Loading...
1/*
2 * linux/arch/x86_64/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9#include <linux/signal.h>
10#include <linux/sched.h>
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/string.h>
14#include <linux/types.h>
15#include <linux/ptrace.h>
16#include <linux/mman.h>
17#include <linux/mm.h>
18#include <linux/swap.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/initrd.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/memblock.h>
25#include <linux/proc_fs.h>
26#include <linux/pci.h>
27#include <linux/pfn.h>
28#include <linux/poison.h>
29#include <linux/dma-mapping.h>
30#include <linux/module.h>
31#include <linux/memory.h>
32#include <linux/memory_hotplug.h>
33#include <linux/nmi.h>
34#include <linux/gfp.h>
35
36#include <asm/processor.h>
37#include <asm/bios_ebda.h>
38#include <asm/system.h>
39#include <asm/uaccess.h>
40#include <asm/pgtable.h>
41#include <asm/pgalloc.h>
42#include <asm/dma.h>
43#include <asm/fixmap.h>
44#include <asm/e820.h>
45#include <asm/apic.h>
46#include <asm/tlb.h>
47#include <asm/mmu_context.h>
48#include <asm/proto.h>
49#include <asm/smp.h>
50#include <asm/sections.h>
51#include <asm/kdebug.h>
52#include <asm/numa.h>
53#include <asm/cacheflush.h>
54#include <asm/init.h>
55#include <asm/uv/uv.h>
56#include <asm/setup.h>
57
58static int __init parse_direct_gbpages_off(char *arg)
59{
60 direct_gbpages = 0;
61 return 0;
62}
63early_param("nogbpages", parse_direct_gbpages_off);
64
65static int __init parse_direct_gbpages_on(char *arg)
66{
67 direct_gbpages = 1;
68 return 0;
69}
70early_param("gbpages", parse_direct_gbpages_on);
71
72/*
73 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
74 * physical space so we can cache the place of the first one and move
75 * around without checking the pgd every time.
76 */
77
78pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
79EXPORT_SYMBOL_GPL(__supported_pte_mask);
80
81int force_personality32;
82
83/*
84 * noexec32=on|off
85 * Control non executable heap for 32bit processes.
86 * To control the stack too use noexec=off
87 *
88 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
89 * off PROT_READ implies PROT_EXEC
90 */
91static int __init nonx32_setup(char *str)
92{
93 if (!strcmp(str, "on"))
94 force_personality32 &= ~READ_IMPLIES_EXEC;
95 else if (!strcmp(str, "off"))
96 force_personality32 |= READ_IMPLIES_EXEC;
97 return 1;
98}
99__setup("noexec32=", nonx32_setup);
100
101/*
102 * When memory was added/removed make sure all the processes MM have
103 * suitable PGD entries in the local PGD level page.
104 */
105void sync_global_pgds(unsigned long start, unsigned long end)
106{
107 unsigned long address;
108
109 for (address = start; address <= end; address += PGDIR_SIZE) {
110 const pgd_t *pgd_ref = pgd_offset_k(address);
111 struct page *page;
112
113 if (pgd_none(*pgd_ref))
114 continue;
115
116 spin_lock(&pgd_lock);
117 list_for_each_entry(page, &pgd_list, lru) {
118 pgd_t *pgd;
119 spinlock_t *pgt_lock;
120
121 pgd = (pgd_t *)page_address(page) + pgd_index(address);
122 /* the pgt_lock only for Xen */
123 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
124 spin_lock(pgt_lock);
125
126 if (pgd_none(*pgd))
127 set_pgd(pgd, *pgd_ref);
128 else
129 BUG_ON(pgd_page_vaddr(*pgd)
130 != pgd_page_vaddr(*pgd_ref));
131
132 spin_unlock(pgt_lock);
133 }
134 spin_unlock(&pgd_lock);
135 }
136}
137
138/*
139 * NOTE: This function is marked __ref because it calls __init function
140 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
141 */
142static __ref void *spp_getpage(void)
143{
144 void *ptr;
145
146 if (after_bootmem)
147 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
148 else
149 ptr = alloc_bootmem_pages(PAGE_SIZE);
150
151 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
152 panic("set_pte_phys: cannot allocate page data %s\n",
153 after_bootmem ? "after bootmem" : "");
154 }
155
156 pr_debug("spp_getpage %p\n", ptr);
157
158 return ptr;
159}
160
161static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
162{
163 if (pgd_none(*pgd)) {
164 pud_t *pud = (pud_t *)spp_getpage();
165 pgd_populate(&init_mm, pgd, pud);
166 if (pud != pud_offset(pgd, 0))
167 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
168 pud, pud_offset(pgd, 0));
169 }
170 return pud_offset(pgd, vaddr);
171}
172
173static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
174{
175 if (pud_none(*pud)) {
176 pmd_t *pmd = (pmd_t *) spp_getpage();
177 pud_populate(&init_mm, pud, pmd);
178 if (pmd != pmd_offset(pud, 0))
179 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
180 pmd, pmd_offset(pud, 0));
181 }
182 return pmd_offset(pud, vaddr);
183}
184
185static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
186{
187 if (pmd_none(*pmd)) {
188 pte_t *pte = (pte_t *) spp_getpage();
189 pmd_populate_kernel(&init_mm, pmd, pte);
190 if (pte != pte_offset_kernel(pmd, 0))
191 printk(KERN_ERR "PAGETABLE BUG #02!\n");
192 }
193 return pte_offset_kernel(pmd, vaddr);
194}
195
196void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
197{
198 pud_t *pud;
199 pmd_t *pmd;
200 pte_t *pte;
201
202 pud = pud_page + pud_index(vaddr);
203 pmd = fill_pmd(pud, vaddr);
204 pte = fill_pte(pmd, vaddr);
205
206 set_pte(pte, new_pte);
207
208 /*
209 * It's enough to flush this one mapping.
210 * (PGE mappings get flushed as well)
211 */
212 __flush_tlb_one(vaddr);
213}
214
215void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
216{
217 pgd_t *pgd;
218 pud_t *pud_page;
219
220 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
221
222 pgd = pgd_offset_k(vaddr);
223 if (pgd_none(*pgd)) {
224 printk(KERN_ERR
225 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
226 return;
227 }
228 pud_page = (pud_t*)pgd_page_vaddr(*pgd);
229 set_pte_vaddr_pud(pud_page, vaddr, pteval);
230}
231
232pmd_t * __init populate_extra_pmd(unsigned long vaddr)
233{
234 pgd_t *pgd;
235 pud_t *pud;
236
237 pgd = pgd_offset_k(vaddr);
238 pud = fill_pud(pgd, vaddr);
239 return fill_pmd(pud, vaddr);
240}
241
242pte_t * __init populate_extra_pte(unsigned long vaddr)
243{
244 pmd_t *pmd;
245
246 pmd = populate_extra_pmd(vaddr);
247 return fill_pte(pmd, vaddr);
248}
249
250/*
251 * Create large page table mappings for a range of physical addresses.
252 */
253static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
254 pgprot_t prot)
255{
256 pgd_t *pgd;
257 pud_t *pud;
258 pmd_t *pmd;
259
260 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
261 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
262 pgd = pgd_offset_k((unsigned long)__va(phys));
263 if (pgd_none(*pgd)) {
264 pud = (pud_t *) spp_getpage();
265 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
266 _PAGE_USER));
267 }
268 pud = pud_offset(pgd, (unsigned long)__va(phys));
269 if (pud_none(*pud)) {
270 pmd = (pmd_t *) spp_getpage();
271 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
272 _PAGE_USER));
273 }
274 pmd = pmd_offset(pud, phys);
275 BUG_ON(!pmd_none(*pmd));
276 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
277 }
278}
279
280void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
281{
282 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
283}
284
285void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
286{
287 __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
288}
289
290/*
291 * The head.S code sets up the kernel high mapping:
292 *
293 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
294 *
295 * phys_addr holds the negative offset to the kernel, which is added
296 * to the compile time generated pmds. This results in invalid pmds up
297 * to the point where we hit the physaddr 0 mapping.
