Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  linux/mm/vmstat.c
   3 *
   4 *  Manages VM statistics
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  zoned VM statistics
   8 *  Copyright (C) 2006 Silicon Graphics, Inc.,
   9 *		Christoph Lameter <christoph@lameter.com>
 
  10 */
  11#include <linux/fs.h>
  12#include <linux/mm.h>
  13#include <linux/err.h>
  14#include <linux/module.h>
  15#include <linux/slab.h>
  16#include <linux/cpu.h>
 
  17#include <linux/vmstat.h>
 
 
 
  18#include <linux/sched.h>
  19#include <linux/math64.h>
  20#include <linux/writeback.h>
  21#include <linux/compaction.h>
 
 
 
 
 
  22
  23#ifdef CONFIG_VM_EVENT_COUNTERS
  24DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
  25EXPORT_PER_CPU_SYMBOL(vm_event_states);
  26
  27static void sum_vm_events(unsigned long *ret)
  28{
  29	int cpu;
  30	int i;
  31
  32	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
  33
  34	for_each_online_cpu(cpu) {
  35		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
  36
  37		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
  38			ret[i] += this->event[i];
  39	}
  40}
  41
  42/*
  43 * Accumulate the vm event counters across all CPUs.
  44 * The result is unavoidably approximate - it can change
  45 * during and after execution of this function.
  46*/
  47void all_vm_events(unsigned long *ret)
  48{
  49	get_online_cpus();
  50	sum_vm_events(ret);
  51	put_online_cpus();
  52}
  53EXPORT_SYMBOL_GPL(all_vm_events);
  54
  55#ifdef CONFIG_HOTPLUG
  56/*
  57 * Fold the foreign cpu events into our own.
  58 *
  59 * This is adding to the events on one processor
  60 * but keeps the global counts constant.
  61 */
  62void vm_events_fold_cpu(int cpu)
  63{
  64	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
  65	int i;
  66
  67	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
  68		count_vm_events(i, fold_state->event[i]);
  69		fold_state->event[i] = 0;
  70	}
  71}
  72#endif /* CONFIG_HOTPLUG */
  73
  74#endif /* CONFIG_VM_EVENT_COUNTERS */
  75
  76/*
  77 * Manage combined zone based / global counters
  78 *
  79 * vm_stat contains the global counters
  80 */
  81atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  82EXPORT_SYMBOL(vm_stat);
  83
  84#ifdef CONFIG_SMP
  85
  86int calculate_pressure_threshold(struct zone *zone)
  87{
  88	int threshold;
  89	int watermark_distance;
  90
  91	/*
  92	 * As vmstats are not up to date, there is drift between the estimated
  93	 * and real values. For high thresholds and a high number of CPUs, it
  94	 * is possible for the min watermark to be breached while the estimated
  95	 * value looks fine. The pressure threshold is a reduced value such
  96	 * that even the maximum amount of drift will not accidentally breach
  97	 * the min watermark
  98	 */
  99	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
 100	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
 101
 102	/*
 103	 * Maximum threshold is 125
 104	 */
 105	threshold = min(125, threshold);
 106
 107	return threshold;
 108}
 109
 110int calculate_normal_threshold(struct zone *zone)
 111{
 112	int threshold;
 113	int mem;	/* memory in 128 MB units */
 114
 115	/*
 116	 * The threshold scales with the number of processors and the amount
 117	 * of memory per zone. More memory means that we can defer updates for
 118	 * longer, more processors could lead to more contention.
 119 	 * fls() is used to have a cheap way of logarithmic scaling.
 120	 *
 121	 * Some sample thresholds:
 122	 *
 123	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
 124	 * ------------------------------------------------------------------
 125	 * 8		1		1	0.9-1 GB	4
 126	 * 16		2		2	0.9-1 GB	4
 127	 * 20 		2		2	1-2 GB		5
 128	 * 24		2		2	2-4 GB		6
 129	 * 28		2		2	4-8 GB		7
 130	 * 32		2		2	8-16 GB		8
 131	 * 4		2		2	<128M		1
 132	 * 30		4		3	2-4 GB		5
 133	 * 48		4		3	8-16 GB		8
 134	 * 32		8		4	1-2 GB		4
 135	 * 32		8		4	0.9-1GB		4
 136	 * 10		16		5	<128M		1
 137	 * 40		16		5	900M		4
 138	 * 70		64		7	2-4 GB		5
 139	 * 84		64		7	4-8 GB		6
 140	 * 108		512		9	4-8 GB		6
 141	 * 125		1024		10	8-16 GB		8
 142	 * 125		1024		10	16-32 GB	9
 143	 */
 144
 145	mem = zone->present_pages >> (27 - PAGE_SHIFT);
 146
 147	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
 148
 149	/*
 150	 * Maximum threshold is 125
 151	 */
 152	threshold = min(125, threshold);
 153
 154	return threshold;
 155}
 156
 157/*
 158 * Refresh the thresholds for each zone.
 159 */
 160void refresh_zone_stat_thresholds(void)
 161{
 162	struct zone *zone;
 163	int cpu;
 164	int threshold;
 165
 166	for_each_populated_zone(zone) {
 167		unsigned long max_drift, tolerate_drift;
 168
 169		threshold = calculate_normal_threshold(zone);
 170
 171		for_each_online_cpu(cpu)
 172			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 173							= threshold;
 174
 175		/*
 176		 * Only set percpu_drift_mark if there is a danger that
 177		 * NR_FREE_PAGES reports the low watermark is ok when in fact
 178		 * the min watermark could be breached by an allocation
 179		 */
 180		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
 181		max_drift = num_online_cpus() * threshold;
 182		if (max_drift > tolerate_drift)
 183			zone->percpu_drift_mark = high_wmark_pages(zone) +
 184					max_drift;
 185	}
 186}
 187
 188void set_pgdat_percpu_threshold(pg_data_t *pgdat,
 189				int (*calculate_pressure)(struct zone *))
 190{
 191	struct zone *zone;
 192	int cpu;
 193	int threshold;
 194	int i;
 195
 196	for (i = 0; i < pgdat->nr_zones; i++) {
 197		zone = &pgdat->node_zones[i];
 198		if (!zone->percpu_drift_mark)
 199			continue;
 200
 201		threshold = (*calculate_pressure)(zone);
 202		for_each_possible_cpu(cpu)
 203			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 204							= threshold;
 205	}
 206}
 207
 208/*
 209 * For use when we know that interrupts are disabled.
 
 
 210 */
 211void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 212				int delta)
 213{
 214	struct per_cpu_pageset __percpu *pcp = zone->pageset;
 215	s8 __percpu *p = pcp->vm_stat_diff + item;
 216	long x;
 217	long t;
 218
 219	x = delta + __this_cpu_read(*p);
 220
 221	t = __this_cpu_read(pcp->stat_threshold);
 222
 223	if (unlikely(x > t || x < -t)) {
 224		zone_page_state_add(x, zone, item);
 225		x = 0;
 226	}
 227	__this_cpu_write(*p, x);
 228}
 229EXPORT_SYMBOL(__mod_zone_page_state);
 230
 231/*
 232 * Optimized increment and decrement functions.
 233 *
 234 * These are only for a single page and therefore can take a struct page *
 235 * argument instead of struct zone *. This allows the inclusion of the code
 236 * generated for page_zone(page) into the optimized functions.
 237 *
 238 * No overflow check is necessary and therefore the differential can be
 239 * incremented or decremented in place which may allow the compilers to
 240 * generate better code.
 241 * The increment or decrement is known and therefore one boundary check can
 242 * be omitted.
 243 *
 244 * NOTE: These functions are very performance sensitive. Change only
 245 * with care.
 246 *
 247 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 248 * However, the code must first determine the differential location in a zone
 249 * based on the processor number and then inc/dec the counter. There is no
 250 * guarantee without disabling preemption that the processor will not change
 251 * in between and therefore the atomicity vs. interrupt cannot be exploited
 252 * in a useful way here.
 253 */
 254void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
 255{
 256	struct per_cpu_pageset __percpu *pcp = zone->pageset;
 257	s8 __percpu *p = pcp->vm_stat_diff + item;
 258	s8 v, t;
 259
 260	v = __this_cpu_inc_return(*p);
 261	t = __this_cpu_read(pcp->stat_threshold);
 262	if (unlikely(v > t)) {
 263		s8 overstep = t >> 1;
 264
 265		zone_page_state_add(v + overstep, zone, item);
 266		__this_cpu_write(*p, -overstep);
 267	}
 268}
 269
 270void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
 271{
 272	__inc_zone_state(page_zone(page), item);
 273}
 274EXPORT_SYMBOL(__inc_zone_page_state);
 275
 276void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
 277{
 278	struct per_cpu_pageset __percpu *pcp = zone->pageset;
 279	s8 __percpu *p = pcp->vm_stat_diff + item;
 280	s8 v, t;
 281
 282	v = __this_cpu_dec_return(*p);
 283	t = __this_cpu_read(pcp->stat_threshold);
 284	if (unlikely(v < - t)) {
 285		s8 overstep = t >> 1;
 286
 287		zone_page_state_add(v - overstep, zone, item);
 288		__this_cpu_write(*p, overstep);
 289	}
 290}
 291
 292void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
 293{
 294	__dec_zone_state(page_zone(page), item);
 295}
 296EXPORT_SYMBOL(__dec_zone_page_state);
 297
 298#ifdef CONFIG_CMPXCHG_LOCAL
 299/*
 300 * If we have cmpxchg_local support then we do not need to incur the overhead
 301 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 302 *
 303 * mod_state() modifies the zone counter state through atomic per cpu
 304 * operations.
 305 *
 306 * Overstep mode specifies how overstep should handled:
 307 *     0       No overstepping
 308 *     1       Overstepping half of threshold
 309 *     -1      Overstepping minus half of threshold
 310*/
 311static inline void mod_state(struct zone *zone,
 312       enum zone_stat_item item, int delta, int overstep_mode)
 313{
 314	struct per_cpu_pageset __percpu *pcp = zone->pageset;
 315	s8 __percpu *p = pcp->vm_stat_diff + item;
 316	long o, n, t, z;
 317
 318	do {
 319		z = 0;  /* overflow to zone counters */
 320
 321		/*
 322		 * The fetching of the stat_threshold is racy. We may apply
 323		 * a counter threshold to the wrong the cpu if we get
 324		 * rescheduled while executing here. However, the next
 325		 * counter update will apply the threshold again and
 326		 * therefore bring the counter under the threshold again.
 327		 *
 328		 * Most of the time the thresholds are the same anyways
 329		 * for all cpus in a zone.
 330		 */
 331		t = this_cpu_read(pcp->stat_threshold);
 332
 333		o = this_cpu_read(*p);
 334		n = delta + o;
 335
 336		if (n > t || n < -t) {
 337			int os = overstep_mode * (t >> 1) ;
 338
 339			/* Overflow must be added to zone counters */
 340			z = n + os;
 341			n = -os;
 342		}
 343	} while (this_cpu_cmpxchg(*p, o, n) != o);
 344
 345	if (z)
 346		zone_page_state_add(z, zone, item);
 347}
 348
 349void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 350					int delta)
 351{
 352	mod_state(zone, item, delta, 0);
 353}
 354EXPORT_SYMBOL(mod_zone_page_state);
 355
 356void inc_zone_state(struct zone *zone, enum zone_stat_item item)
 357{
 358	mod_state(zone, item, 1, 1);
 359}
 360
 361void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 362{
 363	mod_state(page_zone(page), item, 1, 1);
 364}
 365EXPORT_SYMBOL(inc_zone_page_state);
 366
 367void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 368{
 369	mod_state(page_zone(page), item, -1, -1);
 370}
 371EXPORT_SYMBOL(dec_zone_page_state);
 372#else
 373/*
 374 * Use interrupt disable to serialize counter updates
 375 */
 376void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 377					int delta)
 378{
 379	unsigned long flags;
 380
 381	local_irq_save(flags);
 382	__mod_zone_page_state(zone, item, delta);
 383	local_irq_restore(flags);
 384}
 385EXPORT_SYMBOL(mod_zone_page_state);
 386
 387void inc_zone_state(struct zone *zone, enum zone_stat_item item)
 388{
 389	unsigned long flags;
 390
 391	local_irq_save(flags);
 392	__inc_zone_state(zone, item);
 393	local_irq_restore(flags);
 394}
 395
 396void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 397{
 398	unsigned long flags;
 399	struct zone *zone;
 400
 401	zone = page_zone(page);
 402	local_irq_save(flags);
 403	__inc_zone_state(zone, item);
 404	local_irq_restore(flags);
 405}
 406EXPORT_SYMBOL(inc_zone_page_state);
 407
 408void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 409{
 410	unsigned long flags;
 411
 412	local_irq_save(flags);
 413	__dec_zone_page_state(page, item);
 414	local_irq_restore(flags);
 415}
 416EXPORT_SYMBOL(dec_zone_page_state);
 417#endif
 418
 
 419/*
 420 * Update the zone counters for one cpu.
 421 *
 422 * The cpu specified must be either the current cpu or a processor that
 423 * is not online. If it is the current cpu then the execution thread must
 424 * be pinned to the current cpu.
 
