Loading...
1/*
2 * Copyright 2011 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/kernel.h>
16#include <linux/pci.h>
17#include <linux/delay.h>
18#include <linux/string.h>
19#include <linux/init.h>
20#include <linux/capability.h>
21#include <linux/sched.h>
22#include <linux/errno.h>
23#include <linux/bootmem.h>
24#include <linux/irq.h>
25#include <linux/io.h>
26#include <linux/uaccess.h>
27
28#include <asm/processor.h>
29#include <asm/sections.h>
30#include <asm/byteorder.h>
31#include <asm/hv_driver.h>
32#include <hv/drv_pcie_rc_intf.h>
33
34
35/*
36 * Initialization flow and process
37 * -------------------------------
38 *
39 * This files contains the routines to search for PCI buses,
40 * enumerate the buses, and configure any attached devices.
41 *
42 * There are two entry points here:
43 * 1) tile_pci_init
44 * This sets up the pci_controller structs, and opens the
45 * FDs to the hypervisor. This is called from setup_arch() early
46 * in the boot process.
47 * 2) pcibios_init
48 * This probes the PCI bus(es) for any attached hardware. It's
49 * called by subsys_initcall. All of the real work is done by the
50 * generic Linux PCI layer.
51 *
52 */
53
54/*
55 * This flag tells if the platform is TILEmpower that needs
56 * special configuration for the PLX switch chip.
57 */
58int __write_once tile_plx_gen1;
59
60static struct pci_controller controllers[TILE_NUM_PCIE];
61static int num_controllers;
62static int pci_scan_flags[TILE_NUM_PCIE];
63
64static struct pci_ops tile_cfg_ops;
65
66
67/*
68 * We don't need to worry about the alignment of resources.
69 */
70resource_size_t pcibios_align_resource(void *data, const struct resource *res,
71 resource_size_t size, resource_size_t align)
72{
73 return res->start;
74}
75EXPORT_SYMBOL(pcibios_align_resource);
76
77/*
78 * Open a FD to the hypervisor PCI device.
79 *
80 * controller_id is the controller number, config type is 0 or 1 for
81 * config0 or config1 operations.
82 */
83static int __devinit tile_pcie_open(int controller_id, int config_type)
84{
85 char filename[32];
86 int fd;
87
88 sprintf(filename, "pcie/%d/config%d", controller_id, config_type);
89
90 fd = hv_dev_open((HV_VirtAddr)filename, 0);
91
92 return fd;
93}
94
95
96/*
97 * Get the IRQ numbers from the HV and set up the handlers for them.
98 */
99static int __devinit tile_init_irqs(int controller_id,
100 struct pci_controller *controller)
101{
102 char filename[32];
103 int fd;
104 int ret;
105 int x;
106 struct pcie_rc_config rc_config;
107
108 sprintf(filename, "pcie/%d/ctl", controller_id);
109 fd = hv_dev_open((HV_VirtAddr)filename, 0);
110 if (fd < 0) {
111 pr_err("PCI: hv_dev_open(%s) failed\n", filename);
112 return -1;
113 }
114 ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config),
115 sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF);
116 hv_dev_close(fd);
117 if (ret != sizeof(rc_config)) {
118 pr_err("PCI: wanted %zd bytes, got %d\n",
119 sizeof(rc_config), ret);
120 return -1;
121 }
122 /* Record irq_base so that we can map INTx to IRQ # later. */
123 controller->irq_base = rc_config.intr;
124
125 for (x = 0; x < 4; x++)
126 tile_irq_activate(rc_config.intr + x,
127 TILE_IRQ_HW_CLEAR);
128
129 if (rc_config.plx_gen1)
130 controller->plx_gen1 = 1;
131
132 return 0;
133}
134
135/*
136 * First initialization entry point, called from setup_arch().
137 *
138 * Find valid controllers and fill in pci_controller structs for each
139 * of them.
140 *
141 * Returns the number of controllers discovered.
142 */
143int __devinit tile_pci_init(void)
144{
145 int i;
146
147 pr_info("PCI: Searching for controllers...\n");
148
149 /* Re-init number of PCIe controllers to support hot-plug feature. */
150 num_controllers = 0;
151
152 /* Do any configuration we need before using the PCIe */
153
154 for (i = 0; i < TILE_NUM_PCIE; i++) {
155 /*
156 * To see whether we need a real config op based on
157 * the results of pcibios_init(), to support PCIe hot-plug.
158 */
159 if (pci_scan_flags[i] == 0) {
160 int hv_cfg_fd0 = -1;
161 int hv_cfg_fd1 = -1;
162 int hv_mem_fd = -1;
163 char name[32];
164 struct pci_controller *controller;
165
166 /*
167 * Open the fd to the HV. If it fails then this
168 * device doesn't exist.