298 *
299 * We limit the mappings to the region from _text to _brk_end. _brk_end
300 * is rounded up to the 2MB boundary. This catches the invalid pmds as
301 * well, as they are located before _text:
302 */
303void __init cleanup_highmap(void)
304{
305 unsigned long vaddr = __START_KERNEL_map;
306 unsigned long vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
307 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
308 pmd_t *pmd = level2_kernel_pgt;
309
310 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
311 if (pmd_none(*pmd))
312 continue;
313 if (vaddr < (unsigned long) _text || vaddr > end)
314 set_pmd(pmd, __pmd(0));
315 }
316}
317
318static __ref void *alloc_low_page(unsigned long *phys)
319{
320 unsigned long pfn = pgt_buf_end++;
321 void *adr;
322
323 if (after_bootmem) {
324 adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
325 *phys = __pa(adr);
326
327 return adr;
328 }
329
330 if (pfn >= pgt_buf_top)
331 panic("alloc_low_page: ran out of memory");
332
333 adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
334 clear_page(adr);
335 *phys = pfn * PAGE_SIZE;
336 return adr;
337}
338
339static __ref void *map_low_page(void *virt)
340{
341 void *adr;
342 unsigned long phys, left;
343
344 if (after_bootmem)
345 return virt;
346
347 phys = __pa(virt);
348 left = phys & (PAGE_SIZE - 1);
349 adr = early_memremap(phys & PAGE_MASK, PAGE_SIZE);
350 adr = (void *)(((unsigned long)adr) | left);
351
352 return adr;
353}
354
355static __ref void unmap_low_page(void *adr)
356{
357 if (after_bootmem)
358 return;
359
360 early_iounmap((void *)((unsigned long)adr & PAGE_MASK), PAGE_SIZE);
361}
362
363static unsigned long __meminit
364phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
365 pgprot_t prot)
366{
367 unsigned pages = 0;
368 unsigned long last_map_addr = end;
369 int i;
370
371 pte_t *pte = pte_page + pte_index(addr);
372
373 for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
374
375 if (addr >= end) {
376 if (!after_bootmem) {
377 for(; i < PTRS_PER_PTE; i++, pte++)
378 set_pte(pte, __pte(0));
379 }
380 break;
381 }
382
383 /*
384 * We will re-use the existing mapping.
385 * Xen for example has some special requirements, like mapping
386 * pagetable pages as RO. So assume someone who pre-setup
387 * these mappings are more intelligent.
388 */
389 if (pte_val(*pte)) {
390 pages++;
391 continue;
392 }
393
394 if (0)
395 printk(" pte=%p addr=%lx pte=%016lx\n",
396 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
397 pages++;
398 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
399 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
400 }
401
402 update_page_count(PG_LEVEL_4K, pages);
403
404 return last_map_addr;
405}
406
407static unsigned long __meminit
408phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
409 unsigned long page_size_mask, pgprot_t prot)
410{
411 unsigned long pages = 0;
412 unsigned long last_map_addr = end;
413
414 int i = pmd_index(address);
415
416 for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
417 unsigned long pte_phys;
418 pmd_t *pmd = pmd_page + pmd_index(address);
419 pte_t *pte;
420 pgprot_t new_prot = prot;
421
422 if (address >= end) {
423 if (!after_bootmem) {
424 for (; i < PTRS_PER_PMD; i++, pmd++)
425 set_pmd(pmd, __pmd(0));
426 }
427 break;
428 }
429
430 if (pmd_val(*pmd)) {
431 if (!pmd_large(*pmd)) {
432 spin_lock(&init_mm.page_table_lock);
433 pte = map_low_page((pte_t *)pmd_page_vaddr(*pmd));
434 last_map_addr = phys_pte_init(pte, address,
435 end, prot);
436 unmap_low_page(pte);
437 spin_unlock(&init_mm.page_table_lock);
438 continue;
439 }
440 /*
441 * If we are ok with PG_LEVEL_2M mapping, then we will
442 * use the existing mapping,
443 *
444 * Otherwise, we will split the large page mapping but
445 * use the same existing protection bits except for
446 * large page, so that we don't violate Intel's TLB
447 * Application note (317080) which says, while changing
448 * the page sizes, new and old translations should
449 * not differ with respect to page frame and
450 * attributes.
451 */
452 if (page_size_mask & (1 << PG_LEVEL_2M)) {
453 pages++;
454 continue;
455 }
456 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
457 }
458
459 if (page_size_mask & (1<<PG_LEVEL_2M)) {
460 pages++;
461 spin_lock(&init_mm.page_table_lock);
462 set_pte((pte_t *)pmd,
463 pfn_pte(address >> PAGE_SHIFT,
464 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
465 spin_unlock(&init_mm.page_table_lock);
466 last_map_addr = (address & PMD_MASK) + PMD_SIZE;
467 continue;
468 }
469
470 pte = alloc_low_page(&pte_phys);
471 last_map_addr = phys_pte_init(pte, address, end, new_prot);
472 unmap_low_page(pte);
473
474 spin_lock(&init_mm.page_table_lock);
475 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
476 spin_unlock(&init_mm.page_table_lock);
477 }
478 update_page_count(PG_LEVEL_2M, pages);
479 return last_map_addr;
480}
481
482static unsigned long __meminit
483phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
484 unsigned long page_size_mask)
485{
486 unsigned long pages = 0;
487 unsigned long last_map_addr = end;
488 int i = pud_index(addr);
489
490 for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
491 unsigned long pmd_phys;
492 pud_t *pud = pud_page + pud_index(addr);
493 pmd_t *pmd;
494 pgprot_t prot = PAGE_KERNEL;
495
496 if (addr >= end)
497 break;
498
499 if (!after_bootmem &&
500 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
501 set_pud(pud, __pud(0));
502 continue;
503 }
504
505 if (pud_val(*pud)) {
506 if (!pud_large(*pud)) {
507 pmd = map_low_page(pmd_offset(pud, 0));
508 last_map_addr = phys_pmd_init(pmd, addr, end,
509 page_size_mask, prot);
510 unmap_low_page(pmd);
511 __flush_tlb_all();
512 continue;
513 }
514 /*
515 * If we are ok with PG_LEVEL_1G mapping, then we will
516 * use the existing mapping.
517 *
518 * Otherwise, we will split the gbpage mapping but use
519 * the same existing protection bits except for large
520 * page, so that we don't violate Intel's TLB
521 * Application note (317080) which says, while changing
522 * the page sizes, new and old translations should
523 * not differ with respect to page frame and
524 * attributes.
525 */
526 if (page_size_mask & (1 << PG_LEVEL_1G)) {
527 pages++;
528 continue;
529 }
530 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
531 }
532
533 if (page_size_mask & (1<<PG_LEVEL_1G)) {
534 pages++;
535 spin_lock(&init_mm.page_table_lock);
536 set_pte((pte_t *)pud,
537 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
538 spin_unlock(&init_mm.page_table_lock);
539 last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
540 continue;
541 }
542
543 pmd = alloc_low_page(&pmd_phys);
544 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
545 prot);
546 unmap_low_page(pmd);
547
548 spin_lock(&init_mm.page_table_lock);
549 pud_populate(&init_mm, pud, __va(pmd_phys));
550 spin_unlock(&init_mm.page_table_lock);
551 }
552 __flush_tlb_all();
553
554 update_page_count(PG_LEVEL_1G, pages);
555
556 return last_map_addr;
557}
558
559unsigned long __meminit
560kernel_physical_mapping_init(unsigned long start,
561 unsigned long end,
562 unsigned long page_size_mask)
563{
564 bool pgd_changed = false;
565 unsigned long next, last_map_addr = end;
566 unsigned long addr;
567
568 start = (unsigned long)__va(start);
569 end = (unsigned long)__va(end);
570 addr = start;
571
572 for (; start < end; start = next) {
573 pgd_t *pgd = pgd_offset_k(start);
574 unsigned long pud_phys;
575 pud_t *pud;
576
577 next = (start + PGDIR_SIZE) & PGDIR_MASK;
578 if (next > end)
579 next = end;
580
581 if (pgd_val(*pgd)) {
582 pud = map_low_page((pud_t *)pgd_page_vaddr(*pgd));
583 last_map_addr = phys_pud_init(pud, __pa(start),
584 __pa(end), page_size_mask);
585 unmap_low_page(pud);
586 continue;
587 }
588
589 pud = alloc_low_page(&pud_phys);
590 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
591 page_size_mask);
592 unmap_low_page(pud);
593
594 spin_lock(&init_mm.page_table_lock);
595 pgd_populate(&init_mm, pgd, __va(pud_phys));
596 spin_unlock(&init_mm.page_table_lock);
597 pgd_changed = true;
598 }
599
600 if (pgd_changed)
601 sync_global_pgds(addr, end);
602
603 __flush_tlb_all();
604
605 return last_map_addr;
606}
607
608#ifndef CONFIG_NUMA
609void __init initmem_init(void)
610{
611 memblock_x86_register_active_regions(0, 0, max_pfn);
612}
613#endif
614
615void __init paging_init(void)
616{
617 unsigned long max_zone_pfns[MAX_NR_ZONES];
618
619 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
620#ifdef CONFIG_ZONE_DMA
621 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
622#endif
623 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
624 max_zone_pfns[ZONE_NORMAL] = max_pfn;
625
626 sparse_memory_present_with_active_regions(MAX_NUMNODES);
627 sparse_init();
628
629 /*
630 * clear the default setting with node 0
631 * note: don't use nodes_clear here, that is really clearing when
632 * numa support is not compiled in, and later node_set_state
633 * will not set it back.
