Linux Audio

Check our new training course

Loading...
v3.1
  1/* multi_arith.h: multi-precision integer arithmetic functions, needed
  2   to do extended-precision floating point.
  3
  4   (c) 1998 David Huggins-Daines.
  5
  6   Somewhat based on arch/alpha/math-emu/ieee-math.c, which is (c)
  7   David Mosberger-Tang.
  8
  9   You may copy, modify, and redistribute this file under the terms of
 10   the GNU General Public License, version 2, or any later version, at
 11   your convenience. */
 12
 13/* Note:
 14
 15   These are not general multi-precision math routines.  Rather, they
 16   implement the subset of integer arithmetic that we need in order to
 17   multiply, divide, and normalize 128-bit unsigned mantissae.  */
 18
 19#ifndef MULTI_ARITH_H
 20#define MULTI_ARITH_H
 21
 22static inline void fp_denormalize(struct fp_ext *reg, unsigned int cnt)
 23{
 24	reg->exp += cnt;
 25
 26	switch (cnt) {
 27	case 0 ... 8:
 28		reg->lowmant = reg->mant.m32[1] << (8 - cnt);
 29		reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
 30				   (reg->mant.m32[0] << (32 - cnt));
 31		reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
 32		break;
 33	case 9 ... 32:
 34		reg->lowmant = reg->mant.m32[1] >> (cnt - 8);
 35		if (reg->mant.m32[1] << (40 - cnt))
 36			reg->lowmant |= 1;
 37		reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
 38				   (reg->mant.m32[0] << (32 - cnt));
 39		reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
 40		break;
 41	case 33 ... 39:
 42		asm volatile ("bfextu %1{%2,#8},%0" : "=d" (reg->lowmant)
 43			: "m" (reg->mant.m32[0]), "d" (64 - cnt));
 44		if (reg->mant.m32[1] << (40 - cnt))
 45			reg->lowmant |= 1;
 46		reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
 47		reg->mant.m32[0] = 0;
 48		break;
 49	case 40 ... 71:
 50		reg->lowmant = reg->mant.m32[0] >> (cnt - 40);
 51		if ((reg->mant.m32[0] << (72 - cnt)) || reg->mant.m32[1])
 52			reg->lowmant |= 1;
 53		reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
 54		reg->mant.m32[0] = 0;
 55		break;
 56	default:
 57		reg->lowmant = reg->mant.m32[0] || reg->mant.m32[1];
 58		reg->mant.m32[0] = 0;
 59		reg->mant.m32[1] = 0;
 60		break;
 61	}
 62}
 63
 64static inline int fp_overnormalize(struct fp_ext *reg)
 65{
 66	int shift;
 67
 68	if (reg->mant.m32[0]) {
 69		asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[0]));
 70		reg->mant.m32[0] = (reg->mant.m32[0] << shift) | (reg->mant.m32[1] >> (32 - shift));
 71		reg->mant.m32[1] = (reg->mant.m32[1] << shift);
 72	} else {
 73		asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[1]));
 74		reg->mant.m32[0] = (reg->mant.m32[1] << shift);
 75		reg->mant.m32[1] = 0;
 76		shift += 32;
 77	}
 78
 79	return shift;
 80}
 81
 82static inline int fp_addmant(struct fp_ext *dest, struct fp_ext *src)
 83{
 84	int carry;
 85
 86	/* we assume here, gcc only insert move and a clr instr */
 87	asm volatile ("add.b %1,%0" : "=d,g" (dest->lowmant)
 88		: "g,d" (src->lowmant), "0,0" (dest->lowmant));
 89	asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[1])
 90		: "d" (src->mant.m32[1]), "0" (dest->mant.m32[1]));
 91	asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[0])
 92		: "d" (src->mant.m32[0]), "0" (dest->mant.m32[0]));
 93	asm volatile ("addx.l %0,%0" : "=d" (carry) : "0" (0));
 94
 95	return carry;
 96}
 97
 98static inline int fp_addcarry(struct fp_ext *reg)
