Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2007 by Ralf Baechle
  7 * Copyright (C) 2009, 2010 Cavium Networks, Inc.
  8 */
  9#include <linux/clocksource.h>
 
 10#include <linux/init.h>
 11#include <linux/smp.h>
 12
 13#include <asm/cpu-info.h>
 
 14#include <asm/time.h>
 15
 16#include <asm/octeon/octeon.h>
 17#include <asm/octeon/cvmx-ipd-defs.h>
 18#include <asm/octeon/cvmx-mio-defs.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 19
 20/*
 21 * Set the current core's cvmcount counter to the value of the
 22 * IPD_CLK_COUNT.  We do this on all cores as they are brought
 23 * on-line.  This allows for a read from a local cpu register to
 24 * access a synchronized counter.
 25 *
 26 * On CPU_CAVIUM_OCTEON2 the IPD_CLK_COUNT is scaled by rdiv/sdiv.
 27 */
 28void octeon_init_cvmcount(void)
 29{
 30	unsigned long flags;
 31	unsigned loops = 2;
 32	u64 f = 0;
 33	u64 rdiv = 0;
 34	u64 sdiv = 0;
 35	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
 36		union cvmx_mio_rst_boot rst_boot;
 37		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
 38		rdiv = rst_boot.s.c_mul;	/* CPU clock */
 39		sdiv = rst_boot.s.pnr_mul;	/* I/O clock */
 40		f = (0x8000000000000000ull / sdiv) * 2;
 41	}
 42
 43
 44	/* Clobber loops so GCC will not unroll the following while loop. */
 45	asm("" : "+r" (loops));
 46
 47	local_irq_save(flags);
 48	/*
 49	 * Loop several times so we are executing from the cache,
 50	 * which should give more deterministic timing.
 51	 */
 52	while (loops--) {
 53		u64 ipd_clk_count = cvmx_read_csr(CVMX_IPD_CLK_COUNT);
 54		if (rdiv != 0) {
 55			ipd_clk_count *= rdiv;
 56			if (f != 0) {
 57				asm("dmultu\t%[cnt],%[f]\n\t"
 58				    "mfhi\t%[cnt]"
 59				    : [cnt] "+r" (ipd_clk_count),
 60				      [f] "=r" (f)
 61				    : : "hi", "lo");
 62			}
 63		}
 64		write_c0_cvmcount(ipd_clk_count);
 65	}
 66	local_irq_restore(flags);
 67}
 68
 69static cycle_t octeon_cvmcount_read(struct clocksource *cs)
 70{
 71	return read_c0_cvmcount();
 72}
 73
 74static struct clocksource clocksource_mips = {
 75	.name		= "OCTEON_CVMCOUNT",
 76	.read		= octeon_cvmcount_read,
 77	.mask		= CLOCKSOURCE_MASK(64),
 78	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 79};
 80
 81unsigned long long notrace sched_clock(void)
 82{
 83	/* 64-bit arithmatic can overflow, so use 128-bit.  */
 84	u64 t1, t2, t3;
 85	unsigned long long rv;
 86	u64 mult = clocksource_mips.mult;
 87	u64 shift = clocksource_mips.shift;
 88	u64 cnt = read_c0_cvmcount();
 89
 90	asm (
 91		"dmultu\t%[cnt],%[mult]\n\t"
 92		"nor\t%[t1],$0,%[shift]\n\t"
 93		"mfhi\t%[t2]\n\t"
 94		"mflo\t%[t3]\n\t"
 95		"dsll\t%[t2],%[t2],1\n\t"
 96		"dsrlv\t%[rv],%[t3],%[shift]\n\t"
 97		"dsllv\t%[t1],%[t2],%[t1]\n\t"
 98		"or\t%[rv],%[t1],%[rv]\n\t"
 99		: [rv] "=&r" (rv), [t1] "=&r" (t1), [t2] "=&r" (t2), [t3] "=&r" (t3)
100		: [cnt] "r" (cnt), [mult] "r" (mult), [shift] "r" (shift)
101		: "hi", "lo");
102	return rv;
103}
104
105void __init plat_time_init(void)
106{
107	clocksource_mips.rating = 300;
108	clocksource_register_hz(&clocksource_mips, octeon_get_clock_rate());
109}
110
111static u64 octeon_udelay_factor;
