUFF;
 908		break;
 909	case LEC_FORM_ERROR:
 910		netdev_dbg(dev, "form error\n");
 911		cf->data[2] |= CAN_ERR_PROT_FORM;
 912		break;
 913	case LEC_ACK_ERROR:
 914		netdev_dbg(dev, "ack error\n");
 915		cf->data[2] |= (CAN_ERR_PROT_LOC_ACK |
 916				CAN_ERR_PROT_LOC_ACK_DEL);
 917		break;
 918	case LEC_BIT1_ERROR:
 919		netdev_dbg(dev, "bit1 error\n");
 920		cf->data[2] |= CAN_ERR_PROT_BIT1;
 921		break;
 922	case LEC_BIT0_ERROR:
 923		netdev_dbg(dev, "bit0 error\n");
 924		cf->data[2] |= CAN_ERR_PROT_BIT0;
 925		break;
 926	case LEC_CRC_ERROR:
 927		netdev_dbg(dev, "CRC error\n");
 928		cf->data[2] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
 929				CAN_ERR_PROT_LOC_CRC_DEL);
 930		break;
 931	default:
 932		break;
 933	}
 934
 935	/* set a `lec` value so that we can check for updates later */
 936	priv->write_reg(priv, &priv->regs->status, LEC_UNUSED);
 937
 938	netif_receive_skb(skb);
 939	stats->rx_packets++;
 940	stats->rx_bytes += cf->can_dlc;
 941
 942	return 1;
 943}
 944
 945static int c_can_poll(struct napi_struct *napi, int quota)
 946{
 947	u16 irqstatus;
 948	int lec_type = 0;
 949	int work_done = 0;
 950	struct net_device *dev = napi->dev;
 951	struct c_can_priv *priv = netdev_priv(dev);
 
 
 952
 953	irqstatus = priv->read_reg(priv, &priv->regs->interrupt);
 954	if (!irqstatus)
 955		goto end;
 956
 957	/* status events have the highest priority */
 958	if (irqstatus == STATUS_INTERRUPT) {
 959		priv->current_status = priv->read_reg(priv,
 960					&priv->regs->status);
 961
 962		/* handle Tx/Rx events */
 963		if (priv->current_status & STATUS_TXOK)
 964			priv->write_reg(priv, &priv->regs->status,
 965					priv->current_status & ~STATUS_TXOK);
 966
 967		if (priv->current_status & STATUS_RXOK)
 968			priv->write_reg(priv, &priv->regs->status,
 969					priv->current_status & ~STATUS_RXOK);
 970
 971		/* handle state changes */
 972		if ((priv->current_status & STATUS_EWARN) &&
 973				(!(priv->last_status & STATUS_EWARN))) {
 974			netdev_dbg(dev, "entered error warning state\n");
 975			work_done += c_can_handle_state_change(dev,
 976						C_CAN_ERROR_WARNING);
 977		}
 978		if ((priv->current_status & STATUS_EPASS) &&
 979				(!(priv->last_status & STATUS_EPASS))) {
 980			netdev_dbg(dev, "entered error passive state\n");
 981			work_done += c_can_handle_state_change(dev,
 982						C_CAN_ERROR_PASSIVE);
 983		}
 984		if ((priv->current_status & STATUS_BOFF) &&
 985				(!(priv->last_status & STATUS_BOFF))) {
 986			netdev_dbg(dev, "entered bus off state\n");
 987			work_done += c_can_handle_state_change(dev,
 988						C_CAN_BUS_OFF);
 989		}
 990
 991		/* handle bus recovery events */
 992		if ((!(priv->current_status & STATUS_BOFF)) &&
 993				(priv->last_status & STATUS_BOFF)) {
 994			netdev_dbg(dev, "left bus off state\n");
 995			priv->can.state = CAN_STATE_ERROR_ACTIVE;
 996		}
 997		if ((!(priv->current_status & STATUS_EPASS)) &&
 998				(priv->last_status & STATUS_EPASS)) {
 999			netdev_dbg(dev, "left error passive state\n");
1000			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1001		}
1002
1003		priv->last_status = priv->current_status;
 
 
 
 
1004
1005		/* handle lec errors on the bus */
1006		lec_type = c_can_has_and_handle_berr(priv);
1007		if (lec_type)
1008			work_done += c_can_handle_bus_err(dev, lec_type);
1009	} else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
1010			(irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
1011		/* handle events corresponding to receive message objects */
1012		work_done += c_can_do_rx_poll(dev, (quota - work_done));
1013	} else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
1014			(irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
1015		/* handle events corresponding to transmit message objects */
1016		c_can_do_tx(dev);
1017	}
1018
 
 
 
 
 
 
 
1019end:
1020	if (work_done < quota) {
1021		napi_complete(napi);
1022		/* enable all IRQs */
1023		c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
 
1024	}
1025
1026	return work_done;
1027}
1028
1029static irqreturn_t c_can_isr(int irq, void *dev_id)
1030{
1031	u16 irqstatus;
1032	struct net_device *dev = (struct net_device *)dev_id;
1033	struct c_can_priv *priv = netdev_priv(dev);
1034
1035	irqstatus = priv->read_reg(priv, &priv->regs->interrupt);
1036	if (!irqstatus)
1037		return IRQ_NONE;
1038
1039	/* disable all interrupts and schedule the NAPI */
1040	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1041	napi_schedule(&priv->napi);
1042
1043	return IRQ_HANDLED;
1044}
1045
1046static int c_can_open(struct net_device *dev)
1047{
1048	int err;
1049	struct c_can_priv *priv = netdev_priv(dev);
1050
 
 
 
1051	/* open the can device */
1052	err = open_candev(dev);
1053	if (err) {
1054		netdev_err(dev, "failed to open can device\n");
1055		return err;
1056	}
1057
1058	/* register interrupt handler */
1059	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1060				dev);
1061	if (err < 0) {
1062		netdev_err(dev, "failed to request interrupt\n");
1063		goto exit_irq_fail;
1064	}
1065
1066	/* start the c_can controller */
1067	c_can_start(dev);
 
 
 
