Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#include <linux/sched.h>
  16#include <linux/kernel.h>
  17#include <linux/mmzone.h>
  18#include <linux/bootmem.h>
  19#include <linux/module.h>
  20#include <linux/node.h>
  21#include <linux/cpu.h>
  22#include <linux/ioport.h>
  23#include <linux/irq.h>
  24#include <linux/kexec.h>
  25#include <linux/pci.h>
 
  26#include <linux/initrd.h>
  27#include <linux/io.h>
  28#include <linux/highmem.h>
  29#include <linux/smp.h>
  30#include <linux/timex.h>
 
 
 
 
  31#include <asm/setup.h>
  32#include <asm/sections.h>
  33#include <asm/cacheflush.h>
  34#include <asm/pgalloc.h>
  35#include <asm/mmu_context.h>
  36#include <hv/hypervisor.h>
  37#include <arch/interrupts.h>
  38
  39/* <linux/smp.h> doesn't provide this definition. */
  40#ifndef CONFIG_SMP
  41#define setup_max_cpus 1
  42#endif
  43
  44static inline int ABS(int x) { return x >= 0 ? x : -x; }
  45
  46/* Chip information */
  47char chip_model[64] __write_once;
  48
 
 
 
 
  49struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
  50EXPORT_SYMBOL(node_data);
  51
  52/* We only create bootmem data on node 0. */
  53static bootmem_data_t __initdata node0_bdata;
  54
  55/* Information on the NUMA nodes that we compute early */
  56unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES];
  57unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES];
  58unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
  59unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
  60unsigned long __initdata node_free_pfn[MAX_NUMNODES];
  61
  62static unsigned long __initdata node_percpu[MAX_NUMNODES];
  63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64#ifdef CONFIG_HIGHMEM
  65/* Page frame index of end of lowmem on each controller. */
  66unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES];
  67
  68/* Number of pages that can be mapped into lowmem. */
  69static unsigned long __initdata mappable_physpages;
  70#endif
  71
  72/* Data on which physical memory controller corresponds to which NUMA node */
  73int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
  74
  75#ifdef CONFIG_HIGHMEM
  76/* Map information from VAs to PAs */
  77unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
  78  __write_once __attribute__((aligned(L2_CACHE_BYTES)));
  79EXPORT_SYMBOL(pbase_map);
  80
  81/* Map information from PAs to VAs */
  82void *vbase_map[NR_PA_HIGHBIT_VALUES]
  83  __write_once __attribute__((aligned(L2_CACHE_BYTES)));
  84EXPORT_SYMBOL(vbase_map);
  85#endif
  86
  87/* Node number as a function of the high PA bits */
  88int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
  89EXPORT_SYMBOL(highbits_to_node);
  90
  91static unsigned int __initdata maxmem_pfn = -1U;
  92static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
  93	[0 ... MAX_NUMNODES-1] = -1U
  94};
  95static nodemask_t __initdata isolnodes;
  96
  97#ifdef CONFIG_PCI
  98enum { DEFAULT_PCI_RESERVE_MB = 64 };
  99static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
 100unsigned long __initdata pci_reserve_start_pfn = -1U;
 101unsigned long __initdata pci_reserve_end_pfn = -1U;
 102#endif
 103
 104static int __init setup_maxmem(char *str)
 105{
 106	long maxmem_mb;
 107	if (str == NULL || strict_strtol(str, 0, &maxmem_mb) != 0 ||
 108	    maxmem_mb == 0)
 109		return -EINVAL;
 110
 111	maxmem_pfn = (maxmem_mb >> (HPAGE_SHIFT - 20)) <<
 112		(HPAGE_SHIFT - PAGE_SHIFT);
 113	pr_info("Forcing RAM used to no more than %dMB\n",
 114	       maxmem_pfn >> (20 - PAGE_SHIFT));
 115	return 0;
 116}
 117early_param("maxmem", setup_maxmem);
 118
 119static int __init setup_maxnodemem(char *str)
 120{
 121	char *endp;
 122	long maxnodemem_mb, node;
 
 123
 124	node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
 125	if (node >= MAX_NUMNODES || *endp != ':' ||
 126	    strict_strtol(endp+1, 0, &maxnodemem_mb) != 0)
 127		return -EINVAL;
 128
 129	maxnodemem_pfn[node] = (maxnodemem_mb >> (HPAGE_SHIFT - 20)) <<
 
 130		(HPAGE_SHIFT - PAGE_SHIFT);
 131	pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
 132	       node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
 133	return 0;
 134}
 135early_param("maxnodemem", setup_maxnodemem);
 136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 137static int __init setup_isolnodes(char *str)
 138{
 139	char buf[MAX_NUMNODES * 5];
 140	if (str == NULL || nodelist_parse(str, isolnodes) != 0)
 141		return -EINVAL;
 142
 143	nodelist_scnprintf(buf, sizeof(buf), isolnodes);
 144	pr_info("Set isolnodes value to '%s'\n", buf);
 145	return 0;
 146}
 147early_param("isolnodes", setup_isolnodes);
 148
 149#ifdef CONFIG_PCI
 150static int __init setup_pci_reserve(char* str)
 151{
 152	unsigned long mb;
 153
 154	if (str == NULL || strict_strtoul(str, 0, &mb) != 0 ||
 155	    mb > 3 * 1024)
 156		return -EINVAL;
 157
 158	pci_reserve_mb = mb;
 159	pr_info("Reserving %dMB for PCIE root complex mappings\n",
 160	       pci_reserve_mb);
 161	return 0;
 162}
 163early_param("pci_reserve", setup_pci_reserve);
 164#endif
 165
 166#ifndef __tilegx__
 167/*
 168 * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
 169 * This can be used to increase (or decrease) the vmalloc area.
 170 */
 171static int __init parse_vmalloc(char *arg)
 172{
 173	if (!arg)
 174		return -EINVAL;
 175
 176	VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
 177
 178	/* See validate_va() for more on this test. */
 179	if ((long)_VMALLOC_START >= 0)
 180		early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
 181			    VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
 182
 183	return 0;
 184}
 185early_param("vmalloc", parse_vmalloc);
 186#endif
 187
 188#ifdef CONFIG_HIGHMEM
 189/*
 190 * Determine for each controller where its lowmem is mapped and how much of
 191 * it is mapped there.  On controller zero, the first few megabytes are
 192 * already mapped in as code at MEM_SV_INTRPT, so in principle we could
 193 * start our data mappings higher up, but for now we don't bother, to avoid
 194 * additional confusion.
 195 *
 196 * One question is whether, on systems with more than 768 Mb and
 197 * controllers of different sizes, to map in a proportionate amount of
 198 * each one, or to try to map the same amount from each controller.
 199 * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
 200 * respectively, do we map 256MB from each, or do we map 128 MB, 512
 201 * MB, and 128 MB respectively?)  For now we use a proportionate
 202 * solution like the latter.
 203 *
 204 * The VA/PA mapping demands that we align our decisions at 16 MB
 205 * boundaries so that we can rapidly convert VA to PA.
 206 */
 207static void *__init setup_pa_va_mapping(void)
 208{
 209	unsigned long curr_pages = 0;
 210	unsigned long vaddr = PAGE_OFFSET;
 211	nodemask_t highonlynodes = isolnodes;
 212	int i, j;
 213
 214	memset(pbase_map, -1, sizeof(pbase_map));
 215	memset(vbase_map, -1, sizeof(vbase_map));
 216
 217	/* Node zero cannot be isolated for LOWMEM purposes. */
 218	node_clear(0, highonlynodes);
 219
 220	/* Count up the number of pages on non-highonlynodes controllers. */
 221	mappable_physpages = 0;
 222	for_each_online_node(i) {
 223		if (!node_isset(i, highonlynodes))
 224			mappable_physpages +=
 225				node_end_pfn[i] - node_start_pfn[i];
 226	}
 227
 228	for_each_online_node(i) {
 229		unsigned long start = node_start_pfn[i];
 230		unsigned long end = node_end_pfn[i];
 231		unsigned long size = end - start;
 232		unsigned long vaddr_end;
 233
 234		if (node_isset(i, highonlynodes)) {
 235			/* Mark this controller as having no lowmem. */
 236			node_lowmem_end_pfn[i] = start;
 237			continue;
 238		}
 239
 240		curr_pages += size;
 241		if (mappable_physpages > MAXMEM_PFN) {
 242			vaddr_end = PAGE_OFFSET +
 243				(((u64)curr_pages * MAXMEM_PFN /
 244				  mappable_physpages)
 245				 << PAGE_SHIFT);
 246		} else {
 247			vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
 248		}
 249		for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
 250			unsigned long this_pfn =
 251				start + (j << HUGETLB_PAGE_ORDER);
 252			pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
 253			if (vbase_map[__pfn_to_highbits(this_pfn)] ==
 254			    (void *)-1)
 255				vbase_map[__pfn_to_highbits(this_pfn)] =
 256					(void *)(vaddr & HPAGE_MASK);
 257		}
 258		node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
 259		BUG_ON(node_lowmem_end_pfn[i] > end);
 260	}
 261
 262	/* Return highest address of any mapped memory. */
 263	return (void *)vaddr;
 264}
 265#endif /* CONFIG_HIGHMEM */
 266
 267/*
 268 * Register our most important memory mappings with the debug stub.
 269 *
 270 * This is up to 4 mappings for lowmem, one mapping per memory
 271 * controller, plus one for our text segment.
 272 */
 273static void __cpuinit store_permanent_mappings(void)
 274{
 275	int i;
 276
 277	for_each_online_node(i) {
 278		HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
 279#ifdef CONFIG_HIGHMEM
 280		HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
 281#else
 282		HV_PhysAddr high_mapped_pa = node_end_pfn[i];
 283#endif
 284
 285		unsigned long pages = high_mapped_pa - node_start_pfn[i];
 286		HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
 287		hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
 288	}
 289
 290	hv_store_mapping((HV_VirtAddr)_stext,
 291			 (uint32_t)(_einittext - _stext), 0);
 292}
 293
 294/*
 295 * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
 296 * and node_online_map, doing suitable sanity-checking.
 297 * Also set min_low_pfn, max_low_pfn, and max_pfn.
 298 */
 299static void __init setup_memory(void)
 300{
 301	int i, j;
 302	int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
 303#ifdef CONFIG_HIGHMEM
 304	long highmem_pages;
 305#endif
 306#ifndef __tilegx__
 307	int cap;
 308#endif
 309#if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
 310	long lowmem_pages;
 311#endif
 
 312
 313	/* We are using a char to hold the cpu_2_node[] mapping */
 314	BUILD_BUG_ON(MAX_NUMNODES > 127);
 315
 316	/* Discover the ranges of memory available to us */
 317	for (i = 0; ; ++i) {
 318		unsigned long start, size, end, highbits;
 319		HV_PhysAddrRange range = hv_inquire_physical(i);
 320		if (range.size == 0)
 321			break;
 322#ifdef CONFIG_FLATMEM
 323		if (i > 0) {
 324			pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
 325			       range.size, range.start + range.size);
 326			continue;
 327		}
 328#endif
 329#ifndef __tilegx__
 330		if ((unsigned long)range.start) {
 331			pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
 332			       range.start, range.start + range.size);
 333			continue;
 334		}
 335#endif
 336		if ((range.start & (HPAGE_SIZE-1)) != 0 ||
 337		    (range.size & (HPAGE_SIZE-1)) != 0) {
 338			unsigned long long start_pa = range.start;
 339			unsigned long long orig_size = range.size;
 340			range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
 341			range.size -= (range.start - start_pa);
 342			range.size &= HPAGE_MASK;
 343			pr_err("Range not hugepage-aligned: %#llx..%#llx:"
 344			       " now %#llx-%#llx\n",
 345			       start_pa, start_pa + orig_size,
 346			       range.start, range.start + range.size);
 347		}
 348		highbits = __pa_to_highbits(range.start);
 349		if (highbits >= NR_PA_HIGHBIT_VALUES) {
 350			pr_err("PA high bits too high: %#llx..%#llx\n",
 351			       range.start, range.start + range.size);
 352			continue;
 353		}
 354		if (highbits_seen[highbits]) {
 355			pr_err("Range overlaps in high bits: %#llx..%#llx\n",
 356			       range.start, range.start + range.size);
 357			continue;
 358		}
 359		highbits_seen[highbits] = 1;
 360		if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
 361			int max_size = maxnodemem_pfn[i];
 362			if (max_size > 0) {
 363				pr_err("Maxnodemem reduced node %d to"
 364				       " %d pages\n", i, max_size);
 365				range.size = PFN_PHYS(max_size);
 366			} else {
 367				pr_err("Maxnodemem disabled node %d\n", i);
 368				continue;
 369			}
 370		}
 371		if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) {
 372			int max_size = maxmem_pfn - num_physpages;
 373			if (max_size > 0) {
 374				pr_err("Maxmem reduced node %d to %d pages\n",
 375				       i, max_size);
 376				range.size = PFN_PHYS(max_size);
 377			} else {
 378				pr_err("Maxmem disabled node %d\n", i);
 379				continue;
 380			}
 381		}
 382		if (i >= MAX_NUMNODES) {
 383			pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
 384			       i, range.size, range.size + range.start);
 385			continue;
 386		}
 387
 388		start = range.start >> PAGE_SHIFT;
 389		size = range.size >> PAGE_SHIFT;
 390		end = start + size;
 391
 392#ifndef __tilegx__
 393		if (((HV_PhysAddr)end << PAGE_SHIFT) !=
 394		    (range.start + range.size)) {
 395			pr_err("PAs too high to represent: %#llx..%#llx\n",
 396			       range.start, range.start + range.size);
 397			continue;
 398		}
 399#endif
 400#ifdef CONFIG_PCI
 401		/*
 402		 * Blocks that overlap the pci reserved region must
 403		 * have enough space to hold the maximum percpu data
 404		 * region at the top of the range.  If there isn't
 405		 * enough space above the reserved region, just
 406		 * truncate the node.
 407		 */
 408		if (start <= pci_reserve_start_pfn &&
 409		    end > pci_reserve_start_pfn) {
 410			unsigned int per_cpu_size =
 411				__per_cpu_end - __per_cpu_start;
 412			unsigned int percpu_pages =
 413				NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
 414			if (end < pci_reserve_end_pfn + percpu_pages) {
 415				end = pci_reserve_start_pfn;
 416				pr_err("PCI mapping region reduced node %d to"
 417				       " %ld pages\n", i, end - start);
 418			}
 419		}
 420#endif
 421
 422		for (j = __pfn_to_highbits(start);
 423		     j <= __pfn_to_highbits(end - 1); j++)
 424			highbits_to_node[j] = i;
 425
 426		node_start_pfn[i] = start;
 427		node_end_pfn[i] = end;
 428		node_controller[i] = range.controller;
 429		num_physpages += size;
 430		max_pfn = end;
 431
 432		/* Mark node as online */
 433		node_set(i, node_online_map);
 434		node_set(i, node_possible_map);
 435	}
 436
 437#ifndef __tilegx__
 438	/*
 439	 * For 4KB pages, mem_map "struct page" data is 1% of the size
 440	 * of the physical memory, so can be quite big (640 MB for
 441	 * four 16G zones).  These structures must be mapped in
 442	 * lowmem, and since we currently cap out at about 768 MB,
 443	 * it's impractical to try to use this much address space.
 444	 * For now, arbitrarily cap the amount of physical memory
 445	 * we're willing to use at 8 million pages (32GB of 4KB pages).
 446	 */
 447	cap = 8 * 1024 * 1024;  /* 8 million pages */
 448	if (num_physpages > cap) {
 449		int num_nodes = num_online_nodes();
 450		int cap_each = cap / num_nodes;
 451		unsigned long dropped_pages = 0;
 452		for (i = 0; i < num_nodes; ++i) {
 453			int size = node_end_pfn[i] - node_start_pfn[i];
 454			if (size > cap_each) {
 455				dropped_pages += (size - cap_each);
 456				node_end_pfn[i] = node_start_pfn[i] + cap_each;
 457			}
 458		}
 459		num_physpages -= dropped_pages;
 460		pr_warning("Only using %ldMB memory;"
 461		       " ignoring %ldMB.\n",
 462		       num_physpages >> (20 - PAGE_SHIFT),
 463		       dropped_pages >> (20 - PAGE_SHIFT));
 464		pr_warning("Consider using a larger page size.\n");
 465	}
 466#endif
 467
 468	/* Heap starts just above the last loaded address. */
 469	min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
 470
 471#ifdef CONFIG_HIGHMEM
 472	/* Find where we map lowmem from each controller. */
 473	high_memory = setup_pa_va_mapping();
 474
 475	/* Set max_low_pfn based on what node 0 can directly address. */
 476	max_low_pfn = node_lowmem_end_pfn[0];
 477
 478	lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
 479		MAXMEM_PFN : mappable_physpages;
 480	highmem_pages = (long) (num_physpages - lowmem_pages);
 481
 482	pr_notice("%ldMB HIGHMEM available.\n",
 483	       pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
 484	pr_notice("%ldMB LOWMEM available.\n",
 485			pages_to_mb(lowmem_pages));
 486#else
 487	/* Set max_low_pfn based on what node 0 can directly address. */
 488	max_low_pfn = node_end_pfn[0];
 489
 490#ifndef __tilegx__
 491	if (node_end_pfn[0] > MAXMEM_PFN) {
 492		pr_warning("Only using %ldMB LOWMEM.\n",
 493		       MAXMEM>>20);
 494		pr_warning("Use a HIGHMEM enabled kernel.\n");
 495		max_low_pfn = MAXMEM_PFN;
 496		max_pfn = MAXMEM_PFN;
 497		num_physpages = MAXMEM_PFN;
 498		node_end_pfn[0] = MAXMEM_PFN;
 499	} else {
 500		pr_notice("%ldMB memory available.\n",
 501		       pages_to_mb(node_end_pfn[0]));
 502	}
 503	for (i = 1; i < MAX_NUMNODES; ++i) {
 504		node_start_pfn[i] = 0;
 505		node_end_pfn[i] = 0;
 506	}
 507	high_memory = __va(node_end_pfn[0]);
 508#else
 509	lowmem_pages = 0;
 510	for (i = 0; i < MAX_NUMNODES; ++i) {
 511		int pages = node_end_pfn[i] - node_start_pfn[i];
 512		lowmem_pages += pages;
 513		if (pages)
 514			high_memory = pfn_to_kaddr(node_end_pfn[i]);
 515	}
 516	pr_notice("%ldMB memory available.\n",
 517	       pages_to_mb(lowmem_pages));
 518#endif
 519#endif
 520}
 521
 522static void __init setup_bootmem_allocator(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 523{
 524	unsigned long bootmap_size, first_alloc_pfn, last_alloc_pfn;
 525
 526	/* Provide a node 0 bdata. */
 527	NODE_DATA(0)->bdata = &node0_bdata;
 