169 */
170 hv_cfg_fd0 = tile_pcie_open(i, 0);
171 if (hv_cfg_fd0 < 0)
172 continue;
173 hv_cfg_fd1 = tile_pcie_open(i, 1);
174 if (hv_cfg_fd1 < 0) {
175 pr_err("PCI: Couldn't open config fd to HV "
176 "for controller %d\n", i);
177 goto err_cont;
178 }
179
180 sprintf(name, "pcie/%d/mem", i);
181 hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0);
182 if (hv_mem_fd < 0) {
183 pr_err("PCI: Could not open mem fd to HV!\n");
184 goto err_cont;
185 }
186
187 pr_info("PCI: Found PCI controller #%d\n", i);
188
189 controller = &controllers[i];
190
191 controller->index = i;
192 controller->hv_cfg_fd[0] = hv_cfg_fd0;
193 controller->hv_cfg_fd[1] = hv_cfg_fd1;
194 controller->hv_mem_fd = hv_mem_fd;
195 controller->first_busno = 0;
196 controller->last_busno = 0xff;
197 controller->ops = &tile_cfg_ops;
198
199 num_controllers++;
200 continue;
201
202err_cont:
203 if (hv_cfg_fd0 >= 0)
204 hv_dev_close(hv_cfg_fd0);
205 if (hv_cfg_fd1 >= 0)
206 hv_dev_close(hv_cfg_fd1);
207 if (hv_mem_fd >= 0)
208 hv_dev_close(hv_mem_fd);
209 continue;
210 }
211 }
212
213 /*
214 * Before using the PCIe, see if we need to do any platform-specific
215 * configuration, such as the PLX switch Gen 1 issue on TILEmpower.
216 */
217 for (i = 0; i < num_controllers; i++) {
218 struct pci_controller *controller = &controllers[i];
219
220 if (controller->plx_gen1)
221 tile_plx_gen1 = 1;
222 }
223
224 return num_controllers;
225}
226
227/*
228 * (pin - 1) converts from the PCI standard's [1:4] convention to
229 * a normal [0:3] range.
230 */
231static int tile_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
232{
233 struct pci_controller *controller =
234 (struct pci_controller *)dev->sysdata;
235 return (pin - 1) + controller->irq_base;
236}
237
238
239static void __devinit fixup_read_and_payload_sizes(void)
240{
241 struct pci_dev *dev = NULL;
242 int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */
243 int max_read_size = 0x2; /* Limit to 512 byte reads. */
244 u16 new_values;
245
246 /* Scan for the smallest maximum payload size. */
247 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
248 int pcie_caps_offset;
249 u32 devcap;
250 int max_payload;
251
252 pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP);
253 if (pcie_caps_offset == 0)
254 continue;
255
256 pci_read_config_dword(dev, pcie_caps_offset + PCI_EXP_DEVCAP,
257 &devcap);
258 max_payload = devcap & PCI_EXP_DEVCAP_PAYLOAD;
259 if (max_payload < smallest_max_payload)
260 smallest_max_payload = max_payload;
261 }
262
263 /* Now, set the max_payload_size for all devices to that value. */
264 new_values = (max_read_size << 12) | (smallest_max_payload << 5);
265 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
266 int pcie_caps_offset;
267 u16 devctl;
268
269 pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP);
270 if (pcie_caps_offset == 0)
271 continue;
272
273 pci_read_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL,
274 &devctl);
275 devctl &= ~(PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ);
276 devctl |= new_values;
277 pci_write_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL,
278 devctl);
279 }
280}
281
282
283/*
284 * Second PCI initialization entry point, called by subsys_initcall.
285 *
286 * The controllers have been set up by the time we get here, by a call to
287 * tile_pci_init.
288 */
289int __devinit pcibios_init(void)
290{
291 int i;
292
293 pr_info("PCI: Probing PCI hardware\n");
294
295 /*
296 * Delay a bit in case devices aren't ready. Some devices are
297 * known to require at least 20ms here, but we use a more
298 * conservative value.
299 */
300 mdelay(250);
301
302 /* Scan all of the recorded PCI controllers. */
303 for (i = 0; i < TILE_NUM_PCIE; i++) {
304 /*
305 * Do real pcibios init ops if the controller is initialized
306 * by tile_pci_init() successfully and not initialized by
307 * pcibios_init() yet to support PCIe hot-plug.
308 */
309 if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
310 struct pci_controller *controller = &controllers[i];
311 struct pci_bus *bus;
312
313 if (tile_init_irqs(i, controller)) {
314 pr_err("PCI: Could not initialize IRQs\n");
315 continue;
316 }
317
318 pr_info("PCI: initializing controller #%d\n", i);
319
320 /*
321 * This comes from the generic Linux PCI driver.
