Loading...
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_bit.h"
20#include "xfs_log.h"
21#include "xfs_inum.h"
22#include "xfs_sb.h"
23#include "xfs_ag.h"
24#include "xfs_trans.h"
25#include "xfs_mount.h"
26#include "xfs_bmap_btree.h"
27#include "xfs_dinode.h"
28#include "xfs_inode.h"
29#include "xfs_alloc.h"
30#include "xfs_error.h"
31#include "xfs_rw.h"
32#include "xfs_iomap.h"
33#include "xfs_vnodeops.h"
34#include "xfs_trace.h"
35#include "xfs_bmap.h"
36#include <linux/gfp.h>
37#include <linux/mpage.h>
38#include <linux/pagevec.h>
39#include <linux/writeback.h>
40
41
42/*
43 * Prime number of hash buckets since address is used as the key.
44 */
45#define NVSYNC 37
46#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
47static wait_queue_head_t xfs_ioend_wq[NVSYNC];
48
49void __init
50xfs_ioend_init(void)
51{
52 int i;
53
54 for (i = 0; i < NVSYNC; i++)
55 init_waitqueue_head(&xfs_ioend_wq[i]);
56}
57
58void
59xfs_ioend_wait(
60 xfs_inode_t *ip)
61{
62 wait_queue_head_t *wq = to_ioend_wq(ip);
63
64 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
65}
66
67STATIC void
68xfs_ioend_wake(
69 xfs_inode_t *ip)
70{
71 if (atomic_dec_and_test(&ip->i_iocount))
72 wake_up(to_ioend_wq(ip));
73}
74
75void
76xfs_count_page_state(
77 struct page *page,
78 int *delalloc,
79 int *unwritten)
80{
81 struct buffer_head *bh, *head;
82
83 *delalloc = *unwritten = 0;
84
85 bh = head = page_buffers(page);
86 do {
87 if (buffer_unwritten(bh))
88 (*unwritten) = 1;
89 else if (buffer_delay(bh))
90 (*delalloc) = 1;
91 } while ((bh = bh->b_this_page) != head);
92}
93
94STATIC struct block_device *
95xfs_find_bdev_for_inode(
96 struct inode *inode)
97{
98 struct xfs_inode *ip = XFS_I(inode);
99 struct xfs_mount *mp = ip->i_mount;
100
101 if (XFS_IS_REALTIME_INODE(ip))
102 return mp->m_rtdev_targp->bt_bdev;
103 else
104 return mp->m_ddev_targp->bt_bdev;
105}
106
107/*
108 * We're now finished for good with this ioend structure.
109 * Update the page state via the associated buffer_heads,
110 * release holds on the inode and bio, and finally free
111 * up memory. Do not use the ioend after this.
112 */
113STATIC void
114xfs_destroy_ioend(
115 xfs_ioend_t *ioend)
116{
117 struct buffer_head *bh, *next;
118 struct xfs_inode *ip = XFS_I(ioend->io_inode);
119
120 for (bh = ioend->io_buffer_head; bh; bh = next) {
121 next = bh->b_private;
122 bh->b_end_io(bh, !ioend->io_error);
123 }
124
125 /*
126 * Volume managers supporting multiple paths can send back ENODEV
127 * when the final path disappears. In this case continuing to fill
128 * the page cache with dirty data which cannot be written out is
129 * evil, so prevent that.
130 */
131 if (unlikely(ioend->io_error == -ENODEV)) {
132 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
133 __FILE__, __LINE__);
134 }
135
136 xfs_ioend_wake(ip);
137 mempool_free(ioend, xfs_ioend_pool);
138}
139
140/*
141 * If the end of the current ioend is beyond the current EOF,
142 * return the new EOF value, otherwise zero.
143 */
144STATIC xfs_fsize_t
145xfs_ioend_new_eof(
146 xfs_ioend_t *ioend)
147{
148 xfs_inode_t *ip = XFS_I(ioend->io_inode);
149 xfs_fsize_t isize;
150 xfs_fsize_t bsize;
151
152 bsize = ioend->io_offset + ioend->io_size;
153 isize = MAX(ip->i_size, ip->i_new_size);
154 isize = MIN(isize, bsize);
155 return isize > ip->i_d.di_size ? isize : 0;
156}
157
158/*
159 * Update on-disk file size now that data has been written to disk. The
160 * current in-memory file size is i_size. If a write is beyond eof i_new_size
161 * will be the intended file size until i_size is updated. If this write does
162 * not extend all the way to the valid file size then restrict this update to
163 * the end of the write.
164 *
165 * This function does not block as blocking on the inode lock in IO completion
166 * can lead to IO completion order dependency deadlocks.. If it can't get the
167 * inode ilock it will return EAGAIN. Callers must handle this.
168 */
169STATIC int
170xfs_setfilesize(
171 xfs_ioend_t *ioend)
172{
173 xfs_inode_t *ip = XFS_I(ioend->io_inode);
174 xfs_fsize_t isize;
175
176 if (unlikely(ioend->io_error))
177 return 0;
178
179 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
180 return EAGAIN;
181
182 isize = xfs_ioend_new_eof(ioend);
183 if (isize) {
184 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
185 ip->i_d.di_size = isize;
186 xfs_mark_inode_dirty(ip);
187 }
188
189 xfs_iunlock(ip, XFS_ILOCK_EXCL);
190 return 0;
191}
192
193/*
194 * Schedule IO completion handling on the final put of an ioend.
195 */
196STATIC void
197xfs_finish_ioend(
198 struct xfs_ioend *ioend)
199{
200 if (atomic_dec_and_test(&ioend->io_remaining)) {
201 if (ioend->io_type == IO_UNWRITTEN)
202 queue_work(xfsconvertd_workqueue, &ioend->io_work);
203 else
204 queue_work(xfsdatad_workqueue, &ioend->io_work);
205 }
206}
207
208/*
209 * IO write completion.
210 */
211STATIC void
212xfs_end_io(
213 struct work_struct *work)
214{
215 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
216 struct xfs_inode *ip = XFS_I(ioend->io_inode);
217 int error = 0;
218
219 /*
220 * For unwritten extents we need to issue transactions to convert a
221 * range to normal written extens after the data I/O has finished.
222 */
223 if (ioend->io_type == IO_UNWRITTEN &&
224 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
225
226 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
227 ioend->io_size);
228 if (error)
229 ioend->io_error = error;
230 }
231
232 /*
233 * We might have to update the on-disk file size after extending
234 * writes.
235 */
236 error = xfs_setfilesize(ioend);
237 ASSERT(!error || error == EAGAIN);
238
239 /*
240 * If we didn't complete processing of the ioend, requeue it to the
241 * tail of the workqueue for another attempt later. Otherwise destroy
242 * it.
243 */
244 if (error == EAGAIN) {
245 atomic_inc(&ioend->io_remaining);
246 xfs_finish_ioend(ioend);
247 /* ensure we don't spin on blocked ioends */
248 delay(1);
249 } else {
250 if (ioend->io_iocb)
251 aio_complete(ioend->io_iocb, ioend->io_result, 0);
252 xfs_destroy_ioend(ioend);
253 }
254}
255
256/*
257 * Call IO completion handling in caller context on the final put of an ioend.
258 */
259STATIC void
260xfs_finish_ioend_sync(
261 struct xfs_ioend *ioend)
262{
263 if (atomic_dec_and_test(&ioend->io_remaining))
264 xfs_end_io(&ioend->io_work);
265}
266
267/*
268 * Allocate and initialise an IO completion structure.
269 * We need to track unwritten extent write completion here initially.
270 * We'll need to extend this for updating the ondisk inode size later
271 * (vs. incore size).
272 */
273STATIC xfs_ioend_t *
274xfs_alloc_ioend(
275 struct inode *inode,
276 unsigned int type)
277{
278 xfs_ioend_t *ioend;
279
280 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
281
282 /*
283 * Set the count to 1 initially, which will prevent an I/O
284 * completion callback from happening before we have started
285 * all the I/O from calling the completion routine too early.
286 */
287 atomic_set(&ioend->io_remaining, 1);
288 ioend->io_error = 0;
289 ioend->io_list = NULL;
290 ioend->io_type = type;
291 ioend->io_inode = inode;
292 ioend->io_buffer_head = NULL;
293 ioend->io_buffer_tail = NULL;
294 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
295 ioend->io_offset = 0;
296 ioend->io_size = 0;
297 ioend->io_iocb = NULL;
298 ioend->io_result = 0;
299
300 INIT_WORK(&ioend->io_work, xfs_end_io);
301 return ioend;
302}
303
304STATIC int
305xfs_map_blocks(
306 struct inode *inode,
307 loff_t offset,
308 struct xfs_bmbt_irec *imap,
309 int type,
310 int nonblocking)
311{
312 struct xfs_inode *ip = XFS_I(inode);
313 struct xfs_mount *mp = ip->i_mount;
314 ssize_t count = 1 << inode->i_blkbits;
315 xfs_fileoff_t offset_fsb, end_fsb;
316 int error = 0;
317 int bmapi_flags = XFS_BMAPI_ENTIRE;
318 int nimaps = 1;
319
320 if (XFS_FORCED_SHUTDOWN(mp))
321 return -XFS_ERROR(EIO);
322
323 if (type == IO_UNWRITTEN)
324 bmapi_flags |= XFS_BMAPI_IGSTATE;
325
326 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
327 if (nonblocking)
328 return -XFS_ERROR(EAGAIN);
329 xfs_ilock(ip, XFS_ILOCK_SHARED);
330 }
331
332 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
333 (ip->i_df.if_flags & XFS_IFEXTENTS));
334 ASSERT(offset <= mp->m_maxioffset);
335
336 if (offset + count > mp->m_maxioffset)
337 count = mp->m_maxioffset - offset;
338 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
339 offset_fsb = XFS_B_TO_FSBT(mp, offset);
340 error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
341 bmapi_flags, NULL, 0, imap, &nimaps, NULL);
342 xfs_iunlock(ip, XFS_ILOCK_SHARED);
343
344 if (error)
345 return -XFS_ERROR(error);
346
347 if (type == IO_DELALLOC &&
348 (!nimaps || isnullstartblock(imap->br_startblock))) {
349 error = xfs_iomap_write_allocate(ip, offset, count, imap);
350 if (!error)
351 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
352 return -XFS_ERROR(error);
353 }
354
355#ifdef DEBUG
356 if (type == IO_UNWRITTEN) {
357 ASSERT(nimaps);
358 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
359 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
360 }
361#endif
362 if (nimaps)
363 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
364 return 0;
365}
366
367STATIC int
368xfs_imap_valid(
369 struct inode *inode,
370 struct xfs_bmbt_irec *imap,
371 xfs_off_t offset)
372{
373 offset >>= inode->i_blkbits;
374
375 return offset >= imap->br_startoff &&
376 offset < imap->br_startoff + imap->br_blockcount;
377}
378
379/*
380 * BIO completion handler for buffered IO.
381 */
382STATIC void
383xfs_end_bio(
384 struct bio *bio,
385 int error)
386{
387 xfs_ioend_t *ioend = bio->bi_private;
388
389 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
390 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
391
392 /* Toss bio and pass work off to an xfsdatad thread */
393 bio->bi_private = NULL;
394 bio->bi_end_io = NULL;
395 bio_put(bio);
396
397 xfs_finish_ioend(ioend);
398}
399
400STATIC void
401xfs_submit_ioend_bio(
402 struct writeback_control *wbc,
403 xfs_ioend_t *ioend,
404 struct bio *bio)
405{
406 atomic_inc(&ioend->io_remaining);
407 bio->bi_private = ioend;
408 bio->bi_end_io = xfs_end_bio;
409
410 /*
411 * If the I/O is beyond EOF we mark the inode dirty immediately
412 * but don't update the inode size until I/O completion.
