Loading...
1#include "builtin.h"
2#include "perf.h"
3
4#include "util/util.h"
5#include "util/cache.h"
6#include "util/symbol.h"
7#include "util/thread.h"
8#include "util/header.h"
9#include "util/session.h"
10
11#include "util/parse-options.h"
12#include "util/trace-event.h"
13
14#include "util/debug.h"
15
16#include <sys/prctl.h>
17
18#include <semaphore.h>
19#include <pthread.h>
20#include <math.h>
21
22static char const *input_name = "perf.data";
23
24static char default_sort_order[] = "avg, max, switch, runtime";
25static const char *sort_order = default_sort_order;
26
27static int profile_cpu = -1;
28
29#define PR_SET_NAME 15 /* Set process name */
30#define MAX_CPUS 4096
31
32static u64 run_measurement_overhead;
33static u64 sleep_measurement_overhead;
34
35#define COMM_LEN 20
36#define SYM_LEN 129
37
38#define MAX_PID 65536
39
40static unsigned long nr_tasks;
41
42struct sched_atom;
43
44struct task_desc {
45 unsigned long nr;
46 unsigned long pid;
47 char comm[COMM_LEN];
48
49 unsigned long nr_events;
50 unsigned long curr_event;
51 struct sched_atom **atoms;
52
53 pthread_t thread;
54 sem_t sleep_sem;
55
56 sem_t ready_for_work;
57 sem_t work_done_sem;
58
59 u64 cpu_usage;
60};
61
62enum sched_event_type {
63 SCHED_EVENT_RUN,
64 SCHED_EVENT_SLEEP,
65 SCHED_EVENT_WAKEUP,
66 SCHED_EVENT_MIGRATION,
67};
68
69struct sched_atom {
70 enum sched_event_type type;
71 int specific_wait;
72 u64 timestamp;
73 u64 duration;
74 unsigned long nr;
75 sem_t *wait_sem;
76 struct task_desc *wakee;
77};
78
79static struct task_desc *pid_to_task[MAX_PID];
80
81static struct task_desc **tasks;
82
83static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
84static u64 start_time;
85
86static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
87
88static unsigned long nr_run_events;
89static unsigned long nr_sleep_events;
90static unsigned long nr_wakeup_events;
91
92static unsigned long nr_sleep_corrections;
93static unsigned long nr_run_events_optimized;
94
95static unsigned long targetless_wakeups;
96static unsigned long multitarget_wakeups;
97
98static u64 cpu_usage;
99static u64 runavg_cpu_usage;
100static u64 parent_cpu_usage;
101static u64 runavg_parent_cpu_usage;
102
103static unsigned long nr_runs;
104static u64 sum_runtime;
105static u64 sum_fluct;
106static u64 run_avg;
107
108static unsigned int replay_repeat = 10;
109static unsigned long nr_timestamps;
110static unsigned long nr_unordered_timestamps;
111static unsigned long nr_state_machine_bugs;
112static unsigned long nr_context_switch_bugs;
113static unsigned long nr_events;
114static unsigned long nr_lost_chunks;
115static unsigned long nr_lost_events;
116
117#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
118
119enum thread_state {
120 THREAD_SLEEPING = 0,
121 THREAD_WAIT_CPU,
122 THREAD_SCHED_IN,
123 THREAD_IGNORE
124};
125
126struct work_atom {
127 struct list_head list;
128 enum thread_state state;
129 u64 sched_out_time;
130 u64 wake_up_time;
131 u64 sched_in_time;
132 u64 runtime;
133};
134
135struct work_atoms {
136 struct list_head work_list;
137 struct thread *thread;
138 struct rb_node node;
139 u64 max_lat;
140 u64 max_lat_at;
141 u64 total_lat;
142 u64 nb_atoms;
143 u64 total_runtime;
144};
145
146typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
147
148static struct rb_root atom_root, sorted_atom_root;
149
150static u64 all_runtime;
151static u64 all_count;
152
153
154static u64 get_nsecs(void)
155{
156 struct timespec ts;
157
158 clock_gettime(CLOCK_MONOTONIC, &ts);
159
160 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
161}
162
163static void burn_nsecs(u64 nsecs)
164{
165 u64 T0 = get_nsecs(), T1;
166
167 do {
168 T1 = get_nsecs();
169 } while (T1 + run_measurement_overhead < T0 + nsecs);
170}
171
172static void sleep_nsecs(u64 nsecs)
173{
174 struct timespec ts;
175
176 ts.tv_nsec = nsecs % 999999999;
177 ts.tv_sec = nsecs / 999999999;
178
179 nanosleep(&ts, NULL);
180}
181
182static void calibrate_run_measurement_overhead(void)
183{
184 u64 T0, T1, delta, min_delta = 1000000000ULL;
185 int i;
186
187 for (i = 0; i < 10; i++) {
188 T0 = get_nsecs();
189 burn_nsecs(0);
190 T1 = get_nsecs();
191 delta = T1-T0;
192 min_delta = min(min_delta, delta);
193 }
194 run_measurement_overhead = min_delta;
195
196 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
197}
198
199static void calibrate_sleep_measurement_overhead(void)
200{
201 u64 T0, T1, delta, min_delta = 1000000000ULL;
202 int i;
203
204 for (i = 0; i < 10; i++) {
205 T0 = get_nsecs();
206 sleep_nsecs(10000);
207 T1 = get_nsecs();
208 delta = T1-T0;
209 min_delta = min(min_delta, delta);
210 }
211 min_delta -= 10000;
212 sleep_measurement_overhead = min_delta;
213
214 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
215}
216
217static struct sched_atom *
218get_new_event(struct task_desc *task, u64 timestamp)
219{
220 struct sched_atom *event = zalloc(sizeof(*event));
221 unsigned long idx = task->nr_events;
222 size_t size;
223
224 event->timestamp = timestamp;
225 event->nr = idx;
226
227 task->nr_events++;
228 size = sizeof(struct sched_atom *) * task->nr_events;
229 task->atoms = realloc(task->atoms, size);
230 BUG_ON(!task->atoms);
231
232 task->atoms[idx] = event;
233
234 return event;
235}
236
237static struct sched_atom *last_event(struct task_desc *task)
238{
239 if (!task->nr_events)
240 return NULL;
241
242 return task->atoms[task->nr_events - 1];
243}
244
245static void
246add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
247{
248 struct sched_atom *event, *curr_event = last_event(task);
249
250 /*
251 * optimize an existing RUN event by merging this one
252 * to it:
253 */
254 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
255 nr_run_events_optimized++;
256 curr_event->duration += duration;
257 return;
258 }
259
260 event = get_new_event(task, timestamp);
261
262 event->type = SCHED_EVENT_RUN;
263 event->duration = duration;
264
265 nr_run_events++;
266}
267
268static void
269add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
270 struct task_desc *wakee)
271{
272 struct sched_atom *event, *wakee_event;
273
274 event = get_new_event(task, timestamp);
275 event->type = SCHED_EVENT_WAKEUP;
276 event->wakee = wakee;
277
278 wakee_event = last_event(wakee);
279 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
280 targetless_wakeups++;
281 return;
282 }
283 if (wakee_event->wait_sem) {
284 multitarget_wakeups++;
285 return;
286 }
287
288 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
289 sem_init(wakee_event->wait_sem, 0, 0);
290 wakee_event->specific_wait = 1;
291 event->wait_sem = wakee_event->wait_sem;
292
293 nr_wakeup_events++;
294}
295
296static void
297add_sched_event_sleep(struct task_desc *task, u64 timestamp,
298 u64 task_state __used)
299{
300 struct sched_atom *event = get_new_event(task, timestamp);
301
302 event->type = SCHED_EVENT_SLEEP;
303
304 nr_sleep_events++;
305}
306
307static struct task_desc *register_pid(unsigned long pid, const char *comm)
308{
309 struct task_desc *task;
310
311 BUG_ON(pid >= MAX_PID);
312
313 task = pid_to_task[pid];
314
315 if (task)
316 return task;
317
318 task = zalloc(sizeof(*task));
319 task->pid = pid;
320 task->nr = nr_tasks;
321 strcpy(task->comm, comm);
322 /*
323 * every task starts in sleeping state - this gets ignored
324 * if there's no wakeup pointing to this sleep state:
325 */
326 add_sched_event_sleep(task, 0, 0);
327
328 pid_to_task[pid] = task;
329 nr_tasks++;
330 tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
331 BUG_ON(!tasks);
332 tasks[task->nr] = task;
333
334 if (verbose)
335 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
336
337 return task;
338}
339
340
341static void print_task_traces(void)
342{
343 struct task_desc *task;
344 unsigned long i;
345
346 for (i = 0; i < nr_tasks; i++) {
347 task = tasks[i];
348 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
349 task->nr, task->comm, task->pid, task->nr_events);
350 }
351}
352
353static void add_cross_task_wakeups(void)
354{
355 struct task_desc *task1, *task2;
356 unsigned long i, j;
357
358 for (i = 0; i < nr_tasks; i++) {
359 task1 = tasks[i];
360 j = i + 1;
361 if (j == nr_tasks)
362 j = 0;
363 task2 = tasks[j];
364 add_sched_event_wakeup(task1, 0, task2);
365 }
366}
367
368static void
369process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
370{
371 int ret = 0;
372
373 switch (atom->type) {
374 case SCHED_EVENT_RUN:
375 burn_nsecs(atom->duration);
376 break;
377 case SCHED_EVENT_SLEEP:
378 if (atom->wait_sem)
379 ret = sem_wait(atom->wait_sem);
380 BUG_ON(ret);
381 break;
382 case SCHED_EVENT_WAKEUP:
383 if (atom->wait_sem)
384 ret = sem_post(atom->wait_sem);
385 BUG_ON(ret);
386 break;
387 case SCHED_EVENT_MIGRATION:
388 break;
389 default:
390 BUG_ON(1);
391 }
392}
393
394static u64 get_cpu_usage_nsec_parent(void)
395{
396 struct rusage ru;
397 u64 sum;
398 int err;
399
400 err = getrusage(RUSAGE_SELF, &ru);
401 BUG_ON(err);
402
403 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
404 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
405
406 return sum;
407}
408
409static int self_open_counters(void)
410{
411 struct perf_event_attr attr;
412 int fd;
413
414 memset(&attr, 0, sizeof(attr));
415
416 attr.type = PERF_TYPE_SOFTWARE;
417 attr.config = PERF_COUNT_SW_TASK_CLOCK;
418
419 fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
420
421 if (fd < 0)
422 die("Error: sys_perf_event_open() syscall returned"
423 "with %d (%s)\n", fd, strerror(errno));
424 return fd;
425}
426
427static u64 get_cpu_usage_nsec_self(int fd)
428{
429 u64 runtime;
430 int ret;
431
432 ret = read(fd, &runtime, sizeof(runtime));
433 BUG_ON(ret != sizeof(runtime));
434
435 return runtime;
436}
437
438static void *thread_func(void *ctx)
439{
440 struct task_desc *this_task = ctx;
441 u64 cpu_usage_0, cpu_usage_1;
442 unsigned long i, ret;
443 char comm2[22];
444 int fd;
445
446 sprintf(comm2, ":%s", this_task->comm);
447 prctl(PR_SET_NAME, comm2);
448 fd = self_open_counters();
449
450again:
451 ret = sem_post(&this_task->ready_for_work);
452 BUG_ON(ret);
453 ret = pthread_mutex_lock(&start_work_mutex);
454 BUG_ON(ret);
455 ret = pthread_mutex_unlock(&start_work_mutex);
456 BUG_ON(ret);
457
458 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
459
460 for (i = 0; i < this_task->nr_events; i++) {
461 this_task->curr_event = i;
462 process_sched_event(this_task, this_task->atoms[i]);
463 }
464
465 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
466 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
467 ret = sem_post(&this_task->work_done_sem);
468 BUG_ON(ret);
469
470 ret = pthread_mutex_lock(&work_done_wait_mutex);
471 BUG_ON(ret);
472 ret = pthread_mutex_unlock(&work_done_wait_mutex);
473 BUG_ON(ret);
474
475 goto again;
476}
477
478static void create_tasks(void)
479{
480 struct task_desc *task;
481 pthread_attr_t attr;
482 unsigned long i;
483 int err;
484
485 err = pthread_attr_init(&attr);
486 BUG_ON(err);
487 err = pthread_attr_setstacksize(&attr,
488 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
489 BUG_ON(err);
490 err = pthread_mutex_lock(&start_work_mutex);
491 BUG_ON(err);
492 err = pthread_mutex_lock(&work_done_wait_mutex);
493 BUG_ON(err);
494 for (i = 0; i < nr_tasks; i++) {
495 task = tasks[i];
496 sem_init(&task->sleep_sem, 0, 0);
497 sem_init(&task->ready_for_work, 0, 0);
498 sem_init(&task->work_done_sem, 0, 0);
499 task->curr_event = 0;
500 err = pthread_create(&task->thread, &attr, thread_func, task);
501 BUG_ON(err);
502 }
503}
504
505static void wait_for_tasks(void)
506{
507 u64 cpu_usage_0, cpu_usage_1;
508 struct task_desc *task;
509 unsigned long i, ret;
510
511 start_time = get_nsecs();
512 cpu_usage = 0;
513 pthread_mutex_unlock(&work_done_wait_mutex);
514
515 for (i = 0; i < nr_tasks; i++) {
516 task = tasks[i];
517 ret = sem_wait(&task->ready_for_work);
518 BUG_ON(ret);
519 sem_init(&task->ready_for_work, 0, 0);
520 }
521 ret = pthread_mutex_lock(&work_done_wait_mutex);
522 BUG_ON(ret);
523
524 cpu_usage_0 = get_cpu_usage_nsec_parent();
525
526 pthread_mutex_unlock(&start_work_mutex);
527
528 for (i = 0; i < nr_tasks; i++) {
529 task = tasks[i];
530 ret = sem_wait(&task->work_done_sem);
531 BUG_ON(ret);
532 sem_init(&task->work_done_sem, 0, 0);
533 cpu_usage += task->cpu_usage;
534 task->cpu_usage = 0;
535 }
536
537 cpu_usage_1 = get_cpu_usage_nsec_parent();
538 if (!runavg_cpu_usage)
539 runavg_cpu_usage = cpu_usage;
540 runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
541
542 parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
543 if (!runavg_parent_cpu_usage)
544 runavg_parent_cpu_usage = parent_cpu_usage;
545 runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
546 parent_cpu_usage)/10;
547
548 ret = pthread_mutex_lock(&start_work_mutex);
549 BUG_ON(ret);
550
551 for (i = 0; i < nr_tasks; i++) {
552 task = tasks[i];
553 sem_init(&task->sleep_sem, 0, 0);
554 task->curr_event = 0;
555 }
556}
557
558static void run_one_test(void)
559{
560 u64 T0, T1, delta, avg_delta, fluct;
561
562 T0 = get_nsecs();
563 wait_for_tasks();
564 T1 = get_nsecs();
565
566 delta = T1 - T0;
567 sum_runtime += delta;
568 nr_runs++;
569
570 avg_delta = sum_runtime / nr_runs;
571 if (delta < avg_delta)
572 fluct = avg_delta - delta;
573 else
574 fluct = delta - avg_delta;
575 sum_fluct += fluct;
576 if (!run_avg)
577 run_avg = delta;
578 run_avg = (run_avg*9 + delta)/10;
579
580 printf("#%-3ld: %0.3f, ",
581 nr_runs, (double)delta/1000000.0);
