Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 *  Kernel Probes (KProbes)
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2002, 2006
 19 *
 20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
 21 */
 22
 23#include <linux/kprobes.h>
 24#include <linux/ptrace.h>
 25#include <linux/preempt.h>
 26#include <linux/stop_machine.h>
 27#include <linux/kdebug.h>
 28#include <linux/uaccess.h>
 29#include <asm/cacheflush.h>
 30#include <asm/sections.h>
 31#include <linux/module.h>
 32#include <linux/slab.h>
 33#include <linux/hardirq.h>
 
 
 
 
 34
 35DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 36DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 37
 38struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 39
 40static int __kprobes is_prohibited_opcode(kprobe_opcode_t *insn)
 
 
 41{
 42	switch (insn[0] >> 8) {
 43	case 0x0c:	/* bassm */
 44	case 0x0b:	/* bsm	 */
 45	case 0x83:	/* diag  */
 46	case 0x44:	/* ex	 */
 47	case 0xac:	/* stnsm */
 48	case 0xad:	/* stosm */
 49		return -EINVAL;
 50	}
 51	switch (insn[0]) {
 52	case 0x0101:	/* pr	 */
 53	case 0xb25a:	/* bsa	 */
 54	case 0xb240:	/* bakr  */
 55	case 0xb258:	/* bsg	 */
 56	case 0xb218:	/* pc	 */
 57	case 0xb228:	/* pt	 */
 58	case 0xb98d:	/* epsw	 */
 59		return -EINVAL;
 60	}
 61	return 0;
 62}
 63
 64static int __kprobes get_fixup_type(kprobe_opcode_t *insn)
 65{
 66	/* default fixup method */
 67	int fixup = FIXUP_PSW_NORMAL;
 68
 69	switch (insn[0] >> 8) {
 70	case 0x05:	/* balr	*/
 71	case 0x0d:	/* basr */
 72		fixup = FIXUP_RETURN_REGISTER;
 73		/* if r2 = 0, no branch will be taken */
 74		if ((insn[0] & 0x0f) == 0)
 75			fixup |= FIXUP_BRANCH_NOT_TAKEN;
 76		break;
 77	case 0x06:	/* bctr	*/
 78	case 0x07:	/* bcr	*/
 79		fixup = FIXUP_BRANCH_NOT_TAKEN;
 80		break;
 81	case 0x45:	/* bal	*/
 82	case 0x4d:	/* bas	*/
 83		fixup = FIXUP_RETURN_REGISTER;
 84		break;
 85	case 0x47:	/* bc	*/
 86	case 0x46:	/* bct	*/
 87	case 0x86:	/* bxh	*/
 88	case 0x87:	/* bxle	*/
 89		fixup = FIXUP_BRANCH_NOT_TAKEN;
 90		break;
 91	case 0x82:	/* lpsw	*/
 92		fixup = FIXUP_NOT_REQUIRED;
 93		break;
 94	case 0xb2:	/* lpswe */
 95		if ((insn[0] & 0xff) == 0xb2)
 96			fixup = FIXUP_NOT_REQUIRED;
 97		break;
 98	case 0xa7:	/* bras	*/
 99		if ((insn[0] & 0x0f) == 0x05)
100			fixup |= FIXUP_RETURN_REGISTER;
101		break;
102	case 0xc0:
103		if ((insn[0] & 0x0f) == 0x00 ||	/* larl  */
104		    (insn[0] & 0x0f) == 0x05)	/* brasl */
105		fixup |= FIXUP_RETURN_REGISTER;
106		break;
107	case 0xeb:
108		if ((insn[2] & 0xff) == 0x44 ||	/* bxhg  */
109		    (insn[2] & 0xff) == 0x45)	/* bxleg */
110			fixup = FIXUP_BRANCH_NOT_TAKEN;
111		break;
112	case 0xe3:	/* bctg	*/
113		if ((insn[2] & 0xff) == 0x46)
114			fixup = FIXUP_BRANCH_NOT_TAKEN;
115		break;
116	}
117	return fixup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118}
 
119
120int __kprobes arch_prepare_kprobe(struct kprobe *p)
121{
122	if ((unsigned long) p->addr & 0x01)
123		return -EINVAL;
124
125	/* Make sure the probe isn't going on a difficult instruction */
126	if (is_prohibited_opcode(p->addr))
127		return -EINVAL;
 
 
 
 
 
 
128
129	p->opcode = *p->addr;
130	memcpy(p->ainsn.insn, p->addr, ((p->opcode >> 14) + 3) & -2);
131
132	return 0;
133}
134
135struct ins_replace_args {
136	kprobe_opcode_t *ptr;
137	kprobe_opcode_t opcode;
138};
139
140static int __kprobes swap_instruction(void *aref)
141{
142	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
143	unsigned long status = kcb->kprobe_status;
144	struct ins_replace_args *args = aref;
145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146	kcb->kprobe_status = KPROBE_SWAP_INST;
147	probe_kernel_write(args->ptr, &args->opcode, sizeof(args->opcode));
148	kcb->kprobe_status = status;
149	return 0;
150}
 
151
152void __kprobes arch_arm_kprobe(struct kprobe *p)
153{
154	struct ins_replace_args args;
155
156	args.ptr = p->addr;
157	args.opcode = BREAKPOINT_INSTRUCTION;
158	stop_machine(swap_instruction, &args, NULL);
159}
 