634 */
635 node_clear_state(0, N_NORMAL_MEMORY);
636
637 free_area_init_nodes(max_zone_pfns);
638}
639
640/*
641 * Memory hotplug specific functions
642 */
643#ifdef CONFIG_MEMORY_HOTPLUG
644/*
645 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
646 * updating.
647 */
648static void update_end_of_memory_vars(u64 start, u64 size)
649{
650 unsigned long end_pfn = PFN_UP(start + size);
651
652 if (end_pfn > max_pfn) {
653 max_pfn = end_pfn;
654 max_low_pfn = end_pfn;
655 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
656 }
657}
658
659/*
660 * Memory is added always to NORMAL zone. This means you will never get
661 * additional DMA/DMA32 memory.
662 */
663int arch_add_memory(int nid, u64 start, u64 size)
664{
665 struct pglist_data *pgdat = NODE_DATA(nid);
666 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
667 unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
668 unsigned long nr_pages = size >> PAGE_SHIFT;
669 int ret;
670
671 last_mapped_pfn = init_memory_mapping(start, start + size);
672 if (last_mapped_pfn > max_pfn_mapped)
673 max_pfn_mapped = last_mapped_pfn;
674
675 ret = __add_pages(nid, zone, start_pfn, nr_pages);
676 WARN_ON_ONCE(ret);
677
678 /* update max_pfn, max_low_pfn and high_memory */
679 update_end_of_memory_vars(start, size);
680
681 return ret;
682}
683EXPORT_SYMBOL_GPL(arch_add_memory);
684
685#endif /* CONFIG_MEMORY_HOTPLUG */
686
687static struct kcore_list kcore_vsyscall;
688
689void __init mem_init(void)
690{
691 long codesize, reservedpages, datasize, initsize;
692 unsigned long absent_pages;
693
694 pci_iommu_alloc();
695
696 /* clear_bss() already clear the empty_zero_page */
697
698 reservedpages = 0;
699
700 /* this will put all low memory onto the freelists */
701#ifdef CONFIG_NUMA
702 totalram_pages = numa_free_all_bootmem();
703#else
704 totalram_pages = free_all_bootmem();
705#endif
706
707 absent_pages = absent_pages_in_range(0, max_pfn);
708 reservedpages = max_pfn - totalram_pages - absent_pages;
709 after_bootmem = 1;
710
711 codesize = (unsigned long) &_etext - (unsigned long) &_text;
712 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
713 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
714
715 /* Register memory areas for /proc/kcore */
716 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
717 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
718
719 printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
720 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
721 nr_free_pages() << (PAGE_SHIFT-10),
722 max_pfn << (PAGE_SHIFT-10),
723 codesize >> 10,
724 absent_pages << (PAGE_SHIFT-10),
725 reservedpages << (PAGE_SHIFT-10),
726 datasize >> 10,
727 initsize >> 10);
728}
729
730#ifdef CONFIG_DEBUG_RODATA
731const int rodata_test_data = 0xC3;
732EXPORT_SYMBOL_GPL(rodata_test_data);
733
734int kernel_set_to_readonly;
735
736void set_kernel_text_rw(void)
737{
738 unsigned long start = PFN_ALIGN(_text);
739 unsigned long end = PFN_ALIGN(__stop___ex_table);
740
741 if (!kernel_set_to_readonly)
742 return;
743
744 pr_debug("Set kernel text: %lx - %lx for read write\n",
745 start, end);
746
747 /*
748 * Make the kernel identity mapping for text RW. Kernel text
749 * mapping will always be RO. Refer to the comment in
750 * static_protections() in pageattr.c
751 */
752 set_memory_rw(start, (end - start) >> PAGE_SHIFT);
753}
754
755void set_kernel_text_ro(void)
756{
757 unsigned long start = PFN_ALIGN(_text);
758 unsigned long end = PFN_ALIGN(__stop___ex_table);
759
760 if (!kernel_set_to_readonly)
761 return;
762
763 pr_debug("Set kernel text: %lx - %lx for read only\n",
764 start, end);
765
766 /*
767 * Set the kernel identity mapping for text RO.
768 */
769 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
770}
771
772void mark_rodata_ro(void)
773{
774 unsigned long start = PFN_ALIGN(_text);
775 unsigned long rodata_start =
776 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
777 unsigned long end = (unsigned long) &__end_rodata_hpage_align;
778 unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
779 unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
780 unsigned long data_start = (unsigned long) &_sdata;
781
782 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
783 (end - start) >> 10);
784 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
785
786 kernel_set_to_readonly = 1;
787
788 /*
789 * The rodata section (but not the kernel text!) should also be
790 * not-executable.
791 */
792 set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
793
794 rodata_test();
795
796#ifdef CONFIG_CPA_DEBUG
797 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
798 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
799
800 printk(KERN_INFO "Testing CPA: again\n");
801 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
802#endif
803
804 free_init_pages("unused kernel memory",
805 (unsigned long) page_address(virt_to_page(text_end)),
806 (unsigned long)
807 page_address(virt_to_page(rodata_start)));
808 free_init_pages("unused kernel memory",
809 (unsigned long) page_address(virt_to_page(rodata_end)),
810 (unsigned long) page_address(virt_to_page(data_start)));
811}
812
813#endif
814
815int kern_addr_valid(unsigned long addr)
816{
817 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
818 pgd_t *pgd;
819 pud_t *pud;
820 pmd_t *pmd;
821 pte_t *pte;
822
823 if (above != 0 && above != -1UL)
824 return 0;
825
826 pgd = pgd_offset_k(addr);
827 if (pgd_none(*pgd))
828 return 0;
829
830 pud = pud_offset(pgd, addr);
831 if (pud_none(*pud))
832 return 0;
833
834 pmd = pmd_offset(pud, addr);
835 if (pmd_none(*pmd))
836 return 0;
837
838 if (pmd_large(*pmd))
839 return pfn_valid(pmd_pfn(*pmd));
840
841 pte = pte_offset_kernel(pmd, addr);
842 if (pte_none(*pte))
843 return 0;
844
845 return pfn_valid(pte_pfn(*pte));
846}
847
848/*
849 * A pseudo VMA to allow ptrace access for the vsyscall page. This only
850 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
851 * not need special handling anymore:
852 */
853static struct vm_area_struct gate_vma = {
854 .vm_start = VSYSCALL_START,
855 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
856 .vm_page_prot = PAGE_READONLY_EXEC,
857 .vm_flags = VM_READ | VM_EXEC
858};
859
860struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
861{
862#ifdef CONFIG_IA32_EMULATION
863 if (!mm || mm->context.ia32_compat)
864 return NULL;
865#endif
866 return &gate_vma;
867}
868
869int in_gate_area(struct mm_struct *mm, unsigned long addr)
870{
871 struct vm_area_struct *vma = get_gate_vma(mm);
872
873 if (!vma)
874 return 0;
875
876 return (addr >= vma->vm_start) && (addr < vma->vm_end);
877}
878
879/*
880 * Use this when you have no reliable mm, typically from interrupt
881 * context. It is less reliable than using a task's mm and may give
882 * false positives.