 
 
 
 
 
 
 
 
 
 
 
 
 425 *
 426 * Note that refresh_cpu_vm_stats strives to only access
 427 * node local memory. The per cpu pagesets on remote zones are placed
 428 * in the memory local to the processor using that pageset. So the
 429 * loop over all zones will access a series of cachelines local to
 430 * the processor.
 431 *
 432 * The call to zone_page_state_add updates the cachelines with the
 433 * statistics in the remote zone struct as well as the global cachelines
 434 * with the global counters. These could cause remote node cache line
 435 * bouncing and will have to be only done when necessary.
 
 
 436 */
 437void refresh_cpu_vm_stats(int cpu)
 438{
 439	struct zone *zone;
 440	int i;
 441	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 
 442
 443	for_each_populated_zone(zone) {
 444		struct per_cpu_pageset *p;
 445
 446		p = per_cpu_ptr(zone->pageset, cpu);
 
 447
 448		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 449			if (p->vm_stat_diff[i]) {
 450				unsigned long flags;
 451				int v;
 452
 453				local_irq_save(flags);
 454				v = p->vm_stat_diff[i];
 455				p->vm_stat_diff[i] = 0;
 456				local_irq_restore(flags);
 457				atomic_long_add(v, &zone->vm_stat[i]);
 458				global_diff[i] += v;
 459#ifdef CONFIG_NUMA
 460				/* 3 seconds idle till flush */
 461				p->expire = 3;
 462#endif
 463			}
 464		cond_resched();
 465#ifdef CONFIG_NUMA
 466		/*
 467		 * Deal with draining the remote pageset of this
 468		 * processor
 469		 *
 470		 * Check if there are pages remaining in this pageset
 471		 * if not then there is nothing to expire.
 472		 */
 473		if (!p->expire || !p->pcp.count)
 474			continue;
 
 
 
 
 
 
 
 
 
 
 
 475
 476		/*
 477		 * We never drain zones local to this processor.
 478		 */
 479		if (zone_to_nid(zone) == numa_node_id()) {
 480			p->expire = 0;
 481			continue;
 
 482		}
 
 
 
 
 
 483
 484		p->expire--;
 485		if (p->expire)
 486			continue;
 
 
 
 
 
 
 
 487
 488		if (p->pcp.count)
 489			drain_zone_pages(zone, &p->pcp);
 490#endif
 
 
 
 
 
 
 
 
 
 
 
 491	}
 492
 493	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 494		if (global_diff[i])
 495			atomic_long_add(global_diff[i], &vm_stat[i]);
 496}
 497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 498#endif
 499
 500#ifdef CONFIG_NUMA
 501/*
 502 * zonelist = the list of zones passed to the allocator
 503 * z 	    = the zone from which the allocation occurred.
 504 *
 505 * Must be called with interrupts disabled.
 506 *
 507 * When __GFP_OTHER_NODE is set assume the node of the preferred
 508 * zone is the local node. This is useful for daemons who allocate
 509 * memory on behalf of other processes.
 510 */
 511void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
 512{
 513	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
 514		__inc_zone_state(z, NUMA_HIT);
 515	} else {
 516		__inc_zone_state(z, NUMA_MISS);
 517		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
 518	}
 519	if (z->node == ((flags & __GFP_OTHER_NODE) ?
 520			preferred_zone->node : numa_node_id()))
 521		__inc_zone_state(z, NUMA_LOCAL);
 522	else
 523		__inc_zone_state(z, NUMA_OTHER);
 524}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 525#endif
 526
 527#ifdef CONFIG_COMPACTION
 528
 529struct contig_page_info {
 530	unsigned long free_pages;
 531	unsigned long free_blocks_total;
 532	unsigned long free_blocks_suitable;
 533};
 534
 535/*
 536 * Calculate the number of free pages in a zone, how many contiguous
 537 * pages are free and how many are large enough to satisfy an allocation of
 538 * the target size. Note that this function makes no attempt to estimate
 539 * how many suitable free blocks there *might* be if MOVABLE pages were
 540 * migrated. Calculating that is possible, but expensive and can be
 541 * figured out from userspace
 542 */
 543static void fill_contig_page_info(struct zone *zone,
 544				unsigned int suitable_order,
 545				struct contig_page_info *info)
 546{
 547	unsigned int order;
 548
 549	info->free_pages = 0;
 550	info->free_blocks_total = 0;
 551	info->free_blocks_suitable = 0;
 552
 553	for (order = 0; order < MAX_ORDER; order++) {
 554		unsigned long blocks;
 555
 556		/* Count number of free blocks */
 557		blocks = zone->free_area[order].nr_free;
 558		info->free_blocks_total += blocks;
 559
 560		/* Count free base pages */
 561		info->free_pages += blocks << order;
 562
 563		/* Count the suitable free blocks */
 564		if (order >= suitable_order)
 565			info->free_blocks_suitable += blocks <<
 566						(order - suitable_order);
 567	}
 568}
 569
 570/*
 571 * A fragmentation index only makes sense if an allocation of a requested
 572 * size would fail. If that is true, the fragmentation index indicates
 573 * whether external fragmentation or a lack of memory was the problem.
 574 * The value can be used to determine if page reclaim or compaction
 575 * should be used
 576 */
 577static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
 578{
 579	unsigned long requested = 1UL << order;
 580
 581	if (!info->free_blocks_total)
 582		return 0;
 583
 584	/* Fragmentation index only makes sense when a request would fail */
 585	if (info->free_blocks_suitable)
 586		return -1000;
 587
 588	/*
 589	 * Index is between 0 and 1 so return within 3 decimal places
 590	 *
 591	 * 0 => allocation would fail due to lack of memory
 592	 * 1 => allocation would fail due to fragmentation
 593	 */
 594	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
 595}
 596
 597/* Same as __fragmentation index but allocs contig_page_info on stack */
 598int fragmentation_index(struct zone *zone, unsigned int order)
 599{
 600	struct contig_page_info info;
 601
 602	fill_contig_page_info(zone, order, &info);
 603	return __fragmentation_index(order, &info);
 604}
 605#endif
 606
 607#if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
 608#include <linux/proc_fs.h>
 609#include <linux/seq_file.h>
 610
 611static char * const migratetype_names[MIGRATE_TYPES] = {
 612	"Unmovable",
 613	"Reclaimable",
 614	"Movable",
 615	"Reserve",
 616	"Isolate",
 617};
 618
 619static void *frag_start(struct seq_file *m, loff_t *pos)
 620{
 621	pg_data_t *pgdat;
 622	loff_t node = *pos;
 623	for (pgdat = first_online_pgdat();
 624	     pgdat && node;
 625	     pgdat = next_online_pgdat(pgdat))
 626		--node;
 627
 628	return pgdat;
 629}
 630
 631static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
 632{
 633	pg_data_t *pgdat = (pg_data_t *)arg;
 634
 635	(*pos)++;
 636	return next_online_pgdat(pgdat);
 637}
 638
 639static void frag_stop(struct seq_file *m, void *arg)
 640{
 641}
 642
 643/* Walk all the zones in a node and print using a callback */
 644static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
 645		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
 646{
 647	struct zone *zone;
 648	struct zone *node_zones = pgdat->node_zones;
 649	unsigned long flags;
 650
 651	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
 652		if (!populated_zone(zone))
 653			continue;
 654
 655		spin_lock_irqsave(&zone->lock, flags);
 656		print(m, pgdat, zone);
 657		spin_unlock_irqrestore(&zone->lock, flags);
 658	}
 659}
 660#endif
 661
 662#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
 663#ifdef CONFIG_ZONE_DMA
 664#define TEXT_FOR_DMA(xx) xx "_dma",
 665#else
 666#define TEXT_FOR_DMA(xx)
 667#endif
 668
 669#ifdef CONFIG_ZONE_DMA32
 670#define TEXT_FOR_DMA32(xx) xx "_dma32",
 671#else
 672#define TEXT_FOR_DMA32(xx)
 673#endif
 674
 675#ifdef CONFIG_HIGHMEM
 676#define TEXT_FOR_HIGHMEM(xx) xx "_high",
 677#else
 678#define TEXT_FOR_HIGHMEM(xx)
 679#endif
 680
 681#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
 682					TEXT_FOR_HIGHMEM(xx) xx "_movable",
 683
 684const char * const vmstat_text[] = {
 685	/* Zoned VM counters */
 686	"nr_free_pages",
 
 687	"nr_inactive_anon",
 688	"nr_active_anon",
 689	"nr_inactive_file",
 690	"nr_active_file",
 691	"nr_unevictable",
 692	"nr_mlock",
 693	"nr_anon_pages",
 694	"nr_mapped",
 695	"nr_file_pages",
 696	"nr_dirty",
 697	"nr_writeback",
 698	"nr_slab_reclaimable",
 699	"nr_slab_unreclaimable",
 700	"nr_page_table_pages",
 701	"nr_kernel_stack",
 702	"nr_unstable",
 703	"nr_bounce",
 704	"nr_vmscan_write",
 
 705	"nr_writeback_temp",
 706	"nr_isolated_anon",
 707	"nr_isolated_file",
 708	"nr_shmem",
 709	"nr_dirtied",
 710	"nr_written",
 
 711
 712#ifdef CONFIG_NUMA
 713	"numa_hit",
 714	"numa_miss",
 715	"numa_foreign",
 716	"numa_interleave",
 717	"numa_local",
 718	"numa_other",
 719#endif
 
 
 
 720	"nr_anon_transparent_hugepages",
 
 
 
 721	"nr_dirty_threshold",
 722	"nr_dirty_background_threshold",
 723
 724#ifdef CONFIG_VM_EVENT_COUNTERS
 
 725	"pgpgin",
 726	"pgpgout",
 727	"pswpin",
 728	"pswpout",
 729
 730	TEXTS_FOR_ZONES("pgalloc")
 731
 732	"pgfree",
 733	"pgactivate",
 734	"pgdeactivate",
 735
 736	"pgfault",
 737	"pgmajfault",
 
 738
 739	TEXTS_FOR_ZONES("pgrefill")
 740	TEXTS_FOR_ZONES("pgsteal")
 
 741	TEXTS_FOR_ZONES("pgscan_kswapd")
 742	TEXTS_FOR_ZONES("pgscan_direct")
 
 743
 744#ifdef CONFIG_NUMA
 745	"zone_reclaim_failed",
 746#endif
 747	"pginodesteal",
 748	"slabs_scanned",
 749	"kswapd_steal",
 750	"kswapd_inodesteal",
 751	"kswapd_low_wmark_hit_quickly",
 752	"kswapd_high_wmark_hit_quickly",
 753	"kswapd_skip_congestion_wait",
 754	"pageoutrun",
 755	"allocstall",
 756
 757	"pgrotated",
 758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 759#ifdef CONFIG_COMPACTION
 760	"compact_blocks_moved",
 761	"compact_pages_moved",
 762	"compact_pagemigrate_failed",
 763	"compact_stall",
 764	"compact_fail",
 765	"compact_success",
 
