Linux Audio

Check our new training course

Loading...
v3.1
  1/* flow.c: Generic flow cache.
  2 *
  3 * Copyright (C) 2003 Alexey N. Kuznetsov (kuznet@ms2.inr.ac.ru)
  4 * Copyright (C) 2003 David S. Miller (davem@redhat.com)
  5 */
  6
  7#include <linux/kernel.h>
  8#include <linux/module.h>
  9#include <linux/list.h>
 10#include <linux/jhash.h>
 11#include <linux/interrupt.h>
 12#include <linux/mm.h>
 13#include <linux/random.h>
 14#include <linux/init.h>
 15#include <linux/slab.h>
 16#include <linux/smp.h>
 17#include <linux/completion.h>
 18#include <linux/percpu.h>
 19#include <linux/bitops.h>
 20#include <linux/notifier.h>
 21#include <linux/cpu.h>
 22#include <linux/cpumask.h>
 23#include <linux/mutex.h>
 24#include <net/flow.h>
 25#include <linux/atomic.h>
 26#include <linux/security.h>
 
 27
 28struct flow_cache_entry {
 29	union {
 30		struct hlist_node	hlist;
 31		struct list_head	gc_list;
 32	} u;
 33	struct net			*net;
 34	u16				family;
 35	u8				dir;
 36	u32				genid;
 37	struct flowi			key;
 38	struct flow_cache_object	*object;
 39};
 40
 41struct flow_cache_percpu {
 42	struct hlist_head		*hash_table;
 43	int				hash_count;
 44	u32				hash_rnd;
 45	int				hash_rnd_recalc;
 46	struct tasklet_struct		flush_tasklet;
 47};
 48
 49struct flow_flush_info {
 50	struct flow_cache		*cache;
 51	atomic_t			cpuleft;
 52	struct completion		completion;
 53};
 54
 55struct flow_cache {
 56	u32				hash_shift;
 57	struct flow_cache_percpu __percpu *percpu;
 58	struct notifier_block		hotcpu_notifier;
 59	int				low_watermark;
 60	int				high_watermark;
 61	struct timer_list		rnd_timer;
 62};
 63
 64atomic_t flow_cache_genid = ATOMIC_INIT(0);
 65EXPORT_SYMBOL(flow_cache_genid);
 66static struct flow_cache flow_cache_global;
 67static struct kmem_cache *flow_cachep __read_mostly;
 68
 69static DEFINE_SPINLOCK(flow_cache_gc_lock);
 70static LIST_HEAD(flow_cache_gc_list);
 71
 72#define flow_cache_hash_size(cache)	(1 << (cache)->hash_shift)
 73#define FLOW_HASH_RND_PERIOD		(10 * 60 * HZ)
 74
 75static void flow_cache_new_hashrnd(unsigned long arg)
 76{
 77	struct flow_cache *fc = (void *) arg;
 78	int i;
 79
 80	for_each_possible_cpu(i)
 81		per_cpu_ptr(fc->percpu, i)->hash_rnd_recalc = 1;
 82
 83	fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
 84	add_timer(&fc->rnd_timer);
 85}
 86
 87static int flow_entry_valid(struct flow_cache_entry *fle)
 
 88{
 89	if (atomic_read(&flow_cache_genid) != fle->genid)
 90		return 0;
 91	if (fle->object && !fle->object->ops->check(fle->object))
 92		return 0;
 93	return 1;
 94}
 95
 96static void flow_entry_kill(struct flow_cache_entry *fle)
 
 97{
 98	if (fle->object)
 99		fle->object->ops->delete(fle->object);
100	kmem_cache_free(flow_cachep, fle);
101}
102
103static void flow_cache_gc_task(struct work_struct *work)
104{
105	struct list_head gc_list;
106	struct flow_cache_entry *fce, *n;
 
 
107
108	INIT_LIST_HEAD(&gc_list);
109	spin_lock_bh(&flow_cache_gc_lock);
110	list_splice_tail_init(&flow_cache_gc_list, &gc_list);
111	spin_unlock_bh(&flow_cache_gc_lock);
112
113	list_for_each_entry_safe(fce, n, &gc_list, u.gc_list)
114		flow_entry_kill(fce);
 
 
 
115}
116static DECLARE_WORK(flow_cache_gc_work, flow_cache_gc_task);
117
118static void flow_cache_queue_garbage(struct flow_cache_percpu *fcp,
119				     int deleted, struct list_head *gc_list)
 