413 */
414 if (xfs_ioend_new_eof(ioend))
415 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
416
417 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
418}
419
420STATIC struct bio *
421xfs_alloc_ioend_bio(
422 struct buffer_head *bh)
423{
424 int nvecs = bio_get_nr_vecs(bh->b_bdev);
425 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
426
427 ASSERT(bio->bi_private == NULL);
428 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
429 bio->bi_bdev = bh->b_bdev;
430 return bio;
431}
432
433STATIC void
434xfs_start_buffer_writeback(
435 struct buffer_head *bh)
436{
437 ASSERT(buffer_mapped(bh));
438 ASSERT(buffer_locked(bh));
439 ASSERT(!buffer_delay(bh));
440 ASSERT(!buffer_unwritten(bh));
441
442 mark_buffer_async_write(bh);
443 set_buffer_uptodate(bh);
444 clear_buffer_dirty(bh);
445}
446
447STATIC void
448xfs_start_page_writeback(
449 struct page *page,
450 int clear_dirty,
451 int buffers)
452{
453 ASSERT(PageLocked(page));
454 ASSERT(!PageWriteback(page));
455 if (clear_dirty)
456 clear_page_dirty_for_io(page);
457 set_page_writeback(page);
458 unlock_page(page);
459 /* If no buffers on the page are to be written, finish it here */
460 if (!buffers)
461 end_page_writeback(page);
462}
463
464static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
465{
466 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
467}
468
469/*
470 * Submit all of the bios for all of the ioends we have saved up, covering the
471 * initial writepage page and also any probed pages.
472 *
473 * Because we may have multiple ioends spanning a page, we need to start
474 * writeback on all the buffers before we submit them for I/O. If we mark the
475 * buffers as we got, then we can end up with a page that only has buffers
476 * marked async write and I/O complete on can occur before we mark the other
477 * buffers async write.
478 *
479 * The end result of this is that we trip a bug in end_page_writeback() because
480 * we call it twice for the one page as the code in end_buffer_async_write()
481 * assumes that all buffers on the page are started at the same time.
482 *
483 * The fix is two passes across the ioend list - one to start writeback on the
484 * buffer_heads, and then submit them for I/O on the second pass.
485 */
486STATIC void
487xfs_submit_ioend(
488 struct writeback_control *wbc,
489 xfs_ioend_t *ioend)
490{
491 xfs_ioend_t *head = ioend;
492 xfs_ioend_t *next;
493 struct buffer_head *bh;
494 struct bio *bio;
495 sector_t lastblock = 0;
496
497 /* Pass 1 - start writeback */
498 do {
499 next = ioend->io_list;
500 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
501 xfs_start_buffer_writeback(bh);
502 } while ((ioend = next) != NULL);
503
504 /* Pass 2 - submit I/O */
505 ioend = head;
506 do {
507 next = ioend->io_list;
508 bio = NULL;
509
510 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
511
512 if (!bio) {
513 retry:
514 bio = xfs_alloc_ioend_bio(bh);
515 } else if (bh->b_blocknr != lastblock + 1) {
516 xfs_submit_ioend_bio(wbc, ioend, bio);
517 goto retry;
518 }
519
520 if (bio_add_buffer(bio, bh) != bh->b_size) {
521 xfs_submit_ioend_bio(wbc, ioend, bio);
522 goto retry;
523 }
524
525 lastblock = bh->b_blocknr;
526 }
527 if (bio)
528 xfs_submit_ioend_bio(wbc, ioend, bio);
529 xfs_finish_ioend(ioend);
530 } while ((ioend = next) != NULL);
531}
532
533/*
534 * Cancel submission of all buffer_heads so far in this endio.
535 * Toss the endio too. Only ever called for the initial page
536 * in a writepage request, so only ever one page.
537 */
538STATIC void
539xfs_cancel_ioend(
540 xfs_ioend_t *ioend)
541{
542 xfs_ioend_t *next;
543 struct buffer_head *bh, *next_bh;
544
545 do {
546 next = ioend->io_list;
547 bh = ioend->io_buffer_head;
548 do {
549 next_bh = bh->b_private;
550 clear_buffer_async_write(bh);
551 unlock_buffer(bh);
552 } while ((bh = next_bh) != NULL);
553
554 xfs_ioend_wake(XFS_I(ioend->io_inode));
555 mempool_free(ioend, xfs_ioend_pool);
556 } while ((ioend = next) != NULL);
557}
558
559/*
560 * Test to see if we've been building up a completion structure for
561 * earlier buffers -- if so, we try to append to this ioend if we
562 * can, otherwise we finish off any current ioend and start another.
563 * Return true if we've finished the given ioend.
564 */
565STATIC void
566xfs_add_to_ioend(
567 struct inode *inode,
568 struct buffer_head *bh,
569 xfs_off_t offset,
570 unsigned int type,
571 xfs_ioend_t **result,
572 int need_ioend)
573{
574 xfs_ioend_t *ioend = *result;
575
576 if (!ioend || need_ioend || type != ioend->io_type) {
577 xfs_ioend_t *previous = *result;
578
579 ioend = xfs_alloc_ioend(inode, type);
580 ioend->io_offset = offset;
581 ioend->io_buffer_head = bh;
582 ioend->io_buffer_tail = bh;
583 if (previous)
584 previous->io_list = ioend;
585 *result = ioend;
586 } else {
587 ioend->io_buffer_tail->b_private = bh;
588 ioend->io_buffer_tail = bh;
589 }
590
591 bh->b_private = NULL;
592 ioend->io_size += bh->b_size;
593}
594
595STATIC void
596xfs_map_buffer(
597 struct inode *inode,
598 struct buffer_head *bh,
599 struct xfs_bmbt_irec *imap,
600 xfs_off_t offset)
601{
602 sector_t bn;
603 struct xfs_mount *m = XFS_I(inode)->i_mount;
604 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
605 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
606
607 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
608 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
609
610 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
611 ((offset - iomap_offset) >> inode->i_blkbits);
612
613 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
614
615 bh->b_blocknr = bn;
616 set_buffer_mapped(bh);
617}
618
619STATIC void
620xfs_map_at_offset(
621 struct inode *inode,
622 struct buffer_head *bh,
623 struct xfs_bmbt_irec *imap,
624 xfs_off_t offset)
625{
626 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
627 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
628
629 xfs_map_buffer(inode, bh, imap, offset);
630 set_buffer_mapped(bh);
631 clear_buffer_delay(bh);
632 clear_buffer_unwritten(bh);
633}
634
635/*
636 * Test if a given page is suitable for writing as part of an unwritten
637 * or delayed allocate extent.
638 */
639STATIC int
640xfs_is_delayed_page(
641 struct page *page,
642 unsigned int type)
643{
644 if (PageWriteback(page))
645 return 0;
646
647 if (page->mapping && page_has_buffers(page)) {
648 struct buffer_head *bh, *head;
649 int acceptable = 0;
650
651 bh = head = page_buffers(page);
652 do {
653 if (buffer_unwritten(bh))
654 acceptable = (type == IO_UNWRITTEN);
655 else if (buffer_delay(bh))
656 acceptable = (type == IO_DELALLOC);
657 else if (buffer_dirty(bh) && buffer_mapped(bh))
658 acceptable = (type == IO_OVERWRITE);
659 else
660 break;
661 } while ((bh = bh->b_this_page) != head);
662
663 if (acceptable)
664 return 1;
665 }
666
667 return 0;
668}
669
670/*
671 * Allocate & map buffers for page given the extent map. Write it out.
672 * except for the original page of a writepage, this is called on
673 * delalloc/unwritten pages only, for the original page it is possible
674 * that the page has no mapping at all.
675 */
676STATIC int
677xfs_convert_page(
678 struct inode *inode,
679 struct page *page,
680 loff_t tindex,
681 struct xfs_bmbt_irec *imap,
682 xfs_ioend_t **ioendp,
683 struct writeback_control *wbc)
684{
685 struct buffer_head *bh, *head;
686 xfs_off_t end_offset;
687 unsigned long p_offset;
688 unsigned int type;
689 int len, page_dirty;
690 int count = 0, done = 0, uptodate = 1;
691 xfs_off_t offset = page_offset(page);
692
693 if (page->index != tindex)
694 goto fail;
695 if (!trylock_page(page))
696 goto fail;
697 if (PageWriteback(page))
698 goto fail_unlock_page;
699 if (page->mapping != inode->i_mapping)
700 goto fail_unlock_page;
701 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
702 goto fail_unlock_page;
703
704 /*
705 * page_dirty is initially a count of buffers on the page before
706 * EOF and is decremented as we move each into a cleanable state.
707 *
708 * Derivation:
709 *
710 * End offset is the highest offset that this page should represent.
711 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
712 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
713 * hence give us the correct page_dirty count. On any other page,
714 * it will be zero and in that case we need page_dirty to be the
715 * count of buffers on the page.
716 */
717 end_offset = min_t(unsigned long long,
718 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
719 i_size_read(inode));
720
721 len = 1 << inode->i_blkbits;
722 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
723 PAGE_CACHE_SIZE);
724 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
725 page_dirty = p_offset / len;
726
727 bh = head = page_buffers(page);
728 do {
729 if (offset >= end_offset)
730 break;
731 if (!buffer_uptodate(bh))
732 uptodate = 0;
733 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
734 done = 1;
735 continue;
736 }
737
738 if (buffer_unwritten(bh) || buffer_delay(bh) ||
739 buffer_mapped(bh)) {
740 if (buffer_unwritten(bh))
741 type = IO_UNWRITTEN;
742 else if (buffer_delay(bh))
743 type = IO_DELALLOC;
744 else
745 type = IO_OVERWRITE;
746
747 if (!xfs_imap_valid(inode, imap, offset)) {
748 done = 1;
749 continue;
750 }
751
752 lock_buffer(bh);
753 if (type != IO_OVERWRITE)
754 xfs_map_at_offset(inode, bh, imap, offset);
755 xfs_add_to_ioend(inode, bh, offset, type,
756 ioendp, done);
757
758 page_dirty--;
759 count++;
760 } else {
761 done = 1;
762 }
763 } while (offset += len, (bh = bh->b_this_page) != head);
764
765 if (uptodate && bh == head)
766 SetPageUptodate(page);
767
768 if (count) {
769 if (--wbc->nr_to_write <= 0 &&
770 wbc->sync_mode == WB_SYNC_NONE)
771 done = 1;
772 }
773 xfs_start_page_writeback(page, !page_dirty, count);
774
775 return done;
776 fail_unlock_page:
777 unlock_page(page);
778 fail:
779 return 1;
780}
781
782/*
783 * Convert & write out a cluster of pages in the same extent as defined
784 * by mp and following the start page.
785 */
786STATIC void
787xfs_cluster_write(
788 struct inode *inode,
789 pgoff_t tindex,
790 struct xfs_bmbt_irec *imap,
791 xfs_ioend_t **ioendp,
792 struct writeback_control *wbc,
793 pgoff_t tlast)
794{
795 struct pagevec pvec;
796 int done = 0, i;
797
798 pagevec_init(&pvec, 0);
799 while (!done && tindex <= tlast) {
800 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
801
802 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
803 break;
804
805 for (i = 0; i < pagevec_count(&pvec); i++) {
806 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
807 imap, ioendp, wbc);
808 if (done)
809 break;
810 }
811
812 pagevec_release(&pvec);
813 cond_resched();
814 }
815}
816
817STATIC void
818xfs_vm_invalidatepage(
819 struct page *page,
820 unsigned long offset)
821{
822 trace_xfs_invalidatepage(page->mapping->host, page, offset);
823 block_invalidatepage(page, offset);
824}
825
826/*
827 * If the page has delalloc buffers on it, we need to punch them out before we
828 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
829 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
830 * is done on that same region - the delalloc extent is returned when none is
831 * supposed to be there.
832 *
833 * We prevent this by truncating away the delalloc regions on the page before
834 * invalidating it. Because they are delalloc, we can do this without needing a
835 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
836 * truncation without a transaction as there is no space left for block
837 * reservation (typically why we see a ENOSPC in writeback).
838 *
839 * This is not a performance critical path, so for now just do the punching a
840 * buffer head at a time.