 
1068
1069	napi_enable(&priv->napi);
 
 
1070	netif_start_queue(dev);
1071
1072	return 0;
1073
 
 
1074exit_irq_fail:
1075	close_candev(dev);
 
 
 
1076	return err;
1077}
1078
1079static int c_can_close(struct net_device *dev)
1080{
1081	struct c_can_priv *priv = netdev_priv(dev);
1082
1083	netif_stop_queue(dev);
1084	napi_disable(&priv->napi);
1085	c_can_stop(dev);
1086	free_irq(dev->irq, dev);
1087	close_candev(dev);
1088
 
 
 
 
 
1089	return 0;
1090}
1091
1092struct net_device *alloc_c_can_dev(void)
1093{
1094	struct net_device *dev;
1095	struct c_can_priv *priv;
1096
1097	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1098	if (!dev)
1099		return NULL;
1100
1101	priv = netdev_priv(dev);
1102	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1103
1104	priv->dev = dev;
1105	priv->can.bittiming_const = &c_can_bittiming_const;
1106	priv->can.do_set_mode = c_can_set_mode;
1107	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1108	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1109					CAN_CTRLMODE_LISTENONLY |
1110					CAN_CTRLMODE_BERR_REPORTING;
1111
1112	return dev;
1113}
1114EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116void free_c_can_dev(struct net_device *dev)
1117{
 
 
 
1118	free_candev(dev);
1119}
1120EXPORT_SYMBOL_GPL(free_c_can_dev);
1121
1122static const struct net_device_ops c_can_netdev_ops = {
1123	.ndo_open = c_can_open,
1124	.ndo_stop = c_can_close,
1125	.ndo_start_xmit = c_can_start_xmit,
 
1126};
1127
1128int register_c_can_dev(struct net_device *dev)
1129{
 
 
 
 
 
 
 
 
 
 
 
 
1130	dev->flags |= IFF_ECHO;	/* we support local echo */
1131	dev->netdev_ops = &c_can_netdev_ops;
1132
1133	return register_candev(dev);
 
 
 
 
 
 
1134}
1135EXPORT_SYMBOL_GPL(register_c_can_dev);
1136
1137void unregister_c_can_dev(struct net_device *dev)
1138{
1139	struct c_can_priv *priv = netdev_priv(dev);
1140
1141	/* disable all interrupts */
1142	c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
1143
1144	unregister_candev(dev);
 
 
1145}
1146EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1147
1148MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1149MODULE_LICENSE("GPL v2");
1150MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");
v4.6
   1/*
   2 * CAN bus driver for Bosch C_CAN controller
   3 *
   4 * Copyright (C) 2010 ST Microelectronics
   5 * Bhupesh Sharma <bhupesh.sharma@st.com>
   6 *
   7 * Borrowed heavily from the C_CAN driver originally written by:
   8 * Copyright (C) 2007
   9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
  10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
  11 *
  12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
  13 * written by:
  14 * Copyright
  15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
  16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
  17 *
  18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
  19 * Bosch C_CAN user manual can be obtained from:
  20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
  21 * users_manual_c_can.pdf
  22 *
  23 * This file is licensed under the terms of the GNU General Public
  24 * License version 2. This program is licensed "as is" without any
  25 * warranty of any kind, whether express or implied.
  26 */
  27
  28#include <linux/kernel.h>
  29#include <linux/module.h>
  30#include <linux/interrupt.h>
  31#include <linux/delay.h>
  32#include <linux/netdevice.h>
  33#include <linux/if_arp.h>
  34#include <linux/if_ether.h>
  35#include <linux/list.h>
  36#include <linux/io.h>
  37#include <linux/pm_runtime.h>
  38#include <linux/pinctrl/consumer.h>
  39
  40#include <linux/can.h>
  41#include <linux/can/dev.h>
  42#include <linux/can/error.h>
  43#include <linux/can/led.h>
  44
  45#include "c_can.h"
  46
  47/* Number of interface registers */
  48#define IF_ENUM_REG_LEN		11
  49#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
  50
  51/* control extension register D_CAN specific */
  52#define CONTROL_EX_PDR		BIT(8)
  53
  54/* control register */
  55#define CONTROL_TEST		BIT(7)
  56#define CONTROL_CCE		BIT(6)
  57#define CONTROL_DISABLE_AR	BIT(5)
  58#define CONTROL_ENABLE_AR	(0 << 5)
  59#define CONTROL_EIE		BIT(3)
  60#define CONTROL_SIE		BIT(2)
  61#define CONTROL_IE		BIT(1)
  62#define CONTROL_INIT		BIT(0)
  63
  64#define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
  65
  66/* test register */
  67#define TEST_RX			BIT(7)
  68#define TEST_TX1		BIT(6)
  69#define TEST_TX2		BIT(5)
  70#define TEST_LBACK		BIT(4)
  71#define TEST_SILENT		BIT(3)
  72#define TEST_BASIC		BIT(2)
  73
  74/* status register */
  75#define STATUS_PDA		BIT(10)
  76#define STATUS_BOFF		BIT(7)
  77#define STATUS_EWARN		BIT(6)
  78#define STATUS_EPASS		BIT(5)
  79#define STATUS_RXOK		BIT(4)
  80#define STATUS_TXOK		BIT(3)
  81
  82/* error counter register */
  83#define ERR_CNT_TEC_MASK	0xff
  84#define ERR_CNT_TEC_SHIFT	0
  85#define ERR_CNT_REC_SHIFT	8
  86#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
  87#define ERR_CNT_RP_SHIFT	15
  88#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
  89
  90/* bit-timing register */
  91#define BTR_BRP_MASK		0x3f
  92#define BTR_BRP_SHIFT		0
  93#define BTR_SJW_SHIFT		6
  94#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
  95#define BTR_TSEG1_SHIFT		8
  96#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
  97#define BTR_TSEG2_SHIFT		12
  98#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
  99
 100/* brp extension register */
 101#define BRP_EXT_BRPE_MASK	0x0f
 102#define BRP_EXT_BRPE_SHIFT	0
 103
 104/* IFx command request */
 105#define IF_COMR_BUSY		BIT(15)
 106
 107/* IFx command mask */
 108#define IF_COMM_WR		BIT(7)
 109#define IF_COMM_MASK		BIT(6)
 110#define IF_COMM_ARB		BIT(5)
 111#define IF_COMM_CONTROL		BIT(4)
 112#define IF_COMM_CLR_INT_PND	BIT(3)
 113#define IF_COMM_TXRQST		BIT(2)
 114#define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
 115#define IF_COMM_DATAA		BIT(1)
 116#define IF_COMM_DATAB		BIT(0)
 117
 118/* TX buffer setup */
 119#define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
 120				 IF_COMM_TXRQST |		 \
 121				 IF_COMM_DATAA | IF_COMM_DATAB)
 122
 123/* For the low buffers we clear the interrupt bit, but keep newdat */
 124#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
 125				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
 126				 IF_COMM_DATAA | IF_COMM_DATAB)
 127
 128/* For the high buffers we clear the interrupt bit and newdat */
 129#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
 130
 131
 132/* Receive setup of message objects */
 133#define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
 134
 135/* Invalidation of message objects */
 136#define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)
 137
 138/* IFx arbitration */
 139#define IF_ARB_MSGVAL		BIT(31)
 140#define IF_ARB_MSGXTD		BIT(30)
 141#define IF_ARB_TRANSMIT		BIT(29)
 142
 143/* IFx message control */
 144#define IF_MCONT_NEWDAT		BIT(15)
 145#define IF_MCONT_MSGLST		BIT(14)
 
