Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Intel MIC Platform Software Stack (MPSS)
   3 *
   4 * Copyright(c) 2014 Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License, version 2, as
   8 * published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but
  11 * WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13 * General Public License for more details.
  14 *
  15 * Intel SCIF driver.
  16 *
  17 */
  18#include "../bus/scif_bus.h"
  19#include "scif_peer_bus.h"
  20#include "scif_main.h"
  21#include "scif_nodeqp.h"
  22#include "scif_map.h"
  23
  24/*
  25 ************************************************************************
  26 * SCIF node Queue Pair (QP) setup flow:
  27 *
  28 * 1) SCIF driver gets probed with a scif_hw_dev via the scif_hw_bus
  29 * 2) scif_setup_qp(..) allocates the local qp and calls
  30 *	scif_setup_qp_connect(..) which allocates and maps the local
  31 *	buffer for the inbound QP
  32 * 3) The local node updates the device page with the DMA address of the QP
  33 * 4) A delayed work is scheduled (qp_dwork) which periodically reads if
  34 *	the peer node has updated its QP DMA address
  35 * 5) Once a valid non zero address is found in the QP DMA address field
  36 *	in the device page, the local node maps the remote node's QP,
  37 *	updates its outbound QP and sends a SCIF_INIT message to the peer
  38 * 6) The SCIF_INIT message is received by the peer node QP interrupt bottom
  39 *	half handler by calling scif_init(..)
  40 * 7) scif_init(..) registers a new SCIF peer node by calling
  41 *	scif_peer_register_device(..) which signifies the addition of a new
  42 *	SCIF node
  43 * 8) On the mgmt node, P2P network setup/teardown is initiated if all the
  44 *	remote nodes are online via scif_p2p_setup(..)
  45 * 9) For P2P setup, the host maps the remote nodes' aperture and memory
  46 *	bars and sends a SCIF_NODE_ADD message to both nodes
  47 * 10) As part of scif_nodeadd, both nodes set up their local inbound
  48 *	QPs and send a SCIF_NODE_ADD_ACK to the mgmt node
  49 * 11) As part of scif_node_add_ack(..) the mgmt node forwards the
  50 *	SCIF_NODE_ADD_ACK to the remote nodes
  51 * 12) As part of scif_node_add_ack(..) the remote nodes update their
  52 *	outbound QPs, make sure they can access memory on the remote node
  53 *	and then add a new SCIF peer node by calling
  54 *	scif_peer_register_device(..) which signifies the addition of a new
  55 *	SCIF node.
  56 * 13) The SCIF network is now established across all nodes.
  57 *
  58 ************************************************************************
  59 * SCIF node QP teardown flow (initiated by non mgmt node):
  60 *
  61 * 1) SCIF driver gets a remove callback with a scif_hw_dev via the scif_hw_bus
  62 * 2) The device page QP DMA address field is updated with 0x0
  63 * 3) A non mgmt node now cleans up all local data structures and sends a
  64 *	SCIF_EXIT message to the peer and waits for a SCIF_EXIT_ACK
  65 * 4) As part of scif_exit(..) handling scif_disconnect_node(..) is called
  66 * 5) scif_disconnect_node(..) sends a SCIF_NODE_REMOVE message to all the
  67 *	peers and waits for a SCIF_NODE_REMOVE_ACK
  68 * 6) As part of scif_node_remove(..) a remote node unregisters the peer
  69 *	node from the SCIF network and sends a SCIF_NODE_REMOVE_ACK
  70 * 7) When the mgmt node has received all the SCIF_NODE_REMOVE_ACKs
  71 *	it sends itself a node remove message whose handling cleans up local
  72 *	data structures and unregisters the peer node from the SCIF network
  73 * 8) The mgmt node sends a SCIF_EXIT_ACK
  74 * 9) Upon receipt of the SCIF_EXIT_ACK the node initiating the teardown
  75 *	completes the SCIF remove routine
  76 * 10) The SCIF network is now torn down for the node initiating the
  77 *	teardown sequence
  78 *
  79 ************************************************************************
  80 * SCIF node QP teardown flow (initiated by mgmt node):
  81 *
  82 * 1) SCIF driver gets a remove callback with a scif_hw_dev via the scif_hw_bus
  83 * 2) The device page QP DMA address field is updated with 0x0
  84 * 3) The mgmt node calls scif_disconnect_node(..)
  85 * 4) scif_disconnect_node(..) sends a SCIF_NODE_REMOVE message to all the peers
  86 *	and waits for a SCIF_NODE_REMOVE_ACK
  87 * 5) As part of scif_node_remove(..) a remote node unregisters the peer
  88 *	node from the SCIF network and sends a SCIF_NODE_REMOVE_ACK
  89 * 6) When the mgmt node has received all the SCIF_NODE_REMOVE_ACKs
  90 *	it unregisters the peer node from the SCIF network
  91 * 7) The mgmt node sends a SCIF_EXIT message and waits for a SCIF_EXIT_ACK.
  92 * 8) A non mgmt node upon receipt of a SCIF_EXIT message calls scif_stop(..)
  93 *	which would clean up local data structures for all SCIF nodes and
  94 *	then send a SCIF_EXIT_ACK back to the mgmt node
  95 * 9) Upon receipt of the SCIF_EXIT_ACK the the mgmt node sends itself a node
  96 *	remove message whose handling cleans up local data structures and
  97 *	destroys any P2P mappings.
  98 * 10) The SCIF hardware device for which a remove callback was received is now
  99 *	disconnected from the SCIF network.
 100 */
 101/*
 102 * Initializes "local" data structures for the QP. Allocates the QP
 103 * ring buffer (rb) and initializes the "in bound" queue.
 104 */
 105int scif_setup_qp_connect(struct scif_qp *qp, dma_addr_t *qp_offset,
 106			  int local_size, struct scif_dev *scifdev)
 107{
 108	void *local_q = qp->inbound_q.rb_base;
 109	int err = 0;
 110	u32 tmp_rd = 0;
 111
 112	spin_lock_init(&qp->send_lock);
 113	spin_lock_init(&qp->recv_lock);
 114
 115	/* Allocate rb only if not already allocated */
 116	if (!local_q) {
 117		local_q = kzalloc(local_size, GFP_KERNEL);
 118		if (!local_q) {
 119			err = -ENOMEM;
 120			return err;
 121		}
 122	}
 123
 124	err = scif_map_single(&qp->local_buf, local_q, scifdev, local_size);
 125	if (err)
 126		goto kfree;
 127	/*
 128	 * To setup the inbound_q, the buffer lives locally, the read pointer
 129	 * is remote and the write pointer is local.
 130	 */
 131	scif_rb_init(&qp->inbound_q,
 132		     &tmp_rd,
 133		     &qp->local_write,
 134		     local_q, get_count_order(local_size));
 135	/*
 136	 * The read pointer is NULL initially and it is unsafe to use the ring
 137	 * buffer til this changes!