160
161void __kprobes arch_disarm_kprobe(struct kprobe *p)
162{
163	struct ins_replace_args args;
164
165	args.ptr = p->addr;
166	args.opcode = p->opcode;
167	stop_machine(swap_instruction, &args, NULL);
168}
 
169
170void __kprobes arch_remove_kprobe(struct kprobe *p)
171{
 
172}
 
173
174static void __kprobes enable_singlestep(struct kprobe_ctlblk *kcb,
175					struct pt_regs *regs,
176					unsigned long ip)
177{
178	struct per_regs per_kprobe;
179
180	/* Set up the PER control registers %cr9-%cr11 */
181	per_kprobe.control = PER_EVENT_IFETCH;
182	per_kprobe.start = ip;
183	per_kprobe.end = ip;
184
185	/* Save control regs and psw mask */
186	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
187	kcb->kprobe_saved_imask = regs->psw.mask &
188		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
189
190	/* Set PER control regs, turns on single step for the given address */
191	__ctl_load(per_kprobe, 9, 11);
192	regs->psw.mask |= PSW_MASK_PER;
193	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
194	regs->psw.addr = ip | PSW_ADDR_AMODE;
195}
 
196
197static void __kprobes disable_singlestep(struct kprobe_ctlblk *kcb,
198					 struct pt_regs *regs,
199					 unsigned long ip)
200{
201	/* Restore control regs and psw mask, set new psw address */
202	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
203	regs->psw.mask &= ~PSW_MASK_PER;
204	regs->psw.mask |= kcb->kprobe_saved_imask;
205	regs->psw.addr = ip | PSW_ADDR_AMODE;
206}
 
207
208/*
209 * Activate a kprobe by storing its pointer to current_kprobe. The
210 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
211 * two kprobes can be active, see KPROBE_REENTER.
212 */
213static void __kprobes push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
214{
215	kcb->prev_kprobe.kp = __get_cpu_var(current_kprobe);
216	kcb->prev_kprobe.status = kcb->kprobe_status;
217	__get_cpu_var(current_kprobe) = p;
218}
 
219
220/*
221 * Deactivate a kprobe by backing up to the previous state. If the
222 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
223 * for any other state prev_kprobe.kp will be NULL.
224 */
225static void __kprobes pop_kprobe(struct kprobe_ctlblk *kcb)
226{
227	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
228	kcb->kprobe_status = kcb->prev_kprobe.status;
229}
 
230
231void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
232					struct pt_regs *regs)
233{
234	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
235
236	/* Replace the return addr with trampoline addr */
237	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
238}
 
239
240static void __kprobes kprobe_reenter_check(struct kprobe_ctlblk *kcb,
241					   struct kprobe *p)
242{
243	switch (kcb->kprobe_status) {
244	case KPROBE_HIT_SSDONE:
245	case KPROBE_HIT_ACTIVE:
246		kprobes_inc_nmissed_count(p);
247		break;
248	case KPROBE_HIT_SS:
249	case KPROBE_REENTER:
250	default:
251		/*
252		 * A kprobe on the code path to single step an instruction
253		 * is a BUG. The code path resides in the .kprobes.text
254		 * section and is executed with interrupts disabled.
255		 */
256		printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
257		dump_kprobe(p);
258		BUG();
259	}
260}
 
261
262static int __kprobes kprobe_handler(struct pt_regs *regs)
263{
264	struct kprobe_ctlblk *kcb;
265	struct kprobe *p;
266
267	/*
268	 * We want to disable preemption for the entire duration of kprobe
269	 * processing. That includes the calls to the pre/post handlers
270	 * and single stepping the kprobe instruction.
271	 */
272	preempt_disable();
273	kcb = get_kprobe_ctlblk();
274	p = get_kprobe((void *)((regs->psw.addr & PSW_ADDR_INSN) - 2));
275
276	if (p) {
277		if (kprobe_running()) {
278			/*
279			 * We have hit a kprobe while another is still
280			 * active. This can happen in the pre and post
281			 * handler. Single step the instruction of the
282			 * new probe but do not call any handler function
283			 * of this secondary kprobe.
284			 * push_kprobe and pop_kprobe saves and restores
285			 * the currently active kprobe.
286			 */
287			kprobe_reenter_check(kcb, p);
288			push_kprobe(kcb, p);
289			kcb->kprobe_status = KPROBE_REENTER;
290		} else {
291			/*
292			 * If we have no pre-handler or it returned 0, we
293			 * continue with single stepping. If we have a
294			 * pre-handler and it returned non-zero, it prepped
295			 * for calling the break_handler below on re-entry
296			 * for jprobe processing, so get out doing nothing
297			 * more here.
298			 */
299			push_kprobe(kcb, p);
300			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
301			if (p->pre_handler && p->pre_handler(p, regs))
302				return 1;
303			kcb->kprobe_status = KPROBE_HIT_SS;
304		}
305		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
306		return 1;
307	} else if (kprobe_running()) {
308		p = __get_cpu_var(current_kprobe);
309		if (p->break_handler && p->break_handler(p, regs)) {
310			/*
311			 * Continuation after the jprobe completed and
312			 * caused the jprobe_return trap. The jprobe
313			 * break_handler "returns" to the original
314			 * function that still has the kprobe breakpoint
315			 * installed. We continue with single stepping.
316			 */
317			kcb->kprobe_status = KPROBE_HIT_SS;
318			enable_singlestep(kcb, regs,
319					  (unsigned long) p->ainsn.insn);
320			return 1;
321		} /* else:
322		   * No kprobe at this address and the current kprobe
323		   * has no break handler (no jprobe!). The kernel just
324		   * exploded, let the standard trap handler pick up the
325		   * pieces.
326		   */
327	} /* else:
328	   * No kprobe at this address and no active kprobe. The trap has
329	   * not been caused by a kprobe breakpoint. The race of breakpoint
330	   * vs. kprobe remove does not exist because on s390 as we use
331	   * stop_machine to arm/disarm the breakpoints.
332	   */
333	preempt_enable_no_resched();
334	return 0;
335}
 
