Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Performance event support for the System z CPU-measurement Sampling Facility
   3 *
   4 * Copyright IBM Corp. 2013
   5 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License (version 2 only)
   9 * as published by the Free Software Foundation.
  10 */
  11#define KMSG_COMPONENT	"cpum_sf"
  12#define pr_fmt(fmt)	KMSG_COMPONENT ": " fmt
  13
  14#include <linux/kernel.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/perf_event.h>
  17#include <linux/percpu.h>
  18#include <linux/notifier.h>
  19#include <linux/export.h>
  20#include <linux/slab.h>
  21#include <linux/mm.h>
  22#include <linux/moduleparam.h>
  23#include <asm/cpu_mf.h>
  24#include <asm/irq.h>
  25#include <asm/debug.h>
  26#include <asm/timex.h>
  27
  28/* Minimum number of sample-data-block-tables:
  29 * At least one table is required for the sampling buffer structure.
  30 * A single table contains up to 511 pointers to sample-data-blocks.
  31 */
  32#define CPUM_SF_MIN_SDBT	1
  33
  34/* Number of sample-data-blocks per sample-data-block-table (SDBT):
  35 * A table contains SDB pointers (8 bytes) and one table-link entry
  36 * that points to the origin of the next SDBT.
  37 */
  38#define CPUM_SF_SDB_PER_TABLE	((PAGE_SIZE - 8) / 8)
  39
  40/* Maximum page offset for an SDBT table-link entry:
  41 * If this page offset is reached, a table-link entry to the next SDBT
  42 * must be added.
  43 */
  44#define CPUM_SF_SDBT_TL_OFFSET	(CPUM_SF_SDB_PER_TABLE * 8)
  45static inline int require_table_link(const void *sdbt)
  46{
  47	return ((unsigned long) sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
  48}
  49
  50/* Minimum and maximum sampling buffer sizes:
  51 *
  52 * This number represents the maximum size of the sampling buffer taking
  53 * the number of sample-data-block-tables into account.  Note that these
  54 * numbers apply to the basic-sampling function only.
  55 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
  56 * the diagnostic-sampling function is active.
  57 *
  58 * Sampling buffer size		Buffer characteristics
  59 * ---------------------------------------------------
  60 *	 64KB		    ==	  16 pages (4KB per page)
  61 *				   1 page  for SDB-tables
  62 *				  15 pages for SDBs
  63 *
  64 *  32MB		    ==	8192 pages (4KB per page)
  65 *				  16 pages for SDB-tables
  66 *				8176 pages for SDBs
  67 */
  68static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
  69static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
  70static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
  71
  72struct sf_buffer {
  73	unsigned long	 *sdbt;	    /* Sample-data-block-table origin */
  74	/* buffer characteristics (required for buffer increments) */
  75	unsigned long  num_sdb;	    /* Number of sample-data-blocks */
  76	unsigned long num_sdbt;	    /* Number of sample-data-block-tables */
  77	unsigned long	 *tail;	    /* last sample-data-block-table */
  78};
  79
  80struct cpu_hw_sf {
  81	/* CPU-measurement sampling information block */
  82	struct hws_qsi_info_block qsi;
  83	/* CPU-measurement sampling control block */
  84	struct hws_lsctl_request_block lsctl;
  85	struct sf_buffer sfb;	    /* Sampling buffer */
  86	unsigned int flags;	    /* Status flags */
  87	struct perf_event *event;   /* Scheduled perf event */
  88};
  89static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
  90
  91/* Debug feature */
  92static debug_info_t *sfdbg;
  93
  94/*
  95 * sf_disable() - Switch off sampling facility
  96 */
  97static int sf_disable(void)
  98{
  99	struct hws_lsctl_request_block sreq;
 100
 101	memset(&sreq, 0, sizeof(sreq));
 102	return lsctl(&sreq);
 103}
 104
 105/*
 106 * sf_buffer_available() - Check for an allocated sampling buffer
 107 */
 108static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
 109{
 110	return !!cpuhw->sfb.sdbt;
 111}
 112
 113/*
 114 * deallocate sampling facility buffer
 115 */
 116static void free_sampling_buffer(struct sf_buffer *sfb)
 117{
 118	unsigned long *sdbt, *curr;
 119
 120	if (!sfb->sdbt)
 121		return;
 122
 123	sdbt = sfb->sdbt;
 124	curr = sdbt;
 125
 126	/* Free the SDBT after all SDBs are processed... */
 127	while (1) {
 128		if (!*curr || !sdbt)
 129			break;
 130
 131		/* Process table-link entries */
 132		if (is_link_entry(curr)) {
 133			curr = get_next_sdbt(curr);
 134			if (sdbt)
 135				free_page((unsigned long) sdbt);
 136
 137			/* If the origin is reached, sampling buffer is freed */
 138			if (curr == sfb->sdbt)
 139				break;
 140			else
 141				sdbt = curr;
 142		} else {
 143			/* Process SDB pointer */
 144			if (*curr) {
 145				free_page(*curr);
 146				curr++;
 147			}
 148		}
 149	}
 150
 151	debug_sprintf_event(sfdbg, 5,
 152			    "free_sampling_buffer: freed sdbt=%p\n", sfb->sdbt);
 153	memset(sfb, 0, sizeof(*sfb));
 154}
 155
 156static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
 157{
 158	unsigned long sdb, *trailer;
 159
 160	/* Allocate and initialize sample-data-block */
 161	sdb = get_zeroed_page(gfp_flags);
 162	if (!sdb)
 163		return -ENOMEM;
 164	trailer = trailer_entry_ptr(sdb);
 165	*trailer = SDB_TE_ALERT_REQ_MASK;
 166
 167	/* Link SDB into the sample-data-block-table */
 168	*sdbt = sdb;
 169
 170	return 0;
 171}
 172
 173/*
 174 * realloc_sampling_buffer() - extend sampler memory
 175 *
 176 * Allocates new sample-data-blocks and adds them to the specified sampling
 177 * buffer memory.
 178 *
 179 * Important: This modifies the sampling buffer and must be called when the
 180 *	      sampling facility is disabled.
 181 *
 182 * Returns zero on success, non-zero otherwise.
 183 */
 184static int realloc_sampling_buffer(struct sf_buffer *sfb,
 185				   unsigned long num_sdb, gfp_t gfp_flags)
 186{
 187	int i, rc;
 188	unsigned long *new, *tail;
 189
 190	if (!sfb->sdbt || !sfb->tail)
 191		return -EINVAL;
 192
 193	if (!is_link_entry(sfb->tail))
 194		return -EINVAL;
 195
 196	/* Append to the existing sampling buffer, overwriting the table-link
 197	 * register.
 198	 * The tail variables always points to the "tail" (last and table-link)
 199	 * entry in an SDB-table.
 200	 */
 201	tail = sfb->tail;
 202
 203	/* Do a sanity check whether the table-link entry points to
 204	 * the sampling buffer origin.
 205	 */
 206	if (sfb->sdbt != get_next_sdbt(tail)) {
 207		debug_sprintf_event(sfdbg, 3, "realloc_sampling_buffer: "
 208				    "sampling buffer is not linked: origin=%p"
 209				    "tail=%p\n",
 210				    (void *) sfb->sdbt, (void *) tail);
 211		return -EINVAL;
 212	}
 213
 214	/* Allocate remaining SDBs */
 215	rc = 0;
 216	for (i = 0; i < num_sdb; i++) {
 217		/* Allocate a new SDB-table if it is full. */
 218		if (require_table_link(tail)) {
 219			new = (unsigned long *) get_zeroed_page(gfp_flags);
 220			if (!new) {
 221				rc = -ENOMEM;
 222				break;
 223			}
 224			sfb->num_sdbt++;
 225			/* Link current page to tail of chain */
 226			*tail = (unsigned long)(void *) new + 1;
 227			tail = new;
 228		}
 229
 230		/* Allocate a new sample-data-block.