582
583 printf("ravg: %0.2f, ",
584 (double)run_avg/1e6);
585
586 printf("cpu: %0.2f / %0.2f",
587 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
588
589#if 0
590 /*
591 * rusage statistics done by the parent, these are less
592 * accurate than the sum_exec_runtime based statistics:
593 */
594 printf(" [%0.2f / %0.2f]",
595 (double)parent_cpu_usage/1e6,
596 (double)runavg_parent_cpu_usage/1e6);
597#endif
598
599 printf("\n");
600
601 if (nr_sleep_corrections)
602 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
603 nr_sleep_corrections = 0;
604}
605
606static void test_calibrations(void)
607{
608 u64 T0, T1;
609
610 T0 = get_nsecs();
611 burn_nsecs(1e6);
612 T1 = get_nsecs();
613
614 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
615
616 T0 = get_nsecs();
617 sleep_nsecs(1e6);
618 T1 = get_nsecs();
619
620 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
621}
622
623#define FILL_FIELD(ptr, field, event, data) \
624 ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
625
626#define FILL_ARRAY(ptr, array, event, data) \
627do { \
628 void *__array = raw_field_ptr(event, #array, data); \
629 memcpy(ptr.array, __array, sizeof(ptr.array)); \
630} while(0)
631
632#define FILL_COMMON_FIELDS(ptr, event, data) \
633do { \
634 FILL_FIELD(ptr, common_type, event, data); \
635 FILL_FIELD(ptr, common_flags, event, data); \
636 FILL_FIELD(ptr, common_preempt_count, event, data); \
637 FILL_FIELD(ptr, common_pid, event, data); \
638 FILL_FIELD(ptr, common_tgid, event, data); \
639} while (0)
640
641
642
643struct trace_switch_event {
644 u32 size;
645
646 u16 common_type;
647 u8 common_flags;
648 u8 common_preempt_count;
649 u32 common_pid;
650 u32 common_tgid;
651
652 char prev_comm[16];
653 u32 prev_pid;
654 u32 prev_prio;
655 u64 prev_state;
656 char next_comm[16];
657 u32 next_pid;
658 u32 next_prio;
659};
660
661struct trace_runtime_event {
662 u32 size;
663
664 u16 common_type;
665 u8 common_flags;
666 u8 common_preempt_count;
667 u32 common_pid;
668 u32 common_tgid;
669
670 char comm[16];
671 u32 pid;
672 u64 runtime;
673 u64 vruntime;
674};
675
676struct trace_wakeup_event {
677 u32 size;
678
679 u16 common_type;
680 u8 common_flags;
681 u8 common_preempt_count;
682 u32 common_pid;
683 u32 common_tgid;
684
685 char comm[16];
686 u32 pid;
687
688 u32 prio;
689 u32 success;
690 u32 cpu;
691};
692
693struct trace_fork_event {
694 u32 size;
695
696 u16 common_type;
697 u8 common_flags;
698 u8 common_preempt_count;
699 u32 common_pid;
700 u32 common_tgid;
701
702 char parent_comm[16];
703 u32 parent_pid;
704 char child_comm[16];
705 u32 child_pid;
706};
707
708struct trace_migrate_task_event {
709 u32 size;
710
711 u16 common_type;
712 u8 common_flags;
713 u8 common_preempt_count;
714 u32 common_pid;
715 u32 common_tgid;
716
717 char comm[16];
718 u32 pid;
719
720 u32 prio;
721 u32 cpu;
722};
723
724struct trace_sched_handler {
725 void (*switch_event)(struct trace_switch_event *,
726 struct perf_session *,
727 struct event *,
728 int cpu,
729 u64 timestamp,
730 struct thread *thread);
731
732 void (*runtime_event)(struct trace_runtime_event *,
733 struct perf_session *,
734 struct event *,
735 int cpu,
736 u64 timestamp,
737 struct thread *thread);
738
739 void (*wakeup_event)(struct trace_wakeup_event *,
740 struct perf_session *,
741 struct event *,
742 int cpu,
743 u64 timestamp,
744 struct thread *thread);
745
746 void (*fork_event)(struct trace_fork_event *,
747 struct event *,
748 int cpu,
749 u64 timestamp,
750 struct thread *thread);
751
752 void (*migrate_task_event)(struct trace_migrate_task_event *,
753 struct perf_session *session,
754 struct event *,
755 int cpu,
756 u64 timestamp,
757 struct thread *thread);
758};
759
760
761static void
762replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
763 struct perf_session *session __used,
764 struct event *event,
765 int cpu __used,
766 u64 timestamp __used,
767 struct thread *thread __used)
768{
769 struct task_desc *waker, *wakee;
770
771 if (verbose) {
772 printf("sched_wakeup event %p\n", event);
773
774 printf(" ... pid %d woke up %s/%d\n",
775 wakeup_event->common_pid,
776 wakeup_event->comm,
777 wakeup_event->pid);
778 }
779
780 waker = register_pid(wakeup_event->common_pid, "<unknown>");
781 wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
782
783 add_sched_event_wakeup(waker, timestamp, wakee);
784}
785
786static u64 cpu_last_switched[MAX_CPUS];
787
788static void
789replay_switch_event(struct trace_switch_event *switch_event,
790 struct perf_session *session __used,
791 struct event *event,
792 int cpu,
793 u64 timestamp,
794 struct thread *thread __used)
795{
796 struct task_desc *prev, __used *next;
797 u64 timestamp0;
798 s64 delta;
799
800 if (verbose)
801 printf("sched_switch event %p\n", event);
802
803 if (cpu >= MAX_CPUS || cpu < 0)
804 return;
805
806 timestamp0 = cpu_last_switched[cpu];
807 if (timestamp0)
808 delta = timestamp - timestamp0;
809 else
810 delta = 0;
811
812 if (delta < 0)
813 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
814
815 if (verbose) {
816 printf(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
817 switch_event->prev_comm, switch_event->prev_pid,
818 switch_event->next_comm, switch_event->next_pid,
819 delta);
820 }
821
822 prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
823 next = register_pid(switch_event->next_pid, switch_event->next_comm);
824
825 cpu_last_switched[cpu] = timestamp;
826
827 add_sched_event_run(prev, timestamp, delta);
828 add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
829}
830
831
832static void
833replay_fork_event(struct trace_fork_event *fork_event,
834 struct event *event,
835 int cpu __used,
836 u64 timestamp __used,
837 struct thread *thread __used)
838{
839 if (verbose) {
840 printf("sched_fork event %p\n", event);
841 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
842 printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
843 }
844 register_pid(fork_event->parent_pid, fork_event->parent_comm);
845 register_pid(fork_event->child_pid, fork_event->child_comm);
846}
847
848static struct trace_sched_handler replay_ops = {
849 .wakeup_event = replay_wakeup_event,
850 .switch_event = replay_switch_event,
851 .fork_event = replay_fork_event,
852};
853
854struct sort_dimension {
855 const char *name;
856 sort_fn_t cmp;
857 struct list_head list;
858};
859
860static LIST_HEAD(cmp_pid);
861
862static int
863thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
864{
865 struct sort_dimension *sort;
866 int ret = 0;
867
868 BUG_ON(list_empty(list));
869
870 list_for_each_entry(sort, list, list) {
871 ret = sort->cmp(l, r);
872 if (ret)
873 return ret;
874 }
875
876 return ret;
877}
878
879static struct work_atoms *
880thread_atoms_search(struct rb_root *root, struct thread *thread,
881 struct list_head *sort_list)
882{
883 struct rb_node *node = root->rb_node;
884 struct work_atoms key = { .thread = thread };
885
886 while (node) {
887 struct work_atoms *atoms;
888 int cmp;
889
890 atoms = container_of(node, struct work_atoms, node);
891
892 cmp = thread_lat_cmp(sort_list, &key, atoms);
893 if (cmp > 0)
894 node = node->rb_left;
895 else if (cmp < 0)
896 node = node->rb_right;
897 else {
898 BUG_ON(thread != atoms->thread);
899 return atoms;
900 }
901 }
902 return NULL;
903}
904
905static void
906__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
907 struct list_head *sort_list)
908{
909 struct rb_node **new = &(root->rb_node), *parent = NULL;
910
911 while (*new) {
912 struct work_atoms *this;
913 int cmp;
914
915 this = container_of(*new, struct work_atoms, node);
916 parent = *new;
917
918 cmp = thread_lat_cmp(sort_list, data, this);
919
920 if (cmp > 0)
921 new = &((*new)->rb_left);
922 else
923 new = &((*new)->rb_right);
924 }
925
926 rb_link_node(&data->node, parent, new);
927 rb_insert_color(&data->node, root);
928}
929
930static void thread_atoms_insert(struct thread *thread)
931{
932 struct work_atoms *atoms = zalloc(sizeof(*atoms));
933 if (!atoms)
934 die("No memory");
935
936 atoms->thread = thread;
937 INIT_LIST_HEAD(&atoms->work_list);
938 __thread_latency_insert(&atom_root, atoms, &cmp_pid);
939}
940
941static void
942latency_fork_event(struct trace_fork_event *fork_event __used,
943 struct event *event __used,
944 int cpu __used,
945 u64 timestamp __used,
946 struct thread *thread __used)
947{
948 /* should insert the newcomer */
949}
950
951__used
952static char sched_out_state(struct trace_switch_event *switch_event)
953{
954 const char *str = TASK_STATE_TO_CHAR_STR;
955
956 return str[switch_event->prev_state];
957}
958
959static void
960add_sched_out_event(struct work_atoms *atoms,
961 char run_state,
962 u64 timestamp)
963{
964 struct work_atom *atom = zalloc(sizeof(*atom));
965 if (!atom)
966 die("Non memory");
967
968 atom->sched_out_time = timestamp;
969
970 if (run_state == 'R') {
971 atom->state = THREAD_WAIT_CPU;
972 atom->wake_up_time = atom->sched_out_time;
973 }
974
975 list_add_tail(&atom->list, &atoms->work_list);
976}
977
978static void
979add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
980{
981 struct work_atom *atom;
982
983 BUG_ON(list_empty(&atoms->work_list));
984
985 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
986
987 atom->runtime += delta;
988 atoms->total_runtime += delta;
989}
990
991static void
992add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
993{
994 struct work_atom *atom;
995 u64 delta;
996
997 if (list_empty(&atoms->work_list))
998 return;
999
1000 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1001
1002 if (atom->state != THREAD_WAIT_CPU)
1003 return;
1004
1005 if (timestamp < atom->wake_up_time) {
1006 atom->state = THREAD_IGNORE;
1007 return;
1008 }
1009
1010 atom->state = THREAD_SCHED_IN;
1011 atom->sched_in_time = timestamp;
1012
1013 delta = atom->sched_in_time - atom->wake_up_time;
1014 atoms->total_lat += delta;
1015 if (delta > atoms->max_lat) {
1016 atoms->max_lat = delta;
1017 atoms->max_lat_at = timestamp;
1018 }
1019 atoms->nb_atoms++;
1020}
1021
1022static void
1023latency_switch_event(struct trace_switch_event *switch_event,
1024 struct perf_session *session,
1025 struct event *event __used,
1026 int cpu,
1027 u64 timestamp,
1028 struct thread *thread __used)
1029{
1030 struct work_atoms *out_events, *in_events;
1031 struct thread *sched_out, *sched_in;
1032 u64 timestamp0;
1033 s64 delta;
1034
1035 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1036
1037 timestamp0 = cpu_last_switched[cpu];
1038 cpu_last_switched[cpu] = timestamp;
1039 if (timestamp0)
1040 delta = timestamp - timestamp0;
1041 else
1042 delta = 0;
1043
1044 if (delta < 0)
1045 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1046
1047
1048 sched_out = perf_session__findnew(session, switch_event->prev_pid);
1049 sched_in = perf_session__findnew(session, switch_event->next_pid);
1050
1051 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1052 if (!out_events) {
1053 thread_atoms_insert(sched_out);
1054 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1055 if (!out_events)
1056 die("out-event: Internal tree error");
1057 }
1058 add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1059
1060 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1061 if (!in_events) {
1062 thread_atoms_insert(sched_in);
1063 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1064 if (!in_events)
1065 die("in-event: Internal tree error");
1066 /*
1067 * Take came in we have not heard about yet,
1068 * add in an initial atom in runnable state:
1069 */
1070 add_sched_out_event(in_events, 'R', timestamp);
1071 }
1072 add_sched_in_event(in_events, timestamp);
1073}
1074
1075static void
1076latency_runtime_event(struct trace_runtime_event *runtime_event,
1077 struct perf_session *session,
1078 struct event *event __used,
1079 int cpu,
1080 u64 timestamp,
1081 struct thread *this_thread __used)
1082{
1083 struct thread *thread = perf_session__findnew(session, runtime_event->pid);
1084 struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1085
1086 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1087 if (!atoms) {
1088 thread_atoms_insert(thread);
1089 atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1090 if (!atoms)
1091 die("in-event: Internal tree error");
1092 add_sched_out_event(atoms, 'R', timestamp);
1093 }
1094
1095 add_runtime_event(atoms, runtime_event->runtime, timestamp);
1096}
1097
1098static void
1099latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1100 struct perf_session *session,
1101 struct event *__event __used,
1102 int cpu __used,
1103 u64 timestamp,
1104 struct thread *thread __used)
1105{
1106 struct work_atoms *atoms;
1107 struct work_atom *atom;
1108 struct thread *wakee;
1109
1110 /* Note for later, it may be interesting to observe the failing cases */
1111 if (!wakeup_event->success)
1112 return;
1113
1114 wakee = perf_session__findnew(session, wakeup_event->pid);
1115 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1116 if (!atoms) {
1117 thread_atoms_insert(wakee);
1118 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1119 if (!atoms)
1120 die("wakeup-event: Internal tree error");
1121 add_sched_out_event(atoms, 'S', timestamp);
1122 }
1123
1124 BUG_ON(list_empty(&atoms->work_list));
1125
1126 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1127
1128 /*
1129 * You WILL be missing events if you've recorded only
1130 * one CPU, or are only looking at only one, so don't
1131 * make useless noise.
