Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1#include <linux/mm.h>
  2#include <linux/mmzone.h>
  3#include <linux/bootmem.h>
  4#include <linux/page_ext.h>
  5#include <linux/memory.h>
  6#include <linux/vmalloc.h>
  7#include <linux/kmemleak.h>
  8#include <linux/page_owner.h>
  9#include <linux/page_idle.h>
 10
 11/*
 12 * struct page extension
 13 *
 14 * This is the feature to manage memory for extended data per page.
 15 *
 16 * Until now, we must modify struct page itself to store extra data per page.
 17 * This requires rebuilding the kernel and it is really time consuming process.
 18 * And, sometimes, rebuild is impossible due to third party module dependency.
 19 * At last, enlarging struct page could cause un-wanted system behaviour change.
 20 *
 21 * This feature is intended to overcome above mentioned problems. This feature
 22 * allocates memory for extended data per page in certain place rather than
 23 * the struct page itself. This memory can be accessed by the accessor
 24 * functions provided by this code. During the boot process, it checks whether
 25 * allocation of huge chunk of memory is needed or not. If not, it avoids
 26 * allocating memory at all. With this advantage, we can include this feature
 27 * into the kernel in default and can avoid rebuild and solve related problems.
 28 *
 29 * To help these things to work well, there are two callbacks for clients. One
 30 * is the need callback which is mandatory if user wants to avoid useless
 31 * memory allocation at boot-time. The other is optional, init callback, which
 32 * is used to do proper initialization after memory is allocated.
 33 *
 34 * The need callback is used to decide whether extended memory allocation is
 35 * needed or not. Sometimes users want to deactivate some features in this
 36 * boot and extra memory would be unneccessary. In this case, to avoid
 37 * allocating huge chunk of memory, each clients represent their need of
 38 * extra memory through the need callback. If one of the need callbacks
 39 * returns true, it means that someone needs extra memory so that
 40 * page extension core should allocates memory for page extension. If
 41 * none of need callbacks return true, memory isn't needed at all in this boot
 42 * and page extension core can skip to allocate memory. As result,
 43 * none of memory is wasted.
 44 *
 45 * The init callback is used to do proper initialization after page extension
 46 * is completely initialized. In sparse memory system, extra memory is
 47 * allocated some time later than memmap is allocated. In other words, lifetime
 48 * of memory for page extension isn't same with memmap for struct page.
 49 * Therefore, clients can't store extra data until page extension is
 50 * initialized, even if pages are allocated and used freely. This could
 51 * cause inadequate state of extra data per page, so, to prevent it, client
 52 * can utilize this callback to initialize the state of it correctly.
 53 */
 54
 55static struct page_ext_operations *page_ext_ops[] = {
 56	&debug_guardpage_ops,
 57#ifdef CONFIG_PAGE_POISONING
 58	&page_poisoning_ops,
 59#endif
 60#ifdef CONFIG_PAGE_OWNER
 61	&page_owner_ops,
 62#endif
 63#if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
 64	&page_idle_ops,
 65#endif
 66};
 67
 68static unsigned long total_usage;
 69
 70static bool __init invoke_need_callbacks(void)
 71{
 72	int i;
 73	int entries = ARRAY_SIZE(page_ext_ops);
 74
 75	for (i = 0; i < entries; i++) {
 76		if (page_ext_ops[i]->need && page_ext_ops[i]->need())
 77			return true;
 78	}
 79
 80	return false;
 81}
 82
 83static void __init invoke_init_callbacks(void)
 84{
 85	int i;
 86	int entries = ARRAY_SIZE(page_ext_ops);
 87
 88	for (i = 0; i < entries; i++) {
 89		if (page_ext_ops[i]->init)
 90			page_ext_ops[i]->init();
 91	}
 92}
 93
 94#if !defined(CONFIG_SPARSEMEM)
 95
 96
 97void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
 98{
 99	pgdat->node_page_ext = NULL;
100}
101
102struct page_ext *lookup_page_ext(struct page *page)
103{
104	unsigned long pfn = page_to_pfn(page);
105	unsigned long offset;
106	struct page_ext *base;
107
108	base = NODE_DATA(page_to_nid(page))->node_page_ext;
109#if defined(CONFIG_DEBUG_VM) || defined(CONFIG_PAGE_POISONING)
110	/*
111	 * The sanity checks the page allocator does upon freeing a
112	 * page can reach here before the page_ext arrays are
113	 * allocated when feeding a range of pages to the allocator
114	 * for the first time during bootup or memory hotplug.