 231		 * If there is not enough memory, stop the realloc process
 232		 * and simply use what was allocated.  If this is a temporary
 233		 * issue, a new realloc call (if required) might succeed.
 234		 */
 235		rc = alloc_sample_data_block(tail, gfp_flags);
 236		if (rc)
 237			break;
 238		sfb->num_sdb++;
 239		tail++;
 240	}
 241
 242	/* Link sampling buffer to its origin */
 243	*tail = (unsigned long) sfb->sdbt + 1;
 244	sfb->tail = tail;
 245
 246	debug_sprintf_event(sfdbg, 4, "realloc_sampling_buffer: new buffer"
 247			    " settings: sdbt=%lu sdb=%lu\n",
 248			    sfb->num_sdbt, sfb->num_sdb);
 249	return rc;
 250}
 251
 252/*
 253 * allocate_sampling_buffer() - allocate sampler memory
 254 *
 255 * Allocates and initializes a sampling buffer structure using the
 256 * specified number of sample-data-blocks (SDB).  For each allocation,
 257 * a 4K page is used.  The number of sample-data-block-tables (SDBT)
 258 * are calculated from SDBs.
 259 * Also set the ALERT_REQ mask in each SDBs trailer.
 260 *
 261 * Returns zero on success, non-zero otherwise.
 262 */
 263static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
 264{
 265	int rc;
 266
 267	if (sfb->sdbt)
 268		return -EINVAL;
 269
 270	/* Allocate the sample-data-block-table origin */
 271	sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
 272	if (!sfb->sdbt)
 273		return -ENOMEM;
 274	sfb->num_sdb = 0;
 275	sfb->num_sdbt = 1;
 276
 277	/* Link the table origin to point to itself to prepare for
 278	 * realloc_sampling_buffer() invocation.
 279	 */
 280	sfb->tail = sfb->sdbt;
 281	*sfb->tail = (unsigned long)(void *) sfb->sdbt + 1;
 282
 283	/* Allocate requested number of sample-data-blocks */
 284	rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
 285	if (rc) {
 286		free_sampling_buffer(sfb);
 287		debug_sprintf_event(sfdbg, 4, "alloc_sampling_buffer: "
 288			"realloc_sampling_buffer failed with rc=%i\n", rc);
 289	} else
 290		debug_sprintf_event(sfdbg, 4,
 291			"alloc_sampling_buffer: tear=%p dear=%p\n",
 292			sfb->sdbt, (void *) *sfb->sdbt);
 293	return rc;
 294}
 295
 296static void sfb_set_limits(unsigned long min, unsigned long max)
 297{
 298	struct hws_qsi_info_block si;
 299
 300	CPUM_SF_MIN_SDB = min;
 301	CPUM_SF_MAX_SDB = max;
 302
 303	memset(&si, 0, sizeof(si));
 304	if (!qsi(&si))
 305		CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
 306}
 307
 308static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
 309{
 310	return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
 311				    : CPUM_SF_MAX_SDB;
 312}
 313
 314static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
 315					struct hw_perf_event *hwc)
 316{
 317	if (!sfb->sdbt)
 318		return SFB_ALLOC_REG(hwc);
 319	if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
 320		return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
 321	return 0;
 322}
 323
 324static int sfb_has_pending_allocs(struct sf_buffer *sfb,
 325				   struct hw_perf_event *hwc)
 326{
 327	return sfb_pending_allocs(sfb, hwc) > 0;
 328}
 329
 330static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
 331{
 332	/* Limit the number of SDBs to not exceed the maximum */
 333	num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
 334	if (num)
 335		SFB_ALLOC_REG(hwc) += num;
 336}
 337
 338static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
 339{
 340	SFB_ALLOC_REG(hwc) = 0;
 341	sfb_account_allocs(num, hwc);
 342}
 343
 344static size_t event_sample_size(struct hw_perf_event *hwc)
 345{
 346	struct sf_raw_sample *sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(hwc);
 347	size_t sample_size;
 348
 349	/* The sample size depends on the sampling function: The basic-sampling
 350	 * function must be always enabled, diagnostic-sampling function is
 351	 * optional.
 352	 */
 353	sample_size = sfr->bsdes;
 354	if (SAMPL_DIAG_MODE(hwc))
 355		sample_size += sfr->dsdes;
 356
 357	return sample_size;
 358}
 359
 360static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
 361{
 362	if (cpuhw->sfb.sdbt)
 363		free_sampling_buffer(&cpuhw->sfb);
 364}
 365
 366static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
 367{
 368	unsigned long n_sdb, freq, factor;
 369	size_t sfr_size, sample_size;
 370	struct sf_raw_sample *sfr;
 371
 372	/* Allocate raw sample buffer
 373	 *
 374	 *    The raw sample buffer is used to temporarily store sampling data
 375	 *    entries for perf raw sample processing.  The buffer size mainly
 376	 *    depends on the size of diagnostic-sampling data entries which is
 377	 *    machine-specific.  The exact size calculation includes:
 378	 *	1. The first 4 bytes of diagnostic-sampling data entries are
 379	 *	   already reflected in the sf_raw_sample structure.  Subtract
 380	 *	   these bytes.
 381	 *	2. The perf raw sample data must be 8-byte aligned (u64) and
 382	 *	   perf's internal data size must be considered too.  So add
 383	 *	   an additional u32 for correct alignment and subtract before
 384	 *	   allocating the buffer.
 385	 *	3. Store the raw sample buffer pointer in the perf event
 386	 *	   hardware structure.
 387	 */
 388	sfr_size = ALIGN((sizeof(*sfr) - sizeof(sfr->diag) + cpuhw->qsi.dsdes) +
 389			 sizeof(u32), sizeof(u64));
 390	sfr_size -= sizeof(u32);
 391	sfr = kzalloc(sfr_size, GFP_KERNEL);
 392	if (!sfr)
 393		return -ENOMEM;
 394	sfr->size = sfr_size;
 395	sfr->bsdes = cpuhw->qsi.bsdes;
 396	sfr->dsdes = cpuhw->qsi.dsdes;
 397	RAWSAMPLE_REG(hwc) = (unsigned long) sfr;
 398
 399	/* Calculate sampling buffers using 4K pages
 400	 *
 401	 *    1. Determine the sample data size which depends on the used
 402	 *	 sampling functions, for example, basic-sampling or
 403	 *	 basic-sampling with diagnostic-sampling.
 404	 *
 405	 *    2. Use the sampling frequency as input.  The sampling buffer is
 406	 *	 designed for almost one second.  This can be adjusted through
 407	 *	 the "factor" variable.
 408	 *	 In any case, alloc_sampling_buffer() sets the Alert Request
 409	 *	 Control indicator to trigger a measurement-alert to harvest
 410	 *	 sample-data-blocks (sdb).
 411	 *
 412	 *    3. Compute the number of sample-data-blocks and ensure a minimum
 413	 *	 of CPUM_SF_MIN_SDB.  Also ensure the upper limit does not
 414	 *	 exceed a "calculated" maximum.  The symbolic maximum is
 415	 *	 designed for basic-sampling only and needs to be increased if
 416	 *	 diagnostic-sampling is active.