841 */
842STATIC void
843xfs_aops_discard_page(
844 struct page *page)
845{
846 struct inode *inode = page->mapping->host;
847 struct xfs_inode *ip = XFS_I(inode);
848 struct buffer_head *bh, *head;
849 loff_t offset = page_offset(page);
850
851 if (!xfs_is_delayed_page(page, IO_DELALLOC))
852 goto out_invalidate;
853
854 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
855 goto out_invalidate;
856
857 xfs_alert(ip->i_mount,
858 "page discard on page %p, inode 0x%llx, offset %llu.",
859 page, ip->i_ino, offset);
860
861 xfs_ilock(ip, XFS_ILOCK_EXCL);
862 bh = head = page_buffers(page);
863 do {
864 int error;
865 xfs_fileoff_t start_fsb;
866
867 if (!buffer_delay(bh))
868 goto next_buffer;
869
870 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
871 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
872 if (error) {
873 /* something screwed, just bail */
874 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
875 xfs_alert(ip->i_mount,
876 "page discard unable to remove delalloc mapping.");
877 }
878 break;
879 }
880next_buffer:
881 offset += 1 << inode->i_blkbits;
882
883 } while ((bh = bh->b_this_page) != head);
884
885 xfs_iunlock(ip, XFS_ILOCK_EXCL);
886out_invalidate:
887 xfs_vm_invalidatepage(page, 0);
888 return;
889}
890
891/*
892 * Write out a dirty page.
893 *
894 * For delalloc space on the page we need to allocate space and flush it.
895 * For unwritten space on the page we need to start the conversion to
896 * regular allocated space.
897 * For any other dirty buffer heads on the page we should flush them.
898 */
899STATIC int
900xfs_vm_writepage(
901 struct page *page,
902 struct writeback_control *wbc)
903{
904 struct inode *inode = page->mapping->host;
905 struct buffer_head *bh, *head;
906 struct xfs_bmbt_irec imap;
907 xfs_ioend_t *ioend = NULL, *iohead = NULL;
908 loff_t offset;
909 unsigned int type;
910 __uint64_t end_offset;
911 pgoff_t end_index, last_index;
912 ssize_t len;
913 int err, imap_valid = 0, uptodate = 1;
914 int count = 0;
915 int nonblocking = 0;
916
917 trace_xfs_writepage(inode, page, 0);
918
919 ASSERT(page_has_buffers(page));
920
921 /*
922 * Refuse to write the page out if we are called from reclaim context.
923 *
924 * This avoids stack overflows when called from deeply used stacks in
925 * random callers for direct reclaim or memcg reclaim. We explicitly
926 * allow reclaim from kswapd as the stack usage there is relatively low.
927 *
928 * This should really be done by the core VM, but until that happens
929 * filesystems like XFS, btrfs and ext4 have to take care of this
930 * by themselves.
931 */
932 if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC)
933 goto redirty;
934
935 /*
936 * Given that we do not allow direct reclaim to call us, we should
937 * never be called while in a filesystem transaction.
938 */
939 if (WARN_ON(current->flags & PF_FSTRANS))
940 goto redirty;
941
942 /* Is this page beyond the end of the file? */
943 offset = i_size_read(inode);
944 end_index = offset >> PAGE_CACHE_SHIFT;
945 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
946 if (page->index >= end_index) {
947 if ((page->index >= end_index + 1) ||
948 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
949 unlock_page(page);
950 return 0;
951 }
952 }
953
954 end_offset = min_t(unsigned long long,
955 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
956 offset);
957 len = 1 << inode->i_blkbits;
958
959 bh = head = page_buffers(page);
960 offset = page_offset(page);
961 type = IO_OVERWRITE;
962
963 if (wbc->sync_mode == WB_SYNC_NONE)
964 nonblocking = 1;
965
966 do {
967 int new_ioend = 0;
968
969 if (offset >= end_offset)
970 break;
971 if (!buffer_uptodate(bh))
972 uptodate = 0;
973
974 /*
975 * set_page_dirty dirties all buffers in a page, independent
976 * of their state. The dirty state however is entirely
977 * meaningless for holes (!mapped && uptodate), so skip
978 * buffers covering holes here.
979 */
980 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
981 imap_valid = 0;
982 continue;
983 }
984
985 if (buffer_unwritten(bh)) {
986 if (type != IO_UNWRITTEN) {
987 type = IO_UNWRITTEN;
988 imap_valid = 0;
989 }
990 } else if (buffer_delay(bh)) {
991 if (type != IO_DELALLOC) {
992 type = IO_DELALLOC;
993 imap_valid = 0;
994 }
995 } else if (buffer_uptodate(bh)) {
996 if (type != IO_OVERWRITE) {
997 type = IO_OVERWRITE;
998 imap_valid = 0;
999 }
1000 } else {
1001 if (PageUptodate(page)) {
1002 ASSERT(buffer_mapped(bh));
1003 imap_valid = 0;
1004 }
1005 continue;
1006 }
1007
1008 if (imap_valid)
1009 imap_valid = xfs_imap_valid(inode, &imap, offset);
1010 if (!imap_valid) {
1011 /*
1012 * If we didn't have a valid mapping then we need to
1013 * put the new mapping into a separate ioend structure.
1014 * This ensures non-contiguous extents always have
1015 * separate ioends, which is particularly important
1016 * for unwritten extent conversion at I/O completion
1017 * time.
1018 */
1019 new_ioend = 1;
1020 err = xfs_map_blocks(inode, offset, &imap, type,
1021 nonblocking);
1022 if (err)
1023 goto error;
1024 imap_valid = xfs_imap_valid(inode, &imap, offset);
1025 }
1026 if (imap_valid) {
1027 lock_buffer(bh);
1028 if (type != IO_OVERWRITE)
1029 xfs_map_at_offset(inode, bh, &imap, offset);
1030 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1031 new_ioend);
1032 count++;
1033 }
1034
1035 if (!iohead)
1036 iohead = ioend;
1037
1038 } while (offset += len, ((bh = bh->b_this_page) != head));
1039
1040 if (uptodate && bh == head)
1041 SetPageUptodate(page);
1042
1043 xfs_start_page_writeback(page, 1, count);
1044
1045 if (ioend && imap_valid) {
1046 xfs_off_t end_index;
1047
1048 end_index = imap.br_startoff + imap.br_blockcount;
1049
1050 /* to bytes */
1051 end_index <<= inode->i_blkbits;
1052
1053 /* to pages */
1054 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1055
1056 /* check against file size */
1057 if (end_index > last_index)
1058 end_index = last_index;
1059
1060 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1061 wbc, end_index);
1062 }
1063
1064 if (iohead)
1065 xfs_submit_ioend(wbc, iohead);
1066
1067 return 0;
1068
1069error:
1070 if (iohead)
1071 xfs_cancel_ioend(iohead);
1072
1073 if (err == -EAGAIN)
1074 goto redirty;
1075
1076 xfs_aops_discard_page(page);
1077 ClearPageUptodate(page);
1078 unlock_page(page);
1079 return err;
1080
1081redirty:
1082 redirty_page_for_writepage(wbc, page);
1083 unlock_page(page);
1084 return 0;
1085}
1086
1087STATIC int
1088xfs_vm_writepages(
1089 struct address_space *mapping,
1090 struct writeback_control *wbc)
1091{
1092 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1093 return generic_writepages(mapping, wbc);
1094}
1095
1096/*
1097 * Called to move a page into cleanable state - and from there
1098 * to be released. The page should already be clean. We always
1099 * have buffer heads in this call.
1100 *
1101 * Returns 1 if the page is ok to release, 0 otherwise.
1102 */
1103STATIC int
1104xfs_vm_releasepage(
1105 struct page *page,
1106 gfp_t gfp_mask)
1107{
1108 int delalloc, unwritten;
1109
1110 trace_xfs_releasepage(page->mapping->host, page, 0);
1111
1112 xfs_count_page_state(page, &delalloc, &unwritten);
1113
1114 if (WARN_ON(delalloc))
1115 return 0;
1116 if (WARN_ON(unwritten))
1117 return 0;
1118
1119 return try_to_free_buffers(page);
1120}
1121
1122STATIC int
1123__xfs_get_blocks(
1124 struct inode *inode,
1125 sector_t iblock,
1126 struct buffer_head *bh_result,
1127 int create,
1128 int direct)
1129{
1130 struct xfs_inode *ip = XFS_I(inode);
1131 struct xfs_mount *mp = ip->i_mount;
1132 xfs_fileoff_t offset_fsb, end_fsb;
1133 int error = 0;
1134 int lockmode = 0;
1135 struct xfs_bmbt_irec imap;
1136 int nimaps = 1;
1137 xfs_off_t offset;
1138 ssize_t size;
1139 int new = 0;
1140
1141 if (XFS_FORCED_SHUTDOWN(mp))
1142 return -XFS_ERROR(EIO);
1143
1144 offset = (xfs_off_t)iblock << inode->i_blkbits;
1145 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1146 size = bh_result->b_size;
1147
1148 if (!create && direct && offset >= i_size_read(inode))
1149 return 0;
1150
1151 if (create) {
1152 lockmode = XFS_ILOCK_EXCL;
1153 xfs_ilock(ip, lockmode);
1154 } else {
1155 lockmode = xfs_ilock_map_shared(ip);
1156 }
1157
1158 ASSERT(offset <= mp->m_maxioffset);
1159 if (offset + size > mp->m_maxioffset)
1160 size = mp->m_maxioffset - offset;
1161 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1162 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1163
1164 error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
1165 XFS_BMAPI_ENTIRE, NULL, 0, &imap, &nimaps, NULL);
1166 if (error)
1167 goto out_unlock;
1168
1169 if (create &&
1170 (!nimaps ||
1171 (imap.br_startblock == HOLESTARTBLOCK ||
1172 imap.br_startblock == DELAYSTARTBLOCK))) {
1173 if (direct) {
1174 error = xfs_iomap_write_direct(ip, offset, size,
1175 &imap, nimaps);
1176 } else {
1177 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1178 }
1179 if (error)
1180 goto out_unlock;
1181
1182 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1183 } else if (nimaps) {
1184 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1185 } else {
1186 trace_xfs_get_blocks_notfound(ip, offset, size);
1187 goto out_unlock;
1188 }
1189 xfs_iunlock(ip, lockmode);
1190
1191 if (imap.br_startblock != HOLESTARTBLOCK &&
1192 imap.br_startblock != DELAYSTARTBLOCK) {
1193 /*
1194 * For unwritten extents do not report a disk address on
1195 * the read case (treat as if we're reading into a hole).
1196 */
1197 if (create || !ISUNWRITTEN(&imap))
1198 xfs_map_buffer(inode, bh_result, &imap, offset);
1199 if (create && ISUNWRITTEN(&imap)) {
1200 if (direct)
1201 bh_result->b_private = inode;
1202 set_buffer_unwritten(bh_result);
1203 }
1204 }
1205
1206 /*
1207 * If this is a realtime file, data may be on a different device.
1208 * to that pointed to from the buffer_head b_bdev currently.
1209 */
1210 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1211
1212 /*
1213 * If we previously allocated a block out beyond eof and we are now
1214 * coming back to use it then we will need to flag it as new even if it
1215 * has a disk address.
1216 *
1217 * With sub-block writes into unwritten extents we also need to mark
1218 * the buffer as new so that the unwritten parts of the buffer gets
1219 * correctly zeroed.
1220 */
1221 if (create &&
1222 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1223 (offset >= i_size_read(inode)) ||
1224 (new || ISUNWRITTEN(&imap))))
1225 set_buffer_new(bh_result);
1226
1227 if (imap.br_startblock == DELAYSTARTBLOCK) {
1228 BUG_ON(direct);
1229 if (create) {
1230 set_buffer_uptodate(bh_result);
1231 set_buffer_mapped(bh_result);
1232 set_buffer_delay(bh_result);
1233 }
1234 }
1235
1236 /*
1237 * If this is O_DIRECT or the mpage code calling tell them how large
1238 * the mapping is, so that we can avoid repeated get_blocks calls.
1239 */
1240 if (direct || size > (1 << inode->i_blkbits)) {
1241 xfs_off_t mapping_size;
1242
1243 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1244 mapping_size <<= inode->i_blkbits;
1245
1246 ASSERT(mapping_size > 0);
1247 if (mapping_size > size)
1248 mapping_size = size;
1249 if (mapping_size > LONG_MAX)
1250 mapping_size = LONG_MAX;
1251
1252 bh_result->b_size = mapping_size;
1253 }
1254
1255 return 0;
1256
1257out_unlock:
1258 xfs_iunlock(ip, lockmode);
1259 return -error;
1260}
1261
1262int
1263xfs_get_blocks(
1264 struct inode *inode,
1265 sector_t iblock,
1266 struct buffer_head *bh_result,
1267 int create)
1268{
1269 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1270}
1271
1272STATIC int
1273xfs_get_blocks_direct(
1274 struct inode *inode,
1275 sector_t iblock,
1276 struct buffer_head *bh_result,
1277 int create)
1278{
1279 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1280}
1281
1282/*
1283 * Complete a direct I/O write request.