 766#endif
 767
 768#ifdef CONFIG_HUGETLB_PAGE
 769	"htlb_buddy_alloc_success",
 770	"htlb_buddy_alloc_fail",
 771#endif
 772	"unevictable_pgs_culled",
 773	"unevictable_pgs_scanned",
 774	"unevictable_pgs_rescued",
 775	"unevictable_pgs_mlocked",
 776	"unevictable_pgs_munlocked",
 777	"unevictable_pgs_cleared",
 778	"unevictable_pgs_stranded",
 779	"unevictable_pgs_mlockfreed",
 780
 781#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 782	"thp_fault_alloc",
 783	"thp_fault_fallback",
 784	"thp_collapse_alloc",
 785	"thp_collapse_alloc_failed",
 786	"thp_split",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787#endif
 788
 789#endif /* CONFIG_VM_EVENTS_COUNTERS */
 790};
 791#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
 792
 793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794#ifdef CONFIG_PROC_FS
 795static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
 796						struct zone *zone)
 797{
 798	int order;
 799
 800	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
 801	for (order = 0; order < MAX_ORDER; ++order)
 802		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
 803	seq_putc(m, '\n');
 804}
 805
 806/*
 807 * This walks the free areas for each zone.
 808 */
 809static int frag_show(struct seq_file *m, void *arg)
 810{
 811	pg_data_t *pgdat = (pg_data_t *)arg;
 812	walk_zones_in_node(m, pgdat, frag_show_print);
 813	return 0;
 814}
 815
 816static void pagetypeinfo_showfree_print(struct seq_file *m,
 817					pg_data_t *pgdat, struct zone *zone)
 818{
 819	int order, mtype;
 820
 821	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
 822		seq_printf(m, "Node %4d, zone %8s, type %12s ",
 823					pgdat->node_id,
 824					zone->name,
 825					migratetype_names[mtype]);
 826		for (order = 0; order < MAX_ORDER; ++order) {
 827			unsigned long freecount = 0;
 828			struct free_area *area;
 829			struct list_head *curr;
 830
 831			area = &(zone->free_area[order]);
 832
 833			list_for_each(curr, &area->free_list[mtype])
 834				freecount++;
 835			seq_printf(m, "%6lu ", freecount);
 836		}
 837		seq_putc(m, '\n');
 838	}
 839}
 840
 841/* Print out the free pages at each order for each migatetype */
 842static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
 843{
 844	int order;
 845	pg_data_t *pgdat = (pg_data_t *)arg;
 846
 847	/* Print header */
 848	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
 849	for (order = 0; order < MAX_ORDER; ++order)
 850		seq_printf(m, "%6d ", order);
 851	seq_putc(m, '\n');
 852
 853	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
 854
 855	return 0;
 856}
 857
 858static void pagetypeinfo_showblockcount_print(struct seq_file *m,
 859					pg_data_t *pgdat, struct zone *zone)
 860{
 861	int mtype;
 862	unsigned long pfn;
 863	unsigned long start_pfn = zone->zone_start_pfn;
 864	unsigned long end_pfn = start_pfn + zone->spanned_pages;
 865	unsigned long count[MIGRATE_TYPES] = { 0, };
 866
 867	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
 868		struct page *page;
 869
 870		if (!pfn_valid(pfn))
 871			continue;
 872
 873		page = pfn_to_page(pfn);
 874
 875		/* Watch for unexpected holes punched in the memmap */
 876		if (!memmap_valid_within(pfn, page, zone))
 877			continue;
 878
 879		mtype = get_pageblock_migratetype(page);
 880
 881		if (mtype < MIGRATE_TYPES)
 882			count[mtype]++;
 883	}
 884
 885	/* Print counts */
 886	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
 887	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
 888		seq_printf(m, "%12lu ", count[mtype]);
 889	seq_putc(m, '\n');
 890}
 891
 892/* Print out the free pages at each order for each migratetype */
 893static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
 894{
 895	int mtype;
 896	pg_data_t *pgdat = (pg_data_t *)arg;
 897
 898	seq_printf(m, "\n%-23s", "Number of blocks type ");
 899	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
 900		seq_printf(m, "%12s ", migratetype_names[mtype]);
 901	seq_putc(m, '\n');
 902	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
 903
 904	return 0;
 905}
 906
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 907/*
 908 * This prints out statistics in relation to grouping pages by mobility.
 909 * It is expensive to collect so do not constantly read the file.
 910 */
 911static int pagetypeinfo_show(struct seq_file *m, void *arg)
 912{
 913	pg_data_t *pgdat = (pg_data_t *)arg;
 914
 915	/* check memoryless node */
 916	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
 917		return 0;
 918
 919	seq_printf(m, "Page block order: %d\n", pageblock_order);
 920	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
 921	seq_putc(m, '\n');
 922	pagetypeinfo_showfree(m, pgdat);
 923	pagetypeinfo_showblockcount(m, pgdat);
 
 924
 925	return 0;
 926}
 927
 928static const struct seq_operations fragmentation_op = {
 929	.start	= frag_start,
 930	.next	= frag_next,
 931	.stop	= frag_stop,
 932	.show	= frag_show,
 933};
 934
 935static int fragmentation_open(struct inode *inode, struct file *file)
 936{
 937	return seq_open(file, &fragmentation_op);
 938}
 939
 940static const struct file_operations fragmentation_file_operations = {
 941	.open		= fragmentation_open,
 942	.read		= seq_read,
 943	.llseek		= seq_lseek,
 944	.release	= seq_release,
 945};
 946
 947static const struct seq_operations pagetypeinfo_op = {
 948	.start	= frag_start,
 949	.next	= frag_next,
 950	.stop	= frag_stop,
 951	.show	= pagetypeinfo_show,
 952};
 953
 954static int pagetypeinfo_open(struct inode *inode, struct file *file)
 955{
 956	return seq_open(file, &pagetypeinfo_op);
 957}
 958
 959static const struct file_operations pagetypeinfo_file_ops = {
 960	.open		= pagetypeinfo_open,
 961	.read		= seq_read,
 962	.llseek		= seq_lseek,
 963	.release	= seq_release,
 964};
 965
 966static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
 967							struct zone *zone)
 968{
 969	int i;
 970	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
 971	seq_printf(m,
 972		   "\n  pages free     %lu"
 973		   "\n        min      %lu"
 974		   "\n        low      %lu"
 975		   "\n        high     %lu"
 976		   "\n        scanned  %lu"
 977		   "\n        spanned  %lu"
 978		   "\n        present  %lu",
 
 979		   zone_page_state(zone, NR_FREE_PAGES),
 980		   min_wmark_pages(zone),
 981		   low_wmark_pages(zone),
 982		   high_wmark_pages(zone),
 983		   zone->pages_scanned,
 984		   zone->spanned_pages,
 985		   zone->present_pages);
 
 986
 987	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 988		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
 989				zone_page_state(zone, i));
 990
 991	seq_printf(m,
 992		   "\n        protection: (%lu",
 993		   zone->lowmem_reserve[0]);
 994	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
 995		seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
 996	seq_printf(m,
 997		   ")"
 998		   "\n  pagesets");
 999	for_each_online_cpu(i) {
1000		struct per_cpu_pageset *pageset;
1001
1002		pageset = per_cpu_ptr(zone->pageset, i);
1003		seq_printf(m,
1004			   "\n    cpu: %i"
1005			   "\n              count: %i"
1006			   "\n              high:  %i"
1007			   "\n              batch: %i",
1008			   i,
1009			   pageset->pcp.count,
1010			   pageset->pcp.high,
1011			   pageset->pcp.batch);
1012#ifdef CONFIG_SMP
1013		seq_printf(m, "\n  vm stats threshold: %d",
1014				pageset->stat_threshold);
1015#endif
1016	}
1017	seq_printf(m,
1018		   "\n  all_unreclaimable: %u"
1019		   "\n  start_pfn:         %lu"
1020		   "\n  inactive_ratio:    %u",
1021		   zone->all_unreclaimable,
1022		   zone->zone_start_pfn,
1023		   zone->inactive_ratio);
1024	seq_putc(m, '\n');
1025}
1026
1027/*
1028 * Output information about zones in @pgdat.
1029 */
1030static int zoneinfo_show(struct seq_file *m, void *arg)
1031{
1032	pg_data_t *pgdat = (pg_data_t *)arg;
1033	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1034	return 0;
1035}
1036
1037static const struct seq_operations zoneinfo_op = {
1038	.start	= frag_start, /* iterate over all zones. The same as in
1039			       * fragmentation. */
1040	.next	= frag_next,
1041	.stop	= frag_stop,
1042	.show	= zoneinfo_show,
1043};
1044
1045static int zoneinfo_open(struct inode *inode, struct file *file)
1046{
1047	return seq_open(file, &zoneinfo_op);
1048}
1049
1050static const struct file_operations proc_zoneinfo_file_operations = {
1051	.open		= zoneinfo_open,
1052	.read		= seq_read,
1053	.llseek		= seq_lseek,
1054	.release	= seq_release,
1055};
1056
1057enum writeback_stat_item {
1058	NR_DIRTY_THRESHOLD,
1059	NR_DIRTY_BG_THRESHOLD,
1060	NR_VM_WRITEBACK_STAT_ITEMS,
1061};
1062
1063static void *vmstat_start(struct seq_file *m, loff_t *pos)
1064{
1065	unsigned long *v;
1066	int i, stat_items_size;
1067
1068	if (*pos >= ARRAY_SIZE(vmstat_text))
1069		return NULL;
1070	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1071			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1072
1073#ifdef CONFIG_VM_EVENT_COUNTERS
1074	stat_items_size += sizeof(struct vm_event_state);
1075#endif
1076
1077	v = kmalloc(stat_items_size, GFP_KERNEL);
1078	m->private = v;
1079	if (!v)
1080		return ERR_PTR(-ENOMEM);
1081	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1082		v[i] = global_page_state(i);
1083	v += NR_VM_ZONE_STAT_ITEMS;
1084
1085	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1086			    v + NR_DIRTY_THRESHOLD);
1087	v += NR_VM_WRITEBACK_STAT_ITEMS;
1088
1089#ifdef CONFIG_VM_EVENT_COUNTERS
1090	all_vm_events(v);
1091	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1092	v[PGPGOUT] /= 2;
1093#endif
1094	return (unsigned long *)m->private + *pos;
1095}
1096
1097static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1098{
1099	(*pos)++;
1100	if (*pos >= ARRAY_SIZE(vmstat_text))
1101		return NULL;
1102	return (unsigned long *)m->private + *pos;
1103}
1104
1105static int vmstat_show(struct seq_file *m, void *arg)
1106{
1107	unsigned long *l = arg;
1108	unsigned long off = l - (unsigned long *)m->private;
1109
1110	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1111	return 0;
1112}
1113
1114static void vmstat_stop(struct seq_file *m, void *arg)
1115{
1116	kfree(m->private);
1117	m->private = NULL;
1118}
1119
1120static const struct seq_operations vmstat_op = {
1121	.start	= vmstat_start,
1122	.next	= vmstat_next,
1123	.stop	= vmstat_stop,
1124	.show	= vmstat_show,
1125};
1126
1127static int vmstat_open(struct inode *inode, struct file *file)
1128{
1129	return seq_open(file, &vmstat_op);
1130}
1131
1132static const struct file_operations proc_vmstat_file_operations = {
1133	.open		= vmstat_open,
1134	.read		= seq_read,
1135	.llseek		= seq_lseek,
1136	.release	= seq_release,
1137};
1138#endif /* CONFIG_PROC_FS */
1139
1140#ifdef CONFIG_SMP
 
1141static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1142int sysctl_stat_interval __read_mostly = HZ;
 
1143
1144static void vmstat_update(struct work_struct *w)
1145{
1146	refresh_cpu_vm_stats(smp_processor_id());
1147	schedule_delayed_work(&__get_cpu_var(vmstat_work),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148		round_jiffies_relative(sysctl_stat_interval));
1149}
1150
1151static void __cpuinit start_cpu_timer(int cpu)
1152{
1153	struct delayed_work *work = &per_cpu(vmstat_work, cpu);
 
 
 
 
 
1154
1155	INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
1156	schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
 
