Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_bit.h"
  20#include "xfs_log.h"
  21#include "xfs_inum.h"
  22#include "xfs_sb.h"
  23#include "xfs_ag.h"
  24#include "xfs_trans.h"
  25#include "xfs_mount.h"
  26#include "xfs_bmap_btree.h"
  27#include "xfs_dinode.h"
  28#include "xfs_inode.h"
 
 
  29#include "xfs_alloc.h"
  30#include "xfs_error.h"
  31#include "xfs_rw.h"
  32#include "xfs_iomap.h"
  33#include "xfs_vnodeops.h"
  34#include "xfs_trace.h"
  35#include "xfs_bmap.h"
 
 
  36#include <linux/gfp.h>
  37#include <linux/mpage.h>
  38#include <linux/pagevec.h>
  39#include <linux/writeback.h>
  40
 
 
 
  41
  42/*
  43 * Prime number of hash buckets since address is used as the key.
  44 */
  45#define NVSYNC		37
  46#define to_ioend_wq(v)	(&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
  47static wait_queue_head_t xfs_ioend_wq[NVSYNC];
  48
  49void __init
  50xfs_ioend_init(void)
  51{
  52	int i;
  53
  54	for (i = 0; i < NVSYNC; i++)
  55		init_waitqueue_head(&xfs_ioend_wq[i]);
  56}
  57
  58void
  59xfs_ioend_wait(
  60	xfs_inode_t	*ip)
  61{
  62	wait_queue_head_t *wq = to_ioend_wq(ip);
  63
  64	wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
  65}
  66
  67STATIC void
  68xfs_ioend_wake(
  69	xfs_inode_t	*ip)
  70{
  71	if (atomic_dec_and_test(&ip->i_iocount))
  72		wake_up(to_ioend_wq(ip));
  73}
  74
  75void
  76xfs_count_page_state(
  77	struct page		*page,
  78	int			*delalloc,
  79	int			*unwritten)
  80{
  81	struct buffer_head	*bh, *head;
  82
  83	*delalloc = *unwritten = 0;
  84
  85	bh = head = page_buffers(page);
  86	do {
  87		if (buffer_unwritten(bh))
  88			(*unwritten) = 1;
  89		else if (buffer_delay(bh))
  90			(*delalloc) = 1;
  91	} while ((bh = bh->b_this_page) != head);
  92}
  93
  94STATIC struct block_device *
  95xfs_find_bdev_for_inode(
  96	struct inode		*inode)
  97{
  98	struct xfs_inode	*ip = XFS_I(inode);
  99	struct xfs_mount	*mp = ip->i_mount;
 100
 101	if (XFS_IS_REALTIME_INODE(ip))
 102		return mp->m_rtdev_targp->bt_bdev;
 103	else
 104		return mp->m_ddev_targp->bt_bdev;
 105}
 106
 107/*
 108 * We're now finished for good with this ioend structure.
 109 * Update the page state via the associated buffer_heads,
 110 * release holds on the inode and bio, and finally free
 111 * up memory.  Do not use the ioend after this.
 112 */
 113STATIC void
 114xfs_destroy_ioend(
 115	xfs_ioend_t		*ioend)
 116{
 117	struct buffer_head	*bh, *next;
 118	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 119
 120	for (bh = ioend->io_buffer_head; bh; bh = next) {
 121		next = bh->b_private;
 122		bh->b_end_io(bh, !ioend->io_error);
 123	}
 124
 125	/*
 126	 * Volume managers supporting multiple paths can send back ENODEV
 127	 * when the final path disappears.  In this case continuing to fill
 128	 * the page cache with dirty data which cannot be written out is
 129	 * evil, so prevent that.
 130	 */
 131	if (unlikely(ioend->io_error == -ENODEV)) {
 132		xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
 133				      __FILE__, __LINE__);
 134	}
 135
 136	xfs_ioend_wake(ip);
 137	mempool_free(ioend, xfs_ioend_pool);
 138}
 139
 140/*
 141 * If the end of the current ioend is beyond the current EOF,
 142 * return the new EOF value, otherwise zero.
 143 */
 144STATIC xfs_fsize_t
 145xfs_ioend_new_eof(
 146	xfs_ioend_t		*ioend)
 147{
 148	xfs_inode_t		*ip = XFS_I(ioend->io_inode);
 149	xfs_fsize_t		isize;
 150	xfs_fsize_t		bsize;
 151
 152	bsize = ioend->io_offset + ioend->io_size;
 153	isize = MAX(ip->i_size, ip->i_new_size);
 154	isize = MIN(isize, bsize);
 155	return isize > ip->i_d.di_size ? isize : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156}
 157
 158/*
 159 * Update on-disk file size now that data has been written to disk.  The
 160 * current in-memory file size is i_size.  If a write is beyond eof i_new_size
 161 * will be the intended file size until i_size is updated.  If this write does
 162 * not extend all the way to the valid file size then restrict this update to
 163 * the end of the write.
 164 *
 165 * This function does not block as blocking on the inode lock in IO completion
 166 * can lead to IO completion order dependency deadlocks.. If it can't get the
 167 * inode ilock it will return EAGAIN. Callers must handle this.
 168 */
 169STATIC int
 170xfs_setfilesize(
 171	xfs_ioend_t		*ioend)
 
 
 
 172{
 173	xfs_inode_t		*ip = XFS_I(ioend->io_inode);
 174	xfs_fsize_t		isize;
 175
 176	if (unlikely(ioend->io_error))
 
 
 
 
 177		return 0;
 
 
 
 
 
 
 
 178
 179	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
 180		return EAGAIN;
 
 
 
 
 
 
 
 181
 182	isize = xfs_ioend_new_eof(ioend);
 183	if (isize) {
 184		trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
 185		ip->i_d.di_size = isize;
 186		xfs_mark_inode_dirty(ip);
 
 
 
 
 
 
 
 187	}
 188
 189	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 190	return 0;
 191}
 192
 193/*
 194 * Schedule IO completion handling on the final put of an ioend.
 
 
 
 195 */
 196STATIC void
 197xfs_finish_ioend(
 198	struct xfs_ioend	*ioend)
 199{
 200	if (atomic_dec_and_test(&ioend->io_remaining)) {
 201		if (ioend->io_type == IO_UNWRITTEN)
 202			queue_work(xfsconvertd_workqueue, &ioend->io_work);
 
 
 
 
 203		else
 204			queue_work(xfsdatad_workqueue, &ioend->io_work);
 205	}
 206}
 207
 208/*
 209 * IO write completion.
 210 */
 211STATIC void
 212xfs_end_io(
 213	struct work_struct *work)
 214{
 215	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
 216	struct xfs_inode *ip = XFS_I(ioend->io_inode);
 217	int		error = 0;
 218
 219	/*
 220	 * For unwritten extents we need to issue transactions to convert a
 221	 * range to normal written extens after the data I/O has finished.
 222	 */
 223	if (ioend->io_type == IO_UNWRITTEN &&
 224	    likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
 225
 226		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
 227						 ioend->io_size);
 228		if (error)
 229			ioend->io_error = error;
 230	}
 231
 232	/*
 233	 * We might have to update the on-disk file size after extending
 234	 * writes.
 235	 */
 236	error = xfs_setfilesize(ioend);
 237	ASSERT(!error || error == EAGAIN);
 238
 239	/*
 240	 * If we didn't complete processing of the ioend, requeue it to the
 241	 * tail of the workqueue for another attempt later. Otherwise destroy
 242	 * it.
 