 
 
 
 
 528
 529#ifdef CONFIG_PCI
 530	/* Don't let boot memory alias the PCI region. */
 531	last_alloc_pfn = min(max_low_pfn, pci_reserve_start_pfn);
 
 
 
 532#else
 533	last_alloc_pfn = max_low_pfn;
 534#endif
 535
 536	/*
 537	 * Initialize the boot-time allocator (with low memory only):
 538	 * The first argument says where to put the bitmap, and the
 539	 * second says where the end of allocatable memory is.
 540	 */
 541	bootmap_size = init_bootmem(min_low_pfn, last_alloc_pfn);
 542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543	/*
 544	 * Let the bootmem allocator use all the space we've given it
 545	 * except for its own bitmap.
 546	 */
 547	first_alloc_pfn = min_low_pfn + PFN_UP(bootmap_size);
 548	if (first_alloc_pfn >= last_alloc_pfn)
 549		early_panic("Not enough memory on controller 0 for bootmem\n");
 
 
 
 
 
 
 
 
 
 
 
 550
 551	free_bootmem(PFN_PHYS(first_alloc_pfn),
 552		     PFN_PHYS(last_alloc_pfn - first_alloc_pfn));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 553
 554#ifdef CONFIG_KEXEC
 555	if (crashk_res.start != crashk_res.end)
 556		reserve_bootmem(crashk_res.start, resource_size(&crashk_res), 0);
 
 557#endif
 558}
 559
 560void *__init alloc_remap(int nid, unsigned long size)
 561{
 562	int pages = node_end_pfn[nid] - node_start_pfn[nid];
 563	void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
 564	BUG_ON(size != pages * sizeof(struct page));
 565	memset(map, 0, size);
 566	return map;
 567}
 568
 569static int __init percpu_size(void)
 570{
 571	int size = __per_cpu_end - __per_cpu_start;
 572	size += PERCPU_MODULE_RESERVE;
 573	size += PERCPU_DYNAMIC_EARLY_SIZE;
 574	if (size < PCPU_MIN_UNIT_SIZE)
 575		size = PCPU_MIN_UNIT_SIZE;
 576	size = roundup(size, PAGE_SIZE);
 577
 578	/* In several places we assume the per-cpu data fits on a huge page. */
 579	BUG_ON(kdata_huge && size > HPAGE_SIZE);
 580	return size;
 581}
 582
 583static inline unsigned long alloc_bootmem_pfn(int size, unsigned long goal)
 584{
 585	void *kva = __alloc_bootmem(size, PAGE_SIZE, goal);
 586	unsigned long pfn = kaddr_to_pfn(kva);
 587	BUG_ON(goal && PFN_PHYS(pfn) != goal);
 588	return pfn;
 589}
 590
 591static void __init zone_sizes_init(void)
 592{
 593	unsigned long zones_size[MAX_NR_ZONES] = { 0 };
 594	int size = percpu_size();
 595	int num_cpus = smp_height * smp_width;
 
 
 596	int i;
 597
 598	for (i = 0; i < num_cpus; ++i)
 599		node_percpu[cpu_to_node(i)] += size;
 600
 601	for_each_online_node(i) {
 602		unsigned long start = node_start_pfn[i];
 603		unsigned long end = node_end_pfn[i];
 604#ifdef CONFIG_HIGHMEM
 605		unsigned long lowmem_end = node_lowmem_end_pfn[i];
 606#else
 607		unsigned long lowmem_end = end;
 608#endif
 609		int memmap_size = (end - start) * sizeof(struct page);
 610		node_free_pfn[i] = start;
 611
 612		/*
 613		 * Set aside pages for per-cpu data and the mem_map array.
 614		 *
 615		 * Since the per-cpu data requires special homecaching,
 616		 * if we are in kdata_huge mode, we put it at the end of
 617		 * the lowmem region.  If we're not in kdata_huge mode,
 618		 * we take the per-cpu pages from the bottom of the
 619		 * controller, since that avoids fragmenting a huge page
 620		 * that users might want.  We always take the memmap
 621		 * from the bottom of the controller, since with
 622		 * kdata_huge that lets it be under a huge TLB entry.
 623		 *
 624		 * If the user has requested isolnodes for a controller,
 625		 * though, there'll be no lowmem, so we just alloc_bootmem
 626		 * the memmap.  There will be no percpu memory either.
 627		 */
 628		if (__pfn_to_highbits(start) == 0) {
 629			/* In low PAs, allocate via bootmem. */
 
 
 
 630			unsigned long goal = 0;
 631			node_memmap_pfn[i] =
 632				alloc_bootmem_pfn(memmap_size, goal);
 633			if (kdata_huge)
 634				goal = PFN_PHYS(lowmem_end) - node_percpu[i];
 635			if (node_percpu[i])
 636				node_percpu_pfn[i] =
 637				    alloc_bootmem_pfn(node_percpu[i], goal);
 638		} else if (cpu_isset(i, isolnodes)) {
 639			node_memmap_pfn[i] = alloc_bootmem_pfn(memmap_size, 0);
 640			BUG_ON(node_percpu[i] != 0);
 641		} else {
 642			/* In high PAs, just reserve some pages. */
 643			node_memmap_pfn[i] = node_free_pfn[i];
 644			node_free_pfn[i] += PFN_UP(memmap_size);
 645			if (!kdata_huge) {
 646				node_percpu_pfn[i] = node_free_pfn[i];
 647				node_free_pfn[i] += PFN_UP(node_percpu[i]);
 648			} else {
 649				node_percpu_pfn[i] =
 650					lowmem_end - PFN_UP(node_percpu[i]);
 651			}
 652		}
 653
 654#ifdef CONFIG_HIGHMEM
 655		if (start > lowmem_end) {
 656			zones_size[ZONE_NORMAL] = 0;
 657			zones_size[ZONE_HIGHMEM] = end - start;
 658		} else {
 659			zones_size[ZONE_NORMAL] = lowmem_end - start;
 660			zones_size[ZONE_HIGHMEM] = end - lowmem_end;
 661		}
 662#else
 663		zones_size[ZONE_NORMAL] = end - start;
 664#endif
 665
 666		/*
 667		 * Everyone shares node 0's bootmem allocator, but
 668		 * we use alloc_remap(), above, to put the actual
 669		 * struct page array on the individual controllers,
 670		 * which is most of the data that we actually care about.
 671		 * We can't place bootmem allocators on the other
 672		 * controllers since the bootmem allocator can only
 673		 * operate on 32-bit physical addresses.
 674		 */
 675		NODE_DATA(i)->bdata = NODE_DATA(0)->bdata;
 
 676
 677		free_area_init_node(i, zones_size, start, NULL);
 678		printk(KERN_DEBUG "  Normal zone: %ld per-cpu pages\n",
 679		       PFN_UP(node_percpu[i]));
 680
 681		/* Track the type of memory on each node */
 682		if (zones_size[ZONE_NORMAL])
 683			node_set_state(i, N_NORMAL_MEMORY);
 684#ifdef CONFIG_HIGHMEM
 685		if (end != start)
 686			node_set_state(i, N_HIGH_MEMORY);
 687#endif
 688
 689		node_set_online(i);
 690	}
 691}
 692
 693#ifdef CONFIG_NUMA
 694
 695/* which logical CPUs are on which nodes */
 696struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
 697EXPORT_SYMBOL(node_2_cpu_mask);
 698
 699/* which node each logical CPU is on */
 700char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
 701EXPORT_SYMBOL(cpu_2_node);
 702
 703/* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
 704static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
 705{
 706	if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
 707		return -1;
 708	else
 709		return cpu_to_node(cpu);
 710}
 711
 712/* Return number of immediately-adjacent tiles sharing the same NUMA node. */
 713static int __init node_neighbors(int node, int cpu,
 714				 struct cpumask *unbound_cpus)
 715{
 716	int neighbors = 0;
 717	int w = smp_width;
 718	int h = smp_height;
 719	int x = cpu % w;
 720	int y = cpu / w;
 721	if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
 722		++neighbors;
 723	if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
 724		++neighbors;
 725	if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
 726		++neighbors;
 727	if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
 728		++neighbors;
 729	return neighbors;
 730}
 731
 732static void __init setup_numa_mapping(void)
 733{
 734	int distance[MAX_NUMNODES][NR_CPUS];
 735	HV_Coord coord;
 736	int cpu, node, cpus, i, x, y;
 737	int num_nodes = num_online_nodes();
 738	struct cpumask unbound_cpus;
 739	nodemask_t default_nodes;
 740
 741	cpumask_clear(&unbound_cpus);
 742
 743	/* Get set of nodes we will use for defaults */
 744	nodes_andnot(default_nodes, node_online_map, isolnodes);
 745	if (nodes_empty(default_nodes)) {
 746		BUG_ON(!node_isset(0, node_online_map));
 747		pr_err("Forcing NUMA node zero available as a default node\n");
 748		node_set(0, default_nodes);
 749	}
 750
 751	/* Populate the distance[] array */
 752	memset(distance, -1, sizeof(distance));
 753	cpu = 0;
 754	for (coord.y = 0; coord.y < smp_height; ++coord.y) {
 755		for (coord.x = 0; coord.x < smp_width;
 756		     ++coord.x, ++cpu) {
 757			BUG_ON(cpu >= nr_cpu_ids);
 758			if (!cpu_possible(cpu)) {
 759				cpu_2_node[cpu] = -1;
 760				continue;
 761			}
 762			for_each_node_mask(node, default_nodes) {
 763				HV_MemoryControllerInfo info =
 764					hv_inquire_memory_controller(
 765						coord, node_controller[node]);
 766				distance[node][cpu] =
 767					ABS(info.coord.x) + ABS(info.coord.y);
 768			}
 769			cpumask_set_cpu(cpu, &unbound_cpus);
 770		}
 771	}
 772	cpus = cpu;
 773
 774	/*
 775	 * Round-robin through the NUMA nodes until all the cpus are
 776	 * assigned.  We could be more clever here (e.g. create four
 777	 * sorted linked lists on the same set of cpu nodes, and pull
 778	 * off them in round-robin sequence, removing from all four
 779	 * lists each time) but given the relatively small numbers
 780	 * involved, O(n^2) seem OK for a one-time cost.
 781	 */
 782	node = first_node(default_nodes);
 783	while (!cpumask_empty(&unbound_cpus)) {
 784		int best_cpu = -1;
 785		int best_distance = INT_MAX;
 786		for (cpu = 0; cpu < cpus; ++cpu) {
 787			if (cpumask_test_cpu(cpu, &unbound_cpus)) {
 788				/*
 789				 * Compute metric, which is how much
 790				 * closer the cpu is to this memory
 791				 * controller than the others, shifted
 792				 * up, and then the number of
 793				 * neighbors already in the node as an
 794				 * epsilon adjustment to try to keep
 795				 * the nodes compact.
 796				 */
 797				int d = distance[node][cpu] * num_nodes;
 798				for_each_node_mask(i, default_nodes) {
 799					if (i != node)
 800						d -= distance[i][cpu];
 801				}
 802				d *= 8;  /* allow space for epsilon */
 803				d -= node_neighbors(node, cpu, &unbound_cpus);
 804				if (d < best_distance) {
 805					best_cpu = cpu;
 806					best_distance = d;
 807				}
 808			}
 809		}
 810		BUG_ON(best_cpu < 0);
 811		cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
 812		cpu_2_node[best_cpu] = node;
 813		cpumask_clear_cpu(best_cpu, &unbound_cpus);
 814		node = next_node(node, default_nodes);
 815		if (node == MAX_NUMNODES)
 816			node = first_node(default_nodes);
 817	}
 818
 819	/* Print out node assignments and set defaults for disabled cpus */
 820	cpu = 0;
 821	for (y = 0; y < smp_height; ++y) {
 822		printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
 823		for (x = 0; x < smp_width; ++x, ++cpu) {
 824			if (cpu_to_node(cpu) < 0) {
 825				pr_cont(" -");
 826				cpu_2_node[cpu] = first_node(default_nodes);
 827			} else {
 828				pr_cont(" %d", cpu_to_node(cpu));
 829			}
 830		}
 831		pr_cont("\n");
 832	}
 833}
 834
 835static struct cpu cpu_devices[NR_CPUS];
 836
 837static int __init topology_init(void)
 838{
 839	int i;
 840
 841	for_each_online_node(i)
 842		register_one_node(i);
 843
 844	for (i = 0; i < smp_height * smp_width; ++i)
 845		register_cpu(&cpu_devices[i], i);
 846
 847	return 0;
 848}
 849
 850subsys_initcall(topology_init);
 851
 852#else /* !CONFIG_NUMA */
 853
 854#define setup_numa_mapping() do { } while (0)
 855
 856#endif /* CONFIG_NUMA */
 857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858/**
 859 * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
 860 * @boot: Is this the boot cpu?
 861 *
 862 * Called from setup_arch() on the boot cpu, or online_secondary().
 863 */
 864void __cpuinit setup_cpu(int boot)
 865{
 866	/* The boot cpu sets up its permanent mappings much earlier. */
 867	if (!boot)
 868		store_permanent_mappings();
 869
 870	/* Allow asynchronous TLB interrupts. */
 871#if CHIP_HAS_TILE_DMA()
 872	arch_local_irq_unmask(INT_DMATLB_MISS);
 873	arch_local_irq_unmask(INT_DMATLB_ACCESS);
 874#endif
 875#if CHIP_HAS_SN_PROC()
 876	arch_local_irq_unmask(INT_SNITLB_MISS);
 877#endif
 878#ifdef __tilegx__
 879	arch_local_irq_unmask(INT_SINGLE_STEP_K);
 880#endif
 881
 882	/*
 883	 * Allow user access to many generic SPRs, like the cycle
 884	 * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
 885	 */
 886	__insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
 887
 888#if CHIP_HAS_SN()
 889	/* Static network is not restricted. */
 890	__insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
 891#endif
 892#if CHIP_HAS_SN_PROC()
 893	__insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1);
 894	__insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1);
 895#endif
 896
 897	/*
 898	 * Set the MPL for interrupt control 0 & 1 to the corresponding
 899	 * values.  This includes access to the SYSTEM_SAVE and EX_CONTEXT
 900	 * SPRs, as well as the interrupt mask.
 901	 */
 902	__insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
 903	__insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
 904
 905	/* Initialize IRQ support for this cpu. */
 906	setup_irq_regs();
 907
 908#ifdef CONFIG_HARDWALL
 909	/* Reset the network state on this cpu. */
 910	reset_network_state();
 911#endif
 