1132 */
1133 if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1134 nr_state_machine_bugs++;
1135
1136 nr_timestamps++;
1137 if (atom->sched_out_time > timestamp) {
1138 nr_unordered_timestamps++;
1139 return;
1140 }
1141
1142 atom->state = THREAD_WAIT_CPU;
1143 atom->wake_up_time = timestamp;
1144}
1145
1146static void
1147latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1148 struct perf_session *session,
1149 struct event *__event __used,
1150 int cpu __used,
1151 u64 timestamp,
1152 struct thread *thread __used)
1153{
1154 struct work_atoms *atoms;
1155 struct work_atom *atom;
1156 struct thread *migrant;
1157
1158 /*
1159 * Only need to worry about migration when profiling one CPU.
1160 */
1161 if (profile_cpu == -1)
1162 return;
1163
1164 migrant = perf_session__findnew(session, migrate_task_event->pid);
1165 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1166 if (!atoms) {
1167 thread_atoms_insert(migrant);
1168 register_pid(migrant->pid, migrant->comm);
1169 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1170 if (!atoms)
1171 die("migration-event: Internal tree error");
1172 add_sched_out_event(atoms, 'R', timestamp);
1173 }
1174
1175 BUG_ON(list_empty(&atoms->work_list));
1176
1177 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1178 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1179
1180 nr_timestamps++;
1181
1182 if (atom->sched_out_time > timestamp)
1183 nr_unordered_timestamps++;
1184}
1185
1186static struct trace_sched_handler lat_ops = {
1187 .wakeup_event = latency_wakeup_event,
1188 .switch_event = latency_switch_event,
1189 .runtime_event = latency_runtime_event,
1190 .fork_event = latency_fork_event,
1191 .migrate_task_event = latency_migrate_task_event,
1192};
1193
1194static void output_lat_thread(struct work_atoms *work_list)
1195{
1196 int i;
1197 int ret;
1198 u64 avg;
1199
1200 if (!work_list->nb_atoms)
1201 return;
1202 /*
1203 * Ignore idle threads:
1204 */
1205 if (!strcmp(work_list->thread->comm, "swapper"))
1206 return;
1207
1208 all_runtime += work_list->total_runtime;
1209 all_count += work_list->nb_atoms;
1210
1211 ret = printf(" %s:%d ", work_list->thread->comm, work_list->thread->pid);
1212
1213 for (i = 0; i < 24 - ret; i++)
1214 printf(" ");
1215
1216 avg = work_list->total_lat / work_list->nb_atoms;
1217
1218 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1219 (double)work_list->total_runtime / 1e6,
1220 work_list->nb_atoms, (double)avg / 1e6,
1221 (double)work_list->max_lat / 1e6,
1222 (double)work_list->max_lat_at / 1e9);
1223}
1224
1225static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1226{
1227 if (l->thread->pid < r->thread->pid)
1228 return -1;
1229 if (l->thread->pid > r->thread->pid)
1230 return 1;
1231
1232 return 0;
1233}
1234
1235static struct sort_dimension pid_sort_dimension = {
1236 .name = "pid",
1237 .cmp = pid_cmp,
1238};
1239
1240static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1241{
1242 u64 avgl, avgr;
1243
1244 if (!l->nb_atoms)
1245 return -1;
1246
1247 if (!r->nb_atoms)
1248 return 1;
1249
1250 avgl = l->total_lat / l->nb_atoms;
1251 avgr = r->total_lat / r->nb_atoms;
1252
1253 if (avgl < avgr)
1254 return -1;
1255 if (avgl > avgr)
1256 return 1;
1257
1258 return 0;
1259}
1260
1261static struct sort_dimension avg_sort_dimension = {
1262 .name = "avg",
1263 .cmp = avg_cmp,
1264};
1265
1266static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1267{
1268 if (l->max_lat < r->max_lat)
1269 return -1;
1270 if (l->max_lat > r->max_lat)
1271 return 1;
1272
1273 return 0;
1274}
1275
1276static struct sort_dimension max_sort_dimension = {
1277 .name = "max",
1278 .cmp = max_cmp,
1279};
1280
1281static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1282{
1283 if (l->nb_atoms < r->nb_atoms)
1284 return -1;
1285 if (l->nb_atoms > r->nb_atoms)
1286 return 1;
1287
1288 return 0;
1289}
1290
1291static struct sort_dimension switch_sort_dimension = {
1292 .name = "switch",
1293 .cmp = switch_cmp,
1294};
1295
1296static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1297{
1298 if (l->total_runtime < r->total_runtime)
1299 return -1;
1300 if (l->total_runtime > r->total_runtime)
1301 return 1;
1302
1303 return 0;
1304}
1305
1306static struct sort_dimension runtime_sort_dimension = {
1307 .name = "runtime",
1308 .cmp = runtime_cmp,
1309};
1310
1311static struct sort_dimension *available_sorts[] = {
1312 &pid_sort_dimension,
1313 &avg_sort_dimension,
1314 &max_sort_dimension,
1315 &switch_sort_dimension,
1316 &runtime_sort_dimension,
1317};
1318
1319#define NB_AVAILABLE_SORTS (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1320
1321static LIST_HEAD(sort_list);
1322
1323static int sort_dimension__add(const char *tok, struct list_head *list)
1324{
1325 int i;
1326
1327 for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1328 if (!strcmp(available_sorts[i]->name, tok)) {
1329 list_add_tail(&available_sorts[i]->list, list);
1330
1331 return 0;
1332 }
1333 }
1334
1335 return -1;
1336}
1337
1338static void setup_sorting(void);
1339
1340static void sort_lat(void)
1341{
1342 struct rb_node *node;
1343
1344 for (;;) {
1345 struct work_atoms *data;
1346 node = rb_first(&atom_root);
1347 if (!node)
1348 break;
1349
1350 rb_erase(node, &atom_root);
1351 data = rb_entry(node, struct work_atoms, node);
1352 __thread_latency_insert(&sorted_atom_root, data, &sort_list);
1353 }
1354}
1355
1356static struct trace_sched_handler *trace_handler;
1357
1358static void
1359process_sched_wakeup_event(void *data, struct perf_session *session,
1360 struct event *event,
1361 int cpu __used,
1362 u64 timestamp __used,
1363 struct thread *thread __used)
1364{
1365 struct trace_wakeup_event wakeup_event;
1366
1367 FILL_COMMON_FIELDS(wakeup_event, event, data);
1368
1369 FILL_ARRAY(wakeup_event, comm, event, data);
1370 FILL_FIELD(wakeup_event, pid, event, data);
1371 FILL_FIELD(wakeup_event, prio, event, data);
1372 FILL_FIELD(wakeup_event, success, event, data);
1373 FILL_FIELD(wakeup_event, cpu, event, data);
1374
1375 if (trace_handler->wakeup_event)
1376 trace_handler->wakeup_event(&wakeup_event, session, event,
1377 cpu, timestamp, thread);
1378}
1379
1380/*
1381 * Track the current task - that way we can know whether there's any
1382 * weird events, such as a task being switched away that is not current.
1383 */
1384static int max_cpu;
1385
1386static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1387
1388static struct thread *curr_thread[MAX_CPUS];
1389
1390static char next_shortname1 = 'A';
1391static char next_shortname2 = '0';
1392
1393static void
1394map_switch_event(struct trace_switch_event *switch_event,
1395 struct perf_session *session,
1396 struct event *event __used,
1397 int this_cpu,
1398 u64 timestamp,
1399 struct thread *thread __used)
1400{
1401 struct thread *sched_out __used, *sched_in;
1402 int new_shortname;
1403 u64 timestamp0;
1404 s64 delta;
1405 int cpu;
1406
1407 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1408
1409 if (this_cpu > max_cpu)
1410 max_cpu = this_cpu;
1411
1412 timestamp0 = cpu_last_switched[this_cpu];
1413 cpu_last_switched[this_cpu] = timestamp;
1414 if (timestamp0)
1415 delta = timestamp - timestamp0;
1416 else
1417 delta = 0;
1418
1419 if (delta < 0)
1420 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1421
1422
1423 sched_out = perf_session__findnew(session, switch_event->prev_pid);
1424 sched_in = perf_session__findnew(session, switch_event->next_pid);
1425
1426 curr_thread[this_cpu] = sched_in;
1427
1428 printf(" ");
1429
1430 new_shortname = 0;
1431 if (!sched_in->shortname[0]) {
1432 sched_in->shortname[0] = next_shortname1;
1433 sched_in->shortname[1] = next_shortname2;
1434
1435 if (next_shortname1 < 'Z') {
1436 next_shortname1++;
1437 } else {
1438 next_shortname1='A';
1439 if (next_shortname2 < '9') {
1440 next_shortname2++;
1441 } else {
1442 next_shortname2='0';
1443 }
1444 }
1445 new_shortname = 1;
1446 }
1447
1448 for (cpu = 0; cpu <= max_cpu; cpu++) {
1449 if (cpu != this_cpu)
1450 printf(" ");
1451 else
1452 printf("*");
1453
1454 if (curr_thread[cpu]) {
1455 if (curr_thread[cpu]->pid)
1456 printf("%2s ", curr_thread[cpu]->shortname);
1457 else
1458 printf(". ");
1459 } else
1460 printf(" ");
1461 }
1462
1463 printf(" %12.6f secs ", (double)timestamp/1e9);
1464 if (new_shortname) {
1465 printf("%s => %s:%d\n",
1466 sched_in->shortname, sched_in->comm, sched_in->pid);
1467 } else {
1468 printf("\n");
1469 }
1470}
1471
1472
1473static void
1474process_sched_switch_event(void *data, struct perf_session *session,
1475 struct event *event,
1476 int this_cpu,
1477 u64 timestamp __used,
1478 struct thread *thread __used)
1479{
1480 struct trace_switch_event switch_event;
1481
1482 FILL_COMMON_FIELDS(switch_event, event, data);
1483
1484 FILL_ARRAY(switch_event, prev_comm, event, data);
1485 FILL_FIELD(switch_event, prev_pid, event, data);
1486 FILL_FIELD(switch_event, prev_prio, event, data);
1487 FILL_FIELD(switch_event, prev_state, event, data);
1488 FILL_ARRAY(switch_event, next_comm, event, data);
1489 FILL_FIELD(switch_event, next_pid, event, data);
1490 FILL_FIELD(switch_event, next_prio, event, data);
1491
1492 if (curr_pid[this_cpu] != (u32)-1) {
1493 /*
1494 * Are we trying to switch away a PID that is
1495 * not current?