 
 243	 */
 244	if (error == EAGAIN) {
 245		atomic_inc(&ioend->io_remaining);
 246		xfs_finish_ioend(ioend);
 247		/* ensure we don't spin on blocked ioends */
 248		delay(1);
 
 
 249	} else {
 250		if (ioend->io_iocb)
 251			aio_complete(ioend->io_iocb, ioend->io_result, 0);
 252		xfs_destroy_ioend(ioend);
 253	}
 254}
 255
 256/*
 257 * Call IO completion handling in caller context on the final put of an ioend.
 258 */
 259STATIC void
 260xfs_finish_ioend_sync(
 261	struct xfs_ioend	*ioend)
 262{
 263	if (atomic_dec_and_test(&ioend->io_remaining))
 264		xfs_end_io(&ioend->io_work);
 265}
 266
 267/*
 268 * Allocate and initialise an IO completion structure.
 269 * We need to track unwritten extent write completion here initially.
 270 * We'll need to extend this for updating the ondisk inode size later
 271 * (vs. incore size).
 272 */
 273STATIC xfs_ioend_t *
 274xfs_alloc_ioend(
 275	struct inode		*inode,
 276	unsigned int		type)
 277{
 278	xfs_ioend_t		*ioend;
 279
 280	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
 281
 282	/*
 283	 * Set the count to 1 initially, which will prevent an I/O
 284	 * completion callback from happening before we have started
 285	 * all the I/O from calling the completion routine too early.
 286	 */
 287	atomic_set(&ioend->io_remaining, 1);
 288	ioend->io_error = 0;
 289	ioend->io_list = NULL;
 290	ioend->io_type = type;
 291	ioend->io_inode = inode;
 292	ioend->io_buffer_head = NULL;
 293	ioend->io_buffer_tail = NULL;
 294	atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
 295	ioend->io_offset = 0;
 296	ioend->io_size = 0;
 297	ioend->io_iocb = NULL;
 298	ioend->io_result = 0;
 299
 300	INIT_WORK(&ioend->io_work, xfs_end_io);
 301	return ioend;
 302}
 303
 304STATIC int
 305xfs_map_blocks(
 306	struct inode		*inode,
 307	loff_t			offset,
 308	struct xfs_bmbt_irec	*imap,
 309	int			type,
 310	int			nonblocking)
 311{
 312	struct xfs_inode	*ip = XFS_I(inode);
 313	struct xfs_mount	*mp = ip->i_mount;
 314	ssize_t			count = 1 << inode->i_blkbits;
 315	xfs_fileoff_t		offset_fsb, end_fsb;
 316	int			error = 0;
 317	int			bmapi_flags = XFS_BMAPI_ENTIRE;
 318	int			nimaps = 1;
 319
 320	if (XFS_FORCED_SHUTDOWN(mp))
 321		return -XFS_ERROR(EIO);
 322
 323	if (type == IO_UNWRITTEN)
 324		bmapi_flags |= XFS_BMAPI_IGSTATE;
 325
 326	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
 327		if (nonblocking)
 328			return -XFS_ERROR(EAGAIN);
 329		xfs_ilock(ip, XFS_ILOCK_SHARED);
 330	}
 331
 332	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
 333	       (ip->i_df.if_flags & XFS_IFEXTENTS));
 334	ASSERT(offset <= mp->m_maxioffset);
 335
 336	if (offset + count > mp->m_maxioffset)
 337		count = mp->m_maxioffset - offset;
 338	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
 339	offset_fsb = XFS_B_TO_FSBT(mp, offset);
 340	error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
 341			  bmapi_flags,  NULL, 0, imap, &nimaps, NULL);
 342	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 343
 344	if (error)
 345		return -XFS_ERROR(error);
 346
 347	if (type == IO_DELALLOC &&
 348	    (!nimaps || isnullstartblock(imap->br_startblock))) {
 349		error = xfs_iomap_write_allocate(ip, offset, count, imap);
 350		if (!error)
 351			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
 352		return -XFS_ERROR(error);
 353	}
 354
 355#ifdef DEBUG
 356	if (type == IO_UNWRITTEN) {
 357		ASSERT(nimaps);
 358		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 359		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 360	}
 361#endif
 362	if (nimaps)
 363		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
 364	return 0;
 365}
 366
 367STATIC int
 368xfs_imap_valid(
 369	struct inode		*inode,
 370	struct xfs_bmbt_irec	*imap,
 371	xfs_off_t		offset)
 372{
 373	offset >>= inode->i_blkbits;
 374
 375	return offset >= imap->br_startoff &&
 376		offset < imap->br_startoff + imap->br_blockcount;
 377}
 378
 379/*
 380 * BIO completion handler for buffered IO.
 381 */
 382STATIC void
 383xfs_end_bio(
 384	struct bio		*bio,
 385	int			error)
 386{
 387	xfs_ioend_t		*ioend = bio->bi_private;
 388
 389	ASSERT(atomic_read(&bio->bi_cnt) >= 1);
 390	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
 391
 392	/* Toss bio and pass work off to an xfsdatad thread */
 393	bio->bi_private = NULL;
 394	bio->bi_end_io = NULL;
 395	bio_put(bio);
 396
 397	xfs_finish_ioend(ioend);
 398}
 399
 400STATIC void
 401xfs_submit_ioend_bio(
 402	struct writeback_control *wbc,
 403	xfs_ioend_t		*ioend,
 404	struct bio		*bio)
 405{
 406	atomic_inc(&ioend->io_remaining);
 407	bio->bi_private = ioend;
 408	bio->bi_end_io = xfs_end_bio;
 409
 410	/*
 411	 * If the I/O is beyond EOF we mark the inode dirty immediately
 412	 * but don't update the inode size until I/O completion.
 413	 */
 414	if (xfs_ioend_new_eof(ioend))
 415		xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
 416
 417	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
 418}
 419
 420STATIC struct bio *
 421xfs_alloc_ioend_bio(
 422	struct buffer_head	*bh)
 423{
 424	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
 425	struct bio		*bio = bio_alloc(GFP_NOIO, nvecs);
 426
 427	ASSERT(bio->bi_private == NULL);
 428	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 429	bio->bi_bdev = bh->b_bdev;
 430	return bio;
 431}
 432
 433STATIC void
 434xfs_start_buffer_writeback(
 435	struct buffer_head	*bh)
 436{
 437	ASSERT(buffer_mapped(bh));
 438	ASSERT(buffer_locked(bh));
 439	ASSERT(!buffer_delay(bh));
 440	ASSERT(!buffer_unwritten(bh));
 441
 442	mark_buffer_async_write(bh);
 443	set_buffer_uptodate(bh);
 444	clear_buffer_dirty(bh);
 445}
 446
 447STATIC void
 448xfs_start_page_writeback(
 449	struct page		*page,
 450	int			clear_dirty,
 451	int			buffers)
 452{
 453	ASSERT(PageLocked(page));
 454	ASSERT(!PageWriteback(page));
 455	if (clear_dirty)
 
 
 
 
 
 
 
 
 456		clear_page_dirty_for_io(page);
 457	set_page_writeback(page);
 
 
 
 458	unlock_page(page);
 459	/* If no buffers on the page are to be written, finish it here */
 460	if (!buffers)
 461		end_page_writeback(page);
 462}
 463
 464static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
 465{
 466	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
 467}
 468
 469/*
 470 * Submit all of the bios for all of the ioends we have saved up, covering the
 471 * initial writepage page and also any probed pages.
 472 *
 473 * Because we may have multiple ioends spanning a page, we need to start
 474 * writeback on all the buffers before we submit them for I/O. If we mark the
 475 * buffers as we got, then we can end up with a page that only has buffers
 476 * marked async write and I/O complete on can occur before we mark the other
 477 * buffers async write.
 478 *
 479 * The end result of this is that we trip a bug in end_page_writeback() because
 480 * we call it twice for the one page as the code in end_buffer_async_write()
 481 * assumes that all buffers on the page are started at the same time.
 482 *
 483 * The fix is two passes across the ioend list - one to start writeback on the
 484 * buffer_heads, and then submit them for I/O on the second pass.
 485 */
 486STATIC void
 487xfs_submit_ioend(
 488	struct writeback_control *wbc,
 489	xfs_ioend_t		*ioend)
 