322 *
323 * It reads the PCI tree for this bus into the Linux
324 * data structures.
325 *
326 * This is inlined in linux/pci.h and calls into
327 * pci_scan_bus_parented() in probe.c.
328 */
329 bus = pci_scan_bus(0, controller->ops, controller);
330 controller->root_bus = bus;
331 controller->last_busno = bus->subordinate;
332 }
333 }
334
335 /* Do machine dependent PCI interrupt routing */
336 pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
337
338 /*
339 * This comes from the generic Linux PCI driver.
340 *
341 * It allocates all of the resources (I/O memory, etc)
342 * associated with the devices read in above.
343 */
344 pci_assign_unassigned_resources();
345
346 /* Configure the max_read_size and max_payload_size values. */
347 fixup_read_and_payload_sizes();
348
349 /* Record the I/O resources in the PCI controller structure. */
350 for (i = 0; i < TILE_NUM_PCIE; i++) {
351 /*
352 * Do real pcibios init ops if the controller is initialized
353 * by tile_pci_init() successfully and not initialized by
354 * pcibios_init() yet to support PCIe hot-plug.
355 */
356 if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
357 struct pci_bus *root_bus = controllers[i].root_bus;
358 struct pci_bus *next_bus;
359 struct pci_dev *dev;
360
361 list_for_each_entry(dev, &root_bus->devices, bus_list) {
362 /*
363 * Find the PCI host controller, ie. the 1st
364 * bridge.
365 */
366 if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
367 (PCI_SLOT(dev->devfn) == 0)) {
368 next_bus = dev->subordinate;
369 controllers[i].mem_resources[0] =
370 *next_bus->resource[0];
371 controllers[i].mem_resources[1] =
372 *next_bus->resource[1];
373 controllers[i].mem_resources[2] =
374 *next_bus->resource[2];
375
376 /* Setup flags. */
377 pci_scan_flags[i] = 1;
378
379 break;
380 }
381 }
382 }
383 }
384
385 return 0;
386}
387subsys_initcall(pcibios_init);
388
389/*
390 * No bus fixups needed.
391 */
392void __devinit pcibios_fixup_bus(struct pci_bus *bus)
393{
394 /* Nothing needs to be done. */
395}
396
397/*
398 * This can be called from the generic PCI layer, but doesn't need to
399 * do anything.
400 */
401char __devinit *pcibios_setup(char *str)
402{
403 /* Nothing needs to be done. */
404 return str;
405}
406
407/*
408 * This is called from the generic Linux layer.
409 */
410void __devinit pcibios_update_irq(struct pci_dev *dev, int irq)
411{
412 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
413}
414
415/*
416 * Enable memory and/or address decoding, as appropriate, for the
417 * device described by the 'dev' struct.
418 *
419 * This is called from the generic PCI layer, and can be called
420 * for bridges or endpoints.
421 */
422int pcibios_enable_device(struct pci_dev *dev, int mask)
423{
424 u16 cmd, old_cmd;
425 u8 header_type;
426 int i;
427 struct resource *r;
428
429 pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
430
431 pci_read_config_word(dev, PCI_COMMAND, &cmd);
432 old_cmd = cmd;
433 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
434 /*
435 * For bridges, we enable both memory and I/O decoding
436 * in call cases.
437 */
438 cmd |= PCI_COMMAND_IO;
439 cmd |= PCI_COMMAND_MEMORY;
440 } else {
441 /*
442 * For endpoints, we enable memory and/or I/O decoding
443 * only if they have a memory resource of that type.
444 */
445 for (i = 0; i < 6; i++) {
446 r = &dev->resource[i];
447 if (r->flags & IORESOURCE_UNSET) {
448 pr_err("PCI: Device %s not available "
449 "because of resource collisions\n",
450 pci_name(dev));
451 return -EINVAL;
452 }
453 if (r->flags & IORESOURCE_IO)
454 cmd |= PCI_COMMAND_IO;
455 if (r->flags & IORESOURCE_MEM)
456 cmd |= PCI_COMMAND_MEMORY;
457 }
458 }
459
460 /*
461 * We only write the command if it changed.
462 */
463 if (cmd != old_cmd)
464 pci_write_config_word(dev, PCI_COMMAND, cmd);
465 return 0;
466}
467
468void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max)
469{
470 unsigned long start = pci_resource_start(dev, bar);
471 unsigned long len = pci_resource_len(dev, bar);
472 unsigned long flags = pci_resource_flags(dev, bar);
473
474 if (!len)
475 return NULL;
476 if (max && len > max)
477 len = max;
478
479 if (!(flags & IORESOURCE_MEM)) {
480 pr_info("PCI: Trying to map invalid resource %#lx\n", flags);
481 start = 0;
482 }
483
484 return (void __iomem *)start;
485}
486EXPORT_SYMBOL(pci_iomap);
487
488
489/****************************************************************
490 *
491 * Tile PCI config space read/write routines
492 *
493 ****************************************************************/
494
495/*
496 * These are the normal read and write ops
497 * These are expanded with macros from pci_bus_read_config_byte() etc.