1284 *
1285 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1286 * need to issue a transaction to convert the range from unwritten to written
1287 * extents. In case this is regular synchronous I/O we just call xfs_end_io
1288 * to do this and we are done. But in case this was a successful AIO
1289 * request this handler is called from interrupt context, from which we
1290 * can't start transactions. In that case offload the I/O completion to
1291 * the workqueues we also use for buffered I/O completion.
1292 */
1293STATIC void
1294xfs_end_io_direct_write(
1295 struct kiocb *iocb,
1296 loff_t offset,
1297 ssize_t size,
1298 void *private,
1299 int ret,
1300 bool is_async)
1301{
1302 struct xfs_ioend *ioend = iocb->private;
1303 struct inode *inode = ioend->io_inode;
1304
1305 /*
1306 * blockdev_direct_IO can return an error even after the I/O
1307 * completion handler was called. Thus we need to protect
1308 * against double-freeing.
1309 */
1310 iocb->private = NULL;
1311
1312 ioend->io_offset = offset;
1313 ioend->io_size = size;
1314 if (private && size > 0)
1315 ioend->io_type = IO_UNWRITTEN;
1316
1317 if (is_async) {
1318 /*
1319 * If we are converting an unwritten extent we need to delay
1320 * the AIO completion until after the unwrittent extent
1321 * conversion has completed, otherwise do it ASAP.
1322 */
1323 if (ioend->io_type == IO_UNWRITTEN) {
1324 ioend->io_iocb = iocb;
1325 ioend->io_result = ret;
1326 } else {
1327 aio_complete(iocb, ret, 0);
1328 }
1329 xfs_finish_ioend(ioend);
1330 } else {
1331 xfs_finish_ioend_sync(ioend);
1332 }
1333
1334 /* XXX: probably should move into the real I/O completion handler */
1335 inode_dio_done(inode);
1336}
1337
1338STATIC ssize_t
1339xfs_vm_direct_IO(
1340 int rw,
1341 struct kiocb *iocb,
1342 const struct iovec *iov,
1343 loff_t offset,
1344 unsigned long nr_segs)
1345{
1346 struct inode *inode = iocb->ki_filp->f_mapping->host;
1347 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
1348 ssize_t ret;
1349
1350 if (rw & WRITE) {
1351 iocb->private = xfs_alloc_ioend(inode, IO_DIRECT);
1352
1353 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1354 offset, nr_segs,
1355 xfs_get_blocks_direct,
1356 xfs_end_io_direct_write, NULL, 0);
1357 if (ret != -EIOCBQUEUED && iocb->private)
1358 xfs_destroy_ioend(iocb->private);
1359 } else {
1360 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1361 offset, nr_segs,
1362 xfs_get_blocks_direct,
1363 NULL, NULL, 0);
1364 }
1365
1366 return ret;
1367}
1368
1369STATIC void
1370xfs_vm_write_failed(
1371 struct address_space *mapping,
1372 loff_t to)
1373{
1374 struct inode *inode = mapping->host;
1375
1376 if (to > inode->i_size) {
1377 /*
1378 * punch out the delalloc blocks we have already allocated. We
1379 * don't call xfs_setattr() to do this as we may be in the
1380 * middle of a multi-iovec write and so the vfs inode->i_size
1381 * will not match the xfs ip->i_size and so it will zero too
1382 * much. Hence we jus truncate the page cache to zero what is
1383 * necessary and punch the delalloc blocks directly.
1384 */
1385 struct xfs_inode *ip = XFS_I(inode);
1386 xfs_fileoff_t start_fsb;
1387 xfs_fileoff_t end_fsb;
1388 int error;
1389
1390 truncate_pagecache(inode, to, inode->i_size);
1391
1392 /*
1393 * Check if there are any blocks that are outside of i_size
1394 * that need to be trimmed back.
1395 */
1396 start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1;
1397 end_fsb = XFS_B_TO_FSB(ip->i_mount, to);
1398 if (end_fsb <= start_fsb)
1399 return;
1400
1401 xfs_ilock(ip, XFS_ILOCK_EXCL);
1402 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1403 end_fsb - start_fsb);
1404 if (error) {
1405 /* something screwed, just bail */
1406 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1407 xfs_alert(ip->i_mount,
1408 "xfs_vm_write_failed: unable to clean up ino %lld",
1409 ip->i_ino);
1410 }
1411 }
1412 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1413 }
1414}
1415
1416STATIC int
1417xfs_vm_write_begin(
1418 struct file *file,
1419 struct address_space *mapping,
1420 loff_t pos,
1421 unsigned len,
1422 unsigned flags,
1423 struct page **pagep,
1424 void **fsdata)
1425{
1426 int ret;
1427
1428 ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS,
1429 pagep, xfs_get_blocks);
1430 if (unlikely(ret))
1431 xfs_vm_write_failed(mapping, pos + len);
1432 return ret;
1433}
1434
1435STATIC int
1436xfs_vm_write_end(
1437 struct file *file,
1438 struct address_space *mapping,
1439 loff_t pos,
1440 unsigned len,
1441 unsigned copied,
1442 struct page *page,
1443 void *fsdata)
1444{
1445 int ret;
1446
1447 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1448 if (unlikely(ret < len))
1449 xfs_vm_write_failed(mapping, pos + len);
1450 return ret;
1451}
1452
1453STATIC sector_t
1454xfs_vm_bmap(
1455 struct address_space *mapping,
1456 sector_t block)
1457{
1458 struct inode *inode = (struct inode *)mapping->host;
1459 struct xfs_inode *ip = XFS_I(inode);
1460
1461 trace_xfs_vm_bmap(XFS_I(inode));
1462 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1463 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1464 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1465 return generic_block_bmap(mapping, block, xfs_get_blocks);
1466}
1467
1468STATIC int
1469xfs_vm_readpage(
1470 struct file *unused,
1471 struct page *page)
1472{
1473 return mpage_readpage(page, xfs_get_blocks);
1474}
1475
1476STATIC int
1477xfs_vm_readpages(
1478 struct file *unused,
1479 struct address_space *mapping,
1480 struct list_head *pages,
1481 unsigned nr_pages)
1482{
1483 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1484}
1485
1486const struct address_space_operations xfs_address_space_operations = {
1487 .readpage = xfs_vm_readpage,
1488 .readpages = xfs_vm_readpages,
1489 .writepage = xfs_vm_writepage,
1490 .writepages = xfs_vm_writepages,
1491 .releasepage = xfs_vm_releasepage,
1492 .invalidatepage = xfs_vm_invalidatepage,
1493 .write_begin = xfs_vm_write_begin,
1494 .write_end = xfs_vm_write_end,
1495 .bmap = xfs_vm_bmap,
1496 .direct_IO = xfs_vm_direct_IO,
1497 .migratepage = buffer_migrate_page,
1498 .is_partially_uptodate = block_is_partially_uptodate,
1499 .error_remove_page = generic_error_remove_page,
1500};
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_shared.h"
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
23#include "xfs_mount.h"
24#include "xfs_inode.h"
25#include "xfs_trans.h"
26#include "xfs_inode_item.h"
27#include "xfs_alloc.h"
28#include "xfs_error.h"
29#include "xfs_iomap.h"
30#include "xfs_trace.h"
31#include "xfs_bmap.h"
32#include "xfs_bmap_util.h"
33#include "xfs_bmap_btree.h"
34#include <linux/gfp.h>
35#include <linux/mpage.h>
36#include <linux/pagevec.h>
37#include <linux/writeback.h>
38
39/* flags for direct write completions */
40#define XFS_DIO_FLAG_UNWRITTEN (1 << 0)
41#define XFS_DIO_FLAG_APPEND (1 << 1)
42
43/*
44 * structure owned by writepages passed to individual writepage calls
45 */
46struct xfs_writepage_ctx {
47 struct xfs_bmbt_irec imap;
48 bool imap_valid;
49 unsigned int io_type;
50 struct xfs_ioend *ioend;
51 sector_t last_block;
52};
53
54void
55xfs_count_page_state(
56 struct page *page,
57 int *delalloc,
58 int *unwritten)
59{
60 struct buffer_head *bh, *head;
61
62 *delalloc = *unwritten = 0;
63
64 bh = head = page_buffers(page);
65 do {
66 if (buffer_unwritten(bh))
67 (*unwritten) = 1;
68 else if (buffer_delay(bh))
69 (*delalloc) = 1;
70 } while ((bh = bh->b_this_page) != head);
71}
72
73struct block_device *
74xfs_find_bdev_for_inode(
75 struct inode *inode)
76{
77 struct xfs_inode *ip = XFS_I(inode);
78 struct xfs_mount *mp = ip->i_mount;
79
80 if (XFS_IS_REALTIME_INODE(ip))
81 return mp->m_rtdev_targp->bt_bdev;
82 else
83 return mp->m_ddev_targp->bt_bdev;
84}
85
86/*
87 * We're now finished for good with this ioend structure.
88 * Update the page state via the associated buffer_heads,
89 * release holds on the inode and bio, and finally free
90 * up memory. Do not use the ioend after this.
91 */
92STATIC void
93xfs_destroy_ioend(
94 xfs_ioend_t *ioend)
95{
96 struct buffer_head *bh, *next;
97
98 for (bh = ioend->io_buffer_head; bh; bh = next) {
99 next = bh->b_private;
100 bh->b_end_io(bh, !ioend->io_error);
101 }
102
103 mempool_free(ioend, xfs_ioend_pool);
104}
105
106/*
107 * Fast and loose check if this write could update the on-disk inode size.
108 */
109static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
110{
111 return ioend->io_offset + ioend->io_size >
112 XFS_I(ioend->io_inode)->i_d.di_size;
113}
114
115STATIC int
116xfs_setfilesize_trans_alloc(
117 struct xfs_ioend *ioend)
118{
119 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
120 struct xfs_trans *tp;
121 int error;
122
123 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
124
125 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
126 if (error) {
127 xfs_trans_cancel(tp);
128 return error;
129 }
130
131 ioend->io_append_trans = tp;
132
133 /*
134 * We may pass freeze protection with a transaction. So tell lockdep
135 * we released it.
136 */
137 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
138 /*
139 * We hand off the transaction to the completion thread now, so
140 * clear the flag here.
141 */
142 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
143 return 0;
144}
145
146/*
147 * Update on-disk file size now that data has been written to disk.
148 */
149STATIC int
150xfs_setfilesize(
151 struct xfs_inode *ip,
152 struct xfs_trans *tp,
153 xfs_off_t offset,
154 size_t size)
155{
156 xfs_fsize_t isize;
157
158 xfs_ilock(ip, XFS_ILOCK_EXCL);
159 isize = xfs_new_eof(ip, offset + size);
160 if (!isize) {
161 xfs_iunlock(ip, XFS_ILOCK_EXCL);
162 xfs_trans_cancel(tp);
163 return 0;
164 }
165
166 trace_xfs_setfilesize(ip, offset, size);
167
168 ip->i_d.di_size = isize;
169 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
170 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
171
172 return xfs_trans_commit(tp);
173}
174
175STATIC int
176xfs_setfilesize_ioend(
177 struct xfs_ioend *ioend)
178{
179 struct xfs_inode *ip = XFS_I(ioend->io_inode);
180 struct xfs_trans *tp = ioend->io_append_trans;
181
182 /*
183 * The transaction may have been allocated in the I/O submission thread,
184 * thus we need to mark ourselves as being in a transaction manually.
185 * Similarly for freeze protection.
186 */
187 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
188 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
189
190 /* we abort the update if there was an IO error */
191 if (ioend->io_error) {
192 xfs_trans_cancel(tp);
193 return ioend->io_error;
194 }
195
196 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
197}
198
199/*
200 * Schedule IO completion handling on the final put of an ioend.