 417	 *	 See also the remarks for these symbolic constants.
 418	 *
 419	 *    4. Compute the number of sample-data-block-tables (SDBT) and
 420	 *	 ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
 421	 *	 to 511 SDBs).
 422	 */
 423	sample_size = event_sample_size(hwc);
 424	freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
 425	factor = 1;
 426	n_sdb = DIV_ROUND_UP(freq, factor * ((PAGE_SIZE-64) / sample_size));
 427	if (n_sdb < CPUM_SF_MIN_SDB)
 428		n_sdb = CPUM_SF_MIN_SDB;
 429
 430	/* If there is already a sampling buffer allocated, it is very likely
 431	 * that the sampling facility is enabled too.  If the event to be
 432	 * initialized requires a greater sampling buffer, the allocation must
 433	 * be postponed.  Changing the sampling buffer requires the sampling
 434	 * facility to be in the disabled state.  So, account the number of
 435	 * required SDBs and let cpumsf_pmu_enable() resize the buffer just
 436	 * before the event is started.
 437	 */
 438	sfb_init_allocs(n_sdb, hwc);
 439	if (sf_buffer_available(cpuhw))
 440		return 0;
 441
 442	debug_sprintf_event(sfdbg, 3,
 443			    "allocate_buffers: rate=%lu f=%lu sdb=%lu/%lu"
 444			    " sample_size=%lu cpuhw=%p\n",
 445			    SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc),
 446			    sample_size, cpuhw);
 447
 448	return alloc_sampling_buffer(&cpuhw->sfb,
 449				     sfb_pending_allocs(&cpuhw->sfb, hwc));
 450}
 451
 452static unsigned long min_percent(unsigned int percent, unsigned long base,
 453				 unsigned long min)
 454{
 455	return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
 456}
 457
 458static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
 459{
 460	/* Use a percentage-based approach to extend the sampling facility
 461	 * buffer.  Accept up to 5% sample data loss.
 462	 * Vary the extents between 1% to 5% of the current number of
 463	 * sample-data-blocks.
 464	 */
 465	if (ratio <= 5)
 466		return 0;
 467	if (ratio <= 25)
 468		return min_percent(1, base, 1);
 469	if (ratio <= 50)
 470		return min_percent(1, base, 1);
 471	if (ratio <= 75)
 472		return min_percent(2, base, 2);
 473	if (ratio <= 100)
 474		return min_percent(3, base, 3);
 475	if (ratio <= 250)
 476		return min_percent(4, base, 4);
 477
 478	return min_percent(5, base, 8);
 479}
 480
 481static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
 482				  struct hw_perf_event *hwc)
 483{
 484	unsigned long ratio, num;
 485
 486	if (!OVERFLOW_REG(hwc))
 487		return;
 488
 489	/* The sample_overflow contains the average number of sample data
 490	 * that has been lost because sample-data-blocks were full.
 491	 *
 492	 * Calculate the total number of sample data entries that has been
 493	 * discarded.  Then calculate the ratio of lost samples to total samples
 494	 * per second in percent.
 495	 */
 496	ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
 497			     sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
 498
 499	/* Compute number of sample-data-blocks */
 500	num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
 501	if (num)
 502		sfb_account_allocs(num, hwc);
 503
 504	debug_sprintf_event(sfdbg, 5, "sfb: overflow: overflow=%llu ratio=%lu"
 505			    " num=%lu\n", OVERFLOW_REG(hwc), ratio, num);
 506	OVERFLOW_REG(hwc) = 0;
 507}
 508
 509/* extend_sampling_buffer() - Extend sampling buffer
 510 * @sfb:	Sampling buffer structure (for local CPU)
 511 * @hwc:	Perf event hardware structure
 512 *
 513 * Use this function to extend the sampling buffer based on the overflow counter
 514 * and postponed allocation extents stored in the specified Perf event hardware.
 515 *
 516 * Important: This function disables the sampling facility in order to safely
 517 *	      change the sampling buffer structure.  Do not call this function
 518 *	      when the PMU is active.
 519 */
 520static void extend_sampling_buffer(struct sf_buffer *sfb,
 521				   struct hw_perf_event *hwc)
 522{
 523	unsigned long num, num_old;
 524	int rc;
 525
 526	num = sfb_pending_allocs(sfb, hwc);
 527	if (!num)
 528		return;
 529	num_old = sfb->num_sdb;
 530
 531	/* Disable the sampling facility to reset any states and also
 532	 * clear pending measurement alerts.
 533	 */
 534	sf_disable();
 535
 536	/* Extend the sampling buffer.
 537	 * This memory allocation typically happens in an atomic context when
 538	 * called by perf.  Because this is a reallocation, it is fine if the
 539	 * new SDB-request cannot be satisfied immediately.
 540	 */
 541	rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
 542	if (rc)
 543		debug_sprintf_event(sfdbg, 5, "sfb: extend: realloc "
 544				    "failed with rc=%i\n", rc);
 545
 546	if (sfb_has_pending_allocs(sfb, hwc))
 547		debug_sprintf_event(sfdbg, 5, "sfb: extend: "
 548				    "req=%lu alloc=%lu remaining=%lu\n",
 549				    num, sfb->num_sdb - num_old,
 550				    sfb_pending_allocs(sfb, hwc));
 551}
 552
 553
 554/* Number of perf events counting hardware events */
 555static atomic_t num_events;
 556/* Used to avoid races in calling reserve/release_cpumf_hardware */
 557static DEFINE_MUTEX(pmc_reserve_mutex);
 558
 559#define PMC_INIT      0
 560#define PMC_RELEASE   1
 561#define PMC_FAILURE   2
 562static void setup_pmc_cpu(void *flags)
 563{
 564	int err;
 565	struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf);
 566
 567	err = 0;
 568	switch (*((int *) flags)) {
 569	case PMC_INIT:
 570		memset(cpusf, 0, sizeof(*cpusf));
 571		err = qsi(&cpusf->qsi);
 572		if (err)
 573			break;
 574		cpusf->flags |= PMU_F_RESERVED;
 575		err = sf_disable();
 576		if (err)
 577			pr_err("Switching off the sampling facility failed "
 578			       "with rc=%i\n", err);
 579		debug_sprintf_event(sfdbg, 5,
 580				    "setup_pmc_cpu: initialized: cpuhw=%p\n", cpusf);
 581		break;
 582	case PMC_RELEASE:
 583		cpusf->flags &= ~PMU_F_RESERVED;
 584		err = sf_disable();
 585		if (err) {
 586			pr_err("Switching off the sampling facility failed "
 587			       "with rc=%i\n", err);
 588		} else
 589			deallocate_buffers(cpusf);
 590		debug_sprintf_event(sfdbg, 5,
 591				    "setup_pmc_cpu: released: cpuhw=%p\n", cpusf);
 592		break;
 593	}
 594	if (err)
 595		*((int *) flags) |= PMC_FAILURE;
 596}
 597
 598static void release_pmc_hardware(void)
 599{
 600	int flags = PMC_RELEASE;
 601
 602	irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
 603	on_each_cpu(setup_pmc_cpu, &flags, 1);
 604	perf_release_sampling();
 605}
 606
 607static int reserve_pmc_hardware(void)
 608{
 609	int flags = PMC_INIT;
 610	int err;
 611
 612	err = perf_reserve_sampling();
 613	if (err)
 614		return err;
 615	on_each_cpu(setup_pmc_cpu, &flags, 1);
