Linux Audio

Check our new training course

Loading...
v3.1
 
 
  1#include <linux/kernel.h>
  2#include <linux/sched.h>
  3#include <linux/init.h>
  4#include <linux/module.h>
  5#include <linux/timer.h>
  6#include <linux/acpi_pmtmr.h>
  7#include <linux/cpufreq.h>
  8#include <linux/delay.h>
  9#include <linux/clocksource.h>
 10#include <linux/percpu.h>
 11#include <linux/timex.h>
 
 12
 13#include <asm/hpet.h>
 14#include <asm/timer.h>
 15#include <asm/vgtod.h>
 16#include <asm/time.h>
 17#include <asm/delay.h>
 18#include <asm/hypervisor.h>
 19#include <asm/nmi.h>
 20#include <asm/x86_init.h>
 
 21
 22unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
 23EXPORT_SYMBOL(cpu_khz);
 24
 25unsigned int __read_mostly tsc_khz;
 26EXPORT_SYMBOL(tsc_khz);
 27
 28/*
 29 * TSC can be unstable due to cpufreq or due to unsynced TSCs
 30 */
 31static int __read_mostly tsc_unstable;
 32
 33/* native_sched_clock() is called before tsc_init(), so
 34   we must start with the TSC soft disabled to prevent
 35   erroneous rdtsc usage on !cpu_has_tsc processors */
 36static int __read_mostly tsc_disabled = -1;
 37
 38static int tsc_clocksource_reliable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 39/*
 40 * Scheduler clock - returns current time in nanosec units.
 41 */
 42u64 native_sched_clock(void)
 43{
 44	u64 this_offset;
 
 
 
 
 
 45
 46	/*
 47	 * Fall back to jiffies if there's no TSC available:
 48	 * ( But note that we still use it if the TSC is marked
 49	 *   unstable. We do this because unlike Time Of Day,
 50	 *   the scheduler clock tolerates small errors and it's
 51	 *   very important for it to be as fast as the platform
 52	 *   can achieve it. )
 53	 */
 54	if (unlikely(tsc_disabled)) {
 55		/* No locking but a rare wrong value is not a big deal: */
 56		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
 57	}
 58
 59	/* read the Time Stamp Counter: */
 60	rdtscll(this_offset);
 
 61
 62	/* return the value in ns */
 63	return __cycles_2_ns(this_offset);
 
 
 
 
 64}
 65
 66/* We need to define a real function for sched_clock, to override the
 67   weak default version */
 68#ifdef CONFIG_PARAVIRT
 69unsigned long long sched_clock(void)
 70{
 71	return paravirt_sched_clock();
 72}
 73#else
 74unsigned long long
 75sched_clock(void) __attribute__((alias("native_sched_clock")));
 76#endif
 77
 78int check_tsc_unstable(void)
 79{
 80	return tsc_unstable;
 81}
 82EXPORT_SYMBOL_GPL(check_tsc_unstable);
 83
 
 
 
 
 
 
 84#ifdef CONFIG_X86_TSC
 85int __init notsc_setup(char *str)
 86{
 87	printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
 88			"cannot disable TSC completely.\n");
 89	tsc_disabled = 1;
 90	return 1;
 91}
 92#else
 93/*
 94 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 95 * in cpu/common.c
 96 */
 97int __init notsc_setup(char *str)
 98{
 99	setup_clear_cpu_cap(X86_FEATURE_TSC);
100	return 1;
101}
102#endif
103
104__setup("notsc", notsc_setup);
105
106static int no_sched_irq_time;
107
108static int __init tsc_setup(char *str)
109{
110	if (!strcmp(str, "reliable"))
111		tsc_clocksource_reliable = 1;
112	if (!strncmp(str, "noirqtime", 9))
113		no_sched_irq_time = 1;
114	return 1;
115}
116
117__setup("tsc=", tsc_setup);
118
119#define MAX_RETRIES     5
120#define SMI_TRESHOLD    50000
121
122/*
123 * Read TSC and the reference counters. Take care of SMI disturbance
124 */
125static u64 tsc_read_refs(u64 *p, int hpet)
126{
127	u64 t1, t2;
128	int i;
129
130	for (i = 0; i < MAX_RETRIES; i++) {
131		t1 = get_cycles();
132		if (hpet)
133			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
134		else
135			*p = acpi_pm_read_early();
136		t2 = get_cycles();
137		if ((t2 - t1) < SMI_TRESHOLD)
138			return t2;
139	}
140	return ULLONG_MAX;
141}
142
143/*
144 * Calculate the TSC frequency from HPET reference
145 */
146static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
147{
148	u64 tmp;
149
150	if (hpet2 < hpet1)
151		hpet2 += 0x100000000ULL;
152	hpet2 -= hpet1;
153	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
154	do_div(tmp, 1000000);
155	do_div(deltatsc, tmp);
156
157	return (unsigned long) deltatsc;
158}
159
160/*
161 * Calculate the TSC frequency from PMTimer reference
162 */
163static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
164{
165	u64 tmp;
166
167	if (!pm1 && !pm2)
168		return ULONG_MAX;
169
170	if (pm2 < pm1)
171		pm2 += (u64)ACPI_PM_OVRRUN;
172	pm2 -= pm1;
173	tmp = pm2 * 1000000000LL;
174	do_div(tmp, PMTMR_TICKS_PER_SEC);
175	do_div(deltatsc, tmp);
176
177	return (unsigned long) deltatsc;
178}
179
180#define CAL_MS		10
181#define CAL_LATCH	(CLOCK_TICK_RATE / (1000 / CAL_MS))
182#define CAL_PIT_LOOPS	1000
183
184#define CAL2_MS		50
185#define CAL2_LATCH	(CLOCK_TICK_RATE / (1000 / CAL2_MS))
186#define CAL2_PIT_LOOPS	5000
187
188
189/*
190 * Try to calibrate the TSC against the Programmable
191 * Interrupt Timer and return the frequency of the TSC
192 * in kHz.
193 *
194 * Return ULONG_MAX on failure to calibrate.
195 */
196static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
197{
198	u64 tsc, t1, t2, delta;
199	unsigned long tscmin, tscmax;
200	int pitcnt;
201
202	/* Set the Gate high, disable speaker */
203	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
204
205	/*
206	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
207	 * count mode), binary count. Set the latch register to 50ms
208	 * (LSB then MSB) to begin countdown.
209	 */
210	outb(0xb0, 0x43);
211	outb(latch & 0xff, 0x42);
212	outb(latch >> 8, 0x42);
213
214	tsc = t1 = t2 = get_cycles();
215
216	pitcnt = 0;
217	tscmax = 0;
218	tscmin = ULONG_MAX;
219	while ((inb(0x61) & 0x20) == 0) {
220		t2 = get_cycles();
221		delta = t2 - tsc;
222		tsc = t2;
223		if ((unsigned long) delta < tscmin)
224			tscmin = (unsigned int) delta;
225		if ((unsigned long) delta > tscmax)
226			tscmax = (unsigned int) delta;
227		pitcnt++;
228	}
229
230	/*
231	 * Sanity checks:
232	 *
233	 * If we were not able to read the PIT more than loopmin
234	 * times, then we have been hit by a massive SMI
235	 *
236	 * If the maximum is 10 times larger than the minimum,
237	 * then we got hit by an SMI as well.
238	 */
239	if (pitcnt < loopmin || tscmax > 10 * tscmin)
240		return ULONG_MAX;
241
242	/* Calculate the PIT value */
243	delta = t2 - t1;
244	do_div(delta, ms);
245	return delta;
246}
247
248/*
249 * This reads the current MSB of the PIT counter, and
250 * checks if we are running on sufficiently fast and
251 * non-virtualized hardware.
252 *
253 * Our expectations are:
254 *
255 *  - the PIT is running at roughly 1.19MHz
256 *
257 *  - each IO is going to take about 1us on real hardware,
258 *    but we allow it to be much faster (by a factor of 10) or
259 *    _slightly_ slower (ie we allow up to a 2us read+counter
260 *    update - anything else implies a unacceptably slow CPU
261 *    or PIT for the fast calibration to work.
262 *
263 *  - with 256 PIT ticks to read the value, we have 214us to
264 *    see the same MSB (and overhead like doing a single TSC
265 *    read per MSB value etc).
266 *
267 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
268 *    them each to take about a microsecond on real hardware.
269 *    So we expect a count value of around 100. But we'll be
270 *    generous, and accept anything over 50.
271 *
272 *  - if the PIT is stuck, and we see *many* more reads, we
273 *    return early (and the next caller of pit_expect_msb()
274 *    then consider it a failure when they don't see the
275 *    next expected value).
276 *
277 * These expectations mean that we know that we have seen the
278 * transition from one expected value to another with a fairly
279 * high accuracy, and we didn't miss any events. We can thus
280 * use the TSC value at the transitions to calculate a pretty
281 * good value for the TSC frequencty.
282 */
283static inline int pit_verify_msb(unsigned char val)
284{
285	/* Ignore LSB */
286	inb(0x42);
287	return inb(0x42) == val;
288}
289
290static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
291{
292	int count;
293	u64 tsc = 0;
294
295	for (count = 0; count < 50000; count++) {
296		if (!pit_verify_msb(val))
297			break;
 