120{
121	if (deleted) {
 
122		fcp->hash_count -= deleted;
123		spin_lock_bh(&flow_cache_gc_lock);
124		list_splice_tail(gc_list, &flow_cache_gc_list);
125		spin_unlock_bh(&flow_cache_gc_lock);
126		schedule_work(&flow_cache_gc_work);
127	}
128}
129
130static void __flow_cache_shrink(struct flow_cache *fc,
131				struct flow_cache_percpu *fcp,
132				int shrink_to)
133{
134	struct flow_cache_entry *fle;
135	struct hlist_node *entry, *tmp;
136	LIST_HEAD(gc_list);
137	int i, deleted = 0;
 
 
138
139	for (i = 0; i < flow_cache_hash_size(fc); i++) {
140		int saved = 0;
141
142		hlist_for_each_entry_safe(fle, entry, tmp,
143					  &fcp->hash_table[i], u.hlist) {
144			if (saved < shrink_to &&
145			    flow_entry_valid(fle)) {
146				saved++;
147			} else {
148				deleted++;
149				hlist_del(&fle->u.hlist);
150				list_add_tail(&fle->u.gc_list, &gc_list);
151			}
152		}
153	}
154
155	flow_cache_queue_garbage(fcp, deleted, &gc_list);
156}
157
158static void flow_cache_shrink(struct flow_cache *fc,
159			      struct flow_cache_percpu *fcp)
160{
161	int shrink_to = fc->low_watermark / flow_cache_hash_size(fc);
162
163	__flow_cache_shrink(fc, fcp, shrink_to);
164}
165
166static void flow_new_hash_rnd(struct flow_cache *fc,
167			      struct flow_cache_percpu *fcp)
168{
169	get_random_bytes(&fcp->hash_rnd, sizeof(u32));
170	fcp->hash_rnd_recalc = 0;
171	__flow_cache_shrink(fc, fcp, 0);
172}
173
174static u32 flow_hash_code(struct flow_cache *fc,
175			  struct flow_cache_percpu *fcp,
176			  const struct flowi *key,
177			  size_t keysize)
178{
179	const u32 *k = (const u32 *) key;
180	const u32 length = keysize * sizeof(flow_compare_t) / sizeof(u32);
181
182	return jhash2(k, length, fcp->hash_rnd)
183		& (flow_cache_hash_size(fc) - 1);
184}
185
186/* I hear what you're saying, use memcmp.  But memcmp cannot make
187 * important assumptions that we can here, such as alignment.
188 */
189static int flow_key_compare(const struct flowi *key1, const struct flowi *key2,
190			    size_t keysize)
191{
192	const flow_compare_t *k1, *k1_lim, *k2;
193
194	k1 = (const flow_compare_t *) key1;
195	k1_lim = k1 + keysize;
196
197	k2 = (const flow_compare_t *) key2;
198
199	do {
200		if (*k1++ != *k2++)
201			return 1;
202	} while (k1 < k1_lim);
203
204	return 0;
205}
206
207struct flow_cache_object *
208flow_cache_lookup(struct net *net, const struct flowi *key, u16 family, u8 dir,
209		  flow_resolve_t resolver, void *ctx)
210{
211	struct flow_cache *fc = &flow_cache_global;
212	struct flow_cache_percpu *fcp;
213	struct flow_cache_entry *fle, *tfle;
214	struct hlist_node *entry;
215	struct flow_cache_object *flo;
216	size_t keysize;
217	unsigned int hash;
218
219	local_bh_disable();
220	fcp = this_cpu_ptr(fc->percpu);
221
222	fle = NULL;
223	flo = NULL;
224
225	keysize = flow_key_size(family);
226	if (!keysize)
227		goto nocache;
228
229	/* Packet really early in init?  Making flow_cache_init a
230	 * pre-smp initcall would solve this.  --RR */
231	if (!fcp->hash_table)
232		goto nocache;
233
234	if (fcp->hash_rnd_recalc)
235		flow_new_hash_rnd(fc, fcp);
236
237	hash = flow_hash_code(fc, fcp, key, keysize);
238	hlist_for_each_entry(tfle, entry, &fcp->hash_table[hash], u.hlist) {
239		if (tfle->net == net &&
240		    tfle->family == family &&
241		    tfle->dir == dir &&
242		    flow_key_compare(key, &tfle->key, keysize) == 0) {
243			fle = tfle;
244			break;
245		}
246	}
247
248	if (unlikely(!fle)) {
249		if (fcp->hash_count > fc->high_watermark)
250			flow_cache_shrink(fc, fcp);
251
 