 616	if (flags & PMC_FAILURE) {
 617		release_pmc_hardware();
 618		return -ENODEV;
 619	}
 620	irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
 621
 622	return 0;
 623}
 624
 625static void hw_perf_event_destroy(struct perf_event *event)
 626{
 627	/* Free raw sample buffer */
 628	if (RAWSAMPLE_REG(&event->hw))
 629		kfree((void *) RAWSAMPLE_REG(&event->hw));
 630
 631	/* Release PMC if this is the last perf event */
 632	if (!atomic_add_unless(&num_events, -1, 1)) {
 633		mutex_lock(&pmc_reserve_mutex);
 634		if (atomic_dec_return(&num_events) == 0)
 635			release_pmc_hardware();
 636		mutex_unlock(&pmc_reserve_mutex);
 637	}
 638}
 639
 640static void hw_init_period(struct hw_perf_event *hwc, u64 period)
 641{
 642	hwc->sample_period = period;
 643	hwc->last_period = hwc->sample_period;
 644	local64_set(&hwc->period_left, hwc->sample_period);
 645}
 646
 647static void hw_reset_registers(struct hw_perf_event *hwc,
 648			       unsigned long *sdbt_origin)
 649{
 650	struct sf_raw_sample *sfr;
 651
 652	/* (Re)set to first sample-data-block-table */
 653	TEAR_REG(hwc) = (unsigned long) sdbt_origin;
 654
 655	/* (Re)set raw sampling buffer register */
 656	sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(hwc);
 657	memset(&sfr->basic, 0, sizeof(sfr->basic));
 658	memset(&sfr->diag, 0, sfr->dsdes);
 659}
 660
 661static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
 662				   unsigned long rate)
 663{
 664	return clamp_t(unsigned long, rate,
 665		       si->min_sampl_rate, si->max_sampl_rate);
 666}
 667
 668static int __hw_perf_event_init(struct perf_event *event)
 669{
 670	struct cpu_hw_sf *cpuhw;
 671	struct hws_qsi_info_block si;
 672	struct perf_event_attr *attr = &event->attr;
 673	struct hw_perf_event *hwc = &event->hw;
 674	unsigned long rate;
 675	int cpu, err;
 676
 677	/* Reserve CPU-measurement sampling facility */
 678	err = 0;
 679	if (!atomic_inc_not_zero(&num_events)) {
 680		mutex_lock(&pmc_reserve_mutex);
 681		if (atomic_read(&num_events) == 0 && reserve_pmc_hardware())
 682			err = -EBUSY;
 683		else
 684			atomic_inc(&num_events);
 685		mutex_unlock(&pmc_reserve_mutex);
 686	}
 687	event->destroy = hw_perf_event_destroy;
 688
 689	if (err)
 690		goto out;
 691
 692	/* Access per-CPU sampling information (query sampling info) */
 693	/*
 694	 * The event->cpu value can be -1 to count on every CPU, for example,
 695	 * when attaching to a task.  If this is specified, use the query
 696	 * sampling info from the current CPU, otherwise use event->cpu to
 697	 * retrieve the per-CPU information.
 698	 * Later, cpuhw indicates whether to allocate sampling buffers for a
 699	 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
 700	 */
 701	memset(&si, 0, sizeof(si));
 702	cpuhw = NULL;
 703	if (event->cpu == -1)
 704		qsi(&si);
 705	else {
 706		/* Event is pinned to a particular CPU, retrieve the per-CPU
 707		 * sampling structure for accessing the CPU-specific QSI.
 708		 */
 709		cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
 710		si = cpuhw->qsi;
 711	}
 712
 713	/* Check sampling facility authorization and, if not authorized,
 714	 * fall back to other PMUs.  It is safe to check any CPU because
 715	 * the authorization is identical for all configured CPUs.
 716	 */
 717	if (!si.as) {
 718		err = -ENOENT;
 719		goto out;
 720	}
 721
 722	/* Always enable basic sampling */
 723	SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
 724
 725	/* Check if diagnostic sampling is requested.  Deny if the required
 726	 * sampling authorization is missing.
 727	 */
 728	if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
 729		if (!si.ad) {
 730			err = -EPERM;
 731			goto out;
 732		}
 733		SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
 734	}
 735
 736	/* Check and set other sampling flags */
 737	if (attr->config1 & PERF_CPUM_SF_FULL_BLOCKS)
 738		SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FULL_BLOCKS;
 739
 740	/* The sampling information (si) contains information about the
 741	 * min/max sampling intervals and the CPU speed.  So calculate the
 742	 * correct sampling interval and avoid the whole period adjust
 743	 * feedback loop.
 744	 */
 745	rate = 0;
 746	if (attr->freq) {
 747		rate = freq_to_sample_rate(&si, attr->sample_freq);
 748		rate = hw_limit_rate(&si, rate);
 749		attr->freq = 0;
 750		attr->sample_period = rate;
 751	} else {
 752		/* The min/max sampling rates specifies the valid range
 753		 * of sample periods.  If the specified sample period is
 754		 * out of range, limit the period to the range boundary.
 755		 */
 756		rate = hw_limit_rate(&si, hwc->sample_period);
 757
 758		/* The perf core maintains a maximum sample rate that is
 759		 * configurable through the sysctl interface.  Ensure the
 760		 * sampling rate does not exceed this value.  This also helps
 761		 * to avoid throttling when pushing samples with
 762		 * perf_event_overflow().
 763		 */
 764		if (sample_rate_to_freq(&si, rate) >
 765		      sysctl_perf_event_sample_rate) {
 766			err = -EINVAL;
 767			debug_sprintf_event(sfdbg, 1, "Sampling rate exceeds maximum perf sample rate\n");
 768			goto out;
 769		}
 770	}
 771	SAMPL_RATE(hwc) = rate;
 772	hw_init_period(hwc, SAMPL_RATE(hwc));
 773
 774	/* Initialize sample data overflow accounting */
 775	hwc->extra_reg.reg = REG_OVERFLOW;
 776	OVERFLOW_REG(hwc) = 0;
 777
 778	/* Allocate the per-CPU sampling buffer using the CPU information
 779	 * from the event.  If the event is not pinned to a particular
 780	 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
 781	 * buffers for each online CPU.
 782	 */
 783	if (cpuhw)
 784		/* Event is pinned to a particular CPU */
 785		err = allocate_buffers(cpuhw, hwc);
 786	else {
 787		/* Event is not pinned, allocate sampling buffer on
 788		 * each online CPU
 789		 */
 790		for_each_online_cpu(cpu) {
 791			cpuhw = &per_cpu(cpu_hw_sf, cpu);
 792			err = allocate_buffers(cpuhw, hwc);
 793			if (err)
 794				break;
 795		}
 796	}
 797out:
 798	return err;
 799}
 800
 801static int cpumsf_pmu_event_init(struct perf_event *event)
 802{
 803	int err;
 804
 805	/* No support for taken branch sampling */
 806	if (has_branch_stack(event))
 807		return -EOPNOTSUPP;
 808
 809	switch (event->attr.type) {
 810	case PERF_TYPE_RAW:
 811		if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
 812		    (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
 813			return -ENOENT;
 814		break;
 815	case PERF_TYPE_HARDWARE:
 816		/* Support sampling of CPU cycles in addition to the
 817		 * counter facility.  However, the counter facility
 818		 * is more precise and, hence, restrict this PMU to
 819		 * sampling events only.