 146#define IF_MCONT_INTPND		BIT(13)
 147#define IF_MCONT_UMASK		BIT(12)
 148#define IF_MCONT_TXIE		BIT(11)
 149#define IF_MCONT_RXIE		BIT(10)
 150#define IF_MCONT_RMTEN		BIT(9)
 151#define IF_MCONT_TXRQST		BIT(8)
 152#define IF_MCONT_EOB		BIT(7)
 153#define IF_MCONT_DLC_MASK	0xf
 154
 155#define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
 156#define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
 157
 158#define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)
 159
 160/*
 161 * Use IF1 for RX and IF2 for TX
 
 
 162 */
 163#define IF_RX			0
 164#define IF_TX			1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165
 166/* minimum timeout for checking BUSY status */
 167#define MIN_TIMEOUT_VALUE	6
 168
 169/* Wait for ~1 sec for INIT bit */
 170#define INIT_WAIT_MS		1000
 171
 172/* napi related */
 173#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
 174
 175/* c_can lec values */
 176enum c_can_lec_type {
 177	LEC_NO_ERROR = 0,
 178	LEC_STUFF_ERROR,
 179	LEC_FORM_ERROR,
 180	LEC_ACK_ERROR,
 181	LEC_BIT1_ERROR,
 182	LEC_BIT0_ERROR,
 183	LEC_CRC_ERROR,
 184	LEC_UNUSED,
 185	LEC_MASK = LEC_UNUSED,
 186};
 187
 188/*
 189 * c_can error types:
 190 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
 191 */
 192enum c_can_bus_error_types {
 193	C_CAN_NO_ERROR = 0,
 194	C_CAN_BUS_OFF,
 195	C_CAN_ERROR_WARNING,
 196	C_CAN_ERROR_PASSIVE,
 197};
 198
 199static const struct can_bittiming_const c_can_bittiming_const = {
 200	.name = KBUILD_MODNAME,
 201	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
 202	.tseg1_max = 16,
 203	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
 204	.tseg2_max = 8,
 205	.sjw_max = 4,
 206	.brp_min = 1,
 207	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
 208	.brp_inc = 1,
 209};
 210
 211static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
 212{
 213	if (priv->device)
 214		pm_runtime_enable(priv->device);
 215}
 216
 217static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
 218{
 219	if (priv->device)
 220		pm_runtime_disable(priv->device);
 221}
 222
 223static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
 224{
 225	if (priv->device)
 226		pm_runtime_get_sync(priv->device);
 227}
 228
 229static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
 230{
 231	if (priv->device)
 232		pm_runtime_put_sync(priv->device);
 233}
 234
 235static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
 236{
 237	if (priv->raminit)
 238		priv->raminit(priv, enable);
 
 239}
 240
 241static void c_can_irq_control(struct c_can_priv *priv, bool enable)
 
 242{
 243	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
 
 244
 245	if (enable)
 246		ctrl |= CONTROL_IRQMSK;
 
 
 247
 248	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
 249}
 250
 251static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
 252{
 253	struct c_can_priv *priv = netdev_priv(dev);
 254	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
 255
 256	priv->write_reg32(priv, reg, (cmd << 16) | obj);
 257
 258	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
 259		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
 260			return;
 
 261		udelay(1);
 262	}
 263	netdev_err(dev, "Updating object timed out\n");
 264
 265}
 
 266
 267static inline void c_can_object_get(struct net_device *dev, int iface,
 268				    u32 obj, u32 cmd)
 269{
 270	c_can_obj_update(dev, iface, cmd, obj);
 271}
 272
 273static inline void c_can_object_put(struct net_device *dev, int iface,
 274				    u32 obj, u32 cmd)
 275{
 276	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
 277}
 278
 279/*
 280 * Note: According to documentation clearing TXIE while MSGVAL is set
 281 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
 282 * load significantly.
 283 */
 284static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
 285{
 286	struct c_can_priv *priv = netdev_priv(dev);
 
 
 287
 288	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
 289	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
 290}
 291
 292static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
 
 293{
 294	struct c_can_priv *priv = netdev_priv(dev);
 295
 296	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
 297	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
 298	c_can_inval_tx_object(dev, iface, obj);
 
 
 
 
 
 
 
 
 
 
 299}
 300
 301static void c_can_setup_tx_object(struct net_device *dev, int iface,
 302				  struct can_frame *frame, int idx)
 303{
 
 
 