 138	 */
 139	qp->inbound_q.read_ptr = NULL;
 140	err = scif_map_single(qp_offset, qp,
 141			      scifdev, sizeof(struct scif_qp));
 142	if (err)
 143		goto unmap;
 144	qp->local_qp = *qp_offset;
 145	return err;
 146unmap:
 147	scif_unmap_single(qp->local_buf, scifdev, local_size);
 148	qp->local_buf = 0;
 149kfree:
 150	kfree(local_q);
 151	return err;
 152}
 153
 154/* When the other side has already done it's allocation, this is called */
 155int scif_setup_qp_accept(struct scif_qp *qp, dma_addr_t *qp_offset,
 156			 dma_addr_t phys, int local_size,
 157			 struct scif_dev *scifdev)
 158{
 159	void *local_q;
 160	void *remote_q;
 161	struct scif_qp *remote_qp;
 162	int remote_size;
 163	int err = 0;
 164
 165	spin_lock_init(&qp->send_lock);
 166	spin_lock_init(&qp->recv_lock);
 167	/* Start by figuring out where we need to point */
 168	remote_qp = scif_ioremap(phys, sizeof(struct scif_qp), scifdev);
 169	if (!remote_qp)
 170		return -EIO;
 171	qp->remote_qp = remote_qp;
 172	if (qp->remote_qp->magic != SCIFEP_MAGIC) {
 173		err = -EIO;
 174		goto iounmap;
 175	}
 176	qp->remote_buf = remote_qp->local_buf;
 177	remote_size = qp->remote_qp->inbound_q.size;
 178	remote_q = scif_ioremap(qp->remote_buf, remote_size, scifdev);
 179	if (!remote_q) {
 180		err = -EIO;
 181		goto iounmap;
 182	}
 183	qp->remote_qp->local_write = 0;
 184	/*
 185	 * To setup the outbound_q, the buffer lives in remote memory,
 186	 * the read pointer is local, the write pointer is remote
 187	 */
 188	scif_rb_init(&qp->outbound_q,
 189		     &qp->local_read,
 190		     &qp->remote_qp->local_write,
 191		     remote_q,
 192		     get_count_order(remote_size));
 193	local_q = kzalloc(local_size, GFP_KERNEL);
 194	if (!local_q) {
 195		err = -ENOMEM;
 196		goto iounmap_1;
 197	}
 198	err = scif_map_single(&qp->local_buf, local_q, scifdev, local_size);
 199	if (err)
 200		goto kfree;
 201	qp->remote_qp->local_read = 0;
 202	/*
 203	 * To setup the inbound_q, the buffer lives locally, the read pointer
 204	 * is remote and the write pointer is local
 205	 */
 206	scif_rb_init(&qp->inbound_q,
 207		     &qp->remote_qp->local_read,
 208		     &qp->local_write,
 209		     local_q, get_count_order(local_size));
 210	err = scif_map_single(qp_offset, qp, scifdev,
 211			      sizeof(struct scif_qp));
 212	if (err)
 213		goto unmap;
 214	qp->local_qp = *qp_offset;
 215	return err;
 216unmap:
 217	scif_unmap_single(qp->local_buf, scifdev, local_size);
 218	qp->local_buf = 0;
 219kfree:
 220	kfree(local_q);
 221iounmap_1:
 222	scif_iounmap(remote_q, remote_size, scifdev);
 223	qp->outbound_q.rb_base = NULL;
 224iounmap:
 225	scif_iounmap(qp->remote_qp, sizeof(struct scif_qp), scifdev);
 226	qp->remote_qp = NULL;
 227	return err;
 228}
 229
 230int scif_setup_qp_connect_response(struct scif_dev *scifdev,
 231				   struct scif_qp *qp, u64 payload)
 232{
 233	int err = 0;
 234	void *r_buf;
 235	int remote_size;
 236	phys_addr_t tmp_phys;
 237
 238	qp->remote_qp = scif_ioremap(payload, sizeof(struct scif_qp), scifdev);
 239
 240	if (!qp->remote_qp) {
 241		err = -ENOMEM;
 242		goto error;
 243	}
 244
 245	if (qp->remote_qp->magic != SCIFEP_MAGIC) {
 246		dev_err(&scifdev->sdev->dev,
 247			"SCIFEP_MAGIC mismatch between self %d remote %d\n",
 248			scif_dev[scif_info.nodeid].node, scifdev->node);
 249		err = -ENODEV;
 250		goto error;
 251	}
 252
 253	tmp_phys = qp->remote_qp->local_buf;
 254	remote_size = qp->remote_qp->inbound_q.size;
 255	r_buf = scif_ioremap(tmp_phys, remote_size, scifdev);
 256
 257	if (!r_buf)
 258		return -EIO;
 259
 260	qp->local_read = 0;
 261	scif_rb_init(&qp->outbound_q,
 262		     &qp->local_read,
 263		     &qp->remote_qp->local_write,
 264		     r_buf,
 265		     get_count_order(remote_size));
 266	/*
 267	 * Because the node QP may already be processing an INIT message, set
 268	 * the read pointer so the cached read offset isn't lost
 269	 */
 270	qp->remote_qp->local_read = qp->inbound_q.current_read_offset;
 271	/*
 272	 * resetup the inbound_q now that we know where the
 273	 * inbound_read really is.
 274	 */
 275	scif_rb_init(&qp->inbound_q,
 276		     &qp->remote_qp->local_read,
 277		     &qp->local_write,
 278		     qp->inbound_q.rb_base,
 279		     get_count_order(qp->inbound_q.size));
 280error:
 281	return err;
 282}
 283
 284static __always_inline void
 285scif_send_msg_intr(struct scif_dev *scifdev)
 286{
 287	struct scif_hw_dev *sdev = scifdev->sdev;
 288
 289	if (scifdev_is_p2p(scifdev))
 290		sdev->hw_ops->send_p2p_intr(sdev, scifdev->rdb, &scifdev->mmio);
 291	else
 292		sdev->hw_ops->send_intr(sdev, scifdev->rdb);
 293}
 294
 295int scif_qp_response(phys_addr_t phys, struct scif_dev *scifdev)
 296{
 297	int err = 0;
 298	struct scifmsg msg;
 299
 300	err = scif_setup_qp_connect_response(scifdev, scifdev->qpairs, phys);
 301	if (!err) {
 302		/*
 303		 * Now that everything is setup and mapped, we're ready
 304		 * to tell the peer about our queue's location
 305		 */
 306		msg.uop = SCIF_INIT;
 307		msg.dst.node = scifdev->node;
 308		err = scif_nodeqp_send(scifdev, &msg);
 309	}
 310	return err;
 311}
 312
 313void scif_send_exit(struct scif_dev *scifdev)
 314{
 315	struct scifmsg msg;
 316	int ret;
 317
 318	scifdev->exit = OP_IN_PROGRESS;
 319	msg.uop = SCIF_EXIT;
 320	msg.src.node = scif_info.nodeid;
 321	msg.dst.node = scifdev->node;
 322	ret = scif_nodeqp_send(scifdev, &msg);
 323	if (ret)
 324		goto done;
 325	/* Wait for a SCIF_EXIT_ACK message */
 326	wait_event_timeout(scif_info.exitwq, scifdev->exit == OP_COMPLETED,
 327			   SCIF_NODE_ALIVE_TIMEOUT);
 328done:
 329	scifdev->exit = OP_IDLE;
 330}
 331
 332int scif_setup_qp(struct scif_dev *scifdev)
 333{
 334	int err = 0;
 335	int local_size;
 336	struct scif_qp *qp;
 337
 338	local_size = SCIF_NODE_QP_SIZE;
 339
 340	qp = kzalloc(sizeof(*qp), GFP_KERNEL);
 341	if (!qp) {
 342		err = -ENOMEM;
 343		return err;
 344	}
 345	qp->magic = SCIFEP_MAGIC;
 346	scifdev->qpairs = qp;
 347	err = scif_setup_qp_connect(qp, &scifdev->qp_dma_addr,
 348				    local_size, scifdev);
 349	if (err)
 350		goto free_qp;
 351	/*
 352	 * We're as setup as we can be. The inbound_q is setup, w/o a usable
 353	 * outbound q.  When we get a message, the read_ptr will be updated,
 354	 * and we will pull the message.