298		tsc = get_cycles();
299	}
300	*deltap = get_cycles() - tsc;
301	*tscp = tsc;
302
303	/*
304	 * We require _some_ success, but the quality control
305	 * will be based on the error terms on the TSC values.
306	 */
307	return count > 5;
308}
309
310/*
311 * How many MSB values do we want to see? We aim for
312 * a maximum error rate of 500ppm (in practice the
313 * real error is much smaller), but refuse to spend
314 * more than 25ms on it.
315 */
316#define MAX_QUICK_PIT_MS 25
317#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
318
319static unsigned long quick_pit_calibrate(void)
320{
321	int i;
322	u64 tsc, delta;
323	unsigned long d1, d2;
324
325	/* Set the Gate high, disable speaker */
326	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
327
328	/*
329	 * Counter 2, mode 0 (one-shot), binary count
330	 *
331	 * NOTE! Mode 2 decrements by two (and then the
332	 * output is flipped each time, giving the same
333	 * final output frequency as a decrement-by-one),
334	 * so mode 0 is much better when looking at the
335	 * individual counts.
336	 */
337	outb(0xb0, 0x43);
338
339	/* Start at 0xffff */
340	outb(0xff, 0x42);
341	outb(0xff, 0x42);
342
343	/*
344	 * The PIT starts counting at the next edge, so we
345	 * need to delay for a microsecond. The easiest way
346	 * to do that is to just read back the 16-bit counter
347	 * once from the PIT.
348	 */
349	pit_verify_msb(0);
350
351	if (pit_expect_msb(0xff, &tsc, &d1)) {
352		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
353			if (!pit_expect_msb(0xff-i, &delta, &d2))
354				break;
355
 
 
 
 
 
 
 
 
 
 
356			/*
357			 * Iterate until the error is less than 500 ppm
358			 */
359			delta -= tsc;
360			if (d1+d2 >= delta >> 11)
361				continue;
362
363			/*
364			 * Check the PIT one more time to verify that
365			 * all TSC reads were stable wrt the PIT.
366			 *
367			 * This also guarantees serialization of the
368			 * last cycle read ('d2') in pit_expect_msb.
369			 */
370			if (!pit_verify_msb(0xfe - i))
371				break;
372			goto success;
373		}
374	}
375	printk("Fast TSC calibration failed\n");
376	return 0;
377
378success:
379	/*
380	 * Ok, if we get here, then we've seen the
381	 * MSB of the PIT decrement 'i' times, and the
382	 * error has shrunk to less than 500 ppm.
383	 *
384	 * As a result, we can depend on there not being
385	 * any odd delays anywhere, and the TSC reads are
386	 * reliable (within the error). We also adjust the
387	 * delta to the middle of the error bars, just
388	 * because it looks nicer.
389	 *
390	 * kHz = ticks / time-in-seconds / 1000;
391	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
392	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
393	 */
394	delta += (long)(d2 - d1)/2;
395	delta *= PIT_TICK_RATE;
396	do_div(delta, i*256*1000);
397	printk("Fast TSC calibration using PIT\n");
398	return delta;
399}
400
401/**
402 * native_calibrate_tsc - calibrate the tsc on boot
403 */
404unsigned long native_calibrate_tsc(void)
405{
406	u64 tsc1, tsc2, delta, ref1, ref2;
407	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
408	unsigned long flags, latch, ms, fast_calibrate;
409	int hpet = is_hpet_enabled(), i, loopmin;
410
 
 
 
 
 
 
 
411	local_irq_save(flags);
412	fast_calibrate = quick_pit_calibrate();
413	local_irq_restore(flags);
414	if (fast_calibrate)
415		return fast_calibrate;
416
417	/*
418	 * Run 5 calibration loops to get the lowest frequency value
419	 * (the best estimate). We use two different calibration modes
420	 * here:
421	 *
422	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
423	 * load a timeout of 50ms. We read the time right after we
424	 * started the timer and wait until the PIT count down reaches
425	 * zero. In each wait loop iteration we read the TSC and check
426	 * the delta to the previous read. We keep track of the min
427	 * and max values of that delta. The delta is mostly defined
428	 * by the IO time of the PIT access, so we can detect when a
429	 * SMI/SMM disturbance happened between the two reads. If the
430	 * maximum time is significantly larger than the minimum time,
431	 * then we discard the result and have another try.
432	 *
433	 * 2) Reference counter. If available we use the HPET or the
434	 * PMTIMER as a reference to check the sanity of that value.
435	 * We use separate TSC readouts and check inside of the
436	 * reference read for a SMI/SMM disturbance. We dicard
437	 * disturbed values here as well. We do that around the PIT
438	 * calibration delay loop as we have to wait for a certain
439	 * amount of time anyway.
440	 */
441
442	/* Preset PIT loop values */
443	latch = CAL_LATCH;
444	ms = CAL_MS;
445	loopmin = CAL_PIT_LOOPS;
446
447	for (i = 0; i < 3; i++) {
448		unsigned long tsc_pit_khz;
449
450		/*
451		 * Read the start value and the reference count of
452		 * hpet/pmtimer when available. Then do the PIT
453		 * calibration, which will take at least 50ms, and
454		 * read the end value.
455		 */
456		local_irq_save(flags);
457		tsc1 = tsc_read_refs(&ref1, hpet);
458		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
459		tsc2 = tsc_read_refs(&ref2, hpet);
460		local_irq_restore(flags);
461
462		/* Pick the lowest PIT TSC calibration so far */
463		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
464
465		/* hpet or pmtimer available ? */
466		if (ref1 == ref2)
467			continue;
468
469		/* Check, whether the sampling was disturbed by an SMI */
470		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
471			continue;
472
473		tsc2 = (tsc2 - tsc1) * 1000000LL;
474		if (hpet)
475			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
476		else
477			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
478
479		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
480
481		/* Check the reference deviation */
482		delta = ((u64) tsc_pit_min) * 100;
483		do_div(delta, tsc_ref_min);
484
485		/*
486		 * If both calibration results are inside a 10% window
487		 * then we can be sure, that the calibration
488		 * succeeded. We break out of the loop right away. We
489		 * use the reference value, as it is more precise.
490		 */
491		if (delta >= 90 && delta <= 110) {
492			printk(KERN_INFO
493			       "TSC: PIT calibration matches %s. %d loops\n",
494			       hpet ? "HPET" : "PMTIMER", i + 1);
495			return tsc_ref_min;
496		}
497
498		/*
499		 * Check whether PIT failed more than once. This
500		 * happens in virtualized environments. We need to
501		 * give the virtual PC a slightly longer timeframe for
502		 * the HPET/PMTIMER to make the result precise.
503		 */
504		if (i == 1 && tsc_pit_min == ULONG_MAX) {
505			latch = CAL2_LATCH;
506			ms = CAL2_MS;
507			loopmin = CAL2_PIT_LOOPS;
508		}
509	}
510
511	/*
512	 * Now check the results.
513	 */
514	if (tsc_pit_min == ULONG_MAX) {
515		/* PIT gave no useful value */
516		printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
517
518		/* We don't have an alternative source, disable TSC */
519		if (!hpet && !ref1 && !ref2) {
520			printk("TSC: No reference (HPET/PMTIMER) available\n");
521			return 0;
522		}
523
524		/* The alternative source failed as well, disable TSC */
525		if (tsc_ref_min == ULONG_MAX) {
526			printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
527			       "failed.\n");
528			return 0;
529		}
530
531		/* Use the alternative source */
532		printk(KERN_INFO "TSC: using %s reference calibration\n",
533		       hpet ? "HPET" : "PMTIMER");
534
535		return tsc_ref_min;
536	}
537
538	/* We don't have an alternative source, use the PIT calibration value */
539	if (!hpet && !ref1 && !ref2) {
540		printk(KERN_INFO "TSC: Using PIT calibration value\n");
541		return tsc_pit_min;
542	}
543
544	/* The alternative source failed, use the PIT calibration value */
545	if (tsc_ref_min == ULONG_MAX) {
546		printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
547		       "Using PIT calibration\n");
548		return tsc_pit_min;
549	}
550
551	/*
552	 * The calibration values differ too much. In doubt, we use
553	 * the PIT value as we know that there are PMTIMERs around
554	 * running at double speed. At least we let the user know:
555	 */
556	printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
557	       hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
558	printk(KERN_INFO "TSC: Using PIT calibration value\n");
559	return tsc_pit_min;
560}
561
562int recalibrate_cpu_khz(void)
563{
564#ifndef CONFIG_SMP
565	unsigned long cpu_khz_old = cpu_khz;
566
567	if (cpu_has_tsc) {
568		tsc_khz = x86_platform.calibrate_tsc();
569		cpu_khz = tsc_khz;
570		cpu_data(0).loops_per_jiffy =
571			cpufreq_scale(cpu_data(0).loops_per_jiffy,
572					cpu_khz_old, cpu_khz);
573		return 0;
574	} else
575		return -ENODEV;
576#else
577	return -ENODEV;
578#endif
579}
580
581EXPORT_SYMBOL(recalibrate_cpu_khz);
582
583
584/* Accelerators for sched_clock()
585 * convert from cycles(64bits) => nanoseconds (64bits)
586 *  basic equation:
587 *              ns = cycles / (freq / ns_per_sec)
588 *              ns = cycles * (ns_per_sec / freq)
589 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
590 *              ns = cycles * (10^6 / cpu_khz)
591 *
592 *      Then we use scaling math (suggested by george@mvista.com) to get:
593 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
594 *              ns = cycles * cyc2ns_scale / SC
595 *
596 *      And since SC is a constant power of two, we can convert the div
597 *  into a shift.
598 *
599 *  We can use khz divisor instead of mhz to keep a better precision, since
600 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
601 *  (mathieu.desnoyers@polymtl.ca)
602 *
603 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
604 */
605
606DEFINE_PER_CPU(unsigned long, cyc2ns);
607DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
608
609static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
610{
611	unsigned long long tsc_now, ns_now, *offset;
612	unsigned long flags, *scale;
613
614	local_irq_save(flags);
615	sched_clock_idle_sleep_event();
616
617	scale = &per_cpu(cyc2ns, cpu);
618	offset = &per_cpu(cyc2ns_offset, cpu);
619
620	rdtscll(tsc_now);
621	ns_now = __cycles_2_ns(tsc_now);
622
623	if (cpu_khz) {
624		*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
625		*offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR);
626	}
627
628	sched_clock_idle_wakeup_event(0);
629	local_irq_restore(flags);
630}
631
632static unsigned long long cyc2ns_suspend;
633
634void save_sched_clock_state(void)
635{
636	if (!sched_clock_stable)
637		return;
638
639	cyc2ns_suspend = sched_clock();
640}
641
642/*
643 * Even on processors with invariant TSC, TSC gets reset in some the
644 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
645 * arbitrary value (still sync'd across cpu's) during resume from such sleep
646 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
647 * that sched_clock() continues from the point where it was left off during
648 * suspend.
649 */
650void restore_sched_clock_state(void)
651{
652	unsigned long long offset;
653	unsigned long flags;
654	int cpu;
655
656	if (!sched_clock_stable)
657		return;
658
659	local_irq_save(flags);
660
661	__this_cpu_write(cyc2ns_offset, 0);
 
