Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 *  linux/arch/alpha/kernel/time.c
  3 *
  4 *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
  5 *
  6 * This file contains the PC-specific time handling details:
  7 * reading the RTC at bootup, etc..
  8 * 1994-07-02    Alan Modra
  9 *	fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
 10 * 1995-03-26    Markus Kuhn
 11 *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
 12 *      precision CMOS clock update
 13 * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
 14 *		"A Kernel Model for Precision Timekeeping" by Dave Mills
 15 * 1997-01-09    Adrian Sun
 16 *      use interval timer if CONFIG_RTC=y
 17 * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
 18 *      fixed tick loss calculation in timer_interrupt
 19 *      (round system clock to nearest tick instead of truncating)
 20 *      fixed algorithm in time_init for getting time from CMOS clock
 21 * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
 22 *	fixed algorithm in do_gettimeofday() for calculating the precise time
 23 *	from processor cycle counter (now taking lost_ticks into account)
 24 * 2000-08-13	Jan-Benedict Glaw <jbglaw@lug-owl.de>
 25 * 	Fixed time_init to be aware of epoches != 1900. This prevents
 26 * 	booting up in 2048 for me;) Code is stolen from rtc.c.
 27 * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
 28 *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
 29 */
 30#include <linux/errno.h>
 31#include <linux/module.h>
 32#include <linux/sched.h>
 33#include <linux/kernel.h>
 34#include <linux/param.h>
 35#include <linux/string.h>
 36#include <linux/mm.h>
 37#include <linux/delay.h>
 38#include <linux/ioport.h>
 39#include <linux/irq.h>
 40#include <linux/interrupt.h>
 41#include <linux/init.h>
 42#include <linux/bcd.h>
 43#include <linux/profile.h>
 44#include <linux/irq_work.h>
 45
 46#include <asm/uaccess.h>
 47#include <asm/io.h>
 48#include <asm/hwrpb.h>
 49#include <asm/rtc.h>
 50
 51#include <linux/mc146818rtc.h>
 52#include <linux/time.h>
 53#include <linux/timex.h>
 54#include <linux/clocksource.h>
 
 55
 56#include "proto.h"
 57#include "irq_impl.h"
 58
 59static int set_rtc_mmss(unsigned long);
 60
 61DEFINE_SPINLOCK(rtc_lock);
 62EXPORT_SYMBOL(rtc_lock);
 63
 64#define TICK_SIZE (tick_nsec / 1000)
 65
 66/*
 67 * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting
 68 * by 48 gives us 16 bits for HZ while keeping the accuracy good even
 69 * for large CPU clock rates.
 70 */
 71#define FIX_SHIFT	48
 72
 73/* lump static variables together for more efficient access: */
 74static struct {
 75	/* cycle counter last time it got invoked */
 76	__u32 last_time;
 77	/* ticks/cycle * 2^48 */
 78	unsigned long scaled_ticks_per_cycle;
 79	/* partial unused tick */
 80	unsigned long partial_tick;
 81} state;
 82
 83unsigned long est_cycle_freq;
 84
 85#ifdef CONFIG_IRQ_WORK
 86
 87DEFINE_PER_CPU(u8, irq_work_pending);
 88
 89#define set_irq_work_pending_flag()  __get_cpu_var(irq_work_pending) = 1
 90#define test_irq_work_pending()      __get_cpu_var(irq_work_pending)
 91#define clear_irq_work_pending()     __get_cpu_var(irq_work_pending) = 0
 92
 93void arch_irq_work_raise(void)
 94{
 95	set_irq_work_pending_flag();
 96}
 97
 98#else  /* CONFIG_IRQ_WORK */
 99
100#define test_irq_work_pending()      0
101#define clear_irq_work_pending()
102
103#endif /* CONFIG_IRQ_WORK */
104
105
106static inline __u32 rpcc(void)
107{
108    __u32 result;
109    asm volatile ("rpcc %0" : "=r"(result));
110    return result;
111}
112
113int update_persistent_clock(struct timespec now)
114{
115	return set_rtc_mmss(now.tv_sec);
116}
117
118void read_persistent_clock(struct timespec *ts)
 