 
 
 
 
 
 
252		fle = kmem_cache_alloc(flow_cachep, GFP_ATOMIC);
253		if (fle) {
254			fle->net = net;
255			fle->family = family;
256			fle->dir = dir;
257			memcpy(&fle->key, key, keysize * sizeof(flow_compare_t));
258			fle->object = NULL;
259			hlist_add_head(&fle->u.hlist, &fcp->hash_table[hash]);
260			fcp->hash_count++;
261		}
262	} else if (likely(fle->genid == atomic_read(&flow_cache_genid))) {
263		flo = fle->object;
264		if (!flo)
265			goto ret_object;
266		flo = flo->ops->get(flo);
267		if (flo)
268			goto ret_object;
269	} else if (fle->object) {
270	        flo = fle->object;
271	        flo->ops->delete(flo);
272	        fle->object = NULL;
273	}
274
275nocache:
276	flo = NULL;
277	if (fle) {
278		flo = fle->object;
279		fle->object = NULL;
280	}
281	flo = resolver(net, key, family, dir, flo, ctx);
282	if (fle) {
283		fle->genid = atomic_read(&flow_cache_genid);
284		if (!IS_ERR(flo))
285			fle->object = flo;
286		else
287			fle->genid--;
288	} else {
289		if (flo && !IS_ERR(flo))
290			flo->ops->delete(flo);
291	}
292ret_object:
293	local_bh_enable();
294	return flo;
295}
296EXPORT_SYMBOL(flow_cache_lookup);
297
298static void flow_cache_flush_tasklet(unsigned long data)
299{
300	struct flow_flush_info *info = (void *)data;
301	struct flow_cache *fc = info->cache;
302	struct flow_cache_percpu *fcp;
303	struct flow_cache_entry *fle;
304	struct hlist_node *entry, *tmp;
305	LIST_HEAD(gc_list);
306	int i, deleted = 0;
 
 
307
308	fcp = this_cpu_ptr(fc->percpu);
309	for (i = 0; i < flow_cache_hash_size(fc); i++) {
310		hlist_for_each_entry_safe(fle, entry, tmp,
311					  &fcp->hash_table[i], u.hlist) {
312			if (flow_entry_valid(fle))
313				continue;
314
315			deleted++;
316			hlist_del(&fle->u.hlist);
317			list_add_tail(&fle->u.gc_list, &gc_list);
318		}
319	}
320
321	flow_cache_queue_garbage(fcp, deleted, &gc_list);
322
323	if (atomic_dec_and_test(&info->cpuleft))
324		complete(&info->completion);
325}
326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327static void flow_cache_flush_per_cpu(void *data)
328{
329	struct flow_flush_info *info = data;
330	int cpu;
331	struct tasklet_struct *tasklet;
332
333	cpu = smp_processor_id();
334	tasklet = &per_cpu_ptr(info->cache->percpu, cpu)->flush_tasklet;
335	tasklet->data = (unsigned long)info;
336	tasklet_schedule(tasklet);
337}
338
339void flow_cache_flush(void)
340{
341	struct flow_flush_info info;
342	static DEFINE_MUTEX(flow_flush_sem);
 
 
 
 
 
 
343
344	/* Don't want cpus going down or up during this. */
345	get_online_cpus();
346	mutex_lock(&flow_flush_sem);
347	info.cache = &flow_cache_global;
348	atomic_set(&info.cpuleft, num_online_cpus());
 
 
 
 
 
 
349	init_completion(&info.completion);
350
351	local_bh_disable();
352	smp_call_function(flow_cache_flush_per_cpu, &info, 0);
353	flow_cache_flush_tasklet((unsigned long)&info);
 
 
354	local_bh_enable();
355
356	wait_for_completion(&info.completion);
357	mutex_unlock(&flow_flush_sem);
 
 
358	put_online_cpus();
 