 
 912}
 913
 914#ifdef CONFIG_BLK_DEV_INITRD
 915
 916static int __initdata set_initramfs_file;
 917static char __initdata initramfs_file[128] = "initramfs.cpio.gz";
 918
 919static int __init setup_initramfs_file(char *str)
 920{
 921	if (str == NULL)
 922		return -EINVAL;
 923	strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
 924	set_initramfs_file = 1;
 925
 926	return 0;
 927}
 928early_param("initramfs_file", setup_initramfs_file);
 929
 930/*
 931 * We look for an additional "initramfs.cpio.gz" file in the hvfs.
 932 * If there is one, we allocate some memory for it and it will be
 933 * unpacked to the initramfs after any built-in initramfs_data.
 934 */
 935static void __init load_hv_initrd(void)
 936{
 937	HV_FS_StatInfo stat;
 938	int fd, rc;
 939	void *initrd;
 940
 
 
 
 
 941	fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
 942	if (fd == HV_ENOENT) {
 943		if (set_initramfs_file)
 944			pr_warning("No such hvfs initramfs file '%s'\n",
 945				   initramfs_file);
 946		return;
 
 
 
 
 
 
 947	}
 948	BUG_ON(fd < 0);
 949	stat = hv_fs_fstat(fd);
 950	BUG_ON(stat.size < 0);
 951	if (stat.flags & HV_FS_ISDIR) {
 952		pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
 953			   initramfs_file);
 954		return;
 955	}
 956	initrd = alloc_bootmem_pages(stat.size);
 957	rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
 958	if (rc != stat.size) {
 959		pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
 960		       stat.size, initramfs_file, rc);
 961		free_initrd_mem((unsigned long) initrd, stat.size);
 962		return;
 963	}
 964	initrd_start = (unsigned long) initrd;
 965	initrd_end = initrd_start + stat.size;
 966}
 967
 968void __init free_initrd_mem(unsigned long begin, unsigned long end)
 969{
 970	free_bootmem(__pa(begin), end - begin);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 971}
 
 972
 973#else
 974static inline void load_hv_initrd(void) {}
 975#endif /* CONFIG_BLK_DEV_INITRD */
 976
 977static void __init validate_hv(void)
 978{
 979	/*
 980	 * It may already be too late, but let's check our built-in
 981	 * configuration against what the hypervisor is providing.
 982	 */
 983	unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
 984	int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
 985	int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
 986	HV_ASIDRange asid_range;
 987
 988#ifndef CONFIG_SMP
 989	HV_Topology topology = hv_inquire_topology();
 990	BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
 991	if (topology.width != 1 || topology.height != 1) {
 992		pr_warning("Warning: booting UP kernel on %dx%d grid;"
 993			   " will ignore all but first tile.\n",
 994			   topology.width, topology.height);
 995	}
 996#endif
 997
 998	if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
 999		early_panic("Hypervisor glue size %ld is too big!\n",
1000			    glue_size);
1001	if (hv_page_size != PAGE_SIZE)
1002		early_panic("Hypervisor page size %#x != our %#lx\n",
1003			    hv_page_size, PAGE_SIZE);
1004	if (hv_hpage_size != HPAGE_SIZE)
1005		early_panic("Hypervisor huge page size %#x != our %#lx\n",
1006			    hv_hpage_size, HPAGE_SIZE);
1007
1008#ifdef CONFIG_SMP
1009	/*
1010	 * Some hypervisor APIs take a pointer to a bitmap array
1011	 * whose size is at least the number of cpus on the chip.
1012	 * We use a struct cpumask for this, so it must be big enough.
1013	 */
1014	if ((smp_height * smp_width) > nr_cpu_ids)
1015		early_panic("Hypervisor %d x %d grid too big for Linux"
1016			    " NR_CPUS %d\n", smp_height, smp_width,
1017			    nr_cpu_ids);
1018#endif
1019
1020	/*
1021	 * Check that we're using allowed ASIDs, and initialize the
1022	 * various asid variables to their appropriate initial states.
1023	 */
1024	asid_range = hv_inquire_asid(0);
1025	__get_cpu_var(current_asid) = min_asid = asid_range.start;
 
1026	max_asid = asid_range.start + asid_range.size - 1;
1027
1028	if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1029		       sizeof(chip_model)) < 0) {
1030		pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1031		strlcpy(chip_model, "unknown", sizeof(chip_model));
1032	}
1033}
1034
1035static void __init validate_va(void)
1036{
1037#ifndef __tilegx__   /* FIXME: GX: probably some validation relevant here */
1038	/*
1039	 * Similarly, make sure we're only using allowed VAs.
1040	 * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT,
1041	 * and 0 .. KERNEL_HIGH_VADDR.
1042	 * In addition, make sure we CAN'T use the end of memory, since
1043	 * we use the last chunk of each pgd for the pgd_list.
1044	 */
1045	int i, user_kernel_ok = 0;
1046	unsigned long max_va = 0;
1047	unsigned long list_va =
1048		((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1049
1050	for (i = 0; ; ++i) {
1051		HV_VirtAddrRange range = hv_inquire_virtual(i);
1052		if (range.size == 0)
1053			break;
1054		if (range.start <= MEM_USER_INTRPT &&
1055		    range.start + range.size >= MEM_HV_INTRPT)
1056			user_kernel_ok = 1;
1057		if (range.start == 0)
1058			max_va = range.size;
1059		BUG_ON(range.start + range.size > list_va);
1060	}
1061	if (!user_kernel_ok)
1062		early_panic("Hypervisor not configured for user/kernel VAs\n");
1063	if (max_va == 0)
1064		early_panic("Hypervisor not configured for low VAs\n");
1065	if (max_va < KERNEL_HIGH_VADDR)
1066		early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1067			    max_va, KERNEL_HIGH_VADDR);
1068
1069	/* Kernel PCs must have their high bit set; see intvec.S. */
1070	if ((long)VMALLOC_START >= 0)
1071		early_panic(
1072			"Linux VMALLOC region below the 2GB line (%#lx)!\n"
1073			"Reconfigure the kernel with fewer NR_HUGE_VMAPS\n"
1074			"or smaller VMALLOC_RESERVE.\n",
1075			VMALLOC_START);
1076#endif
1077}
1078
1079/*
1080 * cpu_lotar_map lists all the cpus that are valid for the supervisor
1081 * to cache data on at a page level, i.e. what cpus can be placed in
1082 * the LOTAR field of a PTE.  It is equivalent to the set of possible
1083 * cpus plus any other cpus that are willing to share their cache.
1084 * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1085 */
1086struct cpumask __write_once cpu_lotar_map;
1087EXPORT_SYMBOL(cpu_lotar_map);
1088
1089#if CHIP_HAS_CBOX_HOME_MAP()
1090/*
1091 * hash_for_home_map lists all the tiles that hash-for-home data
1092 * will be cached on.  Note that this may includes tiles that are not
1093 * valid for this supervisor to use otherwise (e.g. if a hypervisor
1094 * device is being shared between multiple supervisors).
1095 * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1096 */
1097struct cpumask hash_for_home_map;
1098EXPORT_SYMBOL(hash_for_home_map);
1099#endif
1100
1101/*
1102 * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1103 * flush on our behalf.  It is set to cpu_possible_map OR'ed with
1104 * hash_for_home_map, and it is what should be passed to
1105 * hv_flush_remote() to flush all caches.  Note that if there are
1106 * dedicated hypervisor driver tiles that have authorized use of their
1107 * cache, those tiles will only appear in cpu_lotar_map, NOT in
1108 * cpu_cacheable_map, as they are a special case.
1109 */
1110struct cpumask __write_once cpu_cacheable_map;
1111EXPORT_SYMBOL(cpu_cacheable_map);
1112
1113static __initdata struct cpumask disabled_map;
1114
1115static int __init disabled_cpus(char *str)
1116{
1117	int boot_cpu = smp_processor_id();
1118
1119	if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1120		return -EINVAL;
1121	if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1122		pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1123		cpumask_clear_cpu(boot_cpu, &disabled_map);
1124	}
1125	return 0;
1126}
1127
1128early_param("disabled_cpus", disabled_cpus);
1129
1130void __init print_disabled_cpus(void)
1131{
1132	if (!cpumask_empty(&disabled_map)) {
1133		char buf[100];
1134		cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
1135		pr_info("CPUs not available for Linux: %s\n", buf);
1136	}
1137}
1138
1139static void __init setup_cpu_maps(void)
1140{
1141	struct cpumask hv_disabled_map, cpu_possible_init;
1142	int boot_cpu = smp_processor_id();
1143	int cpus, i, rc;
1144
1145	/* Learn which cpus are allowed by the hypervisor. */
1146	rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1147			      (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1148			      sizeof(cpu_cacheable_map));
1149	if (rc < 0)
1150		early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1151	if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1152		early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1153
1154	/* Compute the cpus disabled by the hvconfig file. */
1155	cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1156
1157	/* Include them with the cpus disabled by "disabled_cpus". */
1158	cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1159
1160	/*
1161	 * Disable every cpu after "setup_max_cpus".  But don't mark
1162	 * as disabled the cpus that are outside of our initial rectangle,
1163	 * since that turns out to be confusing.
1164	 */
1165	cpus = 1;                          /* this cpu */
1166	cpumask_set_cpu(boot_cpu, &disabled_map);   /* ignore this cpu */
1167	for (i = 0; cpus < setup_max_cpus; ++i)
1168		if (!cpumask_test_cpu(i, &disabled_map))
1169			++cpus;
1170	for (; i < smp_height * smp_width; ++i)
1171		cpumask_set_cpu(i, &disabled_map);
1172	cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1173	for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1174		cpumask_clear_cpu(i, &disabled_map);
1175
1176	/*
1177	 * Setup cpu_possible map as every cpu allocated to us, minus
1178	 * the results of any "disabled_cpus" settings.
1179	 */
1180	cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1181	init_cpu_possible(&cpu_possible_init);
1182
1183	/* Learn which cpus are valid for LOTAR caching. */
1184	rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1185			      (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1186			      sizeof(cpu_lotar_map));
1187	if (rc < 0) {
1188		pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1189		cpu_lotar_map = cpu_possible_map;
1190	}
1191
1192#if CHIP_HAS_CBOX_HOME_MAP()
1193	/* Retrieve set of CPUs used for hash-for-home caching */
1194	rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1195			      (HV_VirtAddr) hash_for_home_map.bits,
1196			      sizeof(hash_for_home_map));
1197	if (rc < 0)
1198		early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1199	cpumask_or(&cpu_cacheable_map, &cpu_possible_map, &hash_for_home_map);
1200#else
1201	cpu_cacheable_map = cpu_possible_map;
1202#endif
1203}
1204
1205
1206static int __init dataplane(char *str)
1207{
1208	pr_warning("WARNING: dataplane support disabled in this kernel\n");
1209	return 0;
1210}
1211
1212early_param("dataplane", dataplane);
1213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1214#ifdef CONFIG_CMDLINE_BOOL
1215static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1216#endif
1217
1218void __init setup_arch(char **cmdline_p)
1219{
1220	int len;
1221
1222#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1223	len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1224				  COMMAND_LINE_SIZE);
1225	if (boot_command_line[0])
1226		pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
1227			   boot_command_line);
1228	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1229#else
1230	char *hv_cmdline;
1231#if defined(CONFIG_CMDLINE_BOOL)
1232	if (builtin_cmdline[0]) {
1233		int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1234					  COMMAND_LINE_SIZE);
1235		if (builtin_len < COMMAND_LINE_SIZE-1)
1236			boot_command_line[builtin_len++] = ' ';
1237		hv_cmdline = &boot_command_line[builtin_len];
1238		len = COMMAND_LINE_SIZE - builtin_len;
1239	} else
1240#endif
1241	{
1242		hv_cmdline = boot_command_line;
1243		len = COMMAND_LINE_SIZE;
1244	}
1245	len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1246	if (len < 0 || len > COMMAND_LINE_SIZE)
1247		early_panic("hv_get_command_line failed: %d\n", len);
1248#endif
1249
1250	*cmdline_p = boot_command_line;
1251
1252	/* Set disabled_map and setup_max_cpus very early */
1253	parse_early_param();
1254
1255	/* Make sure the kernel is compatible with the hypervisor. */
1256	validate_hv();
1257	validate_va();
1258
1259	setup_cpu_maps();
1260
1261
1262#ifdef CONFIG_PCI
1263	/*
1264	 * Initialize the PCI structures.  This is done before memory
1265	 * setup so that we know whether or not a pci_reserve region
1266	 * is necessary.
1267	 */
1268	if (tile_pci_init() == 0)
1269		pci_reserve_mb = 0;
1270
1271	/* PCI systems reserve a region just below 4GB for mapping iomem. */
1272	pci_reserve_end_pfn  = (1 << (32 - PAGE_SHIFT));
1273	pci_reserve_start_pfn = pci_reserve_end_pfn -
1274		(pci_reserve_mb << (20 - PAGE_SHIFT));
1275#endif
1276
1277	init_mm.start_code = (unsigned long) _text;
1278	init_mm.end_code = (unsigned long) _etext;
1279	init_mm.end_data = (unsigned long) _edata;
1280	init_mm.brk = (unsigned long) _end;
1281
1282	setup_memory();
1283	store_permanent_mappings();
1284	setup_bootmem_allocator();
1285
1286	/*
1287	 * NOTE: before this point _nobody_ is allowed to allocate
1288	 * any memory using the bootmem allocator.
1289	 */
1290
 