336
337/*
338 * Function return probe trampoline:
339 *	- init_kprobes() establishes a probepoint here
340 *	- When the probed function returns, this probe
341 *		causes the handlers to fire
342 */
343static void __used kretprobe_trampoline_holder(void)
344{
345	asm volatile(".global kretprobe_trampoline\n"
346		     "kretprobe_trampoline: bcr 0,0\n");
347}
348
349/*
350 * Called when the probe at kretprobe trampoline is hit
351 */
352static int __kprobes trampoline_probe_handler(struct kprobe *p,
353					      struct pt_regs *regs)
354{
355	struct kretprobe_instance *ri;
356	struct hlist_head *head, empty_rp;
357	struct hlist_node *node, *tmp;
358	unsigned long flags, orig_ret_address;
359	unsigned long trampoline_address;
360	kprobe_opcode_t *correct_ret_addr;
361
362	INIT_HLIST_HEAD(&empty_rp);
363	kretprobe_hash_lock(current, &head, &flags);
364
365	/*
366	 * It is possible to have multiple instances associated with a given
367	 * task either because an multiple functions in the call path
368	 * have a return probe installed on them, and/or more than one return
369	 * return probe was registered for a target function.
370	 *
371	 * We can handle this because:
372	 *     - instances are always inserted at the head of the list
373	 *     - when multiple return probes are registered for the same
374	 *	 function, the first instance's ret_addr will point to the
375	 *	 real return address, and all the rest will point to
376	 *	 kretprobe_trampoline
377	 */
378	ri = NULL;
379	orig_ret_address = 0;
380	correct_ret_addr = NULL;
381	trampoline_address = (unsigned long) &kretprobe_trampoline;
382	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
383		if (ri->task != current)
384			/* another task is sharing our hash bucket */
385			continue;
386
387		orig_ret_address = (unsigned long) ri->ret_addr;
388
389		if (orig_ret_address != trampoline_address)
390			/*
391			 * This is the real return address. Any other
392			 * instances associated with this task are for
393			 * other calls deeper on the call stack
394			 */
395			break;
396	}
397
398	kretprobe_assert(ri, orig_ret_address, trampoline_address);
399
400	correct_ret_addr = ri->ret_addr;
401	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
402		if (ri->task != current)
403			/* another task is sharing our hash bucket */
404			continue;
405
406		orig_ret_address = (unsigned long) ri->ret_addr;
407
408		if (ri->rp && ri->rp->handler) {
409			ri->ret_addr = correct_ret_addr;
410			ri->rp->handler(ri, regs);
411		}
412
413		recycle_rp_inst(ri, &empty_rp);
414
415		if (orig_ret_address != trampoline_address)
416			/*
417			 * This is the real return address. Any other
418			 * instances associated with this task are for
419			 * other calls deeper on the call stack
420			 */
421			break;
422	}
423
424	regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
425
426	pop_kprobe(get_kprobe_ctlblk());
427	kretprobe_hash_unlock(current, &flags);
428	preempt_enable_no_resched();
429
430	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
431		hlist_del(&ri->hlist);
432		kfree(ri);
433	}
434	/*
435	 * By returning a non-zero value, we are telling
436	 * kprobe_handler() that we don't want the post_handler
437	 * to run (and have re-enabled preemption)
438	 */
439	return 1;
440}
 
441
442/*
443 * Called after single-stepping.  p->addr is the address of the
444 * instruction whose first byte has been replaced by the "breakpoint"
445 * instruction.  To avoid the SMP problems that can occur when we
446 * temporarily put back the original opcode to single-step, we
447 * single-stepped a copy of the instruction.  The address of this
448 * copy is p->ainsn.insn.
449 */
450static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
451{
452	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
453	unsigned long ip = regs->psw.addr & PSW_ADDR_INSN;
454	int fixup = get_fixup_type(p->ainsn.insn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455
456	if (fixup & FIXUP_PSW_NORMAL)
457		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
458
459	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
460		int ilen = ((p->ainsn.insn[0] >> 14) + 3) & -2;
461		if (ip - (unsigned long) p->ainsn.insn == ilen)
462			ip = (unsigned long) p->addr + ilen;
463	}
464
465	if (fixup & FIXUP_RETURN_REGISTER) {
466		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
467		regs->gprs[reg] += (unsigned long) p->addr -
468				   (unsigned long) p->ainsn.insn;
469	}
470
471	disable_singlestep(kcb, regs, ip);
472}
 
473
474static int __kprobes post_kprobe_handler(struct pt_regs *regs)
475{
476	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
477	struct kprobe *p = kprobe_running();
478
479	if (!p)
480		return 0;
481
482	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
483		kcb->kprobe_status = KPROBE_HIT_SSDONE;
484		p->post_handler(p, regs, 0);
485	}
486
487	resume_execution(p, regs);
488	pop_kprobe(kcb);
489	preempt_enable_no_resched();
490
491	/*
492	 * if somebody else is singlestepping across a probe point, psw mask
493	 * will have PER set, in which case, continue the remaining processing
494	 * of do_single_step, as if this is not a probe hit.
495	 */
496	if (regs->psw.mask & PSW_MASK_PER)
497		return 0;
498
499	return 1;
500}
 
