Linux Audio

Check our new training course

Loading...
v3.1
   1		ftrace - Function Tracer
   2		========================
   3
   4Copyright 2008 Red Hat Inc.
   5   Author:   Steven Rostedt <srostedt@redhat.com>
   6  License:   The GNU Free Documentation License, Version 1.2
   7               (dual licensed under the GPL v2)
   8Reviewers:   Elias Oltmanns, Randy Dunlap, Andrew Morton,
   9	     John Kacur, and David Teigland.
  10Written for: 2.6.28-rc2
 
  11
  12Introduction
  13------------
  14
  15Ftrace is an internal tracer designed to help out developers and
  16designers of systems to find what is going on inside the kernel.
  17It can be used for debugging or analyzing latencies and
  18performance issues that take place outside of user-space.
  19
  20Although ftrace is the function tracer, it also includes an
  21infrastructure that allows for other types of tracing. Some of
  22the tracers that are currently in ftrace include a tracer to
  23trace context switches, the time it takes for a high priority
  24task to run after it was woken up, the time interrupts are
  25disabled, and more (ftrace allows for tracer plugins, which
  26means that the list of tracers can always grow).
 
 
 
  27
  28
  29Implementation Details
  30----------------------
  31
  32See ftrace-design.txt for details for arch porters and such.
  33
  34
  35The File System
  36---------------
  37
  38Ftrace uses the debugfs file system to hold the control files as
  39well as the files to display output.
  40
  41When debugfs is configured into the kernel (which selecting any ftrace
  42option will do) the directory /sys/kernel/debug will be created. To mount
  43this directory, you can add to your /etc/fstab file:
  44
  45 debugfs       /sys/kernel/debug          debugfs defaults        0       0
  46
  47Or you can mount it at run time with:
  48
  49 mount -t debugfs nodev /sys/kernel/debug
  50
  51For quicker access to that directory you may want to make a soft link to
  52it:
  53
  54 ln -s /sys/kernel/debug /debug
  55
  56Any selected ftrace option will also create a directory called tracing
  57within the debugfs. The rest of the document will assume that you are in
  58the ftrace directory (cd /sys/kernel/debug/tracing) and will only concentrate
  59on the files within that directory and not distract from the content with
  60the extended "/sys/kernel/debug/tracing" path name.
  61
  62That's it! (assuming that you have ftrace configured into your kernel)
  63
  64After mounting the debugfs, you can see a directory called
  65"tracing".  This directory contains the control and output files
  66of ftrace. Here is a list of some of the key files:
  67
  68
  69 Note: all time values are in microseconds.
  70
  71  current_tracer:
  72
  73	This is used to set or display the current tracer
  74	that is configured.
  75
  76  available_tracers:
  77
  78	This holds the different types of tracers that
  79	have been compiled into the kernel. The
  80	tracers listed here can be configured by
  81	echoing their name into current_tracer.
  82
  83  tracing_on:
  84
  85	This sets or displays whether writing to the trace
  86	ring buffer is enabled. Echo 0 into this file to disable
  87	the tracer or 1 to enable it.
 
 
  88
  89  trace:
  90
  91	This file holds the output of the trace in a human
  92	readable format (described below).
  93
  94  trace_pipe:
  95
  96	The output is the same as the "trace" file but this
  97	file is meant to be streamed with live tracing.
  98	Reads from this file will block until new data is
  99	retrieved.  Unlike the "trace" file, this file is a
 100	consumer. This means reading from this file causes
 101	sequential reads to display more current data. Once
 102	data is read from this file, it is consumed, and
 103	will not be read again with a sequential read. The
 104	"trace" file is static, and if the tracer is not
 105	adding more data,they will display the same
 106	information every time they are read.
 107
 108  trace_options:
 109
 110	This file lets the user control the amount of data
 111	that is displayed in one of the above output
 112	files.
 
 
 
 
 
 
 
 
 113
 114  tracing_max_latency:
 115
 116	Some of the tracers record the max latency.
 117	For example, the time interrupts are disabled.
 118	This time is saved in this file. The max trace
 119	will also be stored, and displayed by "trace".
 120	A new max trace will only be recorded if the
 121	latency is greater than the value in this
 122	file. (in microseconds)
 123
 
 
 
 
 
 
 
 124  buffer_size_kb:
 125
 126	This sets or displays the number of kilobytes each CPU
 127	buffer can hold. The tracer buffers are the same size
 128	for each CPU. The displayed number is the size of the
 129	CPU buffer and not total size of all buffers. The
 130	trace buffers are allocated in pages (blocks of memory
 131	that the kernel uses for allocation, usually 4 KB in size).
 132	If the last page allocated has room for more bytes
 133	than requested, the rest of the page will be used,
 134	making the actual allocation bigger than requested.
 135	( Note, the size may not be a multiple of the page size
 136	  due to buffer management overhead. )
 
 
 137
 138	This can only be updated when the current_tracer
 139	is set to "nop".
 
 
 
 
 
 
 
 
 
 
 
 
 140
 141  tracing_cpumask:
 142
 143	This is a mask that lets the user only trace
 144	on specified CPUS. The format is a hex string
 145	representing the CPUS.
 146
 147  set_ftrace_filter:
 148
 149	When dynamic ftrace is configured in (see the
 150	section below "dynamic ftrace"), the code is dynamically
 151	modified (code text rewrite) to disable calling of the
 152	function profiler (mcount). This lets tracing be configured
 153	in with practically no overhead in performance.  This also
 154	has a side effect of enabling or disabling specific functions
 155	to be traced. Echoing names of functions into this file
 156	will limit the trace to only those functions.
 157
 158	This interface also allows for commands to be used. See the
 159	"Filter commands" section for more details.
 160
 161  set_ftrace_notrace:
 162
 163	This has an effect opposite to that of
 164	set_ftrace_filter. Any function that is added here will not
 165	be traced. If a function exists in both set_ftrace_filter
 166	and set_ftrace_notrace,	the function will _not_ be traced.
 167
 168  set_ftrace_pid:
 169
 170	Have the function tracer only trace a single thread.
 171
 
 
 
 
 
 
 172  set_graph_function:
 173
 174	Set a "trigger" function where tracing should start
 175	with the function graph tracer (See the section
 176	"dynamic ftrace" for more details).
 177
 178  available_filter_functions:
 179
 180	This lists the functions that ftrace
 181	has processed and can trace. These are the function
 182	names that you can pass to "set_ftrace_filter" or
 183	"set_ftrace_notrace". (See the section "dynamic ftrace"
 184	below for more details.)
 185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186
 187The Tracers
 188-----------
 189
 190Here is the list of current tracers that may be configured.
 191
 192  "function"
 193
 194	Function call tracer to trace all kernel functions.
 195
 196  "function_graph"
 197
 198	Similar to the function tracer except that the
 199	function tracer probes the functions on their entry
 200	whereas the function graph tracer traces on both entry
 201	and exit of the functions. It then provides the ability
 202	to draw a graph of function calls similar to C code
 203	source.
 204
 205  "irqsoff"
 206
 207	Traces the areas that disable interrupts and saves
 208	the trace with the longest max latency.
 209	See tracing_max_latency. When a new max is recorded,
 210	it replaces the old trace. It is best to view this
 211	trace with the latency-format option enabled.
 212
 213  "preemptoff"
 214
 215	Similar to irqsoff but traces and records the amount of
 216	time for which preemption is disabled.
 217
 218  "preemptirqsoff"
 219
 220	Similar to irqsoff and preemptoff, but traces and
 221	records the largest time for which irqs and/or preemption
 222	is disabled.
 223
 224  "wakeup"
 225
 226	Traces and records the max latency that it takes for
 227	the highest priority task to get scheduled after
 228	it has been woken up.
 
 229
 230  "hw-branch-tracer"
 231
 232	Uses the BTS CPU feature on x86 CPUs to traces all
 233	branches executed.
 
 234
 235  "nop"
 236
 237	This is the "trace nothing" tracer. To remove all
 238	tracers from tracing simply echo "nop" into
 239	current_tracer.
 240
 241
 242Examples of using the tracer
 243----------------------------
 244
 245Here are typical examples of using the tracers when controlling
 246them only with the debugfs interface (without using any
 247user-land utilities).
 248
 249Output format:
 250--------------
 251
 252Here is an example of the output format of the file "trace"
 253
 254                             --------
 255# tracer: function
 256#
 257#           TASK-PID   CPU#    TIMESTAMP  FUNCTION
 258#              | |      |          |         |
 259            bash-4251  [01] 10152.583854: path_put <-path_walk
 260            bash-4251  [01] 10152.583855: dput <-path_put
 261            bash-4251  [01] 10152.583855: _atomic_dec_and_lock <-dput
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262                             --------
 263
 264A header is printed with the tracer name that is represented by
 265the trace. In this case the tracer is "function". Then a header
 266showing the format. Task name "bash", the task PID "4251", the
 267CPU that it was running on "01", the timestamp in <secs>.<usecs>
 268format, the function name that was traced "path_put" and the
 269parent function that called this function "path_walk". The
 270timestamp is the time at which the function was entered.
 
 
 
 
 
 
 271
 272Latency trace format
 273--------------------
 274
 275When the latency-format option is enabled, the trace file gives
 276somewhat more information to see why a latency happened.
 277Here is a typical trace.
 278
 279# tracer: irqsoff
 280#
 281irqsoff latency trace v1.1.5 on 2.6.26-rc8
 282--------------------------------------------------------------------
 283 latency: 97 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
 284    -----------------
 285    | task: swapper-0 (uid:0 nice:0 policy:0 rt_prio:0)
 286    -----------------
 287 => started at: apic_timer_interrupt
 288 => ended at:   do_softirq
 289
 290#                _------=> CPU#
 291#               / _-----=> irqs-off
 292#              | / _----=> need-resched
 293#              || / _---=> hardirq/softirq
 294#              ||| / _--=> preempt-depth
 295#              |||| /
 296#              |||||     delay
 297#  cmd     pid ||||| time  |   caller
 298#     \   /    |||||   \   |   /
 299  <idle>-0     0d..1    0us+: trace_hardirqs_off_thunk (apic_timer_interrupt)
 300  <idle>-0     0d.s.   97us : __do_softirq (do_softirq)
 301  <idle>-0     0d.s1   98us : trace_hardirqs_on (do_softirq)
 
 
 
 
 
 
 
 
 
 
 
 302
 303
 304This shows that the current tracer is "irqsoff" tracing the time
 305for which interrupts were disabled. It gives the trace version
 306and the version of the kernel upon which this was executed on
 307(2.6.26-rc8). Then it displays the max latency in microsecs (97
 308us). The number of trace entries displayed and the total number
 309recorded (both are three: #3/3). The type of preemption that was
 310used (PREEMPT). VP, KP, SP, and HP are always zero and are
 311reserved for later use. #P is the number of online CPUS (#P:2).
 312
 313The task is the process that was running when the latency
 314occurred. (swapper pid: 0).
 315
 316The start and stop (the functions in which the interrupts were
 317disabled and enabled respectively) that caused the latencies:
 318
 319  apic_timer_interrupt is where the interrupts were disabled.
 320  do_softirq is where they were enabled again.
 321
 322The next lines after the header are the trace itself. The header
 323explains which is which.
 324
 325  cmd: The name of the process in the trace.
 326
 327  pid: The PID of that process.
 328
 329  CPU#: The CPU which the process was running on.
 330
 331  irqs-off: 'd' interrupts are disabled. '.' otherwise.
 332	    Note: If the architecture does not support a way to
 333		  read the irq flags variable, an 'X' will always
 334		  be printed here.
 335
 336  need-resched: 'N' task need_resched is set, '.' otherwise.
 
 
 
 
 337
 338  hardirq/softirq:
 339	'H' - hard irq occurred inside a softirq.
 340	'h' - hard irq is running
 341	's' - soft irq is running
 342	'.' - normal context.
 343
 344  preempt-depth: The level of preempt_disabled
 345
 346The above is mostly meaningful for kernel developers.
 347
 348  time: When the latency-format option is enabled, the trace file
 349	output includes a timestamp relative to the start of the
 350	trace. This differs from the output when latency-format
 351	is disabled, which includes an absolute timestamp.
 352
 353  delay: This is just to help catch your eye a bit better. And
 354	 needs to be fixed to be only relative to the same CPU.
 355	 The marks are determined by the difference between this
 356	 current trace and the next trace.
 357	  '!' - greater than preempt_mark_thresh (default 100)
 358	  '+' - greater than 1 microsecond
 359	  ' ' - less than or equal to 1 microsecond.
 
 
 
 
 360
 361  The rest is the same as the 'trace' file.
 362
 
 
 363
 364trace_options
 365-------------
 366
 367The trace_options file is used to control what gets printed in
 368the trace output. To see what is available, simply cat the file:
 
 369
 370  cat trace_options
 371  print-parent nosym-offset nosym-addr noverbose noraw nohex nobin \
 372  noblock nostacktrace nosched-tree nouserstacktrace nosym-userobj
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 373
 374To disable one of the options, echo in the option prepended with
 375"no".
 376
 377  echo noprint-parent > trace_options
 378
 379To enable an option, leave off the "no".
 380
 381  echo sym-offset > trace_options
 382
 383Here are the available options:
 384
 385  print-parent - On function traces, display the calling (parent)
 386		 function as well as the function being traced.
 387
 388  print-parent:
 389   bash-4000  [01]  1477.606694: simple_strtoul <-strict_strtoul
 390
 391  noprint-parent:
 392   bash-4000  [01]  1477.606694: simple_strtoul
 393
 394
 395  sym-offset - Display not only the function name, but also the
 396	       offset in the function. For example, instead of
 397	       seeing just "ktime_get", you will see
 398	       "ktime_get+0xb/0x20".
 399
 400  sym-offset:
 401   bash-4000  [01]  1477.606694: simple_strtoul+0x6/0xa0
 402
 403  sym-addr - this will also display the function address as well
 404	     as the function name.
 405
 406  sym-addr:
 407   bash-4000  [01]  1477.606694: simple_strtoul <c0339346>
 408
 409  verbose - This deals with the trace file when the
 410            latency-format option is enabled.
 411
 412    bash  4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
 413    (+0.000ms): simple_strtoul (strict_strtoul)
 414
 415  raw - This will display raw numbers. This option is best for
 416	use with user applications that can translate the raw
 417	numbers better than having it done in the kernel.
 418
 419  hex - Similar to raw, but the numbers will be in a hexadecimal
 420	format.
 421
 422  bin - This will print out the formats in raw binary.
 423
 424  block - TBD (needs update)
 425
 426  stacktrace - This is one of the options that changes the trace
 427	       itself. When a trace is recorded, so is the stack
 428	       of functions. This allows for back traces of
 429	       trace sites.
 430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431  userstacktrace - This option changes the trace. It records a
 432		   stacktrace of the current userspace thread.
 433
 434  sym-userobj - when user stacktrace are enabled, look up which
 435		object the address belongs to, and print a
 436		relative address. This is especially useful when
 437		ASLR is on, otherwise you don't get a chance to
 438		resolve the address to object/file/line after
 439		the app is no longer running
 440
 441		The lookup is performed when you read
 442		trace,trace_pipe. Example:
 443
 444		a.out-1623  [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
 445x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
 446
 447  sched-tree - trace all tasks that are on the runqueue, at
 448	       every scheduling event. Will add overhead if
 449	       there's a lot of tasks running at once.
 
 
 
 
 450
 451  latency-format - This option changes the trace. When
 452                   it is enabled, the trace displays
 453                   additional information about the
 454                   latencies, as described in "Latency
 455                   trace format".
 456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 457  overwrite - This controls what happens when the trace buffer is
 458              full. If "1" (default), the oldest events are
 459              discarded and overwritten. If "0", then the newest
 460              events are discarded.
 
 461
 462ftrace_enabled
 463--------------
 464
 465The following tracers (listed below) give different output
 466depending on whether or not the sysctl ftrace_enabled is set. To
 467set ftrace_enabled, one can either use the sysctl function or
 468set it via the proc file system interface.
 469
 470  sysctl kernel.ftrace_enabled=1
 
 471
 472 or
 473
 474  echo 1 > /proc/sys/kernel/ftrace_enabled
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 475
 476To disable ftrace_enabled simply replace the '1' with '0' in the
 477above commands.
 478
 479When ftrace_enabled is set the tracers will also record the
 480functions that are within the trace. The descriptions of the
 481tracers will also show an example with ftrace enabled.
 482
 483
 484irqsoff
 485-------
 486
 487When interrupts are disabled, the CPU can not react to any other
 488external event (besides NMIs and SMIs). This prevents the timer
 489interrupt from triggering or the mouse interrupt from letting
 490the kernel know of a new mouse event. The result is a latency
 491with the reaction time.
 492
 493The irqsoff tracer tracks the time for which interrupts are
 494disabled. When a new maximum latency is hit, the tracer saves
 495the trace leading up to that latency point so that every time a
 496new maximum is reached, the old saved trace is discarded and the
 497new trace is saved.
 498
 499To reset the maximum, echo 0 into tracing_max_latency. Here is
 500an example:
 501
 
 502 # echo irqsoff > current_tracer
 503 # echo latency-format > trace_options
 504 # echo 0 > tracing_max_latency
 505 # echo 1 > tracing_on
 
 506 # ls -ltr
 507 [...]
 508 # echo 0 > tracing_on
 509 # cat trace
 510# tracer: irqsoff
 511#
 512irqsoff latency trace v1.1.5 on 2.6.26
 513--------------------------------------------------------------------
 514 latency: 12 us, #3/3, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
 515    -----------------
 516    | task: bash-3730 (uid:0 nice:0 policy:0 rt_prio:0)
 517    -----------------
 518 => started at: sys_setpgid
 519 => ended at:   sys_setpgid
 520
 521#                _------=> CPU#
 522#               / _-----=> irqs-off
 523#              | / _----=> need-resched
 524#              || / _---=> hardirq/softirq
 525#              ||| / _--=> preempt-depth
 526#              |||| /
 527#              |||||     delay
 528#  cmd     pid ||||| time  |   caller
 529#     \   /    |||||   \   |   /
 530    bash-3730  1d...    0us : _write_lock_irq (sys_setpgid)
 531    bash-3730  1d..1    1us+: _write_unlock_irq (sys_setpgid)
 532    bash-3730  1d..2   14us : trace_hardirqs_on (sys_setpgid)
 533
 534
 535Here we see that that we had a latency of 12 microsecs (which is
 536very good). The _write_lock_irq in sys_setpgid disabled
 537interrupts. The difference between the 12 and the displayed
 538timestamp 14us occurred because the clock was incremented
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539between the time of recording the max latency and the time of
 540recording the function that had that latency.
 541
 542Note the above example had ftrace_enabled not set. If we set the
 543ftrace_enabled, we get a much larger output:
 
 
 544
 545# tracer: irqsoff
 546#
 547irqsoff latency trace v1.1.5 on 2.6.26-rc8
 548--------------------------------------------------------------------
 549 latency: 50 us, #101/101, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
 550    -----------------
 551    | task: ls-4339 (uid:0 nice:0 policy:0 rt_prio:0)
 552    -----------------
 553 => started at: __alloc_pages_internal
 554 => ended at:   __alloc_pages_internal
 555
 556#                _------=> CPU#
 557#               / _-----=> irqs-off
 558#              | / _----=> need-resched
 559#              || / _---=> hardirq/softirq
 560#              ||| / _--=> preempt-depth
 561#              |||| /
 562#              |||||     delay
 563#  cmd     pid ||||| time  |   caller
 564#     \   /    |||||   \   |   /
 565      ls-4339  0...1    0us+: get_page_from_freelist (__alloc_pages_internal)
 566      ls-4339  0d..1    3us : rmqueue_bulk (get_page_from_freelist)
 567      ls-4339  0d..1    3us : _spin_lock (rmqueue_bulk)
 568      ls-4339  0d..1    4us : add_preempt_count (_spin_lock)
 569      ls-4339  0d..2    4us : __rmqueue (rmqueue_bulk)
 570      ls-4339  0d..2    5us : __rmqueue_smallest (__rmqueue)
 571      ls-4339  0d..2    5us : __mod_zone_page_state (__rmqueue_smallest)
 572      ls-4339  0d..2    6us : __rmqueue (rmqueue_bulk)
 573      ls-4339  0d..2    6us : __rmqueue_smallest (__rmqueue)
 574      ls-4339  0d..2    7us : __mod_zone_page_state (__rmqueue_smallest)
 575      ls-4339  0d..2    7us : __rmqueue (rmqueue_bulk)
 576      ls-4339  0d..2    8us : __rmqueue_smallest (__rmqueue)
 577[...]
 578      ls-4339  0d..2   46us : __rmqueue_smallest (__rmqueue)
 579      ls-4339  0d..2   47us : __mod_zone_page_state (__rmqueue_smallest)
 580      ls-4339  0d..2   47us : __rmqueue (rmqueue_bulk)
 581      ls-4339  0d..2   48us : __rmqueue_smallest (__rmqueue)
 582      ls-4339  0d..2   48us : __mod_zone_page_state (__rmqueue_smallest)
 583      ls-4339  0d..2   49us : _spin_unlock (rmqueue_bulk)
 584      ls-4339  0d..2   49us : sub_preempt_count (_spin_unlock)
 585      ls-4339  0d..1   50us : get_page_from_freelist (__alloc_pages_internal)
 586      ls-4339  0d..2   51us : trace_hardirqs_on (__alloc_pages_internal)
 587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588
 589
 590Here we traced a 50 microsecond latency. But we also see all the
 591functions that were called during that time. Note that by
 592enabling function tracing, we incur an added overhead. This
 593overhead may extend the latency times. But nevertheless, this
 594trace has provided some very helpful debugging information.
 595
 596
 597preemptoff
 598----------
 599
 600When preemption is disabled, we may be able to receive
 601interrupts but the task cannot be preempted and a higher
 602priority task must wait for preemption to be enabled again
 603before it can preempt a lower priority task.
 604
 605The preemptoff tracer traces the places that disable preemption.
 606Like the irqsoff tracer, it records the maximum latency for
 607which preemption was disabled. The control of preemptoff tracer
 608is much like the irqsoff tracer.
 609
 
 610 # echo preemptoff > current_tracer
 611 # echo latency-format > trace_options
 612 # echo 0 > tracing_max_latency
 613 # echo 1 > tracing_on
 
 614 # ls -ltr
 615 [...]
 616 # echo 0 > tracing_on
 617 # cat trace
 618# tracer: preemptoff
 619#
 620preemptoff latency trace v1.1.5 on 2.6.26-rc8
 621--------------------------------------------------------------------
 622 latency: 29 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
 623    -----------------
 624    | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
 625    -----------------
 626 => started at: do_IRQ
 627 => ended at:   __do_softirq
 628
 629#                _------=> CPU#
 630#               / _-----=> irqs-off
 631#              | / _----=> need-resched
 632#              || / _---=> hardirq/softirq
 633#              ||| / _--=> preempt-depth
 634#              |||| /
 635#              |||||     delay
 636#  cmd     pid ||||| time  |   caller
 637#     \   /    |||||   \   |   /
 638    sshd-4261  0d.h.    0us+: irq_enter (do_IRQ)
 639    sshd-4261  0d.s.   29us : _local_bh_enable (__do_softirq)
 640    sshd-4261  0d.s1   30us : trace_preempt_on (__do_softirq)
 
 
 
 
 