 
 
 
 
 
 
 
119{
120	unsigned int year, mon, day, hour, min, sec, epoch;
 
121
122	sec = CMOS_READ(RTC_SECONDS);
123	min = CMOS_READ(RTC_MINUTES);
124	hour = CMOS_READ(RTC_HOURS);
125	day = CMOS_READ(RTC_DAY_OF_MONTH);
126	mon = CMOS_READ(RTC_MONTH);
127	year = CMOS_READ(RTC_YEAR);
128
129	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
130		sec = bcd2bin(sec);
131		min = bcd2bin(min);
132		hour = bcd2bin(hour);
133		day = bcd2bin(day);
134		mon = bcd2bin(mon);
135		year = bcd2bin(year);
136	}
137
138	/* PC-like is standard; used for year >= 70 */
139	epoch = 1900;
140	if (year < 20)
141		epoch = 2000;
142	else if (year >= 20 && year < 48)
143		/* NT epoch */
144		epoch = 1980;
145	else if (year >= 48 && year < 70)
146		/* Digital UNIX epoch */
147		epoch = 1952;
148
149	printk(KERN_INFO "Using epoch = %d\n", epoch);
 
 
 
 
150
151	if ((year += epoch) < 1970)
152		year += 100;
 
 
 
 
 
153
154	ts->tv_sec = mktime(year, mon, day, hour, min, sec);
155	ts->tv_nsec = 0;
156}
157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158
159
160/*
161 * timer_interrupt() needs to keep up the real-time clock,
162 * as well as call the "xtime_update()" routine every clocktick
163 */
164irqreturn_t timer_interrupt(int irq, void *dev)
 
165{
166	unsigned long delta;
167	__u32 now;
168	long nticks;
169
170#ifndef CONFIG_SMP
171	/* Not SMP, do kernel PC profiling here.  */
172	profile_tick(CPU_PROFILING);
173#endif
174
175	/*
176	 * Calculate how many ticks have passed since the last update,
177	 * including any previous partial leftover.  Save any resulting
178	 * fraction for the next pass.
179	 */
180	now = rpcc();
181	delta = now - state.last_time;
182	state.last_time = now;
183	delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
184	state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1); 
185	nticks = delta >> FIX_SHIFT;
186
187	if (nticks)
188		xtime_update(nticks);
 
 
 
189
190	if (test_irq_work_pending()) {
191		clear_irq_work_pending();
192		irq_work_run();
193	}
194
195#ifndef CONFIG_SMP
196	while (nticks--)
197		update_process_times(user_mode(get_irq_regs()));
198#endif
 
199
200	return IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
201}
202
 
203void __init
204common_init_rtc(void)
205{
206	unsigned char x;
207
208	/* Reset periodic interrupt frequency.  */
209	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
210        /* Test includes known working values on various platforms
211           where 0x26 is wrong; we refuse to change those. */
212	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
213		printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
214		CMOS_WRITE(0x26, RTC_FREQ_SELECT);
215	}
 
 
 
 
 
 
 
 
 
 
216
217	/* Turn on periodic interrupts.  */
218	x = CMOS_READ(RTC_CONTROL);
219	if (!(x & RTC_PIE)) {
220		printk("Turning on RTC interrupts.\n");
221		x |= RTC_PIE;
222		x &= ~(RTC_AIE | RTC_UIE);
223		CMOS_WRITE(x, RTC_CONTROL);
224	}
225	(void) CMOS_READ(RTC_INTR_FLAGS);
226
227	outb(0x36, 0x43);	/* pit counter 0: system timer */
228	outb(0x00, 0x40);
229	outb(0x00, 0x40);
230
231	outb(0xb6, 0x43);	/* pit counter 2: speaker */
232	outb(0x31, 0x42);
233	outb(0x13, 0x42);
234
235	init_rtc_irq();
236}
237
238unsigned int common_get_rtc_time(struct rtc_time *time)
239{
240	return __get_rtc_time(time);
241}
 