501
502static int __kprobes kprobe_trap_handler(struct pt_regs *regs, int trapnr)
503{
504	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
505	struct kprobe *p = kprobe_running();
506	const struct exception_table_entry *entry;
507
508	switch(kcb->kprobe_status) {
509	case KPROBE_SWAP_INST:
510		/* We are here because the instruction replacement failed */
511		return 0;
512	case KPROBE_HIT_SS:
513	case KPROBE_REENTER:
514		/*
515		 * We are here because the instruction being single
516		 * stepped caused a page fault. We reset the current
517		 * kprobe and the nip points back to the probe address
518		 * and allow the page fault handler to continue as a
519		 * normal page fault.
520		 */
521		disable_singlestep(kcb, regs, (unsigned long) p->addr);
522		pop_kprobe(kcb);
523		preempt_enable_no_resched();
524		break;
525	case KPROBE_HIT_ACTIVE:
526	case KPROBE_HIT_SSDONE:
527		/*
528		 * We increment the nmissed count for accounting,
529		 * we can also use npre/npostfault count for accouting
530		 * these specific fault cases.
531		 */
532		kprobes_inc_nmissed_count(p);
533
534		/*
535		 * We come here because instructions in the pre/post
536		 * handler caused the page_fault, this could happen
537		 * if handler tries to access user space by
538		 * copy_from_user(), get_user() etc. Let the
539		 * user-specified handler try to fix it first.
540		 */
541		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
542			return 1;
543
544		/*
545		 * In case the user-specified fault handler returned
546		 * zero, try to fix up.
547		 */
548		entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
549		if (entry) {
550			regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
551			return 1;
552		}
553
554		/*
555		 * fixup_exception() could not handle it,
556		 * Let do_page_fault() fix it.
557		 */
558		break;
559	default:
560		break;
561	}
562	return 0;
563}
 
564
565int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
566{
567	int ret;
568
569	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
570		local_irq_disable();
571	ret = kprobe_trap_handler(regs, trapnr);
572	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
573		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
574	return ret;
575}
 
576
577/*
578 * Wrapper routine to for handling exceptions.
579 */
580int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
581				       unsigned long val, void *data)
582{
583	struct die_args *args = (struct die_args *) data;
584	struct pt_regs *regs = args->regs;
585	int ret = NOTIFY_DONE;
586
587	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
588		local_irq_disable();
589
590	switch (val) {
591	case DIE_BPT:
592		if (kprobe_handler(regs))
593			ret = NOTIFY_STOP;
594		break;
595	case DIE_SSTEP:
596		if (post_kprobe_handler(regs))
597			ret = NOTIFY_STOP;
598		break;
599	case DIE_TRAP:
600		if (!preemptible() && kprobe_running() &&
601		    kprobe_trap_handler(regs, args->trapnr))
602			ret = NOTIFY_STOP;
603		break;
604	default:
605		break;
606	}
607
608	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
609		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
610
611	return ret;
612}
 
613
614int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
615{
616	struct jprobe *jp = container_of(p, struct jprobe, kp);
617	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
618	unsigned long stack;
619
620	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
621
622	/* setup return addr to the jprobe handler routine */
623	regs->psw.addr = (unsigned long) jp->entry | PSW_ADDR_AMODE;
624	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
625
626	/* r15 is the stack pointer */
627	stack = (unsigned long) regs->gprs[15];
628
629	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
630	return 1;
631}
 
632
633void __kprobes jprobe_return(void)
634{
635	asm volatile(".word 0x0002");
636}
 
637
638void __kprobes jprobe_return_end(void)
639{
640	asm volatile("bcr 0,0");
641}
642
643int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
644{
645	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
646	unsigned long stack;
647
648	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
649
650	/* Put the regs back */
651	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
652	/* put the stack back */
653	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
654	preempt_enable_no_resched();
655	return 1;
656}
 
657
658static struct kprobe trampoline = {
659	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
660	.pre_handler = trampoline_probe_handler
661};
662
663int __init arch_init_kprobes(void)
664{
665	return register_kprobe(&trampoline);
666}
667
668int __kprobes arch_trampoline_kprobe(struct kprobe *p)
669{
670	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
671}
v4.6
  1/*
  2 *  Kernel Probes (KProbes)
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright IBM Corp. 2002, 2006
 19 *
 20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
 21 */
 22
 23#include <linux/kprobes.h>
 24#include <linux/ptrace.h>
 25#include <linux/preempt.h>
 26#include <linux/stop_machine.h>
 27#include <linux/kdebug.h>
 28#include <linux/uaccess.h>
 