 641
 642
 643This has some more changes. Preemption was disabled when an
 644interrupt came in (notice the 'h'), and was enabled while doing
 645a softirq. (notice the 's'). But we also see that interrupts
 646have been disabled when entering the preempt off section and
 647leaving it (the 'd'). We do not know if interrupts were enabled
 648in the mean time.
 649
 650# tracer: preemptoff
 651#
 652preemptoff latency trace v1.1.5 on 2.6.26-rc8
 653--------------------------------------------------------------------
 654 latency: 63 us, #87/87, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
 655    -----------------
 656    | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
 657    -----------------
 658 => started at: remove_wait_queue
 659 => ended at:   __do_softirq
 660
 661#                _------=> CPU#
 662#               / _-----=> irqs-off
 663#              | / _----=> need-resched
 664#              || / _---=> hardirq/softirq
 665#              ||| / _--=> preempt-depth
 666#              |||| /
 667#              |||||     delay
 668#  cmd     pid ||||| time  |   caller
 669#     \   /    |||||   \   |   /
 670    sshd-4261  0d..1    0us : _spin_lock_irqsave (remove_wait_queue)
 671    sshd-4261  0d..1    1us : _spin_unlock_irqrestore (remove_wait_queue)
 672    sshd-4261  0d..1    2us : do_IRQ (common_interrupt)
 673    sshd-4261  0d..1    2us : irq_enter (do_IRQ)
 674    sshd-4261  0d..1    2us : idle_cpu (irq_enter)
 675    sshd-4261  0d..1    3us : add_preempt_count (irq_enter)
 676    sshd-4261  0d.h1    3us : idle_cpu (irq_enter)
 677    sshd-4261  0d.h.    4us : handle_fasteoi_irq (do_IRQ)
 678[...]
 679    sshd-4261  0d.h.   12us : add_preempt_count (_spin_lock)
 680    sshd-4261  0d.h1   12us : ack_ioapic_quirk_irq (handle_fasteoi_irq)
 681    sshd-4261  0d.h1   13us : move_native_irq (ack_ioapic_quirk_irq)
 682    sshd-4261  0d.h1   13us : _spin_unlock (handle_fasteoi_irq)
 683    sshd-4261  0d.h1   14us : sub_preempt_count (_spin_unlock)
 684    sshd-4261  0d.h1   14us : irq_exit (do_IRQ)
 685    sshd-4261  0d.h1   15us : sub_preempt_count (irq_exit)
 686    sshd-4261  0d..2   15us : do_softirq (irq_exit)
 687    sshd-4261  0d...   15us : __do_softirq (do_softirq)
 688    sshd-4261  0d...   16us : __local_bh_disable (__do_softirq)
 689    sshd-4261  0d...   16us+: add_preempt_count (__local_bh_disable)
 690    sshd-4261  0d.s4   20us : add_preempt_count (__local_bh_disable)
 691    sshd-4261  0d.s4   21us : sub_preempt_count (local_bh_enable)
 692    sshd-4261  0d.s5   21us : sub_preempt_count (local_bh_enable)
 693[...]
 694    sshd-4261  0d.s6   41us : add_preempt_count (__local_bh_disable)
 695    sshd-4261  0d.s6   42us : sub_preempt_count (local_bh_enable)
 696    sshd-4261  0d.s7   42us : sub_preempt_count (local_bh_enable)
 697    sshd-4261  0d.s5   43us : add_preempt_count (__local_bh_disable)
 698    sshd-4261  0d.s5   43us : sub_preempt_count (local_bh_enable_ip)
 699    sshd-4261  0d.s6   44us : sub_preempt_count (local_bh_enable_ip)
 700    sshd-4261  0d.s5   44us : add_preempt_count (__local_bh_disable)
 701    sshd-4261  0d.s5   45us : sub_preempt_count (local_bh_enable)
 
 
 702[...]
 703    sshd-4261  0d.s.   63us : _local_bh_enable (__do_softirq)
 704    sshd-4261  0d.s1   64us : trace_preempt_on (__do_softirq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 705
 706
 707The above is an example of the preemptoff trace with
 708ftrace_enabled set. Here we see that interrupts were disabled
 709the entire time. The irq_enter code lets us know that we entered
 710an interrupt 'h'. Before that, the functions being traced still
 711show that it is not in an interrupt, but we can see from the
 712functions themselves that this is not the case.
 713
 714Notice that __do_softirq when called does not have a
 715preempt_count. It may seem that we missed a preempt enabling.
 716What really happened is that the preempt count is held on the
 717thread's stack and we switched to the softirq stack (4K stacks
 718in effect). The code does not copy the preempt count, but
 719because interrupts are disabled, we do not need to worry about
 720it. Having a tracer like this is good for letting people know
 721what really happens inside the kernel.
 722
 723
 724preemptirqsoff
 725--------------
 726
 727Knowing the locations that have interrupts disabled or
 728preemption disabled for the longest times is helpful. But
 729sometimes we would like to know when either preemption and/or
 730interrupts are disabled.
 731
 732Consider the following code:
 733
 734    local_irq_disable();
 735    call_function_with_irqs_off();
 736    preempt_disable();
 737    call_function_with_irqs_and_preemption_off();
 738    local_irq_enable();
 739    call_function_with_preemption_off();
 740    preempt_enable();
 741
 742The irqsoff tracer will record the total length of
 743call_function_with_irqs_off() and
 744call_function_with_irqs_and_preemption_off().
 745
 746The preemptoff tracer will record the total length of
 747call_function_with_irqs_and_preemption_off() and
 748call_function_with_preemption_off().
 749
 750But neither will trace the time that interrupts and/or
 751preemption is disabled. This total time is the time that we can
 752not schedule. To record this time, use the preemptirqsoff
 753tracer.
 754
 755Again, using this trace is much like the irqsoff and preemptoff
 756tracers.
 757
 
 758 # echo preemptirqsoff > current_tracer
 759 # echo latency-format > trace_options
 760 # echo 0 > tracing_max_latency
 761 # echo 1 > tracing_on
 
 762 # ls -ltr
 763 [...]
 764 # echo 0 > tracing_on
 765 # cat trace
 766# tracer: preemptirqsoff
 767#
 768preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8
 769--------------------------------------------------------------------
 770 latency: 293 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
 771    -----------------
 772    | task: ls-4860 (uid:0 nice:0 policy:0 rt_prio:0)
 773    -----------------
 774 => started at: apic_timer_interrupt
 775 => ended at:   __do_softirq
 776
 777#                _------=> CPU#
 778#               / _-----=> irqs-off
 779#              | / _----=> need-resched
 780#              || / _---=> hardirq/softirq
 781#              ||| / _--=> preempt-depth
 782#              |||| /
 783#              |||||     delay
 784#  cmd     pid ||||| time  |   caller
 785#     \   /    |||||   \   |   /
 786      ls-4860  0d...    0us!: trace_hardirqs_off_thunk (apic_timer_interrupt)
 787      ls-4860  0d.s.  294us : _local_bh_enable (__do_softirq)
 788      ls-4860  0d.s1  294us : trace_preempt_on (__do_softirq)
 789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790
 791
 792The trace_hardirqs_off_thunk is called from assembly on x86 when
 793interrupts are disabled in the assembly code. Without the
 794function tracing, we do not know if interrupts were enabled
 795within the preemption points. We do see that it started with
 796preemption enabled.
 797
 798Here is a trace with ftrace_enabled set:
 799
 800
 801# tracer: preemptirqsoff
 802#
 803preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8
 804--------------------------------------------------------------------
 805 latency: 105 us, #183/183, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
 806    -----------------
 807    | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
 808    -----------------
 809 => started at: write_chan
 810 => ended at:   __do_softirq
 811
 812#                _------=> CPU#
 813#               / _-----=> irqs-off
 814#              | / _----=> need-resched
 815#              || / _---=> hardirq/softirq
 816#              ||| / _--=> preempt-depth
 817#              |||| /
 818#              |||||     delay
 819#  cmd     pid ||||| time  |   caller
 820#     \   /    |||||   \   |   /
 821      ls-4473  0.N..    0us : preempt_schedule (write_chan)
 822      ls-4473  0dN.1    1us : _spin_lock (schedule)
 823      ls-4473  0dN.1    2us : add_preempt_count (_spin_lock)
 824      ls-4473  0d..2    2us : put_prev_task_fair (schedule)
 825[...]
 826      ls-4473  0d..2   13us : set_normalized_timespec (ktime_get_ts)
 827      ls-4473  0d..2   13us : __switch_to (schedule)
 828    sshd-4261  0d..2   14us : finish_task_switch (schedule)
 829    sshd-4261  0d..2   14us : _spin_unlock_irq (finish_task_switch)
 830    sshd-4261  0d..1   15us : add_preempt_count (_spin_lock_irqsave)
 831    sshd-4261  0d..2   16us : _spin_unlock_irqrestore (hrtick_set)
 832    sshd-4261  0d..2   16us : do_IRQ (common_interrupt)
 833    sshd-4261  0d..2   17us : irq_enter (do_IRQ)
 834    sshd-4261  0d..2   17us : idle_cpu (irq_enter)
 835    sshd-4261  0d..2   18us : add_preempt_count (irq_enter)
 836    sshd-4261  0d.h2   18us : idle_cpu (irq_enter)
 837    sshd-4261  0d.h.   18us : handle_fasteoi_irq (do_IRQ)
 838    sshd-4261  0d.h.   19us : _spin_lock (handle_fasteoi_irq)
 839    sshd-4261  0d.h.   19us : add_preempt_count (_spin_lock)
 840    sshd-4261  0d.h1   20us : _spin_unlock (handle_fasteoi_irq)
 841    sshd-4261  0d.h1   20us : sub_preempt_count (_spin_unlock)
 842[...]
 843    sshd-4261  0d.h1   28us : _spin_unlock (handle_fasteoi_irq)
 844    sshd-4261  0d.h1   29us : sub_preempt_count (_spin_unlock)
 845    sshd-4261  0d.h2   29us : irq_exit (do_IRQ)
 846    sshd-4261  0d.h2   29us : sub_preempt_count (irq_exit)
 847    sshd-4261  0d..3   30us : do_softirq (irq_exit)
 848    sshd-4261  0d...   30us : __do_softirq (do_softirq)
 849    sshd-4261  0d...   31us : __local_bh_disable (__do_softirq)
 850    sshd-4261  0d...   31us+: add_preempt_count (__local_bh_disable)
 851    sshd-4261  0d.s4   34us : add_preempt_count (__local_bh_disable)
 
 852[...]
 853    sshd-4261  0d.s3   43us : sub_preempt_count (local_bh_enable_ip)
 854    sshd-4261  0d.s4   44us : sub_preempt_count (local_bh_enable_ip)
 855    sshd-4261  0d.s3   44us : smp_apic_timer_interrupt (apic_timer_interrupt)
 856    sshd-4261  0d.s3   45us : irq_enter (smp_apic_timer_interrupt)
 857    sshd-4261  0d.s3   45us : idle_cpu (irq_enter)
 858    sshd-4261  0d.s3   46us : add_preempt_count (irq_enter)
 859    sshd-4261  0d.H3   46us : idle_cpu (irq_enter)
 860    sshd-4261  0d.H3   47us : hrtimer_interrupt (smp_apic_timer_interrupt)
 861    sshd-4261  0d.H3   47us : ktime_get (hrtimer_interrupt)
 
 
 862[...]
 863    sshd-4261  0d.H3   81us : tick_program_event (hrtimer_interrupt)
 864    sshd-4261  0d.H3   82us : ktime_get (tick_program_event)
 865    sshd-4261  0d.H3   82us : ktime_get_ts (ktime_get)
 866    sshd-4261  0d.H3   83us : getnstimeofday (ktime_get_ts)
 867    sshd-4261  0d.H3   83us : set_normalized_timespec (ktime_get_ts)
 868    sshd-4261  0d.H3   84us : clockevents_program_event (tick_program_event)
 869    sshd-4261  0d.H3   84us : lapic_next_event (clockevents_program_event)
 870    sshd-4261  0d.H3   85us : irq_exit (smp_apic_timer_interrupt)
 871    sshd-4261  0d.H3   85us : sub_preempt_count (irq_exit)
 872    sshd-4261  0d.s4   86us : sub_preempt_count (irq_exit)
 873    sshd-4261  0d.s3   86us : add_preempt_count (__local_bh_disable)
 874[...]
 875    sshd-4261  0d.s1   98us : sub_preempt_count (net_rx_action)
 876    sshd-4261  0d.s.   99us : add_preempt_count (_spin_lock_irq)
 877    sshd-4261  0d.s1   99us+: _spin_unlock_irq (run_timer_softirq)
 878    sshd-4261  0d.s.  104us : _local_bh_enable (__do_softirq)
 879    sshd-4261  0d.s.  104us : sub_preempt_count (_local_bh_enable)
 880    sshd-4261  0d.s.  105us : _local_bh_enable (__do_softirq)
 881    sshd-4261  0d.s1  105us : trace_preempt_on (__do_softirq)
 882
 883
 884This is a very interesting trace. It started with the preemption
 885of the ls task. We see that the task had the "need_resched" bit
 886set via the 'N' in the trace.  Interrupts were disabled before
 887the spin_lock at the beginning of the trace. We see that a
 888schedule took place to run sshd.  When the interrupts were
 889enabled, we took an interrupt. On return from the interrupt
 890handler, the softirq ran. We took another interrupt while
 891running the softirq as we see from the capital 'H'.
 
 
 
 
 
 
 
 
 892
 893
 894wakeup
 895------
 896
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 897In a Real-Time environment it is very important to know the
 898wakeup time it takes for the highest priority task that is woken
 899up to the time that it executes. This is also known as "schedule
 900latency". I stress the point that this is about RT tasks. It is
 901also important to know the scheduling latency of non-RT tasks,
 902but the average schedule latency is better for non-RT tasks.
 903Tools like LatencyTop are more appropriate for such
 904measurements.
 905
 906Real-Time environments are interested in the worst case latency.
 907That is the longest latency it takes for something to happen,
 908and not the average. We can have a very fast scheduler that may
 909only have a large latency once in a while, but that would not
 910work well with Real-Time tasks.  The wakeup tracer was designed
 911to record the worst case wakeups of RT tasks. Non-RT tasks are
 912not recorded because the tracer only records one worst case and
 913tracing non-RT tasks that are unpredictable will overwrite the
 914worst case latency of RT tasks.
 
 915
 916Since this tracer only deals with RT tasks, we will run this
 917slightly differently than we did with the previous tracers.
 918Instead of performing an 'ls', we will run 'sleep 1' under
 919'chrt' which changes the priority of the task.
 920
 921 # echo wakeup > current_tracer
 922 # echo latency-format > trace_options
 923 # echo 0 > tracing_max_latency
 924 # echo 1 > tracing_on
 
 925 # chrt -f 5 sleep 1
 926 # echo 0 > tracing_on
 927 # cat trace
 928# tracer: wakeup
 929#
 930wakeup latency trace v1.1.5 on 2.6.26-rc8
 931--------------------------------------------------------------------
 932 latency: 4 us, #2/2, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
 933    -----------------
 934    | task: sleep-4901 (uid:0 nice:0 policy:1 rt_prio:5)
 935    -----------------
 936
 937#                _------=> CPU#
 938#               / _-----=> irqs-off
 939#              | / _----=> need-resched
 940#              || / _---=> hardirq/softirq
 941#              ||| / _--=> preempt-depth
 942#              |||| /
 943#              |||||     delay
 944#  cmd     pid ||||| time  |   caller
 945#     \   /    |||||   \   |   /
 946  <idle>-0     1d.h4    0us+: try_to_wake_up (wake_up_process)
 947  <idle>-0     1d..4    4us : schedule (cpu_idle)
 948
 949
 950Running this on an idle system, we see that it only took 4
 951microseconds to perform the task switch.  Note, since the trace
 952marker in the schedule is before the actual "switch", we stop
 953the tracing when the recorded task is about to schedule in. This
 954may change if we add a new marker at the end of the scheduler.
 
 
 
 955
 956Notice that the recorded task is 'sleep' with the PID of 4901
 957and it has an rt_prio of 5. This priority is user-space priority
 958and not the internal kernel priority. The policy is 1 for
 959SCHED_FIFO and 2 for SCHED_RR.
 960
 961Doing the same with chrt -r 5 and ftrace_enabled set.
 962
 963# tracer: wakeup
 
 
 
 
 
 
 
 
 
 
 
 964#
 965wakeup latency trace v1.1.5 on 2.6.26-rc8
 966--------------------------------------------------------------------
 967 latency: 50 us, #60/60, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
 968    -----------------
 969    | task: sleep-4068 (uid:0 nice:0 policy:2 rt_prio:5)
 970    -----------------
 971
 972#                _------=> CPU#
 973#               / _-----=> irqs-off
 974#              | / _----=> need-resched
 975#              || / _---=> hardirq/softirq
 976#              ||| / _--=> preempt-depth
 977#              |||| /
 978#              |||||     delay
 979#  cmd     pid ||||| time  |   caller
 980#     \   /    |||||   \   |   /
 981ksoftirq-7     1d.H3    0us : try_to_wake_up (wake_up_process)
 982ksoftirq-7     1d.H4    1us : sub_preempt_count (marker_probe_cb)
 983ksoftirq-7     1d.H3    2us : check_preempt_wakeup (try_to_wake_up)
 984ksoftirq-7     1d.H3    3us : update_curr (check_preempt_wakeup)
 985ksoftirq-7     1d.H3    4us : calc_delta_mine (update_curr)
 986ksoftirq-7     1d.H3    5us : __resched_task (check_preempt_wakeup)
 987ksoftirq-7     1d.H3    6us : task_wake_up_rt (try_to_wake_up)
 988ksoftirq-7     1d.H3    7us : _spin_unlock_irqrestore (try_to_wake_up)
 989[...]
 990ksoftirq-7     1d.H2   17us : irq_exit (smp_apic_timer_interrupt)
 991ksoftirq-7     1d.H2   18us : sub_preempt_count (irq_exit)
 992ksoftirq-7     1d.s3   19us : sub_preempt_count (irq_exit)
 993ksoftirq-7     1..s2   20us : rcu_process_callbacks (__do_softirq)
 994[...]
 995ksoftirq-7     1..s2   26us : __rcu_process_callbacks (rcu_process_callbacks)
 996ksoftirq-7     1d.s2   27us : _local_bh_enable (__do_softirq)
 997ksoftirq-7     1d.s2   28us : sub_preempt_count (_local_bh_enable)
 998ksoftirq-7     1.N.3   29us : sub_preempt_count (ksoftirqd)
 999ksoftirq-7     1.N.2   30us : _cond_resched (ksoftirqd)
1000ksoftirq-7     1.N.2   31us : __cond_resched (_cond_resched)
1001ksoftirq-7     1.N.2   32us : add_preempt_count (__cond_resched)
1002ksoftirq-7     1.N.2   33us : schedule (__cond_resched)
1003ksoftirq-7     1.N.2   33us : add_preempt_count (schedule)
1004ksoftirq-7     1.N.3   34us : hrtick_clear (schedule)
1005ksoftirq-7     1dN.3   35us : _spin_lock (schedule)
1006ksoftirq-7     1dN.3   36us : add_preempt_count (_spin_lock)
1007ksoftirq-7     1d..4   37us : put_prev_task_fair (schedule)
1008ksoftirq-7     1d..4   38us : update_curr (put_prev_task_fair)
1009[...]
1010ksoftirq-7     1d..5   47us : _spin_trylock (tracing_record_cmdline)
1011ksoftirq-7     1d..5   48us : add_preempt_count (_spin_trylock)
1012ksoftirq-7     1d..6   49us : _spin_unlock (tracing_record_cmdline)
1013ksoftirq-7     1d..6   49us : sub_preempt_count (_spin_unlock)
1014ksoftirq-7     1d..4   50us : schedule (__cond_resched)
1015
1016The interrupt went off while running ksoftirqd. This task runs
1017at SCHED_OTHER. Why did not we see the 'N' set early? This may
1018be a harmless bug with x86_32 and 4K stacks. On x86_32 with 4K
1019stacks configured, the interrupt and softirq run with their own
1020stack. Some information is held on the top of the task's stack
1021(need_resched and preempt_count are both stored there). The
1022setting of the NEED_RESCHED bit is done directly to the task's
1023stack, but the reading of the NEED_RESCHED is done by looking at
1024the current stack, which in this case is the stack for the hard
1025interrupt. This hides the fact that NEED_RESCHED has been set.
1026We do not see the 'N' until we switch back to the task's
1027assigned stack.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028
1029function
1030--------
1031
1032This tracer is the function tracer. Enabling the function tracer
1033can be done from the debug file system. Make sure the
1034ftrace_enabled is set; otherwise this tracer is a nop.
 