498 *
499 * devfn is the combined PCI slot & function.
500 *
501 * offset is in bytes, from the start of config space for the
502 * specified bus & slot.
503 */
504
505static int __devinit tile_cfg_read(struct pci_bus *bus,
506 unsigned int devfn,
507 int offset,
508 int size,
509 u32 *val)
510{
511 struct pci_controller *controller = bus->sysdata;
512 int busnum = bus->number & 0xff;
513 int slot = (devfn >> 3) & 0x1f;
514 int function = devfn & 0x7;
515 u32 addr;
516 int config_mode = 1;
517
518 /*
519 * There is no bridge between the Tile and bus 0, so we
520 * use config0 to talk to bus 0.
521 *
522 * If we're talking to a bus other than zero then we
523 * must have found a bridge.
524 */
525 if (busnum == 0) {
526 /*
527 * We fake an empty slot for (busnum == 0) && (slot > 0),
528 * since there is only one slot on bus 0.
529 */
530 if (slot) {
531 *val = 0xFFFFFFFF;
532 return 0;
533 }
534 config_mode = 0;
535 }
536
537 addr = busnum << 20; /* Bus in 27:20 */
538 addr |= slot << 15; /* Slot (device) in 19:15 */
539 addr |= function << 12; /* Function is in 14:12 */
540 addr |= (offset & 0xFFF); /* byte address in 0:11 */
541
542 return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0,
543 (HV_VirtAddr)(val), size, addr);
544}
545
546
547/*
548 * See tile_cfg_read() for relevant comments.
549 * Note that "val" is the value to write, not a pointer to that value.
550 */
551static int __devinit tile_cfg_write(struct pci_bus *bus,
552 unsigned int devfn,
553 int offset,
554 int size,
555 u32 val)
556{
557 struct pci_controller *controller = bus->sysdata;
558 int busnum = bus->number & 0xff;
559 int slot = (devfn >> 3) & 0x1f;
560 int function = devfn & 0x7;
561 u32 addr;
562 int config_mode = 1;
563 HV_VirtAddr valp = (HV_VirtAddr)&val;
564
565 /*
566 * For bus 0 slot 0 we use config 0 accesses.
567 */
568 if (busnum == 0) {
569 /*
570 * We fake an empty slot for (busnum == 0) && (slot > 0),
571 * since there is only one slot on bus 0.
572 */
573 if (slot)
574 return 0;
575 config_mode = 0;
576 }
577
578 addr = busnum << 20; /* Bus in 27:20 */
579 addr |= slot << 15; /* Slot (device) in 19:15 */
580 addr |= function << 12; /* Function is in 14:12 */
581 addr |= (offset & 0xFFF); /* byte address in 0:11 */
582
583#ifdef __BIG_ENDIAN
584 /* Point to the correct part of the 32-bit "val". */
585 valp += 4 - size;
586#endif
587
588 return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0,
589 valp, size, addr);
590}
591
592
593static struct pci_ops tile_cfg_ops = {
594 .read = tile_cfg_read,
595 .write = tile_cfg_write,
596};
597
598
599/*
600 * In the following, each PCI controller's mem_resources[1]
601 * represents its (non-prefetchable) PCI memory resource.
602 * mem_resources[0] and mem_resources[2] refer to its PCI I/O and
603 * prefetchable PCI memory resources, respectively.
604 * For more details, see pci_setup_bridge() in setup-bus.c.
605 * By comparing the target PCI memory address against the
606 * end address of controller 0, we can determine the controller
607 * that should accept the PCI memory access.