359}
360
361static int __cpuinit flow_cache_cpu_prepare(struct flow_cache *fc, int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
362{
363	struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu);
364	size_t sz = sizeof(struct hlist_head) * flow_cache_hash_size(fc);
365
366	if (!fcp->hash_table) {
367		fcp->hash_table = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
368		if (!fcp->hash_table) {
369			pr_err("NET: failed to allocate flow cache sz %zu\n", sz);
370			return -ENOMEM;
371		}
372		fcp->hash_rnd_recalc = 1;
373		fcp->hash_count = 0;
374		tasklet_init(&fcp->flush_tasklet, flow_cache_flush_tasklet, 0);
375	}
376	return 0;
377}
378
379static int __cpuinit flow_cache_cpu(struct notifier_block *nfb,
380			  unsigned long action,
381			  void *hcpu)
382{
383	struct flow_cache *fc = container_of(nfb, struct flow_cache, hotcpu_notifier);
 
384	int res, cpu = (unsigned long) hcpu;
385	struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu);
386
387	switch (action) {
388	case CPU_UP_PREPARE:
389	case CPU_UP_PREPARE_FROZEN:
390		res = flow_cache_cpu_prepare(fc, cpu);
391		if (res)
392			return notifier_from_errno(res);
393		break;
394	case CPU_DEAD:
395	case CPU_DEAD_FROZEN:
396		__flow_cache_shrink(fc, fcp, 0);
397		break;
398	}
399	return NOTIFY_OK;
400}
401
402static int __init flow_cache_init(struct flow_cache *fc)
403{
404	int i;
 
 
 
 
 
 
 
 
 
 
 
 
405
406	fc->hash_shift = 10;
407	fc->low_watermark = 2 * flow_cache_hash_size(fc);
408	fc->high_watermark = 4 * flow_cache_hash_size(fc);
409
410	fc->percpu = alloc_percpu(struct flow_cache_percpu);
411	if (!fc->percpu)
412		return -ENOMEM;
413
 
 
414	for_each_online_cpu(i) {
415		if (flow_cache_cpu_prepare(fc, i))
416			return -ENOMEM;
417	}
418	fc->hotcpu_notifier = (struct notifier_block){
419		.notifier_call = flow_cache_cpu,
420	};
421	register_hotcpu_notifier(&fc->hotcpu_notifier);
 
 
422
423	setup_timer(&fc->rnd_timer, flow_cache_new_hashrnd,
424		    (unsigned long) fc);
425	fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
426	add_timer(&fc->rnd_timer);
427
428	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
429}
 
430
431static int __init flow_cache_init_global(void)
432{
433	flow_cachep = kmem_cache_create("flow_cache",
434					sizeof(struct flow_cache_entry),
435					0, SLAB_PANIC, NULL);
436
437	return flow_cache_init(&flow_cache_global);
438}
439
440module_init(flow_cache_init_global);
 
 
 
 
 
 
 
 
 
v4.6
  1/* flow.c: Generic flow cache.
  2 *
  3 * Copyright (C) 2003 Alexey N. Kuznetsov (kuznet@ms2.inr.ac.ru)
  4 * Copyright (C) 2003 David S. Miller (davem@redhat.com)
  5 */
  6
  7#include <linux/kernel.h>
  8#include <linux/module.h>
  9#include <linux/list.h>
 10#include <linux/jhash.h>
 11#include <linux/interrupt.h>
 12#include <linux/mm.h>
 13#include <linux/random.h>
 14#include <linux/init.h>
 15#include <linux/slab.h>
 16#include <linux/smp.h>
 17#include <linux/completion.h>
 18#include <linux/percpu.h>
 19#include <linux/bitops.h>
 20#include <linux/notifier.h>
 21#include <linux/cpu.h>
 22#include <linux/cpumask.h>
 23#include <linux/mutex.h>
 24#include <net/flow.h>
 25#include <linux/atomic.h>
 26#include <linux/security.h>
 27#include <net/net_namespace.h>
 28
 29struct flow_cache_entry {
 30	union {
 31		struct hlist_node	hlist;
 32		struct list_head	gc_list;
 33	} u;
 34	struct net			*net;
 35	u16				family;
 36	u8				dir;
 37	u32				genid;
 38	struct flowi			key;
 39	struct flow_cache_object	*object;
 40};
 41
 
 
 
 
 
 
 
 
 42struct flow_flush_info {
 43	struct flow_cache		*cache;
 44	atomic_t			cpuleft;
 45	struct completion		completion;
 46};
 47
 
 
 
 
 