 
 
 
 
 
 
 
662	offset = cyc2ns_suspend - sched_clock();
663
664	for_each_possible_cpu(cpu)
665		per_cpu(cyc2ns_offset, cpu) = offset;
 
 
666
667	local_irq_restore(flags);
668}
669
670#ifdef CONFIG_CPU_FREQ
671
672/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
673 * changes.
674 *
675 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
676 * not that important because current Opteron setups do not support
677 * scaling on SMP anyroads.
678 *
679 * Should fix up last_tsc too. Currently gettimeofday in the
680 * first tick after the change will be slightly wrong.
681 */
682
683static unsigned int  ref_freq;
684static unsigned long loops_per_jiffy_ref;
685static unsigned long tsc_khz_ref;
686
687static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
688				void *data)
689{
690	struct cpufreq_freqs *freq = data;
691	unsigned long *lpj;
692
693	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
694		return 0;
695
696	lpj = &boot_cpu_data.loops_per_jiffy;
697#ifdef CONFIG_SMP
698	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
699		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
700#endif
701
702	if (!ref_freq) {
703		ref_freq = freq->old;
704		loops_per_jiffy_ref = *lpj;
705		tsc_khz_ref = tsc_khz;
706	}
707	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
708			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
709			(val == CPUFREQ_RESUMECHANGE)) {
710		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
711
712		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
713		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
714			mark_tsc_unstable("cpufreq changes");
715	}
716
717	set_cyc2ns_scale(tsc_khz, freq->cpu);
 
718
719	return 0;
720}
721
722static struct notifier_block time_cpufreq_notifier_block = {
723	.notifier_call  = time_cpufreq_notifier
724};
725
726static int __init cpufreq_tsc(void)
727{
728	if (!cpu_has_tsc)
729		return 0;
730	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
731		return 0;
732	cpufreq_register_notifier(&time_cpufreq_notifier_block,
733				CPUFREQ_TRANSITION_NOTIFIER);
734	return 0;
735}
736
737core_initcall(cpufreq_tsc);
738
739#endif /* CONFIG_CPU_FREQ */
740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
741/* clocksource code */
742
743static struct clocksource clocksource_tsc;
744
745/*
746 * We compare the TSC to the cycle_last value in the clocksource
747 * structure to avoid a nasty time-warp. This can be observed in a
748 * very small window right after one CPU updated cycle_last under
749 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
750 * is smaller than the cycle_last reference value due to a TSC which
751 * is slighty behind. This delta is nowhere else observable, but in
752 * that case it results in a forward time jump in the range of hours
753 * due to the unsigned delta calculation of the time keeping core
754 * code, which is necessary to support wrapping clocksources like pm
755 * timer.
 
 
 
 
756 */
757static cycle_t read_tsc(struct clocksource *cs)
758{
759	cycle_t ret = (cycle_t)get_cycles();
760
761	return ret >= clocksource_tsc.cycle_last ?
762		ret : clocksource_tsc.cycle_last;
763}
764
765static void resume_tsc(struct clocksource *cs)
766{
767	clocksource_tsc.cycle_last = 0;
768}
769
 
 
 
770static struct clocksource clocksource_tsc = {
771	.name                   = "tsc",
772	.rating                 = 300,
773	.read                   = read_tsc,
774	.resume			= resume_tsc,
775	.mask                   = CLOCKSOURCE_MASK(64),
776	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
777				  CLOCK_SOURCE_MUST_VERIFY,
778#ifdef CONFIG_X86_64
779	.archdata               = { .vclock_mode = VCLOCK_TSC },
780#endif
781};
782
783void mark_tsc_unstable(char *reason)
784{
785	if (!tsc_unstable) {
786		tsc_unstable = 1;
787		sched_clock_stable = 0;
788		disable_sched_clock_irqtime();
789		printk(KERN_INFO "Marking TSC unstable due to %s\n", reason);
790		/* Change only the rating, when not registered */
791		if (clocksource_tsc.mult)
792			clocksource_mark_unstable(&clocksource_tsc);
793		else {
794			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
795			clocksource_tsc.rating = 0;
796		}
797	}
798}
799
800EXPORT_SYMBOL_GPL(mark_tsc_unstable);
801
802static void __init check_system_tsc_reliable(void)
803{
804#ifdef CONFIG_MGEODE_LX
805	/* RTSC counts during suspend */
 
806#define RTSC_SUSP 0x100
807	unsigned long res_low, res_high;
808
809	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
810	/* Geode_LX - the OLPC CPU has a very reliable TSC */
811	if (res_low & RTSC_SUSP)
812		tsc_clocksource_reliable = 1;
 
813#endif
814	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
815		tsc_clocksource_reliable = 1;
816}
817
818/*
819 * Make an educated guess if the TSC is trustworthy and synchronized
820 * over all CPUs.
821 */
822__cpuinit int unsynchronized_tsc(void)
823{
824	if (!cpu_has_tsc || tsc_unstable)
825		return 1;
826
827#ifdef CONFIG_SMP
828	if (apic_is_clustered_box())
829		return 1;
830#endif
831
832	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
833		return 0;
834
835	if (tsc_clocksource_reliable)
836		return 0;
837	/*
838	 * Intel systems are normally all synchronized.
839	 * Exceptions must mark TSC as unstable:
840	 */
841	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
842		/* assume multi socket systems are not synchronized: */
843		if (num_possible_cpus() > 1)
844			return 1;
845	}
846
847	return 0;
848}
849
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
850
851static void tsc_refine_calibration_work(struct work_struct *work);
852static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
853/**
854 * tsc_refine_calibration_work - Further refine tsc freq calibration
855 * @work - ignored.
856 *
857 * This functions uses delayed work over a period of a
858 * second to further refine the TSC freq value. Since this is
859 * timer based, instead of loop based, we don't block the boot
860 * process while this longer calibration is done.
861 *
862 * If there are any calibration anomalies (too many SMIs, etc),
863 * or the refined calibration is off by 1% of the fast early
864 * calibration, we throw out the new calibration and use the
865 * early calibration.
866 */
867static void tsc_refine_calibration_work(struct work_struct *work)
868{
869	static u64 tsc_start = -1, ref_start;
870	static int hpet;
871	u64 tsc_stop, ref_stop, delta;
872	unsigned long freq;
873
874	/* Don't bother refining TSC on unstable systems */
875	if (check_tsc_unstable())
876		goto out;
877
878	/*
879	 * Since the work is started early in boot, we may be
880	 * delayed the first time we expire. So set the workqueue
881	 * again once we know timers are working.
882	 */
883	if (tsc_start == -1) {
884		/*
885		 * Only set hpet once, to avoid mixing hardware
886		 * if the hpet becomes enabled later.
887		 */
888		hpet = is_hpet_enabled();
889		schedule_delayed_work(&tsc_irqwork, HZ);
890		tsc_start = tsc_read_refs(&ref_start, hpet);
891		return;
892	}
893
894	tsc_stop = tsc_read_refs(&ref_stop, hpet);
895
896	/* hpet or pmtimer available ? */
897	if (ref_start == ref_stop)
898		goto out;
899
900	/* Check, whether the sampling was disturbed by an SMI */
901	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
902		goto out;
903
904	delta = tsc_stop - tsc_start;
905	delta *= 1000000LL;
906	if (hpet)
907		freq = calc_hpet_ref(delta, ref_start, ref_stop);
908	else
909		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
910
911	/* Make sure we're within 1% */
912	if (abs(tsc_khz - freq) > tsc_khz/100)
913		goto out;
914
915	tsc_khz = freq;
916	printk(KERN_INFO "Refined TSC clocksource calibration: "
917		"%lu.%03lu MHz.\n", (unsigned long)tsc_khz / 1000,
918					(unsigned long)tsc_khz % 1000);
919
920out:
 