115	 *
116	 * This check is also necessary for ensuring page poisoning
117	 * works as expected when enabled
118	 */
119	if (unlikely(!base))
120		return NULL;
121#endif
122	offset = pfn - round_down(node_start_pfn(page_to_nid(page)),
123					MAX_ORDER_NR_PAGES);
124	return base + offset;
125}
126
127static int __init alloc_node_page_ext(int nid)
128{
129	struct page_ext *base;
130	unsigned long table_size;
131	unsigned long nr_pages;
132
133	nr_pages = NODE_DATA(nid)->node_spanned_pages;
134	if (!nr_pages)
135		return 0;
136
137	/*
138	 * Need extra space if node range is not aligned with
139	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
140	 * checks buddy's status, range could be out of exact node range.
141	 */
142	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
143		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
144		nr_pages += MAX_ORDER_NR_PAGES;
145
146	table_size = sizeof(struct page_ext) * nr_pages;
147
148	base = memblock_virt_alloc_try_nid_nopanic(
149			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
150			BOOTMEM_ALLOC_ACCESSIBLE, nid);
151	if (!base)
152		return -ENOMEM;
153	NODE_DATA(nid)->node_page_ext = base;
154	total_usage += table_size;
155	return 0;
156}
157
158void __init page_ext_init_flatmem(void)
159{
160
161	int nid, fail;
162
163	if (!invoke_need_callbacks())
164		return;
165
166	for_each_online_node(nid)  {
167		fail = alloc_node_page_ext(nid);
168		if (fail)
169			goto fail;
170	}
171	pr_info("allocated %ld bytes of page_ext\n", total_usage);
172	invoke_init_callbacks();
173	return;
174
175fail:
176	pr_crit("allocation of page_ext failed.\n");
177	panic("Out of memory");
178}
179
180#else /* CONFIG_FLAT_NODE_MEM_MAP */
181
182struct page_ext *lookup_page_ext(struct page *page)
183{
184	unsigned long pfn = page_to_pfn(page);
185	struct mem_section *section = __pfn_to_section(pfn);
186#if defined(CONFIG_DEBUG_VM) || defined(CONFIG_PAGE_POISONING)
187	/*
188	 * The sanity checks the page allocator does upon freeing a
189	 * page can reach here before the page_ext arrays are
190	 * allocated when feeding a range of pages to the allocator
191	 * for the first time during bootup or memory hotplug.
192	 *
193	 * This check is also necessary for ensuring page poisoning
194	 * works as expected when enabled
195	 */
196	if (!section->page_ext)
197		return NULL;
198#endif
199	return section->page_ext + pfn;
200}
201
202static void *__meminit alloc_page_ext(size_t size, int nid)
203{
204	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
205	void *addr = NULL;
206
207	addr = alloc_pages_exact_nid(nid, size, flags);
208	if (addr) {
209		kmemleak_alloc(addr, size, 1, flags);
210		return addr;
211	}
212
213	if (node_state(nid, N_HIGH_MEMORY))
214		addr = vzalloc_node(size, nid);
215	else
216		addr = vzalloc(size);
217
218	return addr;
219}
220
221static int __meminit init_section_page_ext(unsigned long pfn, int nid)
222{
223	struct mem_section *section;
224	struct page_ext *base;
225	unsigned long table_size;
226
227	section = __pfn_to_section(pfn);
228
229	if (section->page_ext)
230		return 0;
231
232	table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
233	base = alloc_page_ext(table_size, nid);
234
235	/*
236	 * The value stored in section->page_ext is (base - pfn)
237	 * and it does not point to the memory block allocated above,
238	 * causing kmemleak false positives.
239	 */
240	kmemleak_not_leak(base);
241
242	if (!base) {
243		pr_err("page ext allocation failure\n");
244		return -ENOMEM;
245	}
246
247	/*
248	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
249	 * we need to apply a mask.