 355	 */
 356	return err;
 357free_qp:
 358	kfree(scifdev->qpairs);
 359	scifdev->qpairs = NULL;
 360	return err;
 361}
 362
 363static void scif_p2p_freesg(struct scatterlist *sg)
 364{
 365	kfree(sg);
 366}
 367
 368static struct scatterlist *
 369scif_p2p_setsg(phys_addr_t pa, int page_size, int page_cnt)
 370{
 371	struct scatterlist *sg;
 372	struct page *page;
 373	int i;
 374
 375	sg = kcalloc(page_cnt, sizeof(struct scatterlist), GFP_KERNEL);
 376	if (!sg)
 377		return NULL;
 378	sg_init_table(sg, page_cnt);
 379	for (i = 0; i < page_cnt; i++) {
 380		page = pfn_to_page(pa >> PAGE_SHIFT);
 381		sg_set_page(&sg[i], page, page_size, 0);
 382		pa += page_size;
 383	}
 384	return sg;
 385}
 386
 387/* Init p2p mappings required to access peerdev from scifdev */
 388static struct scif_p2p_info *
 389scif_init_p2p_info(struct scif_dev *scifdev, struct scif_dev *peerdev)
 390{
 391	struct scif_p2p_info *p2p;
 392	int num_mmio_pages, num_aper_pages, sg_page_shift, err, num_aper_chunks;
 393	struct scif_hw_dev *psdev = peerdev->sdev;
 394	struct scif_hw_dev *sdev = scifdev->sdev;
 395
 396	num_mmio_pages = psdev->mmio->len >> PAGE_SHIFT;
 397	num_aper_pages = psdev->aper->len >> PAGE_SHIFT;
 398
 399	p2p = kzalloc(sizeof(*p2p), GFP_KERNEL);
 400	if (!p2p)
 401		return NULL;
 402	p2p->ppi_sg[SCIF_PPI_MMIO] = scif_p2p_setsg(psdev->mmio->pa,
 403						    PAGE_SIZE, num_mmio_pages);
 404	if (!p2p->ppi_sg[SCIF_PPI_MMIO])
 405		goto free_p2p;
 406	p2p->sg_nentries[SCIF_PPI_MMIO] = num_mmio_pages;
 407	sg_page_shift = get_order(min(psdev->aper->len, (u64)(1 << 30)));
 408	num_aper_chunks = num_aper_pages >> (sg_page_shift - PAGE_SHIFT);
 409	p2p->ppi_sg[SCIF_PPI_APER] = scif_p2p_setsg(psdev->aper->pa,
 410						    1 << sg_page_shift,
 411						    num_aper_chunks);
 412	p2p->sg_nentries[SCIF_PPI_APER] = num_aper_chunks;
 413	err = dma_map_sg(&sdev->dev, p2p->ppi_sg[SCIF_PPI_MMIO],
 414			 num_mmio_pages, PCI_DMA_BIDIRECTIONAL);
 415	if (err != num_mmio_pages)
 416		goto scif_p2p_free;
 417	err = dma_map_sg(&sdev->dev, p2p->ppi_sg[SCIF_PPI_APER],
 418			 num_aper_chunks, PCI_DMA_BIDIRECTIONAL);
 419	if (err != num_aper_chunks)
 420		goto dma_unmap;
 421	p2p->ppi_da[SCIF_PPI_MMIO] = sg_dma_address(p2p->ppi_sg[SCIF_PPI_MMIO]);
 422	p2p->ppi_da[SCIF_PPI_APER] = sg_dma_address(p2p->ppi_sg[SCIF_PPI_APER]);
 423	p2p->ppi_len[SCIF_PPI_MMIO] = num_mmio_pages;
 424	p2p->ppi_len[SCIF_PPI_APER] = num_aper_pages;
 425	p2p->ppi_peer_id = peerdev->node;
 426	return p2p;
 427dma_unmap:
 428	dma_unmap_sg(&sdev->dev, p2p->ppi_sg[SCIF_PPI_MMIO],
 429		     p2p->sg_nentries[SCIF_PPI_MMIO], DMA_BIDIRECTIONAL);
 430scif_p2p_free:
 431	scif_p2p_freesg(p2p->ppi_sg[SCIF_PPI_MMIO]);
 432	scif_p2p_freesg(p2p->ppi_sg[SCIF_PPI_APER]);
 433free_p2p:
 434	kfree(p2p);
 435	return NULL;
 436}
 437
 438/* Uninitialize and release resources from a p2p mapping */
 439static void scif_deinit_p2p_info(struct scif_dev *scifdev,
 440				 struct scif_p2p_info *p2p)
 441{
 442	struct scif_hw_dev *sdev = scifdev->sdev;
 443
 444	dma_unmap_sg(&sdev->dev, p2p->ppi_sg[SCIF_PPI_MMIO],
 445		     p2p->sg_nentries[SCIF_PPI_MMIO], DMA_BIDIRECTIONAL);
 446	dma_unmap_sg(&sdev->dev, p2p->ppi_sg[SCIF_PPI_APER],
 447		     p2p->sg_nentries[SCIF_PPI_APER], DMA_BIDIRECTIONAL);
 448	scif_p2p_freesg(p2p->ppi_sg[SCIF_PPI_MMIO]);
 449	scif_p2p_freesg(p2p->ppi_sg[SCIF_PPI_APER]);
 450	kfree(p2p);
 451}
 452
 453/**
 454 * scif_node_connect: Respond to SCIF_NODE_CONNECT interrupt message
 455 * @dst: Destination node
 456 *
 457 * Connect the src and dst node by setting up the p2p connection
 458 * between them. Management node here acts like a proxy.