1035
1036 # sysctl kernel.ftrace_enabled=1
1037 # echo function > current_tracer
1038 # echo 1 > tracing_on
1039 # usleep 1
1040 # echo 0 > tracing_on
1041 # cat trace
1042# tracer: function
1043#
1044#           TASK-PID   CPU#    TIMESTAMP  FUNCTION
1045#              | |      |          |         |
1046            bash-4003  [00]   123.638713: finish_task_switch <-schedule
1047            bash-4003  [00]   123.638714: _spin_unlock_irq <-finish_task_switch
1048            bash-4003  [00]   123.638714: sub_preempt_count <-_spin_unlock_irq
1049            bash-4003  [00]   123.638715: hrtick_set <-schedule
1050            bash-4003  [00]   123.638715: _spin_lock_irqsave <-hrtick_set
1051            bash-4003  [00]   123.638716: add_preempt_count <-_spin_lock_irqsave
1052            bash-4003  [00]   123.638716: _spin_unlock_irqrestore <-hrtick_set
1053            bash-4003  [00]   123.638717: sub_preempt_count <-_spin_unlock_irqrestore
1054            bash-4003  [00]   123.638717: hrtick_clear <-hrtick_set
1055            bash-4003  [00]   123.638718: sub_preempt_count <-schedule
1056            bash-4003  [00]   123.638718: sub_preempt_count <-preempt_schedule
1057            bash-4003  [00]   123.638719: wait_for_completion <-__stop_machine_run
1058            bash-4003  [00]   123.638719: wait_for_common <-wait_for_completion
1059            bash-4003  [00]   123.638720: _spin_lock_irq <-wait_for_common
1060            bash-4003  [00]   123.638720: add_preempt_count <-_spin_lock_irq
1061[...]
1062
1063
1064Note: function tracer uses ring buffers to store the above
1065entries. The newest data may overwrite the oldest data.
1066Sometimes using echo to stop the trace is not sufficient because
1067the tracing could have overwritten the data that you wanted to
1068record. For this reason, it is sometimes better to disable
1069tracing directly from a program. This allows you to stop the
1070tracing at the point that you hit the part that you are
1071interested in. To disable the tracing directly from a C program,
1072something like following code snippet can be used:
1073
1074int trace_fd;
1075[...]
1076int main(int argc, char *argv[]) {
1077	[...]
1078	trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
1079	[...]
1080	if (condition_hit()) {
1081		write(trace_fd, "0", 1);
1082	}
1083	[...]
1084}
1085
1086
1087Single thread tracing
1088---------------------
1089
1090By writing into set_ftrace_pid you can trace a
1091single thread. For example:
1092
1093# cat set_ftrace_pid
1094no pid
1095# echo 3111 > set_ftrace_pid
1096# cat set_ftrace_pid
10973111
1098# echo function > current_tracer
1099# cat trace | head
1100 # tracer: function
1101 #
1102 #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
1103 #              | |       |          |         |
1104     yum-updatesd-3111  [003]  1637.254676: finish_task_switch <-thread_return
1105     yum-updatesd-3111  [003]  1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
1106     yum-updatesd-3111  [003]  1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
1107     yum-updatesd-3111  [003]  1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
1108     yum-updatesd-3111  [003]  1637.254685: fget_light <-do_sys_poll
1109     yum-updatesd-3111  [003]  1637.254686: pipe_poll <-do_sys_poll
1110# echo -1 > set_ftrace_pid
1111# cat trace |head
1112 # tracer: function
1113 #
1114 #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
1115 #              | |       |          |         |
1116 ##### CPU 3 buffer started ####
1117     yum-updatesd-3111  [003]  1701.957688: free_poll_entry <-poll_freewait
1118     yum-updatesd-3111  [003]  1701.957689: remove_wait_queue <-free_poll_entry
1119     yum-updatesd-3111  [003]  1701.957691: fput <-free_poll_entry
1120     yum-updatesd-3111  [003]  1701.957692: audit_syscall_exit <-sysret_audit
1121     yum-updatesd-3111  [003]  1701.957693: path_put <-audit_syscall_exit
1122
1123If you want to trace a function when executing, you could use
1124something like this simple program:
1125
1126#include <stdio.h>
1127#include <stdlib.h>
1128#include <sys/types.h>
1129#include <sys/stat.h>
1130#include <fcntl.h>
1131#include <unistd.h>
1132#include <string.h>
1133
1134#define _STR(x) #x
1135#define STR(x) _STR(x)
1136#define MAX_PATH 256
1137
1138const char *find_debugfs(void)
1139{
1140       static char debugfs[MAX_PATH+1];
1141       static int debugfs_found;
1142       char type[100];
1143       FILE *fp;
1144
1145       if (debugfs_found)
1146               return debugfs;
1147
1148       if ((fp = fopen("/proc/mounts","r")) == NULL) {
1149               perror("/proc/mounts");
1150               return NULL;
1151       }
1152
1153       while (fscanf(fp, "%*s %"
1154                     STR(MAX_PATH)
1155                     "s %99s %*s %*d %*d\n",
1156                     debugfs, type) == 2) {
1157               if (strcmp(type, "debugfs") == 0)
1158                       break;
1159       }
1160       fclose(fp);
1161
1162       if (strcmp(type, "debugfs") != 0) {
1163               fprintf(stderr, "debugfs not mounted");
1164               return NULL;
1165       }
1166
1167       strcat(debugfs, "/tracing/");
1168       debugfs_found = 1;
1169
1170       return debugfs;
1171}
1172
1173const char *tracing_file(const char *file_name)
1174{
1175       static char trace_file[MAX_PATH+1];
1176       snprintf(trace_file, MAX_PATH, "%s/%s", find_debugfs(), file_name);
1177       return trace_file;
1178}
1179
1180int main (int argc, char **argv)
1181{
1182        if (argc < 1)
1183                exit(-1);
1184
1185        if (fork() > 0) {
1186                int fd, ffd;
1187                char line[64];
1188                int s;
1189
1190                ffd = open(tracing_file("current_tracer"), O_WRONLY);
1191                if (ffd < 0)
1192                        exit(-1);
1193                write(ffd, "nop", 3);
1194
1195                fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
1196                s = sprintf(line, "%d\n", getpid());
1197                write(fd, line, s);
1198
1199                write(ffd, "function", 8);
1200
1201                close(fd);
1202                close(ffd);
1203
1204                execvp(argv[1], argv+1);
1205        }
1206
1207        return 0;
1208}
1209
 
1210
1211hw-branch-tracer (x86 only)
1212---------------------------
1213
1214This tracer uses the x86 last branch tracing hardware feature to
1215collect a branch trace on all cpus with relatively low overhead.
1216
1217The tracer uses a fixed-size circular buffer per cpu and only
1218traces ring 0 branches. The trace file dumps that buffer in the
1219following format:
1220
1221# tracer: hw-branch-tracer
1222#
1223# CPU#        TO  <-  FROM
1224   0  scheduler_tick+0xb5/0x1bf	  <-  task_tick_idle+0x5/0x6
1225   2  run_posix_cpu_timers+0x2b/0x72a	  <-  run_posix_cpu_timers+0x25/0x72a
1226   0  scheduler_tick+0x139/0x1bf	  <-  scheduler_tick+0xed/0x1bf
1227   0  scheduler_tick+0x17c/0x1bf	  <-  scheduler_tick+0x148/0x1bf
1228   2  run_posix_cpu_timers+0x9e/0x72a	  <-  run_posix_cpu_timers+0x5e/0x72a
1229   0  scheduler_tick+0x1b6/0x1bf	  <-  scheduler_tick+0x1aa/0x1bf
1230
1231
1232The tracer may be used to dump the trace for the oops'ing cpu on
1233a kernel oops into the system log. To enable this,
1234ftrace_dump_on_oops must be set. To set ftrace_dump_on_oops, one
1235can either use the sysctl function or set it via the proc system
1236interface.
1237
1238  sysctl kernel.ftrace_dump_on_oops=n
1239
1240or
1241
1242  echo n > /proc/sys/kernel/ftrace_dump_on_oops
1243
1244If n = 1, ftrace will dump buffers of all CPUs, if n = 2 ftrace will
1245only dump the buffer of the CPU that triggered the oops.
1246
1247Here's an example of such a dump after a null pointer
1248dereference in a kernel module:
1249
1250[57848.105921] BUG: unable to handle kernel NULL pointer dereference at 0000000000000000
1251[57848.106019] IP: [<ffffffffa0000006>] open+0x6/0x14 [oops]
1252[57848.106019] PGD 2354e9067 PUD 2375e7067 PMD 0
1253[57848.106019] Oops: 0002 [#1] SMP
1254[57848.106019] last sysfs file: /sys/devices/pci0000:00/0000:00:1e.0/0000:20:05.0/local_cpus
1255[57848.106019] Dumping ftrace buffer:
1256[57848.106019] ---------------------------------
1257[...]
1258[57848.106019]    0  chrdev_open+0xe6/0x165	  <-  cdev_put+0x23/0x24
1259[57848.106019]    0  chrdev_open+0x117/0x165	  <-  chrdev_open+0xfa/0x165
1260[57848.106019]    0  chrdev_open+0x120/0x165	  <-  chrdev_open+0x11c/0x165
1261[57848.106019]    0  chrdev_open+0x134/0x165	  <-  chrdev_open+0x12b/0x165
1262[57848.106019]    0  open+0x0/0x14 [oops]	  <-  chrdev_open+0x144/0x165
1263[57848.106019]    0  page_fault+0x0/0x30	  <-  open+0x6/0x14 [oops]
1264[57848.106019]    0  error_entry+0x0/0x5b	  <-  page_fault+0x4/0x30
1265[57848.106019]    0  error_kernelspace+0x0/0x31	  <-  error_entry+0x59/0x5b
1266[57848.106019]    0  error_sti+0x0/0x1	  <-  error_kernelspace+0x2d/0x31
1267[57848.106019]    0  page_fault+0x9/0x30	  <-  error_sti+0x0/0x1
1268[57848.106019]    0  do_page_fault+0x0/0x881	  <-  page_fault+0x1a/0x30
1269[...]
1270[57848.106019]    0  do_page_fault+0x66b/0x881	  <-  is_prefetch+0x1ee/0x1f2
1271[57848.106019]    0  do_page_fault+0x6e0/0x881	  <-  do_page_fault+0x67a/0x881
1272[57848.106019]    0  oops_begin+0x0/0x96	  <-  do_page_fault+0x6e0/0x881
1273[57848.106019]    0  trace_hw_branch_oops+0x0/0x2d	  <-  oops_begin+0x9/0x96
1274[...]
1275[57848.106019]    0  ds_suspend_bts+0x2a/0xe3	  <-  ds_suspend_bts+0x1a/0xe3
1276[57848.106019] ---------------------------------
1277[57848.106019] CPU 0
1278[57848.106019] Modules linked in: oops
1279[57848.106019] Pid: 5542, comm: cat Tainted: G        W  2.6.28 #23
1280[57848.106019] RIP: 0010:[<ffffffffa0000006>]  [<ffffffffa0000006>] open+0x6/0x14 [oops]
1281[57848.106019] RSP: 0018:ffff880235457d48  EFLAGS: 00010246
1282[...]
1283
1284
1285function graph tracer
1286---------------------------
1287
1288This tracer is similar to the function tracer except that it
1289probes a function on its entry and its exit. This is done by
1290using a dynamically allocated stack of return addresses in each
1291task_struct. On function entry the tracer overwrites the return
1292address of each function traced to set a custom probe. Thus the
1293original return address is stored on the stack of return address
1294in the task_struct.
1295
1296Probing on both ends of a function leads to special features
1297such as:
1298
1299- measure of a function's time execution
1300- having a reliable call stack to draw function calls graph
1301
1302This tracer is useful in several situations:
1303
1304- you want to find the reason of a strange kernel behavior and
1305  need to see what happens in detail on any areas (or specific
1306  ones).
1307
1308- you are experiencing weird latencies but it's difficult to
1309  find its origin.
1310
1311- you want to find quickly which path is taken by a specific
1312  function
1313
1314- you just want to peek inside a working kernel and want to see
1315  what happens there.
1316
1317# tracer: function_graph
1318#
1319# CPU  DURATION                  FUNCTION CALLS
1320# |     |   |                     |   |   |   |
1321
1322 0)               |  sys_open() {
1323 0)               |    do_sys_open() {
1324 0)               |      getname() {
1325 0)               |        kmem_cache_alloc() {
1326 0)   1.382 us    |          __might_sleep();
1327 0)   2.478 us    |        }
1328 0)               |        strncpy_from_user() {
1329 0)               |          might_fault() {
1330 0)   1.389 us    |            __might_sleep();
1331 0)   2.553 us    |          }
1332 0)   3.807 us    |        }
1333 0)   7.876 us    |      }
1334 0)               |      alloc_fd() {
1335 0)   0.668 us    |        _spin_lock();
1336 0)   0.570 us    |        expand_files();
1337 0)   0.586 us    |        _spin_unlock();
1338
1339
1340There are several columns that can be dynamically
1341enabled/disabled. You can use every combination of options you
1342want, depending on your needs.
1343
1344- The cpu number on which the function executed is default
1345  enabled.  It is sometimes better to only trace one cpu (see
1346  tracing_cpu_mask file) or you might sometimes see unordered
1347  function calls while cpu tracing switch.
1348
1349	hide: echo nofuncgraph-cpu > trace_options
1350	show: echo funcgraph-cpu > trace_options
1351
1352- The duration (function's time of execution) is displayed on
1353  the closing bracket line of a function or on the same line
1354  than the current function in case of a leaf one. It is default
1355  enabled.
1356
1357	hide: echo nofuncgraph-duration > trace_options
1358	show: echo funcgraph-duration > trace_options
1359
1360- The overhead field precedes the duration field in case of
1361  reached duration thresholds.
1362
1363	hide: echo nofuncgraph-overhead > trace_options
1364	show: echo funcgraph-overhead > trace_options
1365	depends on: funcgraph-duration
1366
1367  ie:
1368
1369  0)               |    up_write() {
1370  0)   0.646 us    |      _spin_lock_irqsave();
1371  0)   0.684 us    |      _spin_unlock_irqrestore();
1372  0)   3.123 us    |    }
1373  0)   0.548 us    |    fput();
1374  0) + 58.628 us   |  }
 
 
1375
1376  [...]
1377
1378  0)               |      putname() {
1379  0)               |        kmem_cache_free() {
1380  0)   0.518 us    |          __phys_addr();
1381  0)   1.757 us    |        }
1382  0)   2.861 us    |      }
1383  0) ! 115.305 us  |    }
1384  0) ! 116.402 us  |  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385
1386  + means that the function exceeded 10 usecs.
1387  ! means that the function exceeded 100 usecs.
 
 
 
 
1388
1389
1390- The task/pid field displays the thread cmdline and pid which
1391  executed the function. It is default disabled.
1392
1393	hide: echo nofuncgraph-proc > trace_options
1394	show: echo funcgraph-proc > trace_options
1395
1396  ie:
1397
1398  # tracer: function_graph
1399  #
1400  # CPU  TASK/PID        DURATION                  FUNCTION CALLS
1401  # |    |    |           |   |                     |   |   |   |
1402  0)    sh-4802     |               |                  d_free() {
1403  0)    sh-4802     |               |                    call_rcu() {
1404  0)    sh-4802     |               |                      __call_rcu() {
1405  0)    sh-4802     |   0.616 us    |                        rcu_process_gp_end();
1406  0)    sh-4802     |   0.586 us    |                        check_for_new_grace_period();
1407  0)    sh-4802     |   2.899 us    |                      }
1408  0)    sh-4802     |   4.040 us    |                    }
1409  0)    sh-4802     |   5.151 us    |                  }
1410  0)    sh-4802     | + 49.370 us   |                }
1411
1412
1413- The absolute time field is an absolute timestamp given by the
1414  system clock since it started. A snapshot of this time is
1415  given on each entry/exit of functions
1416
1417	hide: echo nofuncgraph-abstime > trace_options
1418	show: echo funcgraph-abstime > trace_options
1419
1420  ie:
1421
1422  #
1423  #      TIME       CPU  DURATION                  FUNCTION CALLS
1424  #       |         |     |   |                     |   |   |   |
1425  360.774522 |   1)   0.541 us    |                                          }
1426  360.774522 |   1)   4.663 us    |                                        }
1427  360.774523 |   1)   0.541 us    |                                        __wake_up_bit();
1428  360.774524 |   1)   6.796 us    |                                      }
1429  360.774524 |   1)   7.952 us    |                                    }
1430  360.774525 |   1)   9.063 us    |                                  }
1431  360.774525 |   1)   0.615 us    |                                  journal_mark_dirty();
1432  360.774527 |   1)   0.578 us    |                                  __brelse();
1433  360.774528 |   1)               |                                  reiserfs_prepare_for_journal() {
1434  360.774528 |   1)               |                                    unlock_buffer() {
1435  360.774529 |   1)               |                                      wake_up_bit() {
1436  360.774529 |   1)               |                                        bit_waitqueue() {
1437  360.774530 |   1)   0.594 us    |                                          __phys_addr();
1438
1439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1440You can put some comments on specific functions by using
1441trace_printk() For example, if you want to put a comment inside
1442the __might_sleep() function, you just have to include
1443<linux/ftrace.h> and call trace_printk() inside __might_sleep()
1444
1445trace_printk("I'm a comment!\n")
1446
1447will produce:
1448
1449 1)               |             __might_sleep() {
1450 1)               |                /* I'm a comment! */
1451 1)   1.449 us    |             }
1452
1453
1454You might find other useful features for this tracer in the
1455following "dynamic ftrace" section such as tracing only specific
1456functions or tasks.
1457
1458dynamic ftrace
1459--------------
1460
1461If CONFIG_DYNAMIC_FTRACE is set, the system will run with
1462virtually no overhead when function tracing is disabled. The way
1463this works is the mcount function call (placed at the start of
1464every kernel function, produced by the -pg switch in gcc),
1465starts of pointing to a simple return. (Enabling FTRACE will
1466include the -pg switch in the compiling of the kernel.)
1467
1468At compile time every C file object is run through the
1469recordmcount.pl script (located in the scripts directory). This
1470script will process the C object using objdump to find all the
1471locations in the .text section that call mcount. (Note, only the
1472.text section is processed, since processing other sections like
1473.init.text may cause races due to those sections being freed).
 
1474
1475A new section called "__mcount_loc" is created that holds
1476references to all the mcount call sites in the .text section.
1477This section is compiled back into the original object. The
1478final linker will add all these references into a single table.
 
1479
1480On boot up, before SMP is initialized, the dynamic ftrace code
1481scans this table and updates all the locations into nops. It
1482also records the locations, which are added to the
1483available_filter_functions list.  Modules are processed as they
1484are loaded and before they are executed.  When a module is
1485unloaded, it also removes its functions from the ftrace function
1486list. This is automatic in the module unload code, and the
1487module author does not need to worry about it.
1488
1489When tracing is enabled, kstop_machine is called to prevent
1490races with the CPUS executing code being modified (which can
1491cause the CPU to do undesirable things), and the nops are
 
 
1492patched back to calls. But this time, they do not call mcount
1493(which is just a function stub). They now call into the ftrace
1494infrastructure.
1495
 
 
 
 
 
 
 
 
 
 
1496One special side-effect to the recording of the functions being
1497traced is that we can now selectively choose which functions we
1498wish to trace and which ones we want the mcount calls to remain
1499as nops.
1500
1501Two files are used, one for enabling and one for disabling the
1502tracing of specified functions. They are:
1503
1504  set_ftrace_filter
1505
1506and
1507
1508  set_ftrace_notrace
1509
1510A list of available functions that you can add to these files is
1511listed in:
1512
1513   available_filter_functions
1514
1515 # cat available_filter_functions
1516put_prev_task_idle
1517kmem_cache_create
1518pick_next_task_rt
1519get_online_cpus
1520pick_next_task_fair
1521mutex_lock
1522[...]
1523
1524If I am only interested in sys_nanosleep and hrtimer_interrupt:
1525
1526 # echo sys_nanosleep hrtimer_interrupt \
1527		> set_ftrace_filter
1528 # echo function > current_tracer
1529 # echo 1 > tracing_on
1530 # usleep 1
1531 # echo 0 > tracing_on
1532 # cat trace
1533# tracer: ftrace
1534#
1535#           TASK-PID   CPU#    TIMESTAMP  FUNCTION
1536#              | |      |          |         |
1537          usleep-4134  [00]  1317.070017: hrtimer_interrupt <-smp_apic_timer_interrupt
1538          usleep-4134  [00]  1317.070111: sys_nanosleep <-syscall_call
1539          <idle>-0     [00]  1317.070115: hrtimer_interrupt <-smp_apic_timer_interrupt
 
 
 
 
 
 
 
 
 
1540
1541To see which functions are being traced, you can cat the file:
1542
1543 # cat set_ftrace_filter
1544hrtimer_interrupt
1545sys_nanosleep
1546
1547
1548Perhaps this is not enough. The filters also allow simple wild
1549cards. Only the following are currently available
1550
1551  <match>*  - will match functions that begin with <match>
1552  *<match>  - will match functions that end with <match>
1553  *<match>* - will match functions that have <match> in it
1554
1555These are the only wild cards which are supported.
1556
1557  <match>*<match> will not work.
1558
1559Note: It is better to use quotes to enclose the wild cards,
1560      otherwise the shell may expand the parameters into names
1561      of files in the local directory.
1562
1563 # echo 'hrtimer_*' > set_ftrace_filter
1564
1565Produces:
1566
1567# tracer: ftrace
1568#
1569#           TASK-PID   CPU#    TIMESTAMP  FUNCTION
1570#              | |      |          |         |
1571            bash-4003  [00]  1480.611794: hrtimer_init <-copy_process
1572            bash-4003  [00]  1480.611941: hrtimer_start <-hrtick_set
1573            bash-4003  [00]  1480.611956: hrtimer_cancel <-hrtick_clear
1574            bash-4003  [00]  1480.611956: hrtimer_try_to_cancel <-hrtimer_cancel
1575          <idle>-0     [00]  1480.612019: hrtimer_get_next_event <-get_next_timer_interrupt
1576          <idle>-0     [00]  1480.612025: hrtimer_get_next_event <-get_next_timer_interrupt
1577          <idle>-0     [00]  1480.612032: hrtimer_get_next_event <-get_next_timer_interrupt
1578          <idle>-0     [00]  1480.612037: hrtimer_get_next_event <-get_next_timer_interrupt
1579          <idle>-0     [00]  1480.612382: hrtimer_get_next_event <-get_next_timer_interrupt
1580
 
 
 
 
 
1581
1582Notice that we lost the sys_nanosleep.
1583
1584 # cat set_ftrace_filter
1585hrtimer_run_queues
1586hrtimer_run_pending
1587hrtimer_init
1588hrtimer_cancel
1589hrtimer_try_to_cancel
1590hrtimer_forward
1591hrtimer_start
1592hrtimer_reprogram
1593hrtimer_force_reprogram
1594hrtimer_get_next_event
1595hrtimer_interrupt
1596hrtimer_nanosleep
1597hrtimer_wakeup
1598hrtimer_get_remaining
1599hrtimer_get_res
1600hrtimer_init_sleeper
1601
1602
1603This is because the '>' and '>>' act just like they do in bash.
1604To rewrite the filters, use '>'
1605To append to the filters, use '>>'
1606
1607To clear out a filter so that all functions will be recorded
1608again:
1609
1610 # echo > set_ftrace_filter
1611 # cat set_ftrace_filter
1612 #
1613
1614Again, now we want to append.
1615
1616 # echo sys_nanosleep > set_ftrace_filter
1617 # cat set_ftrace_filter
1618sys_nanosleep
1619 # echo 'hrtimer_*' >> set_ftrace_filter
1620 # cat set_ftrace_filter
1621hrtimer_run_queues
1622hrtimer_run_pending
1623hrtimer_init
1624hrtimer_cancel
1625hrtimer_try_to_cancel
1626hrtimer_forward
1627hrtimer_start
1628hrtimer_reprogram
1629hrtimer_force_reprogram
1630hrtimer_get_next_event
1631hrtimer_interrupt
1632sys_nanosleep
1633hrtimer_nanosleep
1634hrtimer_wakeup
1635hrtimer_get_remaining
1636hrtimer_get_res
1637hrtimer_init_sleeper
1638
1639
1640The set_ftrace_notrace prevents those functions from being
1641traced.
1642
1643 # echo '*preempt*' '*lock*' > set_ftrace_notrace
1644
1645Produces:
1646
1647# tracer: ftrace
1648#
1649#           TASK-PID   CPU#    TIMESTAMP  FUNCTION
1650#              | |      |          |         |
1651            bash-4043  [01]   115.281644: finish_task_switch <-schedule
1652            bash-4043  [01]   115.281645: hrtick_set <-schedule
1653            bash-4043  [01]   115.281645: hrtick_clear <-hrtick_set
1654            bash-4043  [01]   115.281646: wait_for_completion <-__stop_machine_run
1655            bash-4043  [01]   115.281647: wait_for_common <-wait_for_completion
1656            bash-4043  [01]   115.281647: kthread_stop <-stop_machine_run
1657            bash-4043  [01]   115.281648: init_waitqueue_head <-kthread_stop
1658            bash-4043  [01]   115.281648: wake_up_process <-kthread_stop
1659            bash-4043  [01]   115.281649: try_to_wake_up <-wake_up_process
 
 
 
 
 
 
 
 
 