 99{
100	if (++reg->exp == 0x7fff) {
101		if (reg->mant.m64)
102			fp_set_sr(FPSR_EXC_INEX2);
103		reg->mant.m64 = 0;
104		fp_set_sr(FPSR_EXC_OVFL);
105		return 0;
106	}
107	reg->lowmant = (reg->mant.m32[1] << 7) | (reg->lowmant ? 1 : 0);
108	reg->mant.m32[1] = (reg->mant.m32[1] >> 1) |
109			   (reg->mant.m32[0] << 31);
110	reg->mant.m32[0] = (reg->mant.m32[0] >> 1) | 0x80000000;
111
112	return 1;
113}
114
115static inline void fp_submant(struct fp_ext *dest, struct fp_ext *src1,
116			      struct fp_ext *src2)
117{
118	/* we assume here, gcc only insert move and a clr instr */
119	asm volatile ("sub.b %1,%0" : "=d,g" (dest->lowmant)
120		: "g,d" (src2->lowmant), "0,0" (src1->lowmant));
121	asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[1])
122		: "d" (src2->mant.m32[1]), "0" (src1->mant.m32[1]));
123	asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[0])
124		: "d" (src2->mant.m32[0]), "0" (src1->mant.m32[0]));
125}
126
127#define fp_mul64(desth, destl, src1, src2) ({				\
128	asm ("mulu.l %2,%1:%0" : "=d" (destl), "=d" (desth)		\
129		: "dm" (src1), "0" (src2));				\
130})
131#define fp_div64(quot, rem, srch, srcl, div)				\
132	asm ("divu.l %2,%1:%0" : "=d" (quot), "=d" (rem)		\
133		: "dm" (div), "1" (srch), "0" (srcl))
134#define fp_add64(dest1, dest2, src1, src2) ({				\
135	asm ("add.l %1,%0" : "=d,dm" (dest2)				\
136		: "dm,d" (src2), "0,0" (dest2));			\
137	asm ("addx.l %1,%0" : "=d" (dest1)				\
138		: "d" (src1), "0" (dest1));				\
139})
140#define fp_addx96(dest, src) ({						\
141	/* we assume here, gcc only insert move and a clr instr */	\
142	asm volatile ("add.l %1,%0" : "=d,g" (dest->m32[2])		\
143		: "g,d" (temp.m32[1]), "0,0" (dest->m32[2]));		\
144	asm volatile ("addx.l %1,%0" : "=d" (dest->m32[1])		\
145		: "d" (temp.m32[0]), "0" (dest->m32[1]));		\
146	asm volatile ("addx.l %1,%0" : "=d" (dest->m32[0])		\
147		: "d" (0), "0" (dest->m32[0]));				\
148})
149#define fp_sub64(dest, src) ({						\
150	asm ("sub.l %1,%0" : "=d,dm" (dest.m32[1])			\
151		: "dm,d" (src.m32[1]), "0,0" (dest.m32[1]));		\
152	asm ("subx.l %1,%0" : "=d" (dest.m32[0])			\
153		: "d" (src.m32[0]), "0" (dest.m32[0]));			\
154})
155#define fp_sub96c(dest, srch, srcm, srcl) ({				\
156	char carry;							\
157	asm ("sub.l %1,%0" : "=d,dm" (dest.m32[2])			\
158		: "dm,d" (srcl), "0,0" (dest.m32[2]));			\
159	asm ("subx.l %1,%0" : "=d" (dest.m32[1])			\
160		: "d" (srcm), "0" (dest.m32[1]));			\
161	asm ("subx.l %2,%1; scs %0" : "=d" (carry), "=d" (dest.m32[0])	\
162		: "d" (srch), "1" (dest.m32[0]));			\
163	carry;								\
164})
165
166static inline void fp_multiplymant(union fp_mant128 *dest, struct fp_ext *src1,
167				   struct fp_ext *src2)
168{
169	union fp_mant64 temp;
170
171	fp_mul64(dest->m32[0], dest->m32[1], src1->mant.m32[0], src2->mant.m32[0]);
172	fp_mul64(dest->m32[2], dest->m32[3], src1->mant.m32[1], src2->mant.m32[1]);
173
174	fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[0], src2->mant.m32[1]);
175	fp_addx96(dest, temp);
176
177	fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[1], src2->mant.m32[0]);
178	fp_addx96(dest, temp);
179}
180
181static inline void fp_dividemant(union fp_mant128 *dest, struct fp_ext *src,
182				 struct fp_ext *div)
183{
184	union fp_mant128 tmp;
185	union fp_mant64 tmp64;
186	unsigned long *mantp = dest->m32;
187	unsigned long fix, rem, first, dummy;