 459 */
 460static void scif_node_connect(struct scif_dev *scifdev, int dst)
 461{
 462	struct scif_dev *dev_j = scifdev;
 463	struct scif_dev *dev_i = NULL;
 464	struct scif_p2p_info *p2p_ij = NULL;    /* bus addr for j from i */
 465	struct scif_p2p_info *p2p_ji = NULL;    /* bus addr for i from j */
 466	struct scif_p2p_info *p2p;
 467	struct list_head *pos, *tmp;
 468	struct scifmsg msg;
 469	int err;
 470	u64 tmppayload;
 471
 472	if (dst < 1 || dst > scif_info.maxid)
 473		return;
 474
 475	dev_i = &scif_dev[dst];
 476
 477	if (!_scifdev_alive(dev_i))
 478		return;
 479	/*
 480	 * If the p2p connection is already setup or in the process of setting
 481	 * up then just ignore this request. The requested node will get
 482	 * informed by SCIF_NODE_ADD_ACK or SCIF_NODE_ADD_NACK
 483	 */
 484	if (!list_empty(&dev_i->p2p)) {
 485		list_for_each_safe(pos, tmp, &dev_i->p2p) {
 486			p2p = list_entry(pos, struct scif_p2p_info, ppi_list);
 487			if (p2p->ppi_peer_id == dev_j->node)
 488				return;
 489		}
 490	}
 491	p2p_ij = scif_init_p2p_info(dev_i, dev_j);
 492	if (!p2p_ij)
 493		return;
 494	p2p_ji = scif_init_p2p_info(dev_j, dev_i);
 495	if (!p2p_ji) {
 496		scif_deinit_p2p_info(dev_i, p2p_ij);
 497		return;
 498	}
 499	list_add_tail(&p2p_ij->ppi_list, &dev_i->p2p);
 500	list_add_tail(&p2p_ji->ppi_list, &dev_j->p2p);
 501
 502	/*
 503	 * Send a SCIF_NODE_ADD to dev_i, pass it its bus address
 504	 * as seen from dev_j
 505	 */
 506	msg.uop = SCIF_NODE_ADD;
 507	msg.src.node = dev_j->node;
 508	msg.dst.node = dev_i->node;
 509
 510	msg.payload[0] = p2p_ji->ppi_da[SCIF_PPI_APER];
 511	msg.payload[1] = p2p_ij->ppi_da[SCIF_PPI_MMIO];
 512	msg.payload[2] = p2p_ij->ppi_da[SCIF_PPI_APER];
 513	msg.payload[3] = p2p_ij->ppi_len[SCIF_PPI_APER] << PAGE_SHIFT;
 514
 515	err = scif_nodeqp_send(dev_i,  &msg);
 516	if (err) {
 517		dev_err(&scifdev->sdev->dev,
 518			"%s %d error %d\n", __func__, __LINE__, err);
 519		return;
 520	}
 521
 522	/* Same as above but to dev_j */
 523	msg.uop = SCIF_NODE_ADD;
 524	msg.src.node = dev_i->node;
 525	msg.dst.node = dev_j->node;
 526
 527	tmppayload = msg.payload[0];
 528	msg.payload[0] = msg.payload[2];
 529	msg.payload[2] = tmppayload;
 530	msg.payload[1] = p2p_ji->ppi_da[SCIF_PPI_MMIO];
 531	msg.payload[3] = p2p_ji->ppi_len[SCIF_PPI_APER] << PAGE_SHIFT;
 532
 533	scif_nodeqp_send(dev_j, &msg);
 534}
 535
 536static void scif_p2p_setup(void)
 537{
 538	int i, j;
 539
 540	if (!scif_info.p2p_enable)
 541		return;
 542
 543	for (i = 1; i <= scif_info.maxid; i++)
 544		if (!_scifdev_alive(&scif_dev[i]))
 545			return;
 546
 547	for (i = 1; i <= scif_info.maxid; i++) {
 548		for (j = 1; j <= scif_info.maxid; j++) {
 549			struct scif_dev *scifdev = &scif_dev[i];
 550
 551			if (i == j)
 552				continue;
 553			scif_node_connect(scifdev, j);
 554		}
 555	}
 556}
 557
 558static char *message_types[] = {"BAD",
 559				"INIT",
 560				"EXIT",
 561				"SCIF_EXIT_ACK",
 562				"SCIF_NODE_ADD",
 563				"SCIF_NODE_ADD_ACK",
 564				"SCIF_NODE_ADD_NACK",
 565				"REMOVE_NODE",
 566				"REMOVE_NODE_ACK",
 567				"CNCT_REQ",
 568				"CNCT_GNT",
 569				"CNCT_GNTACK",
 570				"CNCT_GNTNACK",
 571				"CNCT_REJ",
 572				"DISCNCT",
 573				"DISCNT_ACK",
 574				"CLIENT_SENT",
 575				"CLIENT_RCVD",
 576				"SCIF_GET_NODE_INFO",
 577				"REGISTER",
 578				"REGISTER_ACK",
 579				"REGISTER_NACK",
 580				"UNREGISTER",
 581				"UNREGISTER_ACK",
 582				"UNREGISTER_NACK",
 583				"ALLOC_REQ",
 584				"ALLOC_GNT",
 585				"ALLOC_REJ",
 586				"FREE_PHYS",
 587				"FREE_VIRT",
 588				"MUNMAP",
 589				"MARK",
 590				"MARK_ACK",
 591				"MARK_NACK",
 592				"WAIT",
 593				"WAIT_ACK",
 594				"WAIT_NACK",
 595				"SIGNAL_LOCAL",
 596				"SIGNAL_REMOTE",
 597				"SIG_ACK",
 598				"SIG_NACK"};
 599
 600static void
 601scif_display_message(struct scif_dev *scifdev, struct scifmsg *msg,
 602		     const char *label)
 603{
 604	if (!scif_info.en_msg_log)
 605		return;
 606	if (msg->uop > SCIF_MAX_MSG) {
 607		dev_err(&scifdev->sdev->dev,
 608			"%s: unknown msg type %d\n", label, msg->uop);
 609		return;
 610	}
 611	dev_info(&scifdev->sdev->dev,
 612		 "%s: msg type %s, src %d:%d, dest %d:%d payload 0x%llx:0x%llx:0x%llx:0x%llx\n",
 613		 label, message_types[msg->uop], msg->src.node, msg->src.port,
 614		 msg->dst.node, msg->dst.port, msg->payload[0], msg->payload[1],
 615		 msg->payload[2], msg->payload[3]);
 616}
 617
 618int _scif_nodeqp_send(struct scif_dev *scifdev, struct scifmsg *msg)
 619{
 620	struct scif_qp *qp = scifdev->qpairs;
 621	int err = -ENOMEM, loop_cnt = 0;
 622
 623	scif_display_message(scifdev, msg, "Sent");
 624	if (!qp) {
 625		err = -EINVAL;
 626		goto error;
 627	}
 628	spin_lock(&qp->send_lock);
 629
 630	while ((err = scif_rb_write(&qp->outbound_q,
 631				    msg, sizeof(struct scifmsg)))) {
 632		mdelay(1);
 633#define SCIF_NODEQP_SEND_TO_MSEC (3 * 1000)
 634		if (loop_cnt++ > (SCIF_NODEQP_SEND_TO_MSEC)) {
 635			err = -ENODEV;
 636			break;
 637		}
 638	}
 639	if (!err)
 640		scif_rb_commit(&qp->outbound_q);
 641	spin_unlock(&qp->send_lock);
 642	if (!err) {
 643		if (scifdev_self(scifdev))
 644			/*
 645			 * For loopback we need to emulate an interrupt by
 646			 * queuing work for the queue handling real node
 647			 * Qp interrupts.
 648			 */
 649			queue_work(scifdev->intr_wq, &scifdev->intr_bh);
 650		else
 651			scif_send_msg_intr(scifdev);
 652	}
 653error:
 654	if (err)
 655		dev_dbg(&scifdev->sdev->dev,
 656			"%s %d error %d uop %d\n",
 657			 __func__, __LINE__, err, msg->uop);
 658	return err;
 659}
 660
 661/**
 662 * scif_nodeqp_send - Send a message on the node queue pair
 663 * @scifdev: Scif Device.
 664 * @msg: The message to be sent.
 665 */
 666int scif_nodeqp_send(struct scif_dev *scifdev, struct scifmsg *msg)
 667{
 668	int err;
 669	struct device *spdev = NULL;
 670
 671	if (msg->uop > SCIF_EXIT_ACK) {
 672		/* Dont send messages once the exit flow has begun */
 673		if (OP_IDLE != scifdev->exit)
 674			return -ENODEV;
 675		spdev = scif_get_peer_dev(scifdev);
 676		if (IS_ERR(spdev)) {
 677			err = PTR_ERR(spdev);
 678			return err;
 679		}
 680	}
 681	err = _scif_nodeqp_send(scifdev, msg);
 682	if (msg->uop > SCIF_EXIT_ACK)
 683		scif_put_peer_dev(spdev);
 684	return err;
 685}
 686
 687/*
 688 * scif_misc_handler:
 689 *
 690 * Work queue handler for servicing miscellaneous SCIF tasks.