1496 */
1497 if (curr_pid[this_cpu] != switch_event.prev_pid)
1498 nr_context_switch_bugs++;
1499 }
1500 if (trace_handler->switch_event)
1501 trace_handler->switch_event(&switch_event, session, event,
1502 this_cpu, timestamp, thread);
1503
1504 curr_pid[this_cpu] = switch_event.next_pid;
1505}
1506
1507static void
1508process_sched_runtime_event(void *data, struct perf_session *session,
1509 struct event *event,
1510 int cpu __used,
1511 u64 timestamp __used,
1512 struct thread *thread __used)
1513{
1514 struct trace_runtime_event runtime_event;
1515
1516 FILL_ARRAY(runtime_event, comm, event, data);
1517 FILL_FIELD(runtime_event, pid, event, data);
1518 FILL_FIELD(runtime_event, runtime, event, data);
1519 FILL_FIELD(runtime_event, vruntime, event, data);
1520
1521 if (trace_handler->runtime_event)
1522 trace_handler->runtime_event(&runtime_event, session, event, cpu, timestamp, thread);
1523}
1524
1525static void
1526process_sched_fork_event(void *data,
1527 struct event *event,
1528 int cpu __used,
1529 u64 timestamp __used,
1530 struct thread *thread __used)
1531{
1532 struct trace_fork_event fork_event;
1533
1534 FILL_COMMON_FIELDS(fork_event, event, data);
1535
1536 FILL_ARRAY(fork_event, parent_comm, event, data);
1537 FILL_FIELD(fork_event, parent_pid, event, data);
1538 FILL_ARRAY(fork_event, child_comm, event, data);
1539 FILL_FIELD(fork_event, child_pid, event, data);
1540
1541 if (trace_handler->fork_event)
1542 trace_handler->fork_event(&fork_event, event,
1543 cpu, timestamp, thread);
1544}
1545
1546static void
1547process_sched_exit_event(struct event *event,
1548 int cpu __used,
1549 u64 timestamp __used,
1550 struct thread *thread __used)
1551{
1552 if (verbose)
1553 printf("sched_exit event %p\n", event);
1554}
1555
1556static void
1557process_sched_migrate_task_event(void *data, struct perf_session *session,
1558 struct event *event,
1559 int cpu __used,
1560 u64 timestamp __used,
1561 struct thread *thread __used)
1562{
1563 struct trace_migrate_task_event migrate_task_event;
1564
1565 FILL_COMMON_FIELDS(migrate_task_event, event, data);
1566
1567 FILL_ARRAY(migrate_task_event, comm, event, data);
1568 FILL_FIELD(migrate_task_event, pid, event, data);
1569 FILL_FIELD(migrate_task_event, prio, event, data);
1570 FILL_FIELD(migrate_task_event, cpu, event, data);
1571
1572 if (trace_handler->migrate_task_event)
1573 trace_handler->migrate_task_event(&migrate_task_event, session,
1574 event, cpu, timestamp, thread);
1575}
1576
1577static void process_raw_event(union perf_event *raw_event __used,
1578 struct perf_session *session, void *data, int cpu,
1579 u64 timestamp, struct thread *thread)
1580{
1581 struct event *event;
1582 int type;
1583
1584
1585 type = trace_parse_common_type(data);
1586 event = trace_find_event(type);
1587
1588 if (!strcmp(event->name, "sched_switch"))
1589 process_sched_switch_event(data, session, event, cpu, timestamp, thread);
1590 if (!strcmp(event->name, "sched_stat_runtime"))
1591 process_sched_runtime_event(data, session, event, cpu, timestamp, thread);
1592 if (!strcmp(event->name, "sched_wakeup"))
1593 process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1594 if (!strcmp(event->name, "sched_wakeup_new"))
1595 process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1596 if (!strcmp(event->name, "sched_process_fork"))
1597 process_sched_fork_event(data, event, cpu, timestamp, thread);
1598 if (!strcmp(event->name, "sched_process_exit"))
1599 process_sched_exit_event(event, cpu, timestamp, thread);
1600 if (!strcmp(event->name, "sched_migrate_task"))
1601 process_sched_migrate_task_event(data, session, event, cpu, timestamp, thread);
1602}
1603
1604static int process_sample_event(union perf_event *event,
1605 struct perf_sample *sample,
1606 struct perf_evsel *evsel __used,
1607 struct perf_session *session)
1608{
1609 struct thread *thread;
1610
1611 if (!(session->sample_type & PERF_SAMPLE_RAW))
1612 return 0;
1613
1614 thread = perf_session__findnew(session, sample->pid);
1615 if (thread == NULL) {
1616 pr_debug("problem processing %d event, skipping it.\n",
1617 event->header.type);
1618 return -1;
1619 }
1620
1621 dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1622
1623 if (profile_cpu != -1 && profile_cpu != (int)sample->cpu)
1624 return 0;
1625
1626 process_raw_event(event, session, sample->raw_data, sample->cpu,
1627 sample->time, thread);
1628
1629 return 0;
1630}
1631
1632static struct perf_event_ops event_ops = {
1633 .sample = process_sample_event,
1634 .comm = perf_event__process_comm,
1635 .lost = perf_event__process_lost,
1636 .fork = perf_event__process_task,
1637 .ordered_samples = true,
1638};
1639
1640static void read_events(bool destroy, struct perf_session **psession)
1641{
1642 int err = -EINVAL;
1643 struct perf_session *session = perf_session__new(input_name, O_RDONLY,
1644 0, false, &event_ops);
1645 if (session == NULL)
1646 die("No Memory");
1647
1648 if (perf_session__has_traces(session, "record -R")) {
1649 err = perf_session__process_events(session, &event_ops);
1650 if (err)
1651 die("Failed to process events, error %d", err);
1652
1653 nr_events = session->hists.stats.nr_events[0];
1654 nr_lost_events = session->hists.stats.total_lost;
1655 nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1656 }
1657
1658 if (destroy)
1659 perf_session__delete(session);
1660
1661 if (psession)
1662 *psession = session;
1663}
1664
1665static void print_bad_events(void)
1666{
1667 if (nr_unordered_timestamps && nr_timestamps) {
1668 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1669 (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1670 nr_unordered_timestamps, nr_timestamps);
1671 }
1672 if (nr_lost_events && nr_events) {
1673 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1674 (double)nr_lost_events/(double)nr_events*100.0,
1675 nr_lost_events, nr_events, nr_lost_chunks);
1676 }
1677 if (nr_state_machine_bugs && nr_timestamps) {
1678 printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
1679 (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1680 nr_state_machine_bugs, nr_timestamps);
1681 if (nr_lost_events)
1682 printf(" (due to lost events?)");
1683 printf("\n");
1684 }
1685 if (nr_context_switch_bugs && nr_timestamps) {
1686 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1687 (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1688 nr_context_switch_bugs, nr_timestamps);
1689 if (nr_lost_events)
1690 printf(" (due to lost events?)");
1691 printf("\n");
1692 }
1693}
1694
1695static void __cmd_lat(void)
1696{
1697 struct rb_node *next;
1698 struct perf_session *session;
1699
1700 setup_pager();
1701 read_events(false, &session);
1702 sort_lat();
1703
1704 printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1705 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1706 printf(" ---------------------------------------------------------------------------------------------------------------\n");
1707
1708 next = rb_first(&sorted_atom_root);
1709
1710 while (next) {
1711 struct work_atoms *work_list;
1712
1713 work_list = rb_entry(next, struct work_atoms, node);
1714 output_lat_thread(work_list);
1715 next = rb_next(next);
1716 }
1717
1718 printf(" -----------------------------------------------------------------------------------------\n");
1719 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1720 (double)all_runtime/1e6, all_count);
1721
1722 printf(" ---------------------------------------------------\n");
1723
1724 print_bad_events();
1725 printf("\n");
1726
1727 perf_session__delete(session);
1728}
1729
1730static struct trace_sched_handler map_ops = {
1731 .wakeup_event = NULL,
1732 .switch_event = map_switch_event,
1733 .runtime_event = NULL,
1734 .fork_event = NULL,
1735};
1736
1737static void __cmd_map(void)
1738{
1739 max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1740
1741 setup_pager();
1742 read_events(true, NULL);
1743 print_bad_events();
1744}
1745
1746static void __cmd_replay(void)
1747{
1748 unsigned long i;
1749
1750 calibrate_run_measurement_overhead();
1751 calibrate_sleep_measurement_overhead();
1752
1753 test_calibrations();
1754
1755 read_events(true, NULL);
1756
1757 printf("nr_run_events: %ld\n", nr_run_events);
1758 printf("nr_sleep_events: %ld\n", nr_sleep_events);
1759 printf("nr_wakeup_events: %ld\n", nr_wakeup_events);
1760
1761 if (targetless_wakeups)
1762 printf("target-less wakeups: %ld\n", targetless_wakeups);
1763 if (multitarget_wakeups)
1764 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1765 if (nr_run_events_optimized)
1766 printf("run atoms optimized: %ld\n",
1767 nr_run_events_optimized);
1768
1769 print_task_traces();
1770 add_cross_task_wakeups();
1771
1772 create_tasks();
1773 printf("------------------------------------------------------------\n");
1774 for (i = 0; i < replay_repeat; i++)
1775 run_one_test();
1776}
1777
1778
1779static const char * const sched_usage[] = {
1780 "perf sched [<options>] {record|latency|map|replay|script}",
1781 NULL
1782};
1783
1784static const struct option sched_options[] = {
1785 OPT_STRING('i', "input", &input_name, "file",
1786 "input file name"),
1787 OPT_INCR('v', "verbose", &verbose,
1788 "be more verbose (show symbol address, etc)"),
1789 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1790 "dump raw trace in ASCII"),
1791 OPT_END()
1792};
1793
1794static const char * const latency_usage[] = {
1795 "perf sched latency [<options>]",
1796 NULL
1797};
1798
1799static const struct option latency_options[] = {
1800 OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1801 "sort by key(s): runtime, switch, avg, max"),
1802 OPT_INCR('v', "verbose", &verbose,
1803 "be more verbose (show symbol address, etc)"),
1804 OPT_INTEGER('C', "CPU", &profile_cpu,
1805 "CPU to profile on"),
1806 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1807 "dump raw trace in ASCII"),
1808 OPT_END()
1809};
1810
1811static const char * const replay_usage[] = {
1812 "perf sched replay [<options>]",
1813 NULL
1814};
1815
1816static const struct option replay_options[] = {
1817 OPT_UINTEGER('r', "repeat", &replay_repeat,
1818 "repeat the workload replay N times (-1: infinite)"),
1819 OPT_INCR('v', "verbose", &verbose,
1820 "be more verbose (show symbol address, etc)"),
1821 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1822 "dump raw trace in ASCII"),
1823 OPT_END()
1824};
1825
1826static void setup_sorting(void)
1827{
1828 char *tmp, *tok, *str = strdup(sort_order);
1829
1830 for (tok = strtok_r(str, ", ", &tmp);
1831 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1832 if (sort_dimension__add(tok, &sort_list) < 0) {
1833 error("Unknown --sort key: `%s'", tok);
1834 usage_with_options(latency_usage, latency_options);
1835 }
1836 }
1837
1838 free(str);
1839
1840 sort_dimension__add("pid", &cmp_pid);
1841}
1842
1843static const char *record_args[] = {
1844 "record",
1845 "-a",
1846 "-R",
1847 "-f",
1848 "-m", "1024",
1849 "-c", "1",
1850 "-e", "sched:sched_switch",
1851 "-e", "sched:sched_stat_wait",
1852 "-e", "sched:sched_stat_sleep",
1853 "-e", "sched:sched_stat_iowait",
1854 "-e", "sched:sched_stat_runtime",
1855 "-e", "sched:sched_process_exit",
1856 "-e", "sched:sched_process_fork",
1857 "-e", "sched:sched_wakeup",
1858 "-e", "sched:sched_migrate_task",
1859};
1860
1861static int __cmd_record(int argc, const char **argv)
1862{
1863 unsigned int rec_argc, i, j;
1864 const char **rec_argv;
1865
1866 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1867 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1868
1869 if (rec_argv == NULL)
1870 return -ENOMEM;
1871
1872 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1873 rec_argv[i] = strdup(record_args[i]);
1874
1875 for (j = 1; j < (unsigned int)argc; j++, i++)
1876 rec_argv[i] = argv[j];
1877
1878 BUG_ON(i != rec_argc);
1879
1880 return cmd_record(i, rec_argv, NULL);
1881}
1882
1883int cmd_sched(int argc, const char **argv, const char *prefix __used)
1884{
1885 argc = parse_options(argc, argv, sched_options, sched_usage,
1886 PARSE_OPT_STOP_AT_NON_OPTION);
1887 if (!argc)
1888 usage_with_options(sched_usage, sched_options);
1889
1890 /*
1891 * Aliased to 'perf script' for now:
1892 */
1893 if (!strcmp(argv[0], "script"))
1894 return cmd_script(argc, argv, prefix);
1895
1896 symbol__init();
1897 if (!strncmp(argv[0], "rec", 3)) {
1898 return __cmd_record(argc, argv);
1899 } else if (!strncmp(argv[0], "lat", 3)) {
1900 trace_handler = &lat_ops;
1901 if (argc > 1) {
1902 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1903 if (argc)
1904 usage_with_options(latency_usage, latency_options);
1905 }
1906 setup_sorting();
1907 __cmd_lat();
1908 } else if (!strcmp(argv[0], "map")) {
1909 trace_handler = &map_ops;
1910 setup_sorting();
1911 __cmd_map();
1912 } else if (!strncmp(argv[0], "rep", 3)) {
1913 trace_handler = &replay_ops;
1914 if (argc) {
1915 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1916 if (argc)
1917 usage_with_options(replay_usage, replay_options);
1918 }
1919 __cmd_replay();
1920 } else {
1921 usage_with_options(sched_usage, sched_options);
1922 }
1923
1924 return 0;
1925}
1#include "builtin.h"
2#include "perf.h"
3
4#include "util/util.h"
5#include "util/evlist.h"
6#include "util/cache.h"
7#include "util/evsel.h"
8#include "util/symbol.h"
9#include "util/thread.h"
10#include "util/header.h"
11#include "util/session.h"
12#include "util/tool.h"
13#include "util/cloexec.h"
14
15#include <subcmd/parse-options.h>
16#include "util/trace-event.h"
17
18#include "util/debug.h"
19
20#include <sys/prctl.h>
21#include <sys/resource.h>
22
23#include <semaphore.h>
24#include <pthread.h>
25#include <math.h>
26#include <api/fs/fs.h>
27
28#define PR_SET_NAME 15 /* Set process name */
29#define MAX_CPUS 4096
30#define COMM_LEN 20
31#define SYM_LEN 129
32#define MAX_PID 1024000
33
34struct sched_atom;
35
36struct task_desc {
37 unsigned long nr;
38 unsigned long pid;
39 char comm[COMM_LEN];
40
41 unsigned long nr_events;
42 unsigned long curr_event;
43 struct sched_atom **atoms;
44
45 pthread_t thread;
46 sem_t sleep_sem;
47
48 sem_t ready_for_work;
49 sem_t work_done_sem;
50
51 u64 cpu_usage;
52};
53
54enum sched_event_type {
55 SCHED_EVENT_RUN,
56 SCHED_EVENT_SLEEP,
57 SCHED_EVENT_WAKEUP,
58 SCHED_EVENT_MIGRATION,
59};
60
61struct sched_atom {
62 enum sched_event_type type;
63 int specific_wait;
64 u64 timestamp;
65 u64 duration;
66 unsigned long nr;
67 sem_t *wait_sem;
68 struct task_desc *wakee;
69};
70
71#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
72
73enum thread_state {
74 THREAD_SLEEPING = 0,
75 THREAD_WAIT_CPU,
76 THREAD_SCHED_IN,
77 THREAD_IGNORE
78};
79
80struct work_atom {
81 struct list_head list;
82 enum thread_state state;
83 u64 sched_out_time;
84 u64 wake_up_time;
85 u64 sched_in_time;
86 u64 runtime;
87};
88
89struct work_atoms {
90 struct list_head work_list;
91 struct thread *thread;
92 struct rb_node node;
93 u64 max_lat;
94 u64 max_lat_at;
95 u64 total_lat;
96 u64 nb_atoms;
97 u64 total_runtime;
98 int num_merged;
99};
100
101typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
102
103struct perf_sched;
104
105struct trace_sched_handler {
106 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
107 struct perf_sample *sample, struct machine *machine);
108
109 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
110 struct perf_sample *sample, struct machine *machine);
111
112 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
113 struct perf_sample *sample, struct machine *machine);
114
115 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
116 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
117 struct machine *machine);
118
119 int (*migrate_task_event)(struct perf_sched *sched,
120 struct perf_evsel *evsel,
121 struct perf_sample *sample,
122 struct machine *machine);
123};
124
125struct perf_sched {
126 struct perf_tool tool;
127 const char *sort_order;
128 unsigned long nr_tasks;
129 struct task_desc **pid_to_task;
130 struct task_desc **tasks;
131 const struct trace_sched_handler *tp_handler;
132 pthread_mutex_t start_work_mutex;
133 pthread_mutex_t work_done_wait_mutex;
134 int profile_cpu;
135/*
136 * Track the current task - that way we can know whether there's any
137 * weird events, such as a task being switched away that is not current.