 820		 */
 821		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
 822			return -ENOENT;
 823		if (!is_sampling_event(event))
 824			return -ENOENT;
 825		break;
 826	default:
 827		return -ENOENT;
 828	}
 829
 830	/* Check online status of the CPU to which the event is pinned */
 831	if (event->cpu >= nr_cpumask_bits ||
 832	    (event->cpu >= 0 && !cpu_online(event->cpu)))
 833		return -ENODEV;
 834
 835	/* Force reset of idle/hv excludes regardless of what the
 836	 * user requested.
 837	 */
 838	if (event->attr.exclude_hv)
 839		event->attr.exclude_hv = 0;
 840	if (event->attr.exclude_idle)
 841		event->attr.exclude_idle = 0;
 842
 843	err = __hw_perf_event_init(event);
 844	if (unlikely(err))
 845		if (event->destroy)
 846			event->destroy(event);
 847	return err;
 848}
 849
 850static void cpumsf_pmu_enable(struct pmu *pmu)
 851{
 852	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
 853	struct hw_perf_event *hwc;
 854	int err;
 855
 856	if (cpuhw->flags & PMU_F_ENABLED)
 857		return;
 858
 859	if (cpuhw->flags & PMU_F_ERR_MASK)
 860		return;
 861
 862	/* Check whether to extent the sampling buffer.
 863	 *
 864	 * Two conditions trigger an increase of the sampling buffer for a
 865	 * perf event:
 866	 *    1. Postponed buffer allocations from the event initialization.
 867	 *    2. Sampling overflows that contribute to pending allocations.
 868	 *
 869	 * Note that the extend_sampling_buffer() function disables the sampling
 870	 * facility, but it can be fully re-enabled using sampling controls that
 871	 * have been saved in cpumsf_pmu_disable().
 872	 */
 873	if (cpuhw->event) {
 874		hwc = &cpuhw->event->hw;
 875		/* Account number of overflow-designated buffer extents */
 876		sfb_account_overflows(cpuhw, hwc);
 877		if (sfb_has_pending_allocs(&cpuhw->sfb, hwc))
 878			extend_sampling_buffer(&cpuhw->sfb, hwc);
 879	}
 880
 881	/* (Re)enable the PMU and sampling facility */
 882	cpuhw->flags |= PMU_F_ENABLED;
 883	barrier();
 884
 885	err = lsctl(&cpuhw->lsctl);
 886	if (err) {
 887		cpuhw->flags &= ~PMU_F_ENABLED;
 888		pr_err("Loading sampling controls failed: op=%i err=%i\n",
 889			1, err);
 890		return;
 891	}
 892
 893	debug_sprintf_event(sfdbg, 6, "pmu_enable: es=%i cs=%i ed=%i cd=%i "
 894			    "tear=%p dear=%p\n", cpuhw->lsctl.es, cpuhw->lsctl.cs,
 895			    cpuhw->lsctl.ed, cpuhw->lsctl.cd,
 896			    (void *) cpuhw->lsctl.tear, (void *) cpuhw->lsctl.dear);
 897}
 898
 899static void cpumsf_pmu_disable(struct pmu *pmu)
 900{
 901	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
 902	struct hws_lsctl_request_block inactive;
 903	struct hws_qsi_info_block si;
 904	int err;
 905
 906	if (!(cpuhw->flags & PMU_F_ENABLED))
 907		return;
 908
 909	if (cpuhw->flags & PMU_F_ERR_MASK)
 910		return;
 911
 912	/* Switch off sampling activation control */
 913	inactive = cpuhw->lsctl;
 914	inactive.cs = 0;
 915	inactive.cd = 0;
 916
 917	err = lsctl(&inactive);
 918	if (err) {
 919		pr_err("Loading sampling controls failed: op=%i err=%i\n",
 920			2, err);
 921		return;
 922	}
 923
 924	/* Save state of TEAR and DEAR register contents */
 925	if (!qsi(&si)) {
 926		/* TEAR/DEAR values are valid only if the sampling facility is
 927		 * enabled.  Note that cpumsf_pmu_disable() might be called even
 928		 * for a disabled sampling facility because cpumsf_pmu_enable()
 929		 * controls the enable/disable state.
 930		 */
 931		if (si.es) {
 932			cpuhw->lsctl.tear = si.tear;
 933			cpuhw->lsctl.dear = si.dear;
 934		}
 935	} else
 936		debug_sprintf_event(sfdbg, 3, "cpumsf_pmu_disable: "
 937				    "qsi() failed with err=%i\n", err);
 938
 939	cpuhw->flags &= ~PMU_F_ENABLED;
 940}
 941
 942/* perf_exclude_event() - Filter event
 943 * @event:	The perf event
 944 * @regs:	pt_regs structure
 945 * @sde_regs:	Sample-data-entry (sde) regs structure
 946 *
 947 * Filter perf events according to their exclude specification.
 948 *
 949 * Return non-zero if the event shall be excluded.
 950 */
 951static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
 952			      struct perf_sf_sde_regs *sde_regs)
 953{
 954	if (event->attr.exclude_user && user_mode(regs))
 955		return 1;
 956	if (event->attr.exclude_kernel && !user_mode(regs))
 957		return 1;
 958	if (event->attr.exclude_guest && sde_regs->in_guest)
 959		return 1;
 960	if (event->attr.exclude_host && !sde_regs->in_guest)
 961		return 1;
 962	return 0;
 963}
 964
 965/* perf_push_sample() - Push samples to perf
 966 * @event:	The perf event
 967 * @sample:	Hardware sample data
 968 *
 969 * Use the hardware sample data to create perf event sample.  The sample
 970 * is the pushed to the event subsystem and the function checks for
 971 * possible event overflows.  If an event overflow occurs, the PMU is
 972 * stopped.
 973 *
 974 * Return non-zero if an event overflow occurred.
 975 */
 976static int perf_push_sample(struct perf_event *event, struct sf_raw_sample *sfr)
 977{
 978	int overflow;
 979	struct pt_regs regs;
 980	struct perf_sf_sde_regs *sde_regs;
 981	struct perf_sample_data data;
 982	struct perf_raw_record raw;
 983
 984	/* Setup perf sample */
 985	perf_sample_data_init(&data, 0, event->hw.last_period);
 986	raw.size = sfr->size;
 987	raw.data = sfr;
 988	data.raw = &raw;
 989
 990	/* Setup pt_regs to look like an CPU-measurement external interrupt
 991	 * using the Program Request Alert code.  The regs.int_parm_long
 992	 * field which is unused contains additional sample-data-entry related
 993	 * indicators.
 994	 */
 995	memset(&regs, 0, sizeof(regs));
 996	regs.int_code = 0x1407;
 997	regs.int_parm = CPU_MF_INT_SF_PRA;
 998	sde_regs = (struct perf_sf_sde_regs *) &regs.int_parm_long;
 999
1000	regs.psw.addr = sfr->basic.ia;
1001	if (sfr->basic.T)
1002		regs.psw.mask |= PSW_MASK_DAT;
1003	if (sfr->basic.W)
1004		regs.psw.mask |= PSW_MASK_WAIT;
1005	if (sfr->basic.P)
1006		regs.psw.mask |= PSW_MASK_PSTATE;
1007	switch (sfr->basic.AS) {
1008	case 0x0:
1009		regs.psw.mask |= PSW_ASC_PRIMARY;
1010		break;
1011	case 0x1:
1012		regs.psw.mask |= PSW_ASC_ACCREG;
1013		break;
1014	case 0x2:
1015		regs.psw.mask |= PSW_ASC_SECONDARY;
1016		break;
1017	case 0x3:
1018		regs.psw.mask |= PSW_ASC_HOME;
1019		break;
1020	}
1021
1022	/*
1023	 * A non-zero guest program parameter indicates a guest
1024	 * sample.