 
921	clocksource_register_khz(&clocksource_tsc, tsc_khz);
922}
923
924
925static int __init init_tsc_clocksource(void)
926{
927	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
928		return 0;
929
930	if (tsc_clocksource_reliable)
931		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
932	/* lower the rating if we already know its unstable: */
933	if (check_tsc_unstable()) {
934		clocksource_tsc.rating = 0;
935		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
936	}
 
 
 
 
 
 
 
 
 
 
 
 
 
937	schedule_delayed_work(&tsc_irqwork, 0);
938	return 0;
939}
940/*
941 * We use device_initcall here, to ensure we run after the hpet
942 * is fully initialized, which may occur at fs_initcall time.
943 */
944device_initcall(init_tsc_clocksource);
945
946void __init tsc_init(void)
947{
948	u64 lpj;
949	int cpu;
950
951	x86_init.timers.tsc_pre_init();
952
953	if (!cpu_has_tsc)
954		return;
 
955
956	tsc_khz = x86_platform.calibrate_tsc();
957	cpu_khz = tsc_khz;
958
959	if (!tsc_khz) {
960		mark_tsc_unstable("could not calculate TSC khz");
 
961		return;
962	}
963
964	printk("Detected %lu.%03lu MHz processor.\n",
965			(unsigned long)cpu_khz / 1000,
966			(unsigned long)cpu_khz % 1000);
967
968	/*
969	 * Secondary CPUs do not run through tsc_init(), so set up
970	 * all the scale factors for all CPUs, assuming the same
971	 * speed as the bootup CPU. (cpufreq notifiers will fix this
972	 * up if their speed diverges)
973	 */
974	for_each_possible_cpu(cpu)
 
975		set_cyc2ns_scale(cpu_khz, cpu);
 
976
977	if (tsc_disabled > 0)
978		return;
979
980	/* now allow native_sched_clock() to use rdtsc */
 
981	tsc_disabled = 0;
 
982
983	if (!no_sched_irq_time)
984		enable_sched_clock_irqtime();
985
986	lpj = ((u64)tsc_khz * 1000);
987	do_div(lpj, HZ);
988	lpj_fine = lpj;
989
990	use_tsc_delay();
991
992	if (unsynchronized_tsc())
993		mark_tsc_unstable("TSCs unsynchronized");
994
995	check_system_tsc_reliable();
 
 
996}
997
v4.6
   1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   2
   3#include <linux/kernel.h>
   4#include <linux/sched.h>
   5#include <linux/init.h>
   6#include <linux/module.h>
   7#include <linux/timer.h>
   8#include <linux/acpi_pmtmr.h>
   9#include <linux/cpufreq.h>
  10#include <linux/delay.h>
  11#include <linux/clocksource.h>
  12#include <linux/percpu.h>
  13#include <linux/timex.h>
  14#include <linux/static_key.h>
  15
  16#include <asm/hpet.h>
  17#include <asm/timer.h>
  18#include <asm/vgtod.h>
  19#include <asm/time.h>
  20#include <asm/delay.h>
  21#include <asm/hypervisor.h>
  22#include <asm/nmi.h>
  23#include <asm/x86_init.h>
  24#include <asm/geode.h>
  25
  26unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
  27EXPORT_SYMBOL(cpu_khz);
  28
  29unsigned int __read_mostly tsc_khz;
  30EXPORT_SYMBOL(tsc_khz);
  31
  32/*
  33 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  34 */
  35static int __read_mostly tsc_unstable;
  36
  37/* native_sched_clock() is called before tsc_init(), so
  38   we must start with the TSC soft disabled to prevent
  39   erroneous rdtsc usage on !cpu_has_tsc processors */
  40static int __read_mostly tsc_disabled = -1;
  41
  42static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  43
  44int tsc_clocksource_reliable;
  45
  46static u32 art_to_tsc_numerator;
  47static u32 art_to_tsc_denominator;
  48static u64 art_to_tsc_offset;
  49struct clocksource *art_related_clocksource;
  50
  51/*
  52 * Use a ring-buffer like data structure, where a writer advances the head by
  53 * writing a new data entry and a reader advances the tail when it observes a
  54 * new entry.
  55 *
  56 * Writers are made to wait on readers until there's space to write a new
  57 * entry.
  58 *
  59 * This means that we can always use an {offset, mul} pair to compute a ns
  60 * value that is 'roughly' in the right direction, even if we're writing a new
  61 * {offset, mul} pair during the clock read.
  62 *
  63 * The down-side is that we can no longer guarantee strict monotonicity anymore
  64 * (assuming the TSC was that to begin with), because while we compute the
  65 * intersection point of the two clock slopes and make sure the time is
  66 * continuous at the point of switching; we can no longer guarantee a reader is
  67 * strictly before or after the switch point.
  68 *
  69 * It does mean a reader no longer needs to disable IRQs in order to avoid
  70 * CPU-Freq updates messing with his times, and similarly an NMI reader will
  71 * no longer run the risk of hitting half-written state.
  72 */
  73
  74struct cyc2ns {
  75	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
  76	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
  77	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
  78}; /* exactly fits one cacheline */
  79
  80static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  81
  82struct cyc2ns_data *cyc2ns_read_begin(void)
  83{
  84	struct cyc2ns_data *head;
  85
  86	preempt_disable();
  87
  88	head = this_cpu_read(cyc2ns.head);
  89	/*
  90	 * Ensure we observe the entry when we observe the pointer to it.
  91	 * matches the wmb from cyc2ns_write_end().
  92	 */
  93	smp_read_barrier_depends();
  94	head->__count++;
  95	barrier();
  96
  97	return head;
  98}
  99
 100void cyc2ns_read_end(struct cyc2ns_data *head)
 101{
 102	barrier();
 103	/*
 104	 * If we're the outer most nested read; update the tail pointer
 105	 * when we're done. This notifies possible pending writers
 106	 * that we've observed the head pointer and that the other
 107	 * entry is now free.
 108	 */
 109	if (!--head->__count) {
 110		/*
 111		 * x86-TSO does not reorder writes with older reads;
 112		 * therefore once this write becomes visible to another
 113		 * cpu, we must be finished reading the cyc2ns_data.
 114		 *
 115		 * matches with cyc2ns_write_begin().
 116		 */
 117		this_cpu_write(cyc2ns.tail, head);
 118	}
 119	preempt_enable();
 120}
 121
 122/*
 123 * Begin writing a new @data entry for @cpu.
 124 *
 125 * Assumes some sort of write side lock; currently 'provided' by the assumption
 126 * that cpufreq will call its notifiers sequentially.
 127 */
 128static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
 129{
 130	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 131	struct cyc2ns_data *data = c2n->data;
 132
 133	if (data == c2n->head)
 134		data++;
 135
 136	/* XXX send an IPI to @cpu in order to guarantee a read? */
 137
 138	/*
 139	 * When we observe the tail write from cyc2ns_read_end(),
 140	 * the cpu must be done with that entry and its safe
 141	 * to start writing to it.
 142	 */
 143	while (c2n->tail == data)
 144		cpu_relax();
 145
 146	return data;
 147}
 148
 149static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
 150{
 151	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 152
 153	/*
 154	 * Ensure the @data writes are visible before we publish the
 155	 * entry. Matches the data-depencency in cyc2ns_read_begin().
 156	 */
 157	smp_wmb();
 158
 159	ACCESS_ONCE(c2n->head) = data;
 160}
 161
 162/*
 163 * Accelerators for sched_clock()
 164 * convert from cycles(64bits) => nanoseconds (64bits)
 165 *  basic equation:
 166 *              ns = cycles / (freq / ns_per_sec)
 167 *              ns = cycles * (ns_per_sec / freq)
 168 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 169 *              ns = cycles * (10^6 / cpu_khz)
 170 *
 171 *      Then we use scaling math (suggested by george@mvista.com) to get:
 172 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 173 *              ns = cycles * cyc2ns_scale / SC
 174 *
 175 *      And since SC is a constant power of two, we can convert the div
 176 *  into a shift. The larger SC is, the more accurate the conversion, but
 177 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 178 *  (64-bit result) can be used.
 179 *
 180 *  We can use khz divisor instead of mhz to keep a better precision.
 181 *  (mathieu.desnoyers@polymtl.ca)
 182 *
 183 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 184 */
 185
 186static void cyc2ns_data_init(struct cyc2ns_data *data)
 187{
 188	data->cyc2ns_mul = 0;
 189	data->cyc2ns_shift = 0;
 190	data->cyc2ns_offset = 0;
 191	data->__count = 0;
 192}
 193
 194static void cyc2ns_init(int cpu)
 195{
 196	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 197
 198	cyc2ns_data_init(&c2n->data[0]);
 199	cyc2ns_data_init(&c2n->data[1]);
 200
 201	c2n->head = c2n->data;
 202	c2n->tail = c2n->data;
 203}
 204
 205static inline unsigned long long cycles_2_ns(unsigned long long cyc)
 206{
 207	struct cyc2ns_data *data, *tail;
 208	unsigned long long ns;
 209
 210	/*
 211	 * See cyc2ns_read_*() for details; replicated in order to avoid
 212	 * an extra few instructions that came with the abstraction.
 213	 * Notable, it allows us to only do the __count and tail update
 214	 * dance when its actually needed.
 215	 */
 216
 217	preempt_disable_notrace();
 218	data = this_cpu_read(cyc2ns.head);
 219	tail = this_cpu_read(cyc2ns.tail);
 220
 221	if (likely(data == tail)) {
 222		ns = data->cyc2ns_offset;
 223		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
 224	} else {
 225		data->__count++;
 226
 227		barrier();
 228
 229		ns = data->cyc2ns_offset;
 230		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
 231
 232		barrier();
 233
 234		if (!--data->__count)
 235			this_cpu_write(cyc2ns.tail, data);
 236	}
 237	preempt_enable_notrace();
 238
 239	return ns;
 240}
 241
 242static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
 243{
 244	unsigned long long tsc_now, ns_now;
 245	struct cyc2ns_data *data;
 246	unsigned long flags;
 247
 248	local_irq_save(flags);
 249	sched_clock_idle_sleep_event();
 250
 251	if (!cpu_khz)
 252		goto done;
 253
 254	data = cyc2ns_write_begin(cpu);
 255
 256	tsc_now = rdtsc();
 257	ns_now = cycles_2_ns(tsc_now);
 258
 259	/*
 260	 * Compute a new multiplier as per the above comment and ensure our
 261	 * time function is continuous; see the comment near struct
 262	 * cyc2ns_data.
 263	 */
 264	clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, cpu_khz,
 265			       NSEC_PER_MSEC, 0);
 266
 267	/*
 268	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
 269	 * not expected to be greater than 31 due to the original published
 270	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
 271	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
 272	 */
 273	if (data->cyc2ns_shift == 32) {
 274		data->cyc2ns_shift = 31;
 275		data->cyc2ns_mul >>= 1;
 276	}
 277
 278	data->cyc2ns_offset = ns_now -
 279		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
 280
 281	cyc2ns_write_end(cpu, data);
 282
 283done:
 284	sched_clock_idle_wakeup_event(0);
 285	local_irq_restore(flags);
 286}
 287/*
 288 * Scheduler clock - returns current time in nanosec units.
 289 */
 290u64 native_sched_clock(void)
 291{
 292	if (static_branch_likely(&__use_tsc)) {
 293		u64 tsc_now = rdtsc();
 294
 295		/* return the value in ns */
 296		return cycles_2_ns(tsc_now);
 297	}
 298
 299	/*
 300	 * Fall back to jiffies if there's no TSC available:
 301	 * ( But note that we still use it if the TSC is marked
 302	 *   unstable. We do this because unlike Time Of Day,
 303	 *   the scheduler clock tolerates small errors and it's
 304	 *   very important for it to be as fast as the platform
 305	 *   can achieve it. )
 306	 */
 