138 */
139 int max_cpu;
140 u32 curr_pid[MAX_CPUS];
141 struct thread *curr_thread[MAX_CPUS];
142 char next_shortname1;
143 char next_shortname2;
144 unsigned int replay_repeat;
145 unsigned long nr_run_events;
146 unsigned long nr_sleep_events;
147 unsigned long nr_wakeup_events;
148 unsigned long nr_sleep_corrections;
149 unsigned long nr_run_events_optimized;
150 unsigned long targetless_wakeups;
151 unsigned long multitarget_wakeups;
152 unsigned long nr_runs;
153 unsigned long nr_timestamps;
154 unsigned long nr_unordered_timestamps;
155 unsigned long nr_context_switch_bugs;
156 unsigned long nr_events;
157 unsigned long nr_lost_chunks;
158 unsigned long nr_lost_events;
159 u64 run_measurement_overhead;
160 u64 sleep_measurement_overhead;
161 u64 start_time;
162 u64 cpu_usage;
163 u64 runavg_cpu_usage;
164 u64 parent_cpu_usage;
165 u64 runavg_parent_cpu_usage;
166 u64 sum_runtime;
167 u64 sum_fluct;
168 u64 run_avg;
169 u64 all_runtime;
170 u64 all_count;
171 u64 cpu_last_switched[MAX_CPUS];
172 struct rb_root atom_root, sorted_atom_root, merged_atom_root;
173 struct list_head sort_list, cmp_pid;
174 bool force;
175 bool skip_merge;
176};
177
178static u64 get_nsecs(void)
179{
180 struct timespec ts;
181
182 clock_gettime(CLOCK_MONOTONIC, &ts);
183
184 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
185}
186
187static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
188{
189 u64 T0 = get_nsecs(), T1;
190
191 do {
192 T1 = get_nsecs();
193 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
194}
195
196static void sleep_nsecs(u64 nsecs)
197{
198 struct timespec ts;
199
200 ts.tv_nsec = nsecs % 999999999;
201 ts.tv_sec = nsecs / 999999999;
202
203 nanosleep(&ts, NULL);
204}
205
206static void calibrate_run_measurement_overhead(struct perf_sched *sched)
207{
208 u64 T0, T1, delta, min_delta = 1000000000ULL;
209 int i;
210
211 for (i = 0; i < 10; i++) {
212 T0 = get_nsecs();
213 burn_nsecs(sched, 0);
214 T1 = get_nsecs();
215 delta = T1-T0;
216 min_delta = min(min_delta, delta);
217 }
218 sched->run_measurement_overhead = min_delta;
219
220 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
221}
222
223static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
224{
225 u64 T0, T1, delta, min_delta = 1000000000ULL;
226 int i;
227
228 for (i = 0; i < 10; i++) {
229 T0 = get_nsecs();
230 sleep_nsecs(10000);
231 T1 = get_nsecs();
232 delta = T1-T0;
233 min_delta = min(min_delta, delta);
234 }
235 min_delta -= 10000;
236 sched->sleep_measurement_overhead = min_delta;
237
238 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
239}
240
241static struct sched_atom *
242get_new_event(struct task_desc *task, u64 timestamp)
243{
244 struct sched_atom *event = zalloc(sizeof(*event));
245 unsigned long idx = task->nr_events;
246 size_t size;
247
248 event->timestamp = timestamp;
249 event->nr = idx;
250
251 task->nr_events++;
252 size = sizeof(struct sched_atom *) * task->nr_events;
253 task->atoms = realloc(task->atoms, size);
254 BUG_ON(!task->atoms);
255
256 task->atoms[idx] = event;
257
258 return event;
259}
260
261static struct sched_atom *last_event(struct task_desc *task)
262{
263 if (!task->nr_events)
264 return NULL;
265
266 return task->atoms[task->nr_events - 1];
267}
268
269static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
270 u64 timestamp, u64 duration)
271{
272 struct sched_atom *event, *curr_event = last_event(task);
273
274 /*
275 * optimize an existing RUN event by merging this one
276 * to it:
277 */
278 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
279 sched->nr_run_events_optimized++;
280 curr_event->duration += duration;
281 return;
282 }
283
284 event = get_new_event(task, timestamp);
285
286 event->type = SCHED_EVENT_RUN;
287 event->duration = duration;
288
289 sched->nr_run_events++;
290}
291
292static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
293 u64 timestamp, struct task_desc *wakee)
294{
295 struct sched_atom *event, *wakee_event;
296
297 event = get_new_event(task, timestamp);
298 event->type = SCHED_EVENT_WAKEUP;
299 event->wakee = wakee;
300
301 wakee_event = last_event(wakee);
302 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
303 sched->targetless_wakeups++;
304 return;
305 }
306 if (wakee_event->wait_sem) {
307 sched->multitarget_wakeups++;
308 return;
309 }
310
311 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
312 sem_init(wakee_event->wait_sem, 0, 0);
313 wakee_event->specific_wait = 1;
314 event->wait_sem = wakee_event->wait_sem;
315
316 sched->nr_wakeup_events++;
317}
318
319static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
320 u64 timestamp, u64 task_state __maybe_unused)
321{
322 struct sched_atom *event = get_new_event(task, timestamp);
323
324 event->type = SCHED_EVENT_SLEEP;
325
326 sched->nr_sleep_events++;
327}
328
329static struct task_desc *register_pid(struct perf_sched *sched,
330 unsigned long pid, const char *comm)
331{
332 struct task_desc *task;
333 static int pid_max;
334
335 if (sched->pid_to_task == NULL) {
336 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
337 pid_max = MAX_PID;
338 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
339 }
340 if (pid >= (unsigned long)pid_max) {
341 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
342 sizeof(struct task_desc *))) == NULL);
343 while (pid >= (unsigned long)pid_max)
344 sched->pid_to_task[pid_max++] = NULL;
345 }
346
347 task = sched->pid_to_task[pid];
348
349 if (task)
350 return task;
351
352 task = zalloc(sizeof(*task));
353 task->pid = pid;
354 task->nr = sched->nr_tasks;
355 strcpy(task->comm, comm);
356 /*
357 * every task starts in sleeping state - this gets ignored
358 * if there's no wakeup pointing to this sleep state:
359 */
360 add_sched_event_sleep(sched, task, 0, 0);
361
362 sched->pid_to_task[pid] = task;
363 sched->nr_tasks++;
364 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
365 BUG_ON(!sched->tasks);
366 sched->tasks[task->nr] = task;
367
368 if (verbose)
369 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
370
371 return task;
372}
373
374
375static void print_task_traces(struct perf_sched *sched)
376{
377 struct task_desc *task;
378 unsigned long i;
379
380 for (i = 0; i < sched->nr_tasks; i++) {
381 task = sched->tasks[i];
382 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
383 task->nr, task->comm, task->pid, task->nr_events);
384 }
385}
386
387static void add_cross_task_wakeups(struct perf_sched *sched)
388{
389 struct task_desc *task1, *task2;
390 unsigned long i, j;
391
392 for (i = 0; i < sched->nr_tasks; i++) {
393 task1 = sched->tasks[i];
394 j = i + 1;
395 if (j == sched->nr_tasks)
396 j = 0;
397 task2 = sched->tasks[j];
398 add_sched_event_wakeup(sched, task1, 0, task2);
399 }
400}
401
402static void perf_sched__process_event(struct perf_sched *sched,
403 struct sched_atom *atom)
404{
405 int ret = 0;
406
407 switch (atom->type) {
408 case SCHED_EVENT_RUN:
409 burn_nsecs(sched, atom->duration);
410 break;
411 case SCHED_EVENT_SLEEP:
412 if (atom->wait_sem)
413 ret = sem_wait(atom->wait_sem);
414 BUG_ON(ret);
415 break;
416 case SCHED_EVENT_WAKEUP:
417 if (atom->wait_sem)
418 ret = sem_post(atom->wait_sem);
419 BUG_ON(ret);
420 break;
421 case SCHED_EVENT_MIGRATION:
422 break;
423 default:
424 BUG_ON(1);
425 }
426}
427
428static u64 get_cpu_usage_nsec_parent(void)
429{
430 struct rusage ru;
431 u64 sum;
432 int err;
433
434 err = getrusage(RUSAGE_SELF, &ru);
435 BUG_ON(err);
436
437 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
438 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
439
440 return sum;
441}
442
443static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
444{
445 struct perf_event_attr attr;
446 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
447 int fd;
448 struct rlimit limit;
449 bool need_privilege = false;
450
451 memset(&attr, 0, sizeof(attr));
452
453 attr.type = PERF_TYPE_SOFTWARE;
454 attr.config = PERF_COUNT_SW_TASK_CLOCK;
455
456force_again:
457 fd = sys_perf_event_open(&attr, 0, -1, -1,
458 perf_event_open_cloexec_flag());
459
460 if (fd < 0) {
461 if (errno == EMFILE) {
462 if (sched->force) {
463 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
464 limit.rlim_cur += sched->nr_tasks - cur_task;
465 if (limit.rlim_cur > limit.rlim_max) {
466 limit.rlim_max = limit.rlim_cur;
467 need_privilege = true;
468 }
469 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
470 if (need_privilege && errno == EPERM)
471 strcpy(info, "Need privilege\n");
472 } else
473 goto force_again;
474 } else
475 strcpy(info, "Have a try with -f option\n");
476 }
477 pr_err("Error: sys_perf_event_open() syscall returned "
478 "with %d (%s)\n%s", fd,
479 strerror_r(errno, sbuf, sizeof(sbuf)), info);
480 exit(EXIT_FAILURE);
481 }
482 return fd;
483}
484
485static u64 get_cpu_usage_nsec_self(int fd)
486{
487 u64 runtime;
488 int ret;
489
490 ret = read(fd, &runtime, sizeof(runtime));
491 BUG_ON(ret != sizeof(runtime));
492
493 return runtime;
494}
495
496struct sched_thread_parms {
497 struct task_desc *task;
498 struct perf_sched *sched;
499 int fd;
500};
501
502static void *thread_func(void *ctx)
503{
504 struct sched_thread_parms *parms = ctx;
505 struct task_desc *this_task = parms->task;
506 struct perf_sched *sched = parms->sched;
507 u64 cpu_usage_0, cpu_usage_1;
508 unsigned long i, ret;
509 char comm2[22];
510 int fd = parms->fd;
511
512 zfree(&parms);
513
514 sprintf(comm2, ":%s", this_task->comm);
515 prctl(PR_SET_NAME, comm2);
516 if (fd < 0)
517 return NULL;
518again:
519 ret = sem_post(&this_task->ready_for_work);
520 BUG_ON(ret);
521 ret = pthread_mutex_lock(&sched->start_work_mutex);
522 BUG_ON(ret);
523 ret = pthread_mutex_unlock(&sched->start_work_mutex);
524 BUG_ON(ret);
525
526 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
527
528 for (i = 0; i < this_task->nr_events; i++) {
529 this_task->curr_event = i;
530 perf_sched__process_event(sched, this_task->atoms[i]);
531 }
532
533 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
534 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
535 ret = sem_post(&this_task->work_done_sem);
536 BUG_ON(ret);
537
538 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
539 BUG_ON(ret);
540 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
541 BUG_ON(ret);
542
543 goto again;
544}
545
546static void create_tasks(struct perf_sched *sched)
547{
548 struct task_desc *task;
549 pthread_attr_t attr;
550 unsigned long i;
551 int err;
552
553 err = pthread_attr_init(&attr);
554 BUG_ON(err);
555 err = pthread_attr_setstacksize(&attr,
556 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
557 BUG_ON(err);
558 err = pthread_mutex_lock(&sched->start_work_mutex);
559 BUG_ON(err);
560 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
561 BUG_ON(err);
562 for (i = 0; i < sched->nr_tasks; i++) {
563 struct sched_thread_parms *parms = malloc(sizeof(*parms));
564 BUG_ON(parms == NULL);
565 parms->task = task = sched->tasks[i];
566 parms->sched = sched;
567 parms->fd = self_open_counters(sched, i);
568 sem_init(&task->sleep_sem, 0, 0);
569 sem_init(&task->ready_for_work, 0, 0);
570 sem_init(&task->work_done_sem, 0, 0);
571 task->curr_event = 0;
572 err = pthread_create(&task->thread, &attr, thread_func, parms);
573 BUG_ON(err);
574 }
575}
576
577static void wait_for_tasks(struct perf_sched *sched)
578{
579 u64 cpu_usage_0, cpu_usage_1;
580 struct task_desc *task;
581 unsigned long i, ret;
582
583 sched->start_time = get_nsecs();
584 sched->cpu_usage = 0;
585 pthread_mutex_unlock(&sched->work_done_wait_mutex);
586
587 for (i = 0; i < sched->nr_tasks; i++) {
588 task = sched->tasks[i];
589 ret = sem_wait(&task->ready_for_work);
590 BUG_ON(ret);
591 sem_init(&task->ready_for_work, 0, 0);
592 }
593 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
594 BUG_ON(ret);
595
596 cpu_usage_0 = get_cpu_usage_nsec_parent();
597
598 pthread_mutex_unlock(&sched->start_work_mutex);
599
600 for (i = 0; i < sched->nr_tasks; i++) {
601 task = sched->tasks[i];
602 ret = sem_wait(&task->work_done_sem);
603 BUG_ON(ret);
604 sem_init(&task->work_done_sem, 0, 0);
605 sched->cpu_usage += task->cpu_usage;
606 task->cpu_usage = 0;
607 }
608
609 cpu_usage_1 = get_cpu_usage_nsec_parent();
610 if (!sched->runavg_cpu_usage)
611 sched->runavg_cpu_usage = sched->cpu_usage;
612 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
613
614 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
615 if (!sched->runavg_parent_cpu_usage)
616 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
617 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
618 sched->parent_cpu_usage)/sched->replay_repeat;
619
620 ret = pthread_mutex_lock(&sched->start_work_mutex);