 
 
 
1291	paging_init();
1292	setup_numa_mapping();
1293	zone_sizes_init();
1294	set_page_homes();
1295	setup_cpu(1);
1296	setup_clock();
1297	load_hv_initrd();
1298}
1299
1300
1301/*
1302 * Set up per-cpu memory.
1303 */
1304
1305unsigned long __per_cpu_offset[NR_CPUS] __write_once;
1306EXPORT_SYMBOL(__per_cpu_offset);
1307
1308static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1309static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1310
1311/*
1312 * As the percpu code allocates pages, we return the pages from the
1313 * end of the node for the specified cpu.
1314 */
1315static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1316{
1317	int nid = cpu_to_node(cpu);
1318	unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1319
1320	BUG_ON(size % PAGE_SIZE != 0);
1321	pfn_offset[nid] += size / PAGE_SIZE;
1322	BUG_ON(node_percpu[nid] < size);
1323	node_percpu[nid] -= size;
1324	if (percpu_pfn[cpu] == 0)
1325		percpu_pfn[cpu] = pfn;
1326	return pfn_to_kaddr(pfn);
1327}
1328
1329/*
1330 * Pages reserved for percpu memory are not freeable, and in any case we are
1331 * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1332 */
1333static void __init pcpu_fc_free(void *ptr, size_t size)
1334{
1335}
1336
1337/*
1338 * Set up vmalloc page tables using bootmem for the percpu code.
1339 */
1340static void __init pcpu_fc_populate_pte(unsigned long addr)
1341{
1342	pgd_t *pgd;
1343	pud_t *pud;
1344	pmd_t *pmd;
1345	pte_t *pte;
1346
1347	BUG_ON(pgd_addr_invalid(addr));
1348	if (addr < VMALLOC_START || addr >= VMALLOC_END)
1349		panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;"
1350		      " try increasing CONFIG_VMALLOC_RESERVE\n",
1351		      addr, VMALLOC_START, VMALLOC_END);
1352
1353	pgd = swapper_pg_dir + pgd_index(addr);
1354	pud = pud_offset(pgd, addr);
1355	BUG_ON(!pud_present(*pud));
1356	pmd = pmd_offset(pud, addr);
1357	if (pmd_present(*pmd)) {
1358		BUG_ON(pmd_huge_page(*pmd));
1359	} else {
1360		pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1361				      HV_PAGE_TABLE_ALIGN, 0);
1362		pmd_populate_kernel(&init_mm, pmd, pte);
1363	}
1364}
1365
1366void __init setup_per_cpu_areas(void)
1367{
1368	struct page *pg;
1369	unsigned long delta, pfn, lowmem_va;
1370	unsigned long size = percpu_size();
1371	char *ptr;
1372	int rc, cpu, i;
1373
1374	rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1375				   pcpu_fc_free, pcpu_fc_populate_pte);
1376	if (rc < 0)
1377		panic("Cannot initialize percpu area (err=%d)", rc);
1378
1379	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1380	for_each_possible_cpu(cpu) {
1381		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1382
1383		/* finv the copy out of cache so we can change homecache */
1384		ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1385		__finv_buffer(ptr, size);
1386		pfn = percpu_pfn[cpu];
1387
1388		/* Rewrite the page tables to cache on that cpu */
1389		pg = pfn_to_page(pfn);
1390		for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1391
1392			/* Update the vmalloc mapping and page home. */
1393			pte_t *ptep =
1394				virt_to_pte(NULL, (unsigned long)ptr + i);
1395			pte_t pte = *ptep;
1396			BUG_ON(pfn != pte_pfn(pte));
1397			pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1398			pte = set_remote_cache_cpu(pte, cpu);
1399			set_pte(ptep, pte);
1400
1401			/* Update the lowmem mapping for consistency. */
1402			lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1403			ptep = virt_to_pte(NULL, lowmem_va);
1404			if (pte_huge(*ptep)) {
1405				printk(KERN_DEBUG "early shatter of huge page"
1406				       " at %#lx\n", lowmem_va);
1407				shatter_pmd((pmd_t *)ptep);
1408				ptep = virt_to_pte(NULL, lowmem_va);
1409				BUG_ON(pte_huge(*ptep));
1410			}
1411			BUG_ON(pfn != pte_pfn(*ptep));
1412			set_pte(ptep, pte);
1413		}
1414	}
1415
1416	/* Set our thread pointer appropriately. */
1417	set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1418
1419	/* Make sure the finv's have completed. */
1420	mb_incoherent();
1421
1422	/* Flush the TLB so we reference it properly from here on out. */
1423	local_flush_tlb_all();
1424}
1425
1426static struct resource data_resource = {
1427	.name	= "Kernel data",
1428	.start	= 0,
1429	.end	= 0,
1430	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1431};
1432
1433static struct resource code_resource = {
1434	.name	= "Kernel code",
1435	.start	= 0,
1436	.end	= 0,
1437	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1438};
1439
1440/*
1441 * We reserve all resources above 4GB so that PCI won't try to put
1442 * mappings above 4GB; the standard allows that for some devices but
1443 * the probing code trunates values to 32 bits.
1444 */
1445#ifdef CONFIG_PCI
1446static struct resource* __init
1447insert_non_bus_resource(void)
1448{
1449	struct resource *res =
1450		kzalloc(sizeof(struct resource), GFP_ATOMIC);
 
 
1451	res->name = "Non-Bus Physical Address Space";
1452	res->start = (1ULL << 32);
1453	res->end = -1LL;
1454	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1455	if (insert_resource(&iomem_resource, res)) {
1456		kfree(res);
1457		return NULL;
1458	}
1459	return res;
1460}
1461#endif
1462
1463static struct resource* __init
1464insert_ram_resource(u64 start_pfn, u64 end_pfn)
1465{
1466	struct resource *res =
1467		kzalloc(sizeof(struct resource), GFP_ATOMIC);
1468	res->name = "System RAM";
 
1469	res->start = start_pfn << PAGE_SHIFT;
1470	res->end = (end_pfn << PAGE_SHIFT) - 1;
1471	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
 
 
 
 
 
 
1472	if (insert_resource(&iomem_resource, res)) {
1473		kfree(res);
1474		return NULL;
1475	}
1476	return res;
1477}
1478
1479/*
1480 * Request address space for all standard resources
1481 *
1482 * If the system includes PCI root complex drivers, we need to create
1483 * a window just below 4GB where PCI BARs can be mapped.
1484 */
1485static int __init request_standard_resources(void)
1486{
1487	int i;
1488	enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
1489
1490	iomem_resource.end = -1LL;
1491#ifdef CONFIG_PCI
1492	insert_non_bus_resource();
1493#endif
1494
1495	for_each_online_node(i) {
1496		u64 start_pfn = node_start_pfn[i];
1497		u64 end_pfn = node_end_pfn[i];
1498
1499#ifdef CONFIG_PCI
1500		if (start_pfn <= pci_reserve_start_pfn &&
1501		    end_pfn > pci_reserve_start_pfn) {
1502			if (end_pfn > pci_reserve_end_pfn)
1503				insert_ram_resource(pci_reserve_end_pfn,
1504						     end_pfn);
1505			end_pfn = pci_reserve_start_pfn;
1506		}
1507#endif
1508		insert_ram_resource(start_pfn, end_pfn);
1509	}
1510
1511	code_resource.start = __pa(_text - CODE_DELTA);
1512	code_resource.end = __pa(_etext - CODE_DELTA)-1;
1513	data_resource.start = __pa(_sdata);
1514	data_resource.end = __pa(_end)-1;
1515
1516	insert_resource(&iomem_resource, &code_resource);
1517	insert_resource(&iomem_resource, &data_resource);
 
 
 
 
 
 
 
1518
1519#ifdef CONFIG_KEXEC
1520	insert_resource(&iomem_resource, &crashk_res);
1521#endif
1522
1523	return 0;
1524}
1525
1526subsys_initcall(request_standard_resources);
v4.6
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#include <linux/sched.h>
  16#include <linux/kernel.h>
  17#include <linux/mmzone.h>
  18#include <linux/bootmem.h>
  19#include <linux/module.h>
  20#include <linux/node.h>
  21#include <linux/cpu.h>
  22#include <linux/ioport.h>
  23#include <linux/irq.h>
  24#include <linux/kexec.h>
  25#include <linux/pci.h>
  26#include <linux/swiotlb.h>
  27#include <linux/initrd.h>
  28#include <linux/io.h>
  29#include <linux/highmem.h>
  30#include <linux/smp.h>
  31#include <linux/timex.h>
  32#include <linux/hugetlb.h>
  33#include <linux/start_kernel.h>
  34#include <linux/screen_info.h>
  35#include <linux/tick.h>
  36#include <asm/setup.h>
  37#include <asm/sections.h>
  38#include <asm/cacheflush.h>
  39#include <asm/pgalloc.h>
  40#include <asm/mmu_context.h>
  41#include <hv/hypervisor.h>
  42#include <arch/interrupts.h>
  43
  44/* <linux/smp.h> doesn't provide this definition. */
  45#ifndef CONFIG_SMP
  46#define setup_max_cpus 1
  47#endif
  48
  49static inline int ABS(int x) { return x >= 0 ? x : -x; }
  50
  51/* Chip information */
  52char chip_model[64] __write_once;
  53
  54#ifdef CONFIG_VT
  55struct screen_info screen_info;
  56#endif
  57
  58struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
  59EXPORT_SYMBOL(node_data);
  60
 
 
 
  61/* Information on the NUMA nodes that we compute early */
  62unsigned long node_start_pfn[MAX_NUMNODES];
  63unsigned long node_end_pfn[MAX_NUMNODES];
  64unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
  65unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
  66unsigned long __initdata node_free_pfn[MAX_NUMNODES];
  67
  68static unsigned long __initdata node_percpu[MAX_NUMNODES];
  69
  70/*
  71 * per-CPU stack and boot info.
  72 */
  73DEFINE_PER_CPU(unsigned long, boot_sp) =
  74	(unsigned long)init_stack + THREAD_SIZE - STACK_TOP_DELTA;
  75
  76#ifdef CONFIG_SMP
  77DEFINE_PER_CPU(unsigned long, boot_pc) = (unsigned long)start_kernel;
  78#else
  79/*
  80 * The variable must be __initdata since it references __init code.
  81 * With CONFIG_SMP it is per-cpu data, which is exempt from validation.
  82 */
  83unsigned long __initdata boot_pc = (unsigned long)start_kernel;
  84#endif
  85
  86#ifdef CONFIG_HIGHMEM
  87/* Page frame index of end of lowmem on each controller. */
  88unsigned long node_lowmem_end_pfn[MAX_NUMNODES];
  89
  90/* Number of pages that can be mapped into lowmem. */
  91static unsigned long __initdata mappable_physpages;
  92#endif
  93
  94/* Data on which physical memory controller corresponds to which NUMA node */
  95int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
  96
  97#ifdef CONFIG_HIGHMEM
  98/* Map information from VAs to PAs */
  99unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
 100  __write_once __attribute__((aligned(L2_CACHE_BYTES)));
 101EXPORT_SYMBOL(pbase_map);
 102
 103/* Map information from PAs to VAs */
 104void *vbase_map[NR_PA_HIGHBIT_VALUES]
 105  __write_once __attribute__((aligned(L2_CACHE_BYTES)));
 106EXPORT_SYMBOL(vbase_map);
 107#endif
 108
 109/* Node number as a function of the high PA bits */
 110int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
 111EXPORT_SYMBOL(highbits_to_node);
 112
 113static unsigned int __initdata maxmem_pfn = -1U;
 114static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
 115	[0 ... MAX_NUMNODES-1] = -1U
 116};
 117static nodemask_t __initdata isolnodes;
 118
 119#if defined(CONFIG_PCI) && !defined(__tilegx__)
 120enum { DEFAULT_PCI_RESERVE_MB = 64 };
 121static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
 122unsigned long __initdata pci_reserve_start_pfn = -1U;
 123unsigned long __initdata pci_reserve_end_pfn = -1U;
 124#endif
 125
 126static int __init setup_maxmem(char *str)
 127{
 128	unsigned long long maxmem;
 129	if (str == NULL || (maxmem = memparse(str, NULL)) == 0)
 