 
 29#include <linux/module.h>
 30#include <linux/slab.h>
 31#include <linux/hardirq.h>
 32#include <linux/ftrace.h>
 33#include <asm/cacheflush.h>
 34#include <asm/sections.h>
 35#include <asm/dis.h>
 36
 37DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 38DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 39
 40struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 41
 42DEFINE_INSN_CACHE_OPS(dmainsn);
 43
 44static void *alloc_dmainsn_page(void)
 45{
 46	return (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 47}
 48
 49static void free_dmainsn_page(void *page)
 50{
 51	free_page((unsigned long)page);
 52}
 53
 54struct kprobe_insn_cache kprobe_dmainsn_slots = {
 55	.mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
 56	.alloc = alloc_dmainsn_page,
 57	.free = free_dmainsn_page,
 58	.pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
 59	.insn_size = MAX_INSN_SIZE,
 60};
 61
 62static void copy_instruction(struct kprobe *p)
 63{
 64	unsigned long ip = (unsigned long) p->addr;
 65	s64 disp, new_disp;
 66	u64 addr, new_addr;
 67
 68	if (ftrace_location(ip) == ip) {
 69		/*
 70		 * If kprobes patches the instruction that is morphed by
 71		 * ftrace make sure that kprobes always sees the branch
 72		 * "jg .+24" that skips the mcount block or the "brcl 0,0"
 73		 * in case of hotpatch.
 74		 */
 75		ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
 76		p->ainsn.is_ftrace_insn = 1;
 77	} else
 78		memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
 79	p->opcode = p->ainsn.insn[0];
 80	if (!probe_is_insn_relative_long(p->ainsn.insn))
 81		return;
 82	/*
 83	 * For pc-relative instructions in RIL-b or RIL-c format patch the
 84	 * RI2 displacement field. We have already made sure that the insn
 85	 * slot for the patched instruction is within the same 2GB area
 86	 * as the original instruction (either kernel image or module area).
 87	 * Therefore the new displacement will always fit.
 88	 */
 89	disp = *(s32 *)&p->ainsn.insn[1];
 90	addr = (u64)(unsigned long)p->addr;
 91	new_addr = (u64)(unsigned long)p->ainsn.insn;
 92	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 93	*(s32 *)&p->ainsn.insn[1] = new_disp;
 94}
 95NOKPROBE_SYMBOL(copy_instruction);
 96
 97static inline int is_kernel_addr(void *addr)
 98{
 99	return addr < (void *)_end;
100}
101
102static int s390_get_insn_slot(struct kprobe *p)
103{
104	/*
105	 * Get an insn slot that is within the same 2GB area like the original
106	 * instruction. That way instructions with a 32bit signed displacement
107	 * field can be patched and executed within the insn slot.
108	 */
109	p->ainsn.insn = NULL;
110	if (is_kernel_addr(p->addr))
111		p->ainsn.insn = get_dmainsn_slot();
112	else if (is_module_addr(p->addr))
113		p->ainsn.insn = get_insn_slot();
114	return p->ainsn.insn ? 0 : -ENOMEM;
115}
116NOKPROBE_SYMBOL(s390_get_insn_slot);
117
118static void s390_free_insn_slot(struct kprobe *p)
119{
120	if (!p->ainsn.insn)
121		return;
122	if (is_kernel_addr(p->addr))
123		free_dmainsn_slot(p->ainsn.insn, 0);
124	else
125		free_insn_slot(p->ainsn.insn, 0);
126	p->ainsn.insn = NULL;
127}
128NOKPROBE_SYMBOL(s390_free_insn_slot);
129
130int arch_prepare_kprobe(struct kprobe *p)
131{
132	if ((unsigned long) p->addr & 0x01)
133		return -EINVAL;
 
134	/* Make sure the probe isn't going on a difficult instruction */
135	if (probe_is_prohibited_opcode(p->addr))
136		return -EINVAL;
137	if (s390_get_insn_slot(p))
138		return -ENOMEM;
139	copy_instruction(p);
140	return 0;
141}
142NOKPROBE_SYMBOL(arch_prepare_kprobe);
143
144int arch_check_ftrace_location(struct kprobe *p)
145{
 
146	return 0;
147}
148
149struct swap_insn_args {
150	struct kprobe *p;
151	unsigned int arm_kprobe : 1;
152};
153
154static int swap_instruction(void *data)
155{
156	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
157	unsigned long status = kcb->kprobe_status;
158	struct swap_insn_args *args = data;
159	struct ftrace_insn new_insn, *insn;
160	struct kprobe *p = args->p;
161	size_t len;
162
163	new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
164	len = sizeof(new_insn.opc);
165	if (!p->ainsn.is_ftrace_insn)
166		goto skip_ftrace;
167	len = sizeof(new_insn);
168	insn = (struct ftrace_insn *) p->addr;
169	if (args->arm_kprobe) {
170		if (is_ftrace_nop(insn))
171			new_insn.disp = KPROBE_ON_FTRACE_NOP;
172		else
173			new_insn.disp = KPROBE_ON_FTRACE_CALL;
174	} else {
175		ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
176		if (insn->disp == KPROBE_ON_FTRACE_NOP)
177			ftrace_generate_nop_insn(&new_insn);
178	}
179skip_ftrace:
180	kcb->kprobe_status = KPROBE_SWAP_INST;
181	s390_kernel_write(p->addr, &new_insn, len);
182	kcb->kprobe_status = status;
183	return 0;
184}
185NOKPROBE_SYMBOL(swap_instruction);
186
187void arch_arm_kprobe(struct kprobe *p)
188{
189	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
190
 
 
191	stop_machine(swap_instruction, &args, NULL);
192}
193NOKPROBE_SYMBOL(arch_arm_kprobe);
194
195void arch_disarm_kprobe(struct kprobe *p)
196{
197	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
198
 