201 *
202 * If there is no work to do we might as well call it a day and free the
203 * ioend right now.
204 */
205STATIC void
206xfs_finish_ioend(
207 struct xfs_ioend *ioend)
208{
209 if (atomic_dec_and_test(&ioend->io_remaining)) {
210 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
211
212 if (ioend->io_type == XFS_IO_UNWRITTEN)
213 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
214 else if (ioend->io_append_trans)
215 queue_work(mp->m_data_workqueue, &ioend->io_work);
216 else
217 xfs_destroy_ioend(ioend);
218 }
219}
220
221/*
222 * IO write completion.
223 */
224STATIC void
225xfs_end_io(
226 struct work_struct *work)
227{
228 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
229 struct xfs_inode *ip = XFS_I(ioend->io_inode);
230 int error = 0;
231
232 /*
233 * Set an error if the mount has shut down and proceed with end I/O
234 * processing so it can perform whatever cleanups are necessary.
235 */
236 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
237 ioend->io_error = -EIO;
238
239 /*
240 * For unwritten extents we need to issue transactions to convert a
241 * range to normal written extens after the data I/O has finished.
242 * Detecting and handling completion IO errors is done individually
243 * for each case as different cleanup operations need to be performed
244 * on error.
245 */
246 if (ioend->io_type == XFS_IO_UNWRITTEN) {
247 if (ioend->io_error)
248 goto done;
249 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
250 ioend->io_size);
251 } else if (ioend->io_append_trans) {
252 error = xfs_setfilesize_ioend(ioend);
253 } else {
254 ASSERT(!xfs_ioend_is_append(ioend));
255 }
256
257done:
258 if (error)
259 ioend->io_error = error;
260 xfs_destroy_ioend(ioend);
261}
262
263/*
264 * Allocate and initialise an IO completion structure.
265 * We need to track unwritten extent write completion here initially.
266 * We'll need to extend this for updating the ondisk inode size later
267 * (vs. incore size).
268 */
269STATIC xfs_ioend_t *
270xfs_alloc_ioend(
271 struct inode *inode,
272 unsigned int type)
273{
274 xfs_ioend_t *ioend;
275
276 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
277
278 /*
279 * Set the count to 1 initially, which will prevent an I/O
280 * completion callback from happening before we have started
281 * all the I/O from calling the completion routine too early.
282 */
283 atomic_set(&ioend->io_remaining, 1);
284 ioend->io_error = 0;
285 INIT_LIST_HEAD(&ioend->io_list);
286 ioend->io_type = type;
287 ioend->io_inode = inode;
288 ioend->io_buffer_head = NULL;
289 ioend->io_buffer_tail = NULL;
290 ioend->io_offset = 0;
291 ioend->io_size = 0;
292 ioend->io_append_trans = NULL;
293
294 INIT_WORK(&ioend->io_work, xfs_end_io);
295 return ioend;
296}
297
298STATIC int
299xfs_map_blocks(
300 struct inode *inode,
301 loff_t offset,
302 struct xfs_bmbt_irec *imap,
303 int type)
304{
305 struct xfs_inode *ip = XFS_I(inode);
306 struct xfs_mount *mp = ip->i_mount;
307 ssize_t count = 1 << inode->i_blkbits;
308 xfs_fileoff_t offset_fsb, end_fsb;
309 int error = 0;
310 int bmapi_flags = XFS_BMAPI_ENTIRE;
311 int nimaps = 1;
312
313 if (XFS_FORCED_SHUTDOWN(mp))
314 return -EIO;
315
316 if (type == XFS_IO_UNWRITTEN)
317 bmapi_flags |= XFS_BMAPI_IGSTATE;
318
319 xfs_ilock(ip, XFS_ILOCK_SHARED);
320 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
321 (ip->i_df.if_flags & XFS_IFEXTENTS));
322 ASSERT(offset <= mp->m_super->s_maxbytes);
323
324 if (offset + count > mp->m_super->s_maxbytes)
325 count = mp->m_super->s_maxbytes - offset;
326 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
327 offset_fsb = XFS_B_TO_FSBT(mp, offset);
328 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
329 imap, &nimaps, bmapi_flags);
330 xfs_iunlock(ip, XFS_ILOCK_SHARED);
331
332 if (error)
333 return error;
334
335 if (type == XFS_IO_DELALLOC &&
336 (!nimaps || isnullstartblock(imap->br_startblock))) {
337 error = xfs_iomap_write_allocate(ip, offset, imap);
338 if (!error)
339 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
340 return error;
341 }
342
343#ifdef DEBUG
344 if (type == XFS_IO_UNWRITTEN) {
345 ASSERT(nimaps);
346 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
347 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
348 }
349#endif
350 if (nimaps)
351 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
352 return 0;
353}
354
355STATIC bool
356xfs_imap_valid(
357 struct inode *inode,
358 struct xfs_bmbt_irec *imap,
359 xfs_off_t offset)
360{
361 offset >>= inode->i_blkbits;
362
363 return offset >= imap->br_startoff &&
364 offset < imap->br_startoff + imap->br_blockcount;
365}
366
367/*
368 * BIO completion handler for buffered IO.
369 */
370STATIC void
371xfs_end_bio(
372 struct bio *bio)
373{
374 xfs_ioend_t *ioend = bio->bi_private;
375
376 if (!ioend->io_error)
377 ioend->io_error = bio->bi_error;
378
379 /* Toss bio and pass work off to an xfsdatad thread */
380 bio->bi_private = NULL;
381 bio->bi_end_io = NULL;
382 bio_put(bio);
383
384 xfs_finish_ioend(ioend);
385}
386
387STATIC void
388xfs_submit_ioend_bio(
389 struct writeback_control *wbc,
390 xfs_ioend_t *ioend,
391 struct bio *bio)
392{
393 atomic_inc(&ioend->io_remaining);
394 bio->bi_private = ioend;
395 bio->bi_end_io = xfs_end_bio;
396 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
397}
398
399STATIC struct bio *
400xfs_alloc_ioend_bio(
401 struct buffer_head *bh)
402{
403 struct bio *bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
404
405 ASSERT(bio->bi_private == NULL);
406 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
407 bio->bi_bdev = bh->b_bdev;
408 return bio;
409}
410
411STATIC void
412xfs_start_buffer_writeback(
413 struct buffer_head *bh)
414{
415 ASSERT(buffer_mapped(bh));
416 ASSERT(buffer_locked(bh));
417 ASSERT(!buffer_delay(bh));
418 ASSERT(!buffer_unwritten(bh));
419
420 mark_buffer_async_write(bh);
421 set_buffer_uptodate(bh);
422 clear_buffer_dirty(bh);
423}
424
425STATIC void
426xfs_start_page_writeback(
427 struct page *page,
428 int clear_dirty)
429{
430 ASSERT(PageLocked(page));
431 ASSERT(!PageWriteback(page));
432
433 /*
434 * if the page was not fully cleaned, we need to ensure that the higher
435 * layers come back to it correctly. That means we need to keep the page
436 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
437 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
438 * write this page in this writeback sweep will be made.
439 */
440 if (clear_dirty) {
441 clear_page_dirty_for_io(page);
442 set_page_writeback(page);
443 } else
444 set_page_writeback_keepwrite(page);
445
446 unlock_page(page);
447}
448
449static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
450{
451 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
452}
453
454/*
455 * Submit all of the bios for an ioend. We are only passed a single ioend at a
456 * time; the caller is responsible for chaining prior to submission.
457 *
458 * If @fail is non-zero, it means that we have a situation where some part of
459 * the submission process has failed after we have marked paged for writeback
460 * and unlocked them. In this situation, we need to fail the ioend chain rather
461 * than submit it to IO. This typically only happens on a filesystem shutdown.
462 */
463STATIC int
464xfs_submit_ioend(
465 struct writeback_control *wbc,
466 xfs_ioend_t *ioend,
467 int status)
468{
469 struct buffer_head *bh;
470 struct bio *bio;
471 sector_t lastblock = 0;
472
473 /* Reserve log space if we might write beyond the on-disk inode size. */
474 if (!status &&
475 ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
476 status = xfs_setfilesize_trans_alloc(ioend);
477 /*
478 * If we are failing the IO now, just mark the ioend with an
479 * error and finish it. This will run IO completion immediately
480 * as there is only one reference to the ioend at this point in
481 * time.
482 */
483 if (status) {
484 ioend->io_error = status;
485 xfs_finish_ioend(ioend);
486 return status;
487 }
488
489 bio = NULL;
490 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
491
492 if (!bio) {
493retry:
494 bio = xfs_alloc_ioend_bio(bh);
495 } else if (bh->b_blocknr != lastblock + 1) {
496 xfs_submit_ioend_bio(wbc, ioend, bio);
497 goto retry;
498 }
499
500 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
501 xfs_submit_ioend_bio(wbc, ioend, bio);
502 goto retry;
503 }
504
505 lastblock = bh->b_blocknr;
506 }
507 if (bio)
508 xfs_submit_ioend_bio(wbc, ioend, bio);
509 xfs_finish_ioend(ioend);
510 return 0;
511}
512
513/*
514 * Test to see if we've been building up a completion structure for
515 * earlier buffers -- if so, we try to append to this ioend if we
516 * can, otherwise we finish off any current ioend and start another.
517 * Return the ioend we finished off so that the caller can submit it
518 * once it has finished processing the dirty page.
519 */
520STATIC void
521xfs_add_to_ioend(
522 struct inode *inode,
523 struct buffer_head *bh,
524 xfs_off_t offset,
525 struct xfs_writepage_ctx *wpc,
526 struct list_head *iolist)
527{
528 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
529 bh->b_blocknr != wpc->last_block + 1 ||
530 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
531 struct xfs_ioend *new;
532
533 if (wpc->ioend)
534 list_add(&wpc->ioend->io_list, iolist);
535
536 new = xfs_alloc_ioend(inode, wpc->io_type);
537 new->io_offset = offset;
538 new->io_buffer_head = bh;
539 new->io_buffer_tail = bh;
540 wpc->ioend = new;
541 } else {
542 wpc->ioend->io_buffer_tail->b_private = bh;
543 wpc->ioend->io_buffer_tail = bh;
544 }
545
546 bh->b_private = NULL;
547 wpc->ioend->io_size += bh->b_size;
548 wpc->last_block = bh->b_blocknr;
549 xfs_start_buffer_writeback(bh);
550}
551
552STATIC void
553xfs_map_buffer(
554 struct inode *inode,
555 struct buffer_head *bh,
556 struct xfs_bmbt_irec *imap,
557 xfs_off_t offset)
558{
559 sector_t bn;
560 struct xfs_mount *m = XFS_I(inode)->i_mount;
561 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
562 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
563
564 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
565 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
566
567 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
568 ((offset - iomap_offset) >> inode->i_blkbits);
569
570 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
571
572 bh->b_blocknr = bn;
573 set_buffer_mapped(bh);
574}
575
576STATIC void
577xfs_map_at_offset(
578 struct inode *inode,
579 struct buffer_head *bh,
580 struct xfs_bmbt_irec *imap,
581 xfs_off_t offset)
582{
583 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
584 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
585
586 xfs_map_buffer(inode, bh, imap, offset);
587 set_buffer_mapped(bh);
588 clear_buffer_delay(bh);
589 clear_buffer_unwritten(bh);
590}
591
592/*
593 * Test if a given page contains at least one buffer of a given @type.
594 * If @check_all_buffers is true, then we walk all the buffers in the page to
595 * try to find one of the type passed in. If it is not set, then the caller only
596 * needs to check the first buffer on the page for a match.