883 */
884int in_gate_area_no_mm(unsigned long addr)
885{
886 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
887}
888
889const char *arch_vma_name(struct vm_area_struct *vma)
890{
891 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
892 return "[vdso]";
893 if (vma == &gate_vma)
894 return "[vsyscall]";
895 return NULL;
896}
897
898#ifdef CONFIG_X86_UV
899unsigned long memory_block_size_bytes(void)
900{
901 if (is_uv_system()) {
902 printk(KERN_INFO "UV: memory block size 2GB\n");
903 return 2UL * 1024 * 1024 * 1024;
904 }
905 return MIN_MEMORY_BLOCK_SIZE;
906}
907#endif
908
909#ifdef CONFIG_SPARSEMEM_VMEMMAP
910/*
911 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
912 */
913static long __meminitdata addr_start, addr_end;
914static void __meminitdata *p_start, *p_end;
915static int __meminitdata node_start;
916
917int __meminit
918vmemmap_populate(struct page *start_page, unsigned long size, int node)
919{
920 unsigned long addr = (unsigned long)start_page;
921 unsigned long end = (unsigned long)(start_page + size);
922 unsigned long next;
923 pgd_t *pgd;
924 pud_t *pud;
925 pmd_t *pmd;
926
927 for (; addr < end; addr = next) {
928 void *p = NULL;
929
930 pgd = vmemmap_pgd_populate(addr, node);
931 if (!pgd)
932 return -ENOMEM;
933
934 pud = vmemmap_pud_populate(pgd, addr, node);
935 if (!pud)
936 return -ENOMEM;
937
938 if (!cpu_has_pse) {
939 next = (addr + PAGE_SIZE) & PAGE_MASK;
940 pmd = vmemmap_pmd_populate(pud, addr, node);
941
942 if (!pmd)
943 return -ENOMEM;
944
945 p = vmemmap_pte_populate(pmd, addr, node);
946
947 if (!p)
948 return -ENOMEM;
949
950 addr_end = addr + PAGE_SIZE;
951 p_end = p + PAGE_SIZE;
952 } else {
953 next = pmd_addr_end(addr, end);
954
955 pmd = pmd_offset(pud, addr);
956 if (pmd_none(*pmd)) {
957 pte_t entry;
958
959 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
960 if (!p)
961 return -ENOMEM;
962
963 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
964 PAGE_KERNEL_LARGE);
965 set_pmd(pmd, __pmd(pte_val(entry)));
966
967 /* check to see if we have contiguous blocks */
968 if (p_end != p || node_start != node) {
969 if (p_start)
970 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
971 addr_start, addr_end-1, p_start, p_end-1, node_start);
972 addr_start = addr;
973 node_start = node;
974 p_start = p;
975 }
976
977 addr_end = addr + PMD_SIZE;
978 p_end = p + PMD_SIZE;
979 } else
980 vmemmap_verify((pte_t *)pmd, node, addr, next);
981 }
982
983 }
984 sync_global_pgds((unsigned long)start_page, end);
985 return 0;
986}
987
988void __meminit vmemmap_populate_print_last(void)
989{
990 if (p_start) {
991 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
992 addr_start, addr_end-1, p_start, p_end-1, node_start);
993 p_start = NULL;
994 p_end = NULL;
995 node_start = 0;
996 }
997}
998#endif
1/*
2 * linux/arch/x86_64/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9#include <linux/signal.h>
10#include <linux/sched.h>
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/string.h>
14#include <linux/types.h>
15#include <linux/ptrace.h>
16#include <linux/mman.h>
17#include <linux/mm.h>
18#include <linux/swap.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/initrd.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/memblock.h>
25#include <linux/proc_fs.h>
26#include <linux/pci.h>
27#include <linux/pfn.h>
28#include <linux/poison.h>
29#include <linux/dma-mapping.h>
30#include <linux/module.h>
31#include <linux/memory.h>
32#include <linux/memory_hotplug.h>
33#include <linux/memremap.h>
34#include <linux/nmi.h>
35#include <linux/gfp.h>
36#include <linux/kcore.h>
37
38#include <asm/processor.h>
39#include <asm/bios_ebda.h>
40#include <asm/uaccess.h>
41#include <asm/pgtable.h>
42#include <asm/pgalloc.h>
43#include <asm/dma.h>
44#include <asm/fixmap.h>
45#include <asm/e820.h>
46#include <asm/apic.h>
47#include <asm/tlb.h>
48#include <asm/mmu_context.h>
49#include <asm/proto.h>
50#include <asm/smp.h>
51#include <asm/sections.h>
52#include <asm/kdebug.h>
53#include <asm/numa.h>
54#include <asm/cacheflush.h>
55#include <asm/init.h>
56#include <asm/uv/uv.h>
57#include <asm/setup.h>
58
59#include "mm_internal.h"
60
61static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
62 unsigned long addr, unsigned long end)
63{
64 addr &= PMD_MASK;
65 for (; addr < end; addr += PMD_SIZE) {
66 pmd_t *pmd = pmd_page + pmd_index(addr);
67
68 if (!pmd_present(*pmd))
69 set_pmd(pmd, __pmd(addr | pmd_flag));
70 }
71}
72static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
73 unsigned long addr, unsigned long end)
74{
75 unsigned long next;
76
77 for (; addr < end; addr = next) {
78 pud_t *pud = pud_page + pud_index(addr);
79 pmd_t *pmd;
80
81 next = (addr & PUD_MASK) + PUD_SIZE;
82 if (next > end)
83 next = end;
84
85 if (pud_present(*pud)) {
86 pmd = pmd_offset(pud, 0);
87 ident_pmd_init(info->pmd_flag, pmd, addr, next);
88 continue;
89 }
90 pmd = (pmd_t *)info->alloc_pgt_page(info->context);
91 if (!pmd)
92 return -ENOMEM;
93 ident_pmd_init(info->pmd_flag, pmd, addr, next);
94 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
95 }
96
97 return 0;
98}
99
100int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
101 unsigned long addr, unsigned long end)
102{
103 unsigned long next;
104 int result;
105 int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
106
107 for (; addr < end; addr = next) {
108 pgd_t *pgd = pgd_page + pgd_index(addr) + off;
109 pud_t *pud;
110
111 next = (addr & PGDIR_MASK) + PGDIR_SIZE;
112 if (next > end)
113 next = end;
114
115 if (pgd_present(*pgd)) {
116 pud = pud_offset(pgd, 0);
117 result = ident_pud_init(info, pud, addr, next);
118 if (result)
119 return result;
120 continue;
121 }
122
123 pud = (pud_t *)info->alloc_pgt_page(info->context);
124 if (!pud)
125 return -ENOMEM;
126 result = ident_pud_init(info, pud, addr, next);
127 if (result)
128 return result;
129 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
130 }
131
132 return 0;
133}
134
135/*
136 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
137 * physical space so we can cache the place of the first one and move
138 * around without checking the pgd every time.
139 */
140
141pteval_t __supported_pte_mask __read_mostly = ~0;
142EXPORT_SYMBOL_GPL(__supported_pte_mask);
143
144int force_personality32;
145
146/*
147 * noexec32=on|off
148 * Control non executable heap for 32bit processes.
149 * To control the stack too use noexec=off
150 *
151 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
152 * off PROT_READ implies PROT_EXEC
153 */
154static int __init nonx32_setup(char *str)
155{
156 if (!strcmp(str, "on"))
157 force_personality32 &= ~READ_IMPLIES_EXEC;
158 else if (!strcmp(str, "off"))
159 force_personality32 |= READ_IMPLIES_EXEC;
160 return 1;
161}
162__setup("noexec32=", nonx32_setup);
163
164/*
165 * When memory was added/removed make sure all the processes MM have
166 * suitable PGD entries in the local PGD level page.
167 */
168void sync_global_pgds(unsigned long start, unsigned long end, int removed)
169{
170 unsigned long address;
171
172 for (address = start; address <= end; address += PGDIR_SIZE) {
173 const pgd_t *pgd_ref = pgd_offset_k(address);
174 struct page *page;
175
176 /*
177 * When it is called after memory hot remove, pgd_none()
178 * returns true. In this case (removed == 1), we must clear
179 * the PGD entries in the local PGD level page.