 304	struct c_can_priv *priv = netdev_priv(dev);
 305	u16 ctrl = IF_MCONT_TX | frame->can_dlc;
 306	bool rtr = frame->can_id & CAN_RTR_FLAG;
 307	u32 arb = IF_ARB_MSGVAL;
 308	int i;
 309
 310	if (frame->can_id & CAN_EFF_FLAG) {
 311		arb |= frame->can_id & CAN_EFF_MASK;
 312		arb |= IF_ARB_MSGXTD;
 313	} else {
 314		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
 
 
 
 
 
 
 
 
 
 
 
 315	}
 316
 317	if (!rtr)
 318		arb |= IF_ARB_TRANSMIT;
 
 
 
 
 319
 320	/*
 321	 * If we change the DIR bit, we need to invalidate the buffer
 322	 * first, i.e. clear the MSGVAL flag in the arbiter.
 323	 */
 324	if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
 325		u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
 326
 327		c_can_inval_msg_object(dev, iface, obj);
 328		change_bit(idx, &priv->tx_dir);
 329	}
 330
 331	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
 332
 333	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
 
 
 
 
 
 334
 335	for (i = 0; i < frame->can_dlc; i += 2) {
 336		priv->write_reg(priv, C_CAN_IFACE(DATA1_REG, iface) + i / 2,
 337				frame->data[i] | (frame->data[i + 1] << 8));
 
 
 338	}
 339}
 340
 341static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
 342						       int iface)
 
 343{
 344	int i;
 345
 346	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
 347		c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
 
 
 348}
 349
 350static int c_can_handle_lost_msg_obj(struct net_device *dev,
 351				     int iface, int objno, u32 ctrl)
 352{
 
 353	struct net_device_stats *stats = &dev->stats;
 354	struct c_can_priv *priv = netdev_priv(dev);
 355	struct can_frame *frame;
 356	struct sk_buff *skb;
 357
 358	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
 359	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
 360	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
 
 
 
 361
 362	stats->rx_errors++;
 363	stats->rx_over_errors++;
 364
 365	/* create an error msg */
 366	skb = alloc_can_err_skb(dev, &frame);
 367	if (unlikely(!skb))
 368		return 0;
 369
 370	frame->can_id |= CAN_ERR_CRTL;
 371	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
 
 
 372
 373	netif_receive_skb(skb);
 374	return 1;
 375}
 376
 377static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
 378{
 
 
 
 
 379	struct net_device_stats *stats = &dev->stats;
 380	struct c_can_priv *priv = netdev_priv(dev);
 381	struct can_frame *frame;
 382	struct sk_buff *skb;
 383	u32 arb, data;
 384
 385	skb = alloc_can_skb(dev, &frame);
 386	if (!skb) {
 387		stats->rx_dropped++;
 388		return -ENOMEM;
 389	}
 390
 391	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
 392
 393	arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
 
 
 394
 395	if (arb & IF_ARB_MSGXTD)
 396		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
 397	else
 398		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
 399
 400	if (arb & IF_ARB_TRANSMIT) {
 401		frame->can_id |= CAN_RTR_FLAG;
 402	} else {
 403		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
 404
 405		for (i = 0; i < frame->can_dlc; i += 2, dreg ++) {
 406			data = priv->read_reg(priv, dreg);
 407			frame->data[i] = data;
 408			frame->data[i + 1] = data >> 8;
 409		}
 410	}
 411
 
 
 412	stats->rx_packets++;
 413	stats->rx_bytes += frame->can_dlc;
 414
 415	netif_receive_skb(skb);
 416	return 0;
 417}
 418
 419static void c_can_setup_receive_object(struct net_device *dev, int iface,
 420				       u32 obj, u32 mask, u32 id, u32 mcont)
 
 421{
 422	struct c_can_priv *priv = netdev_priv(dev);
 423
 424	mask |= BIT(29);
 425	priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
 
 
 426
 427	id |= IF_ARB_MSGVAL;
 428	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
 
 
 429
 430	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
 431	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432}
 433
 434static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
 435				    struct net_device *dev)
 436{
 
 
 437	struct can_frame *frame = (struct can_frame *)skb->data;
 438	struct c_can_priv *priv = netdev_priv(dev);
 439	u32 idx, obj;
 440
 441	if (can_dropped_invalid_skb(dev, skb))
 442		return NETDEV_TX_OK;
 
 
 
 
 
 
 
 443	/*
 444	 * This is not a FIFO. C/D_CAN sends out the buffers
 445	 * prioritized. The lowest buffer number wins.
 446	 */
 447	idx = fls(atomic_read(&priv->tx_active));
 448	obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
 449
 450	/* If this is the last buffer, stop the xmit queue */
 451	if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
 452		netif_stop_queue(dev);
 453	/*
 454	 * Store the message in the interface so we can call
 455	 * can_put_echo_skb(). We must do this before we enable
 456	 * transmit as we might race against do_tx().
 457	 */
 458	c_can_setup_tx_object(dev, IF_TX, frame, idx);
 459	priv->dlc[idx] = frame->can_dlc;
 460	can_put_echo_skb(skb, dev, idx);
 461
 462	/* Update the active bits */
 463	atomic_add((1 << idx), &priv->tx_active);
 464	/* Start transmission */
 465	c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
 466
 467	return NETDEV_TX_OK;
 468}
 469
 470static int c_can_wait_for_ctrl_init(struct net_device *dev,
 471				    struct c_can_priv *priv, u32 init)
 472{
 473	int retry = 0;
 474
 475	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
 476		udelay(10);
 477		if (retry++ > 1000) {
 478			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
 479			return -EIO;
 480		}
 481	}
 482	return 0;
 483}
 484
 485static int c_can_set_bittiming(struct net_device *dev)
 486{
 487	unsigned int reg_btr, reg_brpe, ctrl_save;
 488	u8 brp, brpe, sjw, tseg1, tseg2;
 489	u32 ten_bit_brp;
 490	struct c_can_priv *priv = netdev_priv(dev);
 491	const struct can_bittiming *bt = &priv->can.bittiming;
 492	int res;
 493
 494	/* c_can provides a 6-bit brp and 4-bit brpe fields */
 495	ten_bit_brp = bt->brp - 1;
 496	brp = ten_bit_brp & BTR_BRP_MASK;
 497	brpe = ten_bit_brp >> 6;
 498
 499	sjw = bt->sjw - 1;
 500	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
 501	tseg2 = bt->phase_seg2 - 1;
 502	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
 503			(tseg2 << BTR_TSEG2_SHIFT);
 504	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
 505
 506	netdev_info(dev,
 507		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
 508
 509	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
 510	ctrl_save &= ~CONTROL_INIT;
 511	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
 512	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
 513	if (res)
 514		return res;
 515
 516	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
 517	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
 518	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
 519
 520	return c_can_wait_for_ctrl_init(dev, priv, 0);
 521}
 522
 523/*
 524 * Configure C_CAN message objects for Tx and Rx purposes:
 525 * C_CAN provides a total of 32 message objects that can be configured
 526 * either for Tx or Rx purposes. Here the first 16 message objects are used as
 527 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
 528 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
 529 * See user guide document for further details on configuring message
 530 * objects.
 531 */
 532static void c_can_configure_msg_objects(struct net_device *dev)
 533{
 534	int i;
 535
 536	/* first invalidate all message objects */
 537	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
 538		c_can_inval_msg_object(dev, IF_RX, i);
 539
 540	/* setup receive message objects */
 541	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
 542		c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
 