597 */
598STATIC bool
599xfs_check_page_type(
600 struct page *page,
601 unsigned int type,
602 bool check_all_buffers)
603{
604 struct buffer_head *bh;
605 struct buffer_head *head;
606
607 if (PageWriteback(page))
608 return false;
609 if (!page->mapping)
610 return false;
611 if (!page_has_buffers(page))
612 return false;
613
614 bh = head = page_buffers(page);
615 do {
616 if (buffer_unwritten(bh)) {
617 if (type == XFS_IO_UNWRITTEN)
618 return true;
619 } else if (buffer_delay(bh)) {
620 if (type == XFS_IO_DELALLOC)
621 return true;
622 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
623 if (type == XFS_IO_OVERWRITE)
624 return true;
625 }
626
627 /* If we are only checking the first buffer, we are done now. */
628 if (!check_all_buffers)
629 break;
630 } while ((bh = bh->b_this_page) != head);
631
632 return false;
633}
634
635STATIC void
636xfs_vm_invalidatepage(
637 struct page *page,
638 unsigned int offset,
639 unsigned int length)
640{
641 trace_xfs_invalidatepage(page->mapping->host, page, offset,
642 length);
643 block_invalidatepage(page, offset, length);
644}
645
646/*
647 * If the page has delalloc buffers on it, we need to punch them out before we
648 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
649 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
650 * is done on that same region - the delalloc extent is returned when none is
651 * supposed to be there.
652 *
653 * We prevent this by truncating away the delalloc regions on the page before
654 * invalidating it. Because they are delalloc, we can do this without needing a
655 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
656 * truncation without a transaction as there is no space left for block
657 * reservation (typically why we see a ENOSPC in writeback).
658 *
659 * This is not a performance critical path, so for now just do the punching a
660 * buffer head at a time.
661 */
662STATIC void
663xfs_aops_discard_page(
664 struct page *page)
665{
666 struct inode *inode = page->mapping->host;
667 struct xfs_inode *ip = XFS_I(inode);
668 struct buffer_head *bh, *head;
669 loff_t offset = page_offset(page);
670
671 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
672 goto out_invalidate;
673
674 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
675 goto out_invalidate;
676
677 xfs_alert(ip->i_mount,
678 "page discard on page %p, inode 0x%llx, offset %llu.",
679 page, ip->i_ino, offset);
680
681 xfs_ilock(ip, XFS_ILOCK_EXCL);
682 bh = head = page_buffers(page);
683 do {
684 int error;
685 xfs_fileoff_t start_fsb;
686
687 if (!buffer_delay(bh))
688 goto next_buffer;
689
690 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
691 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
692 if (error) {
693 /* something screwed, just bail */
694 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
695 xfs_alert(ip->i_mount,
696 "page discard unable to remove delalloc mapping.");
697 }
698 break;
699 }
700next_buffer:
701 offset += 1 << inode->i_blkbits;
702
703 } while ((bh = bh->b_this_page) != head);
704
705 xfs_iunlock(ip, XFS_ILOCK_EXCL);
706out_invalidate:
707 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
708 return;
709}
710
711/*
712 * We implement an immediate ioend submission policy here to avoid needing to
713 * chain multiple ioends and hence nest mempool allocations which can violate
714 * forward progress guarantees we need to provide. The current ioend we are
715 * adding buffers to is cached on the writepage context, and if the new buffer
716 * does not append to the cached ioend it will create a new ioend and cache that
717 * instead.
718 *
719 * If a new ioend is created and cached, the old ioend is returned and queued
720 * locally for submission once the entire page is processed or an error has been
721 * detected. While ioends are submitted immediately after they are completed,
722 * batching optimisations are provided by higher level block plugging.
723 *
724 * At the end of a writeback pass, there will be a cached ioend remaining on the
725 * writepage context that the caller will need to submit.
726 */
727static int
728xfs_writepage_map(
729 struct xfs_writepage_ctx *wpc,
730 struct writeback_control *wbc,
731 struct inode *inode,
732 struct page *page,
733 loff_t offset,
734 __uint64_t end_offset)
735{
736 LIST_HEAD(submit_list);
737 struct xfs_ioend *ioend, *next;
738 struct buffer_head *bh, *head;
739 ssize_t len = 1 << inode->i_blkbits;
740 int error = 0;
741 int count = 0;
742 int uptodate = 1;
743
744 bh = head = page_buffers(page);
745 offset = page_offset(page);
746 do {
747 if (offset >= end_offset)
748 break;
749 if (!buffer_uptodate(bh))
750 uptodate = 0;
751
752 /*
753 * set_page_dirty dirties all buffers in a page, independent
754 * of their state. The dirty state however is entirely
755 * meaningless for holes (!mapped && uptodate), so skip
756 * buffers covering holes here.
757 */
758 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
759 wpc->imap_valid = false;
760 continue;
761 }
762
763 if (buffer_unwritten(bh)) {
764 if (wpc->io_type != XFS_IO_UNWRITTEN) {
765 wpc->io_type = XFS_IO_UNWRITTEN;
766 wpc->imap_valid = false;
767 }
768 } else if (buffer_delay(bh)) {
769 if (wpc->io_type != XFS_IO_DELALLOC) {
770 wpc->io_type = XFS_IO_DELALLOC;
771 wpc->imap_valid = false;
772 }
773 } else if (buffer_uptodate(bh)) {
774 if (wpc->io_type != XFS_IO_OVERWRITE) {
775 wpc->io_type = XFS_IO_OVERWRITE;
776 wpc->imap_valid = false;
777 }
778 } else {
779 if (PageUptodate(page))
780 ASSERT(buffer_mapped(bh));
781 /*
782 * This buffer is not uptodate and will not be
783 * written to disk. Ensure that we will put any
784 * subsequent writeable buffers into a new
785 * ioend.
786 */
787 wpc->imap_valid = false;
788 continue;
789 }
790
791 if (wpc->imap_valid)
792 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
793 offset);
794 if (!wpc->imap_valid) {
795 error = xfs_map_blocks(inode, offset, &wpc->imap,
796 wpc->io_type);
797 if (error)
798 goto out;
799 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
800 offset);
801 }
802 if (wpc->imap_valid) {
803 lock_buffer(bh);
804 if (wpc->io_type != XFS_IO_OVERWRITE)
805 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
806 xfs_add_to_ioend(inode, bh, offset, wpc, &submit_list);
807 count++;
808 }
809
810 } while (offset += len, ((bh = bh->b_this_page) != head));
811
812 if (uptodate && bh == head)
813 SetPageUptodate(page);
814
815 ASSERT(wpc->ioend || list_empty(&submit_list));
816
817out:
818 /*
819 * On error, we have to fail the ioend here because we have locked
820 * buffers in the ioend. If we don't do this, we'll deadlock
821 * invalidating the page as that tries to lock the buffers on the page.
822 * Also, because we may have set pages under writeback, we have to make
823 * sure we run IO completion to mark the error state of the IO
824 * appropriately, so we can't cancel the ioend directly here. That means
825 * we have to mark this page as under writeback if we included any
826 * buffers from it in the ioend chain so that completion treats it
827 * correctly.
828 *
829 * If we didn't include the page in the ioend, the on error we can
830 * simply discard and unlock it as there are no other users of the page
831 * or it's buffers right now. The caller will still need to trigger
832 * submission of outstanding ioends on the writepage context so they are
833 * treated correctly on error.
834 */
835 if (count) {
836 xfs_start_page_writeback(page, !error);
837
838 /*
839 * Preserve the original error if there was one, otherwise catch
840 * submission errors here and propagate into subsequent ioend
841 * submissions.
842 */
843 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
844 int error2;
845
846 list_del_init(&ioend->io_list);
847 error2 = xfs_submit_ioend(wbc, ioend, error);
848 if (error2 && !error)
849 error = error2;
850 }
851 } else if (error) {
852 xfs_aops_discard_page(page);
853 ClearPageUptodate(page);
854 unlock_page(page);
855 } else {
856 /*
857 * We can end up here with no error and nothing to write if we
858 * race with a partial page truncate on a sub-page block sized
859 * filesystem. In that case we need to mark the page clean.
860 */
861 xfs_start_page_writeback(page, 1);
862 end_page_writeback(page);
863 }
864
865 mapping_set_error(page->mapping, error);
866 return error;
867}
868
869/*
870 * Write out a dirty page.
871 *
872 * For delalloc space on the page we need to allocate space and flush it.
873 * For unwritten space on the page we need to start the conversion to
874 * regular allocated space.
875 * For any other dirty buffer heads on the page we should flush them.
876 */
877STATIC int
878xfs_do_writepage(
879 struct page *page,
880 struct writeback_control *wbc,
881 void *data)
882{
883 struct xfs_writepage_ctx *wpc = data;
884 struct inode *inode = page->mapping->host;
885 loff_t offset;
886 __uint64_t end_offset;
887 pgoff_t end_index;
888
889 trace_xfs_writepage(inode, page, 0, 0);
890
891 ASSERT(page_has_buffers(page));
892
893 /*
894 * Refuse to write the page out if we are called from reclaim context.
895 *
896 * This avoids stack overflows when called from deeply used stacks in
897 * random callers for direct reclaim or memcg reclaim. We explicitly
898 * allow reclaim from kswapd as the stack usage there is relatively low.
899 *
900 * This should never happen except in the case of a VM regression so
901 * warn about it.
902 */
903 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
904 PF_MEMALLOC))
905 goto redirty;
906
907 /*
908 * Given that we do not allow direct reclaim to call us, we should
909 * never be called while in a filesystem transaction.
910 */
911 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
912 goto redirty;
913
914 /*
915 * Is this page beyond the end of the file?
916 *
917 * The page index is less than the end_index, adjust the end_offset
918 * to the highest offset that this page should represent.
919 * -----------------------------------------------------
920 * | file mapping | <EOF> |
921 * -----------------------------------------------------
922 * | Page ... | Page N-2 | Page N-1 | Page N | |
923 * ^--------------------------------^----------|--------
924 * | desired writeback range | see else |
925 * ---------------------------------^------------------|
926 */
927 offset = i_size_read(inode);
928 end_index = offset >> PAGE_SHIFT;
929 if (page->index < end_index)
930 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
931 else {
932 /*
933 * Check whether the page to write out is beyond or straddles
934 * i_size or not.
935 * -------------------------------------------------------
936 * | file mapping | <EOF> |
937 * -------------------------------------------------------
938 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
939 * ^--------------------------------^-----------|---------
940 * | | Straddles |
941 * ---------------------------------^-----------|--------|
942 */
943 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
944
945 /*
946 * Skip the page if it is fully outside i_size, e.g. due to a
947 * truncate operation that is in progress. We must redirty the
948 * page so that reclaim stops reclaiming it. Otherwise
949 * xfs_vm_releasepage() is called on it and gets confused.
950 *
951 * Note that the end_index is unsigned long, it would overflow
952 * if the given offset is greater than 16TB on 32-bit system
953 * and if we do check the page is fully outside i_size or not
954 * via "if (page->index >= end_index + 1)" as "end_index + 1"
955 * will be evaluated to 0. Hence this page will be redirtied
956 * and be written out repeatedly which would result in an
957 * infinite loop, the user program that perform this operation
958 * will hang. Instead, we can verify this situation by checking
959 * if the page to write is totally beyond the i_size or if it's
960 * offset is just equal to the EOF.
961 */
962 if (page->index > end_index ||
963 (page->index == end_index && offset_into_page == 0))
964 goto redirty;
965
966 /*
967 * The page straddles i_size. It must be zeroed out on each
968 * and every writepage invocation because it may be mmapped.
969 * "A file is mapped in multiples of the page size. For a file
970 * that is not a multiple of the page size, the remaining
971 * memory is zeroed when mapped, and writes to that region are
972 * not written out to the file."
973 */
974 zero_user_segment(page, offset_into_page, PAGE_SIZE);
975
976 /* Adjust the end_offset to the end of file */
977 end_offset = offset;
978 }
979
980 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
981
982redirty:
983 redirty_page_for_writepage(wbc, page);
984 unlock_page(page);
985 return 0;
986}
987
988STATIC int
989xfs_vm_writepage(
990 struct page *page,
991 struct writeback_control *wbc)
992{
993 struct xfs_writepage_ctx wpc = {
994 .io_type = XFS_IO_INVALID,
995 };
996 int ret;
997
998 ret = xfs_do_writepage(page, wbc, &wpc);
999 if (wpc.ioend)
1000 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1001 return ret;
1002}
1003
1004STATIC int
1005xfs_vm_writepages(
1006 struct address_space *mapping,
1007 struct writeback_control *wbc)
1008{
1009 struct xfs_writepage_ctx wpc = {
1010 .io_type = XFS_IO_INVALID,
1011 };
1012 int ret;
1013
1014 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1015 if (dax_mapping(mapping))
1016 return dax_writeback_mapping_range(mapping,
1017 xfs_find_bdev_for_inode(mapping->host), wbc);
1018
1019 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1020 if (wpc.ioend)
1021 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1022 return ret;
1023}
1024
1025/*
1026 * Called to move a page into cleanable state - and from there
1027 * to be released. The page should already be clean. We always
1028 * have buffer heads in this call.