 
 
 
 307
 308	/* No locking but a rare wrong value is not a big deal: */
 309	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
 310}
 311
 312/*
 313 * Generate a sched_clock if you already have a TSC value.
 314 */
 315u64 native_sched_clock_from_tsc(u64 tsc)
 316{
 317	return cycles_2_ns(tsc);
 318}
 319
 320/* We need to define a real function for sched_clock, to override the
 321   weak default version */
 322#ifdef CONFIG_PARAVIRT
 323unsigned long long sched_clock(void)
 324{
 325	return paravirt_sched_clock();
 326}
 327#else
 328unsigned long long
 329sched_clock(void) __attribute__((alias("native_sched_clock")));
 330#endif
 331
 332int check_tsc_unstable(void)
 333{
 334	return tsc_unstable;
 335}
 336EXPORT_SYMBOL_GPL(check_tsc_unstable);
 337
 338int check_tsc_disabled(void)
 339{
 340	return tsc_disabled;
 341}
 342EXPORT_SYMBOL_GPL(check_tsc_disabled);
 343
 344#ifdef CONFIG_X86_TSC
 345int __init notsc_setup(char *str)
 346{
 347	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
 
 348	tsc_disabled = 1;
 349	return 1;
 350}
 351#else
 352/*
 353 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 354 * in cpu/common.c
 355 */
 356int __init notsc_setup(char *str)
 357{
 358	setup_clear_cpu_cap(X86_FEATURE_TSC);
 359	return 1;
 360}
 361#endif
 362
 363__setup("notsc", notsc_setup);
 364
 365static int no_sched_irq_time;
 366
 367static int __init tsc_setup(char *str)
 368{
 369	if (!strcmp(str, "reliable"))
 370		tsc_clocksource_reliable = 1;
 371	if (!strncmp(str, "noirqtime", 9))
 372		no_sched_irq_time = 1;
 373	return 1;
 374}
 375
 376__setup("tsc=", tsc_setup);
 377
 378#define MAX_RETRIES     5
 379#define SMI_TRESHOLD    50000
 380
 381/*
 382 * Read TSC and the reference counters. Take care of SMI disturbance
 383 */
 384static u64 tsc_read_refs(u64 *p, int hpet)
 385{
 386	u64 t1, t2;
 387	int i;
 388
 389	for (i = 0; i < MAX_RETRIES; i++) {
 390		t1 = get_cycles();
 391		if (hpet)
 392			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 393		else
 394			*p = acpi_pm_read_early();
 395		t2 = get_cycles();
 396		if ((t2 - t1) < SMI_TRESHOLD)
 397			return t2;
 398	}
 399	return ULLONG_MAX;
 400}
 401
 402/*
 403 * Calculate the TSC frequency from HPET reference
 404 */
 405static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 406{
 407	u64 tmp;
 408
 409	if (hpet2 < hpet1)
 410		hpet2 += 0x100000000ULL;
 411	hpet2 -= hpet1;
 412	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 413	do_div(tmp, 1000000);
 414	do_div(deltatsc, tmp);
 415
 416	return (unsigned long) deltatsc;
 417}
 418
 419/*
 420 * Calculate the TSC frequency from PMTimer reference
 421 */
 422static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 423{
 424	u64 tmp;
 425
 426	if (!pm1 && !pm2)
 427		return ULONG_MAX;
 428
 429	if (pm2 < pm1)
 430		pm2 += (u64)ACPI_PM_OVRRUN;
 431	pm2 -= pm1;
 432	tmp = pm2 * 1000000000LL;
 433	do_div(tmp, PMTMR_TICKS_PER_SEC);
 434	do_div(deltatsc, tmp);
 435
 436	return (unsigned long) deltatsc;
 437}
 438
 439#define CAL_MS		10
 440#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
 441#define CAL_PIT_LOOPS	1000
 442
 443#define CAL2_MS		50
 444#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
 445#define CAL2_PIT_LOOPS	5000
 446
 447
 448/*
 449 * Try to calibrate the TSC against the Programmable
 450 * Interrupt Timer and return the frequency of the TSC
 451 * in kHz.
 452 *
 453 * Return ULONG_MAX on failure to calibrate.
 454 */
 455static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 456{
 457	u64 tsc, t1, t2, delta;
 458	unsigned long tscmin, tscmax;
 459	int pitcnt;
 460
 461	/* Set the Gate high, disable speaker */
 462	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 463
 464	/*
 465	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
 466	 * count mode), binary count. Set the latch register to 50ms
 467	 * (LSB then MSB) to begin countdown.
 468	 */
 469	outb(0xb0, 0x43);
 470	outb(latch & 0xff, 0x42);
 471	outb(latch >> 8, 0x42);
 472
 473	tsc = t1 = t2 = get_cycles();
 474
 475	pitcnt = 0;
 476	tscmax = 0;
 477	tscmin = ULONG_MAX;
 478	while ((inb(0x61) & 0x20) == 0) {
 479		t2 = get_cycles();
 480		delta = t2 - tsc;
 481		tsc = t2;
 482		if ((unsigned long) delta < tscmin)
 483			tscmin = (unsigned int) delta;
 484		if ((unsigned long) delta > tscmax)
 485			tscmax = (unsigned int) delta;
 486		pitcnt++;
 487	}
 488
 489	/*
 490	 * Sanity checks:
 491	 *
 492	 * If we were not able to read the PIT more than loopmin
 493	 * times, then we have been hit by a massive SMI
 494	 *
 495	 * If the maximum is 10 times larger than the minimum,
 496	 * then we got hit by an SMI as well.
 497	 */
 498	if (pitcnt < loopmin || tscmax > 10 * tscmin)
 499		return ULONG_MAX;
 500
 501	/* Calculate the PIT value */
 502	delta = t2 - t1;
 503	do_div(delta, ms);
 504	return delta;
 505}
 506
 507/*
 508 * This reads the current MSB of the PIT counter, and
 509 * checks if we are running on sufficiently fast and
 510 * non-virtualized hardware.
 511 *
 512 * Our expectations are:
 513 *
 514 *  - the PIT is running at roughly 1.19MHz
 515 *
 516 *  - each IO is going to take about 1us on real hardware,
 517 *    but we allow it to be much faster (by a factor of 10) or
 518 *    _slightly_ slower (ie we allow up to a 2us read+counter
 519 *    update - anything else implies a unacceptably slow CPU
 520 *    or PIT for the fast calibration to work.
 521 *
 522 *  - with 256 PIT ticks to read the value, we have 214us to
 523 *    see the same MSB (and overhead like doing a single TSC
 524 *    read per MSB value etc).
 525 *
 526 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 527 *    them each to take about a microsecond on real hardware.
 528 *    So we expect a count value of around 100. But we'll be
 529 *    generous, and accept anything over 50.
 530 *
 531 *  - if the PIT is stuck, and we see *many* more reads, we
 532 *    return early (and the next caller of pit_expect_msb()
 533 *    then consider it a failure when they don't see the
 534 *    next expected value).
 535 *
 536 * These expectations mean that we know that we have seen the
 537 * transition from one expected value to another with a fairly
 538 * high accuracy, and we didn't miss any events. We can thus
 539 * use the TSC value at the transitions to calculate a pretty
 540 * good value for the TSC frequencty.
 541 */
 542static inline int pit_verify_msb(unsigned char val)
 543{
 544	/* Ignore LSB */
 545	inb(0x42);
 546	return inb(0x42) == val;
 547}
 548
 549static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 550{
 551	int count;
 552	u64 tsc = 0, prev_tsc = 0;
 553
 554	for (count = 0; count < 50000; count++) {
 555		if (!pit_verify_msb(val))
 556			break;
 557		prev_tsc = tsc;