 
 
 
 
 
 
 
 
 
 
242
243int common_set_rtc_time(struct rtc_time *time)
244{
245	return __set_rtc_time(time);
246}
247
 
 
 
 
 
 
 
 
 
 
248/* Validate a computed cycle counter result against the known bounds for
249   the given processor core.  There's too much brokenness in the way of
250   timing hardware for any one method to work everywhere.  :-(
251
252   Return 0 if the result cannot be trusted, otherwise return the argument.  */
253
254static unsigned long __init
255validate_cc_value(unsigned long cc)
256{
257	static struct bounds {
258		unsigned int min, max;
259	} cpu_hz[] __initdata = {
260		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
261		[EV4_CPU]    = {  100000000,  300000000 },
262		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
263		[EV45_CPU]   = {  200000000,  300000000 },
264		[EV5_CPU]    = {  250000000,  433000000 },
265		[EV56_CPU]   = {  333000000,  667000000 },
266		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
267		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
268		[EV6_CPU]    = {  466000000,  600000000 },
269		[EV67_CPU]   = {  600000000,  750000000 },
270		[EV68AL_CPU] = {  750000000,  940000000 },
271		[EV68CB_CPU] = { 1000000000, 1333333333 },
272		/* None of the following are shipping as of 2001-11-01.  */
273		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
274		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
275		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
276		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
277	};
278
279	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
280	const unsigned int deviation = 10000000;
281
282	struct percpu_struct *cpu;
283	unsigned int index;
284
285	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
286	index = cpu->type & 0xffffffff;
287
288	/* If index out of bounds, no way to validate.  */
289	if (index >= ARRAY_SIZE(cpu_hz))
290		return cc;
291
292	/* If index contains no data, no way to validate.  */
293	if (cpu_hz[index].max == 0)
294		return cc;
295
296	if (cc < cpu_hz[index].min - deviation
297	    || cc > cpu_hz[index].max + deviation)
298		return 0;
299
300	return cc;
301}
302
303
304/*
305 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
306 * arch/i386/time.c.
307 */
308
309#define CALIBRATE_LATCH	0xffff
310#define TIMEOUT_COUNT	0x100000
311
312static unsigned long __init
313calibrate_cc_with_pit(void)
314{
315	int cc, count = 0;
316
317	/* Set the Gate high, disable speaker */
318	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
319
320	/*
321	 * Now let's take care of CTC channel 2
322	 *
323	 * Set the Gate high, program CTC channel 2 for mode 0,
324	 * (interrupt on terminal count mode), binary count,
325	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
326	 */
327	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
328	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
329	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */
330
331	cc = rpcc();
332	do {
333		count++;
334	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
335	cc = rpcc() - cc;
336
337	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
338	if (count <= 1 || count == TIMEOUT_COUNT)
339		return 0;
340
341	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
342}
343
344/* The Linux interpretation of the CMOS clock register contents:
345   When the Update-In-Progress (UIP) flag goes from 1 to 0, the
346   RTC registers show the second which has precisely just started.
347   Let's hope other operating systems interpret the RTC the same way.  */
348
349static unsigned long __init
350rpcc_after_update_in_progress(void)
351{
352	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
353	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
354
355	return rpcc();
356}
357
358#ifndef CONFIG_SMP
359/* Until and unless we figure out how to get cpu cycle counters
360   in sync and keep them there, we can't use the rpcc.  */
361static cycle_t read_rpcc(struct clocksource *cs)
362{
363	cycle_t ret = (cycle_t)rpcc();
364	return ret;
365}
366
367static struct clocksource clocksource_rpcc = {
368	.name                   = "rpcc",
369	.rating                 = 300,
370	.read                   = read_rpcc,
371	.mask                   = CLOCKSOURCE_MASK(32),
372	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS
373};
374
375static inline void register_rpcc_clocksource(long cycle_freq)
376{
377	clocksource_register_hz(&clocksource_rpcc, cycle_freq);
378}
379#else /* !CONFIG_SMP */
380static inline void register_rpcc_clocksource(long cycle_freq)
381{
382}
383#endif /* !CONFIG_SMP */
384
385void __init
386time_init(void)
387{
388	unsigned int cc1, cc2;
389	unsigned long cycle_freq, tolerance;
390	long diff;
391
 