 
 
 
 
 
 
 
 48static struct kmem_cache *flow_cachep __read_mostly;
 49
 
 
 
 50#define flow_cache_hash_size(cache)	(1 << (cache)->hash_shift)
 51#define FLOW_HASH_RND_PERIOD		(10 * 60 * HZ)
 52
 53static void flow_cache_new_hashrnd(unsigned long arg)
 54{
 55	struct flow_cache *fc = (void *) arg;
 56	int i;
 57
 58	for_each_possible_cpu(i)
 59		per_cpu_ptr(fc->percpu, i)->hash_rnd_recalc = 1;
 60
 61	fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
 62	add_timer(&fc->rnd_timer);
 63}
 64
 65static int flow_entry_valid(struct flow_cache_entry *fle,
 66				struct netns_xfrm *xfrm)
 67{
 68	if (atomic_read(&xfrm->flow_cache_genid) != fle->genid)
 69		return 0;
 70	if (fle->object && !fle->object->ops->check(fle->object))
 71		return 0;
 72	return 1;
 73}
 74
 75static void flow_entry_kill(struct flow_cache_entry *fle,
 76				struct netns_xfrm *xfrm)
 77{
 78	if (fle->object)
 79		fle->object->ops->delete(fle->object);
 80	kmem_cache_free(flow_cachep, fle);
 81}
 82
 83static void flow_cache_gc_task(struct work_struct *work)
 84{
 85	struct list_head gc_list;
 86	struct flow_cache_entry *fce, *n;
 87	struct netns_xfrm *xfrm = container_of(work, struct netns_xfrm,
 88						flow_cache_gc_work);
 89
 90	INIT_LIST_HEAD(&gc_list);
 91	spin_lock_bh(&xfrm->flow_cache_gc_lock);
 92	list_splice_tail_init(&xfrm->flow_cache_gc_list, &gc_list);
 93	spin_unlock_bh(&xfrm->flow_cache_gc_lock);
 94
 95	list_for_each_entry_safe(fce, n, &gc_list, u.gc_list) {
 96		flow_entry_kill(fce, xfrm);
 97		atomic_dec(&xfrm->flow_cache_gc_count);
 98		WARN_ON(atomic_read(&xfrm->flow_cache_gc_count) < 0);
 99	}
100}
 
101
102static void flow_cache_queue_garbage(struct flow_cache_percpu *fcp,
103				     int deleted, struct list_head *gc_list,
104				     struct netns_xfrm *xfrm)
105{
106	if (deleted) {
107		atomic_add(deleted, &xfrm->flow_cache_gc_count);
108		fcp->hash_count -= deleted;
109		spin_lock_bh(&xfrm->flow_cache_gc_lock);
110		list_splice_tail(gc_list, &xfrm->flow_cache_gc_list);
111		spin_unlock_bh(&xfrm->flow_cache_gc_lock);
112		schedule_work(&xfrm->flow_cache_gc_work);
113	}
114}
115
116static void __flow_cache_shrink(struct flow_cache *fc,
117				struct flow_cache_percpu *fcp,
118				int shrink_to)
119{
120	struct flow_cache_entry *fle;
121	struct hlist_node *tmp;
122	LIST_HEAD(gc_list);
123	int i, deleted = 0;
124	struct netns_xfrm *xfrm = container_of(fc, struct netns_xfrm,
125						flow_cache_global);
126
127	for (i = 0; i < flow_cache_hash_size(fc); i++) {
128		int saved = 0;
129
130		hlist_for_each_entry_safe(fle, tmp,
131					  &fcp->hash_table[i], u.hlist) {
132			if (saved < shrink_to &&
133			    flow_entry_valid(fle, xfrm)) {
134				saved++;
135			} else {
136				deleted++;
137				hlist_del(&fle->u.hlist);
138				list_add_tail(&fle->u.gc_list, &gc_list);
139			}
140		}
141	}
142
143	flow_cache_queue_garbage(fcp, deleted, &gc_list, xfrm);
144}
145
146static void flow_cache_shrink(struct flow_cache *fc,
147			      struct flow_cache_percpu *fcp)
148{
149	int shrink_to = fc->low_watermark / flow_cache_hash_size(fc);
150
151	__flow_cache_shrink(fc, fcp, shrink_to);
152}
153
154static void flow_new_hash_rnd(struct flow_cache *fc,
155			      struct flow_cache_percpu *fcp)
156{
157	get_random_bytes(&fcp->hash_rnd, sizeof(u32));
158	fcp->hash_rnd_recalc = 0;
159	__flow_cache_shrink(fc, fcp, 0);
160}
161
162static u32 flow_hash_code(struct flow_cache *fc,
163			  struct flow_cache_percpu *fcp,
164			  const struct flowi *key,
165			  size_t keysize)
166{
167	const u32 *k = (const u32 *) key;
168	const u32 length = keysize * sizeof(flow_compare_t) / sizeof(u32);
169
170	return jhash2(k, length, fcp->hash_rnd)
171		& (flow_cache_hash_size(fc) - 1);
172}
173
174/* I hear what you're saying, use memcmp.  But memcmp cannot make
175 * important assumptions that we can here, such as alignment.
176 */
177static int flow_key_compare(const struct flowi *key1, const struct flowi *key2,
178			    size_t keysize)
179{
180	const flow_compare_t *k1, *k1_lim, *k2;
181
182	k1 = (const flow_compare_t *) key1;
183	k1_lim = k1 + keysize;
184
185	k2 = (const flow_compare_t *) key2;
186
187	do {
188		if (*k1++ != *k2++)
189			return 1;
190	} while (k1 < k1_lim);
191
192	return 0;
193}
194
195struct flow_cache_object *
196flow_cache_lookup(struct net *net, const struct flowi *key, u16 family, u8 dir,
197		  flow_resolve_t resolver, void *ctx)
198{
199	struct flow_cache *fc = &net->xfrm.flow_cache_global;
200	struct flow_cache_percpu *fcp;
201	struct flow_cache_entry *fle, *tfle;
 