180 */
181 if (pgd_none(*pgd_ref) && !removed)
182 continue;
183
184 spin_lock(&pgd_lock);
185 list_for_each_entry(page, &pgd_list, lru) {
186 pgd_t *pgd;
187 spinlock_t *pgt_lock;
188
189 pgd = (pgd_t *)page_address(page) + pgd_index(address);
190 /* the pgt_lock only for Xen */
191 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
192 spin_lock(pgt_lock);
193
194 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
195 BUG_ON(pgd_page_vaddr(*pgd)
196 != pgd_page_vaddr(*pgd_ref));
197
198 if (removed) {
199 if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
200 pgd_clear(pgd);
201 } else {
202 if (pgd_none(*pgd))
203 set_pgd(pgd, *pgd_ref);
204 }
205
206 spin_unlock(pgt_lock);
207 }
208 spin_unlock(&pgd_lock);
209 }
210}
211
212/*
213 * NOTE: This function is marked __ref because it calls __init function
214 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
215 */
216static __ref void *spp_getpage(void)
217{
218 void *ptr;
219
220 if (after_bootmem)
221 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
222 else
223 ptr = alloc_bootmem_pages(PAGE_SIZE);
224
225 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
226 panic("set_pte_phys: cannot allocate page data %s\n",
227 after_bootmem ? "after bootmem" : "");
228 }
229
230 pr_debug("spp_getpage %p\n", ptr);
231
232 return ptr;
233}
234
235static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
236{
237 if (pgd_none(*pgd)) {
238 pud_t *pud = (pud_t *)spp_getpage();
239 pgd_populate(&init_mm, pgd, pud);
240 if (pud != pud_offset(pgd, 0))
241 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
242 pud, pud_offset(pgd, 0));
243 }
244 return pud_offset(pgd, vaddr);
245}
246
247static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
248{
249 if (pud_none(*pud)) {
250 pmd_t *pmd = (pmd_t *) spp_getpage();
251 pud_populate(&init_mm, pud, pmd);
252 if (pmd != pmd_offset(pud, 0))
253 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
254 pmd, pmd_offset(pud, 0));
255 }
256 return pmd_offset(pud, vaddr);
257}
258
259static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
260{
261 if (pmd_none(*pmd)) {
262 pte_t *pte = (pte_t *) spp_getpage();
263 pmd_populate_kernel(&init_mm, pmd, pte);
264 if (pte != pte_offset_kernel(pmd, 0))
265 printk(KERN_ERR "PAGETABLE BUG #02!\n");
266 }
267 return pte_offset_kernel(pmd, vaddr);
268}
269
270void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
271{
272 pud_t *pud;
273 pmd_t *pmd;
274 pte_t *pte;
275
276 pud = pud_page + pud_index(vaddr);
277 pmd = fill_pmd(pud, vaddr);
278 pte = fill_pte(pmd, vaddr);
279
280 set_pte(pte, new_pte);
281
282 /*
283 * It's enough to flush this one mapping.
284 * (PGE mappings get flushed as well)
285 */
286 __flush_tlb_one(vaddr);
287}
288
289void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
290{
291 pgd_t *pgd;
292 pud_t *pud_page;
293
294 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
295
296 pgd = pgd_offset_k(vaddr);
297 if (pgd_none(*pgd)) {
298 printk(KERN_ERR
299 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
300 return;
301 }
302 pud_page = (pud_t*)pgd_page_vaddr(*pgd);
303 set_pte_vaddr_pud(pud_page, vaddr, pteval);
304}
305
306pmd_t * __init populate_extra_pmd(unsigned long vaddr)
307{
308 pgd_t *pgd;
309 pud_t *pud;
310
311 pgd = pgd_offset_k(vaddr);
312 pud = fill_pud(pgd, vaddr);
313 return fill_pmd(pud, vaddr);
314}
315
316pte_t * __init populate_extra_pte(unsigned long vaddr)
317{
318 pmd_t *pmd;
319
320 pmd = populate_extra_pmd(vaddr);
321 return fill_pte(pmd, vaddr);
322}
323
324/*
325 * Create large page table mappings for a range of physical addresses.
326 */
327static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
328 enum page_cache_mode cache)
329{
330 pgd_t *pgd;
331 pud_t *pud;
332 pmd_t *pmd;
333 pgprot_t prot;
334
335 pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
336 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
337 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
338 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
339 pgd = pgd_offset_k((unsigned long)__va(phys));
340 if (pgd_none(*pgd)) {
341 pud = (pud_t *) spp_getpage();
342 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
343 _PAGE_USER));
344 }
345 pud = pud_offset(pgd, (unsigned long)__va(phys));
346 if (pud_none(*pud)) {
347 pmd = (pmd_t *) spp_getpage();
348 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
349 _PAGE_USER));
350 }
351 pmd = pmd_offset(pud, phys);
352 BUG_ON(!pmd_none(*pmd));
353 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
354 }
355}
356
357void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
358{
359 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
360}
361
362void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
363{
364 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
365}
366
367/*
368 * The head.S code sets up the kernel high mapping:
369 *
370 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
371 *
372 * phys_base holds the negative offset to the kernel, which is added
373 * to the compile time generated pmds. This results in invalid pmds up
374 * to the point where we hit the physaddr 0 mapping.
375 *
376 * We limit the mappings to the region from _text to _brk_end. _brk_end
377 * is rounded up to the 2MB boundary. This catches the invalid pmds as
378 * well, as they are located before _text:
379 */
380void __init cleanup_highmap(void)
381{
382 unsigned long vaddr = __START_KERNEL_map;
383 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
384 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
385 pmd_t *pmd = level2_kernel_pgt;
386
387 /*
388 * Native path, max_pfn_mapped is not set yet.
389 * Xen has valid max_pfn_mapped set in
390 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
391 */
392 if (max_pfn_mapped)
393 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
394
395 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
396 if (pmd_none(*pmd))
397 continue;
398 if (vaddr < (unsigned long) _text || vaddr > end)
399 set_pmd(pmd, __pmd(0));
400 }
401}
402
403static unsigned long __meminit
404phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
405 pgprot_t prot)
406{
407 unsigned long pages = 0, next;
408 unsigned long last_map_addr = end;
409 int i;
410
411 pte_t *pte = pte_page + pte_index(addr);
412
413 for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
414 next = (addr & PAGE_MASK) + PAGE_SIZE;
415 if (addr >= end) {
416 if (!after_bootmem &&
417 !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
418 !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
419 set_pte(pte, __pte(0));
420 continue;
421 }
422
423 /*
424 * We will re-use the existing mapping.
425 * Xen for example has some special requirements, like mapping
426 * pagetable pages as RO. So assume someone who pre-setup
427 * these mappings are more intelligent.
428 */
429 if (pte_val(*pte)) {
430 if (!after_bootmem)
431 pages++;
432 continue;
433 }
434
435 if (0)
436 printk(" pte=%p addr=%lx pte=%016lx\n",
437 pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
438 pages++;
439 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
440 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
441 }
442
443 update_page_count(PG_LEVEL_4K, pages);
444
445 return last_map_addr;
446}
447
448static unsigned long __meminit
449phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
450 unsigned long page_size_mask, pgprot_t prot)
451{
452 unsigned long pages = 0, next;
453 unsigned long last_map_addr = end;
454
455 int i = pmd_index(address);
456
457 for (; i < PTRS_PER_PMD; i++, address = next) {
458 pmd_t *pmd = pmd_page + pmd_index(address);
459 pte_t *pte;
460 pgprot_t new_prot = prot;
461
462 next = (address & PMD_MASK) + PMD_SIZE;
463 if (address >= end) {
464 if (!after_bootmem &&
465 !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
466 !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
467 set_pmd(pmd, __pmd(0));
468 continue;
469 }
470
471 if (pmd_val(*pmd)) {
472 if (!pmd_large(*pmd)) {
473 spin_lock(&init_mm.page_table_lock);
474 pte = (pte_t *)pmd_page_vaddr(*pmd);
475 last_map_addr = phys_pte_init(pte, address,
476 end, prot);
477 spin_unlock(&init_mm.page_table_lock);
478 continue;
479 }
480 /*
481 * If we are ok with PG_LEVEL_2M mapping, then we will
482 * use the existing mapping,
483 *
484 * Otherwise, we will split the large page mapping but
485 * use the same existing protection bits except for
486 * large page, so that we don't violate Intel's TLB
487 * Application note (317080) which says, while changing
488 * the page sizes, new and old translations should
489 * not differ with respect to page frame and
490 * attributes.
491 */
492 if (page_size_mask & (1 << PG_LEVEL_2M)) {
493 if (!after_bootmem)
494 pages++;
495 last_map_addr = next;
496 continue;
497 }
498 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
499 }
500
501 if (page_size_mask & (1<<PG_LEVEL_2M)) {
502 pages++;
503 spin_lock(&init_mm.page_table_lock);
504 set_pte((pte_t *)pmd,
505 pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
506 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
507 spin_unlock(&init_mm.page_table_lock);
508 last_map_addr = next;
509 continue;
510 }
511
512 pte = alloc_low_page();
513 last_map_addr = phys_pte_init(pte, address, end, new_prot);
514
515 spin_lock(&init_mm.page_table_lock);
516 pmd_populate_kernel(&init_mm, pmd, pte);
517 spin_unlock(&init_mm.page_table_lock);
518 }
519 update_page_count(PG_LEVEL_2M, pages);
520 return last_map_addr;
521}
522
523static unsigned long __meminit
524phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
525 unsigned long page_size_mask)
526{
527 unsigned long pages = 0, next;
528 unsigned long last_map_addr = end;
529 int i = pud_index(addr);
530
531 for (; i < PTRS_PER_PUD; i++, addr = next) {
532 pud_t *pud = pud_page + pud_index(addr);
533 pmd_t *pmd;
534 pgprot_t prot = PAGE_KERNEL;
535
536 next = (addr & PUD_MASK) + PUD_SIZE;
537 if (addr >= end) {
538 if (!after_bootmem &&
539 !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
540 !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
541 set_pud(pud, __pud(0));
542 continue;
543 }
544
545 if (pud_val(*pud)) {
546 if (!pud_large(*pud)) {
547 pmd = pmd_offset(pud, 0);
548 last_map_addr = phys_pmd_init(pmd, addr, end,
549 page_size_mask, prot);
550 __flush_tlb_all();
551 continue;
552 }
553 /*
554 * If we are ok with PG_LEVEL_1G mapping, then we will
555 * use the existing mapping.