 130		return -EINVAL;
 131
 132	maxmem_pfn = (maxmem >> HPAGE_SHIFT) << (HPAGE_SHIFT - PAGE_SHIFT);
 
 133	pr_info("Forcing RAM used to no more than %dMB\n",
 134		maxmem_pfn >> (20 - PAGE_SHIFT));
 135	return 0;
 136}
 137early_param("maxmem", setup_maxmem);
 138
 139static int __init setup_maxnodemem(char *str)
 140{
 141	char *endp;
 142	unsigned long long maxnodemem;
 143	long node;
 144
 145	node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
 146	if (node >= MAX_NUMNODES || *endp != ':')
 
 147		return -EINVAL;
 148
 149	maxnodemem = memparse(endp+1, NULL);
 150	maxnodemem_pfn[node] = (maxnodemem >> HPAGE_SHIFT) <<
 151		(HPAGE_SHIFT - PAGE_SHIFT);
 152	pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
 153		node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
 154	return 0;
 155}
 156early_param("maxnodemem", setup_maxnodemem);
 157
 158struct memmap_entry {
 159	u64 addr;	/* start of memory segment */
 160	u64 size;	/* size of memory segment */
 161};
 162static struct memmap_entry memmap_map[64];
 163static int memmap_nr;
 164
 165static void add_memmap_region(u64 addr, u64 size)
 166{
 167	if (memmap_nr >= ARRAY_SIZE(memmap_map)) {
 168		pr_err("Ooops! Too many entries in the memory map!\n");
 169		return;
 170	}
 171	memmap_map[memmap_nr].addr = addr;
 172	memmap_map[memmap_nr].size = size;
 173	memmap_nr++;
 174}
 175
 176static int __init setup_memmap(char *p)
 177{
 178	char *oldp;
 179	u64 start_at, mem_size;
 180
 181	if (!p)
 182		return -EINVAL;
 183
 184	if (!strncmp(p, "exactmap", 8)) {
 185		pr_err("\"memmap=exactmap\" not valid on tile\n");
 186		return 0;
 187	}
 188
 189	oldp = p;
 190	mem_size = memparse(p, &p);
 191	if (p == oldp)
 192		return -EINVAL;
 193
 194	if (*p == '@') {
 195		pr_err("\"memmap=nn@ss\" (force RAM) invalid on tile\n");
 196	} else if (*p == '#') {
 197		pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on tile\n");
 198	} else if (*p == '$') {
 199		start_at = memparse(p+1, &p);
 200		add_memmap_region(start_at, mem_size);
 201	} else {
 202		if (mem_size == 0)
 203			return -EINVAL;
 204		maxmem_pfn = (mem_size >> HPAGE_SHIFT) <<
 205			(HPAGE_SHIFT - PAGE_SHIFT);
 206	}
 207	return *p == '\0' ? 0 : -EINVAL;
 208}
 209early_param("memmap", setup_memmap);
 210
 211static int __init setup_mem(char *str)
 212{
 213	return setup_maxmem(str);
 214}
 215early_param("mem", setup_mem);  /* compatibility with x86 */
 216
 217static int __init setup_isolnodes(char *str)
 218{
 
 219	if (str == NULL || nodelist_parse(str, isolnodes) != 0)
 220		return -EINVAL;
 221
 222	pr_info("Set isolnodes value to '%*pbl'\n",
 223		nodemask_pr_args(&isolnodes));
 224	return 0;
 225}
 226early_param("isolnodes", setup_isolnodes);
 227
 228#if defined(CONFIG_PCI) && !defined(__tilegx__)
 229static int __init setup_pci_reserve(char* str)
 230{
 231	if (str == NULL || kstrtouint(str, 0, &pci_reserve_mb) != 0 ||
 232	    pci_reserve_mb > 3 * 1024)
 
 
 233		return -EINVAL;
 234
 
 235	pr_info("Reserving %dMB for PCIE root complex mappings\n",
 236		pci_reserve_mb);
 237	return 0;
 238}
 239early_param("pci_reserve", setup_pci_reserve);
 240#endif
 241
 242#ifndef __tilegx__
 243/*
 244 * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
 245 * This can be used to increase (or decrease) the vmalloc area.
 246 */
 247static int __init parse_vmalloc(char *arg)
 248{
 249	if (!arg)
 250		return -EINVAL;
 251
 252	VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
 253
 254	/* See validate_va() for more on this test. */
 255	if ((long)_VMALLOC_START >= 0)
 256		early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
 257			    VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
 258
 259	return 0;
 260}
 261early_param("vmalloc", parse_vmalloc);
 262#endif
 263
 264#ifdef CONFIG_HIGHMEM
 265/*
 266 * Determine for each controller where its lowmem is mapped and how much of
 267 * it is mapped there.  On controller zero, the first few megabytes are
 268 * already mapped in as code at MEM_SV_START, so in principle we could
 269 * start our data mappings higher up, but for now we don't bother, to avoid
 270 * additional confusion.
 271 *
 272 * One question is whether, on systems with more than 768 Mb and
 273 * controllers of different sizes, to map in a proportionate amount of
 274 * each one, or to try to map the same amount from each controller.
 275 * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
 276 * respectively, do we map 256MB from each, or do we map 128 MB, 512
 277 * MB, and 128 MB respectively?)  For now we use a proportionate
 278 * solution like the latter.
 279 *
 280 * The VA/PA mapping demands that we align our decisions at 16 MB
 281 * boundaries so that we can rapidly convert VA to PA.
 282 */
 283static void *__init setup_pa_va_mapping(void)
 284{
 285	unsigned long curr_pages = 0;
 286	unsigned long vaddr = PAGE_OFFSET;
 287	nodemask_t highonlynodes = isolnodes;
 288	int i, j;
 289
 290	memset(pbase_map, -1, sizeof(pbase_map));
 291	memset(vbase_map, -1, sizeof(vbase_map));
 292
 293	/* Node zero cannot be isolated for LOWMEM purposes. */
 294	node_clear(0, highonlynodes);
 295
 296	/* Count up the number of pages on non-highonlynodes controllers. */
 297	mappable_physpages = 0;
 298	for_each_online_node(i) {
 299		if (!node_isset(i, highonlynodes))
 300			mappable_physpages +=
 301				node_end_pfn[i] - node_start_pfn[i];
 302	}
 303
 304	for_each_online_node(i) {
 305		unsigned long start = node_start_pfn[i];
 306		unsigned long end = node_end_pfn[i];
 307		unsigned long size = end - start;
 308		unsigned long vaddr_end;
 309
 310		if (node_isset(i, highonlynodes)) {
 311			/* Mark this controller as having no lowmem. */
 312			node_lowmem_end_pfn[i] = start;
 313			continue;
 314		}
 315
 316		curr_pages += size;
 317		if (mappable_physpages > MAXMEM_PFN) {
 318			vaddr_end = PAGE_OFFSET +
 319				(((u64)curr_pages * MAXMEM_PFN /
 320				  mappable_physpages)
 321				 << PAGE_SHIFT);
 322		} else {
 323			vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
 324		}
 325		for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
 326			unsigned long this_pfn =
 327				start + (j << HUGETLB_PAGE_ORDER);
 328			pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
 329			if (vbase_map[__pfn_to_highbits(this_pfn)] ==
 330			    (void *)-1)
 331				vbase_map[__pfn_to_highbits(this_pfn)] =
 332					(void *)(vaddr & HPAGE_MASK);
 333		}
 334		node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
 335		BUG_ON(node_lowmem_end_pfn[i] > end);
 336	}
 337
 338	/* Return highest address of any mapped memory. */
 339	return (void *)vaddr;
 340}
 341#endif /* CONFIG_HIGHMEM */
 342
 343/*
 344 * Register our most important memory mappings with the debug stub.
 345 *
 346 * This is up to 4 mappings for lowmem, one mapping per memory
 347 * controller, plus one for our text segment.
 348 */
 349static void store_permanent_mappings(void)
 350{
 351	int i;
 352
 353	for_each_online_node(i) {
 354		HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
 355#ifdef CONFIG_HIGHMEM
 356		HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
 357#else
 358		HV_PhysAddr high_mapped_pa = node_end_pfn[i];
 359#endif
 360
 361		unsigned long pages = high_mapped_pa - node_start_pfn[i];
 362		HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
 363		hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
 364	}
 365
 366	hv_store_mapping((HV_VirtAddr)_text,
 367			 (uint32_t)(_einittext - _text), 0);
 368}
 369
 370/*
 371 * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
 372 * and node_online_map, doing suitable sanity-checking.
 373 * Also set min_low_pfn, max_low_pfn, and max_pfn.
 374 */
 375static void __init setup_memory(void)
 376{
 377	int i, j;
 378	int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
 379#ifdef CONFIG_HIGHMEM
 380	long highmem_pages;
 381#endif
 382#ifndef __tilegx__
 383	int cap;
 384#endif
 385#if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
 386	long lowmem_pages;
 387#endif
 388	unsigned long physpages = 0;
 389
 390	/* We are using a char to hold the cpu_2_node[] mapping */
 391	BUILD_BUG_ON(MAX_NUMNODES > 127);
 392
 393	/* Discover the ranges of memory available to us */
 394	for (i = 0; ; ++i) {
 395		unsigned long start, size, end, highbits;
 396		HV_PhysAddrRange range = hv_inquire_physical(i);
 397		if (range.size == 0)
 398			break;
 399#ifdef CONFIG_FLATMEM
 400		if (i > 0) {
 401			pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
 402			       range.size, range.start + range.size);
 403			continue;
 404		}
 405#endif
 406#ifndef __tilegx__
 407		if ((unsigned long)range.start) {
 408			pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
 409			       range.start, range.start + range.size);
 410			continue;
 411		}
 412#endif
 413		if ((range.start & (HPAGE_SIZE-1)) != 0 ||
 414		    (range.size & (HPAGE_SIZE-1)) != 0) {
 415			unsigned long long start_pa = range.start;
 416			unsigned long long orig_size = range.size;
 417			range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
 418			range.size -= (range.start - start_pa);
 419			range.size &= HPAGE_MASK;
 420			pr_err("Range not hugepage-aligned: %#llx..%#llx: now %#llx-%#llx\n",
 
 421			       start_pa, start_pa + orig_size,
 422			       range.start, range.start + range.size);
 423		}
 424		highbits = __pa_to_highbits(range.start);
 425		if (highbits >= NR_PA_HIGHBIT_VALUES) {
 426			pr_err("PA high bits too high: %#llx..%#llx\n",
 427			       range.start, range.start + range.size);
 428			continue;
 429		}
 430		if (highbits_seen[highbits]) {
 431			pr_err("Range overlaps in high bits: %#llx..%#llx\n",
 432			       range.start, range.start + range.size);
 433			continue;
 434		}
 435		highbits_seen[highbits] = 1;
 436		if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
 437			int max_size = maxnodemem_pfn[i];
 438			if (max_size > 0) {
 439				pr_err("Maxnodemem reduced node %d to %d pages\n",
 440				       i, max_size);
 441				range.size = PFN_PHYS(max_size);
 442			} else {
 443				pr_err("Maxnodemem disabled node %d\n", i);
 444				continue;
 445			}
 446		}
 447		if (physpages + PFN_DOWN(range.size) > maxmem_pfn) {
 448			int max_size = maxmem_pfn - physpages;
 449			if (max_size > 0) {
 450				pr_err("Maxmem reduced node %d to %d pages\n",
 451				       i, max_size);
 452				range.size = PFN_PHYS(max_size);
 453			} else {
 454				pr_err("Maxmem disabled node %d\n", i);
 455				continue;
 456			}
 457		}
 458		if (i >= MAX_NUMNODES) {
 459			pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
 460			       i, range.size, range.size + range.start);
 461			continue;
 462		}
 463
 464		start = range.start >> PAGE_SHIFT;
 465		size = range.size >> PAGE_SHIFT;
 466		end = start + size;
 467
 468#ifndef __tilegx__
 469		if (((HV_PhysAddr)end << PAGE_SHIFT) !=
 470		    (range.start + range.size)) {
 471			pr_err("PAs too high to represent: %#llx..%#llx\n",
 472			       range.start, range.start + range.size);
 473			continue;
 474		}
 475#endif
 476#if defined(CONFIG_PCI) && !defined(__tilegx__)
 477		/*
 478		 * Blocks that overlap the pci reserved region must
 479		 * have enough space to hold the maximum percpu data
 480		 * region at the top of the range.  If there isn't
 481		 * enough space above the reserved region, just
 482		 * truncate the node.
 483		 */
 484		if (start <= pci_reserve_start_pfn &&
 485		    end > pci_reserve_start_pfn) {
 486			unsigned int per_cpu_size =
 487				__per_cpu_end - __per_cpu_start;
 488			unsigned int percpu_pages =
 489				NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
 490			if (end < pci_reserve_end_pfn + percpu_pages) {
 491				end = pci_reserve_start_pfn;
 492				pr_err("PCI mapping region reduced node %d to %ld pages\n",
 493				       i, end - start);
 494			}
 495		}
 496#endif
 497
 498		for (j = __pfn_to_highbits(start);
 499		     j <= __pfn_to_highbits(end - 1); j++)
 500			highbits_to_node[j] = i;
 501
 502		node_start_pfn[i] = start;
 503		node_end_pfn[i] = end;
 504		node_controller[i] = range.controller;
 505		physpages += size;
 506		max_pfn = end;
 507
 508		/* Mark node as online */
 509		node_set(i, node_online_map);
 510		node_set(i, node_possible_map);
 511	}
 512
 513#ifndef __tilegx__
 514	/*
 515	 * For 4KB pages, mem_map "struct page" data is 1% of the size
 516	 * of the physical memory, so can be quite big (640 MB for
 517	 * four 16G zones).  These structures must be mapped in
 518	 * lowmem, and since we currently cap out at about 768 MB,
 519	 * it's impractical to try to use this much address space.
 520	 * For now, arbitrarily cap the amount of physical memory
 521	 * we're willing to use at 8 million pages (32GB of 4KB pages).
 522	 */
 523	cap = 8 * 1024 * 1024;  /* 8 million pages */
 524	if (physpages > cap) {
 525		int num_nodes = num_online_nodes();
 526		int cap_each = cap / num_nodes;
 527		unsigned long dropped_pages = 0;
 528		for (i = 0; i < num_nodes; ++i) {
 529			int size = node_end_pfn[i] - node_start_pfn[i];
 530			if (size > cap_each) {
 531				dropped_pages += (size - cap_each);
 532				node_end_pfn[i] = node_start_pfn[i] + cap_each;
 533			}
 534		}
 535		physpages -= dropped_pages;
 536		pr_warn("Only using %ldMB memory - ignoring %ldMB\n",
 537			physpages >> (20 - PAGE_SHIFT),
 538			dropped_pages >> (20 - PAGE_SHIFT));
 539		pr_warn("Consider using a larger page size\n");
 