 691 * Examples include:
 692 * 1) Remote fence requests.
 693 * 2) Destruction of temporary registered windows
 694 *    created during scif_vreadfrom()/scif_vwriteto().
 695 * 3) Cleanup of zombie endpoints.
 696 */
 697void scif_misc_handler(struct work_struct *work)
 698{
 699	scif_rma_handle_remote_fences();
 700	scif_rma_destroy_windows();
 701	scif_rma_destroy_tcw_invalid();
 702	scif_cleanup_zombie_epd();
 703}
 704
 705/**
 706 * scif_init() - Respond to SCIF_INIT interrupt message
 707 * @scifdev:    Remote SCIF device node
 708 * @msg:        Interrupt message
 709 */
 710static __always_inline void
 711scif_init(struct scif_dev *scifdev, struct scifmsg *msg)
 712{
 713	/*
 714	 * Allow the thread waiting for device page updates for the peer QP DMA
 715	 * address to complete initializing the inbound_q.
 716	 */
 717	flush_delayed_work(&scifdev->qp_dwork);
 718
 719	scif_peer_register_device(scifdev);
 720
 721	if (scif_is_mgmt_node()) {
 722		mutex_lock(&scif_info.conflock);
 723		scif_p2p_setup();
 724		mutex_unlock(&scif_info.conflock);
 725	}
 726}
 727
 728/**
 729 * scif_exit() - Respond to SCIF_EXIT interrupt message
 730 * @scifdev:    Remote SCIF device node
 731 * @msg:        Interrupt message
 732 *
 733 * This function stops the SCIF interface for the node which sent
 734 * the SCIF_EXIT message and starts waiting for that node to
 735 * resetup the queue pair again.
 736 */
 737static __always_inline void
 738scif_exit(struct scif_dev *scifdev, struct scifmsg *unused)
 739{
 740	scifdev->exit_ack_pending = true;
 741	if (scif_is_mgmt_node())
 742		scif_disconnect_node(scifdev->node, false);
 743	else
 744		scif_stop(scifdev);
 745	schedule_delayed_work(&scifdev->qp_dwork,
 746			      msecs_to_jiffies(1000));
 747}
 748
 749/**
 750 * scif_exitack() - Respond to SCIF_EXIT_ACK interrupt message
 751 * @scifdev:    Remote SCIF device node
 752 * @msg:        Interrupt message
 753 *
 754 */
 755static __always_inline void
 756scif_exit_ack(struct scif_dev *scifdev, struct scifmsg *unused)
 757{
 758	scifdev->exit = OP_COMPLETED;
 759	wake_up(&scif_info.exitwq);
 760}
 761
 762/**
 763 * scif_node_add() - Respond to SCIF_NODE_ADD interrupt message
 764 * @scifdev:    Remote SCIF device node
 765 * @msg:        Interrupt message
 766 *
 767 * When the mgmt node driver has finished initializing a MIC node queue pair it
 768 * marks the node as online. It then looks for all currently online MIC cards
 769 * and send a SCIF_NODE_ADD message to identify the ID of the new card for
 770 * peer to peer initialization
 771 *
 772 * The local node allocates its incoming queue and sends its address in the
 773 * SCIF_NODE_ADD_ACK message back to the mgmt node, the mgmt node "reflects"
 774 * this message to the new node
 775 */
 776static __always_inline void
 777scif_node_add(struct scif_dev *scifdev, struct scifmsg *msg)
 778{
 779	struct scif_dev *newdev;
 780	dma_addr_t qp_offset;
 781	int qp_connect;
 782	struct scif_hw_dev *sdev;
 783
 784	dev_dbg(&scifdev->sdev->dev,
 785		"Scifdev %d:%d received NODE_ADD msg for node %d\n",
 786		scifdev->node, msg->dst.node, msg->src.node);
 787	dev_dbg(&scifdev->sdev->dev,
 788		"Remote address for this node's aperture %llx\n",
 789		msg->payload[0]);
 790	newdev = &scif_dev[msg->src.node];
 791	newdev->node = msg->src.node;
 792	newdev->sdev = scif_dev[SCIF_MGMT_NODE].sdev;
 793	sdev = newdev->sdev;
 794
 795	if (scif_setup_intr_wq(newdev)) {
 796		dev_err(&scifdev->sdev->dev,
 797			"failed to setup interrupts for %d\n", msg->src.node);
 798		goto interrupt_setup_error;
 799	}
 800	newdev->mmio.va = ioremap_nocache(msg->payload[1], sdev->mmio->len);
 801	if (!newdev->mmio.va) {
 802		dev_err(&scifdev->sdev->dev,
 803			"failed to map mmio for %d\n", msg->src.node);
 804		goto mmio_map_error;
 805	}
 806	newdev->qpairs = kzalloc(sizeof(*newdev->qpairs), GFP_KERNEL);
 807	if (!newdev->qpairs)
 808		goto qp_alloc_error;
 809	/*
 810	 * Set the base address of the remote node's memory since it gets
 811	 * added to qp_offset
 812	 */
 813	newdev->base_addr = msg->payload[0];
 814
 815	qp_connect = scif_setup_qp_connect(newdev->qpairs, &qp_offset,
 816					   SCIF_NODE_QP_SIZE, newdev);
 817	if (qp_connect) {
 818		dev_err(&scifdev->sdev->dev,
 819			"failed to setup qp_connect %d\n", qp_connect);
 820		goto qp_connect_error;
 821	}
 822
 823	newdev->db = sdev->hw_ops->next_db(sdev);
 824	newdev->cookie = sdev->hw_ops->request_irq(sdev, scif_intr_handler,
 825						   "SCIF_INTR", newdev,
 826						   newdev->db);
 827	if (IS_ERR(newdev->cookie))
 828		goto qp_connect_error;
 829	newdev->qpairs->magic = SCIFEP_MAGIC;
 830	newdev->qpairs->qp_state = SCIF_QP_OFFLINE;
 831
 832	msg->uop = SCIF_NODE_ADD_ACK;
 833	msg->dst.node = msg->src.node;
 834	msg->src.node = scif_info.nodeid;
 835	msg->payload[0] = qp_offset;
 836	msg->payload[2] = newdev->db;
 837	scif_nodeqp_send(&scif_dev[SCIF_MGMT_NODE], msg);
 838	return;
 839qp_connect_error:
 840	kfree(newdev->qpairs);
 841	newdev->qpairs = NULL;
 842qp_alloc_error:
 843	iounmap(newdev->mmio.va);
 844	newdev->mmio.va = NULL;
 845mmio_map_error:
 846interrupt_setup_error:
 847	dev_err(&scifdev->sdev->dev,
 848		"node add failed for node %d\n", msg->src.node);
 849	msg->uop = SCIF_NODE_ADD_NACK;
 850	msg->dst.node = msg->src.node;
 851	msg->src.node = scif_info.nodeid;
 852	scif_nodeqp_send(&scif_dev[SCIF_MGMT_NODE], msg);
 853}
 854
 855void scif_poll_qp_state(struct work_struct *work)
 856{
 857#define SCIF_NODE_QP_RETRY 100
 858#define SCIF_NODE_QP_TIMEOUT 100
 859	struct scif_dev *peerdev = container_of(work, struct scif_dev,
 860							p2p_dwork.work);
 861	struct scif_qp *qp = &peerdev->qpairs[0];
 862
 863	if (qp->qp_state != SCIF_QP_ONLINE ||
 864	    qp->remote_qp->qp_state != SCIF_QP_ONLINE) {
 865		if (peerdev->p2p_retry++ == SCIF_NODE_QP_RETRY) {
 866			dev_err(&peerdev->sdev->dev,
 867				"Warning: QP check timeout with state %d\n",
 868				qp->qp_state);
 869			goto timeout;
 870		}
 871		schedule_delayed_work(&peerdev->p2p_dwork,
 872				      msecs_to_jiffies(SCIF_NODE_QP_TIMEOUT));
 873		return;
 874	}
 875	return;
 876timeout:
 877	dev_err(&peerdev->sdev->dev,
 878		"%s %d remote node %d offline,  state = 0x%x\n",
 879		__func__, __LINE__, peerdev->node, qp->qp_state);
 880	qp->remote_qp->qp_state = SCIF_QP_OFFLINE;
 881	scif_peer_unregister_device(peerdev);
 882	scif_cleanup_scifdev(peerdev);
 883}
 884
 885/**
 886 * scif_node_add_ack() - Respond to SCIF_NODE_ADD_ACK interrupt message
 887 * @scifdev:    Remote SCIF device node
 888 * @msg:        Interrupt message
 889 *
 890 * After a MIC node receives the SCIF_NODE_ADD_ACK message it send this
 891 * message to the mgmt node to confirm the sequence is finished.