1025	 * Note that some early samples or samples from guests without
1026	 * lpp usage would be misaccounted to the host. We use the asn
1027	 * value as a heuristic to detect most of these guest samples.
1028	 * If the value differs from the host hpp value, we assume
1029	 * it to be a KVM guest.
1030	 */
1031	if (sfr->basic.gpp || sfr->basic.prim_asn != (u16) sfr->basic.hpp)
1032		sde_regs->in_guest = 1;
1033
1034	overflow = 0;
1035	if (perf_exclude_event(event, &regs, sde_regs))
1036		goto out;
1037	if (perf_event_overflow(event, &data, &regs)) {
1038		overflow = 1;
1039		event->pmu->stop(event, 0);
1040	}
1041	perf_event_update_userpage(event);
1042out:
1043	return overflow;
1044}
1045
1046static void perf_event_count_update(struct perf_event *event, u64 count)
1047{
1048	local64_add(count, &event->count);
1049}
1050
1051static int sample_format_is_valid(struct hws_combined_entry *sample,
1052				   unsigned int flags)
1053{
1054	if (likely(flags & PERF_CPUM_SF_BASIC_MODE))
1055		/* Only basic-sampling data entries with data-entry-format
1056		 * version of 0x0001 can be processed.
1057		 */
1058		if (sample->basic.def != 0x0001)
1059			return 0;
1060	if (flags & PERF_CPUM_SF_DIAG_MODE)
1061		/* The data-entry-format number of diagnostic-sampling data
1062		 * entries can vary.  Because diagnostic data is just passed
1063		 * through, do only a sanity check on the DEF.
1064		 */
1065		if (sample->diag.def < 0x8001)
1066			return 0;
1067	return 1;
1068}
1069
1070static int sample_is_consistent(struct hws_combined_entry *sample,
1071				unsigned long flags)
1072{
1073	/* This check applies only to basic-sampling data entries of potentially
1074	 * combined-sampling data entries.  Invalid entries cannot be processed
1075	 * by the PMU and, thus, do not deliver an associated
1076	 * diagnostic-sampling data entry.
1077	 */
1078	if (unlikely(!(flags & PERF_CPUM_SF_BASIC_MODE)))
1079		return 0;
1080	/*
1081	 * Samples are skipped, if they are invalid or for which the
1082	 * instruction address is not predictable, i.e., the wait-state bit is
1083	 * set.
1084	 */
1085	if (sample->basic.I || sample->basic.W)
1086		return 0;
1087	return 1;
1088}
1089
1090static void reset_sample_slot(struct hws_combined_entry *sample,
1091			      unsigned long flags)
1092{
1093	if (likely(flags & PERF_CPUM_SF_BASIC_MODE))
1094		sample->basic.def = 0;
1095	if (flags & PERF_CPUM_SF_DIAG_MODE)
1096		sample->diag.def = 0;
1097}
1098
1099static void sfr_store_sample(struct sf_raw_sample *sfr,
1100			     struct hws_combined_entry *sample)
1101{
1102	if (likely(sfr->format & PERF_CPUM_SF_BASIC_MODE))
1103		sfr->basic = sample->basic;
1104	if (sfr->format & PERF_CPUM_SF_DIAG_MODE)
1105		memcpy(&sfr->diag, &sample->diag, sfr->dsdes);
1106}
1107
1108static void debug_sample_entry(struct hws_combined_entry *sample,
1109			       struct hws_trailer_entry *te,
1110			       unsigned long flags)
1111{
1112	debug_sprintf_event(sfdbg, 4, "hw_collect_samples: Found unknown "
1113			    "sampling data entry: te->f=%i basic.def=%04x (%p)"
1114			    " diag.def=%04x (%p)\n", te->f,
1115			    sample->basic.def, &sample->basic,
1116			    (flags & PERF_CPUM_SF_DIAG_MODE)
1117					? sample->diag.def : 0xFFFF,
1118			    (flags & PERF_CPUM_SF_DIAG_MODE)
1119					?  &sample->diag : NULL);
1120}
1121
1122/* hw_collect_samples() - Walk through a sample-data-block and collect samples
1123 * @event:	The perf event
1124 * @sdbt:	Sample-data-block table
1125 * @overflow:	Event overflow counter
1126 *
1127 * Walks through a sample-data-block and collects sampling data entries that are
1128 * then pushed to the perf event subsystem.  Depending on the sampling function,
1129 * there can be either basic-sampling or combined-sampling data entries.  A
1130 * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1131 * data entry.	The sampling function is determined by the flags in the perf
1132 * event hardware structure.  The function always works with a combined-sampling
1133 * data entry but ignores the the diagnostic portion if it is not available.
1134 *
1135 * Note that the implementation focuses on basic-sampling data entries and, if
1136 * such an entry is not valid, the entire combined-sampling data entry is
1137 * ignored.
1138 *
1139 * The overflow variables counts the number of samples that has been discarded
1140 * due to a perf event overflow.
1141 */
1142static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1143			       unsigned long long *overflow)
1144{
1145	unsigned long flags = SAMPL_FLAGS(&event->hw);
1146	struct hws_combined_entry *sample;
1147	struct hws_trailer_entry *te;
1148	struct sf_raw_sample *sfr;
1149	size_t sample_size;
1150
1151	/* Prepare and initialize raw sample data */
1152	sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(&event->hw);
1153	sfr->format = flags & PERF_CPUM_SF_MODE_MASK;
1154
1155	sample_size = event_sample_size(&event->hw);
1156	te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1157	sample = (struct hws_combined_entry *) *sdbt;
1158	while ((unsigned long *) sample < (unsigned long *) te) {
1159		/* Check for an empty sample */
1160		if (!sample->basic.def)
1161			break;
1162
1163		/* Update perf event period */
1164		perf_event_count_update(event, SAMPL_RATE(&event->hw));
1165
1166		/* Check sampling data entry */
1167		if (sample_format_is_valid(sample, flags)) {
1168			/* If an event overflow occurred, the PMU is stopped to
1169			 * throttle event delivery.  Remaining sample data is
1170			 * discarded.
1171			 */
1172			if (!*overflow) {
1173				if (sample_is_consistent(sample, flags)) {
1174					/* Deliver sample data to perf */
1175					sfr_store_sample(sfr, sample);
1176					*overflow = perf_push_sample(event, sfr);
1177				}
1178			} else
1179				/* Count discarded samples */
1180				*overflow += 1;
1181		} else {
1182			debug_sample_entry(sample, te, flags);
1183			/* Sample slot is not yet written or other record.
1184			 *
1185			 * This condition can occur if the buffer was reused
1186			 * from a combined basic- and diagnostic-sampling.
1187			 * If only basic-sampling is then active, entries are
1188			 * written into the larger diagnostic entries.
1189			 * This is typically the case for sample-data-blocks
1190			 * that are not full.  Stop processing if the first
1191			 * invalid format was detected.
1192			 */
1193			if (!te->f)
1194				break;
1195		}
1196
1197		/* Reset sample slot and advance to next sample */
1198		reset_sample_slot(sample, flags);
1199		sample += sample_size;
1200	}
1201}
1202
1203/* hw_perf_event_update() - Process sampling buffer
1204 * @event:	The perf event
1205 * @flush_all:	Flag to also flush partially filled sample-data-blocks
1206 *
1207 * Processes the sampling buffer and create perf event samples.
1208 * The sampling buffer position are retrieved and saved in the TEAR_REG
1209 * register of the specified perf event.