 558		tsc = get_cycles();
 559	}
 560	*deltap = get_cycles() - prev_tsc;
 561	*tscp = tsc;
 562
 563	/*
 564	 * We require _some_ success, but the quality control
 565	 * will be based on the error terms on the TSC values.
 566	 */
 567	return count > 5;
 568}
 569
 570/*
 571 * How many MSB values do we want to see? We aim for
 572 * a maximum error rate of 500ppm (in practice the
 573 * real error is much smaller), but refuse to spend
 574 * more than 50ms on it.
 575 */
 576#define MAX_QUICK_PIT_MS 50
 577#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 578
 579static unsigned long quick_pit_calibrate(void)
 580{
 581	int i;
 582	u64 tsc, delta;
 583	unsigned long d1, d2;
 584
 585	/* Set the Gate high, disable speaker */
 586	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 587
 588	/*
 589	 * Counter 2, mode 0 (one-shot), binary count
 590	 *
 591	 * NOTE! Mode 2 decrements by two (and then the
 592	 * output is flipped each time, giving the same
 593	 * final output frequency as a decrement-by-one),
 594	 * so mode 0 is much better when looking at the
 595	 * individual counts.
 596	 */
 597	outb(0xb0, 0x43);
 598
 599	/* Start at 0xffff */
 600	outb(0xff, 0x42);
 601	outb(0xff, 0x42);
 602
 603	/*
 604	 * The PIT starts counting at the next edge, so we
 605	 * need to delay for a microsecond. The easiest way
 606	 * to do that is to just read back the 16-bit counter
 607	 * once from the PIT.
 608	 */
 609	pit_verify_msb(0);
 610
 611	if (pit_expect_msb(0xff, &tsc, &d1)) {
 612		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 613			if (!pit_expect_msb(0xff-i, &delta, &d2))
 614				break;
 615
 616			delta -= tsc;
 617
 618			/*
 619			 * Extrapolate the error and fail fast if the error will
 620			 * never be below 500 ppm.
 621			 */
 622			if (i == 1 &&
 623			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
 624				return 0;
 625
 626			/*
 627			 * Iterate until the error is less than 500 ppm
 628			 */
 
 629			if (d1+d2 >= delta >> 11)
 630				continue;
 631
 632			/*
 633			 * Check the PIT one more time to verify that
 634			 * all TSC reads were stable wrt the PIT.
 635			 *
 636			 * This also guarantees serialization of the
 637			 * last cycle read ('d2') in pit_expect_msb.
 638			 */
 639			if (!pit_verify_msb(0xfe - i))
 640				break;
 641			goto success;
 642		}
 643	}
 644	pr_info("Fast TSC calibration failed\n");
 645	return 0;
 646
 647success:
 648	/*
 649	 * Ok, if we get here, then we've seen the
 650	 * MSB of the PIT decrement 'i' times, and the
 651	 * error has shrunk to less than 500 ppm.
 652	 *
 653	 * As a result, we can depend on there not being
 654	 * any odd delays anywhere, and the TSC reads are
 655	 * reliable (within the error).
 
 
 656	 *
 657	 * kHz = ticks / time-in-seconds / 1000;
 658	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 659	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 660	 */
 
 661	delta *= PIT_TICK_RATE;
 662	do_div(delta, i*256*1000);
 663	pr_info("Fast TSC calibration using PIT\n");
 664	return delta;
 665}
 666
 667/**
 668 * native_calibrate_tsc - calibrate the tsc on boot
 669 */
 670unsigned long native_calibrate_tsc(void)
 671{
 672	u64 tsc1, tsc2, delta, ref1, ref2;
 673	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 674	unsigned long flags, latch, ms, fast_calibrate;
 675	int hpet = is_hpet_enabled(), i, loopmin;
 676
 677	/* Calibrate TSC using MSR for Intel Atom SoCs */
 678	local_irq_save(flags);
 679	fast_calibrate = try_msr_calibrate_tsc();
 680	local_irq_restore(flags);
 681	if (fast_calibrate)
 682		return fast_calibrate;
 683
 684	local_irq_save(flags);
 685	fast_calibrate = quick_pit_calibrate();
 686	local_irq_restore(flags);
 687	if (fast_calibrate)
 688		return fast_calibrate;
 689
 690	/*
 691	 * Run 5 calibration loops to get the lowest frequency value
 692	 * (the best estimate). We use two different calibration modes
 693	 * here:
 694	 *
 695	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 696	 * load a timeout of 50ms. We read the time right after we
 697	 * started the timer and wait until the PIT count down reaches
 698	 * zero. In each wait loop iteration we read the TSC and check
 699	 * the delta to the previous read. We keep track of the min
 700	 * and max values of that delta. The delta is mostly defined
 701	 * by the IO time of the PIT access, so we can detect when a
 702	 * SMI/SMM disturbance happened between the two reads. If the
 703	 * maximum time is significantly larger than the minimum time,
 704	 * then we discard the result and have another try.
 705	 *
 706	 * 2) Reference counter. If available we use the HPET or the
 707	 * PMTIMER as a reference to check the sanity of that value.
 708	 * We use separate TSC readouts and check inside of the
 709	 * reference read for a SMI/SMM disturbance. We dicard
 710	 * disturbed values here as well. We do that around the PIT
 711	 * calibration delay loop as we have to wait for a certain
 712	 * amount of time anyway.
 713	 */
 714
 715	/* Preset PIT loop values */
 716	latch = CAL_LATCH;
 717	ms = CAL_MS;
 718	loopmin = CAL_PIT_LOOPS;
 719
 720	for (i = 0; i < 3; i++) {
 721		unsigned long tsc_pit_khz;
 722
 723		/*
 724		 * Read the start value and the reference count of
 725		 * hpet/pmtimer when available. Then do the PIT
 726		 * calibration, which will take at least 50ms, and
 727		 * read the end value.
 728		 */
 729		local_irq_save(flags);
 730		tsc1 = tsc_read_refs(&ref1, hpet);
 731		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 732		tsc2 = tsc_read_refs(&ref2, hpet);
 733		local_irq_restore(flags);
 734
 735		/* Pick the lowest PIT TSC calibration so far */
 736		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 737
 738		/* hpet or pmtimer available ? */
 739		if (ref1 == ref2)
 740			continue;
 741
 742		/* Check, whether the sampling was disturbed by an SMI */
 743		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 744			continue;
 745
 746		tsc2 = (tsc2 - tsc1) * 1000000LL;
 747		if (hpet)
 748			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 749		else
 750			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 751
 752		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 753
 754		/* Check the reference deviation */
 755		delta = ((u64) tsc_pit_min) * 100;
 756		do_div(delta, tsc_ref_min);
 757
 758		/*
 759		 * If both calibration results are inside a 10% window
 760		 * then we can be sure, that the calibration
 761		 * succeeded. We break out of the loop right away. We
 762		 * use the reference value, as it is more precise.
 763		 */
 764		if (delta >= 90 && delta <= 110) {
 765			pr_info("PIT calibration matches %s. %d loops\n",
 766				hpet ? "HPET" : "PMTIMER", i + 1);
 