 
199	stop_machine(swap_instruction, &args, NULL);
200}
201NOKPROBE_SYMBOL(arch_disarm_kprobe);
202
203void arch_remove_kprobe(struct kprobe *p)
204{
205	s390_free_insn_slot(p);
206}
207NOKPROBE_SYMBOL(arch_remove_kprobe);
208
209static void enable_singlestep(struct kprobe_ctlblk *kcb,
210			      struct pt_regs *regs,
211			      unsigned long ip)
212{
213	struct per_regs per_kprobe;
214
215	/* Set up the PER control registers %cr9-%cr11 */
216	per_kprobe.control = PER_EVENT_IFETCH;
217	per_kprobe.start = ip;
218	per_kprobe.end = ip;
219
220	/* Save control regs and psw mask */
221	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
222	kcb->kprobe_saved_imask = regs->psw.mask &
223		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
224
225	/* Set PER control regs, turns on single step for the given address */
226	__ctl_load(per_kprobe, 9, 11);
227	regs->psw.mask |= PSW_MASK_PER;
228	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
229	regs->psw.addr = ip;
230}
231NOKPROBE_SYMBOL(enable_singlestep);
232
233static void disable_singlestep(struct kprobe_ctlblk *kcb,
234			       struct pt_regs *regs,
235			       unsigned long ip)
236{
237	/* Restore control regs and psw mask, set new psw address */
238	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
239	regs->psw.mask &= ~PSW_MASK_PER;
240	regs->psw.mask |= kcb->kprobe_saved_imask;
241	regs->psw.addr = ip;
242}
243NOKPROBE_SYMBOL(disable_singlestep);
244
245/*
246 * Activate a kprobe by storing its pointer to current_kprobe. The
247 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
248 * two kprobes can be active, see KPROBE_REENTER.
249 */
250static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
251{
252	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
253	kcb->prev_kprobe.status = kcb->kprobe_status;
254	__this_cpu_write(current_kprobe, p);
255}
256NOKPROBE_SYMBOL(push_kprobe);
257
258/*
259 * Deactivate a kprobe by backing up to the previous state. If the
260 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
261 * for any other state prev_kprobe.kp will be NULL.
262 */
263static void pop_kprobe(struct kprobe_ctlblk *kcb)
264{
265	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
266	kcb->kprobe_status = kcb->prev_kprobe.status;
267}
268NOKPROBE_SYMBOL(pop_kprobe);
269
270void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
 
271{
272	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
273
274	/* Replace the return addr with trampoline addr */
275	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
276}
277NOKPROBE_SYMBOL(arch_prepare_kretprobe);
278
279static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
 
280{
281	switch (kcb->kprobe_status) {
282	case KPROBE_HIT_SSDONE:
283	case KPROBE_HIT_ACTIVE:
284		kprobes_inc_nmissed_count(p);
285		break;
286	case KPROBE_HIT_SS:
287	case KPROBE_REENTER:
288	default:
289		/*
290		 * A kprobe on the code path to single step an instruction
291		 * is a BUG. The code path resides in the .kprobes.text
292		 * section and is executed with interrupts disabled.
293		 */
294		printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
295		dump_kprobe(p);
296		BUG();
297	}
298}
299NOKPROBE_SYMBOL(kprobe_reenter_check);
300
301static int kprobe_handler(struct pt_regs *regs)
302{
303	struct kprobe_ctlblk *kcb;
304	struct kprobe *p;
305
306	/*
307	 * We want to disable preemption for the entire duration of kprobe
308	 * processing. That includes the calls to the pre/post handlers
309	 * and single stepping the kprobe instruction.
310	 */
311	preempt_disable();
312	kcb = get_kprobe_ctlblk();
313	p = get_kprobe((void *)(regs->psw.addr - 2));
314
315	if (p) {
316		if (kprobe_running()) {
317			/*
318			 * We have hit a kprobe while another is still
319			 * active. This can happen in the pre and post
320			 * handler. Single step the instruction of the
321			 * new probe but do not call any handler function
322			 * of this secondary kprobe.
323			 * push_kprobe and pop_kprobe saves and restores
324			 * the currently active kprobe.
325			 */
326			kprobe_reenter_check(kcb, p);
327			push_kprobe(kcb, p);
328			kcb->kprobe_status = KPROBE_REENTER;
329		} else {
330			/*
331			 * If we have no pre-handler or it returned 0, we
332			 * continue with single stepping. If we have a
333			 * pre-handler and it returned non-zero, it prepped
334			 * for calling the break_handler below on re-entry
335			 * for jprobe processing, so get out doing nothing
336			 * more here.
337			 */
338			push_kprobe(kcb, p);
339			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
340			if (p->pre_handler && p->pre_handler(p, regs))
341				return 1;
342			kcb->kprobe_status = KPROBE_HIT_SS;
343		}
344		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
345		return 1;
346	} else if (kprobe_running()) {
347		p = __this_cpu_read(current_kprobe);
348		if (p->break_handler && p->break_handler(p, regs)) {
349			/*
350			 * Continuation after the jprobe completed and
351			 * caused the jprobe_return trap. The jprobe
352			 * break_handler "returns" to the original
353			 * function that still has the kprobe breakpoint
354			 * installed. We continue with single stepping.
355			 */
356			kcb->kprobe_status = KPROBE_HIT_SS;
357			enable_singlestep(kcb, regs,
358					  (unsigned long) p->ainsn.insn);
359			return 1;
360		} /* else:
361		   * No kprobe at this address and the current kprobe
362		   * has no break handler (no jprobe!). The kernel just
363		   * exploded, let the standard trap handler pick up the
364		   * pieces.
365		   */
366	} /* else:
367	   * No kprobe at this address and no active kprobe. The trap has
368	   * not been caused by a kprobe breakpoint. The race of breakpoint
369	   * vs. kprobe remove does not exist because on s390 as we use
370	   * stop_machine to arm/disarm the breakpoints.
371	   */
372	preempt_enable_no_resched();
373	return 0;
374}
375NOKPROBE_SYMBOL(kprobe_handler);
376
377/*
378 * Function return probe trampoline:
379 *	- init_kprobes() establishes a probepoint here
380 *	- When the probed function returns, this probe
381 *		causes the handlers to fire
382 */
383static void __used kretprobe_trampoline_holder(void)
384{
385	asm volatile(".global kretprobe_trampoline\n"
386		     "kretprobe_trampoline: bcr 0,0\n");
387}
388
389/*
390 * Called when the probe at kretprobe trampoline is hit
391 */
392static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
 