1157}
1158
1159/*
1160 * Use the cpu notifier to insure that the thresholds are recalculated
1161 * when necessary.
1162 */
1163static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1164		unsigned long action,
1165		void *hcpu)
1166{
1167	long cpu = (long)hcpu;
1168
1169	switch (action) {
1170	case CPU_ONLINE:
1171	case CPU_ONLINE_FROZEN:
1172		refresh_zone_stat_thresholds();
1173		start_cpu_timer(cpu);
1174		node_set_state(cpu_to_node(cpu), N_CPU);
 
1175		break;
1176	case CPU_DOWN_PREPARE:
1177	case CPU_DOWN_PREPARE_FROZEN:
1178		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1179		per_cpu(vmstat_work, cpu).work.func = NULL;
1180		break;
1181	case CPU_DOWN_FAILED:
1182	case CPU_DOWN_FAILED_FROZEN:
1183		start_cpu_timer(cpu);
1184		break;
1185	case CPU_DEAD:
1186	case CPU_DEAD_FROZEN:
1187		refresh_zone_stat_thresholds();
 
1188		break;
1189	default:
1190		break;
1191	}
1192	return NOTIFY_OK;
1193}
1194
1195static struct notifier_block __cpuinitdata vmstat_notifier =
1196	{ &vmstat_cpuup_callback, NULL, 0 };
1197#endif
1198
1199static int __init setup_vmstat(void)
1200{
1201#ifdef CONFIG_SMP
1202	int cpu;
1203
1204	register_cpu_notifier(&vmstat_notifier);
1205
1206	for_each_online_cpu(cpu)
1207		start_cpu_timer(cpu);
1208#endif
1209#ifdef CONFIG_PROC_FS
1210	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1211	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1212	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1213	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1214#endif
1215	return 0;
1216}
1217module_init(setup_vmstat)
1218
1219#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1220#include <linux/debugfs.h>
1221
1222static struct dentry *extfrag_debug_root;
1223
1224/*
1225 * Return an index indicating how much of the available free memory is
1226 * unusable for an allocation of the requested size.
1227 */
1228static int unusable_free_index(unsigned int order,
1229				struct contig_page_info *info)
1230{
1231	/* No free memory is interpreted as all free memory is unusable */
1232	if (info->free_pages == 0)
1233		return 1000;
1234
1235	/*
1236	 * Index should be a value between 0 and 1. Return a value to 3
1237	 * decimal places.
1238	 *
1239	 * 0 => no fragmentation
1240	 * 1 => high fragmentation
1241	 */
1242	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1243
1244}
1245
1246static void unusable_show_print(struct seq_file *m,
1247					pg_data_t *pgdat, struct zone *zone)
1248{
1249	unsigned int order;
1250	int index;
1251	struct contig_page_info info;
1252
1253	seq_printf(m, "Node %d, zone %8s ",
1254				pgdat->node_id,
1255				zone->name);
1256	for (order = 0; order < MAX_ORDER; ++order) {
1257		fill_contig_page_info(zone, order, &info);
1258		index = unusable_free_index(order, &info);
1259		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1260	}
1261
1262	seq_putc(m, '\n');
1263}
1264
1265/*
1266 * Display unusable free space index
1267 *
1268 * The unusable free space index measures how much of the available free
1269 * memory cannot be used to satisfy an allocation of a given size and is a
1270 * value between 0 and 1. The higher the value, the more of free memory is
1271 * unusable and by implication, the worse the external fragmentation is. This
1272 * can be expressed as a percentage by multiplying by 100.
1273 */
1274static int unusable_show(struct seq_file *m, void *arg)
1275{
1276	pg_data_t *pgdat = (pg_data_t *)arg;
1277
1278	/* check memoryless node */
1279	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1280		return 0;
1281
1282	walk_zones_in_node(m, pgdat, unusable_show_print);
1283
1284	return 0;
1285}
1286
1287static const struct seq_operations unusable_op = {
1288	.start	= frag_start,
1289	.next	= frag_next,
1290	.stop	= frag_stop,
1291	.show	= unusable_show,
1292};
1293
1294static int unusable_open(struct inode *inode, struct file *file)
1295{
1296	return seq_open(file, &unusable_op);
1297}
1298
1299static const struct file_operations unusable_file_ops = {
1300	.open		= unusable_open,
1301	.read		= seq_read,
1302	.llseek		= seq_lseek,
1303	.release	= seq_release,
1304};
1305
1306static void extfrag_show_print(struct seq_file *m,
1307					pg_data_t *pgdat, struct zone *zone)
1308{
1309	unsigned int order;
1310	int index;
1311
1312	/* Alloc on stack as interrupts are disabled for zone walk */
1313	struct contig_page_info info;
1314
1315	seq_printf(m, "Node %d, zone %8s ",
1316				pgdat->node_id,
1317				zone->name);
1318	for (order = 0; order < MAX_ORDER; ++order) {
1319		fill_contig_page_info(zone, order, &info);
1320		index = __fragmentation_index(order, &info);
1321		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1322	}
1323
1324	seq_putc(m, '\n');
1325}
1326
1327/*
1328 * Display fragmentation index for orders that allocations would fail for
1329 */
1330static int extfrag_show(struct seq_file *m, void *arg)
1331{
1332	pg_data_t *pgdat = (pg_data_t *)arg;
1333
1334	walk_zones_in_node(m, pgdat, extfrag_show_print);
1335
1336	return 0;
1337}
1338
1339static const struct seq_operations extfrag_op = {
1340	.start	= frag_start,
1341	.next	= frag_next,
1342	.stop	= frag_stop,
1343	.show	= extfrag_show,
1344};
1345
1346static int extfrag_open(struct inode *inode, struct file *file)
1347{
1348	return seq_open(file, &extfrag_op);
1349}
1350
1351static const struct file_operations extfrag_file_ops = {
1352	.open		= extfrag_open,
1353	.read		= seq_read,
1354	.llseek		= seq_lseek,
1355	.release	= seq_release,
1356};
1357
1358static int __init extfrag_debug_init(void)
1359{
 
 
1360	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1361	if (!extfrag_debug_root)
1362		return -ENOMEM;
1363
1364	if (!debugfs_create_file("unusable_index", 0444,
1365			extfrag_debug_root, NULL, &unusable_file_ops))
1366		return -ENOMEM;
1367
1368	if (!debugfs_create_file("extfrag_index", 0444,
1369			extfrag_debug_root, NULL, &extfrag_file_ops))
1370		return -ENOMEM;
1371
1372	return 0;
 
 
 
1373}
1374
1375module_init(extfrag_debug_init);
1376#endif
v4.6
   1/*
   2 *  linux/mm/vmstat.c
   3 *
   4 *  Manages VM statistics
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  zoned VM statistics
   8 *  Copyright (C) 2006 Silicon Graphics, Inc.,
   9 *		Christoph Lameter <christoph@lameter.com>
  10 *  Copyright (C) 2008-2014 Christoph Lameter
  11 */
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/err.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/cpu.h>
  18#include <linux/cpumask.h>
  19#include <linux/vmstat.h>
  20#include <linux/proc_fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/debugfs.h>
  23#include <linux/sched.h>
  24#include <linux/math64.h>
  25#include <linux/writeback.h>
  26#include <linux/compaction.h>
  27#include <linux/mm_inline.h>
  28#include <linux/page_ext.h>
  29#include <linux/page_owner.h>
  30
  31#include "internal.h"
  32
  33#ifdef CONFIG_VM_EVENT_COUNTERS
  34DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
  35EXPORT_PER_CPU_SYMBOL(vm_event_states);
  36
  37static void sum_vm_events(unsigned long *ret)
  38{
  39	int cpu;
  40	int i;
  41
  42	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
  43
  44	for_each_online_cpu(cpu) {
  45		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
  46
  47		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
  48			ret[i] += this->event[i];
  49	}
  50}
  51
  52/*
  53 * Accumulate the vm event counters across all CPUs.
  54 * The result is unavoidably approximate - it can change
  55 * during and after execution of this function.
  56*/
  57void all_vm_events(unsigned long *ret)
  58{
  59	get_online_cpus();
  60	sum_vm_events(ret);
  61	put_online_cpus();
  62}
  63EXPORT_SYMBOL_GPL(all_vm_events);
  64
 
  65/*
  66 * Fold the foreign cpu events into our own.
  67 *
  68 * This is adding to the events on one processor
  69 * but keeps the global counts constant.
  70 */
  71void vm_events_fold_cpu(int cpu)
  72{
  73	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
  74	int i;
  75
  76	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
  77		count_vm_events(i, fold_state->event[i]);
  78		fold_state->event[i] = 0;
  79	}
  80}
 