 490{
 491	xfs_ioend_t		*head = ioend;
 492	xfs_ioend_t		*next;
 493	struct buffer_head	*bh;
 494	struct bio		*bio;
 495	sector_t		lastblock = 0;
 496
 497	/* Pass 1 - start writeback */
 498	do {
 499		next = ioend->io_list;
 500		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
 501			xfs_start_buffer_writeback(bh);
 502	} while ((ioend = next) != NULL);
 503
 504	/* Pass 2 - submit I/O */
 505	ioend = head;
 506	do {
 507		next = ioend->io_list;
 508		bio = NULL;
 509
 510		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
 511
 512			if (!bio) {
 513 retry:
 514				bio = xfs_alloc_ioend_bio(bh);
 515			} else if (bh->b_blocknr != lastblock + 1) {
 516				xfs_submit_ioend_bio(wbc, ioend, bio);
 517				goto retry;
 518			}
 519
 520			if (bio_add_buffer(bio, bh) != bh->b_size) {
 521				xfs_submit_ioend_bio(wbc, ioend, bio);
 522				goto retry;
 523			}
 524
 525			lastblock = bh->b_blocknr;
 526		}
 527		if (bio)
 
 528			xfs_submit_ioend_bio(wbc, ioend, bio);
 529		xfs_finish_ioend(ioend);
 530	} while ((ioend = next) != NULL);
 531}
 532
 533/*
 534 * Cancel submission of all buffer_heads so far in this endio.
 535 * Toss the endio too.  Only ever called for the initial page
 536 * in a writepage request, so only ever one page.
 537 */
 538STATIC void
 539xfs_cancel_ioend(
 540	xfs_ioend_t		*ioend)
 541{
 542	xfs_ioend_t		*next;
 543	struct buffer_head	*bh, *next_bh;
 544
 545	do {
 546		next = ioend->io_list;
 547		bh = ioend->io_buffer_head;
 548		do {
 549			next_bh = bh->b_private;
 550			clear_buffer_async_write(bh);
 551			unlock_buffer(bh);
 552		} while ((bh = next_bh) != NULL);
 553
 554		xfs_ioend_wake(XFS_I(ioend->io_inode));
 555		mempool_free(ioend, xfs_ioend_pool);
 556	} while ((ioend = next) != NULL);
 557}
 558
 559/*
 560 * Test to see if we've been building up a completion structure for
 561 * earlier buffers -- if so, we try to append to this ioend if we
 562 * can, otherwise we finish off any current ioend and start another.
 563 * Return true if we've finished the given ioend.
 
 564 */
 565STATIC void
 566xfs_add_to_ioend(
 567	struct inode		*inode,
 568	struct buffer_head	*bh,
 569	xfs_off_t		offset,
 570	unsigned int		type,
 571	xfs_ioend_t		**result,
 572	int			need_ioend)
 573{
 574	xfs_ioend_t		*ioend = *result;
 575
 576	if (!ioend || need_ioend || type != ioend->io_type) {
 577		xfs_ioend_t	*previous = *result;
 578
 579		ioend = xfs_alloc_ioend(inode, type);
 580		ioend->io_offset = offset;
 581		ioend->io_buffer_head = bh;
 582		ioend->io_buffer_tail = bh;
 583		if (previous)
 584			previous->io_list = ioend;
 585		*result = ioend;
 
 586	} else {
 587		ioend->io_buffer_tail->b_private = bh;
 588		ioend->io_buffer_tail = bh;
 589	}
 590
 591	bh->b_private = NULL;
 592	ioend->io_size += bh->b_size;
 
 
 593}
 594
 595STATIC void
 596xfs_map_buffer(
 597	struct inode		*inode,
 598	struct buffer_head	*bh,
 599	struct xfs_bmbt_irec	*imap,
 600	xfs_off_t		offset)
 601{
 602	sector_t		bn;
 603	struct xfs_mount	*m = XFS_I(inode)->i_mount;
 604	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
 605	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
 606
 607	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 608	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 609
 610	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
 611	      ((offset - iomap_offset) >> inode->i_blkbits);
 612
 613	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
 614
 615	bh->b_blocknr = bn;
 616	set_buffer_mapped(bh);
 617}
 618
 619STATIC void
 620xfs_map_at_offset(
 621	struct inode		*inode,
 622	struct buffer_head	*bh,
 623	struct xfs_bmbt_irec	*imap,
 624	xfs_off_t		offset)
 625{
 626	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 627	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 628
 629	xfs_map_buffer(inode, bh, imap, offset);
 630	set_buffer_mapped(bh);
 631	clear_buffer_delay(bh);
 632	clear_buffer_unwritten(bh);
 633}
 634
 635/*
 636 * Test if a given page is suitable for writing as part of an unwritten
 637 * or delayed allocate extent.
 
 
 638 */
 639STATIC int
 640xfs_is_delayed_page(
 641	struct page		*page,
 642	unsigned int		type)
 
 643{
 644	if (PageWriteback(page))
 645		return 0;
 646
 647	if (page->mapping && page_has_buffers(page)) {
 648		struct buffer_head	*bh, *head;
 649		int			acceptable = 0;
 650
 651		bh = head = page_buffers(page);
 652		do {
 653			if (buffer_unwritten(bh))
 654				acceptable = (type == IO_UNWRITTEN);
 655			else if (buffer_delay(bh))
 656				acceptable = (type == IO_DELALLOC);
 657			else if (buffer_dirty(bh) && buffer_mapped(bh))
 658				acceptable = (type == IO_OVERWRITE);
 659			else
 660				break;
 661		} while ((bh = bh->b_this_page) != head);
 662
 663		if (acceptable)
 664			return 1;
 665	}
 666
 667	return 0;
 668}
 669
 670/*
 671 * Allocate & map buffers for page given the extent map. Write it out.
 672 * except for the original page of a writepage, this is called on
 673 * delalloc/unwritten pages only, for the original page it is possible
 674 * that the page has no mapping at all.
 675 */
 676STATIC int
 677xfs_convert_page(
 678	struct inode		*inode,
 679	struct page		*page,
 680	loff_t			tindex,
 681	struct xfs_bmbt_irec	*imap,
 682	xfs_ioend_t		**ioendp,
 683	struct writeback_control *wbc)
 684{
 685	struct buffer_head	*bh, *head;
 686	xfs_off_t		end_offset;
 687	unsigned long		p_offset;
 688	unsigned int		type;
 689	int			len, page_dirty;
 690	int			count = 0, done = 0, uptodate = 1;
 691 	xfs_off_t		offset = page_offset(page);
 692
 693	if (page->index != tindex)
 694		goto fail;
 695	if (!trylock_page(page))
 696		goto fail;
 697	if (PageWriteback(page))
 698		goto fail_unlock_page;
 699	if (page->mapping != inode->i_mapping)
 700		goto fail_unlock_page;
 701	if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
 702		goto fail_unlock_page;
 703
 704	/*
 705	 * page_dirty is initially a count of buffers on the page before
 706	 * EOF and is decremented as we move each into a cleanable state.
 707	 *
 708	 * Derivation:
 709	 *
 710	 * End offset is the highest offset that this page should represent.
 711	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
 712	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
 713	 * hence give us the correct page_dirty count. On any other page,
 714	 * it will be zero and in that case we need page_dirty to be the
 715	 * count of buffers on the page.
 716	 */
 717	end_offset = min_t(unsigned long long,
 718			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
 719			i_size_read(inode));
 720
 721	len = 1 << inode->i_blkbits;
 722	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
 723					PAGE_CACHE_SIZE);
 724	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
 725	page_dirty = p_offset / len;
 726
 727	bh = head = page_buffers(page);
 728	do {
 729		if (offset >= end_offset)
 730			break;
 731		if (!buffer_uptodate(bh))
 732			uptodate = 0;
 733		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
 734			done = 1;
 735			continue;
 736		}
 737
 738		if (buffer_unwritten(bh) || buffer_delay(bh) ||
 739		    buffer_mapped(bh)) {
 740			if (buffer_unwritten(bh))
 741				type = IO_UNWRITTEN;
 742			else if (buffer_delay(bh))
 743				type = IO_DELALLOC;
 744			else
 745				type = IO_OVERWRITE;
 746
 747			if (!xfs_imap_valid(inode, imap, offset)) {
 748				done = 1;
 749				continue;
 750			}
 751
 752			lock_buffer(bh);
 753			if (type != IO_OVERWRITE)
 754				xfs_map_at_offset(inode, bh, imap, offset);
 755			xfs_add_to_ioend(inode, bh, offset, type,
 756					 ioendp, done);
 757
 758			page_dirty--;
 759			count++;
 760		} else {
 761			done = 1;
 762		}
 763	} while (offset += len, (bh = bh->b_this_page) != head);
 764
 765	if (uptodate && bh == head)
 766		SetPageUptodate(page);
 767
 768	if (count) {
 769		if (--wbc->nr_to_write <= 0 &&
 770		    wbc->sync_mode == WB_SYNC_NONE)
 771			done = 1;
 772	}
 773	xfs_start_page_writeback(page, !page_dirty, count);
 774
 775	return done;
 776 fail_unlock_page:
 777	unlock_page(page);
 778 fail:
 779	return 1;
 780}
 781
 782/*
 783 * Convert & write out a cluster of pages in the same extent as defined
 784 * by mp and following the start page.
 785 */
 786STATIC void
 787xfs_cluster_write(
 788	struct inode		*inode,
 789	pgoff_t			tindex,
 790	struct xfs_bmbt_irec	*imap,
 791	xfs_ioend_t		**ioendp,
 792	struct writeback_control *wbc,
 793	pgoff_t			tlast)
 794{
 795	struct pagevec		pvec;
 796	int			done = 0, i;
 797
 798	pagevec_init(&pvec, 0);
 799	while (!done && tindex <= tlast) {
 800		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
 801
 802		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
 803			break;
 