 
 
 
 
 
 
 
 
392	/* Calibrate CPU clock -- attempt #1.  */
393	if (!est_cycle_freq)
394		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
395
396	cc1 = rpcc();
397
398	/* Calibrate CPU clock -- attempt #2.  */
399	if (!est_cycle_freq) {
400		cc1 = rpcc_after_update_in_progress();
401		cc2 = rpcc_after_update_in_progress();
402		est_cycle_freq = validate_cc_value(cc2 - cc1);
403		cc1 = cc2;
404	}
405
406	cycle_freq = hwrpb->cycle_freq;
407	if (est_cycle_freq) {
408		/* If the given value is within 250 PPM of what we calculated,
409		   accept it.  Otherwise, use what we found.  */
410		tolerance = cycle_freq / 4000;
411		diff = cycle_freq - est_cycle_freq;
412		if (diff < 0)
413			diff = -diff;
414		if ((unsigned long)diff > tolerance) {
415			cycle_freq = est_cycle_freq;
416			printk("HWRPB cycle frequency bogus.  "
417			       "Estimated %lu Hz\n", cycle_freq);
418		} else {
419			est_cycle_freq = 0;
420		}
421	} else if (! validate_cc_value (cycle_freq)) {
422		printk("HWRPB cycle frequency bogus, "
423		       "and unable to estimate a proper value!\n");
424	}
425
426	/* From John Bowman <bowman@math.ualberta.ca>: allow the values
427	   to settle, as the Update-In-Progress bit going low isn't good
428	   enough on some hardware.  2ms is our guess; we haven't found 
429	   bogomips yet, but this is close on a 500Mhz box.  */
430	__delay(1000000);
431
432
433	if (HZ > (1<<16)) {
434		extern void __you_loose (void);
435		__you_loose();
436	}
437
438	register_rpcc_clocksource(cycle_freq);
439
440	state.last_time = cc1;
441	state.scaled_ticks_per_cycle
442		= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
443	state.partial_tick = 0L;
444
445	/* Startup the timer source. */
446	alpha_mv.init_rtc();
 
447}
448
449/*
450 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
451 * called 500 ms after the second nowtime has started, because when
452 * nowtime is written into the registers of the CMOS clock, it will
453 * jump to the next second precisely 500 ms later. Check the Motorola
454 * MC146818A or Dallas DS12887 data sheet for details.
455 *
456 * BUG: This routine does not handle hour overflow properly; it just
457 *      sets the minutes. Usually you won't notice until after reboot!
458 */
459
460
461static int
462set_rtc_mmss(unsigned long nowtime)
463{
464	int retval = 0;
465	int real_seconds, real_minutes, cmos_minutes;
466	unsigned char save_control, save_freq_select;
467
468	/* irq are locally disabled here */
469	spin_lock(&rtc_lock);
470	/* Tell the clock it's being set */
471	save_control = CMOS_READ(RTC_CONTROL);
472	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
473
474	/* Stop and reset prescaler */
475	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
476	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
477
478	cmos_minutes = CMOS_READ(RTC_MINUTES);
479	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
480		cmos_minutes = bcd2bin(cmos_minutes);
481
482	/*
483	 * since we're only adjusting minutes and seconds,
484	 * don't interfere with hour overflow. This avoids
485	 * messing with unknown time zones but requires your
486	 * RTC not to be off by more than 15 minutes
487	 */
488	real_seconds = nowtime % 60;
489	real_minutes = nowtime / 60;
490	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
491		/* correct for half hour time zone */
492		real_minutes += 30;
493	}
494	real_minutes %= 60;
495
496	if (abs(real_minutes - cmos_minutes) < 30) {
497		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
498			real_seconds = bin2bcd(real_seconds);
499			real_minutes = bin2bcd(real_minutes);
500		}
501		CMOS_WRITE(real_seconds,RTC_SECONDS);
502		CMOS_WRITE(real_minutes,RTC_MINUTES);
503	} else {
504		printk_once(KERN_NOTICE
505		       "set_rtc_mmss: can't update from %d to %d\n",
506		       cmos_minutes, real_minutes);
507 		retval = -1;
508	}
509
510	/* The following flags have to be released exactly in this order,
511	 * otherwise the DS12887 (popular MC146818A clone with integrated
512	 * battery and quartz) will not reset the oscillator and will not
513	 * update precisely 500 ms later. You won't find this mentioned in
514	 * the Dallas Semiconductor data sheets, but who believes data
515	 * sheets anyway ...                           -- Markus Kuhn
516	 */
517	CMOS_WRITE(save_control, RTC_CONTROL);
518	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
519	spin_unlock(&rtc_lock);
520
521	return retval;
522}
v4.6
  1/*
  2 *  linux/arch/alpha/kernel/time.c
  3 *
  4 *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
  5 *
  6 * This file contains the clocksource time handling.
 