202	struct flow_cache_object *flo;
203	size_t keysize;
204	unsigned int hash;
205
206	local_bh_disable();
207	fcp = this_cpu_ptr(fc->percpu);
208
209	fle = NULL;
210	flo = NULL;
211
212	keysize = flow_key_size(family);
213	if (!keysize)
214		goto nocache;
215
216	/* Packet really early in init?  Making flow_cache_init a
217	 * pre-smp initcall would solve this.  --RR */
218	if (!fcp->hash_table)
219		goto nocache;
220
221	if (fcp->hash_rnd_recalc)
222		flow_new_hash_rnd(fc, fcp);
223
224	hash = flow_hash_code(fc, fcp, key, keysize);
225	hlist_for_each_entry(tfle, &fcp->hash_table[hash], u.hlist) {
226		if (tfle->net == net &&
227		    tfle->family == family &&
228		    tfle->dir == dir &&
229		    flow_key_compare(key, &tfle->key, keysize) == 0) {
230			fle = tfle;
231			break;
232		}
233	}
234
235	if (unlikely(!fle)) {
236		if (fcp->hash_count > fc->high_watermark)
237			flow_cache_shrink(fc, fcp);
238
239		if (fcp->hash_count > 2 * fc->high_watermark ||
240		    atomic_read(&net->xfrm.flow_cache_gc_count) > fc->high_watermark) {
241			atomic_inc(&net->xfrm.flow_cache_genid);
242			flo = ERR_PTR(-ENOBUFS);
243			goto ret_object;
244		}
245
246		fle = kmem_cache_alloc(flow_cachep, GFP_ATOMIC);
247		if (fle) {
248			fle->net = net;
249			fle->family = family;
250			fle->dir = dir;
251			memcpy(&fle->key, key, keysize * sizeof(flow_compare_t));
252			fle->object = NULL;
253			hlist_add_head(&fle->u.hlist, &fcp->hash_table[hash]);
254			fcp->hash_count++;
255		}
256	} else if (likely(fle->genid == atomic_read(&net->xfrm.flow_cache_genid))) {
257		flo = fle->object;
258		if (!flo)
259			goto ret_object;
260		flo = flo->ops->get(flo);
261		if (flo)
262			goto ret_object;
263	} else if (fle->object) {
264	        flo = fle->object;
265	        flo->ops->delete(flo);
266	        fle->object = NULL;
267	}
268
269nocache:
270	flo = NULL;
271	if (fle) {
272		flo = fle->object;
273		fle->object = NULL;
274	}
275	flo = resolver(net, key, family, dir, flo, ctx);
276	if (fle) {
277		fle->genid = atomic_read(&net->xfrm.flow_cache_genid);
278		if (!IS_ERR(flo))
279			fle->object = flo;
280		else
281			fle->genid--;
282	} else {
283		if (!IS_ERR_OR_NULL(flo))
284			flo->ops->delete(flo);
285	}
286ret_object:
287	local_bh_enable();
288	return flo;
289}
290EXPORT_SYMBOL(flow_cache_lookup);
291
292static void flow_cache_flush_tasklet(unsigned long data)
293{
294	struct flow_flush_info *info = (void *)data;
295	struct flow_cache *fc = info->cache;
296	struct flow_cache_percpu *fcp;
297	struct flow_cache_entry *fle;
298	struct hlist_node *tmp;
299	LIST_HEAD(gc_list);
300	int i, deleted = 0;
301	struct netns_xfrm *xfrm = container_of(fc, struct netns_xfrm,
302						flow_cache_global);
303
304	fcp = this_cpu_ptr(fc->percpu);
305	for (i = 0; i < flow_cache_hash_size(fc); i++) {
306		hlist_for_each_entry_safe(fle, tmp,
307					  &fcp->hash_table[i], u.hlist) {
308			if (flow_entry_valid(fle, xfrm))
309				continue;
310
311			deleted++;
312			hlist_del(&fle->u.hlist);
313			list_add_tail(&fle->u.gc_list, &gc_list);
314		}
315	}
316
317	flow_cache_queue_garbage(fcp, deleted, &gc_list, xfrm);
318
319	if (atomic_dec_and_test(&info->cpuleft))
320		complete(&info->completion);
321}
322
323/*
324 * Return whether a cpu needs flushing.  Conservatively, we assume
325 * the presence of any entries means the core may require flushing,
326 * since the flow_cache_ops.check() function may assume it's running
327 * on the same core as the per-cpu cache component.
328 */
329static int flow_cache_percpu_empty(struct flow_cache *fc, int cpu)
330{
331	struct flow_cache_percpu *fcp;
332	int i;
333
334	fcp = per_cpu_ptr(fc->percpu, cpu);
335	for (i = 0; i < flow_cache_hash_size(fc); i++)
336		if (!hlist_empty(&fcp->hash_table[i]))
337			return 0;
338	return 1;
339}
340
341static void flow_cache_flush_per_cpu(void *data)
342{
343	struct flow_flush_info *info = data;
 