 543
 544	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
 545				   IF_MCONT_RCV_EOB);
 546}
 547
 548/*
 549 * Configure C_CAN chip:
 550 * - enable/disable auto-retransmission
 551 * - set operating mode
 552 * - configure message objects
 553 */
 554static int c_can_chip_config(struct net_device *dev)
 555{
 556	struct c_can_priv *priv = netdev_priv(dev);
 557
 558	/* enable automatic retransmission */
 559	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
 
 560
 561	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
 562	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
 563		/* loopback + silent mode : useful for hot self-test */
 564		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 565		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
 
 
 566	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 567		/* loopback mode : useful for self-test function */
 568		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 569		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
 
 570	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 571		/* silent mode : bus-monitoring mode */
 572		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 573		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
 574	}
 
 
 
 
 575
 576	/* configure message objects */
 577	c_can_configure_msg_objects(dev);
 578
 579	/* set a `lec` value so that we can check for updates later */
 580	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
 581
 582	/* Clear all internal status */
 583	atomic_set(&priv->tx_active, 0);
 584	priv->rxmasked = 0;
 585	priv->tx_dir = 0;
 586
 587	/* set bittiming params */
 588	return c_can_set_bittiming(dev);
 589}
 590
 591static int c_can_start(struct net_device *dev)
 592{
 593	struct c_can_priv *priv = netdev_priv(dev);
 594	int err;
 595	struct pinctrl *p;
 596
 597	/* basic c_can configuration */
 598	err = c_can_chip_config(dev);
 599	if (err)
 600		return err;
 601
 602	/* Setup the command for new messages */
 603	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
 604		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
 605
 606	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 607
 608	/* Attempt to use "active" if available else use "default" */
 609	p = pinctrl_get_select(priv->device, "active");
 610	if (!IS_ERR(p))
 611		pinctrl_put(p);
 612	else
 613		pinctrl_pm_select_default_state(priv->device);
 614
 615	return 0;
 
 616}
 617
 618static void c_can_stop(struct net_device *dev)
 619{
 620	struct c_can_priv *priv = netdev_priv(dev);
 621
 622	c_can_irq_control(priv, false);
 
 623
 624	/* put ctrl to init on stop to end ongoing transmission */
 625	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
 626
 627	/* deactivate pins */
 628	pinctrl_pm_select_sleep_state(dev->dev.parent);
 629	priv->can.state = CAN_STATE_STOPPED;
 630}
 631
 632static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
 633{
 634	struct c_can_priv *priv = netdev_priv(dev);
 635	int err;
 636
 637	switch (mode) {
 638	case CAN_MODE_START:
 639		err = c_can_start(dev);
 640		if (err)
 641			return err;
 642		netif_wake_queue(dev);
 643		c_can_irq_control(priv, true);
 644		break;
 645	default:
 646		return -EOPNOTSUPP;
 647	}
 648
 649	return 0;
 650}
 651
 652static int __c_can_get_berr_counter(const struct net_device *dev,
 653				    struct can_berr_counter *bec)
 654{
 655	unsigned int reg_err_counter;
 656	struct c_can_priv *priv = netdev_priv(dev);
 657
 658	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
 659	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
 660				ERR_CNT_REC_SHIFT;
 661	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
 662
 663	return 0;
 664}
 665
 666static int c_can_get_berr_counter(const struct net_device *dev,
 667				  struct can_berr_counter *bec)
 668{
 669	struct c_can_priv *priv = netdev_priv(dev);
 670	int err;
 671
 672	c_can_pm_runtime_get_sync(priv);
 673	err = __c_can_get_berr_counter(dev, bec);
 674	c_can_pm_runtime_put_sync(priv);
 675
 676	return err;
 677}
 678
 679static void c_can_do_tx(struct net_device *dev)
 680{
 
 
 681	struct c_can_priv *priv = netdev_priv(dev);
 682	struct net_device_stats *stats = &dev->stats;
 683	u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
 684
 685	clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
 686
 687	while ((idx = ffs(pend))) {
 688		idx--;
 689		pend &= ~(1 << idx);
 690		obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
 691		c_can_inval_tx_object(dev, IF_RX, obj);
 692		can_get_echo_skb(dev, idx);
 693		bytes += priv->dlc[idx];
 694		pkts++;
 