621 BUG_ON(ret);
622
623 for (i = 0; i < sched->nr_tasks; i++) {
624 task = sched->tasks[i];
625 sem_init(&task->sleep_sem, 0, 0);
626 task->curr_event = 0;
627 }
628}
629
630static void run_one_test(struct perf_sched *sched)
631{
632 u64 T0, T1, delta, avg_delta, fluct;
633
634 T0 = get_nsecs();
635 wait_for_tasks(sched);
636 T1 = get_nsecs();
637
638 delta = T1 - T0;
639 sched->sum_runtime += delta;
640 sched->nr_runs++;
641
642 avg_delta = sched->sum_runtime / sched->nr_runs;
643 if (delta < avg_delta)
644 fluct = avg_delta - delta;
645 else
646 fluct = delta - avg_delta;
647 sched->sum_fluct += fluct;
648 if (!sched->run_avg)
649 sched->run_avg = delta;
650 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
651
652 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
653
654 printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
655
656 printf("cpu: %0.2f / %0.2f",
657 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
658
659#if 0
660 /*
661 * rusage statistics done by the parent, these are less
662 * accurate than the sched->sum_exec_runtime based statistics:
663 */
664 printf(" [%0.2f / %0.2f]",
665 (double)sched->parent_cpu_usage/1e6,
666 (double)sched->runavg_parent_cpu_usage/1e6);
667#endif
668
669 printf("\n");
670
671 if (sched->nr_sleep_corrections)
672 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
673 sched->nr_sleep_corrections = 0;
674}
675
676static void test_calibrations(struct perf_sched *sched)
677{
678 u64 T0, T1;
679
680 T0 = get_nsecs();
681 burn_nsecs(sched, 1e6);
682 T1 = get_nsecs();
683
684 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
685
686 T0 = get_nsecs();
687 sleep_nsecs(1e6);
688 T1 = get_nsecs();
689
690 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
691}
692
693static int
694replay_wakeup_event(struct perf_sched *sched,
695 struct perf_evsel *evsel, struct perf_sample *sample,
696 struct machine *machine __maybe_unused)
697{
698 const char *comm = perf_evsel__strval(evsel, sample, "comm");
699 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
700 struct task_desc *waker, *wakee;
701
702 if (verbose) {
703 printf("sched_wakeup event %p\n", evsel);
704
705 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
706 }
707
708 waker = register_pid(sched, sample->tid, "<unknown>");
709 wakee = register_pid(sched, pid, comm);
710
711 add_sched_event_wakeup(sched, waker, sample->time, wakee);
712 return 0;
713}
714
715static int replay_switch_event(struct perf_sched *sched,
716 struct perf_evsel *evsel,
717 struct perf_sample *sample,
718 struct machine *machine __maybe_unused)
719{
720 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
721 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
722 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
723 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
724 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
725 struct task_desc *prev, __maybe_unused *next;
726 u64 timestamp0, timestamp = sample->time;
727 int cpu = sample->cpu;
728 s64 delta;
729
730 if (verbose)
731 printf("sched_switch event %p\n", evsel);
732
733 if (cpu >= MAX_CPUS || cpu < 0)
734 return 0;
735
736 timestamp0 = sched->cpu_last_switched[cpu];
737 if (timestamp0)
738 delta = timestamp - timestamp0;
739 else
740 delta = 0;
741
742 if (delta < 0) {
743 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
744 return -1;
745 }
746
747 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
748 prev_comm, prev_pid, next_comm, next_pid, delta);
749
750 prev = register_pid(sched, prev_pid, prev_comm);
751 next = register_pid(sched, next_pid, next_comm);
752
753 sched->cpu_last_switched[cpu] = timestamp;
754
755 add_sched_event_run(sched, prev, timestamp, delta);
756 add_sched_event_sleep(sched, prev, timestamp, prev_state);
757
758 return 0;
759}
760
761static int replay_fork_event(struct perf_sched *sched,
762 union perf_event *event,
763 struct machine *machine)
764{
765 struct thread *child, *parent;
766
767 child = machine__findnew_thread(machine, event->fork.pid,
768 event->fork.tid);
769 parent = machine__findnew_thread(machine, event->fork.ppid,
770 event->fork.ptid);
771
772 if (child == NULL || parent == NULL) {
773 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
774 child, parent);
775 goto out_put;
776 }
777
778 if (verbose) {
779 printf("fork event\n");
780 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
781 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
782 }
783
784 register_pid(sched, parent->tid, thread__comm_str(parent));
785 register_pid(sched, child->tid, thread__comm_str(child));
786out_put:
787 thread__put(child);
788 thread__put(parent);
789 return 0;
790}
791
792struct sort_dimension {
793 const char *name;
794 sort_fn_t cmp;
795 struct list_head list;
796};
797
798static int
799thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
800{
801 struct sort_dimension *sort;
802 int ret = 0;
803
804 BUG_ON(list_empty(list));
805
806 list_for_each_entry(sort, list, list) {
807 ret = sort->cmp(l, r);
808 if (ret)
809 return ret;
810 }
811
812 return ret;
813}
814
815static struct work_atoms *
816thread_atoms_search(struct rb_root *root, struct thread *thread,
817 struct list_head *sort_list)
818{
819 struct rb_node *node = root->rb_node;
820 struct work_atoms key = { .thread = thread };
821
822 while (node) {
823 struct work_atoms *atoms;
824 int cmp;
825
826 atoms = container_of(node, struct work_atoms, node);
827
828 cmp = thread_lat_cmp(sort_list, &key, atoms);
829 if (cmp > 0)
830 node = node->rb_left;
831 else if (cmp < 0)
832 node = node->rb_right;
833 else {
834 BUG_ON(thread != atoms->thread);
835 return atoms;
836 }
837 }
838 return NULL;
839}
840
841static void
842__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
843 struct list_head *sort_list)
844{
845 struct rb_node **new = &(root->rb_node), *parent = NULL;
846
847 while (*new) {
848 struct work_atoms *this;
849 int cmp;
850
851 this = container_of(*new, struct work_atoms, node);
852 parent = *new;
853
854 cmp = thread_lat_cmp(sort_list, data, this);
855
856 if (cmp > 0)
857 new = &((*new)->rb_left);
858 else
859 new = &((*new)->rb_right);
860 }
861
862 rb_link_node(&data->node, parent, new);
863 rb_insert_color(&data->node, root);
864}
865
866static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
867{
868 struct work_atoms *atoms = zalloc(sizeof(*atoms));
869 if (!atoms) {
870 pr_err("No memory at %s\n", __func__);
871 return -1;
872 }
873
874 atoms->thread = thread__get(thread);
875 INIT_LIST_HEAD(&atoms->work_list);
876 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
877 return 0;
878}
879
880static char sched_out_state(u64 prev_state)
881{
882 const char *str = TASK_STATE_TO_CHAR_STR;
883
884 return str[prev_state];
885}
886
887static int
888add_sched_out_event(struct work_atoms *atoms,
889 char run_state,
890 u64 timestamp)
891{
892 struct work_atom *atom = zalloc(sizeof(*atom));
893 if (!atom) {
894 pr_err("Non memory at %s", __func__);
895 return -1;
896 }
897
898 atom->sched_out_time = timestamp;
899
900 if (run_state == 'R') {
901 atom->state = THREAD_WAIT_CPU;
902 atom->wake_up_time = atom->sched_out_time;
903 }
904
905 list_add_tail(&atom->list, &atoms->work_list);
906 return 0;
907}
908
909static void
910add_runtime_event(struct work_atoms *atoms, u64 delta,
911 u64 timestamp __maybe_unused)
912{
913 struct work_atom *atom;
914
915 BUG_ON(list_empty(&atoms->work_list));
916
917 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
918
919 atom->runtime += delta;
920 atoms->total_runtime += delta;
921}
922
923static void
924add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
925{
926 struct work_atom *atom;
927 u64 delta;
928
929 if (list_empty(&atoms->work_list))
930 return;
931
932 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
933
934 if (atom->state != THREAD_WAIT_CPU)
935 return;
936
937 if (timestamp < atom->wake_up_time) {
938 atom->state = THREAD_IGNORE;
939 return;
940 }
941
942 atom->state = THREAD_SCHED_IN;
943 atom->sched_in_time = timestamp;
944
945 delta = atom->sched_in_time - atom->wake_up_time;
946 atoms->total_lat += delta;
947 if (delta > atoms->max_lat) {
948 atoms->max_lat = delta;
949 atoms->max_lat_at = timestamp;
950 }
951 atoms->nb_atoms++;
952}
953
954static int latency_switch_event(struct perf_sched *sched,
955 struct perf_evsel *evsel,
956 struct perf_sample *sample,
957 struct machine *machine)
958{
959 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
960 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
961 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
962 struct work_atoms *out_events, *in_events;
963 struct thread *sched_out, *sched_in;
964 u64 timestamp0, timestamp = sample->time;
965 int cpu = sample->cpu, err = -1;
966 s64 delta;
967
968 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
969
970 timestamp0 = sched->cpu_last_switched[cpu];
971 sched->cpu_last_switched[cpu] = timestamp;
972 if (timestamp0)
973 delta = timestamp - timestamp0;
974 else
975 delta = 0;
976
977 if (delta < 0) {
978 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
979 return -1;
980 }
981
982 sched_out = machine__findnew_thread(machine, -1, prev_pid);
983 sched_in = machine__findnew_thread(machine, -1, next_pid);
984 if (sched_out == NULL || sched_in == NULL)
985 goto out_put;
986
987 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
988 if (!out_events) {
989 if (thread_atoms_insert(sched, sched_out))
990 goto out_put;
991 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
992 if (!out_events) {
993 pr_err("out-event: Internal tree error");
994 goto out_put;
995 }
996 }
997 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
998 return -1;
999
1000 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1001 if (!in_events) {
1002 if (thread_atoms_insert(sched, sched_in))
1003 goto out_put;
1004 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1005 if (!in_events) {
1006 pr_err("in-event: Internal tree error");
1007 goto out_put;
1008 }
1009 /*
1010 * Take came in we have not heard about yet,
1011 * add in an initial atom in runnable state:
1012 */
1013 if (add_sched_out_event(in_events, 'R', timestamp))
1014 goto out_put;
1015 }
1016 add_sched_in_event(in_events, timestamp);
1017 err = 0;
1018out_put:
1019 thread__put(sched_out);
1020 thread__put(sched_in);
1021 return err;
1022}
1023
1024static int latency_runtime_event(struct perf_sched *sched,
1025 struct perf_evsel *evsel,
1026 struct perf_sample *sample,
1027 struct machine *machine)
1028{
1029 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1030 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
1031 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1032 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1033 u64 timestamp = sample->time;
1034 int cpu = sample->cpu, err = -1;
1035
1036 if (thread == NULL)
1037 return -1;
1038
1039 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1040 if (!atoms) {
1041 if (thread_atoms_insert(sched, thread))
1042 goto out_put;
1043 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1044 if (!atoms) {
1045 pr_err("in-event: Internal tree error");
1046 goto out_put;
1047 }
1048 if (add_sched_out_event(atoms, 'R', timestamp))
1049 goto out_put;
1050 }
1051
1052 add_runtime_event(atoms, runtime, timestamp);
1053 err = 0;
1054out_put:
1055 thread__put(thread);
1056 return err;
1057}
1058
1059static int latency_wakeup_event(struct perf_sched *sched,
1060 struct perf_evsel *evsel,
1061 struct perf_sample *sample,
1062 struct machine *machine)
1063{
1064 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1065 struct work_atoms *atoms;
1066 struct work_atom *atom;
1067 struct thread *wakee;
1068 u64 timestamp = sample->time;
1069 int err = -1;
1070
1071 wakee = machine__findnew_thread(machine, -1, pid);
1072 if (wakee == NULL)
1073 return -1;
1074 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1075 if (!atoms) {
1076 if (thread_atoms_insert(sched, wakee))
1077 goto out_put;
1078 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1079 if (!atoms) {
1080 pr_err("wakeup-event: Internal tree error");
1081 goto out_put;
1082 }
1083 if (add_sched_out_event(atoms, 'S', timestamp))
1084 goto out_put;
1085 }
1086
1087 BUG_ON(list_empty(&atoms->work_list));
1088
1089 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1090
1091 /*
1092 * As we do not guarantee the wakeup event happens when
1093 * task is out of run queue, also may happen when task is
1094 * on run queue and wakeup only change ->state to TASK_RUNNING,
1095 * then we should not set the ->wake_up_time when wake up a
1096 * task which is on run queue.