 
1660
1661We can see that there's no more lock or preempt tracing.
1662
1663
1664Dynamic ftrace with the function graph tracer
1665---------------------------------------------
1666
1667Although what has been explained above concerns both the
1668function tracer and the function-graph-tracer, there are some
1669special features only available in the function-graph tracer.
1670
1671If you want to trace only one function and all of its children,
1672you just have to echo its name into set_graph_function:
1673
1674 echo __do_fault > set_graph_function
1675
1676will produce the following "expanded" trace of the __do_fault()
1677function:
1678
1679 0)               |  __do_fault() {
1680 0)               |    filemap_fault() {
1681 0)               |      find_lock_page() {
1682 0)   0.804 us    |        find_get_page();
1683 0)               |        __might_sleep() {
1684 0)   1.329 us    |        }
1685 0)   3.904 us    |      }
1686 0)   4.979 us    |    }
1687 0)   0.653 us    |    _spin_lock();
1688 0)   0.578 us    |    page_add_file_rmap();
1689 0)   0.525 us    |    native_set_pte_at();
1690 0)   0.585 us    |    _spin_unlock();
1691 0)               |    unlock_page() {
1692 0)   0.541 us    |      page_waitqueue();
1693 0)   0.639 us    |      __wake_up_bit();
1694 0)   2.786 us    |    }
1695 0) + 14.237 us   |  }
1696 0)               |  __do_fault() {
1697 0)               |    filemap_fault() {
1698 0)               |      find_lock_page() {
1699 0)   0.698 us    |        find_get_page();
1700 0)               |        __might_sleep() {
1701 0)   1.412 us    |        }
1702 0)   3.950 us    |      }
1703 0)   5.098 us    |    }
1704 0)   0.631 us    |    _spin_lock();
1705 0)   0.571 us    |    page_add_file_rmap();
1706 0)   0.526 us    |    native_set_pte_at();
1707 0)   0.586 us    |    _spin_unlock();
1708 0)               |    unlock_page() {
1709 0)   0.533 us    |      page_waitqueue();
1710 0)   0.638 us    |      __wake_up_bit();
1711 0)   2.793 us    |    }
1712 0) + 14.012 us   |  }
1713
1714You can also expand several functions at once:
1715
1716 echo sys_open > set_graph_function
1717 echo sys_close >> set_graph_function
1718
1719Now if you want to go back to trace all functions you can clear
1720this special filter via:
1721
1722 echo > set_graph_function
1723
1724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1725Filter commands
1726---------------
1727
1728A few commands are supported by the set_ftrace_filter interface.
1729Trace commands have the following format:
1730
1731<function>:<command>:<parameter>
1732
1733The following commands are supported:
1734
1735- mod
1736  This command enables function filtering per module. The
1737  parameter defines the module. For example, if only the write*
1738  functions in the ext3 module are desired, run:
1739
1740   echo 'write*:mod:ext3' > set_ftrace_filter
1741
1742  This command interacts with the filter in the same way as
1743  filtering based on function names. Thus, adding more functions
1744  in a different module is accomplished by appending (>>) to the
1745  filter file. Remove specific module functions by prepending
1746  '!':
1747
1748   echo '!writeback*:mod:ext3' >> set_ftrace_filter
1749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1750- traceon/traceoff
1751  These commands turn tracing on and off when the specified
1752  functions are hit. The parameter determines how many times the
1753  tracing system is turned on and off. If unspecified, there is
1754  no limit. For example, to disable tracing when a schedule bug
1755  is hit the first 5 times, run:
1756
1757   echo '__schedule_bug:traceoff:5' > set_ftrace_filter
1758
 
 
 
 
1759  These commands are cumulative whether or not they are appended
1760  to set_ftrace_filter. To remove a command, prepend it by '!'
1761  and drop the parameter:
1762
 
 
 
 
 
1763   echo '!__schedule_bug:traceoff' > set_ftrace_filter
1764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765
1766trace_pipe
1767----------
1768
1769The trace_pipe outputs the same content as the trace file, but
1770the effect on the tracing is different. Every read from
1771trace_pipe is consumed. This means that subsequent reads will be
1772different. The trace is live.
1773
1774 # echo function > current_tracer
1775 # cat trace_pipe > /tmp/trace.out &
1776[1] 4153
1777 # echo 1 > tracing_on
1778 # usleep 1
1779 # echo 0 > tracing_on
1780 # cat trace
1781# tracer: function
1782#
1783#           TASK-PID   CPU#    TIMESTAMP  FUNCTION
1784#              | |      |          |         |
 
 
 
 
 
 
 
1785
1786 #
1787 # cat /tmp/trace.out
1788            bash-4043  [00] 41.267106: finish_task_switch <-schedule
1789            bash-4043  [00] 41.267106: hrtick_set <-schedule
1790            bash-4043  [00] 41.267107: hrtick_clear <-hrtick_set
1791            bash-4043  [00] 41.267108: wait_for_completion <-__stop_machine_run
1792            bash-4043  [00] 41.267108: wait_for_common <-wait_for_completion
1793            bash-4043  [00] 41.267109: kthread_stop <-stop_machine_run
1794            bash-4043  [00] 41.267109: init_waitqueue_head <-kthread_stop
1795            bash-4043  [00] 41.267110: wake_up_process <-kthread_stop
1796            bash-4043  [00] 41.267110: try_to_wake_up <-wake_up_process
1797            bash-4043  [00] 41.267111: select_task_rq_rt <-try_to_wake_up
1798
1799
1800Note, reading the trace_pipe file will block until more input is
1801added. By changing the tracer, trace_pipe will issue an EOF. We
1802needed to set the function tracer _before_ we "cat" the
1803trace_pipe file.
1804
1805
1806trace entries
1807-------------
1808
1809Having too much or not enough data can be troublesome in
1810diagnosing an issue in the kernel. The file buffer_size_kb is
1811used to modify the size of the internal trace buffers. The
1812number listed is the number of entries that can be recorded per
1813CPU. To know the full size, multiply the number of possible CPUS
1814with the number of entries.
1815
1816 # cat buffer_size_kb
18171408 (units kilobytes)
1818
1819Note, to modify this, you must have tracing completely disabled.
1820To do that, echo "nop" into the current_tracer. If the
1821current_tracer is not set to "nop", an EINVAL error will be
1822returned.
 
 
1823
1824 # echo nop > current_tracer
1825 # echo 10000 > buffer_size_kb
1826 # cat buffer_size_kb
182710000 (units kilobytes)
1828
1829The number of pages which will be allocated is limited to a
1830percentage of available memory. Allocating too much will produce
1831an error.
1832
1833 # echo 1000000000000 > buffer_size_kb
1834-bash: echo: write error: Cannot allocate memory
1835 # cat buffer_size_kb
183685
1837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1838-----------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1839
1840More details can be found in the source code, in the
1841kernel/trace/*.c files.
v4.6
   1		ftrace - Function Tracer
   2		========================
   3
   4Copyright 2008 Red Hat Inc.
   5   Author:   Steven Rostedt <srostedt@redhat.com>
   6  License:   The GNU Free Documentation License, Version 1.2
   7               (dual licensed under the GPL v2)
   8Reviewers:   Elias Oltmanns, Randy Dunlap, Andrew Morton,
   9	     John Kacur, and David Teigland.
  10Written for: 2.6.28-rc2
  11Updated for: 3.10
  12
  13Introduction
  14------------
  15
  16Ftrace is an internal tracer designed to help out developers and
  17designers of systems to find what is going on inside the kernel.
  18It can be used for debugging or analyzing latencies and
  19performance issues that take place outside of user-space.
  20
  21Although ftrace is typically considered the function tracer, it
  22is really a frame work of several assorted tracing utilities.
  23There's latency tracing to examine what occurs between interrupts
  24disabled and enabled, as well as for preemption and from a time
  25a task is woken to the task is actually scheduled in.
  26
  27One of the most common uses of ftrace is the event tracing.
  28Through out the kernel is hundreds of static event points that
  29can be enabled via the debugfs file system to see what is
  30going on in certain parts of the kernel.
  31
  32
  33Implementation Details
  34----------------------
  35
  36See ftrace-design.txt for details for arch porters and such.
  37
  38
  39The File System
  40---------------
  41
  42Ftrace uses the debugfs file system to hold the control files as
  43well as the files to display output.
  44
  45When debugfs is configured into the kernel (which selecting any ftrace
  46option will do) the directory /sys/kernel/debug will be created. To mount
  47this directory, you can add to your /etc/fstab file:
  48
  49 debugfs       /sys/kernel/debug          debugfs defaults        0       0
  50
  51Or you can mount it at run time with:
  52
  53 mount -t debugfs nodev /sys/kernel/debug
  54
  55For quicker access to that directory you may want to make a soft link to
  56it:
  57
  58 ln -s /sys/kernel/debug /debug
  59
  60Any selected ftrace option will also create a directory called tracing
  61within the debugfs. The rest of the document will assume that you are in
  62the ftrace directory (cd /sys/kernel/debug/tracing) and will only concentrate
  63on the files within that directory and not distract from the content with
  64the extended "/sys/kernel/debug/tracing" path name.
  65
  66That's it! (assuming that you have ftrace configured into your kernel)
  67
  68After mounting debugfs, you can see a directory called
  69"tracing".  This directory contains the control and output files
  70of ftrace. Here is a list of some of the key files:
  71
  72
  73 Note: all time values are in microseconds.
  74
  75  current_tracer:
  76
  77	This is used to set or display the current tracer
  78	that is configured.
  79
  80  available_tracers:
  81
  82	This holds the different types of tracers that
  83	have been compiled into the kernel. The
  84	tracers listed here can be configured by
  85	echoing their name into current_tracer.
  86
  87  tracing_on:
  88
  89	This sets or displays whether writing to the trace
  90	ring buffer is enabled. Echo 0 into this file to disable
  91	the tracer or 1 to enable it. Note, this only disables
  92	writing to the ring buffer, the tracing overhead may
  93	still be occurring.
  94
  95  trace:
  96
  97	This file holds the output of the trace in a human
  98	readable format (described below).
  99
 100  trace_pipe:
 101
 102	The output is the same as the "trace" file but this
 103	file is meant to be streamed with live tracing.
 104	Reads from this file will block until new data is
 105	retrieved.  Unlike the "trace" file, this file is a
 106	consumer. This means reading from this file causes
 107	sequential reads to display more current data. Once
 108	data is read from this file, it is consumed, and
 109	will not be read again with a sequential read. The
 110	"trace" file is static, and if the tracer is not
 111	adding more data, it will display the same
 112	information every time it is read.
 113
 114  trace_options:
 115
 116	This file lets the user control the amount of data
 117	that is displayed in one of the above output
 118	files. Options also exist to modify how a tracer
 119	or events work (stack traces, timestamps, etc).
 120
 121  options:
 122
 123	This is a directory that has a file for every available
 124	trace option (also in trace_options). Options may also be set
 125	or cleared by writing a "1" or "0" respectively into the
 126	corresponding file with the option name.
 127
 128  tracing_max_latency:
 129
 130	Some of the tracers record the max latency.
 131	For example, the time interrupts are disabled.
 132	This time is saved in this file. The max trace
 133	will also be stored, and displayed by "trace".
 134	A new max trace will only be recorded if the
 135	latency is greater than the value in this
 136	file. (in microseconds)
 137
 138  tracing_thresh:
 139
 140	Some latency tracers will record a trace whenever the
 141	latency is greater than the number in this file.
 142	Only active when the file contains a number greater than 0.
 143	(in microseconds)
 144
 145  buffer_size_kb:
 146
 147	This sets or displays the number of kilobytes each CPU
 148	buffer holds. By default, the trace buffers are the same size
 149	for each CPU. The displayed number is the size of the
 150	CPU buffer and not total size of all buffers. The
 151	trace buffers are allocated in pages (blocks of memory
 152	that the kernel uses for allocation, usually 4 KB in size).
 153	If the last page allocated has room for more bytes
 154	than requested, the rest of the page will be used,
 155	making the actual allocation bigger than requested.
 156	( Note, the size may not be a multiple of the page size
 157	  due to buffer management meta-data. )
 158
 159  buffer_total_size_kb:
 160
 161	This displays the total combined size of all the trace buffers.
 162
 163  free_buffer:
 164
 165	If a process is performing the tracing, and the ring buffer
 166	should be shrunk "freed" when the process is finished, even
 167	if it were to be killed by a signal, this file can be used
 168	for that purpose. On close of this file, the ring buffer will
 169	be resized to its minimum size. Having a process that is tracing
 170	also open this file, when the process exits its file descriptor
 171	for this file will be closed, and in doing so, the ring buffer
 172	will be "freed".
 173
 174	It may also stop tracing if disable_on_free option is set.
 175
 176  tracing_cpumask:
 177
 178	This is a mask that lets the user only trace
 179	on specified CPUs. The format is a hex string
 180	representing the CPUs.
 181
 182  set_ftrace_filter:
 183
 184	When dynamic ftrace is configured in (see the
 185	section below "dynamic ftrace"), the code is dynamically
 186	modified (code text rewrite) to disable calling of the
 187	function profiler (mcount). This lets tracing be configured
 188	in with practically no overhead in performance.  This also
 189	has a side effect of enabling or disabling specific functions
 190	to be traced. Echoing names of functions into this file
 191	will limit the trace to only those functions.
 192
 193	This interface also allows for commands to be used. See the
 194	"Filter commands" section for more details.
 195
 196  set_ftrace_notrace:
 197
 198	This has an effect opposite to that of
 199	set_ftrace_filter. Any function that is added here will not
 200	be traced. If a function exists in both set_ftrace_filter
 201	and set_ftrace_notrace,	the function will _not_ be traced.
 202
 203  set_ftrace_pid:
 204
 205	Have the function tracer only trace a single thread.
 206
 207  set_event_pid:
 208
 209	Have the events only trace a task with a PID listed in this file.
 210	Note, sched_switch and sched_wake_up will also trace events
 211	listed in this file.
 212
 213  set_graph_function:
 214
 215	Set a "trigger" function where tracing should start
 216	with the function graph tracer (See the section
 217	"dynamic ftrace" for more details).
 218
 219  available_filter_functions:
 220
 221	This lists the functions that ftrace
 222	has processed and can trace. These are the function
 223	names that you can pass to "set_ftrace_filter" or
 224	"set_ftrace_notrace". (See the section "dynamic ftrace"
 225	below for more details.)
 226
 227  enabled_functions:
 228
 229	This file is more for debugging ftrace, but can also be useful
 230	in seeing if any function has a callback attached to it.
 231	Not only does the trace infrastructure use ftrace function
 232	trace utility, but other subsystems might too. This file
 233	displays all functions that have a callback attached to them
 234	as well as the number of callbacks that have been attached.
 235	Note, a callback may also call multiple functions which will
 236	not be listed in this count.
 237
 238	If the callback registered to be traced by a function with
 239	the "save regs" attribute (thus even more overhead), a 'R'
 240	will be displayed on the same line as the function that
 241	is returning registers.
 242
 243	If the callback registered to be traced by a function with
 244	the "ip modify" attribute (thus the regs->ip can be changed),
 245	an 'I' will be displayed on the same line as the function that
 246	can be overridden.
 247
 248  function_profile_enabled:
 249
 250	When set it will enable all functions with either the function
 251	tracer, or if enabled, the function graph tracer. It will
 252	keep a histogram of the number of functions that were called
 253	and if run with the function graph tracer, it will also keep
 254	track of the time spent in those functions. The histogram
 255	content can be displayed in the files:
 256
 257	trace_stats/function<cpu> ( function0, function1, etc).
 258
 259  trace_stats:
 260
 261	A directory that holds different tracing stats.
 262
 263  kprobe_events:
 264 
 265	Enable dynamic trace points. See kprobetrace.txt.
 266
 267  kprobe_profile:
 268
 269	Dynamic trace points stats. See kprobetrace.txt.
 270
 271  max_graph_depth:
 272
 273	Used with the function graph tracer. This is the max depth
 274	it will trace into a function. Setting this to a value of
 275	one will show only the first kernel function that is called
 276	from user space.
 277
 278  printk_formats:
 279
 280	This is for tools that read the raw format files. If an event in
 281	the ring buffer references a string (currently only trace_printk()
 282	does this), only a pointer to the string is recorded into the buffer
 283	and not the string itself. This prevents tools from knowing what
 284	that string was. This file displays the string and address for
 285	the string allowing tools to map the pointers to what the
 286	strings were.
 287
 288  saved_cmdlines:
 289
 290	Only the pid of the task is recorded in a trace event unless
 291	the event specifically saves the task comm as well. Ftrace
 292	makes a cache of pid mappings to comms to try to display
 293	comms for events. If a pid for a comm is not listed, then
 294	"<...>" is displayed in the output.
 295
 296  snapshot:
 297
 298	This displays the "snapshot" buffer and also lets the user
 299	take a snapshot of the current running trace.
 300	See the "Snapshot" section below for more details.
 301
 302  stack_max_size:
 303
 304	When the stack tracer is activated, this will display the
 305	maximum stack size it has encountered.
 306	See the "Stack Trace" section below.
 307
 308  stack_trace:
 309
 310	This displays the stack back trace of the largest stack
 311	that was encountered when the stack tracer is activated.
 312	See the "Stack Trace" section below.
 313
 314  stack_trace_filter:
 315
 316	This is similar to "set_ftrace_filter" but it limits what
 317	functions the stack tracer will check.
 318
 319  trace_clock:
 320
 321	Whenever an event is recorded into the ring buffer, a
 322	"timestamp" is added. This stamp comes from a specified
 323	clock. By default, ftrace uses the "local" clock. This
 324	clock is very fast and strictly per cpu, but on some
 325	systems it may not be monotonic with respect to other
 326	CPUs. In other words, the local clocks may not be in sync
 327	with local clocks on other CPUs.
 328
 329	Usual clocks for tracing:
 330
 331	  # cat trace_clock
 332	  [local] global counter x86-tsc
 333
 334	  local: Default clock, but may not be in sync across CPUs
 335
 336	  global: This clock is in sync with all CPUs but may
 337	  	  be a bit slower than the local clock.
 338
 339	  counter: This is not a clock at all, but literally an atomic
 340	  	   counter. It counts up one by one, but is in sync
 341		   with all CPUs. This is useful when you need to
 342		   know exactly the order events occurred with respect to
 343		   each other on different CPUs.
 344
 345	  uptime: This uses the jiffies counter and the time stamp
 346	  	  is relative to the time since boot up.
 347
 348	  perf: This makes ftrace use the same clock that perf uses.
 349	  	Eventually perf will be able to read ftrace buffers
 350		and this will help out in interleaving the data.
 351
 352	  x86-tsc: Architectures may define their own clocks. For
 353	  	   example, x86 uses its own TSC cycle clock here.
 354
 355	  ppc-tb: This uses the powerpc timebase register value.
 356		  This is in sync across CPUs and can also be used
 357		  to correlate events across hypervisor/guest if
 358		  tb_offset is known.
 359
 360	To set a clock, simply echo the clock name into this file.
 361
 362	  echo global > trace_clock
 363
 364  trace_marker:
 365
 366	This is a very useful file for synchronizing user space
 367	with events happening in the kernel. Writing strings into
 368	this file will be written into the ftrace buffer.
 369
 370	It is useful in applications to open this file at the start
 371	of the application and just reference the file descriptor
 372	for the file.
 373
 374	void trace_write(const char *fmt, ...)
 375	{
 376		va_list ap;
 377		char buf[256];
 378		int n;
 379
 380		if (trace_fd < 0)
 381			return;
 382
 383		va_start(ap, fmt);
 384		n = vsnprintf(buf, 256, fmt, ap);
 385		va_end(ap);
 386
 387		write(trace_fd, buf, n);
 388	}
 389
 390	start:
 391
 392		trace_fd = open("trace_marker", WR_ONLY);
 393
 394  uprobe_events:
 395 
 396	Add dynamic tracepoints in programs.
 397	See uprobetracer.txt
 398
 399  uprobe_profile:
 400
 401	Uprobe statistics. See uprobetrace.txt
 402
 403  instances:
 404
 405	This is a way to make multiple trace buffers where different
 406	events can be recorded in different buffers.
 407	See "Instances" section below.
 408
 409  events:
 410
 411	This is the trace event directory. It holds event tracepoints
 412	(also known as static tracepoints) that have been compiled
 413	into the kernel. It shows what event tracepoints exist
 414	and how they are grouped by system. There are "enable"
 415	files at various levels that can enable the tracepoints
 416	when a "1" is written to them.
 417
 418	See events.txt for more information.
 419
 420  per_cpu:
 421
 422	This is a directory that contains the trace per_cpu information.
 423
 424  per_cpu/cpu0/buffer_size_kb:
 425
 426	The ftrace buffer is defined per_cpu. That is, there's a separate
 427	buffer for each CPU to allow writes to be done atomically,
 428	and free from cache bouncing. These buffers may have different
 429	size buffers. This file is similar to the buffer_size_kb
 430	file, but it only displays or sets the buffer size for the
 431	specific CPU. (here cpu0).
 432
 433  per_cpu/cpu0/trace:
 434
 435	This is similar to the "trace" file, but it will only display
 436	the data specific for the CPU. If written to, it only clears
 437	the specific CPU buffer.
 438
 439  per_cpu/cpu0/trace_pipe
 440
 441	This is similar to the "trace_pipe" file, and is a consuming
 442	read, but it will only display (and consume) the data specific
 443	for the CPU.
 444
 445  per_cpu/cpu0/trace_pipe_raw
 446
 447	For tools that can parse the ftrace ring buffer binary format,
 448	the trace_pipe_raw file can be used to extract the data
 449	from the ring buffer directly. With the use of the splice()
 450	system call, the buffer data can be quickly transferred to
 451	a file or to the network where a server is collecting the
 452	data.
 453
 454	Like trace_pipe, this is a consuming reader, where multiple
 455	reads will always produce different data.
 456
 457  per_cpu/cpu0/snapshot:
 458
 459	This is similar to the main "snapshot" file, but will only
 460	snapshot the current CPU (if supported). It only displays
 461	the content of the snapshot for a given CPU, and if
 462	written to, only clears this CPU buffer.
 463
 464  per_cpu/cpu0/snapshot_raw:
 465
 466	Similar to the trace_pipe_raw, but will read the binary format
 467	from the snapshot buffer for the given CPU.
 468
 469  per_cpu/cpu0/stats:
 470
 471	This displays certain stats about the ring buffer:
 472
 473	 entries: The number of events that are still in the buffer.
 474
 475	 overrun: The number of lost events due to overwriting when
 476	 	  the buffer was full.
 477
 478	 commit overrun: Should always be zero.
 479	 	This gets set if so many events happened within a nested
 480		event (ring buffer is re-entrant), that it fills the
 481		buffer and starts dropping events.
 482
 483	 bytes: Bytes actually read (not overwritten).
 484
 485	 oldest event ts: The oldest timestamp in the buffer
 486
 487	 now ts: The current timestamp
 488
 489	 dropped events: Events lost due to overwrite option being off.
 490
 491	 read events: The number of events read.
 492
 493The Tracers
 494-----------
 495
 496Here is the list of current tracers that may be configured.
 497
 498  "function"
 499
 500	Function call tracer to trace all kernel functions.
 501
 502  "function_graph"
 503
 504	Similar to the function tracer except that the
 505	function tracer probes the functions on their entry
 506	whereas the function graph tracer traces on both entry
 507	and exit of the functions. It then provides the ability
 508	to draw a graph of function calls similar to C code
 509	source.
 510
 511  "irqsoff"
 512
 513	Traces the areas that disable interrupts and saves
 514	the trace with the longest max latency.
 515	See tracing_max_latency. When a new max is recorded,
 516	it replaces the old trace. It is best to view this
 517	trace with the latency-format option enabled.
 518
 519  "preemptoff"
 520
 521	Similar to irqsoff but traces and records the amount of
 522	time for which preemption is disabled.
 523
 524  "preemptirqsoff"
 525
 526	Similar to irqsoff and preemptoff, but traces and
 527	records the largest time for which irqs and/or preemption
 528	is disabled.
 529
 530  "wakeup"
 531
 532	Traces and records the max latency that it takes for
 533	the highest priority task to get scheduled after
 534	it has been woken up.
 535        Traces all tasks as an average developer would expect.
 536
 537  "wakeup_rt"
 538
 539        Traces and records the max latency that it takes for just
 540        RT tasks (as the current "wakeup" does). This is useful
 541        for those interested in wake up timings of RT tasks.
 542
 543  "nop"
 544
 545	This is the "trace nothing" tracer. To remove all
 546	tracers from tracing simply echo "nop" into
 547	current_tracer.
 548
 549
 550Examples of using the tracer
 551----------------------------
 552
 553Here are typical examples of using the tracers when controlling
 554them only with the debugfs interface (without using any
 555user-land utilities).
 556
 557Output format:
 558--------------
 559
 560Here is an example of the output format of the file "trace"
 561
 562                             --------
 563# tracer: function
 564#
 565# entries-in-buffer/entries-written: 140080/250280   #P:4
 566#
 567#                              _-----=> irqs-off
 568#                             / _----=> need-resched
 569#                            | / _---=> hardirq/softirq
 570#                            || / _--=> preempt-depth
 571#                            ||| /     delay
 572#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
 573#              | |       |   ||||       |         |
 574            bash-1977  [000] .... 17284.993652: sys_close <-system_call_fastpath
 575            bash-1977  [000] .... 17284.993653: __close_fd <-sys_close
 576            bash-1977  [000] .... 17284.993653: _raw_spin_lock <-__close_fd
 577            sshd-1974  [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
 578            bash-1977  [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
 579            bash-1977  [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
 580            bash-1977  [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
 581            bash-1977  [000] .... 17284.993657: filp_close <-__close_fd
 582            bash-1977  [000] .... 17284.993657: dnotify_flush <-filp_close
 583            sshd-1974  [003] .... 17284.993658: sys_select <-system_call_fastpath
 584                             --------
 585
 586A header is printed with the tracer name that is represented by
 587the trace. In this case the tracer is "function". Then it shows the
 588number of events in the buffer as well as the total number of entries
 589that were written. The difference is the number of entries that were
 590lost due to the buffer filling up (250280 - 140080 = 110200 events
 591lost).
 592
 593The header explains the content of the events. Task name "bash", the task
 594PID "1977", the CPU that it was running on "000", the latency format
 595(explained below), the timestamp in <secs>.<usecs> format, the
 596function name that was traced "sys_close" and the parent function that
 597called this function "system_call_fastpath". The timestamp is the time
 598at which the function was entered.
 599
 600Latency trace format
 601--------------------
 602
 603When the latency-format option is enabled or when one of the latency
 604tracers is set, the trace file gives somewhat more information to see
 605why a latency happened. Here is a typical trace.
 606
 607# tracer: irqsoff
 608#
 609# irqsoff latency trace v1.1.5 on 3.8.0-test+
 610# --------------------------------------------------------------------
 611# latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
 612#    -----------------
 613#    | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
 614#    -----------------
 615#  => started at: __lock_task_sighand
 616#  => ended at:   _raw_spin_unlock_irqrestore
 617#
 618#
 619#                  _------=> CPU#            
 620#                 / _-----=> irqs-off        
 621#                | / _----=> need-resched    
 622#                || / _---=> hardirq/softirq 
 623#                ||| / _--=> preempt-depth   
 624#                |||| /     delay             
 625#  cmd     pid   ||||| time  |   caller      
 626#     \   /      |||||  \    |   /           
 627      ps-6143    2d...    0us!: trace_hardirqs_off <-__lock_task_sighand
 628      ps-6143    2d..1  259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
 629      ps-6143    2d..1  263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
 630      ps-6143    2d..1  306us : <stack trace>
 631 => trace_hardirqs_on_caller
 632 => trace_hardirqs_on
 633 => _raw_spin_unlock_irqrestore
 634 => do_task_stat
 635 => proc_tgid_stat
 636 => proc_single_show
 637 => seq_read
 638 => vfs_read
 639 => sys_read
 640 => system_call_fastpath
 641
 642
 643This shows that the current tracer is "irqsoff" tracing the time
 644for which interrupts were disabled. It gives the trace version (which
 645never changes) and the version of the kernel upon which this was executed on
 646(3.10). Then it displays the max latency in microseconds (259 us). The number
 647of trace entries displayed and the total number (both are four: #4/4).
 648VP, KP, SP, and HP are always zero and are reserved for later use.
 649#P is the number of online CPUs (#P:4).
 