1210 *
1211 * Only full sample-data-blocks are processed.	Specify the flash_all flag
1212 * to also walk through partially filled sample-data-blocks.  It is ignored
1213 * if PERF_CPUM_SF_FULL_BLOCKS is set.	The PERF_CPUM_SF_FULL_BLOCKS flag
1214 * enforces the processing of full sample-data-blocks only (trailer entries
1215 * with the block-full-indicator bit set).
1216 */
1217static void hw_perf_event_update(struct perf_event *event, int flush_all)
1218{
1219	struct hw_perf_event *hwc = &event->hw;
1220	struct hws_trailer_entry *te;
1221	unsigned long *sdbt;
1222	unsigned long long event_overflow, sampl_overflow, num_sdb, te_flags;
1223	int done;
1224
1225	if (flush_all && SDB_FULL_BLOCKS(hwc))
1226		flush_all = 0;
1227
1228	sdbt = (unsigned long *) TEAR_REG(hwc);
1229	done = event_overflow = sampl_overflow = num_sdb = 0;
1230	while (!done) {
1231		/* Get the trailer entry of the sample-data-block */
1232		te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1233
1234		/* Leave loop if no more work to do (block full indicator) */
1235		if (!te->f) {
1236			done = 1;
1237			if (!flush_all)
1238				break;
1239		}
1240
1241		/* Check the sample overflow count */
1242		if (te->overflow)
1243			/* Account sample overflows and, if a particular limit
1244			 * is reached, extend the sampling buffer.
1245			 * For details, see sfb_account_overflows().
1246			 */
1247			sampl_overflow += te->overflow;
1248
1249		/* Timestamps are valid for full sample-data-blocks only */
1250		debug_sprintf_event(sfdbg, 6, "hw_perf_event_update: sdbt=%p "
1251				    "overflow=%llu timestamp=0x%llx\n",
1252				    sdbt, te->overflow,
1253				    (te->f) ? trailer_timestamp(te) : 0ULL);
1254
1255		/* Collect all samples from a single sample-data-block and
1256		 * flag if an (perf) event overflow happened.  If so, the PMU
1257		 * is stopped and remaining samples will be discarded.
1258		 */
1259		hw_collect_samples(event, sdbt, &event_overflow);
1260		num_sdb++;
1261
1262		/* Reset trailer (using compare-double-and-swap) */
1263		do {
1264			te_flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK;
1265			te_flags |= SDB_TE_ALERT_REQ_MASK;
1266		} while (!cmpxchg_double(&te->flags, &te->overflow,
1267					 te->flags, te->overflow,
1268					 te_flags, 0ULL));
1269
1270		/* Advance to next sample-data-block */
1271		sdbt++;
1272		if (is_link_entry(sdbt))
1273			sdbt = get_next_sdbt(sdbt);
1274
1275		/* Update event hardware registers */
1276		TEAR_REG(hwc) = (unsigned long) sdbt;
1277
1278		/* Stop processing sample-data if all samples of the current
1279		 * sample-data-block were flushed even if it was not full.
1280		 */
1281		if (flush_all && done)
1282			break;
1283
1284		/* If an event overflow happened, discard samples by
1285		 * processing any remaining sample-data-blocks.
1286		 */
1287		if (event_overflow)
1288			flush_all = 1;
1289	}
1290
1291	/* Account sample overflows in the event hardware structure */
1292	if (sampl_overflow)
1293		OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1294						 sampl_overflow, 1 + num_sdb);
1295	if (sampl_overflow || event_overflow)
1296		debug_sprintf_event(sfdbg, 4, "hw_perf_event_update: "
1297				    "overflow stats: sample=%llu event=%llu\n",
1298				    sampl_overflow, event_overflow);
1299}
1300
1301static void cpumsf_pmu_read(struct perf_event *event)
1302{
1303	/* Nothing to do ... updates are interrupt-driven */
1304}
1305
1306/* Activate sampling control.
1307 * Next call of pmu_enable() starts sampling.
1308 */
1309static void cpumsf_pmu_start(struct perf_event *event, int flags)
1310{
1311	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1312
1313	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1314		return;
1315
1316	if (flags & PERF_EF_RELOAD)
1317		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1318
1319	perf_pmu_disable(event->pmu);
1320	event->hw.state = 0;
1321	cpuhw->lsctl.cs = 1;
1322	if (SAMPL_DIAG_MODE(&event->hw))
1323		cpuhw->lsctl.cd = 1;
1324	perf_pmu_enable(event->pmu);
1325}
1326
1327/* Deactivate sampling control.
1328 * Next call of pmu_enable() stops sampling.
1329 */
1330static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1331{
1332	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1333
1334	if (event->hw.state & PERF_HES_STOPPED)
1335		return;
1336
1337	perf_pmu_disable(event->pmu);
1338	cpuhw->lsctl.cs = 0;
1339	cpuhw->lsctl.cd = 0;
1340	event->hw.state |= PERF_HES_STOPPED;
1341
1342	if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1343		hw_perf_event_update(event, 1);
1344		event->hw.state |= PERF_HES_UPTODATE;
1345	}
1346	perf_pmu_enable(event->pmu);
1347}
1348
1349static int cpumsf_pmu_add(struct perf_event *event, int flags)
1350{
1351	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1352	int err;
1353
1354	if (cpuhw->flags & PMU_F_IN_USE)
1355		return -EAGAIN;
1356
1357	if (!cpuhw->sfb.sdbt)
1358		return -EINVAL;
1359
1360	err = 0;
1361	perf_pmu_disable(event->pmu);
1362
1363	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1364
1365	/* Set up sampling controls.  Always program the sampling register
1366	 * using the SDB-table start.  Reset TEAR_REG event hardware register
1367	 * that is used by hw_perf_event_update() to store the sampling buffer
1368	 * position after samples have been flushed.