 
 
 
 
 
  7 * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
  8 *		"A Kernel Model for Precision Timekeeping" by Dave Mills
  9 * 1997-01-09    Adrian Sun
 10 *      use interval timer if CONFIG_RTC=y
 11 * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
 12 *      fixed tick loss calculation in timer_interrupt
 13 *      (round system clock to nearest tick instead of truncating)
 14 *      fixed algorithm in time_init for getting time from CMOS clock
 15 * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
 16 *	fixed algorithm in do_gettimeofday() for calculating the precise time
 17 *	from processor cycle counter (now taking lost_ticks into account)
 
 
 
 18 * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
 19 *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
 20 */
 21#include <linux/errno.h>
 22#include <linux/module.h>
 23#include <linux/sched.h>
 24#include <linux/kernel.h>
 25#include <linux/param.h>
 26#include <linux/string.h>
 27#include <linux/mm.h>
 28#include <linux/delay.h>
 29#include <linux/ioport.h>
 30#include <linux/irq.h>
 31#include <linux/interrupt.h>
 32#include <linux/init.h>
 33#include <linux/bcd.h>
 34#include <linux/profile.h>
 35#include <linux/irq_work.h>
 36
 37#include <asm/uaccess.h>
 38#include <asm/io.h>
 39#include <asm/hwrpb.h>
 
 40
 41#include <linux/mc146818rtc.h>
 42#include <linux/time.h>
 43#include <linux/timex.h>
 44#include <linux/clocksource.h>
 45#include <linux/clockchips.h>
 46
 47#include "proto.h"
 48#include "irq_impl.h"
 49
 
 
 50DEFINE_SPINLOCK(rtc_lock);
 51EXPORT_SYMBOL(rtc_lock);
 52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 53unsigned long est_cycle_freq;
 54
 55#ifdef CONFIG_IRQ_WORK
 56
 57DEFINE_PER_CPU(u8, irq_work_pending);
 58
 59#define set_irq_work_pending_flag()  __this_cpu_write(irq_work_pending, 1)
 60#define test_irq_work_pending()      __this_cpu_read(irq_work_pending)
 61#define clear_irq_work_pending()     __this_cpu_write(irq_work_pending, 0)
 62
 63void arch_irq_work_raise(void)
 64{
 65	set_irq_work_pending_flag();
 66}
 67
 68#else  /* CONFIG_IRQ_WORK */
 69
 70#define test_irq_work_pending()      0
 71#define clear_irq_work_pending()
 72
 73#endif /* CONFIG_IRQ_WORK */
 74
 75
 76static inline __u32 rpcc(void)
 77{
 78	return __builtin_alpha_rpcc();
 