393{
394	struct kretprobe_instance *ri;
395	struct hlist_head *head, empty_rp;
396	struct hlist_node *tmp;
397	unsigned long flags, orig_ret_address;
398	unsigned long trampoline_address;
399	kprobe_opcode_t *correct_ret_addr;
400
401	INIT_HLIST_HEAD(&empty_rp);
402	kretprobe_hash_lock(current, &head, &flags);
403
404	/*
405	 * It is possible to have multiple instances associated with a given
406	 * task either because an multiple functions in the call path
407	 * have a return probe installed on them, and/or more than one return
408	 * return probe was registered for a target function.
409	 *
410	 * We can handle this because:
411	 *     - instances are always inserted at the head of the list
412	 *     - when multiple return probes are registered for the same
413	 *	 function, the first instance's ret_addr will point to the
414	 *	 real return address, and all the rest will point to
415	 *	 kretprobe_trampoline
416	 */
417	ri = NULL;
418	orig_ret_address = 0;
419	correct_ret_addr = NULL;
420	trampoline_address = (unsigned long) &kretprobe_trampoline;
421	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
422		if (ri->task != current)
423			/* another task is sharing our hash bucket */
424			continue;
425
426		orig_ret_address = (unsigned long) ri->ret_addr;
427
428		if (orig_ret_address != trampoline_address)
429			/*
430			 * This is the real return address. Any other
431			 * instances associated with this task are for
432			 * other calls deeper on the call stack
433			 */
434			break;
435	}
436
437	kretprobe_assert(ri, orig_ret_address, trampoline_address);
438
439	correct_ret_addr = ri->ret_addr;
440	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
441		if (ri->task != current)
442			/* another task is sharing our hash bucket */
443			continue;
444
445		orig_ret_address = (unsigned long) ri->ret_addr;
446
447		if (ri->rp && ri->rp->handler) {
448			ri->ret_addr = correct_ret_addr;
449			ri->rp->handler(ri, regs);
450		}
451
452		recycle_rp_inst(ri, &empty_rp);
453
454		if (orig_ret_address != trampoline_address)
455			/*
456			 * This is the real return address. Any other
457			 * instances associated with this task are for
458			 * other calls deeper on the call stack
459			 */
460			break;
461	}
462
463	regs->psw.addr = orig_ret_address;
464
465	pop_kprobe(get_kprobe_ctlblk());
466	kretprobe_hash_unlock(current, &flags);
467	preempt_enable_no_resched();
468
469	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
470		hlist_del(&ri->hlist);
471		kfree(ri);
472	}
473	/*
474	 * By returning a non-zero value, we are telling
475	 * kprobe_handler() that we don't want the post_handler
476	 * to run (and have re-enabled preemption)
477	 */
478	return 1;
479}
480NOKPROBE_SYMBOL(trampoline_probe_handler);
481
482/*
483 * Called after single-stepping.  p->addr is the address of the
484 * instruction whose first byte has been replaced by the "breakpoint"
485 * instruction.  To avoid the SMP problems that can occur when we
486 * temporarily put back the original opcode to single-step, we
487 * single-stepped a copy of the instruction.  The address of this
488 * copy is p->ainsn.insn.
489 */
490static void resume_execution(struct kprobe *p, struct pt_regs *regs)
491{
492	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
493	unsigned long ip = regs->psw.addr;
494	int fixup = probe_get_fixup_type(p->ainsn.insn);
495
496	/* Check if the kprobes location is an enabled ftrace caller */
497	if (p->ainsn.is_ftrace_insn) {
498		struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
499		struct ftrace_insn call_insn;
500
501		ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
502		/*
503		 * A kprobe on an enabled ftrace call site actually single
504		 * stepped an unconditional branch (ftrace nop equivalent).
505		 * Now we need to fixup things and pretend that a brasl r0,...
506		 * was executed instead.
507		 */
508		if (insn->disp == KPROBE_ON_FTRACE_CALL) {
509			ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
510			regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
511		}
512	}
513
514	if (fixup & FIXUP_PSW_NORMAL)
515		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
516
517	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
518		int ilen = insn_length(p->ainsn.insn[0] >> 8);
519		if (ip - (unsigned long) p->ainsn.insn == ilen)
520			ip = (unsigned long) p->addr + ilen;
521	}
522
523	if (fixup & FIXUP_RETURN_REGISTER) {
524		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
525		regs->gprs[reg] += (unsigned long) p->addr -
526				   (unsigned long) p->ainsn.insn;
527	}
528
529	disable_singlestep(kcb, regs, ip);
530}
531NOKPROBE_SYMBOL(resume_execution);
532
533static int post_kprobe_handler(struct pt_regs *regs)
534{
535	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
536	struct kprobe *p = kprobe_running();
537
538	if (!p)
539		return 0;
540
541	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
542		kcb->kprobe_status = KPROBE_HIT_SSDONE;
543		p->post_handler(p, regs, 0);
544	}
545
546	resume_execution(p, regs);
547	pop_kprobe(kcb);
548	preempt_enable_no_resched();
549
550	/*
551	 * if somebody else is singlestepping across a probe point, psw mask