 804
 805		for (i = 0; i < pagevec_count(&pvec); i++) {
 806			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
 807					imap, ioendp, wbc);
 808			if (done)
 809				break;
 810		}
 811
 812		pagevec_release(&pvec);
 813		cond_resched();
 814	}
 815}
 816
 817STATIC void
 818xfs_vm_invalidatepage(
 819	struct page		*page,
 820	unsigned long		offset)
 
 821{
 822	trace_xfs_invalidatepage(page->mapping->host, page, offset);
 823	block_invalidatepage(page, offset);
 
 824}
 825
 826/*
 827 * If the page has delalloc buffers on it, we need to punch them out before we
 828 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
 829 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
 830 * is done on that same region - the delalloc extent is returned when none is
 831 * supposed to be there.
 832 *
 833 * We prevent this by truncating away the delalloc regions on the page before
 834 * invalidating it. Because they are delalloc, we can do this without needing a
 835 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
 836 * truncation without a transaction as there is no space left for block
 837 * reservation (typically why we see a ENOSPC in writeback).
 838 *
 839 * This is not a performance critical path, so for now just do the punching a
 840 * buffer head at a time.
 841 */
 842STATIC void
 843xfs_aops_discard_page(
 844	struct page		*page)
 845{
 846	struct inode		*inode = page->mapping->host;
 847	struct xfs_inode	*ip = XFS_I(inode);
 848	struct buffer_head	*bh, *head;
 849	loff_t			offset = page_offset(page);
 850
 851	if (!xfs_is_delayed_page(page, IO_DELALLOC))
 852		goto out_invalidate;
 853
 854	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 855		goto out_invalidate;
 856
 857	xfs_alert(ip->i_mount,
 858		"page discard on page %p, inode 0x%llx, offset %llu.",
 859			page, ip->i_ino, offset);
 860
 861	xfs_ilock(ip, XFS_ILOCK_EXCL);
 862	bh = head = page_buffers(page);
 863	do {
 864		int		error;
 865		xfs_fileoff_t	start_fsb;
 866
 867		if (!buffer_delay(bh))
 868			goto next_buffer;
 869
 870		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 871		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
 872		if (error) {
 873			/* something screwed, just bail */
 874			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 875				xfs_alert(ip->i_mount,
 876			"page discard unable to remove delalloc mapping.");
 877			}
 878			break;
 879		}
 880next_buffer:
 881		offset += 1 << inode->i_blkbits;
 882
 883	} while ((bh = bh->b_this_page) != head);
 884
 885	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 886out_invalidate:
 887	xfs_vm_invalidatepage(page, 0);
 888	return;
 889}
 890
 891/*
 892 * Write out a dirty page.
 
 
 
 
 
 893 *
 894 * For delalloc space on the page we need to allocate space and flush it.
 895 * For unwritten space on the page we need to start the conversion to
 896 * regular allocated space.
 897 * For any other dirty buffer heads on the page we should flush them.
 
 
 
 898 */
 899STATIC int
 900xfs_vm_writepage(
 
 
 
 901	struct page		*page,
 902	struct writeback_control *wbc)
 
 903{
 904	struct inode		*inode = page->mapping->host;
 
 905	struct buffer_head	*bh, *head;
 906	struct xfs_bmbt_irec	imap;
 907	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
 908	loff_t			offset;
 909	unsigned int		type;
 910	__uint64_t              end_offset;
 911	pgoff_t                 end_index, last_index;
 912	ssize_t			len;
 913	int			err, imap_valid = 0, uptodate = 1;
 914	int			count = 0;
 915	int			nonblocking = 0;
 916
 917	trace_xfs_writepage(inode, page, 0);
 918
 919	ASSERT(page_has_buffers(page));
 920
 921	/*
 922	 * Refuse to write the page out if we are called from reclaim context.
 923	 *
 924	 * This avoids stack overflows when called from deeply used stacks in
 925	 * random callers for direct reclaim or memcg reclaim.  We explicitly
 926	 * allow reclaim from kswapd as the stack usage there is relatively low.
 927	 *
 928	 * This should really be done by the core VM, but until that happens
 929	 * filesystems like XFS, btrfs and ext4 have to take care of this
 930	 * by themselves.
 931	 */
 932	if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC)
 933		goto redirty;
 934
 935	/*
 936	 * Given that we do not allow direct reclaim to call us, we should
 937	 * never be called while in a filesystem transaction.
 938	 */
 939	if (WARN_ON(current->flags & PF_FSTRANS))
 940		goto redirty;
 941
 942	/* Is this page beyond the end of the file? */
 943	offset = i_size_read(inode);
 944	end_index = offset >> PAGE_CACHE_SHIFT;
 945	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
 946	if (page->index >= end_index) {
 947		if ((page->index >= end_index + 1) ||
 948		    !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
 949			unlock_page(page);
 950			return 0;
 951		}
 952	}
 953
 954	end_offset = min_t(unsigned long long,
 955			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
 956			offset);
 957	len = 1 << inode->i_blkbits;
 958
 959	bh = head = page_buffers(page);
 960	offset = page_offset(page);
 961	type = IO_OVERWRITE;
 962
 963	if (wbc->sync_mode == WB_SYNC_NONE)
 964		nonblocking = 1;
 965
 966	do {
 967		int new_ioend = 0;
 968
 969		if (offset >= end_offset)
 970			break;
 971		if (!buffer_uptodate(bh))
 972			uptodate = 0;
 973
 974		/*
 975		 * set_page_dirty dirties all buffers in a page, independent
 976		 * of their state.  The dirty state however is entirely
 977		 * meaningless for holes (!mapped && uptodate), so skip
 978		 * buffers covering holes here.
 979		 */
 980		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
 981			imap_valid = 0;
 982			continue;
 983		}
 984
 985		if (buffer_unwritten(bh)) {
 986			if (type != IO_UNWRITTEN) {
 987				type = IO_UNWRITTEN;
 988				imap_valid = 0;
 989			}
 990		} else if (buffer_delay(bh)) {
 991			if (type != IO_DELALLOC) {
 992				type = IO_DELALLOC;
 993				imap_valid = 0;
 994			}
 995		} else if (buffer_uptodate(bh)) {
 996			if (type != IO_OVERWRITE) {
 997				type = IO_OVERWRITE;
 998				imap_valid = 0;
 999			}
1000		} else {
1001			if (PageUptodate(page)) {
1002				ASSERT(buffer_mapped(bh));
1003				imap_valid = 0;
1004			}
 