250	 */
251	pfn &= PAGE_SECTION_MASK;
252	section->page_ext = base - pfn;
253	total_usage += table_size;
254	return 0;
255}
256#ifdef CONFIG_MEMORY_HOTPLUG
257static void free_page_ext(void *addr)
258{
259	if (is_vmalloc_addr(addr)) {
260		vfree(addr);
261	} else {
262		struct page *page = virt_to_page(addr);
263		size_t table_size;
264
265		table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
266
267		BUG_ON(PageReserved(page));
268		free_pages_exact(addr, table_size);
269	}
270}
271
272static void __free_page_ext(unsigned long pfn)
273{
274	struct mem_section *ms;
275	struct page_ext *base;
276
277	ms = __pfn_to_section(pfn);
278	if (!ms || !ms->page_ext)
279		return;
280	base = ms->page_ext + pfn;
281	free_page_ext(base);
282	ms->page_ext = NULL;
283}
284
285static int __meminit online_page_ext(unsigned long start_pfn,
286				unsigned long nr_pages,
287				int nid)
288{
289	unsigned long start, end, pfn;
290	int fail = 0;
291
292	start = SECTION_ALIGN_DOWN(start_pfn);
293	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
294
295	if (nid == -1) {
296		/*
297		 * In this case, "nid" already exists and contains valid memory.
298		 * "start_pfn" passed to us is a pfn which is an arg for
299		 * online__pages(), and start_pfn should exist.
300		 */
301		nid = pfn_to_nid(start_pfn);
302		VM_BUG_ON(!node_state(nid, N_ONLINE));
303	}
304
305	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
306		if (!pfn_present(pfn))
307			continue;
308		fail = init_section_page_ext(pfn, nid);
309	}
310	if (!fail)
311		return 0;
312
313	/* rollback */
314	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
315		__free_page_ext(pfn);
316
317	return -ENOMEM;
318}
319
320static int __meminit offline_page_ext(unsigned long start_pfn,
321				unsigned long nr_pages, int nid)
322{
323	unsigned long start, end, pfn;
324
325	start = SECTION_ALIGN_DOWN(start_pfn);
326	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
327
328	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
329		__free_page_ext(pfn);
330	return 0;
331
332}
333
334static int __meminit page_ext_callback(struct notifier_block *self,
335			       unsigned long action, void *arg)
336{
337	struct memory_notify *mn = arg;
338	int ret = 0;
339
340	switch (action) {
341	case MEM_GOING_ONLINE:
342		ret = online_page_ext(mn->start_pfn,
343				   mn->nr_pages, mn->status_change_nid);
344		break;
345	case MEM_OFFLINE:
346		offline_page_ext(mn->start_pfn,
347				mn->nr_pages, mn->status_change_nid);
348		break;
349	case MEM_CANCEL_ONLINE:
350		offline_page_ext(mn->start_pfn,
351				mn->nr_pages, mn->status_change_nid);
352		break;
353	case MEM_GOING_OFFLINE:
354		break;
355	case MEM_ONLINE:
356	case MEM_CANCEL_OFFLINE:
357		break;
358	}
359
360	return notifier_from_errno(ret);
361}
362
363#endif
364
365void __init page_ext_init(void)
366{
367	unsigned long pfn;
368	int nid;
369
370	if (!invoke_need_callbacks())
371		return;
372
373	for_each_node_state(nid, N_MEMORY) {
374		unsigned long start_pfn, end_pfn;
375
376		start_pfn = node_start_pfn(nid);
377		end_pfn = node_end_pfn(nid);
378		/*
379		 * start_pfn and end_pfn may not be aligned to SECTION and the
380		 * page->flags of out of node pages are not initialized.  So we
381		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
382		 */
383		for (pfn = start_pfn; pfn < end_pfn;
384			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
385
386			if (!pfn_valid(pfn))
387				continue;
388			/*
389			 * Nodes's pfns can be overlapping.
390			 * We know some arch can have a nodes layout such as
391			 * -------------pfn-------------->
392			 * N0 | N1 | N2 | N0 | N1 | N2|....
393			 */
394			if (pfn_to_nid(pfn) != nid)
395				continue;
396			if (init_section_page_ext(pfn, nid))
397				goto oom;
398		}
399	}
400	hotplug_memory_notifier(page_ext_callback, 0);
401	pr_info("allocated %ld bytes of page_ext\n", total_usage);
402	invoke_init_callbacks();
403	return;
404
405oom:
406	panic("Out of memory");
407}
408
409void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
410{
411}
412
413#endif