 767			return tsc_ref_min;
 768		}
 769
 770		/*
 771		 * Check whether PIT failed more than once. This
 772		 * happens in virtualized environments. We need to
 773		 * give the virtual PC a slightly longer timeframe for
 774		 * the HPET/PMTIMER to make the result precise.
 775		 */
 776		if (i == 1 && tsc_pit_min == ULONG_MAX) {
 777			latch = CAL2_LATCH;
 778			ms = CAL2_MS;
 779			loopmin = CAL2_PIT_LOOPS;
 780		}
 781	}
 782
 783	/*
 784	 * Now check the results.
 785	 */
 786	if (tsc_pit_min == ULONG_MAX) {
 787		/* PIT gave no useful value */
 788		pr_warn("Unable to calibrate against PIT\n");
 789
 790		/* We don't have an alternative source, disable TSC */
 791		if (!hpet && !ref1 && !ref2) {
 792			pr_notice("No reference (HPET/PMTIMER) available\n");
 793			return 0;
 794		}
 795
 796		/* The alternative source failed as well, disable TSC */
 797		if (tsc_ref_min == ULONG_MAX) {
 798			pr_warn("HPET/PMTIMER calibration failed\n");
 
 799			return 0;
 800		}
 801
 802		/* Use the alternative source */
 803		pr_info("using %s reference calibration\n",
 804			hpet ? "HPET" : "PMTIMER");
 805
 806		return tsc_ref_min;
 807	}
 808
 809	/* We don't have an alternative source, use the PIT calibration value */
 810	if (!hpet && !ref1 && !ref2) {
 811		pr_info("Using PIT calibration value\n");
 812		return tsc_pit_min;
 813	}
 814
 815	/* The alternative source failed, use the PIT calibration value */
 816	if (tsc_ref_min == ULONG_MAX) {
 817		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 
 818		return tsc_pit_min;
 819	}
 820
 821	/*
 822	 * The calibration values differ too much. In doubt, we use
 823	 * the PIT value as we know that there are PMTIMERs around
 824	 * running at double speed. At least we let the user know:
 825	 */
 826	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 827		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 828	pr_info("Using PIT calibration value\n");
 829	return tsc_pit_min;
 830}
 831
 832int recalibrate_cpu_khz(void)
 833{
 834#ifndef CONFIG_SMP
 835	unsigned long cpu_khz_old = cpu_khz;
 836
 837	if (cpu_has_tsc) {
 838		tsc_khz = x86_platform.calibrate_tsc();
 839		cpu_khz = tsc_khz;
 840		cpu_data(0).loops_per_jiffy =
 841			cpufreq_scale(cpu_data(0).loops_per_jiffy,
 842					cpu_khz_old, cpu_khz);
 843		return 0;
 844	} else
 845		return -ENODEV;
 846#else
 847	return -ENODEV;
 848#endif
 849}
 850
 851EXPORT_SYMBOL(recalibrate_cpu_khz);
 852
 853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854static unsigned long long cyc2ns_suspend;
 855
 856void tsc_save_sched_clock_state(void)
 857{
 858	if (!sched_clock_stable())
 859		return;
 860
 861	cyc2ns_suspend = sched_clock();
 862}
 863
 864/*
 865 * Even on processors with invariant TSC, TSC gets reset in some the
 866 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 867 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 868 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 869 * that sched_clock() continues from the point where it was left off during
 870 * suspend.
 871 */
 872void tsc_restore_sched_clock_state(void)
 873{
 874	unsigned long long offset;
 875	unsigned long flags;
 876	int cpu;
 877
 878	if (!sched_clock_stable())
 879		return;
 880
 881	local_irq_save(flags);
 882
 883	/*
 884	 * We're coming out of suspend, there's no concurrency yet; don't
 885	 * bother being nice about the RCU stuff, just write to both
 886	 * data fields.
 887	 */
 888
 889	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
 890	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
 891
 892	offset = cyc2ns_suspend - sched_clock();
 893
 894	for_each_possible_cpu(cpu) {
 895		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
 896		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
 897	}
 898
 899	local_irq_restore(flags);
 900}
 901
 902#ifdef CONFIG_CPU_FREQ
 903
 904/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 905 * changes.
 906 *
 907 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 908 * not that important because current Opteron setups do not support
 909 * scaling on SMP anyroads.
 910 *
 911 * Should fix up last_tsc too. Currently gettimeofday in the
 912 * first tick after the change will be slightly wrong.
 913 */
 914
 915static unsigned int  ref_freq;
 916static unsigned long loops_per_jiffy_ref;
 917static unsigned long tsc_khz_ref;
 918
 919static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 920				void *data)
 921{
 922	struct cpufreq_freqs *freq = data;
 923	unsigned long *lpj;
 924
 925	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
 926		return 0;
 927
 928	lpj = &boot_cpu_data.loops_per_jiffy;
 929#ifdef CONFIG_SMP
 930	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 931		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
 932#endif
 933
 934	if (!ref_freq) {
 935		ref_freq = freq->old;
 936		loops_per_jiffy_ref = *lpj;
 937		tsc_khz_ref = tsc_khz;
 938	}
 939	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 940			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
 
 941		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
 942
 943		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
 944		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 945			mark_tsc_unstable("cpufreq changes");
 
 946
 947		set_cyc2ns_scale(tsc_khz, freq->cpu);
 948	}
 949
 950	return 0;
 951}
 952
 953static struct notifier_block time_cpufreq_notifier_block = {
 954	.notifier_call  = time_cpufreq_notifier
 955};
 956
 957static int __init cpufreq_tsc(void)
 958{
 959	if (!cpu_has_tsc)
 960		return 0;
 961	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 962		return 0;
 963	cpufreq_register_notifier(&time_cpufreq_notifier_block,
 964				CPUFREQ_TRANSITION_NOTIFIER);
 965	return 0;
 966}
 967
 968core_initcall(cpufreq_tsc);
 969
 970#endif /* CONFIG_CPU_FREQ */
 971
 972#define ART_CPUID_LEAF (0x15)
 973#define ART_MIN_DENOMINATOR (1)
 974
 975
 976/*
 977 * If ART is present detect the numerator:denominator to convert to TSC
 978 */
 979static void detect_art(void)
 980{
 981	unsigned int unused[2];
 982
 983	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
 984		return;
 985
 986	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
 987	      &art_to_tsc_numerator, unused, unused+1);
 988
 989	/* Don't enable ART in a VM, non-stop TSC required */
 990	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
 991	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
 992	    art_to_tsc_denominator < ART_MIN_DENOMINATOR)
 993		return;
 994
 995	if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset))
 996		return;
 997
 998	/* Make this sticky over multiple CPU init calls */
 999	setup_force_cpu_cap(X86_FEATURE_ART);
1000}
1001
1002
1003/* clocksource code */
1004
1005static struct clocksource clocksource_tsc;
1006
1007/*
1008 * We used to compare the TSC to the cycle_last value in the clocksource
1009 * structure to avoid a nasty time-warp. This can be observed in a
1010 * very small window right after one CPU updated cycle_last under
1011 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1012 * is smaller than the cycle_last reference value due to a TSC which
1013 * is slighty behind. This delta is nowhere else observable, but in
1014 * that case it results in a forward time jump in the range of hours
1015 * due to the unsigned delta calculation of the time keeping core
1016 * code, which is necessary to support wrapping clocksources like pm
1017 * timer.
1018 *
1019 * This sanity check is now done in the core timekeeping code.
1020 * checking the result of read_tsc() - cycle_last for being negative.
1021 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1022 */
1023static cycle_t read_tsc(struct clocksource *cs)
1024{
1025	return (cycle_t)rdtsc_ordered();
 