552	 * will have PER set, in which case, continue the remaining processing
553	 * of do_single_step, as if this is not a probe hit.
554	 */
555	if (regs->psw.mask & PSW_MASK_PER)
556		return 0;
557
558	return 1;
559}
560NOKPROBE_SYMBOL(post_kprobe_handler);
561
562static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
563{
564	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
565	struct kprobe *p = kprobe_running();
566	const struct exception_table_entry *entry;
567
568	switch(kcb->kprobe_status) {
569	case KPROBE_SWAP_INST:
570		/* We are here because the instruction replacement failed */
571		return 0;
572	case KPROBE_HIT_SS:
573	case KPROBE_REENTER:
574		/*
575		 * We are here because the instruction being single
576		 * stepped caused a page fault. We reset the current
577		 * kprobe and the nip points back to the probe address
578		 * and allow the page fault handler to continue as a
579		 * normal page fault.
580		 */
581		disable_singlestep(kcb, regs, (unsigned long) p->addr);
582		pop_kprobe(kcb);
583		preempt_enable_no_resched();
584		break;
585	case KPROBE_HIT_ACTIVE:
586	case KPROBE_HIT_SSDONE:
587		/*
588		 * We increment the nmissed count for accounting,
589		 * we can also use npre/npostfault count for accounting
590		 * these specific fault cases.
591		 */
592		kprobes_inc_nmissed_count(p);
593
594		/*
595		 * We come here because instructions in the pre/post
596		 * handler caused the page_fault, this could happen
597		 * if handler tries to access user space by
598		 * copy_from_user(), get_user() etc. Let the
599		 * user-specified handler try to fix it first.
600		 */
601		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
602			return 1;
603
604		/*
605		 * In case the user-specified fault handler returned
606		 * zero, try to fix up.
607		 */
608		entry = search_exception_tables(regs->psw.addr);
609		if (entry) {
610			regs->psw.addr = extable_fixup(entry);
611			return 1;
612		}
613
614		/*
615		 * fixup_exception() could not handle it,
616		 * Let do_page_fault() fix it.
617		 */
618		break;
619	default:
620		break;
621	}
622	return 0;
623}
624NOKPROBE_SYMBOL(kprobe_trap_handler);
625
626int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
627{
628	int ret;
629
630	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
631		local_irq_disable();
632	ret = kprobe_trap_handler(regs, trapnr);
633	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
634		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
635	return ret;
636}
637NOKPROBE_SYMBOL(kprobe_fault_handler);
638
639/*
640 * Wrapper routine to for handling exceptions.
641 */
642int kprobe_exceptions_notify(struct notifier_block *self,
643			     unsigned long val, void *data)
644{
645	struct die_args *args = (struct die_args *) data;
646	struct pt_regs *regs = args->regs;
647	int ret = NOTIFY_DONE;
648
649	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
650		local_irq_disable();
651
652	switch (val) {
653	case DIE_BPT:
654		if (kprobe_handler(regs))
655			ret = NOTIFY_STOP;
656		break;
657	case DIE_SSTEP:
658		if (post_kprobe_handler(regs))
659			ret = NOTIFY_STOP;
660		break;
661	case DIE_TRAP:
662		if (!preemptible() && kprobe_running() &&
663		    kprobe_trap_handler(regs, args->trapnr))
664			ret = NOTIFY_STOP;
665		break;
666	default:
667		break;
668	}
669
670	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
671		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
672
673	return ret;
674}
675NOKPROBE_SYMBOL(kprobe_exceptions_notify);
676
677int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
678{
679	struct jprobe *jp = container_of(p, struct jprobe, kp);
680	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
681	unsigned long stack;
682
683	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
684
685	/* setup return addr to the jprobe handler routine */
686	regs->psw.addr = (unsigned long) jp->entry;
687	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
688
689	/* r15 is the stack pointer */
690	stack = (unsigned long) regs->gprs[15];
691
692	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
693	return 1;
694}
695NOKPROBE_SYMBOL(setjmp_pre_handler);
696
697void jprobe_return(void)
698{
699	asm volatile(".word 0x0002");
700}
701NOKPROBE_SYMBOL(jprobe_return);
702
703int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 
 
 
 
 
704{
705	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
706	unsigned long stack;
707
708	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
709
710	/* Put the regs back */
711	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
712	/* put the stack back */
713	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
714	preempt_enable_no_resched();
715	return 1;
716}
717NOKPROBE_SYMBOL(longjmp_break_handler);
718
719static struct kprobe trampoline = {
720	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
721	.pre_handler = trampoline_probe_handler
722};
723
724int __init arch_init_kprobes(void)
725{
726	return register_kprobe(&trampoline);
727}
728
729int arch_trampoline_kprobe(struct kprobe *p)
730{
731	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
732}
733NOKPROBE_SYMBOL(arch_trampoline_kprobe);