 650
 651The task is the process that was running when the latency
 652occurred. (ps pid: 6143).
 653
 654The start and stop (the functions in which the interrupts were
 655disabled and enabled respectively) that caused the latencies:
 656
 657 __lock_task_sighand is where the interrupts were disabled.
 658 _raw_spin_unlock_irqrestore is where they were enabled again.
 659
 660The next lines after the header are the trace itself. The header
 661explains which is which.
 662
 663  cmd: The name of the process in the trace.
 664
 665  pid: The PID of that process.
 666
 667  CPU#: The CPU which the process was running on.
 668
 669  irqs-off: 'd' interrupts are disabled. '.' otherwise.
 670	    Note: If the architecture does not support a way to
 671		  read the irq flags variable, an 'X' will always
 672		  be printed here.
 673
 674  need-resched:
 675	'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
 676	'n' only TIF_NEED_RESCHED is set,
 677	'p' only PREEMPT_NEED_RESCHED is set,
 678	'.' otherwise.
 679
 680  hardirq/softirq:
 681	'H' - hard irq occurred inside a softirq.
 682	'h' - hard irq is running
 683	's' - soft irq is running
 684	'.' - normal context.
 685
 686  preempt-depth: The level of preempt_disabled
 687
 688The above is mostly meaningful for kernel developers.
 689
 690  time: When the latency-format option is enabled, the trace file
 691	output includes a timestamp relative to the start of the
 692	trace. This differs from the output when latency-format
 693	is disabled, which includes an absolute timestamp.
 694
 695  delay: This is just to help catch your eye a bit better. And
 696	 needs to be fixed to be only relative to the same CPU.
 697	 The marks are determined by the difference between this
 698	 current trace and the next trace.
 699	  '$' - greater than 1 second
 700	  '@' - greater than 100 milisecond
 701	  '*' - greater than 10 milisecond
 702	  '#' - greater than 1000 microsecond
 703	  '!' - greater than 100 microsecond
 704	  '+' - greater than 10 microsecond
 705	  ' ' - less than or equal to 10 microsecond.
 706
 707  The rest is the same as the 'trace' file.
 708
 709  Note, the latency tracers will usually end with a back trace
 710  to easily find where the latency occurred.
 711
 712trace_options
 713-------------
 714
 715The trace_options file (or the options directory) is used to control
 716what gets printed in the trace output, or manipulate the tracers.
 717To see what is available, simply cat the file:
 718
 719  cat trace_options
 720print-parent
 721nosym-offset
 722nosym-addr
 723noverbose
 724noraw
 725nohex
 726nobin
 727noblock
 728nostacktrace
 729trace_printk
 730noftrace_preempt
 731nobranch
 732annotate
 733nouserstacktrace
 734nosym-userobj
 735noprintk-msg-only
 736context-info
 737latency-format
 738sleep-time
 739graph-time
 740record-cmd
 741overwrite
 742nodisable_on_free
 743irq-info
 744markers
 745function-trace
 746
 747To disable one of the options, echo in the option prepended with
 748"no".
 749
 750  echo noprint-parent > trace_options
 751
 752To enable an option, leave off the "no".
 753
 754  echo sym-offset > trace_options
 755
 756Here are the available options:
 757
 758  print-parent - On function traces, display the calling (parent)
 759		 function as well as the function being traced.
 760
 761  print-parent:
 762   bash-4000  [01]  1477.606694: simple_strtoul <-kstrtoul
 763
 764  noprint-parent:
 765   bash-4000  [01]  1477.606694: simple_strtoul
 766
 767
 768  sym-offset - Display not only the function name, but also the
 769	       offset in the function. For example, instead of
 770	       seeing just "ktime_get", you will see
 771	       "ktime_get+0xb/0x20".
 772
 773  sym-offset:
 774   bash-4000  [01]  1477.606694: simple_strtoul+0x6/0xa0
 775
 776  sym-addr - this will also display the function address as well
 777	     as the function name.
 778
 779  sym-addr:
 780   bash-4000  [01]  1477.606694: simple_strtoul <c0339346>
 781
 782  verbose - This deals with the trace file when the
 783            latency-format option is enabled.
 784
 785    bash  4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
 786    (+0.000ms): simple_strtoul (kstrtoul)
 787
 788  raw - This will display raw numbers. This option is best for
 789	use with user applications that can translate the raw
 790	numbers better than having it done in the kernel.
 791
 792  hex - Similar to raw, but the numbers will be in a hexadecimal
 793	format.
 794
 795  bin - This will print out the formats in raw binary.
 796
 797  block - When set, reading trace_pipe will not block when polled.
 798
 799  stacktrace - This is one of the options that changes the trace
 800	       itself. When a trace is recorded, so is the stack
 801	       of functions. This allows for back traces of
 802	       trace sites.
 803
 804  trace_printk - Can disable trace_printk() from writing into the buffer.
 805
 806  branch - Enable branch tracing with the tracer.
 807
 808  annotate - It is sometimes confusing when the CPU buffers are full
 809  	     and one CPU buffer had a lot of events recently, thus
 810	     a shorter time frame, were another CPU may have only had
 811	     a few events, which lets it have older events. When
 812	     the trace is reported, it shows the oldest events first,
 813	     and it may look like only one CPU ran (the one with the
 814	     oldest events). When the annotate option is set, it will
 815	     display when a new CPU buffer started:
 816
 817          <idle>-0     [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
 818          <idle>-0     [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
 819          <idle>-0     [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
 820##### CPU 2 buffer started ####
 821          <idle>-0     [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
 822          <idle>-0     [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
 823          <idle>-0     [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock
 824
 825  userstacktrace - This option changes the trace. It records a
 826		   stacktrace of the current userspace thread.
 827
 828  sym-userobj - when user stacktrace are enabled, look up which
 829		object the address belongs to, and print a
 830		relative address. This is especially useful when
 831		ASLR is on, otherwise you don't get a chance to
 832		resolve the address to object/file/line after
 833		the app is no longer running
 834
 835		The lookup is performed when you read
 836		trace,trace_pipe. Example:
 837
 838		a.out-1623  [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
 839x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
 840
 841
 842  printk-msg-only - When set, trace_printk()s will only show the format
 843  		    and not their parameters (if trace_bprintk() or
 844		    trace_bputs() was used to save the trace_printk()).
 845
 846  context-info - Show only the event data. Hides the comm, PID,
 847  	         timestamp, CPU, and other useful data.
 848
 849  latency-format - This option changes the trace. When
 850                   it is enabled, the trace displays
 851                   additional information about the
 852                   latencies, as described in "Latency
 853                   trace format".
 854
 855  sleep-time - When running function graph tracer, to include
 856  	       the time a task schedules out in its function.
 857	       When enabled, it will account time the task has been
 858	       scheduled out as part of the function call.
 859
 860  graph-time - When running function graph tracer, to include the
 861  	       time to call nested functions. When this is not set,
 862	       the time reported for the function will only include
 863	       the time the function itself executed for, not the time
 864	       for functions that it called.
 865
 866  record-cmd - When any event or tracer is enabled, a hook is enabled
 867  	       in the sched_switch trace point to fill comm cache
 868	       with mapped pids and comms. But this may cause some
 869	       overhead, and if you only care about pids, and not the
 870	       name of the task, disabling this option can lower the
 871	       impact of tracing.
 872
 873  overwrite - This controls what happens when the trace buffer is
 874              full. If "1" (default), the oldest events are
 875              discarded and overwritten. If "0", then the newest
 876              events are discarded.
 877	        (see per_cpu/cpu0/stats for overrun and dropped)
 878
 879  disable_on_free - When the free_buffer is closed, tracing will
 880  		    stop (tracing_on set to 0).
 
 
 
 
 
 881
 882  irq-info - Shows the interrupt, preempt count, need resched data.
 883  	     When disabled, the trace looks like:
 884
 885# tracer: function
 886#
 887# entries-in-buffer/entries-written: 144405/9452052   #P:4
 888#
 889#           TASK-PID   CPU#      TIMESTAMP  FUNCTION
 890#              | |       |          |         |
 891          <idle>-0     [002]  23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
 892          <idle>-0     [002]  23636.756054: activate_task <-ttwu_do_activate.constprop.89
 893          <idle>-0     [002]  23636.756055: enqueue_task <-activate_task
 894
 895
 896  markers - When set, the trace_marker is writable (only by root).
 897  	    When disabled, the trace_marker will error with EINVAL
 898	    on write.
 899
 900
 901  function-trace - The latency tracers will enable function tracing
 902  	    if this option is enabled (default it is). When
 903	    it is disabled, the latency tracers do not trace
 904	    functions. This keeps the overhead of the tracer down
 905	    when performing latency tests.
 906
 907 Note: Some tracers have their own options. They only appear
 908       when the tracer is active.
 909
 
 
 
 910
 911
 912irqsoff
 913-------
 914
 915When interrupts are disabled, the CPU can not react to any other
 916external event (besides NMIs and SMIs). This prevents the timer
 917interrupt from triggering or the mouse interrupt from letting
 918the kernel know of a new mouse event. The result is a latency
 919with the reaction time.
 920
 921The irqsoff tracer tracks the time for which interrupts are
 922disabled. When a new maximum latency is hit, the tracer saves
 923the trace leading up to that latency point so that every time a
 924new maximum is reached, the old saved trace is discarded and the
 925new trace is saved.
 926
 927To reset the maximum, echo 0 into tracing_max_latency. Here is
 928an example:
 929
 930 # echo 0 > options/function-trace
 931 # echo irqsoff > current_tracer
 
 
 932 # echo 1 > tracing_on
 933 # echo 0 > tracing_max_latency
 934 # ls -ltr
 935 [...]
 936 # echo 0 > tracing_on
 937 # cat trace
 938# tracer: irqsoff
 939#
 940# irqsoff latency trace v1.1.5 on 3.8.0-test+
 941# --------------------------------------------------------------------
 942# latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
 943#    -----------------
 944#    | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
 945#    -----------------
 946#  => started at: run_timer_softirq
 947#  => ended at:   run_timer_softirq
 948#
 949#
 950#                  _------=> CPU#            
 951#                 / _-----=> irqs-off        
 952#                | / _----=> need-resched    
 953#                || / _---=> hardirq/softirq 
 954#                ||| / _--=> preempt-depth   
 955#                |||| /     delay             
 956#  cmd     pid   ||||| time  |   caller      
 957#     \   /      |||||  \    |   /           
 958  <idle>-0       0d.s2    0us+: _raw_spin_lock_irq <-run_timer_softirq
 959  <idle>-0       0dNs3   17us : _raw_spin_unlock_irq <-run_timer_softirq
 960  <idle>-0       0dNs3   17us+: trace_hardirqs_on <-run_timer_softirq
 961  <idle>-0       0dNs3   25us : <stack trace>
 962 => _raw_spin_unlock_irq
 963 => run_timer_softirq
 964 => __do_softirq
 965 => call_softirq
 966 => do_softirq
 967 => irq_exit
 968 => smp_apic_timer_interrupt
 969 => apic_timer_interrupt
 970 => rcu_idle_exit
 971 => cpu_idle
 972 => rest_init
 973 => start_kernel
 974 => x86_64_start_reservations
 975 => x86_64_start_kernel
 976
 977Here we see that that we had a latency of 16 microseconds (which is
 978very good). The _raw_spin_lock_irq in run_timer_softirq disabled
 979interrupts. The difference between the 16 and the displayed
 980timestamp 25us occurred because the clock was incremented
 981between the time of recording the max latency and the time of
 982recording the function that had that latency.
 983
 984Note the above example had function-trace not set. If we set
 985function-trace, we get a much larger output:
 986
 987 with echo 1 > options/function-trace
 988
 989# tracer: irqsoff
 990#
 991# irqsoff latency trace v1.1.5 on 3.8.0-test+
 992# --------------------------------------------------------------------
 993# latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
 994#    -----------------
 995#    | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
 996#    -----------------
 997#  => started at: ata_scsi_queuecmd
 998#  => ended at:   ata_scsi_queuecmd
 999#
1000#
1001#                  _------=> CPU#            
1002#                 / _-----=> irqs-off        
1003#                | / _----=> need-resched    
1004#                || / _---=> hardirq/softirq 
1005#                ||| / _--=> preempt-depth   
1006#                |||| /     delay             
1007#  cmd     pid   ||||| time  |   caller      
1008#     \   /      |||||  \    |   /           
1009    bash-2042    3d...    0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1010    bash-2042    3d...    0us : add_preempt_count <-_raw_spin_lock_irqsave
1011    bash-2042    3d..1    1us : ata_scsi_find_dev <-ata_scsi_queuecmd
1012    bash-2042    3d..1    1us : __ata_scsi_find_dev <-ata_scsi_find_dev
1013    bash-2042    3d..1    2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
1014    bash-2042    3d..1    2us : ata_qc_new_init <-__ata_scsi_queuecmd
1015    bash-2042    3d..1    3us : ata_sg_init <-__ata_scsi_queuecmd
1016    bash-2042    3d..1    4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
1017    bash-2042    3d..1    4us : ata_build_rw_tf <-ata_scsi_rw_xlat
 
 
 
1018[...]
1019    bash-2042    3d..1   67us : delay_tsc <-__delay
1020    bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1021    bash-2042    3d..2   67us : sub_preempt_count <-delay_tsc
1022    bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
1023    bash-2042    3d..2   68us : sub_preempt_count <-delay_tsc
1024    bash-2042    3d..1   68us+: ata_bmdma_start <-ata_bmdma_qc_issue
1025    bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1026    bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1027    bash-2042    3d..1   72us+: trace_hardirqs_on <-ata_scsi_queuecmd
1028    bash-2042    3d..1  120us : <stack trace>
1029 => _raw_spin_unlock_irqrestore
1030 => ata_scsi_queuecmd
1031 => scsi_dispatch_cmd
1032 => scsi_request_fn
1033 => __blk_run_queue_uncond
1034 => __blk_run_queue
1035 => blk_queue_bio
1036 => generic_make_request
1037 => submit_bio
1038 => submit_bh
1039 => __ext3_get_inode_loc
1040 => ext3_iget
1041 => ext3_lookup
1042 => lookup_real
1043 => __lookup_hash
1044 => walk_component
1045 => lookup_last
1046 => path_lookupat
1047 => filename_lookup
1048 => user_path_at_empty
1049 => user_path_at
1050 => vfs_fstatat
1051 => vfs_stat
1052 => sys_newstat
1053 => system_call_fastpath
1054
1055
1056Here we traced a 71 microsecond latency. But we also see all the
1057functions that were called during that time. Note that by
1058enabling function tracing, we incur an added overhead. This
1059overhead may extend the latency times. But nevertheless, this
1060trace has provided some very helpful debugging information.
1061
1062
1063preemptoff
1064----------
1065
1066When preemption is disabled, we may be able to receive
1067interrupts but the task cannot be preempted and a higher
1068priority task must wait for preemption to be enabled again
1069before it can preempt a lower priority task.
1070
1071The preemptoff tracer traces the places that disable preemption.
1072Like the irqsoff tracer, it records the maximum latency for
1073which preemption was disabled. The control of preemptoff tracer
1074is much like the irqsoff tracer.
1075
1076 # echo 0 > options/function-trace
1077 # echo preemptoff > current_tracer
 
 
1078 # echo 1 > tracing_on
1079 # echo 0 > tracing_max_latency
1080 # ls -ltr
1081 [...]
1082 # echo 0 > tracing_on
1083 # cat trace
1084# tracer: preemptoff
1085#
1086# preemptoff latency trace v1.1.5 on 3.8.0-test+
1087# --------------------------------------------------------------------
1088# latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1089#    -----------------
1090#    | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
1091#    -----------------
1092#  => started at: do_IRQ
1093#  => ended at:   do_IRQ
1094#
1095#
1096#                  _------=> CPU#            
1097#                 / _-----=> irqs-off        
1098#                | / _----=> need-resched    
1099#                || / _---=> hardirq/softirq 
1100#                ||| / _--=> preempt-depth   
1101#                |||| /     delay             
1102#  cmd     pid   ||||| time  |   caller      
1103#     \   /      |||||  \    |   /           
1104    sshd-1991    1d.h.    0us+: irq_enter <-do_IRQ
1105    sshd-1991    1d..1   46us : irq_exit <-do_IRQ
1106    sshd-1991    1d..1   47us+: trace_preempt_on <-do_IRQ
1107    sshd-1991    1d..1   52us : <stack trace>
1108 => sub_preempt_count
1109 => irq_exit
1110 => do_IRQ
1111 => ret_from_intr
1112
1113
1114This has some more changes. Preemption was disabled when an
1115interrupt came in (notice the 'h'), and was enabled on exit.
1116But we also see that interrupts have been disabled when entering
1117the preempt off section and leaving it (the 'd'). We do not know if
1118interrupts were enabled in the mean time or shortly after this
1119was over.
1120
1121# tracer: preemptoff
1122#
1123# preemptoff latency trace v1.1.5 on 3.8.0-test+
1124# --------------------------------------------------------------------
1125# latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1126#    -----------------
1127#    | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
1128#    -----------------
1129#  => started at: wake_up_new_task
1130#  => ended at:   task_rq_unlock
1131#
1132#
1133#                  _------=> CPU#            
1134#                 / _-----=> irqs-off        
1135#                | / _----=> need-resched    
1136#                || / _---=> hardirq/softirq 
1137#                ||| / _--=> preempt-depth   
1138#                |||| /     delay             
1139#  cmd     pid   ||||| time  |   caller      
1140#     \   /      |||||  \    |   /           
1141    bash-1994    1d..1    0us : _raw_spin_lock_irqsave <-wake_up_new_task
1142    bash-1994    1d..1    0us : select_task_rq_fair <-select_task_rq
1143    bash-1994    1d..1    1us : __rcu_read_lock <-select_task_rq_fair
1144    bash-1994    1d..1    1us : source_load <-select_task_rq_fair
1145    bash-1994    1d..1    1us : source_load <-select_task_rq_fair
 
 
 
1146[...]
1147    bash-1994    1d..1   12us : irq_enter <-smp_apic_timer_interrupt
1148    bash-1994    1d..1   12us : rcu_irq_enter <-irq_enter
1149    bash-1994    1d..1   13us : add_preempt_count <-irq_enter
1150    bash-1994    1d.h1   13us : exit_idle <-smp_apic_timer_interrupt
1151    bash-1994    1d.h1   13us : hrtimer_interrupt <-smp_apic_timer_interrupt
1152    bash-1994    1d.h1   13us : _raw_spin_lock <-hrtimer_interrupt
1153    bash-1994    1d.h1   14us : add_preempt_count <-_raw_spin_lock
1154    bash-1994    1d.h2   14us : ktime_get_update_offsets <-hrtimer_interrupt
 
 
 
 
 
 
1155[...]
1156    bash-1994    1d.h1   35us : lapic_next_event <-clockevents_program_event
1157    bash-1994    1d.h1   35us : irq_exit <-smp_apic_timer_interrupt
1158    bash-1994    1d.h1   36us : sub_preempt_count <-irq_exit
1159    bash-1994    1d..2   36us : do_softirq <-irq_exit
1160    bash-1994    1d..2   36us : __do_softirq <-call_softirq
1161    bash-1994    1d..2   36us : __local_bh_disable <-__do_softirq
1162    bash-1994    1d.s2   37us : add_preempt_count <-_raw_spin_lock_irq
1163    bash-1994    1d.s3   38us : _raw_spin_unlock <-run_timer_softirq
1164    bash-1994    1d.s3   39us : sub_preempt_count <-_raw_spin_unlock
1165    bash-1994    1d.s2   39us : call_timer_fn <-run_timer_softirq
1166[...]
1167    bash-1994    1dNs2   81us : cpu_needs_another_gp <-rcu_process_callbacks
1168    bash-1994    1dNs2   82us : __local_bh_enable <-__do_softirq
1169    bash-1994    1dNs2   82us : sub_preempt_count <-__local_bh_enable
1170    bash-1994    1dN.2   82us : idle_cpu <-irq_exit
1171    bash-1994    1dN.2   83us : rcu_irq_exit <-irq_exit
1172    bash-1994    1dN.2   83us : sub_preempt_count <-irq_exit
1173    bash-1994    1.N.1   84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
1174    bash-1994    1.N.1   84us+: trace_preempt_on <-task_rq_unlock
1175    bash-1994    1.N.1  104us : <stack trace>
1176 => sub_preempt_count
1177 => _raw_spin_unlock_irqrestore
1178 => task_rq_unlock
1179 => wake_up_new_task
1180 => do_fork
1181 => sys_clone
1182 => stub_clone
1183
1184
1185The above is an example of the preemptoff trace with
1186function-trace set. Here we see that interrupts were not disabled
1187the entire time. The irq_enter code lets us know that we entered
1188an interrupt 'h'. Before that, the functions being traced still
1189show that it is not in an interrupt, but we can see from the
1190functions themselves that this is not the case.
1191
 