 892 *
 893 */
 894static __always_inline void
 895scif_node_add_ack(struct scif_dev *scifdev, struct scifmsg *msg)
 896{
 897	struct scif_dev *peerdev;
 898	struct scif_qp *qp;
 899	struct scif_dev *dst_dev = &scif_dev[msg->dst.node];
 900
 901	dev_dbg(&scifdev->sdev->dev,
 902		"Scifdev %d received SCIF_NODE_ADD_ACK msg src %d dst %d\n",
 903		scifdev->node, msg->src.node, msg->dst.node);
 904	dev_dbg(&scifdev->sdev->dev,
 905		"payload %llx %llx %llx %llx\n", msg->payload[0],
 906		msg->payload[1], msg->payload[2], msg->payload[3]);
 907	if (scif_is_mgmt_node()) {
 908		/*
 909		 * the lock serializes with scif_qp_response_ack. The mgmt node
 910		 * is forwarding the NODE_ADD_ACK message from src to dst we
 911		 * need to make sure that the dst has already received a
 912		 * NODE_ADD for src and setup its end of the qp to dst
 913		 */
 914		mutex_lock(&scif_info.conflock);
 915		msg->payload[1] = scif_info.maxid;
 916		scif_nodeqp_send(dst_dev, msg);
 917		mutex_unlock(&scif_info.conflock);
 918		return;
 919	}
 920	peerdev = &scif_dev[msg->src.node];
 921	peerdev->sdev = scif_dev[SCIF_MGMT_NODE].sdev;
 922	peerdev->node = msg->src.node;
 923
 924	qp = &peerdev->qpairs[0];
 925
 926	if ((scif_setup_qp_connect_response(peerdev, &peerdev->qpairs[0],
 927					    msg->payload[0])))
 928		goto local_error;
 929	peerdev->rdb = msg->payload[2];
 930	qp->remote_qp->qp_state = SCIF_QP_ONLINE;
 931
 932	scif_peer_register_device(peerdev);
 933
 934	schedule_delayed_work(&peerdev->p2p_dwork, 0);
 935	return;
 936local_error:
 937	scif_cleanup_scifdev(peerdev);
 938}
 939
 940/**
 941 * scif_node_add_nack: Respond to SCIF_NODE_ADD_NACK interrupt message
 942 * @msg:        Interrupt message
 943 *
 944 * SCIF_NODE_ADD failed, so inform the waiting wq.
 945 */
 946static __always_inline void
 947scif_node_add_nack(struct scif_dev *scifdev, struct scifmsg *msg)
 948{
 949	if (scif_is_mgmt_node()) {
 950		struct scif_dev *dst_dev = &scif_dev[msg->dst.node];
 951
 952		dev_dbg(&scifdev->sdev->dev,
 953			"SCIF_NODE_ADD_NACK received from %d\n", scifdev->node);
 954		scif_nodeqp_send(dst_dev, msg);
 955	}
 956}
 957
 958/*
 959 * scif_node_remove: Handle SCIF_NODE_REMOVE message
 960 * @msg: Interrupt message
 961 *
 962 * Handle node removal.
 963 */
 964static __always_inline void
 965scif_node_remove(struct scif_dev *scifdev, struct scifmsg *msg)
 966{
 967	int node = msg->payload[0];
 968	struct scif_dev *scdev = &scif_dev[node];
 969
 970	scdev->node_remove_ack_pending = true;
 971	scif_handle_remove_node(node);
 972}
 973
 974/*
 975 * scif_node_remove_ack: Handle SCIF_NODE_REMOVE_ACK message
 976 * @msg: Interrupt message
 977 *
 978 * The peer has acked a SCIF_NODE_REMOVE message.
 979 */
 980static __always_inline void
 981scif_node_remove_ack(struct scif_dev *scifdev, struct scifmsg *msg)
 982{
 983	struct scif_dev *sdev = &scif_dev[msg->payload[0]];
 984
 985	atomic_inc(&sdev->disconn_rescnt);
 986	wake_up(&sdev->disconn_wq);
 987}
 988
 989/**
 990 * scif_get_node_info: Respond to SCIF_GET_NODE_INFO interrupt message
 991 * @msg:        Interrupt message
 992 *
 993 * Retrieve node info i.e maxid and total from the mgmt node.