 
 695	}
 696
 697	/* Clear the bits in the tx_active mask */
 698	atomic_sub(clr, &priv->tx_active);
 699
 700	if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
 701		netif_wake_queue(dev);
 702
 703	if (pkts) {
 704		stats->tx_bytes += bytes;
 705		stats->tx_packets += pkts;
 706		can_led_event(dev, CAN_LED_EVENT_TX);
 707	}
 708}
 709
 710/*
 711 * If we have a gap in the pending bits, that means we either
 712 * raced with the hardware or failed to readout all upper
 713 * objects in the last run due to quota limit.
 714 */
 715static u32 c_can_adjust_pending(u32 pend)
 716{
 717	u32 weight, lasts;
 718
 719	if (pend == RECEIVE_OBJECT_BITS)
 720		return pend;
 721
 722	/*
 723	 * If the last set bit is larger than the number of pending
 724	 * bits we have a gap.
 725	 */
 726	weight = hweight32(pend);
 727	lasts = fls(pend);
 728
 729	/* If the bits are linear, nothing to do */
 730	if (lasts == weight)
 731		return pend;
 732
 733	/*
 734	 * Find the first set bit after the gap. We walk backwards
 735	 * from the last set bit.
 736	 */
 737	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
 738
 739	return pend & ~((1 << lasts) - 1);
 740}
 741
 742static inline void c_can_rx_object_get(struct net_device *dev,
 743				       struct c_can_priv *priv, u32 obj)
 744{
 745		c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
 746}
 747
 748static inline void c_can_rx_finalize(struct net_device *dev,
 749				     struct c_can_priv *priv, u32 obj)
 750{
 751	if (priv->type != BOSCH_D_CAN)
 752		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
 753}
 754
 755static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
 756			      u32 pend, int quota)
 757{
 758	u32 pkts = 0, ctrl, obj;
 759
 760	while ((obj = ffs(pend)) && quota > 0) {
 761		pend &= ~BIT(obj - 1);
 762
 763		c_can_rx_object_get(dev, priv, obj);
 764		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
 765
 766		if (ctrl & IF_MCONT_MSGLST) {
 767			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
 768
 769			pkts += n;
 770			quota -= n;
 771			continue;
 772		}
 773
 774		/*
 775		 * This really should not happen, but this covers some
 776		 * odd HW behaviour. Do not remove that unless you
 777		 * want to brick your machine.
 778		 */
 779		if (!(ctrl & IF_MCONT_NEWDAT))
 780			continue;
 781
 782		/* read the data from the message object */
 783		c_can_read_msg_object(dev, IF_RX, ctrl);
 784
 785		c_can_rx_finalize(dev, priv, obj);
 786
 787		pkts++;
 788		quota--;
 789	}
 790
 791	return pkts;
 792}
 793
 794static inline u32 c_can_get_pending(struct c_can_priv *priv)
 795{
 796	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
 797
 798	return pend;
 799}
 800
 801/*
 802 * theory of operation:
 803 *
 804 * c_can core saves a received CAN message into the first free message
 805 * object it finds free (starting with the lowest). Bits NEWDAT and
 806 * INTPND are set for this message object indicating that a new message
 807 * has arrived. To work-around this issue, we keep two groups of message
 808 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
 809 *
 810 * We clear the newdat bit right away.
 811 *
 812 * This can result in packet reordering when the readout is slow.
 
 
 
 
 
 
 
 
 
 813 */
 814static int c_can_do_rx_poll(struct net_device *dev, int quota)
 815{
 
 
 816	struct c_can_priv *priv = netdev_priv(dev);
 817	u32 pkts = 0, pend = 0, toread, n;
 818
 819	/*
 820	 * It is faster to read only one 16bit register. This is only possible
 821	 * for a maximum number of 16 objects.
 822	 */
 823	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
 824			"Implementation does not support more message objects than 16");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 825
 826	while (quota > 0) {
 827		if (!pend) {
 828			pend = c_can_get_pending(priv);
 829			if (!pend)
 830				break;
 831			/*
 832			 * If the pending field has a gap, handle the
 833			 * bits above the gap first.
 834			 */
 835			toread = c_can_adjust_pending(pend);
 836		} else {
 837			toread = pend;
 838		}
 839		/* Remove the bits from pend */
 840		pend &= ~toread;
 841		/* Read the objects */
 842		n = c_can_read_objects(dev, priv, toread, quota);
 843		pkts += n;
 844		quota -= n;
 845	}
 846
 847	if (pkts)
 848		can_led_event(dev, CAN_LED_EVENT_RX);
 849
 850	return pkts;
 
 
 
 851}
 852
 853static int c_can_handle_state_change(struct net_device *dev,
 854				enum c_can_bus_error_types error_type)
 855{
 856	unsigned int reg_err_counter;
 857	unsigned int rx_err_passive;
 858	struct c_can_priv *priv = netdev_priv(dev);
 859	struct net_device_stats *stats = &dev->stats;
 860	struct can_frame *cf;
 861	struct sk_buff *skb;
 862	struct can_berr_counter bec;
 863
 864	switch (error_type) {
 865	case C_CAN_ERROR_WARNING:
 866		/* error warning state */
 867		priv->can.can_stats.error_warning++;
 868		priv->can.state = CAN_STATE_ERROR_WARNING;
 869		break;
 870	case C_CAN_ERROR_PASSIVE:
 871		/* error passive state */
 872		priv->can.can_stats.error_passive++;
 873		priv->can.state = CAN_STATE_ERROR_PASSIVE;
 874		break;
 875	case C_CAN_BUS_OFF:
 876		/* bus-off state */
 877		priv->can.state = CAN_STATE_BUS_OFF;
 878		priv->can.can_stats.bus_off++;
 879		break;
 880	default:
 881		break;
 882	}
 883
 884	/* propagate the error condition to the CAN stack */
 885	skb = alloc_can_err_skb(dev, &cf);
 886	if (unlikely(!skb))
 887		return 0;
 888
 889	__c_can_get_berr_counter(dev, &bec);
 890	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
 891	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
 892				ERR_CNT_RP_SHIFT;
 893
 894	switch (error_type) {
 895	case C_CAN_ERROR_WARNING:
 896		/* error warning state */
 
 
 897		cf->can_id |= CAN_ERR_CRTL;
 898		cf->data[1] = (bec.txerr > bec.rxerr) ?
 899			CAN_ERR_CRTL_TX_WARNING :
 900			CAN_ERR_CRTL_RX_WARNING;
 901		cf->data[6] = bec.txerr;
 902		cf->data[7] = bec.rxerr;
 903
 904		break;
 905	case C_CAN_ERROR_PASSIVE:
 906		/* error passive state */
 