608 */
609#define TILE_READ(size, type) \
610type _tile_read##size(unsigned long addr) \
611{ \
612 type val; \
613 int idx = 0; \
614 if (addr > controllers[0].mem_resources[1].end && \
615 addr > controllers[0].mem_resources[2].end) \
616 idx = 1; \
617 if (hv_dev_pread(controllers[idx].hv_mem_fd, 0, \
618 (HV_VirtAddr)(&val), sizeof(type), addr)) \
619 pr_err("PCI: read %zd bytes at 0x%lX failed\n", \
620 sizeof(type), addr); \
621 return val; \
622} \
623EXPORT_SYMBOL(_tile_read##size)
624
625TILE_READ(b, u8);
626TILE_READ(w, u16);
627TILE_READ(l, u32);
628TILE_READ(q, u64);
629
630#define TILE_WRITE(size, type) \
631void _tile_write##size(type val, unsigned long addr) \
632{ \
633 int idx = 0; \
634 if (addr > controllers[0].mem_resources[1].end && \
635 addr > controllers[0].mem_resources[2].end) \
636 idx = 1; \
637 if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0, \
638 (HV_VirtAddr)(&val), sizeof(type), addr)) \
639 pr_err("PCI: write %zd bytes at 0x%lX failed\n", \
640 sizeof(type), addr); \
641} \
642EXPORT_SYMBOL(_tile_write##size)
643
644TILE_WRITE(b, u8);
645TILE_WRITE(w, u16);
646TILE_WRITE(l, u32);
647TILE_WRITE(q, u64);
1/*
2 * Copyright 2011 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/kernel.h>
16#include <linux/pci.h>
17#include <linux/delay.h>
18#include <linux/string.h>
19#include <linux/init.h>
20#include <linux/capability.h>
21#include <linux/sched.h>
22#include <linux/errno.h>
23#include <linux/irq.h>
24#include <linux/io.h>
25#include <linux/uaccess.h>
26#include <linux/export.h>
27
28#include <asm/processor.h>
29#include <asm/sections.h>
30#include <asm/byteorder.h>
31#include <asm/hv_driver.h>
32#include <hv/drv_pcie_rc_intf.h>
33
34
35/*
36 * Initialization flow and process
37 * -------------------------------
38 *
39 * This files contains the routines to search for PCI buses,
40 * enumerate the buses, and configure any attached devices.
41 *
42 * There are two entry points here:
43 * 1) tile_pci_init
44 * This sets up the pci_controller structs, and opens the
45 * FDs to the hypervisor. This is called from setup_arch() early
46 * in the boot process.
47 * 2) pcibios_init
48 * This probes the PCI bus(es) for any attached hardware. It's
49 * called by subsys_initcall. All of the real work is done by the
50 * generic Linux PCI layer.
51 *
52 */
53
54static int pci_probe = 1;
55
56/*
57 * This flag tells if the platform is TILEmpower that needs
58 * special configuration for the PLX switch chip.
59 */
60int __write_once tile_plx_gen1;
61
62static struct pci_controller controllers[TILE_NUM_PCIE];
63static int num_controllers;
64static int pci_scan_flags[TILE_NUM_PCIE];
65
66static struct pci_ops tile_cfg_ops;
67
68
69/*
70 * We don't need to worry about the alignment of resources.
71 */
72resource_size_t pcibios_align_resource(void *data, const struct resource *res,
73 resource_size_t size, resource_size_t align)
74{
75 return res->start;
76}
77EXPORT_SYMBOL(pcibios_align_resource);
78
79/*
80 * Open a FD to the hypervisor PCI device.
81 *
82 * controller_id is the controller number, config type is 0 or 1 for
83 * config0 or config1 operations.
84 */
85static int tile_pcie_open(int controller_id, int config_type)
86{
87 char filename[32];
88 int fd;
89
90 sprintf(filename, "pcie/%d/config%d", controller_id, config_type);
91
92 fd = hv_dev_open((HV_VirtAddr)filename, 0);
93
94 return fd;
95}
96
97
98/*
99 * Get the IRQ numbers from the HV and set up the handlers for them.
100 */
101static int tile_init_irqs(int controller_id, struct pci_controller *controller)
102{
103 char filename[32];
104 int fd;
105 int ret;
106 int x;
107 struct pcie_rc_config rc_config;
108
109 sprintf(filename, "pcie/%d/ctl", controller_id);
110 fd = hv_dev_open((HV_VirtAddr)filename, 0);
111 if (fd < 0) {
112 pr_err("PCI: hv_dev_open(%s) failed\n", filename);
113 return -1;
114 }
115 ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config),
116 sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF);
117 hv_dev_close(fd);
118 if (ret != sizeof(rc_config)) {
119 pr_err("PCI: wanted %zd bytes, got %d\n",
120 sizeof(rc_config), ret);
121 return -1;
122 }
123 /* Record irq_base so that we can map INTx to IRQ # later. */
124 controller->irq_base = rc_config.intr;
125
126 for (x = 0; x < 4; x++)
127 tile_irq_activate(rc_config.intr + x,
128 TILE_IRQ_HW_CLEAR);
129
130 if (rc_config.plx_gen1)
131 controller->plx_gen1 = 1;
132
133 return 0;
134}
135
136/*
137 * First initialization entry point, called from setup_arch().
138 *
139 * Find valid controllers and fill in pci_controller structs for each
140 * of them.
141 *
142 * Returns the number of controllers discovered.