 
 
 
 
 
 
 
 
 
1192preemptirqsoff
1193--------------
1194
1195Knowing the locations that have interrupts disabled or
1196preemption disabled for the longest times is helpful. But
1197sometimes we would like to know when either preemption and/or
1198interrupts are disabled.
1199
1200Consider the following code:
1201
1202    local_irq_disable();
1203    call_function_with_irqs_off();
1204    preempt_disable();
1205    call_function_with_irqs_and_preemption_off();
1206    local_irq_enable();
1207    call_function_with_preemption_off();
1208    preempt_enable();
1209
1210The irqsoff tracer will record the total length of
1211call_function_with_irqs_off() and
1212call_function_with_irqs_and_preemption_off().
1213
1214The preemptoff tracer will record the total length of
1215call_function_with_irqs_and_preemption_off() and
1216call_function_with_preemption_off().
1217
1218But neither will trace the time that interrupts and/or
1219preemption is disabled. This total time is the time that we can
1220not schedule. To record this time, use the preemptirqsoff
1221tracer.
1222
1223Again, using this trace is much like the irqsoff and preemptoff
1224tracers.
1225
1226 # echo 0 > options/function-trace
1227 # echo preemptirqsoff > current_tracer
 
 
1228 # echo 1 > tracing_on
1229 # echo 0 > tracing_max_latency
1230 # ls -ltr
1231 [...]
1232 # echo 0 > tracing_on
1233 # cat trace
1234# tracer: preemptirqsoff
1235#
1236# preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1237# --------------------------------------------------------------------
1238# latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1239#    -----------------
1240#    | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
1241#    -----------------
1242#  => started at: ata_scsi_queuecmd
1243#  => ended at:   ata_scsi_queuecmd
1244#
1245#
1246#                  _------=> CPU#            
1247#                 / _-----=> irqs-off        
1248#                | / _----=> need-resched    
1249#                || / _---=> hardirq/softirq 
1250#                ||| / _--=> preempt-depth   
1251#                |||| /     delay             
1252#  cmd     pid   ||||| time  |   caller      
1253#     \   /      |||||  \    |   /           
1254      ls-2230    3d...    0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1255      ls-2230    3...1  100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1256      ls-2230    3...1  101us+: trace_preempt_on <-ata_scsi_queuecmd
1257      ls-2230    3...1  111us : <stack trace>
1258 => sub_preempt_count
1259 => _raw_spin_unlock_irqrestore
1260 => ata_scsi_queuecmd
1261 => scsi_dispatch_cmd
1262 => scsi_request_fn
1263 => __blk_run_queue_uncond
1264 => __blk_run_queue
1265 => blk_queue_bio
1266 => generic_make_request
1267 => submit_bio
1268 => submit_bh
1269 => ext3_bread
1270 => ext3_dir_bread
1271 => htree_dirblock_to_tree
1272 => ext3_htree_fill_tree
1273 => ext3_readdir
1274 => vfs_readdir
1275 => sys_getdents
1276 => system_call_fastpath
1277
1278
1279The trace_hardirqs_off_thunk is called from assembly on x86 when
1280interrupts are disabled in the assembly code. Without the
1281function tracing, we do not know if interrupts were enabled
1282within the preemption points. We do see that it started with
1283preemption enabled.
1284
1285Here is a trace with function-trace set:
 
1286
1287# tracer: preemptirqsoff
1288#
1289# preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1290# --------------------------------------------------------------------
1291# latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1292#    -----------------
1293#    | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
1294#    -----------------
1295#  => started at: schedule
1296#  => ended at:   mutex_unlock
1297#
1298#
1299#                  _------=> CPU#            
1300#                 / _-----=> irqs-off        
1301#                | / _----=> need-resched    
1302#                || / _---=> hardirq/softirq 
1303#                ||| / _--=> preempt-depth   
1304#                |||| /     delay             
1305#  cmd     pid   ||||| time  |   caller      
1306#     \   /      |||||  \    |   /           
1307kworker/-59      3...1    0us : __schedule <-schedule
1308kworker/-59      3d..1    0us : rcu_preempt_qs <-rcu_note_context_switch
1309kworker/-59      3d..1    1us : add_preempt_count <-_raw_spin_lock_irq
1310kworker/-59      3d..2    1us : deactivate_task <-__schedule
1311kworker/-59      3d..2    1us : dequeue_task <-deactivate_task
1312kworker/-59      3d..2    2us : update_rq_clock <-dequeue_task
1313kworker/-59      3d..2    2us : dequeue_task_fair <-dequeue_task
1314kworker/-59      3d..2    2us : update_curr <-dequeue_task_fair
1315kworker/-59      3d..2    2us : update_min_vruntime <-update_curr
1316kworker/-59      3d..2    3us : cpuacct_charge <-update_curr
1317kworker/-59      3d..2    3us : __rcu_read_lock <-cpuacct_charge
1318kworker/-59      3d..2    3us : __rcu_read_unlock <-cpuacct_charge
1319kworker/-59      3d..2    3us : update_cfs_rq_blocked_load <-dequeue_task_fair
1320kworker/-59      3d..2    4us : clear_buddies <-dequeue_task_fair
1321kworker/-59      3d..2    4us : account_entity_dequeue <-dequeue_task_fair
1322kworker/-59      3d..2    4us : update_min_vruntime <-dequeue_task_fair
1323kworker/-59      3d..2    4us : update_cfs_shares <-dequeue_task_fair
1324kworker/-59      3d..2    5us : hrtick_update <-dequeue_task_fair
1325kworker/-59      3d..2    5us : wq_worker_sleeping <-__schedule
1326kworker/-59      3d..2    5us : kthread_data <-wq_worker_sleeping
1327kworker/-59      3d..2    5us : put_prev_task_fair <-__schedule
1328kworker/-59      3d..2    6us : pick_next_task_fair <-pick_next_task
1329kworker/-59      3d..2    6us : clear_buddies <-pick_next_task_fair
1330kworker/-59      3d..2    6us : set_next_entity <-pick_next_task_fair
1331kworker/-59      3d..2    6us : update_stats_wait_end <-set_next_entity
1332      ls-2269    3d..2    7us : finish_task_switch <-__schedule
1333      ls-2269    3d..2    7us : _raw_spin_unlock_irq <-finish_task_switch
1334      ls-2269    3d..2    8us : do_IRQ <-ret_from_intr
1335      ls-2269    3d..2    8us : irq_enter <-do_IRQ
1336      ls-2269    3d..2    8us : rcu_irq_enter <-irq_enter
1337      ls-2269    3d..2    9us : add_preempt_count <-irq_enter
1338      ls-2269    3d.h2    9us : exit_idle <-do_IRQ
1339[...]
1340      ls-2269    3d.h3   20us : sub_preempt_count <-_raw_spin_unlock
1341      ls-2269    3d.h2   20us : irq_exit <-do_IRQ
1342      ls-2269    3d.h2   21us : sub_preempt_count <-irq_exit
1343      ls-2269    3d..3   21us : do_softirq <-irq_exit
1344      ls-2269    3d..3   21us : __do_softirq <-call_softirq
1345      ls-2269    3d..3   21us+: __local_bh_disable <-__do_softirq
1346      ls-2269    3d.s4   29us : sub_preempt_count <-_local_bh_enable_ip
1347      ls-2269    3d.s5   29us : sub_preempt_count <-_local_bh_enable_ip
1348      ls-2269    3d.s5   31us : do_IRQ <-ret_from_intr
1349      ls-2269    3d.s5   31us : irq_enter <-do_IRQ
1350      ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1351[...]
1352      ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
1353      ls-2269    3d.s5   32us : add_preempt_count <-irq_enter
1354      ls-2269    3d.H5   32us : exit_idle <-do_IRQ
1355      ls-2269    3d.H5   32us : handle_irq <-do_IRQ
1356      ls-2269    3d.H5   32us : irq_to_desc <-handle_irq
1357      ls-2269    3d.H5   33us : handle_fasteoi_irq <-handle_irq
 
 
 
 
 
1358[...]
1359      ls-2269    3d.s5  158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
1360      ls-2269    3d.s3  158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
1361      ls-2269    3d.s3  159us : __local_bh_enable <-__do_softirq
1362      ls-2269    3d.s3  159us : sub_preempt_count <-__local_bh_enable
1363      ls-2269    3d..3  159us : idle_cpu <-irq_exit
1364      ls-2269    3d..3  159us : rcu_irq_exit <-irq_exit
1365      ls-2269    3d..3  160us : sub_preempt_count <-irq_exit
1366      ls-2269    3d...  161us : __mutex_unlock_slowpath <-mutex_unlock
1367      ls-2269    3d...  162us+: trace_hardirqs_on <-mutex_unlock
1368      ls-2269    3d...  186us : <stack trace>
1369 => __mutex_unlock_slowpath
1370 => mutex_unlock
1371 => process_output
1372 => n_tty_write
1373 => tty_write
1374 => vfs_write
1375 => sys_write
1376 => system_call_fastpath
1377
1378This is an interesting trace. It started with kworker running and
1379scheduling out and ls taking over. But as soon as ls released the
1380rq lock and enabled interrupts (but not preemption) an interrupt
1381triggered. When the interrupt finished, it started running softirqs.
1382But while the softirq was running, another interrupt triggered.
1383When an interrupt is running inside a softirq, the annotation is 'H'.
1384
1385
1386wakeup
1387------
1388
1389One common case that people are interested in tracing is the
1390time it takes for a task that is woken to actually wake up.
1391Now for non Real-Time tasks, this can be arbitrary. But tracing
1392it none the less can be interesting. 
1393
1394Without function tracing:
1395
1396 # echo 0 > options/function-trace
1397 # echo wakeup > current_tracer
1398 # echo 1 > tracing_on
1399 # echo 0 > tracing_max_latency
1400 # chrt -f 5 sleep 1
1401 # echo 0 > tracing_on
1402 # cat trace
1403# tracer: wakeup
1404#
1405# wakeup latency trace v1.1.5 on 3.8.0-test+
1406# --------------------------------------------------------------------
1407# latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1408#    -----------------
1409#    | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
1410#    -----------------
1411#
1412#                  _------=> CPU#            
1413#                 / _-----=> irqs-off        
1414#                | / _----=> need-resched    
1415#                || / _---=> hardirq/softirq 
1416#                ||| / _--=> preempt-depth   
1417#                |||| /     delay             
1418#  cmd     pid   ||||| time  |   caller      
1419#     \   /      |||||  \    |   /           
1420  <idle>-0       3dNs7    0us :      0:120:R   + [003]   312:100:R kworker/3:1H
1421  <idle>-0       3dNs7    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1422  <idle>-0       3d..3   15us : __schedule <-schedule
1423  <idle>-0       3d..3   15us :      0:120:R ==> [003]   312:100:R kworker/3:1H
1424
1425The tracer only traces the highest priority task in the system
1426to avoid tracing the normal circumstances. Here we see that
1427the kworker with a nice priority of -20 (not very nice), took
1428just 15 microseconds from the time it woke up, to the time it
1429ran.
1430
1431Non Real-Time tasks are not that interesting. A more interesting
1432trace is to concentrate only on Real-Time tasks.
1433
1434wakeup_rt
1435---------
1436
1437In a Real-Time environment it is very important to know the
1438wakeup time it takes for the highest priority task that is woken
1439up to the time that it executes. This is also known as "schedule
1440latency". I stress the point that this is about RT tasks. It is
1441also important to know the scheduling latency of non-RT tasks,
1442but the average schedule latency is better for non-RT tasks.
1443Tools like LatencyTop are more appropriate for such
1444measurements.
1445
1446Real-Time environments are interested in the worst case latency.
1447That is the longest latency it takes for something to happen,
1448and not the average. We can have a very fast scheduler that may
1449only have a large latency once in a while, but that would not
1450work well with Real-Time tasks.  The wakeup_rt tracer was designed
1451to record the worst case wakeups of RT tasks. Non-RT tasks are
1452not recorded because the tracer only records one worst case and
1453tracing non-RT tasks that are unpredictable will overwrite the
1454worst case latency of RT tasks (just run the normal wakeup
1455tracer for a while to see that effect).
1456
1457Since this tracer only deals with RT tasks, we will run this
1458slightly differently than we did with the previous tracers.
1459Instead of performing an 'ls', we will run 'sleep 1' under
1460'chrt' which changes the priority of the task.
1461
1462 # echo 0 > options/function-trace
1463 # echo wakeup_rt > current_tracer
 