 
 907		cf->can_id |= CAN_ERR_CRTL;
 908		if (rx_err_passive)
 909			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
 910		if (bec.txerr > 127)
 911			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
 912
 913		cf->data[6] = bec.txerr;
 914		cf->data[7] = bec.rxerr;
 915		break;
 916	case C_CAN_BUS_OFF:
 917		/* bus-off state */
 
 918		cf->can_id |= CAN_ERR_BUSOFF;
 
 
 
 
 
 919		can_bus_off(dev);
 920		break;
 921	default:
 922		break;
 923	}
 924
 
 925	stats->rx_packets++;
 926	stats->rx_bytes += cf->can_dlc;
 927	netif_receive_skb(skb);
 928
 929	return 1;
 930}
 931
 932static int c_can_handle_bus_err(struct net_device *dev,
 933				enum c_can_lec_type lec_type)
 934{
 935	struct c_can_priv *priv = netdev_priv(dev);
 936	struct net_device_stats *stats = &dev->stats;
 937	struct can_frame *cf;
 938	struct sk_buff *skb;
 939
 940	/*
 941	 * early exit if no lec update or no error.
 942	 * no lec update means that no CAN bus event has been detected
 943	 * since CPU wrote 0x7 value to status reg.
 944	 */
 945	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
 946		return 0;
 947
 948	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
 949		return 0;
 950
 951	/* common for all type of bus errors */
 952	priv->can.can_stats.bus_error++;
 953	stats->rx_errors++;
 954
 955	/* propagate the error condition to the CAN stack */
 956	skb = alloc_can_err_skb(dev, &cf);
 957	if (unlikely(!skb))
 958		return 0;
 959
 960	/*
 961	 * check for 'last error code' which tells us the
 962	 * type of the last error to occur on the CAN bus
 963	 */
 
 
 
 
 964	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
 
 965
 966	switch (lec_type) {
 967	case LEC_STUFF_ERROR:
 968		netdev_dbg(dev, "stuff error\n");
 969		cf->data[2] |= CAN_ERR_PROT_STUFF;
 970		break;
 971	case LEC_FORM_ERROR:
 972		netdev_dbg(dev, "form error\n");
 973		cf->data[2] |= CAN_ERR_PROT_FORM;
 974		break;
 975	case LEC_ACK_ERROR:
 976		netdev_dbg(dev, "ack error\n");
 977		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
 
 978		break;
 979	case LEC_BIT1_ERROR:
 980		netdev_dbg(dev, "bit1 error\n");
 981		cf->data[2] |= CAN_ERR_PROT_BIT1;
 982		break;
 983	case LEC_BIT0_ERROR:
 984		netdev_dbg(dev, "bit0 error\n");
 985		cf->data[2] |= CAN_ERR_PROT_BIT0;
 986		break;
 987	case LEC_CRC_ERROR:
 988		netdev_dbg(dev, "CRC error\n");
 989		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
 
 990		break;
 991	default:
 992		break;
 993	}
 994
 
 
 
 
 995	stats->rx_packets++;
 996	stats->rx_bytes += cf->can_dlc;
 997	netif_receive_skb(skb);
 998	return 1;
 999}
1000
1001static int c_can_poll(struct napi_struct *napi, int quota)
1002{
 
 
 
1003	struct net_device *dev = napi->dev;
1004	struct c_can_priv *priv = netdev_priv(dev);
1005	u16 curr, last = priv->last_status;
1006	int work_done = 0;
1007
1008	priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1009	/* Ack status on C_CAN. D_CAN is self clearing */
1010	if (priv->type != BOSCH_D_CAN)
1011		priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1012
1013	/* handle state changes */
1014	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1015		netdev_dbg(dev, "entered error warning state\n");
1016		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1017	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1018
1019	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1020		netdev_dbg(dev, "entered error passive state\n");
1021		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1022	}
 
 
 
 
 
 
 
1023
1024	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1025		netdev_dbg(dev, "entered bus off state\n");
1026		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1027		goto end;
1028	}
1029
1030	/* handle bus recovery events */
1031	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1032		netdev_dbg(dev, "left bus off state\n");
1033		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1034	}
1035	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1036		netdev_dbg(dev, "left error passive state\n");
1037		priv->can.state = CAN_STATE_ERROR_ACTIVE;
 
 
 
 
1038	}
1039
1040	/* handle lec errors on the bus */
1041	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1042
1043	/* Handle Tx/Rx events. We do this unconditionally */
1044	work_done += c_can_do_rx_poll(dev, (quota - work_done));
1045	c_can_do_tx(dev);
1046
1047end:
1048	if (work_done < quota) {
1049		napi_complete(napi);
1050		/* enable all IRQs if we are not in bus off state */
1051		if (priv->can.state != CAN_STATE_BUS_OFF)
1052			c_can_irq_control(priv, true);
1053	}
1054
1055	return work_done;
1056}
1057
1058static irqreturn_t c_can_isr(int irq, void *dev_id)
1059{
 
1060	struct net_device *dev = (struct net_device *)dev_id;
1061	struct c_can_priv *priv = netdev_priv(dev);
1062
1063	if (!priv->read_reg(priv, C_CAN_INT_REG))
 