188	int i;
189
190	/* the algorithm below requires dest to be smaller than div,
191	   but both have the high bit set */
192	if (src->mant.m64 >= div->mant.m64) {
193		fp_sub64(src->mant, div->mant);
194		*mantp = 1;
195	} else
196		*mantp = 0;
197	mantp++;
198
199	/* basic idea behind this algorithm: we can't divide two 64bit numbers
200	   (AB/CD) directly, but we can calculate AB/C0, but this means this
201	   quotient is off by C0/CD, so we have to multiply the first result
202	   to fix the result, after that we have nearly the correct result
203	   and only a few corrections are needed. */
204
205	/* C0/CD can be precalculated, but it's an 64bit division again, but
206	   we can make it a bit easier, by dividing first through C so we get
207	   10/1D and now only a single shift and the value fits into 32bit. */
208	fix = 0x80000000;
209	dummy = div->mant.m32[1] / div->mant.m32[0] + 1;
210	dummy = (dummy >> 1) | fix;
211	fp_div64(fix, dummy, fix, 0, dummy);
212	fix--;
213
214	for (i = 0; i < 3; i++, mantp++) {
215		if (src->mant.m32[0] == div->mant.m32[0]) {
216			fp_div64(first, rem, 0, src->mant.m32[1], div->mant.m32[0]);
217
218			fp_mul64(*mantp, dummy, first, fix);
219			*mantp += fix;
220		} else {
221			fp_div64(first, rem, src->mant.m32[0], src->mant.m32[1], div->mant.m32[0]);
222
223			fp_mul64(*mantp, dummy, first, fix);
224		}
225
226		fp_mul64(tmp.m32[0], tmp.m32[1], div->mant.m32[0], first - *mantp);
227		fp_add64(tmp.m32[0], tmp.m32[1], 0, rem);
228		tmp.m32[2] = 0;
229
230		fp_mul64(tmp64.m32[0], tmp64.m32[1], *mantp, div->mant.m32[1]);
231		fp_sub96c(tmp, 0, tmp64.m32[0], tmp64.m32[1]);
232
233		src->mant.m32[0] = tmp.m32[1];
234		src->mant.m32[1] = tmp.m32[2];
235
236		while (!fp_sub96c(tmp, 0, div->mant.m32[0], div->mant.m32[1])) {
237			src->mant.m32[0] = tmp.m32[1];
238			src->mant.m32[1] = tmp.m32[2];
239			*mantp += 1;
240		}
241	}
242}
243
244static inline void fp_putmant128(struct fp_ext *dest, union fp_mant128 *src,
245				 int shift)
246{
247	unsigned long tmp;
248
249	switch (shift) {
250	case 0:
251		dest->mant.m64 = src->m64[0];
252		dest->lowmant = src->m32[2] >> 24;
253		if (src->m32[3] || (src->m32[2] << 8))
254			dest->lowmant |= 1;
255		break;
256	case 1:
257		asm volatile ("lsl.l #1,%0"
258			: "=d" (tmp) : "0" (src->m32[2]));
259		asm volatile ("roxl.l #1,%0"
260			: "=d" (dest->mant.m32[1]) : "0" (src->m32[1]));
261		asm volatile ("roxl.l #1,%0"
262			: "=d" (dest->mant.m32[0]) : "0" (src->m32[0]));
263		dest->lowmant = tmp >> 24;
264		if (src->m32[3] || (tmp << 8))
265			dest->lowmant |= 1;
266		break;
267	case 31:
268		asm volatile ("lsr.l #1,%1; roxr.l #1,%0"
269			: "=d" (dest->mant.m32[0])
270			: "d" (src->m32[0]), "0" (src->m32[1]));
271		asm volatile ("roxr.l #1,%0"
272			: "=d" (dest->mant.m32[1]) : "0" (src->m32[2]));
273		asm volatile ("roxr.l #1,%0"
274			: "=d" (tmp) : "0" (src->m32[3]));
275		dest->lowmant = tmp >> 24;
276		if (src->m32[3] << 7)
277			dest->lowmant |= 1;
278		break;
279	case 32:
280		dest->mant.m32[0] = src->m32[1];
281		dest->mant.m32[1] = src->m32[2];
282		dest->lowmant = src->m32[3] >> 24;
283		if (src->m32[3] << 8)
284			dest->lowmant |= 1;
285		break;
286	}
287}
288
289#endif	/* MULTI_ARITH_H */
v4.6
  1/* multi_arith.h: multi-precision integer arithmetic functions, needed
  2   to do extended-precision floating point.