  81
  82#endif /* CONFIG_VM_EVENT_COUNTERS */
  83
  84/*
  85 * Manage combined zone based / global counters
  86 *
  87 * vm_stat contains the global counters
  88 */
  89atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
  90EXPORT_SYMBOL(vm_stat);
  91
  92#ifdef CONFIG_SMP
  93
  94int calculate_pressure_threshold(struct zone *zone)
  95{
  96	int threshold;
  97	int watermark_distance;
  98
  99	/*
 100	 * As vmstats are not up to date, there is drift between the estimated
 101	 * and real values. For high thresholds and a high number of CPUs, it
 102	 * is possible for the min watermark to be breached while the estimated
 103	 * value looks fine. The pressure threshold is a reduced value such
 104	 * that even the maximum amount of drift will not accidentally breach
 105	 * the min watermark
 106	 */
 107	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
 108	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
 109
 110	/*
 111	 * Maximum threshold is 125
 112	 */
 113	threshold = min(125, threshold);
 114
 115	return threshold;
 116}
 117
 118int calculate_normal_threshold(struct zone *zone)
 119{
 120	int threshold;
 121	int mem;	/* memory in 128 MB units */
 122
 123	/*
 124	 * The threshold scales with the number of processors and the amount
 125	 * of memory per zone. More memory means that we can defer updates for
 126	 * longer, more processors could lead to more contention.
 127 	 * fls() is used to have a cheap way of logarithmic scaling.
 128	 *
 129	 * Some sample thresholds:
 130	 *
 131	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
 132	 * ------------------------------------------------------------------
 133	 * 8		1		1	0.9-1 GB	4
 134	 * 16		2		2	0.9-1 GB	4
 135	 * 20 		2		2	1-2 GB		5
 136	 * 24		2		2	2-4 GB		6
 137	 * 28		2		2	4-8 GB		7
 138	 * 32		2		2	8-16 GB		8
 139	 * 4		2		2	<128M		1
 140	 * 30		4		3	2-4 GB		5
 141	 * 48		4		3	8-16 GB		8
 142	 * 32		8		4	1-2 GB		4
 143	 * 32		8		4	0.9-1GB		4
 144	 * 10		16		5	<128M		1
 145	 * 40		16		5	900M		4
 146	 * 70		64		7	2-4 GB		5
 147	 * 84		64		7	4-8 GB		6
 148	 * 108		512		9	4-8 GB		6
 149	 * 125		1024		10	8-16 GB		8
 150	 * 125		1024		10	16-32 GB	9
 151	 */
 152
 153	mem = zone->managed_pages >> (27 - PAGE_SHIFT);
 154
 155	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
 156
 157	/*
 158	 * Maximum threshold is 125
 159	 */
 160	threshold = min(125, threshold);
 161
 162	return threshold;
 163}
 164
 165/*
 166 * Refresh the thresholds for each zone.
 167 */
 168void refresh_zone_stat_thresholds(void)
 169{
 170	struct zone *zone;
 171	int cpu;
 172	int threshold;
 173
 174	for_each_populated_zone(zone) {
 175		unsigned long max_drift, tolerate_drift;
 176
 177		threshold = calculate_normal_threshold(zone);
 178
 179		for_each_online_cpu(cpu)
 180			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 181							= threshold;
 182
 183		/*
 184		 * Only set percpu_drift_mark if there is a danger that
 185		 * NR_FREE_PAGES reports the low watermark is ok when in fact
 186		 * the min watermark could be breached by an allocation
 187		 */
 188		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
 189		max_drift = num_online_cpus() * threshold;
 190		if (max_drift > tolerate_drift)
 191			zone->percpu_drift_mark = high_wmark_pages(zone) +
 192					max_drift;
 193	}
 194}
 195
 196void set_pgdat_percpu_threshold(pg_data_t *pgdat,
 197				int (*calculate_pressure)(struct zone *))
 198{
 199	struct zone *zone;
 200	int cpu;
 201	int threshold;
 202	int i;
 203
 204	for (i = 0; i < pgdat->nr_zones; i++) {
 205		zone = &pgdat->node_zones[i];
 206		if (!zone->percpu_drift_mark)
 207			continue;
 208
 209		threshold = (*calculate_pressure)(zone);
 210		for_each_online_cpu(cpu)
 211			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 212							= threshold;
 213	}
 214}
 215
 216/*
 217 * For use when we know that interrupts are disabled,
 218 * or when we know that preemption is disabled and that
 219 * particular counter cannot be updated from interrupt context.
 220 */
 221void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 222			   long delta)
 223{
 224	struct per_cpu_pageset __percpu *pcp = zone->pageset;
 225	s8 __percpu *p = pcp->vm_stat_diff + item;
 226	long x;
 227	long t;
 228
 229	x = delta + __this_cpu_read(*p);
 230
 231	t = __this_cpu_read(pcp->stat_threshold);
 232
 233	if (unlikely(x > t || x < -t)) {
 234		zone_page_state_add(x, zone, item);
 235		x = 0;
 236	}
 237	__this_cpu_write(*p, x);
 238}
 239EXPORT_SYMBOL(__mod_zone_page_state);
 240
 241/*
 242 * Optimized increment and decrement functions.
 243 *
 244 * These are only for a single page and therefore can take a struct page *
 245 * argument instead of struct zone *. This allows the inclusion of the code
 246 * generated for page_zone(page) into the optimized functions.
 247 *
 248 * No overflow check is necessary and therefore the differential can be
 249 * incremented or decremented in place which may allow the compilers to
 250 * generate better code.
 251 * The increment or decrement is known and therefore one boundary check can
 252 * be omitted.
 253 *
 254 * NOTE: These functions are very performance sensitive. Change only
 255 * with care.
 256 *
 257 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 258 * However, the code must first determine the differential location in a zone
 259 * based on the processor number and then inc/dec the counter. There is no
 260 * guarantee without disabling preemption that the processor will not change
 261 * in between and therefore the atomicity vs. interrupt cannot be exploited
 262 * in a useful way here.
 263 */
 264void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
 265{
 266	struct per_cpu_pageset __percpu *pcp = zone->pageset;
 267	s8 __percpu *p = pcp->vm_stat_diff + item;
 268	s8 v, t;
 269
 270	v = __this_cpu_inc_return(*p);
 271	t = __this_cpu_read(pcp->stat_threshold);
 272	if (unlikely(v > t)) {
 273		s8 overstep = t >> 1;
 274
 275		zone_page_state_add(v + overstep, zone, item);
 276		__this_cpu_write(*p, -overstep);
 277	}
 278}
 279
 280void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
 281{
 282	__inc_zone_state(page_zone(page), item);
 283}
 284EXPORT_SYMBOL(__inc_zone_page_state);
 285
 286void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
 287{
 288	struct per_cpu_pageset __percpu *pcp = zone->pageset;
 289	s8 __percpu *p = pcp->vm_stat_diff + item;
 290	s8 v, t;
 291
 292	v = __this_cpu_dec_return(*p);
 293	t = __this_cpu_read(pcp->stat_threshold);
 294	if (unlikely(v < - t)) {
 295		s8 overstep = t >> 1;
 296
 297		zone_page_state_add(v - overstep, zone, item);
 298		__this_cpu_write(*p, overstep);
 299	}
 300}
 301
 302void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
 303{
 304	__dec_zone_state(page_zone(page), item);
 305}
 306EXPORT_SYMBOL(__dec_zone_page_state);
 307
 308#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
 309/*
 310 * If we have cmpxchg_local support then we do not need to incur the overhead
 311 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 312 *
 313 * mod_state() modifies the zone counter state through atomic per cpu
 314 * operations.
 315 *
 316 * Overstep mode specifies how overstep should handled:
 317 *     0       No overstepping
 318 *     1       Overstepping half of threshold
 319 *     -1      Overstepping minus half of threshold
 320*/
 321static inline void mod_state(struct zone *zone, enum zone_stat_item item,
 322			     long delta, int overstep_mode)
 323{
 324	struct per_cpu_pageset __percpu *pcp = zone->pageset;
 325	s8 __percpu *p = pcp->vm_stat_diff + item;
 326	long o, n, t, z;
 327
 328	do {
 329		z = 0;  /* overflow to zone counters */
 330
 331		/*
 332		 * The fetching of the stat_threshold is racy. We may apply
 333		 * a counter threshold to the wrong the cpu if we get
 334		 * rescheduled while executing here. However, the next
 335		 * counter update will apply the threshold again and
 336		 * therefore bring the counter under the threshold again.
 337		 *
 338		 * Most of the time the thresholds are the same anyways
 339		 * for all cpus in a zone.
 340		 */
 341		t = this_cpu_read(pcp->stat_threshold);
 342
 343		o = this_cpu_read(*p);
 344		n = delta + o;
 345
 346		if (n > t || n < -t) {
 347			int os = overstep_mode * (t >> 1) ;
 348
 349			/* Overflow must be added to zone counters */
 350			z = n + os;
 351			n = -os;
 352		}
 353	} while (this_cpu_cmpxchg(*p, o, n) != o);
 354
 355	if (z)
 356		zone_page_state_add(z, zone, item);
 357}
 358
 359void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 360			 long delta)
 361{
 362	mod_state(zone, item, delta, 0);
 363}
 364EXPORT_SYMBOL(mod_zone_page_state);
 365
 366void inc_zone_state(struct zone *zone, enum zone_stat_item item)
 367{
 368	mod_state(zone, item, 1, 1);
 369}
 370
 371void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 372{
 373	mod_state(page_zone(page), item, 1, 1);
 374}
 375EXPORT_SYMBOL(inc_zone_page_state);
 376
 377void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 378{
 379	mod_state(page_zone(page), item, -1, -1);
 380}
 381EXPORT_SYMBOL(dec_zone_page_state);
 382#else
 383/*
 384 * Use interrupt disable to serialize counter updates
 385 */
 386void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 387			 long delta)
 388{
 389	unsigned long flags;
 390
 391	local_irq_save(flags);
 392	__mod_zone_page_state(zone, item, delta);
 393	local_irq_restore(flags);
 394}
 395EXPORT_SYMBOL(mod_zone_page_state);
 396
 397void inc_zone_state(struct zone *zone, enum zone_stat_item item)
 398{
 399	unsigned long flags;
 400
 401	local_irq_save(flags);
 402	__inc_zone_state(zone, item);
 403	local_irq_restore(flags);
 404}
 405
 406void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 407{
 408	unsigned long flags;
 409	struct zone *zone;
 410
 411	zone = page_zone(page);
 412	local_irq_save(flags);
 413	__inc_zone_state(zone, item);
 414	local_irq_restore(flags);
 415}
 416EXPORT_SYMBOL(inc_zone_page_state);
 417
 418void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 419{
 420	unsigned long flags;
 421
 422	local_irq_save(flags);
 423	__dec_zone_page_state(page, item);
 424	local_irq_restore(flags);
 425}
 426EXPORT_SYMBOL(dec_zone_page_state);
 427#endif
 428
 429
 430/*
 431 * Fold a differential into the global counters.
 432 * Returns the number of counters updated.
 433 */
 434static int fold_diff(int *diff)
 435{
 436	int i;
 437	int changes = 0;
 438
 439	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 440		if (diff[i]) {
 441			atomic_long_add(diff[i], &vm_stat[i]);
 442			changes++;
 443	}
 444	return changes;
 445}
 446
 447/*
 448 * Update the zone counters for the current cpu.
 449 *
 450 * Note that refresh_cpu_vm_stats strives to only access
 451 * node local memory. The per cpu pagesets on remote zones are placed
 452 * in the memory local to the processor using that pageset. So the
 453 * loop over all zones will access a series of cachelines local to
 454 * the processor.
 455 *
 456 * The call to zone_page_state_add updates the cachelines with the
 457 * statistics in the remote zone struct as well as the global cachelines
 458 * with the global counters. These could cause remote node cache line
 459 * bouncing and will have to be only done when necessary.
 460 *
 461 * The function returns the number of global counters updated.
 462 */
 463static int refresh_cpu_vm_stats(bool do_pagesets)
 464{
 465	struct zone *zone;
 466	int i;
 467	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 468	int changes = 0;
 469
 470	for_each_populated_zone(zone) {
 471		struct per_cpu_pageset __percpu *p = zone->pageset;
 472
 473		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
 474			int v;
 475
 476			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
 477			if (v) {
 
 
 478
 
 
 
 
 479				atomic_long_add(v, &zone->vm_stat[i]);
 480				global_diff[i] += v;
 481#ifdef CONFIG_NUMA
 482				/* 3 seconds idle till flush */
 483				__this_cpu_write(p->expire, 3);
 484#endif
 485			}
 486		}
 487#ifdef CONFIG_NUMA
 488		if (do_pagesets) {
 489			cond_resched();
 490			/*
 491			 * Deal with draining the remote pageset of this
 492			 * processor
 493			 *
 494			 * Check if there are pages remaining in this pageset
 495			 * if not then there is nothing to expire.
 496			 */
 497			if (!__this_cpu_read(p->expire) ||
 498			       !__this_cpu_read(p->pcp.count))
 499				continue;
 500
 501			/*
 502			 * We never drain zones local to this processor.
 503			 */
 504			if (zone_to_nid(zone) == numa_node_id()) {
 505				__this_cpu_write(p->expire, 0);
 506				continue;
 507			}
 508
 509			if (__this_cpu_dec_return(p->expire))
 510				continue;
 511
 512			if (__this_cpu_read(p->pcp.count)) {
 513				drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
 514				changes++;
 515			}
 516		}
 517#endif
 518	}
 519	changes += fold_diff(global_diff);
 520	return changes;
 521}
 522
 523/*
 524 * Fold the data for an offline cpu into the global array.
 525 * There cannot be any access by the offline cpu and therefore
 526 * synchronization is simplified.
 527 */
 528void cpu_vm_stats_fold(int cpu)
 529{
 530	struct zone *zone;
 531	int i;
 532	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 533
 534	for_each_populated_zone(zone) {
 535		struct per_cpu_pageset *p;
 536
 537		p = per_cpu_ptr(zone->pageset, cpu);
 538
 539		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 540			if (p->vm_stat_diff[i]) {
 541				int v;
 542
 543				v = p->vm_stat_diff[i];
 544				p->vm_stat_diff[i] = 0;
 545				atomic_long_add(v, &zone->vm_stat[i]);
 546				global_diff[i] += v;
 547			}
 548	}
 549
 550	fold_diff(global_diff);
 