 540	}
 541#endif
 542
 543	/* Heap starts just above the last loaded address. */
 544	min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
 545
 546#ifdef CONFIG_HIGHMEM
 547	/* Find where we map lowmem from each controller. */
 548	high_memory = setup_pa_va_mapping();
 549
 550	/* Set max_low_pfn based on what node 0 can directly address. */
 551	max_low_pfn = node_lowmem_end_pfn[0];
 552
 553	lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
 554		MAXMEM_PFN : mappable_physpages;
 555	highmem_pages = (long) (physpages - lowmem_pages);
 556
 557	pr_notice("%ldMB HIGHMEM available\n",
 558		  pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
 559	pr_notice("%ldMB LOWMEM available\n", pages_to_mb(lowmem_pages));
 
 560#else
 561	/* Set max_low_pfn based on what node 0 can directly address. */
 562	max_low_pfn = node_end_pfn[0];
 563
 564#ifndef __tilegx__
 565	if (node_end_pfn[0] > MAXMEM_PFN) {
 566		pr_warn("Only using %ldMB LOWMEM\n", MAXMEM >> 20);
 567		pr_warn("Use a HIGHMEM enabled kernel\n");
 
 568		max_low_pfn = MAXMEM_PFN;
 569		max_pfn = MAXMEM_PFN;
 
 570		node_end_pfn[0] = MAXMEM_PFN;
 571	} else {
 572		pr_notice("%ldMB memory available\n",
 573			  pages_to_mb(node_end_pfn[0]));
 574	}
 575	for (i = 1; i < MAX_NUMNODES; ++i) {
 576		node_start_pfn[i] = 0;
 577		node_end_pfn[i] = 0;
 578	}
 579	high_memory = __va(node_end_pfn[0]);
 580#else
 581	lowmem_pages = 0;
 582	for (i = 0; i < MAX_NUMNODES; ++i) {
 583		int pages = node_end_pfn[i] - node_start_pfn[i];
 584		lowmem_pages += pages;
 585		if (pages)
 586			high_memory = pfn_to_kaddr(node_end_pfn[i]);
 587	}
 588	pr_notice("%ldMB memory available\n", pages_to_mb(lowmem_pages));
 
 589#endif
 590#endif
 591}
 592
 593/*
 594 * On 32-bit machines, we only put bootmem on the low controller,
 595 * since PAs > 4GB can't be used in bootmem.  In principle one could
 596 * imagine, e.g., multiple 1 GB controllers all of which could support
 597 * bootmem, but in practice using controllers this small isn't a
 598 * particularly interesting scenario, so we just keep it simple and
 599 * use only the first controller for bootmem on 32-bit machines.
 600 */
 601static inline int node_has_bootmem(int nid)
 602{
 603#ifdef CONFIG_64BIT
 604	return 1;
 605#else
 606	return nid == 0;
 607#endif
 608}
 609
 610static inline unsigned long alloc_bootmem_pfn(int nid,
 611					      unsigned long size,
 612					      unsigned long goal)
 613{
 614	void *kva = __alloc_bootmem_node(NODE_DATA(nid), size,
 615					 PAGE_SIZE, goal);
 616	unsigned long pfn = kaddr_to_pfn(kva);
 617	BUG_ON(goal && PFN_PHYS(pfn) != goal);
 618	return pfn;
 619}
 620
 621static void __init setup_bootmem_allocator_node(int i)
 622{
 623	unsigned long start, end, mapsize, mapstart;
 624
 625	if (node_has_bootmem(i)) {
 626		NODE_DATA(i)->bdata = &bootmem_node_data[i];
 627	} else {
 628		/* Share controller zero's bdata for now. */
 629		NODE_DATA(i)->bdata = &bootmem_node_data[0];
 630		return;
 631	}
 632
 633	/* Skip up to after the bss in node 0. */
 634	start = (i == 0) ? min_low_pfn : node_start_pfn[i];
 635
 636	/* Only lowmem, if we're a HIGHMEM build. */
 637#ifdef CONFIG_HIGHMEM
 638	end = node_lowmem_end_pfn[i];
 639#else
 640	end = node_end_pfn[i];
 641#endif
 642
 643	/* No memory here. */
 644	if (end == start)
 645		return;
 
 
 
 646
 647	/* Figure out where the bootmem bitmap is located. */
 648	mapsize = bootmem_bootmap_pages(end - start);
 649	if (i == 0) {
 650		/* Use some space right before the heap on node 0. */
 651		mapstart = start;
 652		start += mapsize;
 653	} else {
 654		/* Allocate bitmap on node 0 to avoid page table issues. */
 655		mapstart = alloc_bootmem_pfn(0, PFN_PHYS(mapsize), 0);
 656	}
 657
 658	/* Initialize a node. */
 659	init_bootmem_node(NODE_DATA(i), mapstart, start, end);
 660
 661	/* Free all the space back into the allocator. */
 662	free_bootmem(PFN_PHYS(start), PFN_PHYS(end - start));
 663
 664#if defined(CONFIG_PCI) && !defined(__tilegx__)
 665	/*
 666	 * Throw away any memory aliased by the PCI region.
 
 667	 */
 668	if (pci_reserve_start_pfn < end && pci_reserve_end_pfn > start) {
 669		start = max(pci_reserve_start_pfn, start);
 670		end = min(pci_reserve_end_pfn, end);
 671		reserve_bootmem(PFN_PHYS(start), PFN_PHYS(end - start),
 672				BOOTMEM_EXCLUSIVE);
 673	}
 674#endif
 675}
 676
 677static void __init setup_bootmem_allocator(void)
 678{
 679	int i;
 680	for (i = 0; i < MAX_NUMNODES; ++i)
 681		setup_bootmem_allocator_node(i);
 682
 683	/* Reserve any memory excluded by "memmap" arguments. */
 684	for (i = 0; i < memmap_nr; ++i) {
 685		struct memmap_entry *m = &memmap_map[i];
 686		reserve_bootmem(m->addr, m->size, BOOTMEM_DEFAULT);
 687	}
 688
 689#ifdef CONFIG_BLK_DEV_INITRD
 690	if (initrd_start) {
 691		/* Make sure the initrd memory region is not modified. */
 692		if (reserve_bootmem(initrd_start, initrd_end - initrd_start,
 693				    BOOTMEM_EXCLUSIVE)) {
 694			pr_crit("The initrd memory region has been polluted. Disabling it.\n");
 695			initrd_start = 0;
 696			initrd_end = 0;
 697		} else {
 698			/*
 699			 * Translate initrd_start & initrd_end from PA to VA for
 700			 * future access.
 701			 */
 702			initrd_start += PAGE_OFFSET;
 703			initrd_end += PAGE_OFFSET;
 704		}
 705	}
 706#endif
 707
 708#ifdef CONFIG_KEXEC
 709	if (crashk_res.start != crashk_res.end)
 710		reserve_bootmem(crashk_res.start, resource_size(&crashk_res),
 711				BOOTMEM_DEFAULT);
 712#endif
 713}
 714
 715void *__init alloc_remap(int nid, unsigned long size)
 716{
 717	int pages = node_end_pfn[nid] - node_start_pfn[nid];
 718	void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
 719	BUG_ON(size != pages * sizeof(struct page));
 720	memset(map, 0, size);
 721	return map;
 722}
 723
 724static int __init percpu_size(void)
 725{
 726	int size = __per_cpu_end - __per_cpu_start;
 727	size += PERCPU_MODULE_RESERVE;
 728	size += PERCPU_DYNAMIC_EARLY_SIZE;
 729	if (size < PCPU_MIN_UNIT_SIZE)
 730		size = PCPU_MIN_UNIT_SIZE;
 731	size = roundup(size, PAGE_SIZE);
 732
 733	/* In several places we assume the per-cpu data fits on a huge page. */
 734	BUG_ON(kdata_huge && size > HPAGE_SIZE);
 735	return size;
 736}
 737
 
 
 
 
 
 
 
 
 738static void __init zone_sizes_init(void)
 739{
 740	unsigned long zones_size[MAX_NR_ZONES] = { 0 };
 741	int size = percpu_size();
 742	int num_cpus = smp_height * smp_width;
 743	const unsigned long dma_end = (1UL << (32 - PAGE_SHIFT));
 744
 745	int i;
 746
 747	for (i = 0; i < num_cpus; ++i)
 748		node_percpu[cpu_to_node(i)] += size;
 749
 750	for_each_online_node(i) {
 751		unsigned long start = node_start_pfn[i];
 752		unsigned long end = node_end_pfn[i];
 753#ifdef CONFIG_HIGHMEM
 754		unsigned long lowmem_end = node_lowmem_end_pfn[i];
 755#else
 756		unsigned long lowmem_end = end;
 757#endif
 758		int memmap_size = (end - start) * sizeof(struct page);
 759		node_free_pfn[i] = start;
 760
 761		/*
 762		 * Set aside pages for per-cpu data and the mem_map array.
 763		 *
 764		 * Since the per-cpu data requires special homecaching,
 765		 * if we are in kdata_huge mode, we put it at the end of
 766		 * the lowmem region.  If we're not in kdata_huge mode,
 767		 * we take the per-cpu pages from the bottom of the
 768		 * controller, since that avoids fragmenting a huge page
 769		 * that users might want.  We always take the memmap
 770		 * from the bottom of the controller, since with
 771		 * kdata_huge that lets it be under a huge TLB entry.
 772		 *
 773		 * If the user has requested isolnodes for a controller,
 774		 * though, there'll be no lowmem, so we just alloc_bootmem
 775		 * the memmap.  There will be no percpu memory either.
 776		 */
 777		if (i != 0 && node_isset(i, isolnodes)) {
 778			node_memmap_pfn[i] =
 779				alloc_bootmem_pfn(0, memmap_size, 0);
 780			BUG_ON(node_percpu[i] != 0);
 781		} else if (node_has_bootmem(start)) {
 782			unsigned long goal = 0;
 783			node_memmap_pfn[i] =
 784				alloc_bootmem_pfn(i, memmap_size, 0);
 785			if (kdata_huge)
 786				goal = PFN_PHYS(lowmem_end) - node_percpu[i];
 787			if (node_percpu[i])
 788				node_percpu_pfn[i] =
 789					alloc_bootmem_pfn(i, node_percpu[i],
 790							  goal);
 