112static u64 octeon_ndelay_factor;
113
114void __init octeon_setup_delays(void)
115{
116	octeon_udelay_factor = octeon_get_clock_rate() / 1000000;
117	/*
118	 * For __ndelay we divide by 2^16, so the factor is multiplied
119	 * by the same amount.
120	 */
121	octeon_ndelay_factor = (octeon_udelay_factor * 0x10000ull) / 1000ull;
122
123	preset_lpj = octeon_get_clock_rate() / HZ;
124}
125
126void __udelay(unsigned long us)
127{
128	u64 cur, end, inc;
129
130	cur = read_c0_cvmcount();
131
132	inc = us * octeon_udelay_factor;
133	end = cur + inc;
134
135	while (end > cur)
136		cur = read_c0_cvmcount();
137}
138EXPORT_SYMBOL(__udelay);
139
140void __ndelay(unsigned long ns)
141{
142	u64 cur, end, inc;
143
144	cur = read_c0_cvmcount();
145
146	inc = ((ns * octeon_ndelay_factor) >> 16);
147	end = cur + inc;
148
149	while (end > cur)
150		cur = read_c0_cvmcount();
151}
152EXPORT_SYMBOL(__ndelay);
153
154void __delay(unsigned long loops)
155{
156	u64 cur, end;
157
158	cur = read_c0_cvmcount();
159	end = cur + loops;
160
161	while (end > cur)
162		cur = read_c0_cvmcount();
163}
164EXPORT_SYMBOL(__delay);
v4.6
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2007 by Ralf Baechle
  7 * Copyright (C) 2009, 2012 Cavium, Inc.
  8 */
  9#include <linux/clocksource.h>
 10#include <linux/export.h>
 11#include <linux/init.h>
 12#include <linux/smp.h>
 13
 14#include <asm/cpu-info.h>
 15#include <asm/cpu-type.h>
 16#include <asm/time.h>
 17
 18#include <asm/octeon/octeon.h>
 19#include <asm/octeon/cvmx-ipd-defs.h>
 20#include <asm/octeon/cvmx-mio-defs.h>
 21#include <asm/octeon/cvmx-rst-defs.h>
 22
 23static u64 f;
 24static u64 rdiv;
 25static u64 sdiv;
 26static u64 octeon_udelay_factor;
 27static u64 octeon_ndelay_factor;
 28
 29void __init octeon_setup_delays(void)
 30{
 31	octeon_udelay_factor = octeon_get_clock_rate() / 1000000;
 32	/*
 33	 * For __ndelay we divide by 2^16, so the factor is multiplied
 34	 * by the same amount.
 35	 */
 36	octeon_ndelay_factor = (octeon_udelay_factor * 0x10000ull) / 1000ull;
 37
 38	preset_lpj = octeon_get_clock_rate() / HZ;
 39
 40	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
 41		union cvmx_mio_rst_boot rst_boot;
 42
 43		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
 44		rdiv = rst_boot.s.c_mul;	/* CPU clock */
 45		sdiv = rst_boot.s.pnr_mul;	/* I/O clock */
 46		f = (0x8000000000000000ull / sdiv) * 2;
 47	} else if (current_cpu_type() == CPU_CAVIUM_OCTEON3) {
 48		union cvmx_rst_boot rst_boot;
 49
 50		rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
 51		rdiv = rst_boot.s.c_mul;	/* CPU clock */
 52		sdiv = rst_boot.s.pnr_mul;	/* I/O clock */
 53		f = (0x8000000000000000ull / sdiv) * 2;
 54	}
 55
 56}
 57
 58/*
 59 * Set the current core's cvmcount counter to the value of the
 60 * IPD_CLK_COUNT.  We do this on all cores as they are brought
 61 * on-line.  This allows for a read from a local cpu register to
 62 * access a synchronized counter.
 63 *
 64 * On CPU_CAVIUM_OCTEON2 the IPD_CLK_COUNT is scaled by rdiv/sdiv.
 65 */
 66void octeon_init_cvmcount(void)
 67{
 68	unsigned long flags;
 69	unsigned loops = 2;
 