 
 551}
 552
 553/*
 554 * this is only called if !populated_zone(zone), which implies no other users of
 555 * pset->vm_stat_diff[] exsist.
 556 */
 557void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
 558{
 559	int i;
 560
 561	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 562		if (pset->vm_stat_diff[i]) {
 563			int v = pset->vm_stat_diff[i];
 564			pset->vm_stat_diff[i] = 0;
 565			atomic_long_add(v, &zone->vm_stat[i]);
 566			atomic_long_add(v, &vm_stat[i]);
 567		}
 568}
 569#endif
 570
 571#ifdef CONFIG_NUMA
 572/*
 573 * zonelist = the list of zones passed to the allocator
 574 * z 	    = the zone from which the allocation occurred.
 575 *
 576 * Must be called with interrupts disabled.
 577 *
 578 * When __GFP_OTHER_NODE is set assume the node of the preferred
 579 * zone is the local node. This is useful for daemons who allocate
 580 * memory on behalf of other processes.
 581 */
 582void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
 583{
 584	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
 585		__inc_zone_state(z, NUMA_HIT);
 586	} else {
 587		__inc_zone_state(z, NUMA_MISS);
 588		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
 589	}
 590	if (z->node == ((flags & __GFP_OTHER_NODE) ?
 591			preferred_zone->node : numa_node_id()))
 592		__inc_zone_state(z, NUMA_LOCAL);
 593	else
 594		__inc_zone_state(z, NUMA_OTHER);
 595}
 596
 597/*
 598 * Determine the per node value of a stat item.
 599 */
 600unsigned long node_page_state(int node, enum zone_stat_item item)
 601{
 602	struct zone *zones = NODE_DATA(node)->node_zones;
 603
 604	return
 605#ifdef CONFIG_ZONE_DMA
 606		zone_page_state(&zones[ZONE_DMA], item) +
 607#endif
 608#ifdef CONFIG_ZONE_DMA32
 609		zone_page_state(&zones[ZONE_DMA32], item) +
 610#endif
 611#ifdef CONFIG_HIGHMEM
 612		zone_page_state(&zones[ZONE_HIGHMEM], item) +
 613#endif
 614		zone_page_state(&zones[ZONE_NORMAL], item) +
 615		zone_page_state(&zones[ZONE_MOVABLE], item);
 616}
 617
 618#endif
 619
 620#ifdef CONFIG_COMPACTION
 621
 622struct contig_page_info {
 623	unsigned long free_pages;
 624	unsigned long free_blocks_total;
 625	unsigned long free_blocks_suitable;
 626};
 627
 628/*
 629 * Calculate the number of free pages in a zone, how many contiguous
 630 * pages are free and how many are large enough to satisfy an allocation of
 631 * the target size. Note that this function makes no attempt to estimate
 632 * how many suitable free blocks there *might* be if MOVABLE pages were
 633 * migrated. Calculating that is possible, but expensive and can be
 634 * figured out from userspace
 635 */
 636static void fill_contig_page_info(struct zone *zone,
 637				unsigned int suitable_order,
 638				struct contig_page_info *info)
 639{
 640	unsigned int order;
 641
 642	info->free_pages = 0;
 643	info->free_blocks_total = 0;
 644	info->free_blocks_suitable = 0;
 645
 646	for (order = 0; order < MAX_ORDER; order++) {
 647		unsigned long blocks;
 648
 649		/* Count number of free blocks */
 650		blocks = zone->free_area[order].nr_free;
 651		info->free_blocks_total += blocks;
 652
 653		/* Count free base pages */
 654		info->free_pages += blocks << order;
 655
 656		/* Count the suitable free blocks */
 657		if (order >= suitable_order)
 658			info->free_blocks_suitable += blocks <<
 659						(order - suitable_order);
 660	}
 661}
 662
 663/*
 664 * A fragmentation index only makes sense if an allocation of a requested
 665 * size would fail. If that is true, the fragmentation index indicates
 666 * whether external fragmentation or a lack of memory was the problem.
 667 * The value can be used to determine if page reclaim or compaction
 668 * should be used
 669 */
 670static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
 671{
 672	unsigned long requested = 1UL << order;
 673
 674	if (!info->free_blocks_total)
 675		return 0;
 676
 677	/* Fragmentation index only makes sense when a request would fail */
 678	if (info->free_blocks_suitable)
 679		return -1000;
 680
 681	/*
 682	 * Index is between 0 and 1 so return within 3 decimal places
 683	 *
 684	 * 0 => allocation would fail due to lack of memory
 685	 * 1 => allocation would fail due to fragmentation
 686	 */
 687	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
 688}
 689
 690/* Same as __fragmentation index but allocs contig_page_info on stack */
 691int fragmentation_index(struct zone *zone, unsigned int order)
 692{
 693	struct contig_page_info info;
 694
 695	fill_contig_page_info(zone, order, &info);
 696	return __fragmentation_index(order, &info);
 697}
 698#endif
 699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 700#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
 701#ifdef CONFIG_ZONE_DMA
 702#define TEXT_FOR_DMA(xx) xx "_dma",
 703#else
 704#define TEXT_FOR_DMA(xx)
 705#endif
 706
 707#ifdef CONFIG_ZONE_DMA32
 708#define TEXT_FOR_DMA32(xx) xx "_dma32",
 709#else
 710#define TEXT_FOR_DMA32(xx)
 711#endif
 712
 713#ifdef CONFIG_HIGHMEM
 714#define TEXT_FOR_HIGHMEM(xx) xx "_high",
 715#else
 716#define TEXT_FOR_HIGHMEM(xx)
 717#endif
 718
 719#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
 720					TEXT_FOR_HIGHMEM(xx) xx "_movable",
 721
 722const char * const vmstat_text[] = {
 723	/* enum zone_stat_item countes */
 724	"nr_free_pages",
 725	"nr_alloc_batch",
 726	"nr_inactive_anon",
 727	"nr_active_anon",
 728	"nr_inactive_file",
 729	"nr_active_file",
 730	"nr_unevictable",
 731	"nr_mlock",
 732	"nr_anon_pages",
 733	"nr_mapped",
 734	"nr_file_pages",
 735	"nr_dirty",
 736	"nr_writeback",
 737	"nr_slab_reclaimable",
 738	"nr_slab_unreclaimable",
 739	"nr_page_table_pages",
 740	"nr_kernel_stack",
 741	"nr_unstable",
 742	"nr_bounce",
 743	"nr_vmscan_write",
 744	"nr_vmscan_immediate_reclaim",
 745	"nr_writeback_temp",
 746	"nr_isolated_anon",
 747	"nr_isolated_file",
 748	"nr_shmem",
 749	"nr_dirtied",
 750	"nr_written",
 751	"nr_pages_scanned",
 752
 753#ifdef CONFIG_NUMA
 754	"numa_hit",
 755	"numa_miss",
 756	"numa_foreign",
 757	"numa_interleave",
 758	"numa_local",
 759	"numa_other",
 760#endif
 761	"workingset_refault",
 762	"workingset_activate",
 763	"workingset_nodereclaim",
 764	"nr_anon_transparent_hugepages",
 765	"nr_free_cma",
 766
 767	/* enum writeback_stat_item counters */
 768	"nr_dirty_threshold",
 769	"nr_dirty_background_threshold",
 770
 771#ifdef CONFIG_VM_EVENT_COUNTERS
 772	/* enum vm_event_item counters */
 773	"pgpgin",
 774	"pgpgout",
 775	"pswpin",
 776	"pswpout",
 777
 778	TEXTS_FOR_ZONES("pgalloc")
 779
 780	"pgfree",
 781	"pgactivate",
 782	"pgdeactivate",
 783
 784	"pgfault",
 785	"pgmajfault",
 786	"pglazyfreed",
 787
 788	TEXTS_FOR_ZONES("pgrefill")
 789	TEXTS_FOR_ZONES("pgsteal_kswapd")
 790	TEXTS_FOR_ZONES("pgsteal_direct")
 791	TEXTS_FOR_ZONES("pgscan_kswapd")
 792	TEXTS_FOR_ZONES("pgscan_direct")
 793	"pgscan_direct_throttle",
 794
 795#ifdef CONFIG_NUMA
 796	"zone_reclaim_failed",
 797#endif
 798	"pginodesteal",
 799	"slabs_scanned",
 
 800	"kswapd_inodesteal",
 801	"kswapd_low_wmark_hit_quickly",
 802	"kswapd_high_wmark_hit_quickly",
 
 803	"pageoutrun",
 804	"allocstall",
 805
 806	"pgrotated",
 807
 808	"drop_pagecache",
 809	"drop_slab",
 810
 811#ifdef CONFIG_NUMA_BALANCING
 812	"numa_pte_updates",
 813	"numa_huge_pte_updates",
 814	"numa_hint_faults",
 815	"numa_hint_faults_local",
 816	"numa_pages_migrated",
 817#endif
 818#ifdef CONFIG_MIGRATION
 819	"pgmigrate_success",
 820	"pgmigrate_fail",
 821#endif
 822#ifdef CONFIG_COMPACTION
 823	"compact_migrate_scanned",
 824	"compact_free_scanned",
 825	"compact_isolated",
 826	"compact_stall",
 827	"compact_fail",
 828	"compact_success",
 829	"compact_daemon_wake",
 830#endif
 831
 832#ifdef CONFIG_HUGETLB_PAGE
 833	"htlb_buddy_alloc_success",
 834	"htlb_buddy_alloc_fail",
 835#endif
 836	"unevictable_pgs_culled",
 837	"unevictable_pgs_scanned",
 838	"unevictable_pgs_rescued",
 839	"unevictable_pgs_mlocked",
 840	"unevictable_pgs_munlocked",
 841	"unevictable_pgs_cleared",
 842	"unevictable_pgs_stranded",
 
 843
 844#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 845	"thp_fault_alloc",
 846	"thp_fault_fallback",
 847	"thp_collapse_alloc",
 848	"thp_collapse_alloc_failed",
 849	"thp_split_page",
 850	"thp_split_page_failed",
 851	"thp_deferred_split_page",
 852	"thp_split_pmd",
 853	"thp_zero_page_alloc",
 854	"thp_zero_page_alloc_failed",
 855#endif
 856#ifdef CONFIG_MEMORY_BALLOON
 857	"balloon_inflate",
 858	"balloon_deflate",
 859#ifdef CONFIG_BALLOON_COMPACTION
 860	"balloon_migrate",
 861#endif
 862#endif /* CONFIG_MEMORY_BALLOON */
 863#ifdef CONFIG_DEBUG_TLBFLUSH
 864#ifdef CONFIG_SMP
 865	"nr_tlb_remote_flush",
 866	"nr_tlb_remote_flush_received",
 867#endif /* CONFIG_SMP */
 868	"nr_tlb_local_flush_all",
 869	"nr_tlb_local_flush_one",
 870#endif /* CONFIG_DEBUG_TLBFLUSH */
 871
 872#ifdef CONFIG_DEBUG_VM_VMACACHE
 873	"vmacache_find_calls",
 874	"vmacache_find_hits",
 875	"vmacache_full_flushes",
 876#endif
 