 
 791		} else {
 792			/* In non-bootmem zones, just reserve some pages. */
 793			node_memmap_pfn[i] = node_free_pfn[i];
 794			node_free_pfn[i] += PFN_UP(memmap_size);
 795			if (!kdata_huge) {
 796				node_percpu_pfn[i] = node_free_pfn[i];
 797				node_free_pfn[i] += PFN_UP(node_percpu[i]);
 798			} else {
 799				node_percpu_pfn[i] =
 800					lowmem_end - PFN_UP(node_percpu[i]);
 801			}
 802		}
 803
 804#ifdef CONFIG_HIGHMEM
 805		if (start > lowmem_end) {
 806			zones_size[ZONE_NORMAL] = 0;
 807			zones_size[ZONE_HIGHMEM] = end - start;
 808		} else {
 809			zones_size[ZONE_NORMAL] = lowmem_end - start;
 810			zones_size[ZONE_HIGHMEM] = end - lowmem_end;
 811		}
 812#else
 813		zones_size[ZONE_NORMAL] = end - start;
 814#endif
 815
 816		if (start < dma_end) {
 817			zones_size[ZONE_DMA] = min(zones_size[ZONE_NORMAL],
 818						   dma_end - start);
 819			zones_size[ZONE_NORMAL] -= zones_size[ZONE_DMA];
 820		} else {
 821			zones_size[ZONE_DMA] = 0;
 822		}
 823
 824		/* Take zone metadata from controller 0 if we're isolnode. */
 825		if (node_isset(i, isolnodes))
 826			NODE_DATA(i)->bdata = &bootmem_node_data[0];
 827
 828		free_area_init_node(i, zones_size, start, NULL);
 829		printk(KERN_DEBUG "  Normal zone: %ld per-cpu pages\n",
 830		       PFN_UP(node_percpu[i]));
 831
 832		/* Track the type of memory on each node */
 833		if (zones_size[ZONE_NORMAL] || zones_size[ZONE_DMA])
 834			node_set_state(i, N_NORMAL_MEMORY);
 835#ifdef CONFIG_HIGHMEM
 836		if (end != start)
 837			node_set_state(i, N_HIGH_MEMORY);
 838#endif
 839
 840		node_set_online(i);
 841	}
 842}
 843
 844#ifdef CONFIG_NUMA
 845
 846/* which logical CPUs are on which nodes */
 847struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
 848EXPORT_SYMBOL(node_2_cpu_mask);
 849
 850/* which node each logical CPU is on */
 851char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
 852EXPORT_SYMBOL(cpu_2_node);
 853
 854/* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
 855static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
 856{
 857	if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
 858		return -1;
 859	else
 860		return cpu_to_node(cpu);
 861}
 862
 863/* Return number of immediately-adjacent tiles sharing the same NUMA node. */
 864static int __init node_neighbors(int node, int cpu,
 865				 struct cpumask *unbound_cpus)
 866{
 867	int neighbors = 0;
 868	int w = smp_width;
 869	int h = smp_height;
 870	int x = cpu % w;
 871	int y = cpu / w;
 872	if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
 873		++neighbors;
 874	if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
 875		++neighbors;
 876	if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
 877		++neighbors;
 878	if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
 879		++neighbors;
 880	return neighbors;
 881}
 882
 883static void __init setup_numa_mapping(void)
 884{
 885	u8 distance[MAX_NUMNODES][NR_CPUS];
 886	HV_Coord coord;
 887	int cpu, node, cpus, i, x, y;
 888	int num_nodes = num_online_nodes();
 889	struct cpumask unbound_cpus;
 890	nodemask_t default_nodes;
 891
 892	cpumask_clear(&unbound_cpus);
 893
 894	/* Get set of nodes we will use for defaults */
 895	nodes_andnot(default_nodes, node_online_map, isolnodes);
 896	if (nodes_empty(default_nodes)) {
 897		BUG_ON(!node_isset(0, node_online_map));
 898		pr_err("Forcing NUMA node zero available as a default node\n");
 899		node_set(0, default_nodes);
 900	}
 901
 902	/* Populate the distance[] array */
 903	memset(distance, -1, sizeof(distance));
 904	cpu = 0;
 905	for (coord.y = 0; coord.y < smp_height; ++coord.y) {
 906		for (coord.x = 0; coord.x < smp_width;
 907		     ++coord.x, ++cpu) {
 908			BUG_ON(cpu >= nr_cpu_ids);
 909			if (!cpu_possible(cpu)) {
 910				cpu_2_node[cpu] = -1;
 911				continue;
 912			}
 913			for_each_node_mask(node, default_nodes) {
 914				HV_MemoryControllerInfo info =
 915					hv_inquire_memory_controller(
 916						coord, node_controller[node]);
 917				distance[node][cpu] =
 918					ABS(info.coord.x) + ABS(info.coord.y);
 919			}
 920			cpumask_set_cpu(cpu, &unbound_cpus);
 921		}
 922	}
 923	cpus = cpu;
 924
 925	/*
 926	 * Round-robin through the NUMA nodes until all the cpus are
 927	 * assigned.  We could be more clever here (e.g. create four
 928	 * sorted linked lists on the same set of cpu nodes, and pull
 929	 * off them in round-robin sequence, removing from all four
 930	 * lists each time) but given the relatively small numbers
 931	 * involved, O(n^2) seem OK for a one-time cost.
 932	 */
 933	node = first_node(default_nodes);
 934	while (!cpumask_empty(&unbound_cpus)) {
 935		int best_cpu = -1;
 936		int best_distance = INT_MAX;
 937		for (cpu = 0; cpu < cpus; ++cpu) {
 938			if (cpumask_test_cpu(cpu, &unbound_cpus)) {
 939				/*
 940				 * Compute metric, which is how much
 941				 * closer the cpu is to this memory
 942				 * controller than the others, shifted
 943				 * up, and then the number of
 944				 * neighbors already in the node as an
 945				 * epsilon adjustment to try to keep
 946				 * the nodes compact.
 947				 */
 948				int d = distance[node][cpu] * num_nodes;
 949				for_each_node_mask(i, default_nodes) {
 950					if (i != node)
 951						d -= distance[i][cpu];
 952				}
 953				d *= 8;  /* allow space for epsilon */
 954				d -= node_neighbors(node, cpu, &unbound_cpus);
 955				if (d < best_distance) {
 956					best_cpu = cpu;
 957					best_distance = d;
 958				}
 959			}
 960		}
 961		BUG_ON(best_cpu < 0);
 962		cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
 963		cpu_2_node[best_cpu] = node;
 964		cpumask_clear_cpu(best_cpu, &unbound_cpus);
 965		node = next_node(node, default_nodes);
 966		if (node == MAX_NUMNODES)
 967			node = first_node(default_nodes);
 968	}
 969
 970	/* Print out node assignments and set defaults for disabled cpus */
 971	cpu = 0;
 972	for (y = 0; y < smp_height; ++y) {
 973		printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
 974		for (x = 0; x < smp_width; ++x, ++cpu) {
 975			if (cpu_to_node(cpu) < 0) {
 976				pr_cont(" -");
 977				cpu_2_node[cpu] = first_node(default_nodes);
 978			} else {
 979				pr_cont(" %d", cpu_to_node(cpu));
 980			}
 981		}
 982		pr_cont("\n");
 983	}
 984}
 985
 986static struct cpu cpu_devices[NR_CPUS];
 987
 988static int __init topology_init(void)
 989{
 990	int i;
 991
 992	for_each_online_node(i)
 993		register_one_node(i);
 994
 995	for (i = 0; i < smp_height * smp_width; ++i)
 996		register_cpu(&cpu_devices[i], i);
 997
 998	return 0;
 999}
1000
1001subsys_initcall(topology_init);
1002
1003#else /* !CONFIG_NUMA */
1004
1005#define setup_numa_mapping() do { } while (0)
1006
1007#endif /* CONFIG_NUMA */
1008
1009/*
1010 * Initialize hugepage support on this cpu.  We do this on all cores
1011 * early in boot: before argument parsing for the boot cpu, and after
1012 * argument parsing but before the init functions run on the secondaries.
1013 * So the values we set up here in the hypervisor may be overridden on
1014 * the boot cpu as arguments are parsed.
1015 */
1016static void init_super_pages(void)
1017{
1018#ifdef CONFIG_HUGETLB_SUPER_PAGES
1019	int i;
1020	for (i = 0; i < HUGE_SHIFT_ENTRIES; ++i)
1021		hv_set_pte_super_shift(i, huge_shift[i]);
1022#endif
1023}
1024
1025/**
1026 * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
1027 * @boot: Is this the boot cpu?
1028 *
1029 * Called from setup_arch() on the boot cpu, or online_secondary().
1030 */
1031void setup_cpu(int boot)
1032{
1033	/* The boot cpu sets up its permanent mappings much earlier. */
1034	if (!boot)
1035		store_permanent_mappings();
1036
1037	/* Allow asynchronous TLB interrupts. */
1038#if CHIP_HAS_TILE_DMA()
1039	arch_local_irq_unmask(INT_DMATLB_MISS);
1040	arch_local_irq_unmask(INT_DMATLB_ACCESS);
1041#endif
 
 
 
1042#ifdef __tilegx__
1043	arch_local_irq_unmask(INT_SINGLE_STEP_K);
1044#endif
1045
1046	/*
1047	 * Allow user access to many generic SPRs, like the cycle
1048	 * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
1049	 */
1050	__insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
1051
1052#if CHIP_HAS_SN()
1053	/* Static network is not restricted. */
1054	__insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
1055#endif
 
 
 
 
1056
1057	/*
1058	 * Set the MPL for interrupt control 0 & 1 to the corresponding
1059	 * values.  This includes access to the SYSTEM_SAVE and EX_CONTEXT
1060	 * SPRs, as well as the interrupt mask.
1061	 */
1062	__insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
1063	__insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
1064
1065	/* Initialize IRQ support for this cpu. */
1066	setup_irq_regs();
1067
1068#ifdef CONFIG_HARDWALL
1069	/* Reset the network state on this cpu. */
1070	reset_network_state();
1071#endif
1072
1073	init_super_pages();
1074}
1075
1076#ifdef CONFIG_BLK_DEV_INITRD
1077
1078static int __initdata set_initramfs_file;
1079static char __initdata initramfs_file[128] = "initramfs";
1080
1081static int __init setup_initramfs_file(char *str)
1082{
1083	if (str == NULL)
1084		return -EINVAL;
1085	strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
1086	set_initramfs_file = 1;
1087
1088	return 0;
1089}
1090early_param("initramfs_file", setup_initramfs_file);
1091
1092/*
1093 * We look for a file called "initramfs" in the hvfs.  If there is one, we
1094 * allocate some memory for it and it will be unpacked to the initramfs.
1095 * If it's compressed, the initd code will uncompress it first.
1096 */
1097static void __init load_hv_initrd(void)
1098{
1099	HV_FS_StatInfo stat;
1100	int fd, rc;
1101	void *initrd;
1102
1103	/* If initrd has already been set, skip initramfs file in hvfs. */
1104	if (initrd_start)
1105		return;
1106
1107	fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
1108	if (fd == HV_ENOENT) {
1109		if (set_initramfs_file) {
1110			pr_warn("No such hvfs initramfs file '%s'\n",
1111				initramfs_file);
1112			return;
1113		} else {
1114			/* Try old backwards-compatible name. */
1115			fd = hv_fs_findfile((HV_VirtAddr)"initramfs.cpio.gz");
1116			if (fd == HV_ENOENT)
1117				return;
1118		}
1119	}
1120	BUG_ON(fd < 0);
1121	stat = hv_fs_fstat(fd);
1122	BUG_ON(stat.size < 0);
1123	if (stat.flags & HV_FS_ISDIR) {
1124		pr_warn("Ignoring hvfs file '%s': it's a directory\n",
1125			initramfs_file);
1126		return;
1127	}
1128	initrd = alloc_bootmem_pages(stat.size);
1129	rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
1130	if (rc != stat.size) {
1131		pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
1132		       stat.size, initramfs_file, rc);
1133		free_initrd_mem((unsigned long) initrd, stat.size);
1134		return;
1135	}
1136	initrd_start = (unsigned long) initrd;
1137	initrd_end = initrd_start + stat.size;
1138}
1139
1140void __init free_initrd_mem(unsigned long begin, unsigned long end)
1141{
1142	free_bootmem_late(__pa(begin), end - begin);
1143}
1144
1145static int __init setup_initrd(char *str)
1146{
1147	char *endp;
1148	unsigned long initrd_size;
1149
1150	initrd_size = str ? simple_strtoul(str, &endp, 0) : 0;
1151	if (initrd_size == 0 || *endp != '@')
1152		return -EINVAL;
1153
1154	initrd_start = simple_strtoul(endp+1, &endp, 0);
1155	if (initrd_start == 0)
1156		return -EINVAL;
1157
1158	initrd_end = initrd_start + initrd_size;
1159
1160	return 0;
1161}
1162early_param("initrd", setup_initrd);
1163
1164#else
1165static inline void load_hv_initrd(void) {}
1166#endif /* CONFIG_BLK_DEV_INITRD */
1167
1168static void __init validate_hv(void)
1169{
1170	/*
1171	 * It may already be too late, but let's check our built-in
1172	 * configuration against what the hypervisor is providing.
1173	 */
1174	unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
1175	int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
1176	int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
1177	HV_ASIDRange asid_range;
1178
1179#ifndef CONFIG_SMP
1180	HV_Topology topology = hv_inquire_topology();
1181	BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
1182	if (topology.width != 1 || topology.height != 1) {
1183		pr_warn("Warning: booting UP kernel on %dx%d grid; will ignore all but first tile\n",
1184			topology.width, topology.height);
 
1185	}
1186#endif
1187
1188	if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
1189		early_panic("Hypervisor glue size %ld is too big!\n",
1190			    glue_size);
1191	if (hv_page_size != PAGE_SIZE)
1192		early_panic("Hypervisor page size %#x != our %#lx\n",
1193			    hv_page_size, PAGE_SIZE);
1194	if (hv_hpage_size != HPAGE_SIZE)
1195		early_panic("Hypervisor huge page size %#x != our %#lx\n",
1196			    hv_hpage_size, HPAGE_SIZE);
1197
1198#ifdef CONFIG_SMP
1199	/*
1200	 * Some hypervisor APIs take a pointer to a bitmap array
1201	 * whose size is at least the number of cpus on the chip.
1202	 * We use a struct cpumask for this, so it must be big enough.
1203	 */
1204	if ((smp_height * smp_width) > nr_cpu_ids)
1205		early_panic("Hypervisor %d x %d grid too big for Linux NR_CPUS %d\n",
1206			    smp_height, smp_width, nr_cpu_ids);
 
1207#endif
1208
1209	/*
1210	 * Check that we're using allowed ASIDs, and initialize the
1211	 * various asid variables to their appropriate initial states.
1212	 */
1213	asid_range = hv_inquire_asid(0);
1214	min_asid = asid_range.start;
1215	__this_cpu_write(current_asid, min_asid);
1216	max_asid = asid_range.start + asid_range.size - 1;
1217
1218	if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1219		       sizeof(chip_model)) < 0) {
1220		pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1221		strlcpy(chip_model, "unknown", sizeof(chip_model));
1222	}
1223}
1224
1225static void __init validate_va(void)
1226{
1227#ifndef __tilegx__   /* FIXME: GX: probably some validation relevant here */
1228	/*
1229	 * Similarly, make sure we're only using allowed VAs.
1230	 * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_START,
1231	 * and 0 .. KERNEL_HIGH_VADDR.
1232	 * In addition, make sure we CAN'T use the end of memory, since
1233	 * we use the last chunk of each pgd for the pgd_list.
1234	 */
1235	int i, user_kernel_ok = 0;
1236	unsigned long max_va = 0;
1237	unsigned long list_va =
1238		((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1239
1240	for (i = 0; ; ++i) {
1241		HV_VirtAddrRange range = hv_inquire_virtual(i);
1242		if (range.size == 0)
1243			break;
1244		if (range.start <= MEM_USER_INTRPT &&
1245		    range.start + range.size >= MEM_HV_START)
1246			user_kernel_ok = 1;
1247		if (range.start == 0)
1248			max_va = range.size;
1249		BUG_ON(range.start + range.size > list_va);
1250	}
1251	if (!user_kernel_ok)
1252		early_panic("Hypervisor not configured for user/kernel VAs\n");
1253	if (max_va == 0)
1254		early_panic("Hypervisor not configured for low VAs\n");
1255	if (max_va < KERNEL_HIGH_VADDR)
1256		early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1257			    max_va, KERNEL_HIGH_VADDR);
1258
1259	/* Kernel PCs must have their high bit set; see intvec.S. */
1260	if ((long)VMALLOC_START >= 0)
1261		early_panic("Linux VMALLOC region below the 2GB line (%#lx)!\n"
1262			    "Reconfigure the kernel with smaller VMALLOC_RESERVE\n",
1263			    VMALLOC_START);
 
 
1264#endif
1265}
1266
1267/*
1268 * cpu_lotar_map lists all the cpus that are valid for the supervisor
1269 * to cache data on at a page level, i.e. what cpus can be placed in
1270 * the LOTAR field of a PTE.  It is equivalent to the set of possible
1271 * cpus plus any other cpus that are willing to share their cache.
1272 * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1273 */
1274struct cpumask __write_once cpu_lotar_map;
1275EXPORT_SYMBOL(cpu_lotar_map);
1276
 
1277/*
1278 * hash_for_home_map lists all the tiles that hash-for-home data
1279 * will be cached on.  Note that this may includes tiles that are not
1280 * valid for this supervisor to use otherwise (e.g. if a hypervisor
1281 * device is being shared between multiple supervisors).
1282 * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1283 */
1284struct cpumask hash_for_home_map;
1285EXPORT_SYMBOL(hash_for_home_map);
 
1286
1287/*
1288 * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1289 * flush on our behalf.  It is set to cpu_possible_mask OR'ed with
1290 * hash_for_home_map, and it is what should be passed to
1291 * hv_flush_remote() to flush all caches.  Note that if there are
1292 * dedicated hypervisor driver tiles that have authorized use of their
1293 * cache, those tiles will only appear in cpu_lotar_map, NOT in
1294 * cpu_cacheable_map, as they are a special case.
1295 */
1296struct cpumask __write_once cpu_cacheable_map;
1297EXPORT_SYMBOL(cpu_cacheable_map);
1298
1299static __initdata struct cpumask disabled_map;
1300
1301static int __init disabled_cpus(char *str)
1302{
1303	int boot_cpu = smp_processor_id();
1304
1305	if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1306		return -EINVAL;
1307	if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1308		pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1309		cpumask_clear_cpu(boot_cpu, &disabled_map);
1310	}
1311	return 0;
1312}
1313
1314early_param("disabled_cpus", disabled_cpus);
1315
1316void __init print_disabled_cpus(void)
1317{
1318	if (!cpumask_empty(&disabled_map))
1319		pr_info("CPUs not available for Linux: %*pbl\n",
1320			cpumask_pr_args(&disabled_map));
 