344	struct tasklet_struct *tasklet;
345
346	tasklet = &this_cpu_ptr(info->cache->percpu)->flush_tasklet;
 
347	tasklet->data = (unsigned long)info;
348	tasklet_schedule(tasklet);
349}
350
351void flow_cache_flush(struct net *net)
352{
353	struct flow_flush_info info;
354	cpumask_var_t mask;
355	int i, self;
356
357	/* Track which cpus need flushing to avoid disturbing all cores. */
358	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
359		return;
360	cpumask_clear(mask);
361
362	/* Don't want cpus going down or up during this. */
363	get_online_cpus();
364	mutex_lock(&net->xfrm.flow_flush_sem);
365	info.cache = &net->xfrm.flow_cache_global;
366	for_each_online_cpu(i)
367		if (!flow_cache_percpu_empty(info.cache, i))
368			cpumask_set_cpu(i, mask);
369	atomic_set(&info.cpuleft, cpumask_weight(mask));
370	if (atomic_read(&info.cpuleft) == 0)
371		goto done;
372
373	init_completion(&info.completion);
374
375	local_bh_disable();
376	self = cpumask_test_and_clear_cpu(smp_processor_id(), mask);
377	on_each_cpu_mask(mask, flow_cache_flush_per_cpu, &info, 0);
378	if (self)
379		flow_cache_flush_tasklet((unsigned long)&info);
380	local_bh_enable();
381
382	wait_for_completion(&info.completion);
383
384done:
385	mutex_unlock(&net->xfrm.flow_flush_sem);
386	put_online_cpus();
387	free_cpumask_var(mask);
388}
389
390static void flow_cache_flush_task(struct work_struct *work)
391{
392	struct netns_xfrm *xfrm = container_of(work, struct netns_xfrm,
393						flow_cache_flush_work);
394	struct net *net = container_of(xfrm, struct net, xfrm);
395
396	flow_cache_flush(net);
397}
398
399void flow_cache_flush_deferred(struct net *net)
400{
401	schedule_work(&net->xfrm.flow_cache_flush_work);
402}
403
404static int flow_cache_cpu_prepare(struct flow_cache *fc, int cpu)
405{
406	struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu);
407	size_t sz = sizeof(struct hlist_head) * flow_cache_hash_size(fc);
408
409	if (!fcp->hash_table) {
410		fcp->hash_table = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
411		if (!fcp->hash_table) {
412			pr_err("NET: failed to allocate flow cache sz %zu\n", sz);
413			return -ENOMEM;
414		}
415		fcp->hash_rnd_recalc = 1;
416		fcp->hash_count = 0;
417		tasklet_init(&fcp->flush_tasklet, flow_cache_flush_tasklet, 0);
418	}
419	return 0;
420}
421
422static int flow_cache_cpu(struct notifier_block *nfb,
423			  unsigned long action,
424			  void *hcpu)
425{
426	struct flow_cache *fc = container_of(nfb, struct flow_cache,
427						hotcpu_notifier);
428	int res, cpu = (unsigned long) hcpu;