 877#endif /* CONFIG_VM_EVENTS_COUNTERS */
 878};
 879#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
 880
 881
 882#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
 883     defined(CONFIG_PROC_FS)
 884static void *frag_start(struct seq_file *m, loff_t *pos)
 885{
 886	pg_data_t *pgdat;
 887	loff_t node = *pos;
 888
 889	for (pgdat = first_online_pgdat();
 890	     pgdat && node;
 891	     pgdat = next_online_pgdat(pgdat))
 892		--node;
 893
 894	return pgdat;
 895}
 896
 897static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
 898{
 899	pg_data_t *pgdat = (pg_data_t *)arg;
 900
 901	(*pos)++;
 902	return next_online_pgdat(pgdat);
 903}
 904
 905static void frag_stop(struct seq_file *m, void *arg)
 906{
 907}
 908
 909/* Walk all the zones in a node and print using a callback */
 910static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
 911		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
 912{
 913	struct zone *zone;
 914	struct zone *node_zones = pgdat->node_zones;
 915	unsigned long flags;
 916
 917	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
 918		if (!populated_zone(zone))
 919			continue;
 920
 921		spin_lock_irqsave(&zone->lock, flags);
 922		print(m, pgdat, zone);
 923		spin_unlock_irqrestore(&zone->lock, flags);
 924	}
 925}
 926#endif
 927
 928#ifdef CONFIG_PROC_FS
 929static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
 930						struct zone *zone)
 931{
 932	int order;
 933
 934	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
 935	for (order = 0; order < MAX_ORDER; ++order)
 936		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
 937	seq_putc(m, '\n');
 938}
 939
 940/*
 941 * This walks the free areas for each zone.
 942 */
 943static int frag_show(struct seq_file *m, void *arg)
 944{
 945	pg_data_t *pgdat = (pg_data_t *)arg;
 946	walk_zones_in_node(m, pgdat, frag_show_print);
 947	return 0;
 948}
 949
 950static void pagetypeinfo_showfree_print(struct seq_file *m,
 951					pg_data_t *pgdat, struct zone *zone)
 952{
 953	int order, mtype;
 954
 955	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
 956		seq_printf(m, "Node %4d, zone %8s, type %12s ",
 957					pgdat->node_id,
 958					zone->name,
 959					migratetype_names[mtype]);
 960		for (order = 0; order < MAX_ORDER; ++order) {
 961			unsigned long freecount = 0;
 962			struct free_area *area;
 963			struct list_head *curr;
 964
 965			area = &(zone->free_area[order]);
 966
 967			list_for_each(curr, &area->free_list[mtype])
 968				freecount++;
 969			seq_printf(m, "%6lu ", freecount);
 970		}
 971		seq_putc(m, '\n');
 972	}
 973}
 974
 975/* Print out the free pages at each order for each migatetype */
 976static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
 977{
 978	int order;
 979	pg_data_t *pgdat = (pg_data_t *)arg;
 980
 981	/* Print header */
 982	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
 983	for (order = 0; order < MAX_ORDER; ++order)
 984		seq_printf(m, "%6d ", order);
 985	seq_putc(m, '\n');
 986
 987	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
 988
 989	return 0;
 990}
 991
 992static void pagetypeinfo_showblockcount_print(struct seq_file *m,
 993					pg_data_t *pgdat, struct zone *zone)
 994{
 995	int mtype;
 996	unsigned long pfn;
 997	unsigned long start_pfn = zone->zone_start_pfn;
 998	unsigned long end_pfn = zone_end_pfn(zone);
 999	unsigned long count[MIGRATE_TYPES] = { 0, };
1000
1001	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1002		struct page *page;
1003
1004		if (!pfn_valid(pfn))
1005			continue;
1006
1007		page = pfn_to_page(pfn);
1008
1009		/* Watch for unexpected holes punched in the memmap */
1010		if (!memmap_valid_within(pfn, page, zone))
1011			continue;
1012
1013		mtype = get_pageblock_migratetype(page);
1014
1015		if (mtype < MIGRATE_TYPES)
1016			count[mtype]++;
1017	}
1018
1019	/* Print counts */
1020	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1021	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1022		seq_printf(m, "%12lu ", count[mtype]);
1023	seq_putc(m, '\n');
1024}
1025
1026/* Print out the free pages at each order for each migratetype */
1027static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1028{
1029	int mtype;
1030	pg_data_t *pgdat = (pg_data_t *)arg;
1031
1032	seq_printf(m, "\n%-23s", "Number of blocks type ");
1033	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1034		seq_printf(m, "%12s ", migratetype_names[mtype]);
1035	seq_putc(m, '\n');
1036	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1037
1038	return 0;
1039}
1040
1041#ifdef CONFIG_PAGE_OWNER
1042static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1043							pg_data_t *pgdat,
1044							struct zone *zone)
1045{
1046	struct page *page;
1047	struct page_ext *page_ext;
1048	unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1049	unsigned long end_pfn = pfn + zone->spanned_pages;
1050	unsigned long count[MIGRATE_TYPES] = { 0, };
1051	int pageblock_mt, page_mt;
1052	int i;
1053
1054	/* Scan block by block. First and last block may be incomplete */
1055	pfn = zone->zone_start_pfn;
1056
1057	/*
1058	 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1059	 * a zone boundary, it will be double counted between zones. This does
1060	 * not matter as the mixed block count will still be correct
1061	 */
1062	for (; pfn < end_pfn; ) {
1063		if (!pfn_valid(pfn)) {
1064			pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1065			continue;
1066		}
1067
1068		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1069		block_end_pfn = min(block_end_pfn, end_pfn);
1070
1071		page = pfn_to_page(pfn);
1072		pageblock_mt = get_pfnblock_migratetype(page, pfn);
1073
1074		for (; pfn < block_end_pfn; pfn++) {
1075			if (!pfn_valid_within(pfn))
1076				continue;
1077
1078			page = pfn_to_page(pfn);
1079			if (PageBuddy(page)) {
1080				pfn += (1UL << page_order(page)) - 1;
1081				continue;
1082			}
1083
1084			if (PageReserved(page))
1085				continue;
1086
1087			page_ext = lookup_page_ext(page);
1088
1089			if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1090				continue;
1091
1092			page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1093			if (pageblock_mt != page_mt) {
1094				if (is_migrate_cma(pageblock_mt))
1095					count[MIGRATE_MOVABLE]++;
1096				else
1097					count[pageblock_mt]++;
1098
1099				pfn = block_end_pfn;
1100				break;
1101			}
1102			pfn += (1UL << page_ext->order) - 1;
1103		}
1104	}
1105
1106	/* Print counts */
1107	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1108	for (i = 0; i < MIGRATE_TYPES; i++)
1109		seq_printf(m, "%12lu ", count[i]);
1110	seq_putc(m, '\n');
1111}
1112#endif /* CONFIG_PAGE_OWNER */
1113
1114/*
1115 * Print out the number of pageblocks for each migratetype that contain pages
1116 * of other types. This gives an indication of how well fallbacks are being
1117 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1118 * to determine what is going on
1119 */
1120static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1121{
1122#ifdef CONFIG_PAGE_OWNER
1123	int mtype;
1124
1125	if (!static_branch_unlikely(&page_owner_inited))
1126		return;
1127
1128	drain_all_pages(NULL);
1129
1130	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1131	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1132		seq_printf(m, "%12s ", migratetype_names[mtype]);
1133	seq_putc(m, '\n');
1134
1135	walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1136#endif /* CONFIG_PAGE_OWNER */
1137}
1138
1139/*
1140 * This prints out statistics in relation to grouping pages by mobility.
1141 * It is expensive to collect so do not constantly read the file.
1142 */
1143static int pagetypeinfo_show(struct seq_file *m, void *arg)
1144{
1145	pg_data_t *pgdat = (pg_data_t *)arg;
1146
1147	/* check memoryless node */
1148	if (!node_state(pgdat->node_id, N_MEMORY))
1149		return 0;
1150
1151	seq_printf(m, "Page block order: %d\n", pageblock_order);
1152	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1153	seq_putc(m, '\n');
1154	pagetypeinfo_showfree(m, pgdat);
1155	pagetypeinfo_showblockcount(m, pgdat);
1156	pagetypeinfo_showmixedcount(m, pgdat);
1157
1158	return 0;
1159}
1160
1161static const struct seq_operations fragmentation_op = {
1162	.start	= frag_start,
1163	.next	= frag_next,
1164	.stop	= frag_stop,
1165	.show	= frag_show,
1166};
1167
1168static int fragmentation_open(struct inode *inode, struct file *file)
1169{
1170	return seq_open(file, &fragmentation_op);
1171}
1172
1173static const struct file_operations fragmentation_file_operations = {
1174	.open		= fragmentation_open,
1175	.read		= seq_read,
1176	.llseek		= seq_lseek,
1177	.release	= seq_release,
1178};
1179
1180static const struct seq_operations pagetypeinfo_op = {
1181	.start	= frag_start,
1182	.next	= frag_next,
1183	.stop	= frag_stop,
1184	.show	= pagetypeinfo_show,
1185};
1186
1187static int pagetypeinfo_open(struct inode *inode, struct file *file)
1188{
1189	return seq_open(file, &pagetypeinfo_op);
1190}
1191
1192static const struct file_operations pagetypeinfo_file_ops = {
1193	.open		= pagetypeinfo_open,
1194	.read		= seq_read,
1195	.llseek		= seq_lseek,
1196	.release	= seq_release,
1197};
1198
1199static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1200							struct zone *zone)
1201{
1202	int i;
1203	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1204	seq_printf(m,
1205		   "\n  pages free     %lu"
1206		   "\n        min      %lu"
1207		   "\n        low      %lu"
1208		   "\n        high     %lu"
1209		   "\n        scanned  %lu"
1210		   "\n        spanned  %lu"
1211		   "\n        present  %lu"
1212		   "\n        managed  %lu",
1213		   zone_page_state(zone, NR_FREE_PAGES),
1214		   min_wmark_pages(zone),
1215		   low_wmark_pages(zone),
1216		   high_wmark_pages(zone),
1217		   zone_page_state(zone, NR_PAGES_SCANNED),
1218		   zone->spanned_pages,
1219		   zone->present_pages,
1220		   zone->managed_pages);
1221
1222	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1223		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1224				zone_page_state(zone, i));
1225
1226	seq_printf(m,
1227		   "\n        protection: (%ld",
1228		   zone->lowmem_reserve[0]);
1229	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1230		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1231	seq_printf(m,
1232		   ")"
1233		   "\n  pagesets");
1234	for_each_online_cpu(i) {
1235		struct per_cpu_pageset *pageset;
1236
1237		pageset = per_cpu_ptr(zone->pageset, i);
1238		seq_printf(m,
1239			   "\n    cpu: %i"
1240			   "\n              count: %i"
1241			   "\n              high:  %i"
1242			   "\n              batch: %i",
1243			   i,
1244			   pageset->pcp.count,
1245			   pageset->pcp.high,
1246			   pageset->pcp.batch);
1247#ifdef CONFIG_SMP
1248		seq_printf(m, "\n  vm stats threshold: %d",
1249				pageset->stat_threshold);
1250#endif
1251	}
1252	seq_printf(m,
1253		   "\n  all_unreclaimable: %u"
1254		   "\n  start_pfn:         %lu"
1255		   "\n  inactive_ratio:    %u",
1256		   !zone_reclaimable(zone),
1257		   zone->zone_start_pfn,
1258		   zone->inactive_ratio);
1259	seq_putc(m, '\n');
1260}
1261
1262/*
1263 * Output information about zones in @pgdat.
1264 */
1265static int zoneinfo_show(struct seq_file *m, void *arg)
1266{
1267	pg_data_t *pgdat = (pg_data_t *)arg;
1268	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1269	return 0;
1270}
1271
1272static const struct seq_operations zoneinfo_op = {
1273	.start	= frag_start, /* iterate over all zones. The same as in
1274			       * fragmentation. */
1275	.next	= frag_next,
1276	.stop	= frag_stop,
1277	.show	= zoneinfo_show,
1278};
1279
1280static int zoneinfo_open(struct inode *inode, struct file *file)
1281{
1282	return seq_open(file, &zoneinfo_op);
1283}
1284
1285static const struct file_operations proc_zoneinfo_file_operations = {
1286	.open		= zoneinfo_open,
1287	.read		= seq_read,
1288	.llseek		= seq_lseek,
1289	.release	= seq_release,
1290};
1291
1292enum writeback_stat_item {
1293	NR_DIRTY_THRESHOLD,
1294	NR_DIRTY_BG_THRESHOLD,
1295	NR_VM_WRITEBACK_STAT_ITEMS,
1296};
1297
1298static void *vmstat_start(struct seq_file *m, loff_t *pos)
1299{
1300	unsigned long *v;
1301	int i, stat_items_size;
1302
1303	if (*pos >= ARRAY_SIZE(vmstat_text))
1304		return NULL;
1305	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1306			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1307
1308#ifdef CONFIG_VM_EVENT_COUNTERS
1309	stat_items_size += sizeof(struct vm_event_state);
1310#endif
1311
1312	v = kmalloc(stat_items_size, GFP_KERNEL);
1313	m->private = v;
1314	if (!v)
1315		return ERR_PTR(-ENOMEM);
1316	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1317		v[i] = global_page_state(i);
1318	v += NR_VM_ZONE_STAT_ITEMS;
1319
1320	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1321			    v + NR_DIRTY_THRESHOLD);
1322	v += NR_VM_WRITEBACK_STAT_ITEMS;
1323
1324#ifdef CONFIG_VM_EVENT_COUNTERS
1325	all_vm_events(v);
1326	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1327	v[PGPGOUT] /= 2;
1328#endif
1329	return (unsigned long *)m->private + *pos;
1330}
1331
1332static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1333{
1334	(*pos)++;
1335	if (*pos >= ARRAY_SIZE(vmstat_text))
1336		return NULL;
1337	return (unsigned long *)m->private + *pos;
1338}
1339
1340static int vmstat_show(struct seq_file *m, void *arg)
1341{
1342	unsigned long *l = arg;
1343	unsigned long off = l - (unsigned long *)m->private;
1344
1345	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1346	return 0;
1347}
1348
1349static void vmstat_stop(struct seq_file *m, void *arg)
1350{
1351	kfree(m->private);
1352	m->private = NULL;
1353}
1354
1355static const struct seq_operations vmstat_op = {
1356	.start	= vmstat_start,
1357	.next	= vmstat_next,
1358	.stop	= vmstat_stop,
1359	.show	= vmstat_show,
1360};
1361
1362static int vmstat_open(struct inode *inode, struct file *file)
1363{
1364	return seq_open(file, &vmstat_op);
1365}
1366
1367static const struct file_operations proc_vmstat_file_operations = {
1368	.open		= vmstat_open,
1369	.read		= seq_read,
1370	.llseek		= seq_lseek,
1371	.release	= seq_release,
1372};
1373#endif /* CONFIG_PROC_FS */
1374
1375#ifdef CONFIG_SMP
1376static struct workqueue_struct *vmstat_wq;
1377static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1378int sysctl_stat_interval __read_mostly = HZ;
1379static cpumask_var_t cpu_stat_off;
1380
1381static void vmstat_update(struct work_struct *w)
1382{
1383	if (refresh_cpu_vm_stats(true)) {
1384		/*
1385		 * Counters were updated so we expect more updates
1386		 * to occur in the future. Keep on running the
1387		 * update worker thread.
1388		 * If we were marked on cpu_stat_off clear the flag
1389		 * so that vmstat_shepherd doesn't schedule us again.
1390		 */
1391		if (!cpumask_test_and_clear_cpu(smp_processor_id(),
1392						cpu_stat_off)) {
1393			queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1394				this_cpu_ptr(&vmstat_work),
1395				round_jiffies_relative(sysctl_stat_interval));
1396		}
1397	} else {
1398		/*
1399		 * We did not update any counters so the app may be in
1400		 * a mode where it does not cause counter updates.
1401		 * We may be uselessly running vmstat_update.
1402		 * Defer the checking for differentials to the
1403		 * shepherd thread on a different processor.
1404		 */
1405		cpumask_set_cpu(smp_processor_id(), cpu_stat_off);
1406	}
1407}
1408
1409/*
1410 * Switch off vmstat processing and then fold all the remaining differentials
1411 * until the diffs stay at zero. The function is used by NOHZ and can only be
1412 * invoked when tick processing is not active.
1413 */
1414/*
1415 * Check if the diffs for a certain cpu indicate that
1416 * an update is needed.
1417 */
1418static bool need_update(int cpu)
1419{
1420	struct zone *zone;
1421
1422	for_each_populated_zone(zone) {
1423		struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1424
1425		BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1426		/*
1427		 * The fast way of checking if there are any vmstat diffs.
1428		 * This works because the diffs are byte sized items.
1429		 */
1430		if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1431			return true;
1432
1433	}
1434	return false;
1435}
1436
1437void quiet_vmstat(void)
1438{
1439	if (system_state != SYSTEM_RUNNING)
1440		return;
1441
1442	/*
1443	 * If we are already in hands of the shepherd then there
1444	 * is nothing for us to do here.
1445	 */
1446	if (cpumask_test_and_set_cpu(smp_processor_id(), cpu_stat_off))
1447		return;
1448
1449	if (!need_update(smp_processor_id()))
1450		return;
1451
1452	/*
1453	 * Just refresh counters and do not care about the pending delayed
1454	 * vmstat_update. It doesn't fire that often to matter and canceling
1455	 * it would be too expensive from this path.
1456	 * vmstat_shepherd will take care about that for us.
1457	 */
1458	refresh_cpu_vm_stats(false);
1459}
1460
1461
1462/*
1463 * Shepherd worker thread that checks the
1464 * differentials of processors that have their worker
1465 * threads for vm statistics updates disabled because of
1466 * inactivity.
1467 */
1468static void vmstat_shepherd(struct work_struct *w);
1469
1470static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1471
1472static void vmstat_shepherd(struct work_struct *w)
1473{
1474	int cpu;
1475
1476	get_online_cpus();
1477	/* Check processors whose vmstat worker threads have been disabled */
1478	for_each_cpu(cpu, cpu_stat_off) {
1479		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1480
1481		if (need_update(cpu)) {
1482			if (cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1483				queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
1484		} else {
1485			/*
1486			 * Cancel the work if quiet_vmstat has put this
1487			 * cpu on cpu_stat_off because the work item might
1488			 * be still scheduled
1489			 */
1490			cancel_delayed_work(dw);
1491		}
1492	}
1493	put_online_cpus();
1494
1495	schedule_delayed_work(&shepherd,
1496		round_jiffies_relative(sysctl_stat_interval));
1497}
1498
1499static void __init start_shepherd_timer(void)
1500{
1501	int cpu;
1502
1503	for_each_possible_cpu(cpu)
1504		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1505			vmstat_update);
1506
1507	if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1508		BUG();
1509	cpumask_copy(cpu_stat_off, cpu_online_mask);
1510
1511	vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1512	schedule_delayed_work(&shepherd,
1513		round_jiffies_relative(sysctl_stat_interval));
1514}
1515
1516static void vmstat_cpu_dead(int node)
1517{
1518	int cpu;
1519
1520	get_online_cpus();
1521	for_each_online_cpu(cpu)
1522		if (cpu_to_node(cpu) == node)
1523			goto end;
1524
1525	node_clear_state(node, N_CPU);
1526end:
1527	put_online_cpus();
1528}
1529
1530/*
1531 * Use the cpu notifier to insure that the thresholds are recalculated
1532 * when necessary.
1533 */
1534static int vmstat_cpuup_callback(struct notifier_block *nfb,
1535		unsigned long action,
1536		void *hcpu)
1537{
1538	long cpu = (long)hcpu;
1539
1540	switch (action) {
1541	case CPU_ONLINE:
1542	case CPU_ONLINE_FROZEN:
1543		refresh_zone_stat_thresholds();
 