 
 79}
 80
 
 
 
 
 81
 82
 83/*
 84 * The RTC as a clock_event_device primitive.
 85 */
 86
 87static DEFINE_PER_CPU(struct clock_event_device, cpu_ce);
 88
 89irqreturn_t
 90rtc_timer_interrupt(int irq, void *dev)
 91{
 92	int cpu = smp_processor_id();
 93	struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
 94
 95	/* Don't run the hook for UNUSED or SHUTDOWN.  */
 96	if (likely(clockevent_state_periodic(ce)))
 97		ce->event_handler(ce);
 
 
 
 98
 99	if (test_irq_work_pending()) {
100		clear_irq_work_pending();
101		irq_work_run();
 
 
 
 
102	}
103
104	return IRQ_HANDLED;
105}
106
107static int
108rtc_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
109{
110	/* This hook is for oneshot mode, which we don't support.  */
111	return -EINVAL;
112}
 
113
114static void __init
115init_rtc_clockevent(void)
116{
117	int cpu = smp_processor_id();
118	struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
119
120	*ce = (struct clock_event_device){
121		.name = "rtc",
122		.features = CLOCK_EVT_FEAT_PERIODIC,
123		.rating = 100,
124		.cpumask = cpumask_of(cpu),
125		.set_next_event = rtc_ce_set_next_event,
126	};
127
128	clockevents_config_and_register(ce, CONFIG_HZ, 0, 0);
 
129}
130
131
132/*
133 * The QEMU clock as a clocksource primitive.
134 */
135
136static cycle_t
137qemu_cs_read(struct clocksource *cs)
138{
139	return qemu_get_vmtime();
140}
141
142static struct clocksource qemu_cs = {
143	.name                   = "qemu",
144	.rating                 = 400,
145	.read                   = qemu_cs_read,
146	.mask                   = CLOCKSOURCE_MASK(64),
147	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS,
148	.max_idle_ns		= LONG_MAX
149};
150
151
152/*
153 * The QEMU alarm as a clock_event_device primitive.
 
154 */
155
156static int qemu_ce_shutdown(struct clock_event_device *ce)
157{
158	/* The mode member of CE is updated for us in generic code.
159	   Just make sure that the event is disabled.  */
160	qemu_set_alarm_abs(0);
161	return 0;
162}
 
 
 
163
164static int
165qemu_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
166{
167	qemu_set_alarm_rel(evt);
168	return 0;
169}
 
 
 
 
 
170
171static irqreturn_t
172qemu_timer_interrupt(int irq, void *dev)
173{
174	int cpu = smp_processor_id();
175	struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
176
177	ce->event_handler(ce);
178	return IRQ_HANDLED;
179}
 