1097 *
1098 * You WILL be missing events if you've recorded only
1099 * one CPU, or are only looking at only one, so don't
1100 * skip in this case.
1101 */
1102 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1103 goto out_ok;
1104
1105 sched->nr_timestamps++;
1106 if (atom->sched_out_time > timestamp) {
1107 sched->nr_unordered_timestamps++;
1108 goto out_ok;
1109 }
1110
1111 atom->state = THREAD_WAIT_CPU;
1112 atom->wake_up_time = timestamp;
1113out_ok:
1114 err = 0;
1115out_put:
1116 thread__put(wakee);
1117 return err;
1118}
1119
1120static int latency_migrate_task_event(struct perf_sched *sched,
1121 struct perf_evsel *evsel,
1122 struct perf_sample *sample,
1123 struct machine *machine)
1124{
1125 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1126 u64 timestamp = sample->time;
1127 struct work_atoms *atoms;
1128 struct work_atom *atom;
1129 struct thread *migrant;
1130 int err = -1;
1131
1132 /*
1133 * Only need to worry about migration when profiling one CPU.
1134 */
1135 if (sched->profile_cpu == -1)
1136 return 0;
1137
1138 migrant = machine__findnew_thread(machine, -1, pid);
1139 if (migrant == NULL)
1140 return -1;
1141 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1142 if (!atoms) {
1143 if (thread_atoms_insert(sched, migrant))
1144 goto out_put;
1145 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1146 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1147 if (!atoms) {
1148 pr_err("migration-event: Internal tree error");
1149 goto out_put;
1150 }
1151 if (add_sched_out_event(atoms, 'R', timestamp))
1152 goto out_put;
1153 }
1154
1155 BUG_ON(list_empty(&atoms->work_list));
1156
1157 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1158 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1159
1160 sched->nr_timestamps++;
1161
1162 if (atom->sched_out_time > timestamp)
1163 sched->nr_unordered_timestamps++;
1164 err = 0;
1165out_put:
1166 thread__put(migrant);
1167 return err;
1168}
1169
1170static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1171{
1172 int i;
1173 int ret;
1174 u64 avg;
1175
1176 if (!work_list->nb_atoms)
1177 return;
1178 /*
1179 * Ignore idle threads:
1180 */
1181 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1182 return;
1183
1184 sched->all_runtime += work_list->total_runtime;
1185 sched->all_count += work_list->nb_atoms;
1186
1187 if (work_list->num_merged > 1)
1188 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1189 else
1190 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1191
1192 for (i = 0; i < 24 - ret; i++)
1193 printf(" ");
1194
1195 avg = work_list->total_lat / work_list->nb_atoms;
1196
1197 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1198 (double)work_list->total_runtime / 1e6,
1199 work_list->nb_atoms, (double)avg / 1e6,
1200 (double)work_list->max_lat / 1e6,
1201 (double)work_list->max_lat_at / 1e9);
1202}
1203
1204static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1205{
1206 if (l->thread == r->thread)
1207 return 0;
1208 if (l->thread->tid < r->thread->tid)
1209 return -1;
1210 if (l->thread->tid > r->thread->tid)
1211 return 1;
1212 return (int)(l->thread - r->thread);
1213}
1214
1215static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1216{
1217 u64 avgl, avgr;
1218
1219 if (!l->nb_atoms)
1220 return -1;
1221
1222 if (!r->nb_atoms)
1223 return 1;
1224
1225 avgl = l->total_lat / l->nb_atoms;
1226 avgr = r->total_lat / r->nb_atoms;
1227
1228 if (avgl < avgr)
1229 return -1;
1230 if (avgl > avgr)
1231 return 1;
1232
1233 return 0;
1234}
1235
1236static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1237{
1238 if (l->max_lat < r->max_lat)
1239 return -1;
1240 if (l->max_lat > r->max_lat)
1241 return 1;
1242
1243 return 0;
1244}
1245
1246static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1247{
1248 if (l->nb_atoms < r->nb_atoms)
1249 return -1;
1250 if (l->nb_atoms > r->nb_atoms)
1251 return 1;
1252
1253 return 0;
1254}
1255
1256static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1257{
1258 if (l->total_runtime < r->total_runtime)
1259 return -1;
1260 if (l->total_runtime > r->total_runtime)
1261 return 1;
1262
1263 return 0;
1264}
1265
1266static int sort_dimension__add(const char *tok, struct list_head *list)
1267{
1268 size_t i;
1269 static struct sort_dimension avg_sort_dimension = {
1270 .name = "avg",
1271 .cmp = avg_cmp,
1272 };
1273 static struct sort_dimension max_sort_dimension = {
1274 .name = "max",
1275 .cmp = max_cmp,
1276 };
1277 static struct sort_dimension pid_sort_dimension = {
1278 .name = "pid",
1279 .cmp = pid_cmp,
1280 };
1281 static struct sort_dimension runtime_sort_dimension = {
1282 .name = "runtime",
1283 .cmp = runtime_cmp,
1284 };
1285 static struct sort_dimension switch_sort_dimension = {
1286 .name = "switch",
1287 .cmp = switch_cmp,
1288 };
1289 struct sort_dimension *available_sorts[] = {
1290 &pid_sort_dimension,
1291 &avg_sort_dimension,
1292 &max_sort_dimension,
1293 &switch_sort_dimension,
1294 &runtime_sort_dimension,
1295 };
1296
1297 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1298 if (!strcmp(available_sorts[i]->name, tok)) {
1299 list_add_tail(&available_sorts[i]->list, list);
1300
1301 return 0;
1302 }
1303 }
1304
1305 return -1;
1306}
1307
1308static void perf_sched__sort_lat(struct perf_sched *sched)
1309{
1310 struct rb_node *node;
1311 struct rb_root *root = &sched->atom_root;
1312again:
1313 for (;;) {
1314 struct work_atoms *data;
1315 node = rb_first(root);
1316 if (!node)
1317 break;
1318
1319 rb_erase(node, root);
1320 data = rb_entry(node, struct work_atoms, node);
1321 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1322 }
1323 if (root == &sched->atom_root) {
1324 root = &sched->merged_atom_root;
1325 goto again;
1326 }
1327}
1328
1329static int process_sched_wakeup_event(struct perf_tool *tool,
1330 struct perf_evsel *evsel,
1331 struct perf_sample *sample,
1332 struct machine *machine)
1333{
1334 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1335
1336 if (sched->tp_handler->wakeup_event)
1337 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1338
1339 return 0;
1340}
1341
1342static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1343 struct perf_sample *sample, struct machine *machine)
1344{
1345 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1346 struct thread *sched_in;
1347 int new_shortname;
1348 u64 timestamp0, timestamp = sample->time;
1349 s64 delta;
1350 int cpu, this_cpu = sample->cpu;
1351
1352 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1353
1354 if (this_cpu > sched->max_cpu)
1355 sched->max_cpu = this_cpu;
1356
1357 timestamp0 = sched->cpu_last_switched[this_cpu];
1358 sched->cpu_last_switched[this_cpu] = timestamp;
1359 if (timestamp0)
1360 delta = timestamp - timestamp0;
1361 else
1362 delta = 0;
1363
1364 if (delta < 0) {
1365 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1366 return -1;
1367 }
1368
1369 sched_in = machine__findnew_thread(machine, -1, next_pid);
1370 if (sched_in == NULL)
1371 return -1;
1372
1373 sched->curr_thread[this_cpu] = thread__get(sched_in);
1374
1375 printf(" ");
1376
1377 new_shortname = 0;
1378 if (!sched_in->shortname[0]) {
1379 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1380 /*
1381 * Don't allocate a letter-number for swapper:0
1382 * as a shortname. Instead, we use '.' for it.
1383 */
1384 sched_in->shortname[0] = '.';
1385 sched_in->shortname[1] = ' ';
1386 } else {
1387 sched_in->shortname[0] = sched->next_shortname1;
1388 sched_in->shortname[1] = sched->next_shortname2;
1389
1390 if (sched->next_shortname1 < 'Z') {
1391 sched->next_shortname1++;
1392 } else {
1393 sched->next_shortname1 = 'A';
1394 if (sched->next_shortname2 < '9')
1395 sched->next_shortname2++;
1396 else
1397 sched->next_shortname2 = '0';
1398 }
1399 }
1400 new_shortname = 1;
1401 }
1402
1403 for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1404 if (cpu != this_cpu)
1405 printf(" ");
1406 else
1407 printf("*");
1408
1409 if (sched->curr_thread[cpu])
1410 printf("%2s ", sched->curr_thread[cpu]->shortname);
1411 else
1412 printf(" ");
1413 }
1414
1415 printf(" %12.6f secs ", (double)timestamp/1e9);
1416 if (new_shortname) {
1417 printf("%s => %s:%d\n",
1418 sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1419 } else {
1420 printf("\n");
1421 }
1422
1423 thread__put(sched_in);
1424
1425 return 0;
1426}
1427
1428static int process_sched_switch_event(struct perf_tool *tool,
1429 struct perf_evsel *evsel,
1430 struct perf_sample *sample,
1431 struct machine *machine)
1432{
1433 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1434 int this_cpu = sample->cpu, err = 0;
1435 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1436 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1437
1438 if (sched->curr_pid[this_cpu] != (u32)-1) {
1439 /*
1440 * Are we trying to switch away a PID that is
1441 * not current?