 
 
 
 
1005			continue;
1006		}
1007
1008		if (imap_valid)
1009			imap_valid = xfs_imap_valid(inode, &imap, offset);
1010		if (!imap_valid) {
1011			/*
1012			 * If we didn't have a valid mapping then we need to
1013			 * put the new mapping into a separate ioend structure.
1014			 * This ensures non-contiguous extents always have
1015			 * separate ioends, which is particularly important
1016			 * for unwritten extent conversion at I/O completion
1017			 * time.
1018			 */
1019			new_ioend = 1;
1020			err = xfs_map_blocks(inode, offset, &imap, type,
1021					     nonblocking);
1022			if (err)
1023				goto error;
1024			imap_valid = xfs_imap_valid(inode, &imap, offset);
1025		}
1026		if (imap_valid) {
1027			lock_buffer(bh);
1028			if (type != IO_OVERWRITE)
1029				xfs_map_at_offset(inode, bh, &imap, offset);
1030			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1031					 new_ioend);
1032			count++;
1033		}
1034
1035		if (!iohead)
1036			iohead = ioend;
1037
1038	} while (offset += len, ((bh = bh->b_this_page) != head));
1039
1040	if (uptodate && bh == head)
1041		SetPageUptodate(page);
1042
1043	xfs_start_page_writeback(page, 1, count);
1044
1045	if (ioend && imap_valid) {
1046		xfs_off_t		end_index;
1047
1048		end_index = imap.br_startoff + imap.br_blockcount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049
1050		/* to bytes */
1051		end_index <<= inode->i_blkbits;
 
 
 
 
 
1052
1053		/* to pages */
1054		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055
1056		/* check against file size */
1057		if (end_index > last_index)
1058			end_index = last_index;
1059
1060		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1061				  wbc, end_index);
1062	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063
1064	if (iohead)
1065		xfs_submit_ioend(wbc, iohead);
1066
1067	return 0;
1068
1069error:
1070	if (iohead)
1071		xfs_cancel_ioend(iohead);
 
 
 
 
 
 
 
 
 
 
1072
1073	if (err == -EAGAIN)
 
 
 
 
1074		goto redirty;
1075
1076	xfs_aops_discard_page(page);
1077	ClearPageUptodate(page);
1078	unlock_page(page);
1079	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080
1081redirty:
1082	redirty_page_for_writepage(wbc, page);
1083	unlock_page(page);
1084	return 0;
1085}
1086
1087STATIC int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088xfs_vm_writepages(
1089	struct address_space	*mapping,
1090	struct writeback_control *wbc)
1091{
 
 
 
 
 
1092	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1093	return generic_writepages(mapping, wbc);
 
 
 
 
 
 
 
1094}
1095
1096/*
1097 * Called to move a page into cleanable state - and from there
1098 * to be released. The page should already be clean. We always
1099 * have buffer heads in this call.
1100 *
1101 * Returns 1 if the page is ok to release, 0 otherwise.
1102 */
1103STATIC int
1104xfs_vm_releasepage(
1105	struct page		*page,
1106	gfp_t			gfp_mask)
1107{
1108	int			delalloc, unwritten;
1109
1110	trace_xfs_releasepage(page->mapping->host, page, 0);
1111
1112	xfs_count_page_state(page, &delalloc, &unwritten);
1113
1114	if (WARN_ON(delalloc))
1115		return 0;
1116	if (WARN_ON(unwritten))
1117		return 0;
1118
1119	return try_to_free_buffers(page);
1120}
1121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122STATIC int
1123__xfs_get_blocks(
1124	struct inode		*inode,
1125	sector_t		iblock,
1126	struct buffer_head	*bh_result,
1127	int			create,
1128	int			direct)
 
1129{
1130	struct xfs_inode	*ip = XFS_I(inode);
1131	struct xfs_mount	*mp = ip->i_mount;
1132	xfs_fileoff_t		offset_fsb, end_fsb;
1133	int			error = 0;
1134	int			lockmode = 0;
1135	struct xfs_bmbt_irec	imap;
1136	int			nimaps = 1;
1137	xfs_off_t		offset;
1138	ssize_t			size;
1139	int			new = 0;
1140
1141	if (XFS_FORCED_SHUTDOWN(mp))
1142		return -XFS_ERROR(EIO);
1143
1144	offset = (xfs_off_t)iblock << inode->i_blkbits;
1145	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1146	size = bh_result->b_size;
1147
1148	if (!create && direct && offset >= i_size_read(inode))
1149		return 0;
1150
1151	if (create) {
 
 
 
 
 
 
 
1152		lockmode = XFS_ILOCK_EXCL;
1153		xfs_ilock(ip, lockmode);
1154	} else {
1155		lockmode = xfs_ilock_map_shared(ip);
1156	}
1157
1158	ASSERT(offset <= mp->m_maxioffset);
1159	if (offset + size > mp->m_maxioffset)
1160		size = mp->m_maxioffset - offset;
1161	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1162	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1163
1164	error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
1165			  XFS_BMAPI_ENTIRE,  NULL, 0, &imap, &nimaps, NULL);
1166	if (error)
1167		goto out_unlock;
1168
 
1169	if (create &&
1170	    (!nimaps ||
1171	     (imap.br_startblock == HOLESTARTBLOCK ||
1172	      imap.br_startblock == DELAYSTARTBLOCK))) {
1173		if (direct) {
 
 
 
 
 
 
 
 
1174			error = xfs_iomap_write_direct(ip, offset, size,
1175						       &imap, nimaps);
 
 
 
 
1176		} else {
 
 
 
 
 
 
 
 
 
 
1177			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1178		}
1179		if (error)
1180			goto out_unlock;
1181
1182		trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
 
 
 
 
1183	} else if (nimaps) {
1184		trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
 
 
 
1185	} else {
1186		trace_xfs_get_blocks_notfound(ip, offset, size);
1187		goto out_unlock;
1188	}
1189	xfs_iunlock(ip, lockmode);
1190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1191	if (imap.br_startblock != HOLESTARTBLOCK &&
1192	    imap.br_startblock != DELAYSTARTBLOCK) {
1193		/*
1194		 * For unwritten extents do not report a disk address on
1195		 * the read case (treat as if we're reading into a hole).
1196		 */
1197		if (create || !ISUNWRITTEN(&imap))
1198			xfs_map_buffer(inode, bh_result, &imap, offset);
1199		if (create && ISUNWRITTEN(&imap)) {
1200			if (direct)
1201				bh_result->b_private = inode;
1202			set_buffer_unwritten(bh_result);
 
 
 
 
 