1369	 */
1370	cpuhw->lsctl.s = 0;
1371	cpuhw->lsctl.h = 1;
1372	cpuhw->lsctl.tear = (unsigned long) cpuhw->sfb.sdbt;
1373	cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt;
1374	cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1375	hw_reset_registers(&event->hw, cpuhw->sfb.sdbt);
1376
1377	/* Ensure sampling functions are in the disabled state.  If disabled,
1378	 * switch on sampling enable control. */
1379	if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1380		err = -EAGAIN;
1381		goto out;
1382	}
1383	cpuhw->lsctl.es = 1;
1384	if (SAMPL_DIAG_MODE(&event->hw))
1385		cpuhw->lsctl.ed = 1;
1386
1387	/* Set in_use flag and store event */
1388	cpuhw->event = event;
1389	cpuhw->flags |= PMU_F_IN_USE;
1390
1391	if (flags & PERF_EF_START)
1392		cpumsf_pmu_start(event, PERF_EF_RELOAD);
1393out:
1394	perf_event_update_userpage(event);
1395	perf_pmu_enable(event->pmu);
1396	return err;
1397}
1398
1399static void cpumsf_pmu_del(struct perf_event *event, int flags)
1400{
1401	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1402
1403	perf_pmu_disable(event->pmu);
1404	cpumsf_pmu_stop(event, PERF_EF_UPDATE);
1405
1406	cpuhw->lsctl.es = 0;
1407	cpuhw->lsctl.ed = 0;
1408	cpuhw->flags &= ~PMU_F_IN_USE;
1409	cpuhw->event = NULL;
1410
1411	perf_event_update_userpage(event);
1412	perf_pmu_enable(event->pmu);
1413}
1414
1415CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
1416CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
1417
1418static struct attribute *cpumsf_pmu_events_attr[] = {
1419	CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC),
1420	NULL,
1421	NULL,
1422};
1423
1424PMU_FORMAT_ATTR(event, "config:0-63");
1425
1426static struct attribute *cpumsf_pmu_format_attr[] = {
1427	&format_attr_event.attr,
1428	NULL,
1429};
1430
1431static struct attribute_group cpumsf_pmu_events_group = {
1432	.name = "events",
1433	.attrs = cpumsf_pmu_events_attr,
1434};
1435static struct attribute_group cpumsf_pmu_format_group = {
1436	.name = "format",
1437	.attrs = cpumsf_pmu_format_attr,
1438};
1439static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
1440	&cpumsf_pmu_events_group,
1441	&cpumsf_pmu_format_group,
1442	NULL,
1443};
1444
1445static struct pmu cpumf_sampling = {
1446	.pmu_enable   = cpumsf_pmu_enable,
1447	.pmu_disable  = cpumsf_pmu_disable,
1448
1449	.event_init   = cpumsf_pmu_event_init,
1450	.add	      = cpumsf_pmu_add,
1451	.del	      = cpumsf_pmu_del,
1452
1453	.start	      = cpumsf_pmu_start,
1454	.stop	      = cpumsf_pmu_stop,
1455	.read	      = cpumsf_pmu_read,
1456
1457	.attr_groups  = cpumsf_pmu_attr_groups,
1458};
1459
1460static void cpumf_measurement_alert(struct ext_code ext_code,
1461				    unsigned int alert, unsigned long unused)
1462{
1463	struct cpu_hw_sf *cpuhw;
1464
1465	if (!(alert & CPU_MF_INT_SF_MASK))
1466		return;
1467	inc_irq_stat(IRQEXT_CMS);
1468	cpuhw = this_cpu_ptr(&cpu_hw_sf);
1469
1470	/* Measurement alerts are shared and might happen when the PMU
1471	 * is not reserved.  Ignore these alerts in this case. */
1472	if (!(cpuhw->flags & PMU_F_RESERVED))
1473		return;
1474
1475	/* The processing below must take care of multiple alert events that
1476	 * might be indicated concurrently. */
1477
1478	/* Program alert request */
1479	if (alert & CPU_MF_INT_SF_PRA) {
1480		if (cpuhw->flags & PMU_F_IN_USE)
1481			hw_perf_event_update(cpuhw->event, 0);
1482		else
1483			WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
1484	}
1485
1486	/* Report measurement alerts only for non-PRA codes */
1487	if (alert != CPU_MF_INT_SF_PRA)
1488		debug_sprintf_event(sfdbg, 6, "measurement alert: 0x%x\n", alert);
1489
1490	/* Sampling authorization change request */
1491	if (alert & CPU_MF_INT_SF_SACA)
1492		qsi(&cpuhw->qsi);
1493
1494	/* Loss of sample data due to high-priority machine activities */
1495	if (alert & CPU_MF_INT_SF_LSDA) {
1496		pr_err("Sample data was lost\n");
1497		cpuhw->flags |= PMU_F_ERR_LSDA;
1498		sf_disable();
1499	}
1500
1501	/* Invalid sampling buffer entry */
1502	if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
1503		pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
1504		       alert);
1505		cpuhw->flags |= PMU_F_ERR_IBE;
1506		sf_disable();
1507	}
1508}
1509
1510static int cpumf_pmu_notifier(struct notifier_block *self,
1511			      unsigned long action, void *hcpu)
1512{
1513	unsigned int cpu = (long) hcpu;
1514	int flags;
1515
1516	/* Ignore the notification if no events are scheduled on the PMU.
1517	 * This might be racy...
1518	 */
1519	if (!atomic_read(&num_events))
1520		return NOTIFY_OK;
1521
1522	switch (action & ~CPU_TASKS_FROZEN) {
1523	case CPU_ONLINE:
1524	case CPU_DOWN_FAILED:
1525		flags = PMC_INIT;
1526		smp_call_function_single(cpu, setup_pmc_cpu, &flags, 1);
1527		break;
1528	case CPU_DOWN_PREPARE:
1529		flags = PMC_RELEASE;
1530		smp_call_function_single(cpu, setup_pmc_cpu, &flags, 1);
1531		break;
1532	default:
1533		break;
1534	}
1535
1536	return NOTIFY_OK;
1537}
1538
1539static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
1540{
1541	if (!cpum_sf_avail())
1542		return -ENODEV;
1543	return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
1544}
1545
1546static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
1547{
1548	int rc;
1549	unsigned long min, max;
1550
1551	if (!cpum_sf_avail())
1552		return -ENODEV;
1553	if (!val || !strlen(val))
1554		return -EINVAL;
1555
1556	/* Valid parameter values: "min,max" or "max" */
1557	min = CPUM_SF_MIN_SDB;
1558	max = CPUM_SF_MAX_SDB;
1559	if (strchr(val, ','))
1560		rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
1561	else
1562		rc = kstrtoul(val, 10, &max);
1563
1564	if (min < 2 || min >= max || max > get_num_physpages())
1565		rc = -EINVAL;
1566	if (rc)
1567		return rc;
1568
1569	sfb_set_limits(min, max);
1570	pr_info("The sampling buffer limits have changed to: "
1571		"min=%lu max=%lu (diag=x%lu)\n",
1572		CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
1573	return 0;
1574}
1575
1576#define param_check_sfb_size(name, p) __param_check(name, p, void)
1577static const struct kernel_param_ops param_ops_sfb_size = {
1578	.set = param_set_sfb_size,
1579	.get = param_get_sfb_size,
1580};
1581
1582#define RS_INIT_FAILURE_QSI	  0x0001
1583#define RS_INIT_FAILURE_BSDES	  0x0002
1584#define RS_INIT_FAILURE_ALRT	  0x0003
1585#define RS_INIT_FAILURE_PERF	  0x0004
1586static void __init pr_cpumsf_err(unsigned int reason)
1587{
1588	pr_err("Sampling facility support for perf is not available: "
1589	       "reason=%04x\n", reason);
1590}
1591
1592static int __init init_cpum_sampling_pmu(void)
1593{
1594	struct hws_qsi_info_block si;
1595	int err;
1596
1597	if (!cpum_sf_avail())
1598		return -ENODEV;
1599
1600	memset(&si, 0, sizeof(si));
1601	if (qsi(&si)) {
1602		pr_cpumsf_err(RS_INIT_FAILURE_QSI);
1603		return -ENODEV;
1604	}
1605
1606	if (si.bsdes != sizeof(struct hws_basic_entry)) {
1607		pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
1608		return -EINVAL;
1609	}
1610
1611	if (si.ad) {
1612		sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
1613		cpumsf_pmu_events_attr[1] =
1614			CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
1615	}
1616
1617	sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
1618	if (!sfdbg)
1619		pr_err("Registering for s390dbf failed\n");
1620	debug_register_view(sfdbg, &debug_sprintf_view);
1621
1622	err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
1623				    cpumf_measurement_alert);
1624	if (err) {
1625		pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
1626		goto out;
1627	}
1628
1629	err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
1630	if (err) {
1631		pr_cpumsf_err(RS_INIT_FAILURE_PERF);
1632		unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
1633					cpumf_measurement_alert);
1634		goto out;
1635	}
1636	perf_cpu_notifier(cpumf_pmu_notifier);
1637out:
1638	return err;
1639}
1640arch_initcall(init_cpum_sampling_pmu);
1641core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0640);