 
 
 
 
 
 
 
1026}
1027
1028/*
1029 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1030 */
1031static struct clocksource clocksource_tsc = {
1032	.name                   = "tsc",
1033	.rating                 = 300,
1034	.read                   = read_tsc,
 
1035	.mask                   = CLOCKSOURCE_MASK(64),
1036	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1037				  CLOCK_SOURCE_MUST_VERIFY,
 
1038	.archdata               = { .vclock_mode = VCLOCK_TSC },
 
1039};
1040
1041void mark_tsc_unstable(char *reason)
1042{
1043	if (!tsc_unstable) {
1044		tsc_unstable = 1;
1045		clear_sched_clock_stable();
1046		disable_sched_clock_irqtime();
1047		pr_info("Marking TSC unstable due to %s\n", reason);
1048		/* Change only the rating, when not registered */
1049		if (clocksource_tsc.mult)
1050			clocksource_mark_unstable(&clocksource_tsc);
1051		else {
1052			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1053			clocksource_tsc.rating = 0;
1054		}
1055	}
1056}
1057
1058EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1059
1060static void __init check_system_tsc_reliable(void)
1061{
1062#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1063	if (is_geode_lx()) {
1064		/* RTSC counts during suspend */
1065#define RTSC_SUSP 0x100
1066		unsigned long res_low, res_high;
1067
1068		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1069		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1070		if (res_low & RTSC_SUSP)
1071			tsc_clocksource_reliable = 1;
1072	}
1073#endif
1074	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1075		tsc_clocksource_reliable = 1;
1076}
1077
1078/*
1079 * Make an educated guess if the TSC is trustworthy and synchronized
1080 * over all CPUs.
1081 */
1082int unsynchronized_tsc(void)
1083{
1084	if (!cpu_has_tsc || tsc_unstable)
1085		return 1;
1086
1087#ifdef CONFIG_SMP
1088	if (apic_is_clustered_box())
1089		return 1;
1090#endif
1091
1092	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1093		return 0;
1094
1095	if (tsc_clocksource_reliable)
1096		return 0;
1097	/*
1098	 * Intel systems are normally all synchronized.
1099	 * Exceptions must mark TSC as unstable:
1100	 */
1101	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1102		/* assume multi socket systems are not synchronized: */
1103		if (num_possible_cpus() > 1)
1104			return 1;
1105	}
1106
1107	return 0;
1108}
1109
1110/*
1111 * Convert ART to TSC given numerator/denominator found in detect_art()
1112 */
1113struct system_counterval_t convert_art_to_tsc(cycle_t art)
1114{
1115	u64 tmp, res, rem;
1116
1117	rem = do_div(art, art_to_tsc_denominator);
1118
1119	res = art * art_to_tsc_numerator;
1120	tmp = rem * art_to_tsc_numerator;
1121
1122	do_div(tmp, art_to_tsc_denominator);
1123	res += tmp + art_to_tsc_offset;
1124
1125	return (struct system_counterval_t) {.cs = art_related_clocksource,
1126			.cycles = res};
1127}
1128EXPORT_SYMBOL(convert_art_to_tsc);
1129
1130static void tsc_refine_calibration_work(struct work_struct *work);
1131static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1132/**
1133 * tsc_refine_calibration_work - Further refine tsc freq calibration
1134 * @work - ignored.
1135 *
1136 * This functions uses delayed work over a period of a
1137 * second to further refine the TSC freq value. Since this is
1138 * timer based, instead of loop based, we don't block the boot
1139 * process while this longer calibration is done.
1140 *
1141 * If there are any calibration anomalies (too many SMIs, etc),
1142 * or the refined calibration is off by 1% of the fast early
1143 * calibration, we throw out the new calibration and use the
1144 * early calibration.
1145 */
1146static void tsc_refine_calibration_work(struct work_struct *work)
1147{
1148	static u64 tsc_start = -1, ref_start;
1149	static int hpet;
1150	u64 tsc_stop, ref_stop, delta;
1151	unsigned long freq;
1152
1153	/* Don't bother refining TSC on unstable systems */
1154	if (check_tsc_unstable())
1155		goto out;
1156
1157	/*
1158	 * Since the work is started early in boot, we may be
1159	 * delayed the first time we expire. So set the workqueue
1160	 * again once we know timers are working.
1161	 */
1162	if (tsc_start == -1) {
1163		/*
1164		 * Only set hpet once, to avoid mixing hardware
1165		 * if the hpet becomes enabled later.
1166		 */
1167		hpet = is_hpet_enabled();
1168		schedule_delayed_work(&tsc_irqwork, HZ);
1169		tsc_start = tsc_read_refs(&ref_start, hpet);
1170		return;
1171	}
1172
1173	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1174
1175	/* hpet or pmtimer available ? */
1176	if (ref_start == ref_stop)
1177		goto out;
1178
1179	/* Check, whether the sampling was disturbed by an SMI */
1180	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1181		goto out;
1182
1183	delta = tsc_stop - tsc_start;
1184	delta *= 1000000LL;
1185	if (hpet)
1186		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1187	else
1188		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1189
1190	/* Make sure we're within 1% */
1191	if (abs(tsc_khz - freq) > tsc_khz/100)
1192		goto out;
1193
1194	tsc_khz = freq;
1195	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1196		(unsigned long)tsc_khz / 1000,
1197		(unsigned long)tsc_khz % 1000);
1198
1199out:
1200	if (boot_cpu_has(X86_FEATURE_ART))
1201		art_related_clocksource = &clocksource_tsc;
1202	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1203}
1204
1205
1206static int __init init_tsc_clocksource(void)
1207{
1208	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
1209		return 0;
1210
1211	if (tsc_clocksource_reliable)
1212		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1213	/* lower the rating if we already know its unstable: */
1214	if (check_tsc_unstable()) {
1215		clocksource_tsc.rating = 0;
1216		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1217	}
1218
1219	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1220		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1221
1222	/*
1223	 * Trust the results of the earlier calibration on systems
1224	 * exporting a reliable TSC.
1225	 */
1226	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1227		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1228		return 0;
1229	}
1230
1231	schedule_delayed_work(&tsc_irqwork, 0);
1232	return 0;
1233}
1234/*
1235 * We use device_initcall here, to ensure we run after the hpet
1236 * is fully initialized, which may occur at fs_initcall time.
1237 */
1238device_initcall(init_tsc_clocksource);
1239
1240void __init tsc_init(void)
1241{
1242	u64 lpj;
1243	int cpu;
1244
1245	if (!cpu_has_tsc) {
1246		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
 
1247		return;
1248	}
1249
1250	tsc_khz = x86_platform.calibrate_tsc();
1251	cpu_khz = tsc_khz;
1252
1253	if (!tsc_khz) {
1254		mark_tsc_unstable("could not calculate TSC khz");
1255		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1256		return;
1257	}
1258
1259	pr_info("Detected %lu.%03lu MHz processor\n",
1260		(unsigned long)cpu_khz / 1000,
1261		(unsigned long)cpu_khz % 1000);
1262
1263	/*
1264	 * Secondary CPUs do not run through tsc_init(), so set up
1265	 * all the scale factors for all CPUs, assuming the same
1266	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1267	 * up if their speed diverges)
1268	 */
1269	for_each_possible_cpu(cpu) {
1270		cyc2ns_init(cpu);
1271		set_cyc2ns_scale(cpu_khz, cpu);
1272	}
1273
1274	if (tsc_disabled > 0)
1275		return;
1276
1277	/* now allow native_sched_clock() to use rdtsc */
1278
1279	tsc_disabled = 0;
1280	static_branch_enable(&__use_tsc);
1281
1282	if (!no_sched_irq_time)
1283		enable_sched_clock_irqtime();
1284
1285	lpj = ((u64)tsc_khz * 1000);
1286	do_div(lpj, HZ);
1287	lpj_fine = lpj;
1288
1289	use_tsc_delay();
1290
1291	if (unsynchronized_tsc())
1292		mark_tsc_unstable("TSCs unsynchronized");
1293
1294	check_system_tsc_reliable();
1295
1296	detect_art();
1297}
1298
1299#ifdef CONFIG_SMP
1300/*
1301 * If we have a constant TSC and are using the TSC for the delay loop,
1302 * we can skip clock calibration if another cpu in the same socket has already
1303 * been calibrated. This assumes that CONSTANT_TSC applies to all
1304 * cpus in the socket - this should be a safe assumption.
1305 */
1306unsigned long calibrate_delay_is_known(void)
1307{
1308	int sibling, cpu = smp_processor_id();
1309	struct cpumask *mask = topology_core_cpumask(cpu);
1310
1311	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1312		return 0;
1313
1314	if (!mask)
1315		return 0;
1316
1317	sibling = cpumask_any_but(mask, cpu);
1318	if (sibling < nr_cpu_ids)
1319		return cpu_data(sibling).loops_per_jiffy;
1320	return 0;
1321}
1322#endif