143 */
144int __init tile_pci_init(void)
145{
146 int i;
147
148 if (!pci_probe) {
149 pr_info("PCI: disabled by boot argument\n");
150 return 0;
151 }
152
153 pr_info("PCI: Searching for controllers...\n");
154
155 /* Re-init number of PCIe controllers to support hot-plug feature. */
156 num_controllers = 0;
157
158 /* Do any configuration we need before using the PCIe */
159
160 for (i = 0; i < TILE_NUM_PCIE; i++) {
161 /*
162 * To see whether we need a real config op based on
163 * the results of pcibios_init(), to support PCIe hot-plug.
164 */
165 if (pci_scan_flags[i] == 0) {
166 int hv_cfg_fd0 = -1;
167 int hv_cfg_fd1 = -1;
168 int hv_mem_fd = -1;
169 char name[32];
170 struct pci_controller *controller;
171
172 /*
173 * Open the fd to the HV. If it fails then this
174 * device doesn't exist.
175 */
176 hv_cfg_fd0 = tile_pcie_open(i, 0);
177 if (hv_cfg_fd0 < 0)
178 continue;
179 hv_cfg_fd1 = tile_pcie_open(i, 1);
180 if (hv_cfg_fd1 < 0) {
181 pr_err("PCI: Couldn't open config fd to HV for controller %d\n",
182 i);
183 goto err_cont;
184 }
185
186 sprintf(name, "pcie/%d/mem", i);
187 hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0);
188 if (hv_mem_fd < 0) {
189 pr_err("PCI: Could not open mem fd to HV!\n");
190 goto err_cont;
191 }
192
193 pr_info("PCI: Found PCI controller #%d\n", i);
194
195 controller = &controllers[i];
196
197 controller->index = i;
198 controller->hv_cfg_fd[0] = hv_cfg_fd0;
199 controller->hv_cfg_fd[1] = hv_cfg_fd1;
200 controller->hv_mem_fd = hv_mem_fd;
201 controller->last_busno = 0xff;
202 controller->ops = &tile_cfg_ops;
203
204 num_controllers++;
205 continue;
206
207err_cont:
208 if (hv_cfg_fd0 >= 0)
209 hv_dev_close(hv_cfg_fd0);
210 if (hv_cfg_fd1 >= 0)
211 hv_dev_close(hv_cfg_fd1);
212 if (hv_mem_fd >= 0)
213 hv_dev_close(hv_mem_fd);
214 continue;
215 }
216 }
217
218 /*
219 * Before using the PCIe, see if we need to do any platform-specific
220 * configuration, such as the PLX switch Gen 1 issue on TILEmpower.
221 */
222 for (i = 0; i < num_controllers; i++) {
223 struct pci_controller *controller = &controllers[i];
224
225 if (controller->plx_gen1)
226 tile_plx_gen1 = 1;
227 }
228
229 return num_controllers;
230}
231
232/*
233 * (pin - 1) converts from the PCI standard's [1:4] convention to
234 * a normal [0:3] range.
235 */
236static int tile_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
237{
238 struct pci_controller *controller =
239 (struct pci_controller *)dev->sysdata;
240 return (pin - 1) + controller->irq_base;
241}
242
243
244static void fixup_read_and_payload_sizes(void)
245{
246 struct pci_dev *dev = NULL;
247 int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */
248 int max_read_size = PCI_EXP_DEVCTL_READRQ_512B;
249 u16 new_values;
250
251 /* Scan for the smallest maximum payload size. */
252 for_each_pci_dev(dev) {
253 if (!pci_is_pcie(dev))
254 continue;
255
256 if (dev->pcie_mpss < smallest_max_payload)
257 smallest_max_payload = dev->pcie_mpss;
258 }
259
260 /* Now, set the max_payload_size for all devices to that value. */
261 new_values = max_read_size | (smallest_max_payload << 5);
262 for_each_pci_dev(dev)
263 pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
264 PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ,
265 new_values);
266}
267
268
269/*
270 * Second PCI initialization entry point, called by subsys_initcall.
271 *
272 * The controllers have been set up by the time we get here, by a call to
273 * tile_pci_init.
274 */
275int __init pcibios_init(void)
276{
277 int i;
278
279 pr_info("PCI: Probing PCI hardware\n");
280
281 /*
282 * Delay a bit in case devices aren't ready. Some devices are
283 * known to require at least 20ms here, but we use a more
284 * conservative value.
285 */
286 msleep(250);
287
288 /* Scan all of the recorded PCI controllers. */
289 for (i = 0; i < TILE_NUM_PCIE; i++) {
290 /*
291 * Do real pcibios init ops if the controller is initialized
292 * by tile_pci_init() successfully and not initialized by
293 * pcibios_init() yet to support PCIe hot-plug.