1029 *
1030 * Returns 1 if the page is ok to release, 0 otherwise.
1031 */
1032STATIC int
1033xfs_vm_releasepage(
1034 struct page *page,
1035 gfp_t gfp_mask)
1036{
1037 int delalloc, unwritten;
1038
1039 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1040
1041 xfs_count_page_state(page, &delalloc, &unwritten);
1042
1043 if (WARN_ON_ONCE(delalloc))
1044 return 0;
1045 if (WARN_ON_ONCE(unwritten))
1046 return 0;
1047
1048 return try_to_free_buffers(page);
1049}
1050
1051/*
1052 * When we map a DIO buffer, we may need to pass flags to
1053 * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
1054 *
1055 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1056 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1057 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1058 * extending the file size. We won't know for sure until IO completion is run
1059 * and the actual max write offset is communicated to the IO completion
1060 * routine.
1061 */
1062static void
1063xfs_map_direct(
1064 struct inode *inode,
1065 struct buffer_head *bh_result,
1066 struct xfs_bmbt_irec *imap,
1067 xfs_off_t offset)
1068{
1069 uintptr_t *flags = (uintptr_t *)&bh_result->b_private;
1070 xfs_off_t size = bh_result->b_size;
1071
1072 trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
1073 ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, imap);
1074
1075 if (ISUNWRITTEN(imap)) {
1076 *flags |= XFS_DIO_FLAG_UNWRITTEN;
1077 set_buffer_defer_completion(bh_result);
1078 } else if (offset + size > i_size_read(inode) || offset + size < 0) {
1079 *flags |= XFS_DIO_FLAG_APPEND;
1080 set_buffer_defer_completion(bh_result);
1081 }
1082}
1083
1084/*
1085 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1086 * is, so that we can avoid repeated get_blocks calls.
1087 *
1088 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1089 * for blocks beyond EOF must be marked new so that sub block regions can be
1090 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1091 * was just allocated or is unwritten, otherwise the callers would overwrite
1092 * existing data with zeros. Hence we have to split the mapping into a range up
1093 * to and including EOF, and a second mapping for beyond EOF.
1094 */
1095static void
1096xfs_map_trim_size(
1097 struct inode *inode,
1098 sector_t iblock,
1099 struct buffer_head *bh_result,
1100 struct xfs_bmbt_irec *imap,
1101 xfs_off_t offset,
1102 ssize_t size)
1103{
1104 xfs_off_t mapping_size;
1105
1106 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1107 mapping_size <<= inode->i_blkbits;
1108
1109 ASSERT(mapping_size > 0);
1110 if (mapping_size > size)
1111 mapping_size = size;
1112 if (offset < i_size_read(inode) &&
1113 offset + mapping_size >= i_size_read(inode)) {
1114 /* limit mapping to block that spans EOF */
1115 mapping_size = roundup_64(i_size_read(inode) - offset,
1116 1 << inode->i_blkbits);
1117 }
1118 if (mapping_size > LONG_MAX)
1119 mapping_size = LONG_MAX;
1120
1121 bh_result->b_size = mapping_size;
1122}
1123
1124STATIC int
1125__xfs_get_blocks(
1126 struct inode *inode,
1127 sector_t iblock,
1128 struct buffer_head *bh_result,
1129 int create,
1130 bool direct,
1131 bool dax_fault)
1132{
1133 struct xfs_inode *ip = XFS_I(inode);
1134 struct xfs_mount *mp = ip->i_mount;
1135 xfs_fileoff_t offset_fsb, end_fsb;
1136 int error = 0;
1137 int lockmode = 0;
1138 struct xfs_bmbt_irec imap;
1139 int nimaps = 1;
1140 xfs_off_t offset;
1141 ssize_t size;
1142 int new = 0;
1143
1144 if (XFS_FORCED_SHUTDOWN(mp))
1145 return -EIO;
1146
1147 offset = (xfs_off_t)iblock << inode->i_blkbits;
1148 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1149 size = bh_result->b_size;
1150
1151 if (!create && direct && offset >= i_size_read(inode))
1152 return 0;
1153
1154 /*
1155 * Direct I/O is usually done on preallocated files, so try getting
1156 * a block mapping without an exclusive lock first. For buffered
1157 * writes we already have the exclusive iolock anyway, so avoiding
1158 * a lock roundtrip here by taking the ilock exclusive from the
1159 * beginning is a useful micro optimization.
1160 */
1161 if (create && !direct) {
1162 lockmode = XFS_ILOCK_EXCL;
1163 xfs_ilock(ip, lockmode);
1164 } else {
1165 lockmode = xfs_ilock_data_map_shared(ip);
1166 }
1167
1168 ASSERT(offset <= mp->m_super->s_maxbytes);
1169 if (offset + size > mp->m_super->s_maxbytes)
1170 size = mp->m_super->s_maxbytes - offset;
1171 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1172 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1173
1174 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1175 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1176 if (error)
1177 goto out_unlock;
1178
1179 /* for DAX, we convert unwritten extents directly */
1180 if (create &&
1181 (!nimaps ||
1182 (imap.br_startblock == HOLESTARTBLOCK ||
1183 imap.br_startblock == DELAYSTARTBLOCK) ||
1184 (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
1185 if (direct || xfs_get_extsz_hint(ip)) {
1186 /*
1187 * xfs_iomap_write_direct() expects the shared lock. It
1188 * is unlocked on return.
1189 */
1190 if (lockmode == XFS_ILOCK_EXCL)
1191 xfs_ilock_demote(ip, lockmode);
1192
1193 error = xfs_iomap_write_direct(ip, offset, size,
1194 &imap, nimaps);
1195 if (error)
1196 return error;
1197 new = 1;
1198
1199 } else {
1200 /*
1201 * Delalloc reservations do not require a transaction,
1202 * we can go on without dropping the lock here. If we
1203 * are allocating a new delalloc block, make sure that
1204 * we set the new flag so that we mark the buffer new so
1205 * that we know that it is newly allocated if the write
1206 * fails.
1207 */
1208 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1209 new = 1;
1210 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1211 if (error)
1212 goto out_unlock;
1213
1214 xfs_iunlock(ip, lockmode);
1215 }
1216 trace_xfs_get_blocks_alloc(ip, offset, size,
1217 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1218 : XFS_IO_DELALLOC, &imap);
1219 } else if (nimaps) {
1220 trace_xfs_get_blocks_found(ip, offset, size,
1221 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1222 : XFS_IO_OVERWRITE, &imap);
1223 xfs_iunlock(ip, lockmode);
1224 } else {
1225 trace_xfs_get_blocks_notfound(ip, offset, size);
1226 goto out_unlock;
1227 }
1228
1229 if (IS_DAX(inode) && create) {
1230 ASSERT(!ISUNWRITTEN(&imap));
1231 /* zeroing is not needed at a higher layer */
1232 new = 0;
1233 }
1234
1235 /* trim mapping down to size requested */
1236 if (direct || size > (1 << inode->i_blkbits))
1237 xfs_map_trim_size(inode, iblock, bh_result,
1238 &imap, offset, size);
1239
1240 /*
1241 * For unwritten extents do not report a disk address in the buffered
1242 * read case (treat as if we're reading into a hole).
1243 */
1244 if (imap.br_startblock != HOLESTARTBLOCK &&
1245 imap.br_startblock != DELAYSTARTBLOCK &&
1246 (create || !ISUNWRITTEN(&imap))) {
1247 xfs_map_buffer(inode, bh_result, &imap, offset);
1248 if (ISUNWRITTEN(&imap))
1249 set_buffer_unwritten(bh_result);
1250 /* direct IO needs special help */
1251 if (create && direct) {
1252 if (dax_fault)
1253 ASSERT(!ISUNWRITTEN(&imap));
1254 else
1255 xfs_map_direct(inode, bh_result, &imap, offset);
1256 }
1257 }
1258
1259 /*
1260 * If this is a realtime file, data may be on a different device.
1261 * to that pointed to from the buffer_head b_bdev currently.
1262 */
1263 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1264
1265 /*
1266 * If we previously allocated a block out beyond eof and we are now
1267 * coming back to use it then we will need to flag it as new even if it
1268 * has a disk address.
1269 *
1270 * With sub-block writes into unwritten extents we also need to mark
1271 * the buffer as new so that the unwritten parts of the buffer gets
1272 * correctly zeroed.
1273 */
1274 if (create &&
1275 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1276 (offset >= i_size_read(inode)) ||
1277 (new || ISUNWRITTEN(&imap))))
1278 set_buffer_new(bh_result);
1279
1280 if (imap.br_startblock == DELAYSTARTBLOCK) {
1281 BUG_ON(direct);
1282 if (create) {
1283 set_buffer_uptodate(bh_result);
1284 set_buffer_mapped(bh_result);
1285 set_buffer_delay(bh_result);
1286 }
1287 }
1288
1289 return 0;
1290
1291out_unlock:
1292 xfs_iunlock(ip, lockmode);
1293 return error;
1294}
1295
1296int
1297xfs_get_blocks(
1298 struct inode *inode,
1299 sector_t iblock,
1300 struct buffer_head *bh_result,
1301 int create)
1302{
1303 return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1304}
1305
1306int
1307xfs_get_blocks_direct(
1308 struct inode *inode,
1309 sector_t iblock,
1310 struct buffer_head *bh_result,
1311 int create)
1312{
1313 return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1314}
1315
1316int
1317xfs_get_blocks_dax_fault(
1318 struct inode *inode,
1319 sector_t iblock,
1320 struct buffer_head *bh_result,
1321 int create)
1322{
1323 return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1324}
1325
1326/*
1327 * Complete a direct I/O write request.
1328 *
1329 * xfs_map_direct passes us some flags in the private data to tell us what to
1330 * do. If no flags are set, then the write IO is an overwrite wholly within
1331 * the existing allocated file size and so there is nothing for us to do.
1332 *
1333 * Note that in this case the completion can be called in interrupt context,
1334 * whereas if we have flags set we will always be called in task context
1335 * (i.e. from a workqueue).
1336 */
1337STATIC int
1338xfs_end_io_direct_write(
1339 struct kiocb *iocb,
1340 loff_t offset,
1341 ssize_t size,
1342 void *private)
1343{
1344 struct inode *inode = file_inode(iocb->ki_filp);
1345 struct xfs_inode *ip = XFS_I(inode);
1346 struct xfs_mount *mp = ip->i_mount;
1347 uintptr_t flags = (uintptr_t)private;
1348 int error = 0;
1349
1350 trace_xfs_end_io_direct_write(ip, offset, size);
1351
1352 if (XFS_FORCED_SHUTDOWN(mp))
1353 return -EIO;
1354
1355 if (size <= 0)
1356 return size;
1357
1358 /*
1359 * The flags tell us whether we are doing unwritten extent conversions
1360 * or an append transaction that updates the on-disk file size. These
1361 * cases are the only cases where we should *potentially* be needing
1362 * to update the VFS inode size.
1363 */
1364 if (flags == 0) {
1365 ASSERT(offset + size <= i_size_read(inode));
1366 return 0;
1367 }
1368
1369 /*
1370 * We need to update the in-core inode size here so that we don't end up
1371 * with the on-disk inode size being outside the in-core inode size. We
1372 * have no other method of updating EOF for AIO, so always do it here
1373 * if necessary.
1374 *
1375 * We need to lock the test/set EOF update as we can be racing with
1376 * other IO completions here to update the EOF. Failing to serialise
1377 * here can result in EOF moving backwards and Bad Things Happen when
1378 * that occurs.