1544		node_set_state(cpu_to_node(cpu), N_CPU);
1545		cpumask_set_cpu(cpu, cpu_stat_off);
1546		break;
1547	case CPU_DOWN_PREPARE:
1548	case CPU_DOWN_PREPARE_FROZEN:
1549		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1550		cpumask_clear_cpu(cpu, cpu_stat_off);
1551		break;
1552	case CPU_DOWN_FAILED:
1553	case CPU_DOWN_FAILED_FROZEN:
1554		cpumask_set_cpu(cpu, cpu_stat_off);
1555		break;
1556	case CPU_DEAD:
1557	case CPU_DEAD_FROZEN:
1558		refresh_zone_stat_thresholds();
1559		vmstat_cpu_dead(cpu_to_node(cpu));
1560		break;
1561	default:
1562		break;
1563	}
1564	return NOTIFY_OK;
1565}
1566
1567static struct notifier_block vmstat_notifier =
1568	{ &vmstat_cpuup_callback, NULL, 0 };
1569#endif
1570
1571static int __init setup_vmstat(void)
1572{
1573#ifdef CONFIG_SMP
1574	cpu_notifier_register_begin();
1575	__register_cpu_notifier(&vmstat_notifier);
 
1576
1577	start_shepherd_timer();
1578	cpu_notifier_register_done();
1579#endif
1580#ifdef CONFIG_PROC_FS
1581	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1582	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1583	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1584	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1585#endif
1586	return 0;
1587}
1588module_init(setup_vmstat)
1589
1590#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
 
 
 
1591
1592/*
1593 * Return an index indicating how much of the available free memory is
1594 * unusable for an allocation of the requested size.
1595 */
1596static int unusable_free_index(unsigned int order,
1597				struct contig_page_info *info)
1598{
1599	/* No free memory is interpreted as all free memory is unusable */
1600	if (info->free_pages == 0)
1601		return 1000;
1602
1603	/*
1604	 * Index should be a value between 0 and 1. Return a value to 3
1605	 * decimal places.
1606	 *
1607	 * 0 => no fragmentation
1608	 * 1 => high fragmentation
1609	 */
1610	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1611
1612}
1613
1614static void unusable_show_print(struct seq_file *m,
1615					pg_data_t *pgdat, struct zone *zone)
1616{
1617	unsigned int order;
1618	int index;
1619	struct contig_page_info info;
1620
1621	seq_printf(m, "Node %d, zone %8s ",
1622				pgdat->node_id,
1623				zone->name);
1624	for (order = 0; order < MAX_ORDER; ++order) {
1625		fill_contig_page_info(zone, order, &info);
1626		index = unusable_free_index(order, &info);
1627		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1628	}
1629
1630	seq_putc(m, '\n');
1631}
1632
1633/*
1634 * Display unusable free space index
1635 *
1636 * The unusable free space index measures how much of the available free
1637 * memory cannot be used to satisfy an allocation of a given size and is a
1638 * value between 0 and 1. The higher the value, the more of free memory is
1639 * unusable and by implication, the worse the external fragmentation is. This
1640 * can be expressed as a percentage by multiplying by 100.
1641 */
1642static int unusable_show(struct seq_file *m, void *arg)
1643{
1644	pg_data_t *pgdat = (pg_data_t *)arg;
1645
1646	/* check memoryless node */
1647	if (!node_state(pgdat->node_id, N_MEMORY))
1648		return 0;
1649
1650	walk_zones_in_node(m, pgdat, unusable_show_print);
1651
1652	return 0;
1653}
1654
1655static const struct seq_operations unusable_op = {
1656	.start	= frag_start,
1657	.next	= frag_next,
1658	.stop	= frag_stop,
1659	.show	= unusable_show,
1660};
1661
1662static int unusable_open(struct inode *inode, struct file *file)
1663{
1664	return seq_open(file, &unusable_op);
1665}
1666
1667static const struct file_operations unusable_file_ops = {
1668	.open		= unusable_open,
1669	.read		= seq_read,
1670	.llseek		= seq_lseek,
1671	.release	= seq_release,
1672};
1673
1674static void extfrag_show_print(struct seq_file *m,
1675					pg_data_t *pgdat, struct zone *zone)
1676{
1677	unsigned int order;
1678	int index;
1679
1680	/* Alloc on stack as interrupts are disabled for zone walk */
1681	struct contig_page_info info;
1682
1683	seq_printf(m, "Node %d, zone %8s ",
1684				pgdat->node_id,
1685				zone->name);
1686	for (order = 0; order < MAX_ORDER; ++order) {
1687		fill_contig_page_info(zone, order, &info);
1688		index = __fragmentation_index(order, &info);
1689		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1690	}
1691
1692	seq_putc(m, '\n');
1693}
1694
1695/*
1696 * Display fragmentation index for orders that allocations would fail for
1697 */
1698static int extfrag_show(struct seq_file *m, void *arg)
1699{
1700	pg_data_t *pgdat = (pg_data_t *)arg;
1701
1702	walk_zones_in_node(m, pgdat, extfrag_show_print);
1703
1704	return 0;
1705}
1706
1707static const struct seq_operations extfrag_op = {
1708	.start	= frag_start,
1709	.next	= frag_next,
1710	.stop	= frag_stop,
1711	.show	= extfrag_show,
1712};
1713
1714static int extfrag_open(struct inode *inode, struct file *file)
1715{
1716	return seq_open(file, &extfrag_op);
1717}
1718
1719static const struct file_operations extfrag_file_ops = {
1720	.open		= extfrag_open,
1721	.read		= seq_read,
1722	.llseek		= seq_lseek,
1723	.release	= seq_release,
1724};
1725
1726static int __init extfrag_debug_init(void)
1727{
1728	struct dentry *extfrag_debug_root;
1729
1730	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1731	if (!extfrag_debug_root)
1732		return -ENOMEM;
1733
1734	if (!debugfs_create_file("unusable_index", 0444,
1735			extfrag_debug_root, NULL, &unusable_file_ops))
1736		goto fail;
1737
1738	if (!debugfs_create_file("extfrag_index", 0444,
1739			extfrag_debug_root, NULL, &extfrag_file_ops))
1740		goto fail;
1741
1742	return 0;
1743fail:
1744	debugfs_remove_recursive(extfrag_debug_root);
1745	return -ENOMEM;
1746}
1747
1748module_init(extfrag_debug_init);
1749#endif