1442 */
1443 if (sched->curr_pid[this_cpu] != prev_pid)
1444 sched->nr_context_switch_bugs++;
1445 }
1446
1447 if (sched->tp_handler->switch_event)
1448 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1449
1450 sched->curr_pid[this_cpu] = next_pid;
1451 return err;
1452}
1453
1454static int process_sched_runtime_event(struct perf_tool *tool,
1455 struct perf_evsel *evsel,
1456 struct perf_sample *sample,
1457 struct machine *machine)
1458{
1459 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1460
1461 if (sched->tp_handler->runtime_event)
1462 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1463
1464 return 0;
1465}
1466
1467static int perf_sched__process_fork_event(struct perf_tool *tool,
1468 union perf_event *event,
1469 struct perf_sample *sample,
1470 struct machine *machine)
1471{
1472 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1473
1474 /* run the fork event through the perf machineruy */
1475 perf_event__process_fork(tool, event, sample, machine);
1476
1477 /* and then run additional processing needed for this command */
1478 if (sched->tp_handler->fork_event)
1479 return sched->tp_handler->fork_event(sched, event, machine);
1480
1481 return 0;
1482}
1483
1484static int process_sched_migrate_task_event(struct perf_tool *tool,
1485 struct perf_evsel *evsel,
1486 struct perf_sample *sample,
1487 struct machine *machine)
1488{
1489 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1490
1491 if (sched->tp_handler->migrate_task_event)
1492 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1493
1494 return 0;
1495}
1496
1497typedef int (*tracepoint_handler)(struct perf_tool *tool,
1498 struct perf_evsel *evsel,
1499 struct perf_sample *sample,
1500 struct machine *machine);
1501
1502static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1503 union perf_event *event __maybe_unused,
1504 struct perf_sample *sample,
1505 struct perf_evsel *evsel,
1506 struct machine *machine)
1507{
1508 int err = 0;
1509
1510 if (evsel->handler != NULL) {
1511 tracepoint_handler f = evsel->handler;
1512 err = f(tool, evsel, sample, machine);
1513 }
1514
1515 return err;
1516}
1517
1518static int perf_sched__read_events(struct perf_sched *sched)
1519{
1520 const struct perf_evsel_str_handler handlers[] = {
1521 { "sched:sched_switch", process_sched_switch_event, },
1522 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1523 { "sched:sched_wakeup", process_sched_wakeup_event, },
1524 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1525 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1526 };
1527 struct perf_session *session;
1528 struct perf_data_file file = {
1529 .path = input_name,
1530 .mode = PERF_DATA_MODE_READ,
1531 .force = sched->force,
1532 };
1533 int rc = -1;
1534
1535 session = perf_session__new(&file, false, &sched->tool);
1536 if (session == NULL) {
1537 pr_debug("No Memory for session\n");
1538 return -1;
1539 }
1540
1541 symbol__init(&session->header.env);
1542
1543 if (perf_session__set_tracepoints_handlers(session, handlers))
1544 goto out_delete;
1545
1546 if (perf_session__has_traces(session, "record -R")) {
1547 int err = perf_session__process_events(session);
1548 if (err) {
1549 pr_err("Failed to process events, error %d", err);
1550 goto out_delete;
1551 }
1552
1553 sched->nr_events = session->evlist->stats.nr_events[0];
1554 sched->nr_lost_events = session->evlist->stats.total_lost;
1555 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1556 }
1557
1558 rc = 0;
1559out_delete:
1560 perf_session__delete(session);
1561 return rc;
1562}
1563
1564static void print_bad_events(struct perf_sched *sched)
1565{
1566 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1567 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1568 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1569 sched->nr_unordered_timestamps, sched->nr_timestamps);
1570 }
1571 if (sched->nr_lost_events && sched->nr_events) {
1572 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1573 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1574 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1575 }
1576 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1577 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1578 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1579 sched->nr_context_switch_bugs, sched->nr_timestamps);
1580 if (sched->nr_lost_events)
1581 printf(" (due to lost events?)");
1582 printf("\n");
1583 }
1584}
1585
1586static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
1587{
1588 struct rb_node **new = &(root->rb_node), *parent = NULL;
1589 struct work_atoms *this;
1590 const char *comm = thread__comm_str(data->thread), *this_comm;
1591
1592 while (*new) {
1593 int cmp;
1594
1595 this = container_of(*new, struct work_atoms, node);
1596 parent = *new;
1597
1598 this_comm = thread__comm_str(this->thread);
1599 cmp = strcmp(comm, this_comm);
1600 if (cmp > 0) {
1601 new = &((*new)->rb_left);
1602 } else if (cmp < 0) {
1603 new = &((*new)->rb_right);
1604 } else {
1605 this->num_merged++;
1606 this->total_runtime += data->total_runtime;
1607 this->nb_atoms += data->nb_atoms;
1608 this->total_lat += data->total_lat;
1609 list_splice(&data->work_list, &this->work_list);
1610 if (this->max_lat < data->max_lat) {
1611 this->max_lat = data->max_lat;
1612 this->max_lat_at = data->max_lat_at;
1613 }
1614 zfree(&data);
1615 return;
1616 }
1617 }
1618
1619 data->num_merged++;
1620 rb_link_node(&data->node, parent, new);
1621 rb_insert_color(&data->node, root);
1622}
1623
1624static void perf_sched__merge_lat(struct perf_sched *sched)
1625{
1626 struct work_atoms *data;
1627 struct rb_node *node;
1628
1629 if (sched->skip_merge)
1630 return;
1631
1632 while ((node = rb_first(&sched->atom_root))) {
1633 rb_erase(node, &sched->atom_root);
1634 data = rb_entry(node, struct work_atoms, node);
1635 __merge_work_atoms(&sched->merged_atom_root, data);
1636 }
1637}
1638
1639static int perf_sched__lat(struct perf_sched *sched)
1640{
1641 struct rb_node *next;
1642
1643 setup_pager();
1644
1645 if (perf_sched__read_events(sched))
1646 return -1;
1647
1648 perf_sched__merge_lat(sched);
1649 perf_sched__sort_lat(sched);
1650
1651 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1652 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1653 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1654
1655 next = rb_first(&sched->sorted_atom_root);
1656
1657 while (next) {
1658 struct work_atoms *work_list;
1659
1660 work_list = rb_entry(next, struct work_atoms, node);
1661 output_lat_thread(sched, work_list);
1662 next = rb_next(next);
1663 thread__zput(work_list->thread);
1664 }
1665
1666 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1667 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1668 (double)sched->all_runtime / 1e6, sched->all_count);
1669
1670 printf(" ---------------------------------------------------\n");
1671
1672 print_bad_events(sched);
1673 printf("\n");
1674
1675 return 0;
1676}
1677
1678static int perf_sched__map(struct perf_sched *sched)
1679{
1680 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1681
1682 setup_pager();
1683 if (perf_sched__read_events(sched))
1684 return -1;
1685 print_bad_events(sched);
1686 return 0;
1687}
1688
1689static int perf_sched__replay(struct perf_sched *sched)
1690{
1691 unsigned long i;
1692
1693 calibrate_run_measurement_overhead(sched);
1694 calibrate_sleep_measurement_overhead(sched);
1695
1696 test_calibrations(sched);
1697
1698 if (perf_sched__read_events(sched))
1699 return -1;
1700
1701 printf("nr_run_events: %ld\n", sched->nr_run_events);
1702 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
1703 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
1704
1705 if (sched->targetless_wakeups)
1706 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
1707 if (sched->multitarget_wakeups)
1708 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1709 if (sched->nr_run_events_optimized)
1710 printf("run atoms optimized: %ld\n",
1711 sched->nr_run_events_optimized);
1712
1713 print_task_traces(sched);
1714 add_cross_task_wakeups(sched);
1715
1716 create_tasks(sched);
1717 printf("------------------------------------------------------------\n");
1718 for (i = 0; i < sched->replay_repeat; i++)
1719 run_one_test(sched);
1720
1721 return 0;
1722}
1723
1724static void setup_sorting(struct perf_sched *sched, const struct option *options,
1725 const char * const usage_msg[])
1726{
1727 char *tmp, *tok, *str = strdup(sched->sort_order);
1728
1729 for (tok = strtok_r(str, ", ", &tmp);
1730 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1731 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1732 usage_with_options_msg(usage_msg, options,
1733 "Unknown --sort key: `%s'", tok);
1734 }
1735 }
1736
1737 free(str);
1738
1739 sort_dimension__add("pid", &sched->cmp_pid);
1740}
1741
1742static int __cmd_record(int argc, const char **argv)
1743{
1744 unsigned int rec_argc, i, j;
1745 const char **rec_argv;
1746 const char * const record_args[] = {
1747 "record",
1748 "-a",
1749 "-R",
1750 "-m", "1024",
1751 "-c", "1",
1752 "-e", "sched:sched_switch",
1753 "-e", "sched:sched_stat_wait",
1754 "-e", "sched:sched_stat_sleep",
1755 "-e", "sched:sched_stat_iowait",
1756 "-e", "sched:sched_stat_runtime",
1757 "-e", "sched:sched_process_fork",
1758 "-e", "sched:sched_wakeup",
1759 "-e", "sched:sched_wakeup_new",
1760 "-e", "sched:sched_migrate_task",
1761 };
1762
1763 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1764 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1765
1766 if (rec_argv == NULL)
1767 return -ENOMEM;
1768
1769 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1770 rec_argv[i] = strdup(record_args[i]);
1771
1772 for (j = 1; j < (unsigned int)argc; j++, i++)
1773 rec_argv[i] = argv[j];
1774
1775 BUG_ON(i != rec_argc);
1776
1777 return cmd_record(i, rec_argv, NULL);
1778}
1779
1780int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1781{
1782 const char default_sort_order[] = "avg, max, switch, runtime";
1783 struct perf_sched sched = {
1784 .tool = {
1785 .sample = perf_sched__process_tracepoint_sample,
1786 .comm = perf_event__process_comm,
1787 .lost = perf_event__process_lost,
1788 .fork = perf_sched__process_fork_event,
1789 .ordered_events = true,
1790 },
1791 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
1792 .sort_list = LIST_HEAD_INIT(sched.sort_list),
1793 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
1794 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1795 .sort_order = default_sort_order,
1796 .replay_repeat = 10,
1797 .profile_cpu = -1,
1798 .next_shortname1 = 'A',
1799 .next_shortname2 = '0',
1800 .skip_merge = 0,
1801 };
1802 const struct option latency_options[] = {
1803 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1804 "sort by key(s): runtime, switch, avg, max"),
1805 OPT_INCR('v', "verbose", &verbose,
1806 "be more verbose (show symbol address, etc)"),
1807 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1808 "CPU to profile on"),
1809 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1810 "dump raw trace in ASCII"),
1811 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
1812 "latency stats per pid instead of per comm"),
1813 OPT_END()
1814 };
1815 const struct option replay_options[] = {
1816 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1817 "repeat the workload replay N times (-1: infinite)"),
1818 OPT_INCR('v', "verbose", &verbose,
1819 "be more verbose (show symbol address, etc)"),
1820 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1821 "dump raw trace in ASCII"),
1822 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
1823 OPT_END()
1824 };
1825 const struct option sched_options[] = {
1826 OPT_STRING('i', "input", &input_name, "file",
1827 "input file name"),
1828 OPT_INCR('v', "verbose", &verbose,
1829 "be more verbose (show symbol address, etc)"),
1830 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1831 "dump raw trace in ASCII"),
1832 OPT_END()
1833 };
1834 const char * const latency_usage[] = {
1835 "perf sched latency [<options>]",
1836 NULL
1837 };
1838 const char * const replay_usage[] = {
1839 "perf sched replay [<options>]",
1840 NULL
1841 };
1842 const char *const sched_subcommands[] = { "record", "latency", "map",
1843 "replay", "script", NULL };
1844 const char *sched_usage[] = {
1845 NULL,
1846 NULL
1847 };
1848 struct trace_sched_handler lat_ops = {
1849 .wakeup_event = latency_wakeup_event,
1850 .switch_event = latency_switch_event,
1851 .runtime_event = latency_runtime_event,
1852 .migrate_task_event = latency_migrate_task_event,
1853 };
1854 struct trace_sched_handler map_ops = {
1855 .switch_event = map_switch_event,
1856 };
1857 struct trace_sched_handler replay_ops = {
1858 .wakeup_event = replay_wakeup_event,
1859 .switch_event = replay_switch_event,
1860 .fork_event = replay_fork_event,
1861 };
1862 unsigned int i;
1863
1864 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
1865 sched.curr_pid[i] = -1;
1866
1867 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
1868 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1869 if (!argc)
1870 usage_with_options(sched_usage, sched_options);
1871
1872 /*
1873 * Aliased to 'perf script' for now:
1874 */
1875 if (!strcmp(argv[0], "script"))
1876 return cmd_script(argc, argv, prefix);
1877
1878 if (!strncmp(argv[0], "rec", 3)) {
1879 return __cmd_record(argc, argv);
1880 } else if (!strncmp(argv[0], "lat", 3)) {
1881 sched.tp_handler = &lat_ops;
1882 if (argc > 1) {
1883 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1884 if (argc)
1885 usage_with_options(latency_usage, latency_options);
1886 }
1887 setup_sorting(&sched, latency_options, latency_usage);
1888 return perf_sched__lat(&sched);
1889 } else if (!strcmp(argv[0], "map")) {
1890 sched.tp_handler = &map_ops;
1891 setup_sorting(&sched, latency_options, latency_usage);
1892 return perf_sched__map(&sched);
1893 } else if (!strncmp(argv[0], "rep", 3)) {
1894 sched.tp_handler = &replay_ops;
1895 if (argc) {
1896 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1897 if (argc)
1898 usage_with_options(replay_usage, replay_options);
1899 }
1900 return perf_sched__replay(&sched);
1901 } else {
1902 usage_with_options(sched_usage, sched_options);
1903 }
1904
1905 return 0;
1906}