556 *
557 * Otherwise, we will split the gbpage mapping but use
558 * the same existing protection bits except for large
559 * page, so that we don't violate Intel's TLB
560 * Application note (317080) which says, while changing
561 * the page sizes, new and old translations should
562 * not differ with respect to page frame and
563 * attributes.
564 */
565 if (page_size_mask & (1 << PG_LEVEL_1G)) {
566 if (!after_bootmem)
567 pages++;
568 last_map_addr = next;
569 continue;
570 }
571 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
572 }
573
574 if (page_size_mask & (1<<PG_LEVEL_1G)) {
575 pages++;
576 spin_lock(&init_mm.page_table_lock);
577 set_pte((pte_t *)pud,
578 pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
579 PAGE_KERNEL_LARGE));
580 spin_unlock(&init_mm.page_table_lock);
581 last_map_addr = next;
582 continue;
583 }
584
585 pmd = alloc_low_page();
586 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
587 prot);
588
589 spin_lock(&init_mm.page_table_lock);
590 pud_populate(&init_mm, pud, pmd);
591 spin_unlock(&init_mm.page_table_lock);
592 }
593 __flush_tlb_all();
594
595 update_page_count(PG_LEVEL_1G, pages);
596
597 return last_map_addr;
598}
599
600unsigned long __meminit
601kernel_physical_mapping_init(unsigned long start,
602 unsigned long end,
603 unsigned long page_size_mask)
604{
605 bool pgd_changed = false;
606 unsigned long next, last_map_addr = end;
607 unsigned long addr;
608
609 start = (unsigned long)__va(start);
610 end = (unsigned long)__va(end);
611 addr = start;
612
613 for (; start < end; start = next) {
614 pgd_t *pgd = pgd_offset_k(start);
615 pud_t *pud;
616
617 next = (start & PGDIR_MASK) + PGDIR_SIZE;
618
619 if (pgd_val(*pgd)) {
620 pud = (pud_t *)pgd_page_vaddr(*pgd);
621 last_map_addr = phys_pud_init(pud, __pa(start),
622 __pa(end), page_size_mask);
623 continue;
624 }
625
626 pud = alloc_low_page();
627 last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
628 page_size_mask);
629
630 spin_lock(&init_mm.page_table_lock);
631 pgd_populate(&init_mm, pgd, pud);
632 spin_unlock(&init_mm.page_table_lock);
633 pgd_changed = true;
634 }
635
636 if (pgd_changed)
637 sync_global_pgds(addr, end - 1, 0);
638
639 __flush_tlb_all();
640
641 return last_map_addr;
642}
643
644#ifndef CONFIG_NUMA
645void __init initmem_init(void)
646{
647 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
648}
649#endif
650
651void __init paging_init(void)
652{
653 sparse_memory_present_with_active_regions(MAX_NUMNODES);
654 sparse_init();
655
656 /*
657 * clear the default setting with node 0
658 * note: don't use nodes_clear here, that is really clearing when
659 * numa support is not compiled in, and later node_set_state
660 * will not set it back.
661 */
662 node_clear_state(0, N_MEMORY);
663 if (N_MEMORY != N_NORMAL_MEMORY)
664 node_clear_state(0, N_NORMAL_MEMORY);
665
666 zone_sizes_init();
667}
668
669/*
670 * Memory hotplug specific functions
671 */
672#ifdef CONFIG_MEMORY_HOTPLUG
673/*
674 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
675 * updating.
676 */
677static void update_end_of_memory_vars(u64 start, u64 size)
678{
679 unsigned long end_pfn = PFN_UP(start + size);
680
681 if (end_pfn > max_pfn) {
682 max_pfn = end_pfn;
683 max_low_pfn = end_pfn;
684 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
685 }
686}
687
688/*
689 * Memory is added always to NORMAL zone. This means you will never get
690 * additional DMA/DMA32 memory.
691 */
692int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
693{
694 struct pglist_data *pgdat = NODE_DATA(nid);
695 struct zone *zone = pgdat->node_zones +
696 zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
697 unsigned long start_pfn = start >> PAGE_SHIFT;
698 unsigned long nr_pages = size >> PAGE_SHIFT;
699 int ret;
700
701 init_memory_mapping(start, start + size);
702
703 ret = __add_pages(nid, zone, start_pfn, nr_pages);
704 WARN_ON_ONCE(ret);
705
706 /* update max_pfn, max_low_pfn and high_memory */
707 update_end_of_memory_vars(start, size);
708
709 return ret;
710}
711EXPORT_SYMBOL_GPL(arch_add_memory);
712
713#define PAGE_INUSE 0xFD
714
715static void __meminit free_pagetable(struct page *page, int order)
716{
717 unsigned long magic;
718 unsigned int nr_pages = 1 << order;
719 struct vmem_altmap *altmap = to_vmem_altmap((unsigned long) page);
720
721 if (altmap) {
722 vmem_altmap_free(altmap, nr_pages);
723 return;
724 }
725
726 /* bootmem page has reserved flag */
727 if (PageReserved(page)) {
728 __ClearPageReserved(page);
729
730 magic = (unsigned long)page->lru.next;
731 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
732 while (nr_pages--)
733 put_page_bootmem(page++);
734 } else
735 while (nr_pages--)
736 free_reserved_page(page++);
737 } else
738 free_pages((unsigned long)page_address(page), order);
739}
740
741static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
742{
743 pte_t *pte;
744 int i;
745
746 for (i = 0; i < PTRS_PER_PTE; i++) {
747 pte = pte_start + i;
748 if (pte_val(*pte))
749 return;
750 }
751
752 /* free a pte talbe */
753 free_pagetable(pmd_page(*pmd), 0);
754 spin_lock(&init_mm.page_table_lock);
755 pmd_clear(pmd);
756 spin_unlock(&init_mm.page_table_lock);
757}
758
759static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
760{
761 pmd_t *pmd;
762 int i;
763
764 for (i = 0; i < PTRS_PER_PMD; i++) {
765 pmd = pmd_start + i;
766 if (pmd_val(*pmd))
767 return;
768 }
769
770 /* free a pmd talbe */
771 free_pagetable(pud_page(*pud), 0);
772 spin_lock(&init_mm.page_table_lock);
773 pud_clear(pud);
774 spin_unlock(&init_mm.page_table_lock);
775}
776
777/* Return true if pgd is changed, otherwise return false. */
778static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
779{
780 pud_t *pud;
781 int i;
782
783 for (i = 0; i < PTRS_PER_PUD; i++) {
784 pud = pud_start + i;
785 if (pud_val(*pud))
786 return false;
787 }
788
789 /* free a pud table */
790 free_pagetable(pgd_page(*pgd), 0);
791 spin_lock(&init_mm.page_table_lock);
792 pgd_clear(pgd);
793 spin_unlock(&init_mm.page_table_lock);
794
795 return true;
796}
797
798static void __meminit
799remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
800 bool direct)
801{
802 unsigned long next, pages = 0;
803 pte_t *pte;
804 void *page_addr;
805 phys_addr_t phys_addr;
806
807 pte = pte_start + pte_index(addr);
808 for (; addr < end; addr = next, pte++) {
809 next = (addr + PAGE_SIZE) & PAGE_MASK;
810 if (next > end)
811 next = end;
812
813 if (!pte_present(*pte))
814 continue;
815
816 /*
817 * We mapped [0,1G) memory as identity mapping when
818 * initializing, in arch/x86/kernel/head_64.S. These
819 * pagetables cannot be removed.
820 */
821 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
822 if (phys_addr < (phys_addr_t)0x40000000)
823 return;
824
825 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
826 /*
827 * Do not free direct mapping pages since they were
828 * freed when offlining, or simplely not in use.