1379 */
1380 spin_lock(&ip->i_flags_lock);
1381 if (offset + size > i_size_read(inode))
1382 i_size_write(inode, offset + size);
1383 spin_unlock(&ip->i_flags_lock);
1384
1385 if (flags & XFS_DIO_FLAG_UNWRITTEN) {
1386 trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
1387
1388 error = xfs_iomap_write_unwritten(ip, offset, size);
1389 } else if (flags & XFS_DIO_FLAG_APPEND) {
1390 struct xfs_trans *tp;
1391
1392 trace_xfs_end_io_direct_write_append(ip, offset, size);
1393
1394 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
1395 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
1396 if (error) {
1397 xfs_trans_cancel(tp);
1398 return error;
1399 }
1400 error = xfs_setfilesize(ip, tp, offset, size);
1401 }
1402
1403 return error;
1404}
1405
1406STATIC ssize_t
1407xfs_vm_direct_IO(
1408 struct kiocb *iocb,
1409 struct iov_iter *iter,
1410 loff_t offset)
1411{
1412 struct inode *inode = iocb->ki_filp->f_mapping->host;
1413 dio_iodone_t *endio = NULL;
1414 int flags = 0;
1415 struct block_device *bdev;
1416
1417 if (iov_iter_rw(iter) == WRITE) {
1418 endio = xfs_end_io_direct_write;
1419 flags = DIO_ASYNC_EXTEND;
1420 }
1421
1422 if (IS_DAX(inode)) {
1423 return dax_do_io(iocb, inode, iter, offset,
1424 xfs_get_blocks_direct, endio, 0);
1425 }
1426
1427 bdev = xfs_find_bdev_for_inode(inode);
1428 return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1429 xfs_get_blocks_direct, endio, NULL, flags);
1430}
1431
1432/*
1433 * Punch out the delalloc blocks we have already allocated.
1434 *
1435 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1436 * as the page is still locked at this point.
1437 */
1438STATIC void
1439xfs_vm_kill_delalloc_range(
1440 struct inode *inode,
1441 loff_t start,
1442 loff_t end)
1443{
1444 struct xfs_inode *ip = XFS_I(inode);
1445 xfs_fileoff_t start_fsb;
1446 xfs_fileoff_t end_fsb;
1447 int error;
1448
1449 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1450 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1451 if (end_fsb <= start_fsb)
1452 return;
1453
1454 xfs_ilock(ip, XFS_ILOCK_EXCL);
1455 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1456 end_fsb - start_fsb);
1457 if (error) {
1458 /* something screwed, just bail */
1459 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1460 xfs_alert(ip->i_mount,
1461 "xfs_vm_write_failed: unable to clean up ino %lld",
1462 ip->i_ino);
1463 }
1464 }
1465 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1466}
1467
1468STATIC void
1469xfs_vm_write_failed(
1470 struct inode *inode,
1471 struct page *page,
1472 loff_t pos,
1473 unsigned len)
1474{
1475 loff_t block_offset;
1476 loff_t block_start;
1477 loff_t block_end;
1478 loff_t from = pos & (PAGE_SIZE - 1);
1479 loff_t to = from + len;
1480 struct buffer_head *bh, *head;
1481 struct xfs_mount *mp = XFS_I(inode)->i_mount;
1482
1483 /*
1484 * The request pos offset might be 32 or 64 bit, this is all fine
1485 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1486 * platform, the high 32-bit will be masked off if we evaluate the
1487 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1488 * 0xfffff000 as an unsigned long, hence the result is incorrect
1489 * which could cause the following ASSERT failed in most cases.
1490 * In order to avoid this, we can evaluate the block_offset of the
1491 * start of the page by using shifts rather than masks the mismatch
1492 * problem.
1493 */
1494 block_offset = (pos >> PAGE_SHIFT) << PAGE_SHIFT;
1495
1496 ASSERT(block_offset + from == pos);
1497
1498 head = page_buffers(page);
1499 block_start = 0;
1500 for (bh = head; bh != head || !block_start;
1501 bh = bh->b_this_page, block_start = block_end,
1502 block_offset += bh->b_size) {
1503 block_end = block_start + bh->b_size;
1504
1505 /* skip buffers before the write */
1506 if (block_end <= from)
1507 continue;
1508
1509 /* if the buffer is after the write, we're done */
1510 if (block_start >= to)
1511 break;
1512
1513 /*
1514 * Process delalloc and unwritten buffers beyond EOF. We can
1515 * encounter unwritten buffers in the event that a file has
1516 * post-EOF unwritten extents and an extending write happens to
1517 * fail (e.g., an unaligned write that also involves a delalloc
1518 * to the same page).
1519 */
1520 if (!buffer_delay(bh) && !buffer_unwritten(bh))
1521 continue;
1522
1523 if (!xfs_mp_fail_writes(mp) && !buffer_new(bh) &&
1524 block_offset < i_size_read(inode))
1525 continue;
1526
1527 if (buffer_delay(bh))
1528 xfs_vm_kill_delalloc_range(inode, block_offset,
1529 block_offset + bh->b_size);
1530
1531 /*
1532 * This buffer does not contain data anymore. make sure anyone
1533 * who finds it knows that for certain.
1534 */
1535 clear_buffer_delay(bh);
1536 clear_buffer_uptodate(bh);
1537 clear_buffer_mapped(bh);
1538 clear_buffer_new(bh);
1539 clear_buffer_dirty(bh);
1540 clear_buffer_unwritten(bh);
1541 }
1542
1543}
1544
1545/*
1546 * This used to call block_write_begin(), but it unlocks and releases the page
1547 * on error, and we need that page to be able to punch stale delalloc blocks out
1548 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1549 * the appropriate point.
1550 */
1551STATIC int
1552xfs_vm_write_begin(
1553 struct file *file,
1554 struct address_space *mapping,
1555 loff_t pos,
1556 unsigned len,
1557 unsigned flags,
1558 struct page **pagep,
1559 void **fsdata)
1560{
1561 pgoff_t index = pos >> PAGE_SHIFT;
1562 struct page *page;
1563 int status;
1564 struct xfs_mount *mp = XFS_I(mapping->host)->i_mount;
1565
1566 ASSERT(len <= PAGE_SIZE);
1567
1568 page = grab_cache_page_write_begin(mapping, index, flags);
1569 if (!page)
1570 return -ENOMEM;
1571
1572 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1573 if (xfs_mp_fail_writes(mp))
1574 status = -EIO;
1575 if (unlikely(status)) {
1576 struct inode *inode = mapping->host;
1577 size_t isize = i_size_read(inode);
1578
1579 xfs_vm_write_failed(inode, page, pos, len);
1580 unlock_page(page);
1581
1582 /*
1583 * If the write is beyond EOF, we only want to kill blocks
1584 * allocated in this write, not blocks that were previously
1585 * written successfully.
1586 */
1587 if (xfs_mp_fail_writes(mp))
1588 isize = 0;
1589 if (pos + len > isize) {
1590 ssize_t start = max_t(ssize_t, pos, isize);
1591
1592 truncate_pagecache_range(inode, start, pos + len);
1593 }
1594
1595 put_page(page);
1596 page = NULL;
1597 }
1598
1599 *pagep = page;
1600 return status;
1601}
1602
1603/*
1604 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1605 * this specific write because they will never be written. Previous writes
1606 * beyond EOF where block allocation succeeded do not need to be trashed, so
1607 * only new blocks from this write should be trashed. For blocks within
1608 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1609 * written with all the other valid data.
1610 */
1611STATIC int
1612xfs_vm_write_end(
1613 struct file *file,
1614 struct address_space *mapping,
1615 loff_t pos,
1616 unsigned len,
1617 unsigned copied,
1618 struct page *page,
1619 void *fsdata)
1620{
1621 int ret;
1622
1623 ASSERT(len <= PAGE_SIZE);
1624
1625 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1626 if (unlikely(ret < len)) {
1627 struct inode *inode = mapping->host;
1628 size_t isize = i_size_read(inode);
1629 loff_t to = pos + len;
1630
1631 if (to > isize) {
1632 /* only kill blocks in this write beyond EOF */
1633 if (pos > isize)
1634 isize = pos;
1635 xfs_vm_kill_delalloc_range(inode, isize, to);
1636 truncate_pagecache_range(inode, isize, to);
1637 }
1638 }
1639 return ret;
1640}
1641
1642STATIC sector_t
1643xfs_vm_bmap(
1644 struct address_space *mapping,
1645 sector_t block)
1646{
1647 struct inode *inode = (struct inode *)mapping->host;
1648 struct xfs_inode *ip = XFS_I(inode);
1649
1650 trace_xfs_vm_bmap(XFS_I(inode));
1651 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1652 filemap_write_and_wait(mapping);
1653 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1654 return generic_block_bmap(mapping, block, xfs_get_blocks);
1655}
1656
1657STATIC int
1658xfs_vm_readpage(
1659 struct file *unused,
1660 struct page *page)
1661{
1662 trace_xfs_vm_readpage(page->mapping->host, 1);
1663 return mpage_readpage(page, xfs_get_blocks);
1664}
1665
1666STATIC int
1667xfs_vm_readpages(
1668 struct file *unused,
1669 struct address_space *mapping,
1670 struct list_head *pages,
1671 unsigned nr_pages)
1672{
1673 trace_xfs_vm_readpages(mapping->host, nr_pages);
1674 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1675}
1676
1677/*
1678 * This is basically a copy of __set_page_dirty_buffers() with one
1679 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1680 * dirty, we'll never be able to clean them because we don't write buffers
1681 * beyond EOF, and that means we can't invalidate pages that span EOF
1682 * that have been marked dirty. Further, the dirty state can leak into
1683 * the file interior if the file is extended, resulting in all sorts of
1684 * bad things happening as the state does not match the underlying data.
1685 *
1686 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1687 * this only exist because of bufferheads and how the generic code manages them.
1688 */
1689STATIC int
1690xfs_vm_set_page_dirty(
1691 struct page *page)
1692{
1693 struct address_space *mapping = page->mapping;
1694 struct inode *inode = mapping->host;
1695 loff_t end_offset;
1696 loff_t offset;
1697 int newly_dirty;
1698
1699 if (unlikely(!mapping))
1700 return !TestSetPageDirty(page);
1701
1702 end_offset = i_size_read(inode);
1703 offset = page_offset(page);
1704
1705 spin_lock(&mapping->private_lock);
1706 if (page_has_buffers(page)) {
1707 struct buffer_head *head = page_buffers(page);
1708 struct buffer_head *bh = head;
1709
1710 do {
1711 if (offset < end_offset)
1712 set_buffer_dirty(bh);
1713 bh = bh->b_this_page;
1714 offset += 1 << inode->i_blkbits;
1715 } while (bh != head);
1716 }
1717 /*
1718 * Lock out page->mem_cgroup migration to keep PageDirty
1719 * synchronized with per-memcg dirty page counters.
1720 */
1721 lock_page_memcg(page);
1722 newly_dirty = !TestSetPageDirty(page);
1723 spin_unlock(&mapping->private_lock);
1724
1725 if (newly_dirty) {
1726 /* sigh - __set_page_dirty() is static, so copy it here, too */
1727 unsigned long flags;
1728
1729 spin_lock_irqsave(&mapping->tree_lock, flags);
1730 if (page->mapping) { /* Race with truncate? */
1731 WARN_ON_ONCE(!PageUptodate(page));
1732 account_page_dirtied(page, mapping);
1733 radix_tree_tag_set(&mapping->page_tree,
1734 page_index(page), PAGECACHE_TAG_DIRTY);
1735 }
1736 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1737 }
1738 unlock_page_memcg(page);
1739 if (newly_dirty)
1740 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1741 return newly_dirty;
1742}
1743
1744const struct address_space_operations xfs_address_space_operations = {
1745 .readpage = xfs_vm_readpage,
1746 .readpages = xfs_vm_readpages,
1747 .writepage = xfs_vm_writepage,
1748 .writepages = xfs_vm_writepages,
1749 .set_page_dirty = xfs_vm_set_page_dirty,
1750 .releasepage = xfs_vm_releasepage,
1751 .invalidatepage = xfs_vm_invalidatepage,
1752 .write_begin = xfs_vm_write_begin,
1753 .write_end = xfs_vm_write_end,
1754 .bmap = xfs_vm_bmap,
1755 .direct_IO = xfs_vm_direct_IO,
1756 .migratepage = buffer_migrate_page,
1757 .is_partially_uptodate = block_is_partially_uptodate,
1758 .error_remove_page = generic_error_remove_page,
1759};