1464 # echo 1 > tracing_on
1465 # echo 0 > tracing_max_latency
1466 # chrt -f 5 sleep 1
1467 # echo 0 > tracing_on
1468 # cat trace
1469# tracer: wakeup
1470#
1471# tracer: wakeup_rt
1472#
1473# wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1474# --------------------------------------------------------------------
1475# latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1476#    -----------------
1477#    | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
1478#    -----------------
1479#
1480#                  _------=> CPU#            
1481#                 / _-----=> irqs-off        
1482#                | / _----=> need-resched    
1483#                || / _---=> hardirq/softirq 
1484#                ||| / _--=> preempt-depth   
1485#                |||| /     delay             
1486#  cmd     pid   ||||| time  |   caller      
1487#     \   /      |||||  \    |   /           
1488  <idle>-0       3d.h4    0us :      0:120:R   + [003]  2389: 94:R sleep
1489  <idle>-0       3d.h4    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1490  <idle>-0       3d..3    5us : __schedule <-schedule
1491  <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
1492
1493
1494Running this on an idle system, we see that it only took 5 microseconds
1495to perform the task switch.  Note, since the trace point in the schedule
1496is before the actual "switch", we stop the tracing when the recorded task
1497is about to schedule in. This may change if we add a new marker at the
1498end of the scheduler.
1499
1500Notice that the recorded task is 'sleep' with the PID of 2389
1501and it has an rt_prio of 5. This priority is user-space priority
1502and not the internal kernel priority. The policy is 1 for
1503SCHED_FIFO and 2 for SCHED_RR.
1504
1505Note, that the trace data shows the internal priority (99 - rtprio).
1506
1507  <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
1508
1509The 0:120:R means idle was running with a nice priority of 0 (120 - 20)
1510and in the running state 'R'. The sleep task was scheduled in with
15112389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
1512and it too is in the running state.
1513
1514Doing the same with chrt -r 5 and function-trace set.
1515
1516  echo 1 > options/function-trace
1517
1518# tracer: wakeup_rt
1519#
1520# wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1521# --------------------------------------------------------------------
1522# latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1523#    -----------------
1524#    | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
1525#    -----------------
1526#
1527#                  _------=> CPU#            
1528#                 / _-----=> irqs-off        
1529#                | / _----=> need-resched    
1530#                || / _---=> hardirq/softirq 
1531#                ||| / _--=> preempt-depth   
1532#                |||| /     delay             
1533#  cmd     pid   ||||| time  |   caller      
1534#     \   /      |||||  \    |   /           
1535  <idle>-0       3d.h4    1us+:      0:120:R   + [003]  2448: 94:R sleep
1536  <idle>-0       3d.h4    2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1537  <idle>-0       3d.h3    3us : check_preempt_curr <-ttwu_do_wakeup
1538  <idle>-0       3d.h3    3us : resched_curr <-check_preempt_curr
1539  <idle>-0       3dNh3    4us : task_woken_rt <-ttwu_do_wakeup
1540  <idle>-0       3dNh3    4us : _raw_spin_unlock <-try_to_wake_up
1541  <idle>-0       3dNh3    4us : sub_preempt_count <-_raw_spin_unlock
1542  <idle>-0       3dNh2    5us : ttwu_stat <-try_to_wake_up
1543  <idle>-0       3dNh2    5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
1544  <idle>-0       3dNh2    6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1545  <idle>-0       3dNh1    6us : _raw_spin_lock <-__run_hrtimer
1546  <idle>-0       3dNh1    6us : add_preempt_count <-_raw_spin_lock
1547  <idle>-0       3dNh2    7us : _raw_spin_unlock <-hrtimer_interrupt
1548  <idle>-0       3dNh2    7us : sub_preempt_count <-_raw_spin_unlock
1549  <idle>-0       3dNh1    7us : tick_program_event <-hrtimer_interrupt
1550  <idle>-0       3dNh1    7us : clockevents_program_event <-tick_program_event
1551  <idle>-0       3dNh1    8us : ktime_get <-clockevents_program_event
1552  <idle>-0       3dNh1    8us : lapic_next_event <-clockevents_program_event
1553  <idle>-0       3dNh1    8us : irq_exit <-smp_apic_timer_interrupt
1554  <idle>-0       3dNh1    9us : sub_preempt_count <-irq_exit
1555  <idle>-0       3dN.2    9us : idle_cpu <-irq_exit
1556  <idle>-0       3dN.2    9us : rcu_irq_exit <-irq_exit
1557  <idle>-0       3dN.2   10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
1558  <idle>-0       3dN.2   10us : sub_preempt_count <-irq_exit
1559  <idle>-0       3.N.1   11us : rcu_idle_exit <-cpu_idle
1560  <idle>-0       3dN.1   11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
1561  <idle>-0       3.N.1   11us : tick_nohz_idle_exit <-cpu_idle
1562  <idle>-0       3dN.1   12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
1563  <idle>-0       3dN.1   12us : ktime_get <-tick_nohz_idle_exit
1564  <idle>-0       3dN.1   12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
1565  <idle>-0       3dN.1   13us : update_cpu_load_nohz <-tick_nohz_idle_exit
1566  <idle>-0       3dN.1   13us : _raw_spin_lock <-update_cpu_load_nohz
1567  <idle>-0       3dN.1   13us : add_preempt_count <-_raw_spin_lock
1568  <idle>-0       3dN.2   13us : __update_cpu_load <-update_cpu_load_nohz
1569  <idle>-0       3dN.2   14us : sched_avg_update <-__update_cpu_load
1570  <idle>-0       3dN.2   14us : _raw_spin_unlock <-update_cpu_load_nohz
1571  <idle>-0       3dN.2   14us : sub_preempt_count <-_raw_spin_unlock
1572  <idle>-0       3dN.1   15us : calc_load_exit_idle <-tick_nohz_idle_exit
1573  <idle>-0       3dN.1   15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
1574  <idle>-0       3dN.1   15us : hrtimer_cancel <-tick_nohz_idle_exit
1575  <idle>-0       3dN.1   15us : hrtimer_try_to_cancel <-hrtimer_cancel
1576  <idle>-0       3dN.1   16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
1577  <idle>-0       3dN.1   16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1578  <idle>-0       3dN.1   16us : add_preempt_count <-_raw_spin_lock_irqsave
1579  <idle>-0       3dN.2   17us : __remove_hrtimer <-remove_hrtimer.part.16
1580  <idle>-0       3dN.2   17us : hrtimer_force_reprogram <-__remove_hrtimer
1581  <idle>-0       3dN.2   17us : tick_program_event <-hrtimer_force_reprogram
1582  <idle>-0       3dN.2   18us : clockevents_program_event <-tick_program_event
1583  <idle>-0       3dN.2   18us : ktime_get <-clockevents_program_event
1584  <idle>-0       3dN.2   18us : lapic_next_event <-clockevents_program_event
1585  <idle>-0       3dN.2   19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
1586  <idle>-0       3dN.2   19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1587  <idle>-0       3dN.1   19us : hrtimer_forward <-tick_nohz_idle_exit
1588  <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
1589  <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
1590  <idle>-0       3dN.1   20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
1591  <idle>-0       3dN.1   20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
1592  <idle>-0       3dN.1   21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
1593  <idle>-0       3dN.1   21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1594  <idle>-0       3dN.1   21us : add_preempt_count <-_raw_spin_lock_irqsave
1595  <idle>-0       3dN.2   22us : ktime_add_safe <-__hrtimer_start_range_ns
1596  <idle>-0       3dN.2   22us : enqueue_hrtimer <-__hrtimer_start_range_ns
1597  <idle>-0       3dN.2   22us : tick_program_event <-__hrtimer_start_range_ns
1598  <idle>-0       3dN.2   23us : clockevents_program_event <-tick_program_event
1599  <idle>-0       3dN.2   23us : ktime_get <-clockevents_program_event
1600  <idle>-0       3dN.2   23us : lapic_next_event <-clockevents_program_event
1601  <idle>-0       3dN.2   24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
1602  <idle>-0       3dN.2   24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1603  <idle>-0       3dN.1   24us : account_idle_ticks <-tick_nohz_idle_exit
1604  <idle>-0       3dN.1   24us : account_idle_time <-account_idle_ticks
1605  <idle>-0       3.N.1   25us : sub_preempt_count <-cpu_idle
1606  <idle>-0       3.N..   25us : schedule <-cpu_idle
1607  <idle>-0       3.N..   25us : __schedule <-preempt_schedule
1608  <idle>-0       3.N..   26us : add_preempt_count <-__schedule
1609  <idle>-0       3.N.1   26us : rcu_note_context_switch <-__schedule
1610  <idle>-0       3.N.1   26us : rcu_sched_qs <-rcu_note_context_switch
1611  <idle>-0       3dN.1   27us : rcu_preempt_qs <-rcu_note_context_switch
1612  <idle>-0       3.N.1   27us : _raw_spin_lock_irq <-__schedule
1613  <idle>-0       3dN.1   27us : add_preempt_count <-_raw_spin_lock_irq
1614  <idle>-0       3dN.2   28us : put_prev_task_idle <-__schedule
1615  <idle>-0       3dN.2   28us : pick_next_task_stop <-pick_next_task
1616  <idle>-0       3dN.2   28us : pick_next_task_rt <-pick_next_task
1617  <idle>-0       3dN.2   29us : dequeue_pushable_task <-pick_next_task_rt
1618  <idle>-0       3d..3   29us : __schedule <-preempt_schedule
1619  <idle>-0       3d..3   30us :      0:120:R ==> [003]  2448: 94:R sleep
1620
1621This isn't that big of a trace, even with function tracing enabled,
1622so I included the entire trace.
1623
1624The interrupt went off while when the system was idle. Somewhere
1625before task_woken_rt() was called, the NEED_RESCHED flag was set,
1626this is indicated by the first occurrence of the 'N' flag.
1627
1628Latency tracing and events
1629--------------------------
1630As function tracing can induce a much larger latency, but without
1631seeing what happens within the latency it is hard to know what
1632caused it. There is a middle ground, and that is with enabling
1633events.
1634
1635 # echo 0 > options/function-trace
1636 # echo wakeup_rt > current_tracer
1637 # echo 1 > events/enable
1638 # echo 1 > tracing_on
1639 # echo 0 > tracing_max_latency
1640 # chrt -f 5 sleep 1
1641 # echo 0 > tracing_on
1642 # cat trace
1643# tracer: wakeup_rt
1644#
1645# wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1646# --------------------------------------------------------------------
1647# latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1648#    -----------------
1649#    | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
1650#    -----------------
1651#
1652#                  _------=> CPU#            
1653#                 / _-----=> irqs-off        
1654#                | / _----=> need-resched    
1655#                || / _---=> hardirq/softirq 
1656#                ||| / _--=> preempt-depth   
1657#                |||| /     delay             
1658#  cmd     pid   ||||| time  |   caller      
1659#     \   /      |||||  \    |   /           
1660  <idle>-0       2d.h4    0us :      0:120:R   + [002]  5882: 94:R sleep
1661  <idle>-0       2d.h4    0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1662  <idle>-0       2d.h4    1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
1663  <idle>-0       2dNh2    1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
1664  <idle>-0       2.N.2    2us : power_end: cpu_id=2
1665  <idle>-0       2.N.2    3us : cpu_idle: state=4294967295 cpu_id=2
1666  <idle>-0       2dN.3    4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
1667  <idle>-0       2dN.3    4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
1668  <idle>-0       2.N.2    5us : rcu_utilization: Start context switch
1669  <idle>-0       2.N.2    5us : rcu_utilization: End context switch
1670  <idle>-0       2d..3    6us : __schedule <-schedule
1671  <idle>-0       2d..3    6us :      0:120:R ==> [002]  5882: 94:R sleep
1672
1673
1674function
1675--------
1676
1677This tracer is the function tracer. Enabling the function tracer
1678can be done from the debug file system. Make sure the
1679ftrace_enabled is set; otherwise this tracer is a nop.
1680See the "ftrace_enabled" section below.
1681
1682 # sysctl kernel.ftrace_enabled=1
1683 # echo function > current_tracer
1684 # echo 1 > tracing_on
1685 # usleep 1
1686 # echo 0 > tracing_on
1687 # cat trace
1688# tracer: function
1689#
1690# entries-in-buffer/entries-written: 24799/24799   #P:4
1691#
1692#                              _-----=> irqs-off
1693#                             / _----=> need-resched
1694#                            | / _---=> hardirq/softirq
1695#                            || / _--=> preempt-depth
1696#                            ||| /     delay
1697#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
1698#              | |       |   ||||       |         |
1699            bash-1994  [002] ....  3082.063030: mutex_unlock <-rb_simple_write
1700            bash-1994  [002] ....  3082.063031: __mutex_unlock_slowpath <-mutex_unlock
1701            bash-1994  [002] ....  3082.063031: __fsnotify_parent <-fsnotify_modify
1702            bash-1994  [002] ....  3082.063032: fsnotify <-fsnotify_modify
1703            bash-1994  [002] ....  3082.063032: __srcu_read_lock <-fsnotify
1704            bash-1994  [002] ....  3082.063032: add_preempt_count <-__srcu_read_lock
1705            bash-1994  [002] ...1  3082.063032: sub_preempt_count <-__srcu_read_lock
1706            bash-1994  [002] ....  3082.063033: __srcu_read_unlock <-fsnotify
1707[...]
1708
1709
1710Note: function tracer uses ring buffers to store the above
1711entries. The newest data may overwrite the oldest data.
1712Sometimes using echo to stop the trace is not sufficient because
1713the tracing could have overwritten the data that you wanted to
1714record. For this reason, it is sometimes better to disable
1715tracing directly from a program. This allows you to stop the
1716tracing at the point that you hit the part that you are
1717interested in. To disable the tracing directly from a C program,
1718something like following code snippet can be used:
1719
1720int trace_fd;
1721[...]
1722int main(int argc, char *argv[]) {
1723	[...]
1724	trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
1725	[...]
1726	if (condition_hit()) {
1727		write(trace_fd, "0", 1);
1728	}
1729	[...]
1730}
1731
1732
1733Single thread tracing
1734---------------------
1735
1736By writing into set_ftrace_pid you can trace a
1737single thread. For example:
1738
1739# cat set_ftrace_pid
1740no pid
1741# echo 3111 > set_ftrace_pid
1742# cat set_ftrace_pid
17433111
1744# echo function > current_tracer
1745# cat trace | head
1746 # tracer: function
1747 #
1748 #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
1749 #              | |       |          |         |
1750     yum-updatesd-3111  [003]  1637.254676: finish_task_switch <-thread_return
1751     yum-updatesd-3111  [003]  1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
1752     yum-updatesd-3111  [003]  1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
1753     yum-updatesd-3111  [003]  1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
1754     yum-updatesd-3111  [003]  1637.254685: fget_light <-do_sys_poll
1755     yum-updatesd-3111  [003]  1637.254686: pipe_poll <-do_sys_poll
1756# echo > set_ftrace_pid
1757# cat trace |head
1758 # tracer: function
1759 #
1760 #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
1761 #              | |       |          |         |
1762 ##### CPU 3 buffer started ####
1763     yum-updatesd-3111  [003]  1701.957688: free_poll_entry <-poll_freewait
1764     yum-updatesd-3111  [003]  1701.957689: remove_wait_queue <-free_poll_entry
1765     yum-updatesd-3111  [003]  1701.957691: fput <-free_poll_entry
1766     yum-updatesd-3111  [003]  1701.957692: audit_syscall_exit <-sysret_audit
1767     yum-updatesd-3111  [003]  1701.957693: path_put <-audit_syscall_exit
1768
1769If you want to trace a function when executing, you could use
1770something like this simple program:
1771
1772#include <stdio.h>
1773#include <stdlib.h>
1774#include <sys/types.h>
1775#include <sys/stat.h>
1776#include <fcntl.h>
1777#include <unistd.h>
1778#include <string.h>
1779
1780#define _STR(x) #x
1781#define STR(x) _STR(x)
1782#define MAX_PATH 256
1783
1784const char *find_debugfs(void)
1785{
1786       static char debugfs[MAX_PATH+1];
1787       static int debugfs_found;
1788       char type[100];
1789       FILE *fp;
1790
1791       if (debugfs_found)
1792               return debugfs;
1793
1794       if ((fp = fopen("/proc/mounts","r")) == NULL) {
1795               perror("/proc/mounts");
1796               return NULL;
1797       }
1798
1799       while (fscanf(fp, "%*s %"
1800                     STR(MAX_PATH)
1801                     "s %99s %*s %*d %*d\n",
1802                     debugfs, type) == 2) {
1803               if (strcmp(type, "debugfs") == 0)
1804                       break;
1805       }
1806       fclose(fp);
1807
1808       if (strcmp(type, "debugfs") != 0) {
1809               fprintf(stderr, "debugfs not mounted");
1810               return NULL;
1811       }
1812
1813       strcat(debugfs, "/tracing/");
1814       debugfs_found = 1;
1815
1816       return debugfs;
1817}
1818
1819const char *tracing_file(const char *file_name)
1820{
1821       static char trace_file[MAX_PATH+1];
1822       snprintf(trace_file, MAX_PATH, "%s/%s", find_debugfs(), file_name);
1823       return trace_file;
1824}
1825
1826int main (int argc, char **argv)
1827{
1828        if (argc < 1)
1829                exit(-1);
1830
1831        if (fork() > 0) {
1832                int fd, ffd;
1833                char line[64];
1834                int s;
1835
1836                ffd = open(tracing_file("current_tracer"), O_WRONLY);
1837                if (ffd < 0)
1838                        exit(-1);
1839                write(ffd, "nop", 3);
1840
1841                fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
1842                s = sprintf(line, "%d\n", getpid());
1843                write(fd, line, s);
1844
1845                write(ffd, "function", 8);
1846
1847                close(fd);
1848                close(ffd);
1849
1850                execvp(argv[1], argv+1);
1851        }
1852
1853        return 0;
1854}
1855
1856Or this simple script!
1857
1858------
1859#!/bin/bash
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1860
1861debugfs=`sed -ne 's/^debugfs \(.*\) debugfs.*/\1/p' /proc/mounts`
1862echo nop > $debugfs/tracing/current_tracer
1863echo 0 > $debugfs/tracing/tracing_on
1864echo $$ > $debugfs/tracing/set_ftrace_pid
1865echo function > $debugfs/tracing/current_tracer
1866echo 1 > $debugfs/tracing/tracing_on
1867exec "$@"
1868------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1869
1870
1871function graph tracer
1872---------------------------
1873
1874This tracer is similar to the function tracer except that it
1875probes a function on its entry and its exit. This is done by
1876using a dynamically allocated stack of return addresses in each
1877task_struct. On function entry the tracer overwrites the return
1878address of each function traced to set a custom probe. Thus the
1879original return address is stored on the stack of return address
1880in the task_struct.
1881
1882Probing on both ends of a function leads to special features
1883such as:
1884
1885- measure of a function's time execution
1886- having a reliable call stack to draw function calls graph
1887
1888This tracer is useful in several situations:
1889
1890- you want to find the reason of a strange kernel behavior and
1891  need to see what happens in detail on any areas (or specific
1892  ones).
1893
1894- you are experiencing weird latencies but it's difficult to
1895  find its origin.
1896
1897- you want to find quickly which path is taken by a specific
1898  function
1899
1900- you just want to peek inside a working kernel and want to see
1901  what happens there.
1902
1903# tracer: function_graph
1904#
1905# CPU  DURATION                  FUNCTION CALLS
1906# |     |   |                     |   |   |   |
1907
1908 0)               |  sys_open() {
1909 0)               |    do_sys_open() {
1910 0)               |      getname() {
1911 0)               |        kmem_cache_alloc() {
1912 0)   1.382 us    |          __might_sleep();
1913 0)   2.478 us    |        }
1914 0)               |        strncpy_from_user() {
1915 0)               |          might_fault() {
1916 0)   1.389 us    |            __might_sleep();
1917 0)   2.553 us    |          }
1918 0)   3.807 us    |        }
1919 0)   7.876 us    |      }
1920 0)               |      alloc_fd() {
1921 0)   0.668 us    |        _spin_lock();
1922 0)   0.570 us    |        expand_files();
1923 0)   0.586 us    |        _spin_unlock();
1924
1925
1926There are several columns that can be dynamically
1927enabled/disabled. You can use every combination of options you
1928want, depending on your needs.
1929
1930- The cpu number on which the function executed is default
1931  enabled.  It is sometimes better to only trace one cpu (see
1932  tracing_cpu_mask file) or you might sometimes see unordered
1933  function calls while cpu tracing switch.
1934
1935	hide: echo nofuncgraph-cpu > trace_options
1936	show: echo funcgraph-cpu > trace_options
1937
1938- The duration (function's time of execution) is displayed on
1939  the closing bracket line of a function or on the same line
1940  than the current function in case of a leaf one. It is default
1941  enabled.
1942
1943	hide: echo nofuncgraph-duration > trace_options
1944	show: echo funcgraph-duration > trace_options
1945
1946- The overhead field precedes the duration field in case of
1947  reached duration thresholds.
1948
1949	hide: echo nofuncgraph-overhead > trace_options
1950	show: echo funcgraph-overhead > trace_options
1951	depends on: funcgraph-duration
1952
1953  ie:
1954
1955  3) # 1837.709 us |          } /* __switch_to */
1956  3)               |          finish_task_switch() {
1957  3)   0.313 us    |            _raw_spin_unlock_irq();
1958  3)   3.177 us    |          }
1959  3) # 1889.063 us |        } /* __schedule */
1960  3) ! 140.417 us  |      } /* __schedule */
1961  3) # 2034.948 us |    } /* schedule */
1962  3) * 33998.59 us |  } /* schedule_preempt_disabled */
1963
1964  [...]
1965
1966  1)   0.260 us    |              msecs_to_jiffies();
1967  1)   0.313 us    |              __rcu_read_unlock();
1968  1) + 61.770 us   |            }
1969  1) + 64.479 us   |          }
1970  1)   0.313 us    |          rcu_bh_qs();
1971  1)   0.313 us    |          __local_bh_enable();
1972  1) ! 217.240 us  |        }
1973  1)   0.365 us    |        idle_cpu();
1974  1)               |        rcu_irq_exit() {
1975  1)   0.417 us    |          rcu_eqs_enter_common.isra.47();
1976  1)   3.125 us    |        }
1977  1) ! 227.812 us  |      }
1978  1) ! 457.395 us  |    }
1979  1) @ 119760.2 us |  }
1980
1981  [...]
1982
1983  2)               |    handle_IPI() {
1984  1)   6.979 us    |                  }
1985  2)   0.417 us    |      scheduler_ipi();
1986  1)   9.791 us    |                }
1987  1) + 12.917 us   |              }
1988  2)   3.490 us    |    }
1989  1) + 15.729 us   |            }
1990  1) + 18.542 us   |          }
1991  2) $ 3594274 us  |  }
1992
1993  + means that the function exceeded 10 usecs.
1994  ! means that the function exceeded 100 usecs.
1995  # means that the function exceeded 1000 usecs.
1996  * means that the function exceeded 10 msecs.
1997  @ means that the function exceeded 100 msecs.
1998  $ means that the function exceeded 1 sec.
1999
2000
2001- The task/pid field displays the thread cmdline and pid which
2002  executed the function. It is default disabled.
2003
2004	hide: echo nofuncgraph-proc > trace_options
2005	show: echo funcgraph-proc > trace_options
2006
2007  ie:
2008
2009  # tracer: function_graph
2010  #
2011  # CPU  TASK/PID        DURATION                  FUNCTION CALLS
2012  # |    |    |           |   |                     |   |   |   |
2013  0)    sh-4802     |               |                  d_free() {
2014  0)    sh-4802     |               |                    call_rcu() {
2015  0)    sh-4802     |               |                      __call_rcu() {
2016  0)    sh-4802     |   0.616 us    |                        rcu_process_gp_end();
2017  0)    sh-4802     |   0.586 us    |                        check_for_new_grace_period();
2018  0)    sh-4802     |   2.899 us    |                      }
2019  0)    sh-4802     |   4.040 us    |                    }
2020  0)    sh-4802     |   5.151 us    |                  }
2021  0)    sh-4802     | + 49.370 us   |                }
2022
2023
2024- The absolute time field is an absolute timestamp given by the
2025  system clock since it started. A snapshot of this time is
2026  given on each entry/exit of functions
2027
2028	hide: echo nofuncgraph-abstime > trace_options
2029	show: echo funcgraph-abstime > trace_options
2030
2031  ie:
2032
2033  #
2034  #      TIME       CPU  DURATION                  FUNCTION CALLS
2035  #       |         |     |   |                     |   |   |   |
2036  360.774522 |   1)   0.541 us    |                                          }
2037  360.774522 |   1)   4.663 us    |                                        }
2038  360.774523 |   1)   0.541 us    |                                        __wake_up_bit();
2039  360.774524 |   1)   6.796 us    |                                      }
2040  360.774524 |   1)   7.952 us    |                                    }
2041  360.774525 |   1)   9.063 us    |                                  }
2042  360.774525 |   1)   0.615 us    |                                  journal_mark_dirty();
2043  360.774527 |   1)   0.578 us    |                                  __brelse();
2044  360.774528 |   1)               |                                  reiserfs_prepare_for_journal() {
2045  360.774528 |   1)               |                                    unlock_buffer() {
2046  360.774529 |   1)               |                                      wake_up_bit() {
2047  360.774529 |   1)               |                                        bit_waitqueue() {
2048  360.774530 |   1)   0.594 us    |                                          __phys_addr();
2049
2050
2051The function name is always displayed after the closing bracket
2052for a function if the start of that function is not in the
2053trace buffer.
2054
2055Display of the function name after the closing bracket may be
2056enabled for functions whose start is in the trace buffer,
2057allowing easier searching with grep for function durations.
2058It is default disabled.
2059
2060	hide: echo nofuncgraph-tail > trace_options
2061	show: echo funcgraph-tail > trace_options
2062
2063  Example with nofuncgraph-tail (default):
2064  0)               |      putname() {
2065  0)               |        kmem_cache_free() {
2066  0)   0.518 us    |          __phys_addr();
2067  0)   1.757 us    |        }
2068  0)   2.861 us    |      }
2069
2070  Example with funcgraph-tail:
2071  0)               |      putname() {
2072  0)               |        kmem_cache_free() {
2073  0)   0.518 us    |          __phys_addr();
2074  0)   1.757 us    |        } /* kmem_cache_free() */
2075  0)   2.861 us    |      } /* putname() */
2076
2077You can put some comments on specific functions by using
2078trace_printk() For example, if you want to put a comment inside
2079the __might_sleep() function, you just have to include
2080<linux/ftrace.h> and call trace_printk() inside __might_sleep()
2081
2082trace_printk("I'm a comment!\n")
2083
2084will produce:
2085
2086 1)               |             __might_sleep() {
2087 1)               |                /* I'm a comment! */
2088 1)   1.449 us    |             }
2089
2090
2091You might find other useful features for this tracer in the
2092following "dynamic ftrace" section such as tracing only specific
2093functions or tasks.
2094
2095dynamic ftrace
2096--------------
2097
2098If CONFIG_DYNAMIC_FTRACE is set, the system will run with
2099virtually no overhead when function tracing is disabled. The way
2100this works is the mcount function call (placed at the start of
2101every kernel function, produced by the -pg switch in gcc),
2102starts of pointing to a simple return. (Enabling FTRACE will
2103include the -pg switch in the compiling of the kernel.)
2104
2105At compile time every C file object is run through the
2106recordmcount program (located in the scripts directory). This
2107program will parse the ELF headers in the C object to find all
2108the locations in the .text section that call mcount. (Note, only
2109white listed .text sections are processed, since processing other
2110sections like .init.text may cause races due to those sections
2111being freed unexpectedly).
2112
2113A new section called "__mcount_loc" is created that holds
2114references to all the mcount call sites in the .text section.
2115The recordmcount program re-links this section back into the
2116original object. The final linking stage of the kernel will add all these
2117references into a single table.
2118
2119On boot up, before SMP is initialized, the dynamic ftrace code
2120scans this table and updates all the locations into nops. It
2121also records the locations, which are added to the
2122available_filter_functions list.  Modules are processed as they
2123are loaded and before they are executed.  When a module is
2124unloaded, it also removes its functions from the ftrace function
2125list. This is automatic in the module unload code, and the
2126module author does not need to worry about it.
2127
2128When tracing is enabled, the process of modifying the function
2129tracepoints is dependent on architecture. The old method is to use
2130kstop_machine to prevent races with the CPUs executing code being
2131modified (which can cause the CPU to do undesirable things, especially
2132if the modified code crosses cache (or page) boundaries), and the nops are
2133patched back to calls. But this time, they do not call mcount
2134(which is just a function stub). They now call into the ftrace
2135infrastructure.
2136
2137The new method of modifying the function tracepoints is to place
2138a breakpoint at the location to be modified, sync all CPUs, modify
2139the rest of the instruction not covered by the breakpoint. Sync
2140all CPUs again, and then remove the breakpoint with the finished
2141version to the ftrace call site.
2142
2143Some archs do not even need to monkey around with the synchronization,
2144and can just slap the new code on top of the old without any
2145problems with other CPUs executing it at the same time.
2146
2147One special side-effect to the recording of the functions being
2148traced is that we can now selectively choose which functions we
2149wish to trace and which ones we want the mcount calls to remain
2150as nops.
2151
2152Two files are used, one for enabling and one for disabling the
2153tracing of specified functions. They are:
2154
2155  set_ftrace_filter
2156
2157and
2158
2159  set_ftrace_notrace
2160
2161A list of available functions that you can add to these files is
2162listed in:
2163
2164   available_filter_functions
2165
2166 # cat available_filter_functions
2167put_prev_task_idle
2168kmem_cache_create
2169pick_next_task_rt
2170get_online_cpus
2171pick_next_task_fair
2172mutex_lock
2173[...]
2174
2175If I am only interested in sys_nanosleep and hrtimer_interrupt:
2176
2177 # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
 