429	struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu);
430
431	switch (action) {
432	case CPU_UP_PREPARE:
433	case CPU_UP_PREPARE_FROZEN:
434		res = flow_cache_cpu_prepare(fc, cpu);
435		if (res)
436			return notifier_from_errno(res);
437		break;
438	case CPU_DEAD:
439	case CPU_DEAD_FROZEN:
440		__flow_cache_shrink(fc, fcp, 0);
441		break;
442	}
443	return NOTIFY_OK;
444}
445
446int flow_cache_init(struct net *net)
447{
448	int i;
449	struct flow_cache *fc = &net->xfrm.flow_cache_global;
450
451	if (!flow_cachep)
452		flow_cachep = kmem_cache_create("flow_cache",
453						sizeof(struct flow_cache_entry),
454						0, SLAB_PANIC, NULL);
455	spin_lock_init(&net->xfrm.flow_cache_gc_lock);
456	INIT_LIST_HEAD(&net->xfrm.flow_cache_gc_list);
457	INIT_WORK(&net->xfrm.flow_cache_gc_work, flow_cache_gc_task);
458	INIT_WORK(&net->xfrm.flow_cache_flush_work, flow_cache_flush_task);
459	mutex_init(&net->xfrm.flow_flush_sem);
460	atomic_set(&net->xfrm.flow_cache_gc_count, 0);
461
462	fc->hash_shift = 10;
463	fc->low_watermark = 2 * flow_cache_hash_size(fc);
464	fc->high_watermark = 4 * flow_cache_hash_size(fc);
465
466	fc->percpu = alloc_percpu(struct flow_cache_percpu);
467	if (!fc->percpu)
468		return -ENOMEM;
469
470	cpu_notifier_register_begin();
471
472	for_each_online_cpu(i) {
473		if (flow_cache_cpu_prepare(fc, i))
474			goto err;
475	}
476	fc->hotcpu_notifier = (struct notifier_block){
477		.notifier_call = flow_cache_cpu,
478	};
479	__register_hotcpu_notifier(&fc->hotcpu_notifier);
480
481	cpu_notifier_register_done();
482
483	setup_timer(&fc->rnd_timer, flow_cache_new_hashrnd,
484		    (unsigned long) fc);
485	fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
486	add_timer(&fc->rnd_timer);
487
488	return 0;
489
490err:
491	for_each_possible_cpu(i) {
492		struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, i);
493		kfree(fcp->hash_table);
494		fcp->hash_table = NULL;
495	}
496
497	cpu_notifier_register_done();
498
499	free_percpu(fc->percpu);
500	fc->percpu = NULL;
501
502	return -ENOMEM;
503}
504EXPORT_SYMBOL(flow_cache_init);
505
506void flow_cache_fini(struct net *net)
507{
508	int i;
509	struct flow_cache *fc = &net->xfrm.flow_cache_global;
 
510
511	del_timer_sync(&fc->rnd_timer);
512	unregister_hotcpu_notifier(&fc->hotcpu_notifier);
513
514	for_each_possible_cpu(i) {
515		struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, i);
516		kfree(fcp->hash_table);
517		fcp->hash_table = NULL;
518	}
519
520	free_percpu(fc->percpu);
521	fc->percpu = NULL;
522}
523EXPORT_SYMBOL(flow_cache_fini);