294 */
295 if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
296 struct pci_controller *controller = &controllers[i];
297 struct pci_bus *bus;
298 LIST_HEAD(resources);
299
300 if (tile_init_irqs(i, controller)) {
301 pr_err("PCI: Could not initialize IRQs\n");
302 continue;
303 }
304
305 pr_info("PCI: initializing controller #%d\n", i);
306
307 pci_add_resource(&resources, &ioport_resource);
308 pci_add_resource(&resources, &iomem_resource);
309 bus = pci_scan_root_bus(NULL, 0, controller->ops,
310 controller, &resources);
311 controller->root_bus = bus;
312 controller->last_busno = bus->busn_res.end;
313 }
314 }
315
316 /* Do machine dependent PCI interrupt routing */
317 pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
318
319 /*
320 * This comes from the generic Linux PCI driver.
321 *
322 * It allocates all of the resources (I/O memory, etc)
323 * associated with the devices read in above.
324 */
325 pci_assign_unassigned_resources();
326
327 /* Configure the max_read_size and max_payload_size values. */
328 fixup_read_and_payload_sizes();
329
330 /* Record the I/O resources in the PCI controller structure. */
331 for (i = 0; i < TILE_NUM_PCIE; i++) {
332 /*
333 * Do real pcibios init ops if the controller is initialized
334 * by tile_pci_init() successfully and not initialized by
335 * pcibios_init() yet to support PCIe hot-plug.
336 */
337 if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
338 struct pci_bus *root_bus = controllers[i].root_bus;
339 struct pci_bus *next_bus;
340 struct pci_dev *dev;
341
342 pci_bus_add_devices(root_bus);
343
344 list_for_each_entry(dev, &root_bus->devices, bus_list) {
345 /*
346 * Find the PCI host controller, ie. the 1st
347 * bridge.
348 */
349 if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
350 (PCI_SLOT(dev->devfn) == 0)) {
351 next_bus = dev->subordinate;
352 controllers[i].mem_resources[0] =
353 *next_bus->resource[0];
354 controllers[i].mem_resources[1] =
355 *next_bus->resource[1];
356 controllers[i].mem_resources[2] =
357 *next_bus->resource[2];
358
359 /* Setup flags. */
360 pci_scan_flags[i] = 1;
361
362 break;
363 }
364 }
365 }
366 }
367
368 return 0;
369}
370subsys_initcall(pcibios_init);
371
372/*
373 * No bus fixups needed.
374 */
375void pcibios_fixup_bus(struct pci_bus *bus)
376{
377 /* Nothing needs to be done. */
378}
379
380void pcibios_set_master(struct pci_dev *dev)
381{
382 /* No special bus mastering setup handling. */
383}
384
385/* Process any "pci=" kernel boot arguments. */
386char *__init pcibios_setup(char *str)
387{
388 if (!strcmp(str, "off")) {
389 pci_probe = 0;
390 return NULL;
391 }
392 return str;
393}
394
395/*
396 * Enable memory and/or address decoding, as appropriate, for the
397 * device described by the 'dev' struct.
398 *
399 * This is called from the generic PCI layer, and can be called
400 * for bridges or endpoints.
401 */
402int pcibios_enable_device(struct pci_dev *dev, int mask)
403{
404 u16 cmd, old_cmd;
405 u8 header_type;
406 int i;
407 struct resource *r;
408
409 pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
410
411 pci_read_config_word(dev, PCI_COMMAND, &cmd);
412 old_cmd = cmd;
413 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
414 /*
415 * For bridges, we enable both memory and I/O decoding
416 * in call cases.
417 */
418 cmd |= PCI_COMMAND_IO;
419 cmd |= PCI_COMMAND_MEMORY;
420 } else {
421 /*
422 * For endpoints, we enable memory and/or I/O decoding
423 * only if they have a memory resource of that type.
424 */
425 for (i = 0; i < 6; i++) {
426 r = &dev->resource[i];
427 if (r->flags & IORESOURCE_UNSET) {
428 pr_err("PCI: Device %s not available because of resource collisions\n",
429 pci_name(dev));
430 return -EINVAL;
431 }
432 if (r->flags & IORESOURCE_IO)
433 cmd |= PCI_COMMAND_IO;
434 if (r->flags & IORESOURCE_MEM)
435 cmd |= PCI_COMMAND_MEMORY;
436 }
437 }
438
439 /*
440 * We only write the command if it changed.
441 */
442 if (cmd != old_cmd)
443 pci_write_config_word(dev, PCI_COMMAND, cmd);
444 return 0;
445}
446
447/****************************************************************
448 *
449 * Tile PCI config space read/write routines
450 *
451 ****************************************************************/
452
453/*
454 * These are the normal read and write ops
455 * These are expanded with macros from pci_bus_read_config_byte() etc.
456 *
457 * devfn is the combined PCI slot & function.
458 *
459 * offset is in bytes, from the start of config space for the
460 * specified bus & slot.