  3
  4   (c) 1998 David Huggins-Daines.
  5
  6   Somewhat based on arch/alpha/math-emu/ieee-math.c, which is (c)
  7   David Mosberger-Tang.
  8
  9   You may copy, modify, and redistribute this file under the terms of
 10   the GNU General Public License, version 2, or any later version, at
 11   your convenience. */
 12
 13/* Note:
 14
 15   These are not general multi-precision math routines.  Rather, they
 16   implement the subset of integer arithmetic that we need in order to
 17   multiply, divide, and normalize 128-bit unsigned mantissae.  */
 18
 19#ifndef MULTI_ARITH_H
 20#define MULTI_ARITH_H
 21
 22static inline void fp_denormalize(struct fp_ext *reg, unsigned int cnt)
 23{
 24	reg->exp += cnt;
 25
 26	switch (cnt) {
 27	case 0 ... 8:
 28		reg->lowmant = reg->mant.m32[1] << (8 - cnt);
 29		reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
 30				   (reg->mant.m32[0] << (32 - cnt));
 31		reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
 32		break;
 33	case 9 ... 32:
 34		reg->lowmant = reg->mant.m32[1] >> (cnt - 8);
 35		if (reg->mant.m32[1] << (40 - cnt))
 36			reg->lowmant |= 1;
 37		reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
 38				   (reg->mant.m32[0] << (32 - cnt));
 39		reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
 40		break;
 41	case 33 ... 39:
 42		asm volatile ("bfextu %1{%2,#8},%0" : "=d" (reg->lowmant)
 43			: "m" (reg->mant.m32[0]), "d" (64 - cnt));
 44		if (reg->mant.m32[1] << (40 - cnt))
 45			reg->lowmant |= 1;
 46		reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
 47		reg->mant.m32[0] = 0;
 48		break;
 49	case 40 ... 71:
 50		reg->lowmant = reg->mant.m32[0] >> (cnt - 40);
 51		if ((reg->mant.m32[0] << (72 - cnt)) || reg->mant.m32[1])
 52			reg->lowmant |= 1;
 53		reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
 54		reg->mant.m32[0] = 0;
 55		break;
 56	default:
 57		reg->lowmant = reg->mant.m32[0] || reg->mant.m32[1];
 58		reg->mant.m32[0] = 0;
 59		reg->mant.m32[1] = 0;
 60		break;
 61	}
 62}
 63
 64static inline int fp_overnormalize(struct fp_ext *reg)
 65{
 66	int shift;
 67
 68	if (reg->mant.m32[0]) {
 69		asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[0]));
 70		reg->mant.m32[0] = (reg->mant.m32[0] << shift) | (reg->mant.m32[1] >> (32 - shift));
 71		reg->mant.m32[1] = (reg->mant.m32[1] << shift);
 72	} else {
 73		asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[1]));
 74		reg->mant.m32[0] = (reg->mant.m32[1] << shift);
 75		reg->mant.m32[1] = 0;
 76		shift += 32;
 77	}
 78
 79	return shift;
 80}
 81
 82static inline int fp_addmant(struct fp_ext *dest, struct fp_ext *src)
 83{
 84	int carry;
 85
 86	/* we assume here, gcc only insert move and a clr instr */
 87	asm volatile ("add.b %1,%0" : "=d,g" (dest->lowmant)
 88		: "g,d" (src->lowmant), "0,0" (dest->lowmant));
 89	asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[1])
 90		: "d" (src->mant.m32[1]), "0" (dest->mant.m32[1]));
 91	asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[0])
 92		: "d" (src->mant.m32[0]), "0" (dest->mant.m32[0]));
 93	asm volatile ("addx.l %0,%0" : "=d" (carry) : "0" (0));
 94
 95	return carry;
 96}
 97
 98static inline int fp_addcarry(struct fp_ext *reg)
 99{
100	if (++reg->exp == 0x7fff) {
101		if (reg->mant.m64)