 
1203		}
1204	}
1205
1206	/*
1207	 * If this is a realtime file, data may be on a different device.
1208	 * to that pointed to from the buffer_head b_bdev currently.
1209	 */
1210	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1211
1212	/*
1213	 * If we previously allocated a block out beyond eof and we are now
1214	 * coming back to use it then we will need to flag it as new even if it
1215	 * has a disk address.
1216	 *
1217	 * With sub-block writes into unwritten extents we also need to mark
1218	 * the buffer as new so that the unwritten parts of the buffer gets
1219	 * correctly zeroed.
1220	 */
1221	if (create &&
1222	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1223	     (offset >= i_size_read(inode)) ||
1224	     (new || ISUNWRITTEN(&imap))))
1225		set_buffer_new(bh_result);
1226
1227	if (imap.br_startblock == DELAYSTARTBLOCK) {
1228		BUG_ON(direct);
1229		if (create) {
1230			set_buffer_uptodate(bh_result);
1231			set_buffer_mapped(bh_result);
1232			set_buffer_delay(bh_result);
1233		}
1234	}
1235
1236	/*
1237	 * If this is O_DIRECT or the mpage code calling tell them how large
1238	 * the mapping is, so that we can avoid repeated get_blocks calls.
1239	 */
1240	if (direct || size > (1 << inode->i_blkbits)) {
1241		xfs_off_t		mapping_size;
1242
1243		mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1244		mapping_size <<= inode->i_blkbits;
1245
1246		ASSERT(mapping_size > 0);
1247		if (mapping_size > size)
1248			mapping_size = size;
1249		if (mapping_size > LONG_MAX)
1250			mapping_size = LONG_MAX;
1251
1252		bh_result->b_size = mapping_size;
1253	}
1254
1255	return 0;
1256
1257out_unlock:
1258	xfs_iunlock(ip, lockmode);
1259	return -error;
1260}
1261
1262int
1263xfs_get_blocks(
1264	struct inode		*inode,
1265	sector_t		iblock,
1266	struct buffer_head	*bh_result,
1267	int			create)
1268{
1269	return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1270}
1271
1272STATIC int
1273xfs_get_blocks_direct(
1274	struct inode		*inode,
1275	sector_t		iblock,
1276	struct buffer_head	*bh_result,
1277	int			create)
1278{
1279	return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
 
 
 
 
 
 
 
 
 
 
1280}
1281
1282/*
1283 * Complete a direct I/O write request.
1284 *
1285 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1286 * need to issue a transaction to convert the range from unwritten to written
1287 * extents.  In case this is regular synchronous I/O we just call xfs_end_io
1288 * to do this and we are done.  But in case this was a successful AIO
1289 * request this handler is called from interrupt context, from which we
1290 * can't start transactions.  In that case offload the I/O completion to
1291 * the workqueues we also use for buffered I/O completion.
1292 */
1293STATIC void
1294xfs_end_io_direct_write(
1295	struct kiocb		*iocb,
1296	loff_t			offset,
1297	ssize_t			size,
1298	void			*private,
1299	int			ret,
1300	bool			is_async)
1301{
1302	struct xfs_ioend	*ioend = iocb->private;
1303	struct inode		*inode = ioend->io_inode;
 
 
 
 
 
 
 
 
 
 
 
1304
1305	/*
1306	 * blockdev_direct_IO can return an error even after the I/O
1307	 * completion handler was called.  Thus we need to protect
1308	 * against double-freeing.
 
1309	 */
1310	iocb->private = NULL;
 
 
 
1311
1312	ioend->io_offset = offset;
1313	ioend->io_size = size;
1314	if (private && size > 0)
1315		ioend->io_type = IO_UNWRITTEN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1316
1317	if (is_async) {
1318		/*
1319		 * If we are converting an unwritten extent we need to delay
1320		 * the AIO completion until after the unwrittent extent
1321		 * conversion has completed, otherwise do it ASAP.
1322		 */
1323		if (ioend->io_type == IO_UNWRITTEN) {
1324			ioend->io_iocb = iocb;
1325			ioend->io_result = ret;
1326		} else {
1327			aio_complete(iocb, ret, 0);
1328		}
1329		xfs_finish_ioend(ioend);
1330	} else {
1331		xfs_finish_ioend_sync(ioend);
1332	}
1333
1334	/* XXX: probably should move into the real I/O completion handler */
1335	inode_dio_done(inode);
1336}
1337
1338STATIC ssize_t
1339xfs_vm_direct_IO(
1340	int			rw,
1341	struct kiocb		*iocb,
1342	const struct iovec	*iov,
1343	loff_t			offset,
1344	unsigned long		nr_segs)
1345{
1346	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1347	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
1348	ssize_t			ret;
 
1349
1350	if (rw & WRITE) {
1351		iocb->private = xfs_alloc_ioend(inode, IO_DIRECT);
 
 
1352
1353		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1354					    offset, nr_segs,
1355					    xfs_get_blocks_direct,
1356					    xfs_end_io_direct_write, NULL, 0);
1357		if (ret != -EIOCBQUEUED && iocb->private)
1358			xfs_destroy_ioend(iocb->private);
1359	} else {
1360		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1361					    offset, nr_segs,
1362					    xfs_get_blocks_direct,
1363					    NULL, NULL, 0);
1364	}
1365
1366	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1367}
1368
1369STATIC void
1370xfs_vm_write_failed(
1371	struct address_space	*mapping,
1372	loff_t			to)
 
 
1373{
1374	struct inode		*inode = mapping->host;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1375
1376	if (to > inode->i_size) {
1377		/*
1378		 * punch out the delalloc blocks we have already allocated. We
1379		 * don't call xfs_setattr() to do this as we may be in the
1380		 * middle of a multi-iovec write and so the vfs inode->i_size
1381		 * will not match the xfs ip->i_size and so it will zero too
1382		 * much. Hence we jus truncate the page cache to zero what is
1383		 * necessary and punch the delalloc blocks directly.
1384		 */
1385		struct xfs_inode	*ip = XFS_I(inode);
1386		xfs_fileoff_t		start_fsb;
1387		xfs_fileoff_t		end_fsb;
1388		int			error;
 
 
1389
1390		truncate_pagecache(inode, to, inode->i_size);
 
 
1391
1392		/*
1393		 * Check if there are any blocks that are outside of i_size
1394		 * that need to be trimmed back.
1395		 */
1396		start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1;
1397		end_fsb = XFS_B_TO_FSB(ip->i_mount, to);
1398		if (end_fsb <= start_fsb)
1399			return;
1400
1401		xfs_ilock(ip, XFS_ILOCK_EXCL);
1402		error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1403							end_fsb - start_fsb);
1404		if (error) {
1405			/* something screwed, just bail */
1406			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1407				xfs_alert(ip->i_mount,
1408			"xfs_vm_write_failed: unable to clean up ino %lld",
1409						ip->i_ino);
1410			}
1411		}
1412		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1413	}
 
1414}
1415
 
 
 
 
 
 
1416STATIC int
1417xfs_vm_write_begin(
1418	struct file		*file,
1419	struct address_space	*mapping,
1420	loff_t			pos,
1421	unsigned		len,
1422	unsigned		flags,
1423	struct page		**pagep,
1424	void			**fsdata)
1425{
1426	int			ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1427
1428	ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS,
1429				pagep, xfs_get_blocks);
1430	if (unlikely(ret))
1431		xfs_vm_write_failed(mapping, pos + len);
1432	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1433}
1434
 
 
 
 
 
 
 
 
1435STATIC int
1436xfs_vm_write_end(
1437	struct file		*file,
1438	struct address_space	*mapping,
1439	loff_t			pos,
1440	unsigned		len,
1441	unsigned		copied,
1442	struct page		*page,
1443	void			*fsdata)
1444{
1445	int			ret;
1446
 
 
1447	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1448	if (unlikely(ret < len))
1449		xfs_vm_write_failed(mapping, pos + len);
 
 
 
 
 
 
 
 
 
 
 
1450	return ret;
1451}
1452
1453STATIC sector_t
1454xfs_vm_bmap(
1455	struct address_space	*mapping,
1456	sector_t		block)
1457{
1458	struct inode		*inode = (struct inode *)mapping->host;
1459	struct xfs_inode	*ip = XFS_I(inode);
1460
1461	trace_xfs_vm_bmap(XFS_I(inode));
1462	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1463	xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1464	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1465	return generic_block_bmap(mapping, block, xfs_get_blocks);
1466}
1467
1468STATIC int
1469xfs_vm_readpage(
1470	struct file		*unused,
1471	struct page		*page)
1472{
 
1473	return mpage_readpage(page, xfs_get_blocks);
1474}
1475
1476STATIC int
1477xfs_vm_readpages(
1478	struct file		*unused,
1479	struct address_space	*mapping,
1480	struct list_head	*pages,
1481	unsigned		nr_pages)
1482{
 
1483	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1484}
1485
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1486const struct address_space_operations xfs_address_space_operations = {
1487	.readpage		= xfs_vm_readpage,
1488	.readpages		= xfs_vm_readpages,
1489	.writepage		= xfs_vm_writepage,
1490	.writepages		= xfs_vm_writepages,
 