 994 */
 995static __always_inline void
 996scif_get_node_info_resp(struct scif_dev *scifdev, struct scifmsg *msg)
 997{
 998	if (scif_is_mgmt_node()) {
 999		swap(msg->dst.node, msg->src.node);
1000		mutex_lock(&scif_info.conflock);
1001		msg->payload[1] = scif_info.maxid;
1002		msg->payload[2] = scif_info.total;
1003		mutex_unlock(&scif_info.conflock);
1004		scif_nodeqp_send(scifdev, msg);
1005	} else {
1006		struct completion *node_info =
1007			(struct completion *)msg->payload[3];
1008
1009		mutex_lock(&scif_info.conflock);
1010		scif_info.maxid = msg->payload[1];
1011		scif_info.total = msg->payload[2];
1012		complete_all(node_info);
1013		mutex_unlock(&scif_info.conflock);
1014	}
1015}
1016
1017static void
1018scif_msg_unknown(struct scif_dev *scifdev, struct scifmsg *msg)
1019{
1020	/* Bogus Node Qp Message? */
1021	dev_err(&scifdev->sdev->dev,
1022		"Unknown message 0x%xn scifdev->node 0x%x\n",
1023		msg->uop, scifdev->node);
1024}
1025
1026static void (*scif_intr_func[SCIF_MAX_MSG + 1])
1027	    (struct scif_dev *, struct scifmsg *msg) = {
1028	scif_msg_unknown,	/* Error */
1029	scif_init,		/* SCIF_INIT */
1030	scif_exit,		/* SCIF_EXIT */
1031	scif_exit_ack,		/* SCIF_EXIT_ACK */
1032	scif_node_add,		/* SCIF_NODE_ADD */
1033	scif_node_add_ack,	/* SCIF_NODE_ADD_ACK */
1034	scif_node_add_nack,	/* SCIF_NODE_ADD_NACK */
1035	scif_node_remove,	/* SCIF_NODE_REMOVE */
1036	scif_node_remove_ack,	/* SCIF_NODE_REMOVE_ACK */
1037	scif_cnctreq,		/* SCIF_CNCT_REQ */
1038	scif_cnctgnt,		/* SCIF_CNCT_GNT */
1039	scif_cnctgnt_ack,	/* SCIF_CNCT_GNTACK */
1040	scif_cnctgnt_nack,	/* SCIF_CNCT_GNTNACK */
1041	scif_cnctrej,		/* SCIF_CNCT_REJ */
1042	scif_discnct,		/* SCIF_DISCNCT */
1043	scif_discnt_ack,	/* SCIF_DISCNT_ACK */
1044	scif_clientsend,	/* SCIF_CLIENT_SENT */
1045	scif_clientrcvd,	/* SCIF_CLIENT_RCVD */
1046	scif_get_node_info_resp,/* SCIF_GET_NODE_INFO */
1047	scif_recv_reg,		/* SCIF_REGISTER */
1048	scif_recv_reg_ack,	/* SCIF_REGISTER_ACK */
1049	scif_recv_reg_nack,	/* SCIF_REGISTER_NACK */
1050	scif_recv_unreg,	/* SCIF_UNREGISTER */
1051	scif_recv_unreg_ack,	/* SCIF_UNREGISTER_ACK */
1052	scif_recv_unreg_nack,	/* SCIF_UNREGISTER_NACK */
1053	scif_alloc_req,		/* SCIF_ALLOC_REQ */
1054	scif_alloc_gnt_rej,	/* SCIF_ALLOC_GNT */
1055	scif_alloc_gnt_rej,	/* SCIF_ALLOC_REJ */
1056	scif_free_virt,		/* SCIF_FREE_VIRT */
1057	scif_recv_munmap,	/* SCIF_MUNMAP */
1058	scif_recv_mark,		/* SCIF_MARK */
1059	scif_recv_mark_resp,	/* SCIF_MARK_ACK */
1060	scif_recv_mark_resp,	/* SCIF_MARK_NACK */
1061	scif_recv_wait,		/* SCIF_WAIT */
1062	scif_recv_wait_resp,	/* SCIF_WAIT_ACK */
1063	scif_recv_wait_resp,	/* SCIF_WAIT_NACK */
1064	scif_recv_sig_local,	/* SCIF_SIG_LOCAL */
1065	scif_recv_sig_remote,	/* SCIF_SIG_REMOTE */
1066	scif_recv_sig_resp,	/* SCIF_SIG_ACK */
1067	scif_recv_sig_resp,	/* SCIF_SIG_NACK */
1068};
1069
1070/**
1071 * scif_nodeqp_msg_handler() - Common handler for node messages
1072 * @scifdev: Remote device to respond to
1073 * @qp: Remote memory pointer
1074 * @msg: The message to be handled.
1075 *
1076 * This routine calls the appropriate routine to handle a Node Qp
1077 * message receipt
1078 */
1079static int scif_max_msg_id = SCIF_MAX_MSG;
1080
1081static void
1082scif_nodeqp_msg_handler(struct scif_dev *scifdev,
1083			struct scif_qp *qp, struct scifmsg *msg)
1084{
1085	scif_display_message(scifdev, msg, "Rcvd");
1086
1087	if (msg->uop > (u32)scif_max_msg_id) {
1088		/* Bogus Node Qp Message? */
1089		dev_err(&scifdev->sdev->dev,
1090			"Unknown message 0x%xn scifdev->node 0x%x\n",
1091			msg->uop, scifdev->node);
1092		return;
1093	}
1094
1095	scif_intr_func[msg->uop](scifdev, msg);
1096}
1097
1098/**
1099 * scif_nodeqp_intrhandler() - Interrupt handler for node messages
1100 * @scifdev:    Remote device to respond to
1101 * @qp:         Remote memory pointer
1102 *
1103 * This routine is triggered by the interrupt mechanism.  It reads
1104 * messages from the node queue RB and calls the Node QP Message handling
1105 * routine.
1106 */
1107void scif_nodeqp_intrhandler(struct scif_dev *scifdev, struct scif_qp *qp)
1108{
1109	struct scifmsg msg;
1110	int read_size;
1111
1112	do {
1113		read_size = scif_rb_get_next(&qp->inbound_q, &msg, sizeof(msg));
1114		if (!read_size)
1115			break;
1116		scif_nodeqp_msg_handler(scifdev, qp, &msg);
1117		/*
1118		 * The node queue pair is unmapped so skip the read pointer
1119		 * update after receipt of a SCIF_EXIT_ACK
1120		 */
1121		if (SCIF_EXIT_ACK == msg.uop)
1122			break;
1123		scif_rb_update_read_ptr(&qp->inbound_q);
1124	} while (1);
1125}
1126
1127/**
1128 * scif_loopb_wq_handler - Loopback Workqueue Handler.
1129 * @work: loop back work
1130 *
1131 * This work queue routine is invoked by the loopback work queue handler.
1132 * It grabs the recv lock, dequeues any available messages from the head
1133 * of the loopback message list, calls the node QP message handler,
1134 * waits for it to return, then frees up this message and dequeues more
1135 * elements of the list if available.
1136 */
1137static void scif_loopb_wq_handler(struct work_struct *unused)
1138{
1139	struct scif_dev *scifdev = scif_info.loopb_dev;
1140	struct scif_qp *qp = scifdev->qpairs;
1141	struct scif_loopb_msg *msg;
1142
1143	do {
1144		msg = NULL;
1145		spin_lock(&qp->recv_lock);
1146		if (!list_empty(&scif_info.loopb_recv_q)) {
1147			msg = list_first_entry(&scif_info.loopb_recv_q,
1148					       struct scif_loopb_msg,
1149					       list);
1150			list_del(&msg->list);
1151		}
1152		spin_unlock(&qp->recv_lock);
1153
1154		if (msg) {
1155			scif_nodeqp_msg_handler(scifdev, qp, &msg->msg);
1156			kfree(msg);
1157		}
1158	} while (msg);
1159}
1160
1161/**
1162 * scif_loopb_msg_handler() - Workqueue handler for loopback messages.
1163 * @scifdev: SCIF device
1164 * @qp: Queue pair.
1165 *
1166 * This work queue routine is triggered when a loopback message is received.
1167 *
1168 * We need special handling for receiving Node Qp messages on a loopback SCIF
1169 * device via two workqueues for receiving messages.
1170 *
1171 * The reason we need the extra workqueue which is not required with *normal*
1172 * non-loopback SCIF devices is the potential classic deadlock described below:
1173 *
1174 * Thread A tries to send a message on a loopback SCIF device and blocks since
1175 * there is no space in the RB while it has the send_lock held or another
1176 * lock called lock X for example.
1177 *
1178 * Thread B: The Loopback Node QP message receive workqueue receives the message
1179 * and tries to send a message (eg an ACK) to the loopback SCIF device. It tries
1180 * to grab the send lock again or lock X and deadlocks with Thread A. The RB
1181 * cannot be drained any further due to this classic deadlock.
1182 *
1183 * In order to avoid deadlocks as mentioned above we have an extra level of
1184 * indirection achieved by having two workqueues.
1185 * 1) The first workqueue whose handler is scif_loopb_msg_handler reads
1186 * messages from the Node QP RB, adds them to a list and queues work for the
1187 * second workqueue.
1188 *
1189 * 2) The second workqueue whose handler is scif_loopb_wq_handler dequeues
1190 * messages from the list, handles them, frees up the memory and dequeues
1191 * more elements from the list if possible.