102			fp_set_sr(FPSR_EXC_INEX2);
103		reg->mant.m64 = 0;
104		fp_set_sr(FPSR_EXC_OVFL);
105		return 0;
106	}
107	reg->lowmant = (reg->mant.m32[1] << 7) | (reg->lowmant ? 1 : 0);
108	reg->mant.m32[1] = (reg->mant.m32[1] >> 1) |
109			   (reg->mant.m32[0] << 31);
110	reg->mant.m32[0] = (reg->mant.m32[0] >> 1) | 0x80000000;
111
112	return 1;
113}
114
115static inline void fp_submant(struct fp_ext *dest, struct fp_ext *src1,
116			      struct fp_ext *src2)
117{
118	/* we assume here, gcc only insert move and a clr instr */
119	asm volatile ("sub.b %1,%0" : "=d,g" (dest->lowmant)
120		: "g,d" (src2->lowmant), "0,0" (src1->lowmant));
121	asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[1])
122		: "d" (src2->mant.m32[1]), "0" (src1->mant.m32[1]));
123	asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[0])
124		: "d" (src2->mant.m32[0]), "0" (src1->mant.m32[0]));
125}
126
127#define fp_mul64(desth, destl, src1, src2) ({				\
128	asm ("mulu.l %2,%1:%0" : "=d" (destl), "=d" (desth)		\
129		: "dm" (src1), "0" (src2));				\
130})
131#define fp_div64(quot, rem, srch, srcl, div)				\
132	asm ("divu.l %2,%1:%0" : "=d" (quot), "=d" (rem)		\
133		: "dm" (div), "1" (srch), "0" (srcl))
134#define fp_add64(dest1, dest2, src1, src2) ({				\
135	asm ("add.l %1,%0" : "=d,dm" (dest2)				\
136		: "dm,d" (src2), "0,0" (dest2));			\
137	asm ("addx.l %1,%0" : "=d" (dest1)				\
138		: "d" (src1), "0" (dest1));				\
139})
140#define fp_addx96(dest, src) ({						\
141	/* we assume here, gcc only insert move and a clr instr */	\
142	asm volatile ("add.l %1,%0" : "=d,g" (dest->m32[2])		\
143		: "g,d" (temp.m32[1]), "0,0" (dest->m32[2]));		\
144	asm volatile ("addx.l %1,%0" : "=d" (dest->m32[1])		\
145		: "d" (temp.m32[0]), "0" (dest->m32[1]));		\
146	asm volatile ("addx.l %1,%0" : "=d" (dest->m32[0])		\
147		: "d" (0), "0" (dest->m32[0]));				\
148})
149#define fp_sub64(dest, src) ({						\
150	asm ("sub.l %1,%0" : "=d,dm" (dest.m32[1])			\
151		: "dm,d" (src.m32[1]), "0,0" (dest.m32[1]));		\
152	asm ("subx.l %1,%0" : "=d" (dest.m32[0])			\
153		: "d" (src.m32[0]), "0" (dest.m32[0]));			\
154})
155#define fp_sub96c(dest, srch, srcm, srcl) ({				\
156	char carry;							\
157	asm ("sub.l %1,%0" : "=d,dm" (dest.m32[2])			\
158		: "dm,d" (srcl), "0,0" (dest.m32[2]));			\
159	asm ("subx.l %1,%0" : "=d" (dest.m32[1])			\
160		: "d" (srcm), "0" (dest.m32[1]));			\
161	asm ("subx.l %2,%1; scs %0" : "=d" (carry), "=d" (dest.m32[0])	\
162		: "d" (srch), "1" (dest.m32[0]));			\
163	carry;								\
164})
165
166static inline void fp_multiplymant(union fp_mant128 *dest, struct fp_ext *src1,
167				   struct fp_ext *src2)
168{
169	union fp_mant64 temp;
170
171	fp_mul64(dest->m32[0], dest->m32[1], src1->mant.m32[0], src2->mant.m32[0]);
172	fp_mul64(dest->m32[2], dest->m32[3], src1->mant.m32[1], src2->mant.m32[1]);
173
174	fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[0], src2->mant.m32[1]);
175	fp_addx96(dest, temp);
176
177	fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[1], src2->mant.m32[0]);
178	fp_addx96(dest, temp);
179}
180
181static inline void fp_dividemant(union fp_mant128 *dest, struct fp_ext *src,
182				 struct fp_ext *div)
183{
184	union fp_mant128 tmp;
185	union fp_mant64 tmp64;
186	unsigned long *mantp = dest->m32;