1064		return IRQ_NONE;
1065
1066	/* disable all interrupts and schedule the NAPI */
1067	c_can_irq_control(priv, false);
1068	napi_schedule(&priv->napi);
1069
1070	return IRQ_HANDLED;
1071}
1072
1073static int c_can_open(struct net_device *dev)
1074{
1075	int err;
1076	struct c_can_priv *priv = netdev_priv(dev);
1077
1078	c_can_pm_runtime_get_sync(priv);
1079	c_can_reset_ram(priv, true);
1080
1081	/* open the can device */
1082	err = open_candev(dev);
1083	if (err) {
1084		netdev_err(dev, "failed to open can device\n");
1085		goto exit_open_fail;
1086	}
1087
1088	/* register interrupt handler */
1089	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1090				dev);
1091	if (err < 0) {
1092		netdev_err(dev, "failed to request interrupt\n");
1093		goto exit_irq_fail;
1094	}
1095
1096	/* start the c_can controller */
1097	err = c_can_start(dev);
1098	if (err)
1099		goto exit_start_fail;
1100
1101	can_led_event(dev, CAN_LED_EVENT_OPEN);
1102
1103	napi_enable(&priv->napi);
1104	/* enable status change, error and module interrupts */
1105	c_can_irq_control(priv, true);
1106	netif_start_queue(dev);
1107
1108	return 0;
1109
1110exit_start_fail:
1111	free_irq(dev->irq, dev);
1112exit_irq_fail:
1113	close_candev(dev);
1114exit_open_fail:
1115	c_can_reset_ram(priv, false);
1116	c_can_pm_runtime_put_sync(priv);
1117	return err;
1118}
1119
1120static int c_can_close(struct net_device *dev)
1121{
1122	struct c_can_priv *priv = netdev_priv(dev);
1123
1124	netif_stop_queue(dev);
1125	napi_disable(&priv->napi);
1126	c_can_stop(dev);
1127	free_irq(dev->irq, dev);
1128	close_candev(dev);
1129
1130	c_can_reset_ram(priv, false);
1131	c_can_pm_runtime_put_sync(priv);
1132
1133	can_led_event(dev, CAN_LED_EVENT_STOP);
1134
1135	return 0;
1136}
1137
1138struct net_device *alloc_c_can_dev(void)
1139{
1140	struct net_device *dev;
1141	struct c_can_priv *priv;
1142
1143	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1144	if (!dev)
1145		return NULL;
1146
1147	priv = netdev_priv(dev);
1148	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1149
1150	priv->dev = dev;
1151	priv->can.bittiming_const = &c_can_bittiming_const;
1152	priv->can.do_set_mode = c_can_set_mode;
1153	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1154	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1155					CAN_CTRLMODE_LISTENONLY |
1156					CAN_CTRLMODE_BERR_REPORTING;
1157
1158	return dev;
1159}
1160EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1161
1162#ifdef CONFIG_PM
1163int c_can_power_down(struct net_device *dev)
1164{
1165	u32 val;
1166	unsigned long time_out;
1167	struct c_can_priv *priv = netdev_priv(dev);
1168
1169	if (!(dev->flags & IFF_UP))
1170		return 0;
1171
1172	WARN_ON(priv->type != BOSCH_D_CAN);
1173
1174	/* set PDR value so the device goes to power down mode */
1175	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1176	val |= CONTROL_EX_PDR;
1177	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1178
1179	/* Wait for the PDA bit to get set */
1180	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1181	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1182				time_after(time_out, jiffies))
1183		cpu_relax();
1184
1185	if (time_after(jiffies, time_out))
1186		return -ETIMEDOUT;
1187
1188	c_can_stop(dev);
1189
1190	c_can_reset_ram(priv, false);
1191	c_can_pm_runtime_put_sync(priv);
1192
1193	return 0;
1194}
1195EXPORT_SYMBOL_GPL(c_can_power_down);
1196
1197int c_can_power_up(struct net_device *dev)
1198{
1199	u32 val;
1200	unsigned long time_out;
1201	struct c_can_priv *priv = netdev_priv(dev);
1202	int ret;
1203
1204	if (!(dev->flags & IFF_UP))
1205		return 0;
1206
1207	WARN_ON(priv->type != BOSCH_D_CAN);
1208
1209	c_can_pm_runtime_get_sync(priv);
1210	c_can_reset_ram(priv, true);
1211
1212	/* Clear PDR and INIT bits */
1213	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1214	val &= ~CONTROL_EX_PDR;
1215	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1216	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1217	val &= ~CONTROL_INIT;
1218	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1219
1220	/* Wait for the PDA bit to get clear */
1221	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1222	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1223				time_after(time_out, jiffies))
1224		cpu_relax();
1225
1226	if (time_after(jiffies, time_out))
1227		return -ETIMEDOUT;
1228
1229	ret = c_can_start(dev);
1230	if (!ret)
1231		c_can_irq_control(priv, true);
1232
1233	return ret;
1234}
1235EXPORT_SYMBOL_GPL(c_can_power_up);
1236#endif
1237
1238void free_c_can_dev(struct net_device *dev)
1239{
1240	struct c_can_priv *priv = netdev_priv(dev);
1241
1242	netif_napi_del(&priv->napi);
1243	free_candev(dev);
1244}
1245EXPORT_SYMBOL_GPL(free_c_can_dev);
1246
1247static const struct net_device_ops c_can_netdev_ops = {
1248	.ndo_open = c_can_open,
1249	.ndo_stop = c_can_close,
1250	.ndo_start_xmit = c_can_start_xmit,
1251	.ndo_change_mtu = can_change_mtu,
1252};
1253
1254int register_c_can_dev(struct net_device *dev)
1255{
1256	struct c_can_priv *priv = netdev_priv(dev);
1257	int err;
1258
1259	/* Deactivate pins to prevent DRA7 DCAN IP from being
1260	 * stuck in transition when module is disabled.
1261	 * Pins are activated in c_can_start() and deactivated
1262	 * in c_can_stop()
1263	 */
1264	pinctrl_pm_select_sleep_state(dev->dev.parent);
1265
1266	c_can_pm_runtime_enable(priv);
1267
1268	dev->flags |= IFF_ECHO;	/* we support local echo */
1269	dev->netdev_ops = &c_can_netdev_ops;
1270
1271	err = register_candev(dev);
1272	if (err)
1273		c_can_pm_runtime_disable(priv);
1274	else
1275		devm_can_led_init(dev);
1276
1277	return err;
1278}
1279EXPORT_SYMBOL_GPL(register_c_can_dev);
1280
1281void unregister_c_can_dev(struct net_device *dev)
1282{
1283	struct c_can_priv *priv = netdev_priv(dev);
1284
 
 
 
1285	unregister_candev(dev);
1286
1287	c_can_pm_runtime_disable(priv);
1288}
1289EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1290
1291MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1292MODULE_LICENSE("GPL v2");
1293MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");