1491	.releasepage		= xfs_vm_releasepage,
1492	.invalidatepage		= xfs_vm_invalidatepage,
1493	.write_begin		= xfs_vm_write_begin,
1494	.write_end		= xfs_vm_write_end,
1495	.bmap			= xfs_vm_bmap,
1496	.direct_IO		= xfs_vm_direct_IO,
1497	.migratepage		= buffer_migrate_page,
1498	.is_partially_uptodate  = block_is_partially_uptodate,
1499	.error_remove_page	= generic_error_remove_page,
1500};
v4.6
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_shared.h"
  20#include "xfs_format.h"
  21#include "xfs_log_format.h"
  22#include "xfs_trans_resv.h"
 
 
  23#include "xfs_mount.h"
 
 
  24#include "xfs_inode.h"
  25#include "xfs_trans.h"
  26#include "xfs_inode_item.h"
  27#include "xfs_alloc.h"
  28#include "xfs_error.h"
 
  29#include "xfs_iomap.h"
 
  30#include "xfs_trace.h"
  31#include "xfs_bmap.h"
  32#include "xfs_bmap_util.h"
  33#include "xfs_bmap_btree.h"
  34#include <linux/gfp.h>
  35#include <linux/mpage.h>
  36#include <linux/pagevec.h>
  37#include <linux/writeback.h>
  38
  39/* flags for direct write completions */
  40#define XFS_DIO_FLAG_UNWRITTEN	(1 << 0)
  41#define XFS_DIO_FLAG_APPEND	(1 << 1)
  42
  43/*
  44 * structure owned by writepages passed to individual writepage calls
  45 */
  46struct xfs_writepage_ctx {
  47	struct xfs_bmbt_irec    imap;
  48	bool			imap_valid;
  49	unsigned int		io_type;
  50	struct xfs_ioend	*ioend;
  51	sector_t		last_block;
  52};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53
  54void
  55xfs_count_page_state(
  56	struct page		*page,
  57	int			*delalloc,
  58	int			*unwritten)
  59{
  60	struct buffer_head	*bh, *head;
  61
  62	*delalloc = *unwritten = 0;
  63
  64	bh = head = page_buffers(page);
  65	do {
  66		if (buffer_unwritten(bh))
  67			(*unwritten) = 1;
  68		else if (buffer_delay(bh))
  69			(*delalloc) = 1;
  70	} while ((bh = bh->b_this_page) != head);
  71}
  72
  73struct block_device *
  74xfs_find_bdev_for_inode(
  75	struct inode		*inode)
  76{
  77	struct xfs_inode	*ip = XFS_I(inode);
  78	struct xfs_mount	*mp = ip->i_mount;
  79
  80	if (XFS_IS_REALTIME_INODE(ip))
  81		return mp->m_rtdev_targp->bt_bdev;
  82	else
  83		return mp->m_ddev_targp->bt_bdev;
  84}
  85
  86/*
  87 * We're now finished for good with this ioend structure.
  88 * Update the page state via the associated buffer_heads,
  89 * release holds on the inode and bio, and finally free
  90 * up memory.  Do not use the ioend after this.
  91 */
  92STATIC void
  93xfs_destroy_ioend(
  94	xfs_ioend_t		*ioend)
  95{
  96	struct buffer_head	*bh, *next;
 
  97
  98	for (bh = ioend->io_buffer_head; bh; bh = next) {
  99		next = bh->b_private;
 100		bh->b_end_io(bh, !ioend->io_error);
 101	}
 102
 
 
 
 
 
 
 
 
 
 
 
 
 103	mempool_free(ioend, xfs_ioend_pool);
 104}
 105
 106/*
 107 * Fast and loose check if this write could update the on-disk inode size.
 
 108 */
 109static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
 
 
 110{
 111	return ioend->io_offset + ioend->io_size >
 112		XFS_I(ioend->io_inode)->i_d.di_size;
 113}
 114
 115STATIC int
 116xfs_setfilesize_trans_alloc(
 117	struct xfs_ioend	*ioend)
 118{
 119	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
 120	struct xfs_trans	*tp;
 121	int			error;
 122
 123	tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
 124
 125	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
 126	if (error) {
 127		xfs_trans_cancel(tp);
 128		return error;
 129	}
 130
 131	ioend->io_append_trans = tp;
 132
 133	/*
 134	 * We may pass freeze protection with a transaction.  So tell lockdep
 135	 * we released it.
 136	 */
 137	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
 138	/*
 139	 * We hand off the transaction to the completion thread now, so
 140	 * clear the flag here.
 141	 */
 142	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
 143	return 0;
 144}
 145
 146/*
 147 * Update on-disk file size now that data has been written to disk.
 
 
 
 
 
 
 
 
 148 */
 149STATIC int
 150xfs_setfilesize(
 151	struct xfs_inode	*ip,
 152	struct xfs_trans	*tp,
 153	xfs_off_t		offset,
 154	size_t			size)
 155{
 
 156	xfs_fsize_t		isize;
 157
 158	xfs_ilock(ip, XFS_ILOCK_EXCL);
 159	isize = xfs_new_eof(ip, offset + size);
 160	if (!isize) {
 161		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 162		xfs_trans_cancel(tp);
 163		return 0;
 164	}
 165
 166	trace_xfs_setfilesize(ip, offset, size);
 167
 168	ip->i_d.di_size = isize;
 169	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 170	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 171
 172	return xfs_trans_commit(tp);
 173}
 174
 175STATIC int
 176xfs_setfilesize_ioend(
 177	struct xfs_ioend	*ioend)
 178{
 179	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 180	struct xfs_trans	*tp = ioend->io_append_trans;
 181
 182	/*
 183	 * The transaction may have been allocated in the I/O submission thread,
 184	 * thus we need to mark ourselves as being in a transaction manually.
 185	 * Similarly for freeze protection.
 186	 */
 187	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
 188	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
 189
 190	/* we abort the update if there was an IO error */
 191	if (ioend->io_error) {
 192		xfs_trans_cancel(tp);
 193		return ioend->io_error;
 194	}
 195
 196	return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
 
 197}
 198
 199/*
 200 * Schedule IO completion handling on the final put of an ioend.
 201 *
 202 * If there is no work to do we might as well call it a day and free the
 203 * ioend right now.
 204 */
 205STATIC void
 206xfs_finish_ioend(
 207	struct xfs_ioend	*ioend)
 208{
 209	if (atomic_dec_and_test(&ioend->io_remaining)) {
 210		struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
 211
 212		if (ioend->io_type == XFS_IO_UNWRITTEN)
 213			queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
 214		else if (ioend->io_append_trans)
 215			queue_work(mp->m_data_workqueue, &ioend->io_work);
 216		else
 217			xfs_destroy_ioend(ioend);
 218	}
 219}
 220
 221/*
 222 * IO write completion.
 223 */
 224STATIC void
 225xfs_end_io(
 226	struct work_struct *work)
 227{
 228	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
 229	struct xfs_inode *ip = XFS_I(ioend->io_inode);
 230	int		error = 0;
 231
 232	/*
 233	 * Set an error if the mount has shut down and proceed with end I/O
 234	 * processing so it can perform whatever cleanups are necessary.
 