187	unsigned long fix, rem, first, dummy;
188	int i;
189
190	/* the algorithm below requires dest to be smaller than div,
191	   but both have the high bit set */
192	if (src->mant.m64 >= div->mant.m64) {
193		fp_sub64(src->mant, div->mant);
194		*mantp = 1;
195	} else
196		*mantp = 0;
197	mantp++;
198
199	/* basic idea behind this algorithm: we can't divide two 64bit numbers
200	   (AB/CD) directly, but we can calculate AB/C0, but this means this
201	   quotient is off by C0/CD, so we have to multiply the first result
202	   to fix the result, after that we have nearly the correct result
203	   and only a few corrections are needed. */
204
205	/* C0/CD can be precalculated, but it's an 64bit division again, but
206	   we can make it a bit easier, by dividing first through C so we get
207	   10/1D and now only a single shift and the value fits into 32bit. */
208	fix = 0x80000000;
209	dummy = div->mant.m32[1] / div->mant.m32[0] + 1;
210	dummy = (dummy >> 1) | fix;
211	fp_div64(fix, dummy, fix, 0, dummy);
212	fix--;
213
214	for (i = 0; i < 3; i++, mantp++) {
215		if (src->mant.m32[0] == div->mant.m32[0]) {
216			fp_div64(first, rem, 0, src->mant.m32[1], div->mant.m32[0]);
217
218			fp_mul64(*mantp, dummy, first, fix);
219			*mantp += fix;
220		} else {
221			fp_div64(first, rem, src->mant.m32[0], src->mant.m32[1], div->mant.m32[0]);
222
223			fp_mul64(*mantp, dummy, first, fix);
224		}
225
226		fp_mul64(tmp.m32[0], tmp.m32[1], div->mant.m32[0], first - *mantp);
227		fp_add64(tmp.m32[0], tmp.m32[1], 0, rem);
228		tmp.m32[2] = 0;
229
230		fp_mul64(tmp64.m32[0], tmp64.m32[1], *mantp, div->mant.m32[1]);
231		fp_sub96c(tmp, 0, tmp64.m32[0], tmp64.m32[1]);
232
233		src->mant.m32[0] = tmp.m32[1];
234		src->mant.m32[1] = tmp.m32[2];
235
236		while (!fp_sub96c(tmp, 0, div->mant.m32[0], div->mant.m32[1])) {
237			src->mant.m32[0] = tmp.m32[1];
238			src->mant.m32[1] = tmp.m32[2];
239			*mantp += 1;
240		}
241	}
242}
243
244static inline void fp_putmant128(struct fp_ext *dest, union fp_mant128 *src,
245				 int shift)
246{
247	unsigned long tmp;
248
249	switch (shift) {
250	case 0:
251		dest->mant.m64 = src->m64[0];
252		dest->lowmant = src->m32[2] >> 24;
253		if (src->m32[3] || (src->m32[2] << 8))
254			dest->lowmant |= 1;
255		break;
256	case 1:
257		asm volatile ("lsl.l #1,%0"
258			: "=d" (tmp) : "0" (src->m32[2]));
259		asm volatile ("roxl.l #1,%0"
260			: "=d" (dest->mant.m32[1]) : "0" (src->m32[1]));
261		asm volatile ("roxl.l #1,%0"
262			: "=d" (dest->mant.m32[0]) : "0" (src->m32[0]));
263		dest->lowmant = tmp >> 24;
264		if (src->m32[3] || (tmp << 8))
265			dest->lowmant |= 1;
266		break;
267	case 31:
268		asm volatile ("lsr.l #1,%1; roxr.l #1,%0"
269			: "=d" (dest->mant.m32[0])
270			: "d" (src->m32[0]), "0" (src->m32[1]));
271		asm volatile ("roxr.l #1,%0"
272			: "=d" (dest->mant.m32[1]) : "0" (src->m32[2]));
273		asm volatile ("roxr.l #1,%0"
274			: "=d" (tmp) : "0" (src->m32[3]));
275		dest->lowmant = tmp >> 24;
276		if (src->m32[3] << 7)
277			dest->lowmant |= 1;
278		break;
279	case 32:
280		dest->mant.m32[0] = src->m32[1];
281		dest->mant.m32[1] = src->m32[2];
282		dest->lowmant = src->m32[3] >> 24;
283		if (src->m32[3] << 8)
284			dest->lowmant |= 1;
285		break;
286	}
287}
288
289#endif	/* MULTI_ARITH_H */