2178 # echo function > current_tracer
2179 # echo 1 > tracing_on
2180 # usleep 1
2181 # echo 0 > tracing_on
2182 # cat trace
2183# tracer: function
2184#
2185# entries-in-buffer/entries-written: 5/5   #P:4
2186#
2187#                              _-----=> irqs-off
2188#                             / _----=> need-resched
2189#                            | / _---=> hardirq/softirq
2190#                            || / _--=> preempt-depth
2191#                            ||| /     delay
2192#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2193#              | |       |   ||||       |         |
2194          usleep-2665  [001] ....  4186.475355: sys_nanosleep <-system_call_fastpath
2195          <idle>-0     [001] d.h1  4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
2196          usleep-2665  [001] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2197          <idle>-0     [003] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2198          <idle>-0     [002] d.h1  4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt
2199
2200To see which functions are being traced, you can cat the file:
2201
2202 # cat set_ftrace_filter
2203hrtimer_interrupt
2204sys_nanosleep
2205
2206
2207Perhaps this is not enough. The filters also allow simple wild
2208cards. Only the following are currently available
2209
2210  <match>*  - will match functions that begin with <match>
2211  *<match>  - will match functions that end with <match>
2212  *<match>* - will match functions that have <match> in it
2213
2214These are the only wild cards which are supported.
2215
2216  <match>*<match> will not work.
2217
2218Note: It is better to use quotes to enclose the wild cards,
2219      otherwise the shell may expand the parameters into names
2220      of files in the local directory.
2221
2222 # echo 'hrtimer_*' > set_ftrace_filter
2223
2224Produces:
2225
2226# tracer: function
2227#
2228# entries-in-buffer/entries-written: 897/897   #P:4
2229#
2230#                              _-----=> irqs-off
2231#                             / _----=> need-resched
2232#                            | / _---=> hardirq/softirq
2233#                            || / _--=> preempt-depth
2234#                            ||| /     delay
2235#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2236#              | |       |   ||||       |         |
2237          <idle>-0     [003] dN.1  4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
2238          <idle>-0     [003] dN.1  4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
2239          <idle>-0     [003] dN.2  4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
2240          <idle>-0     [003] dN.1  4228.547805: hrtimer_forward <-tick_nohz_idle_exit
2241          <idle>-0     [003] dN.1  4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2242          <idle>-0     [003] d..1  4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
2243          <idle>-0     [003] d..1  4228.547859: hrtimer_start <-__tick_nohz_idle_enter
2244          <idle>-0     [003] d..2  4228.547860: hrtimer_force_reprogram <-__rem
2245
2246Notice that we lost the sys_nanosleep.
2247
2248 # cat set_ftrace_filter
2249hrtimer_run_queues
2250hrtimer_run_pending
2251hrtimer_init
2252hrtimer_cancel
2253hrtimer_try_to_cancel
2254hrtimer_forward
2255hrtimer_start
2256hrtimer_reprogram
2257hrtimer_force_reprogram
2258hrtimer_get_next_event
2259hrtimer_interrupt
2260hrtimer_nanosleep
2261hrtimer_wakeup
2262hrtimer_get_remaining
2263hrtimer_get_res
2264hrtimer_init_sleeper
2265
2266
2267This is because the '>' and '>>' act just like they do in bash.
2268To rewrite the filters, use '>'
2269To append to the filters, use '>>'
2270
2271To clear out a filter so that all functions will be recorded
2272again:
2273
2274 # echo > set_ftrace_filter
2275 # cat set_ftrace_filter
2276 #
2277
2278Again, now we want to append.
2279
2280 # echo sys_nanosleep > set_ftrace_filter
2281 # cat set_ftrace_filter
2282sys_nanosleep
2283 # echo 'hrtimer_*' >> set_ftrace_filter
2284 # cat set_ftrace_filter
2285hrtimer_run_queues
2286hrtimer_run_pending
2287hrtimer_init
2288hrtimer_cancel
2289hrtimer_try_to_cancel
2290hrtimer_forward
2291hrtimer_start
2292hrtimer_reprogram
2293hrtimer_force_reprogram
2294hrtimer_get_next_event
2295hrtimer_interrupt
2296sys_nanosleep
2297hrtimer_nanosleep
2298hrtimer_wakeup
2299hrtimer_get_remaining
2300hrtimer_get_res
2301hrtimer_init_sleeper
2302
2303
2304The set_ftrace_notrace prevents those functions from being
2305traced.
2306
2307 # echo '*preempt*' '*lock*' > set_ftrace_notrace
2308
2309Produces:
2310
2311# tracer: function
2312#
2313# entries-in-buffer/entries-written: 39608/39608   #P:4
2314#
2315#                              _-----=> irqs-off
2316#                             / _----=> need-resched
2317#                            | / _---=> hardirq/softirq
2318#                            || / _--=> preempt-depth
2319#                            ||| /     delay
2320#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2321#              | |       |   ||||       |         |
2322            bash-1994  [000] ....  4342.324896: file_ra_state_init <-do_dentry_open
2323            bash-1994  [000] ....  4342.324897: open_check_o_direct <-do_last
2324            bash-1994  [000] ....  4342.324897: ima_file_check <-do_last
2325            bash-1994  [000] ....  4342.324898: process_measurement <-ima_file_check
2326            bash-1994  [000] ....  4342.324898: ima_get_action <-process_measurement
2327            bash-1994  [000] ....  4342.324898: ima_match_policy <-ima_get_action
2328            bash-1994  [000] ....  4342.324899: do_truncate <-do_last
2329            bash-1994  [000] ....  4342.324899: should_remove_suid <-do_truncate
2330            bash-1994  [000] ....  4342.324899: notify_change <-do_truncate
2331            bash-1994  [000] ....  4342.324900: current_fs_time <-notify_change
2332            bash-1994  [000] ....  4342.324900: current_kernel_time <-current_fs_time
2333            bash-1994  [000] ....  4342.324900: timespec_trunc <-current_fs_time
2334
2335We can see that there's no more lock or preempt tracing.
2336
2337
2338Dynamic ftrace with the function graph tracer
2339---------------------------------------------
2340
2341Although what has been explained above concerns both the
2342function tracer and the function-graph-tracer, there are some
2343special features only available in the function-graph tracer.
2344
2345If you want to trace only one function and all of its children,
2346you just have to echo its name into set_graph_function:
2347
2348 echo __do_fault > set_graph_function
2349
2350will produce the following "expanded" trace of the __do_fault()
2351function:
2352
2353 0)               |  __do_fault() {
2354 0)               |    filemap_fault() {
2355 0)               |      find_lock_page() {
2356 0)   0.804 us    |        find_get_page();
2357 0)               |        __might_sleep() {
2358 0)   1.329 us    |        }
2359 0)   3.904 us    |      }
2360 0)   4.979 us    |    }
2361 0)   0.653 us    |    _spin_lock();
2362 0)   0.578 us    |    page_add_file_rmap();
2363 0)   0.525 us    |    native_set_pte_at();
2364 0)   0.585 us    |    _spin_unlock();
2365 0)               |    unlock_page() {
2366 0)   0.541 us    |      page_waitqueue();
2367 0)   0.639 us    |      __wake_up_bit();
2368 0)   2.786 us    |    }
2369 0) + 14.237 us   |  }
2370 0)               |  __do_fault() {
2371 0)               |    filemap_fault() {
2372 0)               |      find_lock_page() {
2373 0)   0.698 us    |        find_get_page();
2374 0)               |        __might_sleep() {
2375 0)   1.412 us    |        }
2376 0)   3.950 us    |      }
2377 0)   5.098 us    |    }
2378 0)   0.631 us    |    _spin_lock();
2379 0)   0.571 us    |    page_add_file_rmap();
2380 0)   0.526 us    |    native_set_pte_at();
2381 0)   0.586 us    |    _spin_unlock();
2382 0)               |    unlock_page() {
2383 0)   0.533 us    |      page_waitqueue();
2384 0)   0.638 us    |      __wake_up_bit();
2385 0)   2.793 us    |    }
2386 0) + 14.012 us   |  }
2387
2388You can also expand several functions at once:
2389
2390 echo sys_open > set_graph_function
2391 echo sys_close >> set_graph_function
2392
2393Now if you want to go back to trace all functions you can clear
2394this special filter via:
2395
2396 echo > set_graph_function
2397
2398
2399ftrace_enabled
2400--------------
2401
2402Note, the proc sysctl ftrace_enable is a big on/off switch for the
2403function tracer. By default it is enabled (when function tracing is
2404enabled in the kernel). If it is disabled, all function tracing is
2405disabled. This includes not only the function tracers for ftrace, but
2406also for any other uses (perf, kprobes, stack tracing, profiling, etc).
2407
2408Please disable this with care.
2409
2410This can be disable (and enabled) with:
2411
2412  sysctl kernel.ftrace_enabled=0
2413  sysctl kernel.ftrace_enabled=1
2414
2415 or
2416
2417  echo 0 > /proc/sys/kernel/ftrace_enabled
2418  echo 1 > /proc/sys/kernel/ftrace_enabled
2419
2420
2421Filter commands
2422---------------
2423
2424A few commands are supported by the set_ftrace_filter interface.
2425Trace commands have the following format:
2426
2427<function>:<command>:<parameter>
2428
2429The following commands are supported:
2430
2431- mod
2432  This command enables function filtering per module. The
2433  parameter defines the module. For example, if only the write*
2434  functions in the ext3 module are desired, run:
2435
2436   echo 'write*:mod:ext3' > set_ftrace_filter
2437
2438  This command interacts with the filter in the same way as
2439  filtering based on function names. Thus, adding more functions
2440  in a different module is accomplished by appending (>>) to the
2441  filter file. Remove specific module functions by prepending
2442  '!':
2443
2444   echo '!writeback*:mod:ext3' >> set_ftrace_filter
2445
2446  Mod command supports module globbing. Disable tracing for all
2447  functions except a specific module:
2448
2449   echo '!*:mod:!ext3' >> set_ftrace_filter
2450
2451  Disable tracing for all modules, but still trace kernel:
2452
2453   echo '!*:mod:*' >> set_ftrace_filter
2454
2455  Enable filter only for kernel:
2456
2457   echo '*write*:mod:!*' >> set_ftrace_filter
2458
2459  Enable filter for module globbing:
2460
2461   echo '*write*:mod:*snd*' >> set_ftrace_filter
2462
2463- traceon/traceoff
2464  These commands turn tracing on and off when the specified
2465  functions are hit. The parameter determines how many times the
2466  tracing system is turned on and off. If unspecified, there is
2467  no limit. For example, to disable tracing when a schedule bug
2468  is hit the first 5 times, run:
2469
2470   echo '__schedule_bug:traceoff:5' > set_ftrace_filter
2471
2472  To always disable tracing when __schedule_bug is hit:
2473
2474   echo '__schedule_bug:traceoff' > set_ftrace_filter
2475
2476  These commands are cumulative whether or not they are appended
2477  to set_ftrace_filter. To remove a command, prepend it by '!'
2478  and drop the parameter:
2479
2480   echo '!__schedule_bug:traceoff:0' > set_ftrace_filter
2481
2482    The above removes the traceoff command for __schedule_bug
2483    that have a counter. To remove commands without counters:
2484
2485   echo '!__schedule_bug:traceoff' > set_ftrace_filter
2486
2487- snapshot
2488  Will cause a snapshot to be triggered when the function is hit.
2489
2490   echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter
2491
2492  To only snapshot once:
2493
2494   echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter
2495
2496  To remove the above commands:
2497
2498   echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
2499   echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter
2500
2501- enable_event/disable_event
2502  These commands can enable or disable a trace event. Note, because
2503  function tracing callbacks are very sensitive, when these commands
2504  are registered, the trace point is activated, but disabled in
2505  a "soft" mode. That is, the tracepoint will be called, but
2506  just will not be traced. The event tracepoint stays in this mode
2507  as long as there's a command that triggers it.
2508
2509   echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
2510   	 set_ftrace_filter
2511
2512  The format is:
2513
2514    <function>:enable_event:<system>:<event>[:count]
2515    <function>:disable_event:<system>:<event>[:count]
2516
2517  To remove the events commands:
2518
2519
2520   echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
2521   	 set_ftrace_filter
2522   echo '!schedule:disable_event:sched:sched_switch' > \
2523   	 set_ftrace_filter
2524
2525- dump
2526  When the function is hit, it will dump the contents of the ftrace
2527  ring buffer to the console. This is useful if you need to debug
2528  something, and want to dump the trace when a certain function
2529  is hit. Perhaps its a function that is called before a tripple
2530  fault happens and does not allow you to get a regular dump.
2531
2532- cpudump
2533  When the function is hit, it will dump the contents of the ftrace
2534  ring buffer for the current CPU to the console. Unlike the "dump"
2535  command, it only prints out the contents of the ring buffer for the
2536  CPU that executed the function that triggered the dump.
2537
2538trace_pipe
2539----------
2540
2541The trace_pipe outputs the same content as the trace file, but
2542the effect on the tracing is different. Every read from
2543trace_pipe is consumed. This means that subsequent reads will be
2544different. The trace is live.
2545
2546 # echo function > current_tracer
2547 # cat trace_pipe > /tmp/trace.out &
2548[1] 4153
2549 # echo 1 > tracing_on
2550 # usleep 1
2551 # echo 0 > tracing_on
2552 # cat trace
2553# tracer: function
2554#
2555# entries-in-buffer/entries-written: 0/0   #P:4
2556#
2557#                              _-----=> irqs-off
2558#                             / _----=> need-resched
2559#                            | / _---=> hardirq/softirq
2560#                            || / _--=> preempt-depth
2561#                            ||| /     delay
2562#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2563#              | |       |   ||||       |         |
2564
2565 #
2566 # cat /tmp/trace.out
2567            bash-1994  [000] ....  5281.568961: mutex_unlock <-rb_simple_write
2568            bash-1994  [000] ....  5281.568963: __mutex_unlock_slowpath <-mutex_unlock
2569            bash-1994  [000] ....  5281.568963: __fsnotify_parent <-fsnotify_modify
2570            bash-1994  [000] ....  5281.568964: fsnotify <-fsnotify_modify
2571            bash-1994  [000] ....  5281.568964: __srcu_read_lock <-fsnotify
2572            bash-1994  [000] ....  5281.568964: add_preempt_count <-__srcu_read_lock
2573            bash-1994  [000] ...1  5281.568965: sub_preempt_count <-__srcu_read_lock
2574            bash-1994  [000] ....  5281.568965: __srcu_read_unlock <-fsnotify
2575            bash-1994  [000] ....  5281.568967: sys_dup2 <-system_call_fastpath
 
2576
2577
2578Note, reading the trace_pipe file will block until more input is
2579added.
 
 
 
2580
2581trace entries
2582-------------
2583
2584Having too much or not enough data can be troublesome in
2585diagnosing an issue in the kernel. The file buffer_size_kb is
2586used to modify the size of the internal trace buffers. The
2587number listed is the number of entries that can be recorded per
2588CPU. To know the full size, multiply the number of possible CPUs
2589with the number of entries.
2590
2591 # cat buffer_size_kb
25921408 (units kilobytes)
2593
2594Or simply read buffer_total_size_kb
2595
2596 # cat buffer_total_size_kb 
25975632
2598
2599To modify the buffer, simple echo in a number (in 1024 byte segments).
2600
 
2601 # echo 10000 > buffer_size_kb
2602 # cat buffer_size_kb
260310000 (units kilobytes)
2604
2605It will try to allocate as much as possible. If you allocate too
2606much, it can cause Out-Of-Memory to trigger.
 
2607
2608 # echo 1000000000000 > buffer_size_kb
2609-bash: echo: write error: Cannot allocate memory
2610 # cat buffer_size_kb
261185
2612
2613The per_cpu buffers can be changed individually as well:
2614
2615 # echo 10000 > per_cpu/cpu0/buffer_size_kb
2616 # echo 100 > per_cpu/cpu1/buffer_size_kb
2617
2618When the per_cpu buffers are not the same, the buffer_size_kb
2619at the top level will just show an X
2620
2621 # cat buffer_size_kb
2622X
2623
2624This is where the buffer_total_size_kb is useful:
2625
2626 # cat buffer_total_size_kb 
262712916
2628
2629Writing to the top level buffer_size_kb will reset all the buffers
2630to be the same again.
2631
2632Snapshot
2633--------
2634CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
2635available to all non latency tracers. (Latency tracers which
2636record max latency, such as "irqsoff" or "wakeup", can't use
2637this feature, since those are already using the snapshot
2638mechanism internally.)
2639
2640Snapshot preserves a current trace buffer at a particular point
2641in time without stopping tracing. Ftrace swaps the current
2642buffer with a spare buffer, and tracing continues in the new
2643current (=previous spare) buffer.
2644
2645The following debugfs files in "tracing" are related to this
2646feature:
2647
2648  snapshot:
2649
2650	This is used to take a snapshot and to read the output
2651	of the snapshot. Echo 1 into this file to allocate a
2652	spare buffer and to take a snapshot (swap), then read
2653	the snapshot from this file in the same format as
2654	"trace" (described above in the section "The File
2655	System"). Both reads snapshot and tracing are executable
2656	in parallel. When the spare buffer is allocated, echoing
2657	0 frees it, and echoing else (positive) values clear the
2658	snapshot contents.
2659	More details are shown in the table below.
2660
2661	status\input  |     0      |     1      |    else    |
2662	--------------+------------+------------+------------+
2663	not allocated |(do nothing)| alloc+swap |(do nothing)|
2664	--------------+------------+------------+------------+
2665	allocated     |    free    |    swap    |   clear    |
2666	--------------+------------+------------+------------+
2667
2668Here is an example of using the snapshot feature.
2669
2670 # echo 1 > events/sched/enable
2671 # echo 1 > snapshot
2672 # cat snapshot
2673# tracer: nop
2674#
2675# entries-in-buffer/entries-written: 71/71   #P:8
2676#
2677#                              _-----=> irqs-off
2678#                             / _----=> need-resched
2679#                            | / _---=> hardirq/softirq
2680#                            || / _--=> preempt-depth
2681#                            ||| /     delay
2682#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2683#              | |       |   ||||       |         |
2684          <idle>-0     [005] d...  2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
2685           sleep-2242  [005] d...  2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120 prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
2686[...]
2687          <idle>-0     [002] d...  2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120
2688
2689 # cat trace
2690# tracer: nop
2691#
2692# entries-in-buffer/entries-written: 77/77   #P:8
2693#
2694#                              _-----=> irqs-off
2695#                             / _----=> need-resched
2696#                            | / _---=> hardirq/softirq
2697#                            || / _--=> preempt-depth
2698#                            ||| /     delay
2699#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2700#              | |       |   ||||       |         |
2701          <idle>-0     [007] d...  2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
2702 snapshot-test-2-2229  [002] d...  2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
2703[...]
2704
2705
2706If you try to use this snapshot feature when current tracer is
2707one of the latency tracers, you will get the following results.
2708
2709 # echo wakeup > current_tracer
2710 # echo 1 > snapshot
2711bash: echo: write error: Device or resource busy
2712 # cat snapshot
2713cat: snapshot: Device or resource busy
2714
2715
2716Instances
2717---------
2718In the debugfs tracing directory is a directory called "instances".
2719This directory can have new directories created inside of it using
2720mkdir, and removing directories with rmdir. The directory created
2721with mkdir in this directory will already contain files and other
2722directories after it is created.
2723
2724 # mkdir instances/foo
2725 # ls instances/foo
2726buffer_size_kb  buffer_total_size_kb  events  free_buffer  per_cpu
2727set_event  snapshot  trace  trace_clock  trace_marker  trace_options
2728trace_pipe  tracing_on
2729
2730As you can see, the new directory looks similar to the tracing directory
2731itself. In fact, it is very similar, except that the buffer and
2732events are agnostic from the main director, or from any other
2733instances that are created.
2734
2735The files in the new directory work just like the files with the
2736same name in the tracing directory except the buffer that is used
2737is a separate and new buffer. The files affect that buffer but do not
2738affect the main buffer with the exception of trace_options. Currently,
2739the trace_options affect all instances and the top level buffer
2740the same, but this may change in future releases. That is, options
2741may become specific to the instance they reside in.
2742
2743Notice that none of the function tracer files are there, nor is
2744current_tracer and available_tracers. This is because the buffers
2745can currently only have events enabled for them.
2746
2747 # mkdir instances/foo
2748 # mkdir instances/bar
2749 # mkdir instances/zoot
2750 # echo 100000 > buffer_size_kb
2751 # echo 1000 > instances/foo/buffer_size_kb
2752 # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
2753 # echo function > current_trace
2754 # echo 1 > instances/foo/events/sched/sched_wakeup/enable
2755 # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
2756 # echo 1 > instances/foo/events/sched/sched_switch/enable
2757 # echo 1 > instances/bar/events/irq/enable
2758 # echo 1 > instances/zoot/events/syscalls/enable
2759 # cat trace_pipe
2760CPU:2 [LOST 11745 EVENTS]
2761            bash-2044  [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
2762            bash-2044  [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
2763            bash-2044  [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
2764            bash-2044  [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
2765            bash-2044  [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
2766            bash-2044  [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
2767            bash-2044  [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
2768            bash-2044  [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
2769            bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
2770            bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
2771            bash-2044  [002] .... 10594.481035: arch_dup_task_struct <-copy_process
2772[...]
2773
2774 # cat instances/foo/trace_pipe
2775            bash-1998  [000] d..4   136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
2776            bash-1998  [000] dN.4   136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
2777          <idle>-0     [003] d.h3   136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
2778          <idle>-0     [003] d..3   136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
2779     rcu_preempt-9     [003] d..3   136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
2780            bash-1998  [000] d..4   136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
2781            bash-1998  [000] dN.4   136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
2782            bash-1998  [000] d..3   136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
2783     kworker/0:1-59    [000] d..4   136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
2784     kworker/0:1-59    [000] d..3   136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
2785[...]
2786
2787 # cat instances/bar/trace_pipe
2788     migration/1-14    [001] d.h3   138.732674: softirq_raise: vec=3 [action=NET_RX]
2789          <idle>-0     [001] dNh3   138.732725: softirq_raise: vec=3 [action=NET_RX]
2790            bash-1998  [000] d.h1   138.733101: softirq_raise: vec=1 [action=TIMER]
2791            bash-1998  [000] d.h1   138.733102: softirq_raise: vec=9 [action=RCU]
2792            bash-1998  [000] ..s2   138.733105: softirq_entry: vec=1 [action=TIMER]
2793            bash-1998  [000] ..s2   138.733106: softirq_exit: vec=1 [action=TIMER]
2794            bash-1998  [000] ..s2   138.733106: softirq_entry: vec=9 [action=RCU]
2795            bash-1998  [000] ..s2   138.733109: softirq_exit: vec=9 [action=RCU]
2796            sshd-1995  [001] d.h1   138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
2797            sshd-1995  [001] d.h1   138.733280: irq_handler_exit: irq=21 ret=unhandled
2798            sshd-1995  [001] d.h1   138.733281: irq_handler_entry: irq=21 name=eth0
2799            sshd-1995  [001] d.h1   138.733283: irq_handler_exit: irq=21 ret=handled
2800[...]
2801
2802 # cat instances/zoot/trace
2803# tracer: nop
2804#
2805# entries-in-buffer/entries-written: 18996/18996   #P:4
2806#
2807#                              _-----=> irqs-off
2808#                             / _----=> need-resched
2809#                            | / _---=> hardirq/softirq
2810#                            || / _--=> preempt-depth
2811#                            ||| /     delay
2812#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
2813#              | |       |   ||||       |         |
2814            bash-1998  [000] d...   140.733501: sys_write -> 0x2
2815            bash-1998  [000] d...   140.733504: sys_dup2(oldfd: a, newfd: 1)
2816            bash-1998  [000] d...   140.733506: sys_dup2 -> 0x1
2817            bash-1998  [000] d...   140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
2818            bash-1998  [000] d...   140.733509: sys_fcntl -> 0x1
2819            bash-1998  [000] d...   140.733510: sys_close(fd: a)
2820            bash-1998  [000] d...   140.733510: sys_close -> 0x0
2821            bash-1998  [000] d...   140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
2822            bash-1998  [000] d...   140.733515: sys_rt_sigprocmask -> 0x0
2823            bash-1998  [000] d...   140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
2824            bash-1998  [000] d...   140.733516: sys_rt_sigaction -> 0x0
2825
2826You can see that the trace of the top most trace buffer shows only
2827the function tracing. The foo instance displays wakeups and task
2828switches.
2829
2830To remove the instances, simply delete their directories:
2831
2832 # rmdir instances/foo
2833 # rmdir instances/bar
2834 # rmdir instances/zoot
2835
2836Note, if a process has a trace file open in one of the instance
2837directories, the rmdir will fail with EBUSY.
2838
2839
2840Stack trace
2841-----------
2842Since the kernel has a fixed sized stack, it is important not to
2843waste it in functions. A kernel developer must be conscience of
2844what they allocate on the stack. If they add too much, the system
2845can be in danger of a stack overflow, and corruption will occur,
2846usually leading to a system panic.
2847
2848There are some tools that check this, usually with interrupts
2849periodically checking usage. But if you can perform a check
2850at every function call that will become very useful. As ftrace provides
2851a function tracer, it makes it convenient to check the stack size
2852at every function call. This is enabled via the stack tracer.
2853
2854CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
2855To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled.
2856
2857 # echo 1 > /proc/sys/kernel/stack_tracer_enabled
2858
2859You can also enable it from the kernel command line to trace
2860the stack size of the kernel during boot up, by adding "stacktrace"
2861to the kernel command line parameter.
2862
2863After running it for a few minutes, the output looks like:
2864
2865 # cat stack_max_size
28662928
2867
2868 # cat stack_trace
2869        Depth    Size   Location    (18 entries)
2870        -----    ----   --------
2871  0)     2928     224   update_sd_lb_stats+0xbc/0x4ac
2872  1)     2704     160   find_busiest_group+0x31/0x1f1
2873  2)     2544     256   load_balance+0xd9/0x662
2874  3)     2288      80   idle_balance+0xbb/0x130
2875  4)     2208     128   __schedule+0x26e/0x5b9
2876  5)     2080      16   schedule+0x64/0x66
2877  6)     2064     128   schedule_timeout+0x34/0xe0
2878  7)     1936     112   wait_for_common+0x97/0xf1
2879  8)     1824      16   wait_for_completion+0x1d/0x1f
2880  9)     1808     128   flush_work+0xfe/0x119
2881 10)     1680      16   tty_flush_to_ldisc+0x1e/0x20
2882 11)     1664      48   input_available_p+0x1d/0x5c
2883 12)     1616      48   n_tty_poll+0x6d/0x134
2884 13)     1568      64   tty_poll+0x64/0x7f
2885 14)     1504     880   do_select+0x31e/0x511
2886 15)      624     400   core_sys_select+0x177/0x216
2887 16)      224      96   sys_select+0x91/0xb9
2888 17)      128     128   system_call_fastpath+0x16/0x1b
2889
2890Note, if -mfentry is being used by gcc, functions get traced before
2891they set up the stack frame. This means that leaf level functions
2892are not tested by the stack tracer when -mfentry is used.
2893
2894Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.
2895
2896---------
2897
2898More details can be found in the source code, in the
2899kernel/trace/*.c files.