461 */
462
463static int tile_cfg_read(struct pci_bus *bus, unsigned int devfn, int offset,
464 int size, u32 *val)
465{
466 struct pci_controller *controller = bus->sysdata;
467 int busnum = bus->number & 0xff;
468 int slot = (devfn >> 3) & 0x1f;
469 int function = devfn & 0x7;
470 u32 addr;
471 int config_mode = 1;
472
473 /*
474 * There is no bridge between the Tile and bus 0, so we
475 * use config0 to talk to bus 0.
476 *
477 * If we're talking to a bus other than zero then we
478 * must have found a bridge.
479 */
480 if (busnum == 0) {
481 /*
482 * We fake an empty slot for (busnum == 0) && (slot > 0),
483 * since there is only one slot on bus 0.
484 */
485 if (slot) {
486 *val = 0xFFFFFFFF;
487 return 0;
488 }
489 config_mode = 0;
490 }
491
492 addr = busnum << 20; /* Bus in 27:20 */
493 addr |= slot << 15; /* Slot (device) in 19:15 */
494 addr |= function << 12; /* Function is in 14:12 */
495 addr |= (offset & 0xFFF); /* byte address in 0:11 */
496
497 return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0,
498 (HV_VirtAddr)(val), size, addr);
499}
500
501
502/*
503 * See tile_cfg_read() for relevant comments.
504 * Note that "val" is the value to write, not a pointer to that value.
505 */
506static int tile_cfg_write(struct pci_bus *bus, unsigned int devfn, int offset,
507 int size, u32 val)
508{
509 struct pci_controller *controller = bus->sysdata;
510 int busnum = bus->number & 0xff;
511 int slot = (devfn >> 3) & 0x1f;
512 int function = devfn & 0x7;
513 u32 addr;
514 int config_mode = 1;
515 HV_VirtAddr valp = (HV_VirtAddr)&val;
516
517 /*
518 * For bus 0 slot 0 we use config 0 accesses.
519 */
520 if (busnum == 0) {
521 /*
522 * We fake an empty slot for (busnum == 0) && (slot > 0),
523 * since there is only one slot on bus 0.
524 */
525 if (slot)
526 return 0;
527 config_mode = 0;
528 }
529
530 addr = busnum << 20; /* Bus in 27:20 */
531 addr |= slot << 15; /* Slot (device) in 19:15 */
532 addr |= function << 12; /* Function is in 14:12 */
533 addr |= (offset & 0xFFF); /* byte address in 0:11 */
534
535#ifdef __BIG_ENDIAN
536 /* Point to the correct part of the 32-bit "val". */
537 valp += 4 - size;
538#endif
539
540 return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0,
541 valp, size, addr);
542}
543
544
545static struct pci_ops tile_cfg_ops = {
546 .read = tile_cfg_read,
547 .write = tile_cfg_write,
548};
549
550
551/*
552 * In the following, each PCI controller's mem_resources[1]
553 * represents its (non-prefetchable) PCI memory resource.
554 * mem_resources[0] and mem_resources[2] refer to its PCI I/O and
555 * prefetchable PCI memory resources, respectively.
556 * For more details, see pci_setup_bridge() in setup-bus.c.
557 * By comparing the target PCI memory address against the
558 * end address of controller 0, we can determine the controller
559 * that should accept the PCI memory access.
560 */
561#define TILE_READ(size, type) \
562type _tile_read##size(unsigned long addr) \
563{ \
564 type val; \
565 int idx = 0; \
566 if (addr > controllers[0].mem_resources[1].end && \
567 addr > controllers[0].mem_resources[2].end) \
568 idx = 1; \
569 if (hv_dev_pread(controllers[idx].hv_mem_fd, 0, \
570 (HV_VirtAddr)(&val), sizeof(type), addr)) \
571 pr_err("PCI: read %zd bytes at 0x%lX failed\n", \
572 sizeof(type), addr); \
573 return val; \
574} \
575EXPORT_SYMBOL(_tile_read##size)
576
577TILE_READ(b, u8);
578TILE_READ(w, u16);
579TILE_READ(l, u32);
580TILE_READ(q, u64);
581
582#define TILE_WRITE(size, type) \
583void _tile_write##size(type val, unsigned long addr) \
584{ \
585 int idx = 0; \
586 if (addr > controllers[0].mem_resources[1].end && \
587 addr > controllers[0].mem_resources[2].end) \
588 idx = 1; \
589 if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0, \
590 (HV_VirtAddr)(&val), sizeof(type), addr)) \
591 pr_err("PCI: write %zd bytes at 0x%lX failed\n", \
592 sizeof(type), addr); \
593} \
594EXPORT_SYMBOL(_tile_write##size)
595
596TILE_WRITE(b, u8);
597TILE_WRITE(w, u16);
598TILE_WRITE(l, u32);
599TILE_WRITE(q, u64);