180
181static void __init
182init_qemu_clockevent(void)
183{
184	int cpu = smp_processor_id();
185	struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
186
187	*ce = (struct clock_event_device){
188		.name = "qemu",
189		.features = CLOCK_EVT_FEAT_ONESHOT,
190		.rating = 400,
191		.cpumask = cpumask_of(cpu),
192		.set_state_shutdown = qemu_ce_shutdown,
193		.set_state_oneshot = qemu_ce_shutdown,
194		.tick_resume = qemu_ce_shutdown,
195		.set_next_event = qemu_ce_set_next_event,
196	};
197
198	clockevents_config_and_register(ce, NSEC_PER_SEC, 1000, LONG_MAX);
199}
200
201
202void __init
203common_init_rtc(void)
204{
205	unsigned char x, sel = 0;
206
207	/* Reset periodic interrupt frequency.  */
208#if CONFIG_HZ == 1024 || CONFIG_HZ == 1200
209 	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
210	/* Test includes known working values on various platforms
211	   where 0x26 is wrong; we refuse to change those. */
212 	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
213		sel = RTC_REF_CLCK_32KHZ + 6;
214	}
215#elif CONFIG_HZ == 256 || CONFIG_HZ == 128 || CONFIG_HZ == 64 || CONFIG_HZ == 32
216	sel = RTC_REF_CLCK_32KHZ + __builtin_ffs(32768 / CONFIG_HZ);
217#else
218# error "Unknown HZ from arch/alpha/Kconfig"
219#endif
220	if (sel) {
221		printk(KERN_INFO "Setting RTC_FREQ to %d Hz (%x)\n",
222		       CONFIG_HZ, sel);
223		CMOS_WRITE(sel, RTC_FREQ_SELECT);
224 	}
225
226	/* Turn on periodic interrupts.  */
227	x = CMOS_READ(RTC_CONTROL);
228	if (!(x & RTC_PIE)) {
229		printk("Turning on RTC interrupts.\n");
230		x |= RTC_PIE;
231		x &= ~(RTC_AIE | RTC_UIE);
232		CMOS_WRITE(x, RTC_CONTROL);
233	}
234	(void) CMOS_READ(RTC_INTR_FLAGS);
235
236	outb(0x36, 0x43);	/* pit counter 0: system timer */
237	outb(0x00, 0x40);
238	outb(0x00, 0x40);
239
240	outb(0xb6, 0x43);	/* pit counter 2: speaker */
241	outb(0x31, 0x42);
242	outb(0x13, 0x42);
243
244	init_rtc_irq();
245}
246
247
248#ifndef CONFIG_ALPHA_WTINT
249/*
250 * The RPCC as a clocksource primitive.
251 *
252 * While we have free-running timecounters running on all CPUs, and we make
253 * a half-hearted attempt in init_rtc_rpcc_info to sync the timecounter
254 * with the wall clock, that initialization isn't kept up-to-date across
255 * different time counters in SMP mode.  Therefore we can only use this
256 * method when there's only one CPU enabled.
257 *
258 * When using the WTINT PALcall, the RPCC may shift to a lower frequency,
259 * or stop altogether, while waiting for the interrupt.  Therefore we cannot
260 * use this method when WTINT is in use.
261 */
262
263static cycle_t read_rpcc(struct clocksource *cs)
264{
265	return rpcc();
266}
267
268static struct clocksource clocksource_rpcc = {
269	.name                   = "rpcc",
270	.rating                 = 300,
271	.read                   = read_rpcc,
272	.mask                   = CLOCKSOURCE_MASK(32),
273	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS
274};
275#endif /* ALPHA_WTINT */
276
277
278/* Validate a computed cycle counter result against the known bounds for
279   the given processor core.  There's too much brokenness in the way of
280   timing hardware for any one method to work everywhere.  :-(
281
282   Return 0 if the result cannot be trusted, otherwise return the argument.  */
283
284static unsigned long __init
285validate_cc_value(unsigned long cc)
286{
287	static struct bounds {
288		unsigned int min, max;
289	} cpu_hz[] __initdata = {
290		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
291		[EV4_CPU]    = {  100000000,  300000000 },
292		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
293		[EV45_CPU]   = {  200000000,  300000000 },
294		[EV5_CPU]    = {  250000000,  433000000 },
295		[EV56_CPU]   = {  333000000,  667000000 },
296		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
297		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
298		[EV6_CPU]    = {  466000000,  600000000 },
299		[EV67_CPU]   = {  600000000,  750000000 },
300		[EV68AL_CPU] = {  750000000,  940000000 },
301		[EV68CB_CPU] = { 1000000000, 1333333333 },
302		/* None of the following are shipping as of 2001-11-01.  */
303		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
304		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
305		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
306		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
307	};