829 */
830 if (!direct)
831 free_pagetable(pte_page(*pte), 0);
832
833 spin_lock(&init_mm.page_table_lock);
834 pte_clear(&init_mm, addr, pte);
835 spin_unlock(&init_mm.page_table_lock);
836
837 /* For non-direct mapping, pages means nothing. */
838 pages++;
839 } else {
840 /*
841 * If we are here, we are freeing vmemmap pages since
842 * direct mapped memory ranges to be freed are aligned.
843 *
844 * If we are not removing the whole page, it means
845 * other page structs in this page are being used and
846 * we canot remove them. So fill the unused page_structs
847 * with 0xFD, and remove the page when it is wholly
848 * filled with 0xFD.
849 */
850 memset((void *)addr, PAGE_INUSE, next - addr);
851
852 page_addr = page_address(pte_page(*pte));
853 if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
854 free_pagetable(pte_page(*pte), 0);
855
856 spin_lock(&init_mm.page_table_lock);
857 pte_clear(&init_mm, addr, pte);
858 spin_unlock(&init_mm.page_table_lock);
859 }
860 }
861 }
862
863 /* Call free_pte_table() in remove_pmd_table(). */
864 flush_tlb_all();
865 if (direct)
866 update_page_count(PG_LEVEL_4K, -pages);
867}
868
869static void __meminit
870remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
871 bool direct)
872{
873 unsigned long next, pages = 0;
874 pte_t *pte_base;
875 pmd_t *pmd;
876 void *page_addr;
877
878 pmd = pmd_start + pmd_index(addr);
879 for (; addr < end; addr = next, pmd++) {
880 next = pmd_addr_end(addr, end);
881
882 if (!pmd_present(*pmd))
883 continue;
884
885 if (pmd_large(*pmd)) {
886 if (IS_ALIGNED(addr, PMD_SIZE) &&
887 IS_ALIGNED(next, PMD_SIZE)) {
888 if (!direct)
889 free_pagetable(pmd_page(*pmd),
890 get_order(PMD_SIZE));
891
892 spin_lock(&init_mm.page_table_lock);
893 pmd_clear(pmd);
894 spin_unlock(&init_mm.page_table_lock);
895 pages++;
896 } else {
897 /* If here, we are freeing vmemmap pages. */
898 memset((void *)addr, PAGE_INUSE, next - addr);
899
900 page_addr = page_address(pmd_page(*pmd));
901 if (!memchr_inv(page_addr, PAGE_INUSE,
902 PMD_SIZE)) {
903 free_pagetable(pmd_page(*pmd),
904 get_order(PMD_SIZE));
905
906 spin_lock(&init_mm.page_table_lock);
907 pmd_clear(pmd);
908 spin_unlock(&init_mm.page_table_lock);
909 }
910 }
911
912 continue;
913 }
914
915 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
916 remove_pte_table(pte_base, addr, next, direct);
917 free_pte_table(pte_base, pmd);
918 }
919
920 /* Call free_pmd_table() in remove_pud_table(). */
921 if (direct)
922 update_page_count(PG_LEVEL_2M, -pages);
923}
924
925static void __meminit
926remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
927 bool direct)
928{
929 unsigned long next, pages = 0;
930 pmd_t *pmd_base;
931 pud_t *pud;
932 void *page_addr;
933
934 pud = pud_start + pud_index(addr);
935 for (; addr < end; addr = next, pud++) {
936 next = pud_addr_end(addr, end);
937
938 if (!pud_present(*pud))
939 continue;
940
941 if (pud_large(*pud)) {
942 if (IS_ALIGNED(addr, PUD_SIZE) &&
943 IS_ALIGNED(next, PUD_SIZE)) {
944 if (!direct)
945 free_pagetable(pud_page(*pud),
946 get_order(PUD_SIZE));
947
948 spin_lock(&init_mm.page_table_lock);
949 pud_clear(pud);
950 spin_unlock(&init_mm.page_table_lock);
951 pages++;
952 } else {
953 /* If here, we are freeing vmemmap pages. */
954 memset((void *)addr, PAGE_INUSE, next - addr);
955
956 page_addr = page_address(pud_page(*pud));
957 if (!memchr_inv(page_addr, PAGE_INUSE,
958 PUD_SIZE)) {
959 free_pagetable(pud_page(*pud),
960 get_order(PUD_SIZE));
961
962 spin_lock(&init_mm.page_table_lock);
963 pud_clear(pud);
964 spin_unlock(&init_mm.page_table_lock);
965 }
966 }
967
968 continue;
969 }
970
971 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
972 remove_pmd_table(pmd_base, addr, next, direct);
973 free_pmd_table(pmd_base, pud);
974 }
975
976 if (direct)
977 update_page_count(PG_LEVEL_1G, -pages);
978}
979
980/* start and end are both virtual address. */
981static void __meminit
982remove_pagetable(unsigned long start, unsigned long end, bool direct)
983{
984 unsigned long next;
985 unsigned long addr;
986 pgd_t *pgd;
987 pud_t *pud;
988 bool pgd_changed = false;
989
990 for (addr = start; addr < end; addr = next) {
991 next = pgd_addr_end(addr, end);
992
993 pgd = pgd_offset_k(addr);
994 if (!pgd_present(*pgd))
995 continue;
996
997 pud = (pud_t *)pgd_page_vaddr(*pgd);
998 remove_pud_table(pud, addr, next, direct);
999 if (free_pud_table(pud, pgd))
1000 pgd_changed = true;
1001 }
1002
1003 if (pgd_changed)
1004 sync_global_pgds(start, end - 1, 1);
1005
1006 flush_tlb_all();
1007}
1008
1009void __ref vmemmap_free(unsigned long start, unsigned long end)
1010{
1011 remove_pagetable(start, end, false);
1012}
1013
1014#ifdef CONFIG_MEMORY_HOTREMOVE
1015static void __meminit
1016kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1017{
1018 start = (unsigned long)__va(start);
1019 end = (unsigned long)__va(end);
1020
1021 remove_pagetable(start, end, true);
1022}
1023
1024int __ref arch_remove_memory(u64 start, u64 size)
1025{
1026 unsigned long start_pfn = start >> PAGE_SHIFT;
1027 unsigned long nr_pages = size >> PAGE_SHIFT;
1028 struct page *page = pfn_to_page(start_pfn);
1029 struct vmem_altmap *altmap;
1030 struct zone *zone;
1031 int ret;
1032
1033 /* With altmap the first mapped page is offset from @start */
1034 altmap = to_vmem_altmap((unsigned long) page);
1035 if (altmap)
1036 page += vmem_altmap_offset(altmap);
1037 zone = page_zone(page);
1038 ret = __remove_pages(zone, start_pfn, nr_pages);
1039 WARN_ON_ONCE(ret);
1040 kernel_physical_mapping_remove(start, start + size);
1041
1042 return ret;
1043}
1044#endif
1045#endif /* CONFIG_MEMORY_HOTPLUG */
1046
1047static struct kcore_list kcore_vsyscall;
1048
1049static void __init register_page_bootmem_info(void)
1050{
1051#ifdef CONFIG_NUMA
1052 int i;
1053
1054 for_each_online_node(i)
1055 register_page_bootmem_info_node(NODE_DATA(i));
1056#endif
1057}
1058
1059void __init mem_init(void)
1060{
1061 pci_iommu_alloc();
1062
1063 /* clear_bss() already clear the empty_zero_page */
1064
1065 register_page_bootmem_info();
1066
1067 /* this will put all memory onto the freelists */
1068 free_all_bootmem();
1069 after_bootmem = 1;
1070
1071 /* Register memory areas for /proc/kcore */
1072 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1073 PAGE_SIZE, KCORE_OTHER);
1074
1075 mem_init_print_info(NULL);
1076}
1077
1078const int rodata_test_data = 0xC3;
1079EXPORT_SYMBOL_GPL(rodata_test_data);
1080
1081int kernel_set_to_readonly;
1082
1083void set_kernel_text_rw(void)
1084{
1085 unsigned long start = PFN_ALIGN(_text);
1086 unsigned long end = PFN_ALIGN(__stop___ex_table);
1087
1088 if (!kernel_set_to_readonly)
1089 return;
1090
1091 pr_debug("Set kernel text: %lx - %lx for read write\n",
1092 start, end);
1093
1094 /*
1095 * Make the kernel identity mapping for text RW. Kernel text
1096 * mapping will always be RO. Refer to the comment in
1097 * static_protections() in pageattr.c
1098 */
1099 set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1100}
1101
1102void set_kernel_text_ro(void)
1103{
1104 unsigned long start = PFN_ALIGN(_text);
1105 unsigned long end = PFN_ALIGN(__stop___ex_table);
1106
1107 if (!kernel_set_to_readonly)
1108 return;
1109
1110 pr_debug("Set kernel text: %lx - %lx for read only\n",
1111 start, end);
1112
1113 /*
1114 * Set the kernel identity mapping for text RO.