 
 
 
 
 
 
 
 
 
 
 70
 71	/* Clobber loops so GCC will not unroll the following while loop. */
 72	asm("" : "+r" (loops));
 73
 74	local_irq_save(flags);
 75	/*
 76	 * Loop several times so we are executing from the cache,
 77	 * which should give more deterministic timing.
 78	 */
 79	while (loops--) {
 80		u64 ipd_clk_count = cvmx_read_csr(CVMX_IPD_CLK_COUNT);
 81		if (rdiv != 0) {
 82			ipd_clk_count *= rdiv;
 83			if (f != 0) {
 84				asm("dmultu\t%[cnt],%[f]\n\t"
 85				    "mfhi\t%[cnt]"
 86				    : [cnt] "+r" (ipd_clk_count)
 87				    : [f] "r" (f)
 88				    : "hi", "lo");
 89			}
 90		}
 91		write_c0_cvmcount(ipd_clk_count);
 92	}
 93	local_irq_restore(flags);
 94}
 95
 96static cycle_t octeon_cvmcount_read(struct clocksource *cs)
 97{
 98	return read_c0_cvmcount();
 99}
100
101static struct clocksource clocksource_mips = {
102	.name		= "OCTEON_CVMCOUNT",
103	.read		= octeon_cvmcount_read,
104	.mask		= CLOCKSOURCE_MASK(64),
105	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
106};
107
108unsigned long long notrace sched_clock(void)
109{
110	/* 64-bit arithmatic can overflow, so use 128-bit.  */
111	u64 t1, t2, t3;
112	unsigned long long rv;
113	u64 mult = clocksource_mips.mult;
114	u64 shift = clocksource_mips.shift;
115	u64 cnt = read_c0_cvmcount();
116
117	asm (
118		"dmultu\t%[cnt],%[mult]\n\t"
119		"nor\t%[t1],$0,%[shift]\n\t"
120		"mfhi\t%[t2]\n\t"
121		"mflo\t%[t3]\n\t"
122		"dsll\t%[t2],%[t2],1\n\t"
123		"dsrlv\t%[rv],%[t3],%[shift]\n\t"
124		"dsllv\t%[t1],%[t2],%[t1]\n\t"
125		"or\t%[rv],%[t1],%[rv]\n\t"
126		: [rv] "=&r" (rv), [t1] "=&r" (t1), [t2] "=&r" (t2), [t3] "=&r" (t3)
127		: [cnt] "r" (cnt), [mult] "r" (mult), [shift] "r" (shift)
128		: "hi", "lo");
129	return rv;
130}
131
132void __init plat_time_init(void)
133{
134	clocksource_mips.rating = 300;
135	clocksource_register_hz(&clocksource_mips, octeon_get_clock_rate());
136}
137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138void __udelay(unsigned long us)
139{
140	u64 cur, end, inc;
141
142	cur = read_c0_cvmcount();
143
144	inc = us * octeon_udelay_factor;
145	end = cur + inc;
146
147	while (end > cur)
148		cur = read_c0_cvmcount();
149}
150EXPORT_SYMBOL(__udelay);
151
152void __ndelay(unsigned long ns)
153{
154	u64 cur, end, inc;
155
156	cur = read_c0_cvmcount();
157
158	inc = ((ns * octeon_ndelay_factor) >> 16);
159	end = cur + inc;
160
161	while (end > cur)
162		cur = read_c0_cvmcount();
163}
164EXPORT_SYMBOL(__ndelay);
165
166void __delay(unsigned long loops)
167{
168	u64 cur, end;
169
170	cur = read_c0_cvmcount();
171	end = cur + loops;
172
173	while (end > cur)
174		cur = read_c0_cvmcount();
175}
176EXPORT_SYMBOL(__delay);
177
178
179/**
180 * octeon_io_clk_delay - wait for a given number of io clock cycles to pass.
181 *
182 * We scale the wait by the clock ratio, and then wait for the
183 * corresponding number of core clocks.
184 *
185 * @count: The number of clocks to wait.
186 */
187void octeon_io_clk_delay(unsigned long count)
188{
189	u64 cur, end;
190
191	cur = read_c0_cvmcount();
192	if (rdiv != 0) {
193		end = count * rdiv;
194		if (f != 0) {
195			asm("dmultu\t%[cnt],%[f]\n\t"
196				"mfhi\t%[cnt]"
197				: [cnt] "+r" (end)
198				: [f] "r" (f)
199				: "hi", "lo");
200		}
201		end = cur + end;
202	} else {
203		end = cur + count;
204	}
205	while (end > cur)
206		cur = read_c0_cvmcount();
207}
208EXPORT_SYMBOL(octeon_io_clk_delay);