308
309	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
310	const unsigned int deviation = 10000000;
311
312	struct percpu_struct *cpu;
313	unsigned int index;
314
315	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
316	index = cpu->type & 0xffffffff;
317
318	/* If index out of bounds, no way to validate.  */
319	if (index >= ARRAY_SIZE(cpu_hz))
320		return cc;
321
322	/* If index contains no data, no way to validate.  */
323	if (cpu_hz[index].max == 0)
324		return cc;
325
326	if (cc < cpu_hz[index].min - deviation
327	    || cc > cpu_hz[index].max + deviation)
328		return 0;
329
330	return cc;
331}
332
333
334/*
335 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
336 * arch/i386/time.c.
337 */
338
339#define CALIBRATE_LATCH	0xffff
340#define TIMEOUT_COUNT	0x100000
341
342static unsigned long __init
343calibrate_cc_with_pit(void)
344{
345	int cc, count = 0;
346
347	/* Set the Gate high, disable speaker */
348	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
349
350	/*
351	 * Now let's take care of CTC channel 2
352	 *
353	 * Set the Gate high, program CTC channel 2 for mode 0,
354	 * (interrupt on terminal count mode), binary count,
355	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
356	 */
357	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
358	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
359	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */
360
361	cc = rpcc();
362	do {
363		count++;
364	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
365	cc = rpcc() - cc;
366
367	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
368	if (count <= 1 || count == TIMEOUT_COUNT)
369		return 0;
370
371	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
372}
373
374/* The Linux interpretation of the CMOS clock register contents:
375   When the Update-In-Progress (UIP) flag goes from 1 to 0, the
376   RTC registers show the second which has precisely just started.
377   Let's hope other operating systems interpret the RTC the same way.  */
378
379static unsigned long __init
380rpcc_after_update_in_progress(void)
381{
382	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
383	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
384
385	return rpcc();
386}
387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
388void __init
389time_init(void)
390{
391	unsigned int cc1, cc2;
392	unsigned long cycle_freq, tolerance;
393	long diff;
394
395	if (alpha_using_qemu) {
396		clocksource_register_hz(&qemu_cs, NSEC_PER_SEC);
397		init_qemu_clockevent();
398
399		timer_irqaction.handler = qemu_timer_interrupt;
400		init_rtc_irq();
401		return;
402	}
403
404	/* Calibrate CPU clock -- attempt #1.  */
405	if (!est_cycle_freq)
406		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
407
408	cc1 = rpcc();
409
410	/* Calibrate CPU clock -- attempt #2.  */
411	if (!est_cycle_freq) {
412		cc1 = rpcc_after_update_in_progress();
413		cc2 = rpcc_after_update_in_progress();
414		est_cycle_freq = validate_cc_value(cc2 - cc1);
415		cc1 = cc2;
416	}
417
418	cycle_freq = hwrpb->cycle_freq;
419	if (est_cycle_freq) {
420		/* If the given value is within 250 PPM of what we calculated,
421		   accept it.  Otherwise, use what we found.  */
422		tolerance = cycle_freq / 4000;
423		diff = cycle_freq - est_cycle_freq;
424		if (diff < 0)
425			diff = -diff;
426		if ((unsigned long)diff > tolerance) {
427			cycle_freq = est_cycle_freq;
428			printk("HWRPB cycle frequency bogus.  "
429			       "Estimated %lu Hz\n", cycle_freq);
430		} else {
431			est_cycle_freq = 0;
432		}
433	} else if (! validate_cc_value (cycle_freq)) {
434		printk("HWRPB cycle frequency bogus, "
435		       "and unable to estimate a proper value!\n");
436	}
437
438	/* See above for restrictions on using clocksource_rpcc.  */
439#ifndef CONFIG_ALPHA_WTINT
440	if (hwrpb->nr_processors == 1)
441		clocksource_register_hz(&clocksource_rpcc, cycle_freq);
442#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
443
444	/* Startup the timer source. */
445	alpha_mv.init_rtc();
446	init_rtc_clockevent();
447}
448
449/* Initialize the clock_event_device for secondary cpus.  */
450#ifdef CONFIG_SMP
451void __init
452init_clockevent(void)
 
 
 
 
 
 
 
 
 
 
453{
454	if (alpha_using_qemu)
455		init_qemu_clockevent();
456	else
457		init_rtc_clockevent();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
458}
459#endif