1115 */
1116 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1117}
1118
1119void mark_rodata_ro(void)
1120{
1121 unsigned long start = PFN_ALIGN(_text);
1122 unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1123 unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1124 unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1125 unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1126 unsigned long all_end;
1127
1128 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1129 (end - start) >> 10);
1130 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1131
1132 kernel_set_to_readonly = 1;
1133
1134 /*
1135 * The rodata/data/bss/brk section (but not the kernel text!)
1136 * should also be not-executable.
1137 *
1138 * We align all_end to PMD_SIZE because the existing mapping
1139 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1140 * split the PMD and the reminder between _brk_end and the end
1141 * of the PMD will remain mapped executable.
1142 *
1143 * Any PMD which was setup after the one which covers _brk_end
1144 * has been zapped already via cleanup_highmem().
1145 */
1146 all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1147 set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1148
1149 rodata_test();
1150
1151#ifdef CONFIG_CPA_DEBUG
1152 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1153 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1154
1155 printk(KERN_INFO "Testing CPA: again\n");
1156 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1157#endif
1158
1159 free_init_pages("unused kernel",
1160 (unsigned long) __va(__pa_symbol(text_end)),
1161 (unsigned long) __va(__pa_symbol(rodata_start)));
1162 free_init_pages("unused kernel",
1163 (unsigned long) __va(__pa_symbol(rodata_end)),
1164 (unsigned long) __va(__pa_symbol(_sdata)));
1165
1166 debug_checkwx();
1167}
1168
1169int kern_addr_valid(unsigned long addr)
1170{
1171 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1172 pgd_t *pgd;
1173 pud_t *pud;
1174 pmd_t *pmd;
1175 pte_t *pte;
1176
1177 if (above != 0 && above != -1UL)
1178 return 0;
1179
1180 pgd = pgd_offset_k(addr);
1181 if (pgd_none(*pgd))
1182 return 0;
1183
1184 pud = pud_offset(pgd, addr);
1185 if (pud_none(*pud))
1186 return 0;
1187
1188 if (pud_large(*pud))
1189 return pfn_valid(pud_pfn(*pud));
1190
1191 pmd = pmd_offset(pud, addr);
1192 if (pmd_none(*pmd))
1193 return 0;
1194
1195 if (pmd_large(*pmd))
1196 return pfn_valid(pmd_pfn(*pmd));
1197
1198 pte = pte_offset_kernel(pmd, addr);
1199 if (pte_none(*pte))
1200 return 0;
1201
1202 return pfn_valid(pte_pfn(*pte));
1203}
1204
1205static unsigned long probe_memory_block_size(void)
1206{
1207 unsigned long bz = MIN_MEMORY_BLOCK_SIZE;
1208
1209 /* if system is UV or has 64GB of RAM or more, use large blocks */
1210 if (is_uv_system() || ((max_pfn << PAGE_SHIFT) >= (64UL << 30)))
1211 bz = 2UL << 30; /* 2GB */
1212
1213 pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1214
1215 return bz;
1216}
1217
1218static unsigned long memory_block_size_probed;
1219unsigned long memory_block_size_bytes(void)
1220{
1221 if (!memory_block_size_probed)
1222 memory_block_size_probed = probe_memory_block_size();
1223
1224 return memory_block_size_probed;
1225}
1226
1227#ifdef CONFIG_SPARSEMEM_VMEMMAP
1228/*
1229 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1230 */
1231static long __meminitdata addr_start, addr_end;
1232static void __meminitdata *p_start, *p_end;
1233static int __meminitdata node_start;
1234
1235static int __meminit vmemmap_populate_hugepages(unsigned long start,
1236 unsigned long end, int node, struct vmem_altmap *altmap)
1237{
1238 unsigned long addr;
1239 unsigned long next;
1240 pgd_t *pgd;
1241 pud_t *pud;
1242 pmd_t *pmd;
1243
1244 for (addr = start; addr < end; addr = next) {
1245 next = pmd_addr_end(addr, end);
1246
1247 pgd = vmemmap_pgd_populate(addr, node);
1248 if (!pgd)
1249 return -ENOMEM;
1250
1251 pud = vmemmap_pud_populate(pgd, addr, node);
1252 if (!pud)
1253 return -ENOMEM;
1254
1255 pmd = pmd_offset(pud, addr);
1256 if (pmd_none(*pmd)) {
1257 void *p;
1258
1259 p = __vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1260 if (p) {
1261 pte_t entry;
1262
1263 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1264 PAGE_KERNEL_LARGE);
1265 set_pmd(pmd, __pmd(pte_val(entry)));
1266
1267 /* check to see if we have contiguous blocks */
1268 if (p_end != p || node_start != node) {
1269 if (p_start)
1270 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1271 addr_start, addr_end-1, p_start, p_end-1, node_start);
1272 addr_start = addr;
1273 node_start = node;
1274 p_start = p;
1275 }
1276
1277 addr_end = addr + PMD_SIZE;
1278 p_end = p + PMD_SIZE;
1279 continue;
1280 } else if (altmap)
1281 return -ENOMEM; /* no fallback */
1282 } else if (pmd_large(*pmd)) {
1283 vmemmap_verify((pte_t *)pmd, node, addr, next);
1284 continue;
1285 }
1286 pr_warn_once("vmemmap: falling back to regular page backing\n");
1287 if (vmemmap_populate_basepages(addr, next, node))
1288 return -ENOMEM;
1289 }
1290 return 0;
1291}
1292
1293int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1294{
1295 struct vmem_altmap *altmap = to_vmem_altmap(start);
1296 int err;
1297
1298 if (cpu_has_pse)
1299 err = vmemmap_populate_hugepages(start, end, node, altmap);
1300 else if (altmap) {
1301 pr_err_once("%s: no cpu support for altmap allocations\n",
1302 __func__);
1303 err = -ENOMEM;
1304 } else
1305 err = vmemmap_populate_basepages(start, end, node);
1306 if (!err)
1307 sync_global_pgds(start, end - 1, 0);
1308 return err;
1309}
1310
1311#if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1312void register_page_bootmem_memmap(unsigned long section_nr,
1313 struct page *start_page, unsigned long size)
1314{
1315 unsigned long addr = (unsigned long)start_page;
1316 unsigned long end = (unsigned long)(start_page + size);
1317 unsigned long next;
1318 pgd_t *pgd;
1319 pud_t *pud;
1320 pmd_t *pmd;
1321 unsigned int nr_pages;
1322 struct page *page;
1323
1324 for (; addr < end; addr = next) {
1325 pte_t *pte = NULL;
1326
1327 pgd = pgd_offset_k(addr);
1328 if (pgd_none(*pgd)) {
1329 next = (addr + PAGE_SIZE) & PAGE_MASK;
1330 continue;
1331 }
1332 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1333
1334 pud = pud_offset(pgd, addr);
1335 if (pud_none(*pud)) {
1336 next = (addr + PAGE_SIZE) & PAGE_MASK;
1337 continue;
1338 }
1339 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1340
1341 if (!cpu_has_pse) {
1342 next = (addr + PAGE_SIZE) & PAGE_MASK;
1343 pmd = pmd_offset(pud, addr);
1344 if (pmd_none(*pmd))
1345 continue;
1346 get_page_bootmem(section_nr, pmd_page(*pmd),
1347 MIX_SECTION_INFO);
1348
1349 pte = pte_offset_kernel(pmd, addr);
1350 if (pte_none(*pte))
1351 continue;
1352 get_page_bootmem(section_nr, pte_page(*pte),
1353 SECTION_INFO);
1354 } else {
1355 next = pmd_addr_end(addr, end);
1356
1357 pmd = pmd_offset(pud, addr);
1358 if (pmd_none(*pmd))
1359 continue;
1360
1361 nr_pages = 1 << (get_order(PMD_SIZE));
1362 page = pmd_page(*pmd);
1363 while (nr_pages--)
1364 get_page_bootmem(section_nr, page++,
1365 SECTION_INFO);
1366 }
1367 }
1368}
1369#endif
1370
1371void __meminit vmemmap_populate_print_last(void)
1372{
1373 if (p_start) {
1374 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1375 addr_start, addr_end-1, p_start, p_end-1, node_start);
1376 p_start = NULL;
1377 p_end = NULL;
1378 node_start = 0;
1379 }
1380}
1381#endif