1192 */
1193int
1194scif_loopb_msg_handler(struct scif_dev *scifdev, struct scif_qp *qp)
1195{
1196	int read_size;
1197	struct scif_loopb_msg *msg;
1198
1199	do {
1200		msg = kmalloc(sizeof(*msg), GFP_KERNEL);
1201		if (!msg)
1202			return -ENOMEM;
1203		read_size = scif_rb_get_next(&qp->inbound_q, &msg->msg,
1204					     sizeof(struct scifmsg));
1205		if (read_size != sizeof(struct scifmsg)) {
1206			kfree(msg);
1207			scif_rb_update_read_ptr(&qp->inbound_q);
1208			break;
1209		}
1210		spin_lock(&qp->recv_lock);
1211		list_add_tail(&msg->list, &scif_info.loopb_recv_q);
1212		spin_unlock(&qp->recv_lock);
1213		queue_work(scif_info.loopb_wq, &scif_info.loopb_work);
1214		scif_rb_update_read_ptr(&qp->inbound_q);
1215	} while (read_size == sizeof(struct scifmsg));
1216	return read_size;
1217}
1218
1219/**
1220 * scif_setup_loopback_qp - One time setup work for Loopback Node Qp.
1221 * @scifdev: SCIF device
1222 *
1223 * Sets up the required loopback workqueues, queue pairs and ring buffers
1224 */
1225int scif_setup_loopback_qp(struct scif_dev *scifdev)
1226{
1227	int err = 0;
1228	void *local_q;
1229	struct scif_qp *qp;
1230
1231	err = scif_setup_intr_wq(scifdev);
1232	if (err)
1233		goto exit;
1234	INIT_LIST_HEAD(&scif_info.loopb_recv_q);
1235	snprintf(scif_info.loopb_wqname, sizeof(scif_info.loopb_wqname),
1236		 "SCIF LOOPB %d", scifdev->node);
1237	scif_info.loopb_wq =
1238		alloc_ordered_workqueue(scif_info.loopb_wqname, 0);
1239	if (!scif_info.loopb_wq) {
1240		err = -ENOMEM;
1241		goto destroy_intr;
1242	}
1243	INIT_WORK(&scif_info.loopb_work, scif_loopb_wq_handler);
1244	/* Allocate Self Qpair */
1245	scifdev->qpairs = kzalloc(sizeof(*scifdev->qpairs), GFP_KERNEL);
1246	if (!scifdev->qpairs) {
1247		err = -ENOMEM;
1248		goto destroy_loopb_wq;
1249	}
1250
1251	qp = scifdev->qpairs;
1252	qp->magic = SCIFEP_MAGIC;
1253	spin_lock_init(&qp->send_lock);
1254	spin_lock_init(&qp->recv_lock);
1255
1256	local_q = kzalloc(SCIF_NODE_QP_SIZE, GFP_KERNEL);
1257	if (!local_q) {
1258		err = -ENOMEM;
1259		goto free_qpairs;
1260	}
1261	/*
1262	 * For loopback the inbound_q and outbound_q are essentially the same
1263	 * since the Node sends a message on the loopback interface to the
1264	 * outbound_q which is then received on the inbound_q.
1265	 */
1266	scif_rb_init(&qp->outbound_q,
1267		     &qp->local_read,
1268		     &qp->local_write,
1269		     local_q, get_count_order(SCIF_NODE_QP_SIZE));
1270
1271	scif_rb_init(&qp->inbound_q,
1272		     &qp->local_read,
1273		     &qp->local_write,
1274		     local_q, get_count_order(SCIF_NODE_QP_SIZE));
1275	scif_info.nodeid = scifdev->node;
1276
1277	scif_peer_register_device(scifdev);
1278
1279	scif_info.loopb_dev = scifdev;
1280	return err;
1281free_qpairs:
1282	kfree(scifdev->qpairs);
1283destroy_loopb_wq:
1284	destroy_workqueue(scif_info.loopb_wq);
1285destroy_intr:
1286	scif_destroy_intr_wq(scifdev);
1287exit:
1288	return err;
1289}
1290
1291/**
1292 * scif_destroy_loopback_qp - One time uninit work for Loopback Node Qp
1293 * @scifdev: SCIF device
1294 *
1295 * Destroys the workqueues and frees up the Ring Buffer and Queue Pair memory.
1296 */
1297int scif_destroy_loopback_qp(struct scif_dev *scifdev)
1298{
1299	scif_peer_unregister_device(scifdev);
1300	destroy_workqueue(scif_info.loopb_wq);
1301	scif_destroy_intr_wq(scifdev);
1302	kfree(scifdev->qpairs->outbound_q.rb_base);
1303	kfree(scifdev->qpairs);
1304	scifdev->sdev = NULL;
1305	scif_info.loopb_dev = NULL;
1306	return 0;
1307}
1308
1309void scif_destroy_p2p(struct scif_dev *scifdev)
1310{
1311	struct scif_dev *peer_dev;
1312	struct scif_p2p_info *p2p;
1313	struct list_head *pos, *tmp;
1314	int bd;
1315
1316	mutex_lock(&scif_info.conflock);
1317	/* Free P2P mappings in the given node for all its peer nodes */
1318	list_for_each_safe(pos, tmp, &scifdev->p2p) {
1319		p2p = list_entry(pos, struct scif_p2p_info, ppi_list);
1320		dma_unmap_sg(&scifdev->sdev->dev, p2p->ppi_sg[SCIF_PPI_MMIO],
1321			     p2p->sg_nentries[SCIF_PPI_MMIO],
1322			     DMA_BIDIRECTIONAL);
1323		dma_unmap_sg(&scifdev->sdev->dev, p2p->ppi_sg[SCIF_PPI_APER],
1324			     p2p->sg_nentries[SCIF_PPI_APER],
1325			     DMA_BIDIRECTIONAL);
1326		scif_p2p_freesg(p2p->ppi_sg[SCIF_PPI_MMIO]);
1327		scif_p2p_freesg(p2p->ppi_sg[SCIF_PPI_APER]);
1328		list_del(pos);
1329		kfree(p2p);
1330	}
1331
1332	/* Free P2P mapping created in the peer nodes for the given node */
1333	for (bd = SCIF_MGMT_NODE + 1; bd <= scif_info.maxid; bd++) {
1334		peer_dev = &scif_dev[bd];
1335		list_for_each_safe(pos, tmp, &peer_dev->p2p) {
1336			p2p = list_entry(pos, struct scif_p2p_info, ppi_list);
1337			if (p2p->ppi_peer_id == scifdev->node) {
1338				dma_unmap_sg(&peer_dev->sdev->dev,
1339					     p2p->ppi_sg[SCIF_PPI_MMIO],
1340					     p2p->sg_nentries[SCIF_PPI_MMIO],
1341					     DMA_BIDIRECTIONAL);
1342				dma_unmap_sg(&peer_dev->sdev->dev,
1343					     p2p->ppi_sg[SCIF_PPI_APER],
1344					     p2p->sg_nentries[SCIF_PPI_APER],
1345					     DMA_BIDIRECTIONAL);
1346				scif_p2p_freesg(p2p->ppi_sg[SCIF_PPI_MMIO]);
1347				scif_p2p_freesg(p2p->ppi_sg[SCIF_PPI_APER]);
1348				list_del(pos);
1349				kfree(p2p);
1350			}
1351		}
1352	}
1353	mutex_unlock(&scif_info.conflock);
1354}