 
1321}
1322
1323static void __init setup_cpu_maps(void)
1324{
1325	struct cpumask hv_disabled_map, cpu_possible_init;
1326	int boot_cpu = smp_processor_id();
1327	int cpus, i, rc;
1328
1329	/* Learn which cpus are allowed by the hypervisor. */
1330	rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1331			      (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1332			      sizeof(cpu_cacheable_map));
1333	if (rc < 0)
1334		early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1335	if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1336		early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1337
1338	/* Compute the cpus disabled by the hvconfig file. */
1339	cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1340
1341	/* Include them with the cpus disabled by "disabled_cpus". */
1342	cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1343
1344	/*
1345	 * Disable every cpu after "setup_max_cpus".  But don't mark
1346	 * as disabled the cpus that are outside of our initial rectangle,
1347	 * since that turns out to be confusing.
1348	 */
1349	cpus = 1;                          /* this cpu */
1350	cpumask_set_cpu(boot_cpu, &disabled_map);   /* ignore this cpu */
1351	for (i = 0; cpus < setup_max_cpus; ++i)
1352		if (!cpumask_test_cpu(i, &disabled_map))
1353			++cpus;
1354	for (; i < smp_height * smp_width; ++i)
1355		cpumask_set_cpu(i, &disabled_map);
1356	cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1357	for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1358		cpumask_clear_cpu(i, &disabled_map);
1359
1360	/*
1361	 * Setup cpu_possible map as every cpu allocated to us, minus
1362	 * the results of any "disabled_cpus" settings.
1363	 */
1364	cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1365	init_cpu_possible(&cpu_possible_init);
1366
1367	/* Learn which cpus are valid for LOTAR caching. */
1368	rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1369			      (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1370			      sizeof(cpu_lotar_map));
1371	if (rc < 0) {
1372		pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1373		cpu_lotar_map = *cpu_possible_mask;
1374	}
1375
 
1376	/* Retrieve set of CPUs used for hash-for-home caching */
1377	rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1378			      (HV_VirtAddr) hash_for_home_map.bits,
1379			      sizeof(hash_for_home_map));
1380	if (rc < 0)
1381		early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1382	cpumask_or(&cpu_cacheable_map, cpu_possible_mask, &hash_for_home_map);
 
 
 
1383}
1384
1385
1386static int __init dataplane(char *str)
1387{
1388	pr_warn("WARNING: dataplane support disabled in this kernel\n");
1389	return 0;
1390}
1391
1392early_param("dataplane", dataplane);
1393
1394#ifdef CONFIG_NO_HZ_FULL
1395/* Warn if hypervisor shared cpus are marked as nohz_full. */
1396static int __init check_nohz_full_cpus(void)
1397{
1398	struct cpumask shared;
1399	int cpu;
1400
1401	if (hv_inquire_tiles(HV_INQ_TILES_SHARED,
1402			     (HV_VirtAddr) shared.bits, sizeof(shared)) < 0) {
1403		pr_warn("WARNING: No support for inquiring hv shared tiles\n");
1404		return 0;
1405	}
1406	for_each_cpu(cpu, &shared) {
1407		if (tick_nohz_full_cpu(cpu))
1408			pr_warn("WARNING: nohz_full cpu %d receives hypervisor interrupts!\n",
1409			       cpu);
1410	}
1411	return 0;
1412}
1413arch_initcall(check_nohz_full_cpus);
1414#endif
1415
1416#ifdef CONFIG_CMDLINE_BOOL
1417static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1418#endif
1419
1420void __init setup_arch(char **cmdline_p)
1421{
1422	int len;
1423
1424#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1425	len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1426				  COMMAND_LINE_SIZE);
1427	if (boot_command_line[0])
1428		pr_warn("WARNING: ignoring dynamic command line \"%s\"\n",
1429			boot_command_line);
1430	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1431#else
1432	char *hv_cmdline;
1433#if defined(CONFIG_CMDLINE_BOOL)
1434	if (builtin_cmdline[0]) {
1435		int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1436					  COMMAND_LINE_SIZE);
1437		if (builtin_len < COMMAND_LINE_SIZE-1)
1438			boot_command_line[builtin_len++] = ' ';
1439		hv_cmdline = &boot_command_line[builtin_len];
1440		len = COMMAND_LINE_SIZE - builtin_len;
1441	} else
1442#endif
1443	{
1444		hv_cmdline = boot_command_line;
1445		len = COMMAND_LINE_SIZE;
1446	}
1447	len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1448	if (len < 0 || len > COMMAND_LINE_SIZE)
1449		early_panic("hv_get_command_line failed: %d\n", len);
1450#endif
1451
1452	*cmdline_p = boot_command_line;
1453
1454	/* Set disabled_map and setup_max_cpus very early */
1455	parse_early_param();
1456
1457	/* Make sure the kernel is compatible with the hypervisor. */
1458	validate_hv();
1459	validate_va();
1460
1461	setup_cpu_maps();
1462
1463
1464#if defined(CONFIG_PCI) && !defined(__tilegx__)
1465	/*
1466	 * Initialize the PCI structures.  This is done before memory
1467	 * setup so that we know whether or not a pci_reserve region
1468	 * is necessary.
1469	 */
1470	if (tile_pci_init() == 0)
1471		pci_reserve_mb = 0;
1472
1473	/* PCI systems reserve a region just below 4GB for mapping iomem. */
1474	pci_reserve_end_pfn  = (1 << (32 - PAGE_SHIFT));
1475	pci_reserve_start_pfn = pci_reserve_end_pfn -
1476		(pci_reserve_mb << (20 - PAGE_SHIFT));
1477#endif
1478
1479	init_mm.start_code = (unsigned long) _text;
1480	init_mm.end_code = (unsigned long) _etext;
1481	init_mm.end_data = (unsigned long) _edata;
1482	init_mm.brk = (unsigned long) _end;
1483
1484	setup_memory();
1485	store_permanent_mappings();
1486	setup_bootmem_allocator();
1487
1488	/*
1489	 * NOTE: before this point _nobody_ is allowed to allocate
1490	 * any memory using the bootmem allocator.
1491	 */
1492
1493#ifdef CONFIG_SWIOTLB
1494	swiotlb_init(0);
1495#endif
1496
1497	paging_init();
1498	setup_numa_mapping();
1499	zone_sizes_init();
1500	set_page_homes();
1501	setup_cpu(1);
1502	setup_clock();
1503	load_hv_initrd();
1504}
1505
1506
1507/*
1508 * Set up per-cpu memory.
1509 */
1510
1511unsigned long __per_cpu_offset[NR_CPUS] __write_once;
1512EXPORT_SYMBOL(__per_cpu_offset);
1513
1514static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1515static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1516
1517/*
1518 * As the percpu code allocates pages, we return the pages from the
1519 * end of the node for the specified cpu.
1520 */
1521static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1522{
1523	int nid = cpu_to_node(cpu);
1524	unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1525
1526	BUG_ON(size % PAGE_SIZE != 0);
1527	pfn_offset[nid] += size / PAGE_SIZE;
1528	BUG_ON(node_percpu[nid] < size);
1529	node_percpu[nid] -= size;
1530	if (percpu_pfn[cpu] == 0)
1531		percpu_pfn[cpu] = pfn;
1532	return pfn_to_kaddr(pfn);
1533}
1534
1535/*
1536 * Pages reserved for percpu memory are not freeable, and in any case we are
1537 * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1538 */
1539static void __init pcpu_fc_free(void *ptr, size_t size)
1540{
1541}
1542
1543/*
1544 * Set up vmalloc page tables using bootmem for the percpu code.
1545 */
1546static void __init pcpu_fc_populate_pte(unsigned long addr)
1547{
1548	pgd_t *pgd;
1549	pud_t *pud;
1550	pmd_t *pmd;
1551	pte_t *pte;
1552
1553	BUG_ON(pgd_addr_invalid(addr));
1554	if (addr < VMALLOC_START || addr >= VMALLOC_END)
1555		panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx; try increasing CONFIG_VMALLOC_RESERVE\n",
 
1556		      addr, VMALLOC_START, VMALLOC_END);
1557
1558	pgd = swapper_pg_dir + pgd_index(addr);
1559	pud = pud_offset(pgd, addr);
1560	BUG_ON(!pud_present(*pud));
1561	pmd = pmd_offset(pud, addr);
1562	if (pmd_present(*pmd)) {
1563		BUG_ON(pmd_huge_page(*pmd));
1564	} else {
1565		pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1566				      HV_PAGE_TABLE_ALIGN, 0);
1567		pmd_populate_kernel(&init_mm, pmd, pte);
1568	}
1569}
1570
1571void __init setup_per_cpu_areas(void)
1572{
1573	struct page *pg;
1574	unsigned long delta, pfn, lowmem_va;
1575	unsigned long size = percpu_size();
1576	char *ptr;
1577	int rc, cpu, i;
1578
1579	rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1580				   pcpu_fc_free, pcpu_fc_populate_pte);
1581	if (rc < 0)
1582		panic("Cannot initialize percpu area (err=%d)", rc);
1583
1584	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1585	for_each_possible_cpu(cpu) {
1586		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1587
1588		/* finv the copy out of cache so we can change homecache */
1589		ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1590		__finv_buffer(ptr, size);
1591		pfn = percpu_pfn[cpu];
1592
1593		/* Rewrite the page tables to cache on that cpu */
1594		pg = pfn_to_page(pfn);
1595		for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1596
1597			/* Update the vmalloc mapping and page home. */
1598			unsigned long addr = (unsigned long)ptr + i;
1599			pte_t *ptep = virt_to_kpte(addr);
1600			pte_t pte = *ptep;
1601			BUG_ON(pfn != pte_pfn(pte));
1602			pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1603			pte = set_remote_cache_cpu(pte, cpu);
1604			set_pte_at(&init_mm, addr, ptep, pte);
1605
1606			/* Update the lowmem mapping for consistency. */
1607			lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1608			ptep = virt_to_kpte(lowmem_va);
1609			if (pte_huge(*ptep)) {
1610				printk(KERN_DEBUG "early shatter of huge page at %#lx\n",
1611				       lowmem_va);
1612				shatter_pmd((pmd_t *)ptep);
1613				ptep = virt_to_kpte(lowmem_va);
1614				BUG_ON(pte_huge(*ptep));
1615			}
1616			BUG_ON(pfn != pte_pfn(*ptep));
1617			set_pte_at(&init_mm, lowmem_va, ptep, pte);
1618		}
1619	}
1620
1621	/* Set our thread pointer appropriately. */
1622	set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1623
1624	/* Make sure the finv's have completed. */
1625	mb_incoherent();
1626
1627	/* Flush the TLB so we reference it properly from here on out. */
1628	local_flush_tlb_all();
1629}
1630
1631static struct resource data_resource = {
1632	.name	= "Kernel data",
1633	.start	= 0,
1634	.end	= 0,
1635	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
1636};
1637
1638static struct resource code_resource = {
1639	.name	= "Kernel code",
1640	.start	= 0,
1641	.end	= 0,
1642	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
1643};
1644
1645/*
1646 * On Pro, we reserve all resources above 4GB so that PCI won't try to put
1647 * mappings above 4GB.
 
1648 */
1649#if defined(CONFIG_PCI) && !defined(__tilegx__)
1650static struct resource* __init
1651insert_non_bus_resource(void)
1652{
1653	struct resource *res =
1654		kzalloc(sizeof(struct resource), GFP_ATOMIC);
1655	if (!res)
1656		return NULL;
1657	res->name = "Non-Bus Physical Address Space";
1658	res->start = (1ULL << 32);
1659	res->end = -1LL;
1660	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1661	if (insert_resource(&iomem_resource, res)) {
1662		kfree(res);
1663		return NULL;
1664	}
1665	return res;
1666}
1667#endif
1668
1669static struct resource* __init
1670insert_ram_resource(u64 start_pfn, u64 end_pfn, bool reserved)
1671{
1672	struct resource *res =
1673		kzalloc(sizeof(struct resource), GFP_ATOMIC);
1674	if (!res)
1675		return NULL;
1676	res->start = start_pfn << PAGE_SHIFT;
1677	res->end = (end_pfn << PAGE_SHIFT) - 1;
1678	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1679	if (reserved) {
1680		res->name = "Reserved";
1681	} else {
1682		res->name = "System RAM";
1683		res->flags |= IORESOURCE_SYSRAM;
1684	}
1685	if (insert_resource(&iomem_resource, res)) {
1686		kfree(res);
1687		return NULL;
1688	}
1689	return res;
1690}
1691
1692/*
1693 * Request address space for all standard resources
1694 *
1695 * If the system includes PCI root complex drivers, we need to create
1696 * a window just below 4GB where PCI BARs can be mapped.
1697 */
1698static int __init request_standard_resources(void)
1699{
1700	int i;
1701	enum { CODE_DELTA = MEM_SV_START - PAGE_OFFSET };
1702
1703#if defined(CONFIG_PCI) && !defined(__tilegx__)
 
1704	insert_non_bus_resource();
1705#endif
1706
1707	for_each_online_node(i) {
1708		u64 start_pfn = node_start_pfn[i];
1709		u64 end_pfn = node_end_pfn[i];
1710
1711#if defined(CONFIG_PCI) && !defined(__tilegx__)
1712		if (start_pfn <= pci_reserve_start_pfn &&
1713		    end_pfn > pci_reserve_start_pfn) {
1714			if (end_pfn > pci_reserve_end_pfn)
1715				insert_ram_resource(pci_reserve_end_pfn,
1716						    end_pfn, 0);
1717			end_pfn = pci_reserve_start_pfn;
1718		}
1719#endif
1720		insert_ram_resource(start_pfn, end_pfn, 0);
1721	}
1722
1723	code_resource.start = __pa(_text - CODE_DELTA);
1724	code_resource.end = __pa(_etext - CODE_DELTA)-1;
1725	data_resource.start = __pa(_sdata);
1726	data_resource.end = __pa(_end)-1;
1727
1728	insert_resource(&iomem_resource, &code_resource);
1729	insert_resource(&iomem_resource, &data_resource);
1730
1731	/* Mark any "memmap" regions busy for the resource manager. */
1732	for (i = 0; i < memmap_nr; ++i) {
1733		struct memmap_entry *m = &memmap_map[i];
1734		insert_ram_resource(PFN_DOWN(m->addr),
1735				    PFN_UP(m->addr + m->size - 1), 1);
1736	}
1737
1738#ifdef CONFIG_KEXEC
1739	insert_resource(&iomem_resource, &crashk_res);
1740#endif
1741
1742	return 0;
1743}
1744
1745subsys_initcall(request_standard_resources);