 
 
 
 
 
 
 
 
 
 
 
 
 235	 */
 236	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 237		ioend->io_error = -EIO;
 238
 239	/*
 240	 * For unwritten extents we need to issue transactions to convert a
 241	 * range to normal written extens after the data I/O has finished.
 242	 * Detecting and handling completion IO errors is done individually
 243	 * for each case as different cleanup operations need to be performed
 244	 * on error.
 245	 */
 246	if (ioend->io_type == XFS_IO_UNWRITTEN) {
 247		if (ioend->io_error)
 248			goto done;
 249		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
 250						  ioend->io_size);
 251	} else if (ioend->io_append_trans) {
 252		error = xfs_setfilesize_ioend(ioend);
 253	} else {
 254		ASSERT(!xfs_ioend_is_append(ioend));
 
 
 255	}
 
 256
 257done:
 258	if (error)
 259		ioend->io_error = error;
 260	xfs_destroy_ioend(ioend);
 
 
 
 
 
 261}
 262
 263/*
 264 * Allocate and initialise an IO completion structure.
 265 * We need to track unwritten extent write completion here initially.
 266 * We'll need to extend this for updating the ondisk inode size later
 267 * (vs. incore size).
 268 */
 269STATIC xfs_ioend_t *
 270xfs_alloc_ioend(
 271	struct inode		*inode,
 272	unsigned int		type)
 273{
 274	xfs_ioend_t		*ioend;
 275
 276	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
 277
 278	/*
 279	 * Set the count to 1 initially, which will prevent an I/O
 280	 * completion callback from happening before we have started
 281	 * all the I/O from calling the completion routine too early.
 282	 */
 283	atomic_set(&ioend->io_remaining, 1);
 284	ioend->io_error = 0;
 285	INIT_LIST_HEAD(&ioend->io_list);
 286	ioend->io_type = type;
 287	ioend->io_inode = inode;
 288	ioend->io_buffer_head = NULL;
 289	ioend->io_buffer_tail = NULL;
 
 290	ioend->io_offset = 0;
 291	ioend->io_size = 0;
 292	ioend->io_append_trans = NULL;
 
 293
 294	INIT_WORK(&ioend->io_work, xfs_end_io);
 295	return ioend;
 296}
 297
 298STATIC int
 299xfs_map_blocks(
 300	struct inode		*inode,
 301	loff_t			offset,
 302	struct xfs_bmbt_irec	*imap,
 303	int			type)
 
 304{
 305	struct xfs_inode	*ip = XFS_I(inode);
 306	struct xfs_mount	*mp = ip->i_mount;
 307	ssize_t			count = 1 << inode->i_blkbits;
 308	xfs_fileoff_t		offset_fsb, end_fsb;
 309	int			error = 0;
 310	int			bmapi_flags = XFS_BMAPI_ENTIRE;
 311	int			nimaps = 1;
 312
 313	if (XFS_FORCED_SHUTDOWN(mp))
 314		return -EIO;
 315
 316	if (type == XFS_IO_UNWRITTEN)
 317		bmapi_flags |= XFS_BMAPI_IGSTATE;
 318
 319	xfs_ilock(ip, XFS_ILOCK_SHARED);
 
 
 
 
 
 320	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
 321	       (ip->i_df.if_flags & XFS_IFEXTENTS));
 322	ASSERT(offset <= mp->m_super->s_maxbytes);
 323
 324	if (offset + count > mp->m_super->s_maxbytes)
 325		count = mp->m_super->s_maxbytes - offset;
 326	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
 327	offset_fsb = XFS_B_TO_FSBT(mp, offset);
 328	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
 329				imap, &nimaps, bmapi_flags);
 330	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 331
 332	if (error)
 333		return error;
 334
 335	if (type == XFS_IO_DELALLOC &&
 336	    (!nimaps || isnullstartblock(imap->br_startblock))) {
 337		error = xfs_iomap_write_allocate(ip, offset, imap);
 338		if (!error)
 339			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
 340		return error;
 341	}
 342
 343#ifdef DEBUG
 344	if (type == XFS_IO_UNWRITTEN) {
 345		ASSERT(nimaps);
 346		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 347		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 348	}
 349#endif
 350	if (nimaps)
 351		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
 352	return 0;
 353}
 354
 355STATIC bool
 356xfs_imap_valid(
 357	struct inode		*inode,
 358	struct xfs_bmbt_irec	*imap,
 359	xfs_off_t		offset)
 360{
 361	offset >>= inode->i_blkbits;
 362
 363	return offset >= imap->br_startoff &&
 364		offset < imap->br_startoff + imap->br_blockcount;
 365}
 366
 367/*
 368 * BIO completion handler for buffered IO.
 369 */
 370STATIC void
 371xfs_end_bio(
 372	struct bio		*bio)
 
 373{
 374	xfs_ioend_t		*ioend = bio->bi_private;
 375
 376	if (!ioend->io_error)
 377		ioend->io_error = bio->bi_error;
 378
 379	/* Toss bio and pass work off to an xfsdatad thread */
 380	bio->bi_private = NULL;
 381	bio->bi_end_io = NULL;
 382	bio_put(bio);
 383
 384	xfs_finish_ioend(ioend);
 385}
 386
 387STATIC void
 388xfs_submit_ioend_bio(
 389	struct writeback_control *wbc,
 390	xfs_ioend_t		*ioend,
 391	struct bio		*bio)
 392{
 393	atomic_inc(&ioend->io_remaining);
 394	bio->bi_private = ioend;
 395	bio->bi_end_io = xfs_end_bio;
 
 
 
 
 
 
 
 
 396	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
 397}
 398
 399STATIC struct bio *
 400xfs_alloc_ioend_bio(
 401	struct buffer_head	*bh)
 402{
 403	struct bio		*bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
 
 404
 405	ASSERT(bio->bi_private == NULL);
 406	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 407	bio->bi_bdev = bh->b_bdev;
 408	return bio;
 409}
 410
 411STATIC void
 412xfs_start_buffer_writeback(
 413	struct buffer_head	*bh)
 414{
 415	ASSERT(buffer_mapped(bh));
 416	ASSERT(buffer_locked(bh));
 417	ASSERT(!buffer_delay(bh));
 418	ASSERT(!buffer_unwritten(bh));
 419
 420	mark_buffer_async_write(bh);
 421	set_buffer_uptodate(bh);
 422	clear_buffer_dirty(bh);
 423}
 424
 425STATIC void
 426xfs_start_page_writeback(
 427	struct page		*page,
 428	int			clear_dirty)
 
 429{
 430	ASSERT(PageLocked(page));
 431	ASSERT(!PageWriteback(page));
 432
 433	/*
 434	 * if the page was not fully cleaned, we need to ensure that the higher
 435	 * layers come back to it correctly. That means we need to keep the page
 436	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
 437	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
 438	 * write this page in this writeback sweep will be made.
 439	 */
 440	if (clear_dirty) {
 441		clear_page_dirty_for_io(page);
 442		set_page_writeback(page);
 443	} else
 444		set_page_writeback_keepwrite(page);
 445
 446	unlock_page(page);
 
 
 
 447}
 448
 449static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
 450{
 451	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
 452}
 453
 454/*
 455 * Submit all of the bios for an ioend. We are only passed a single ioend at a
 456 * time; the caller is responsible for chaining prior to submission.
 457 *
 458 * If @fail is non-zero, it means that we have a situation where some part of
 459 * the submission process has failed after we have marked paged for writeback
 460 * and unlocked them. In this situation, we need to fail the ioend chain rather
 461 * than submit it to IO. This typically only happens on a filesystem shutdown.
 
 
 
 
 
 
 
 
 462 */
 463STATIC int
 464xfs_submit_ioend(
 465	struct writeback_control *wbc,
 466	xfs_ioend_t		*ioend,
 467	int			status)
 468{
 
 
 469	struct buffer_head	*bh;
 470	struct bio		*bio;
 471	sector_t		lastblock = 0;
 472
 473	/* Reserve log space if we might write beyond the on-disk inode size. */
 474	if (!status &&
 475	     ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
 476		status = xfs_setfilesize_trans_alloc(ioend);
 477	/*
 478	 * If we are failing the IO now, just mark the ioend with an
 479	 * error and finish it. This will run IO completion immediately
 480	 * as there is only one reference to the ioend at this point in
 481	 * time.
 482	 */
 483	if (status) {
 484		ioend->io_error = status;
 485		xfs_finish_ioend(ioend);
 486		return status;
 487	}
 
 
 
 
 
 
 
 488
 489	bio = NULL;
 490	for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
 
 
 491
 492		if (!bio) {
 493retry:
 494			bio = xfs_alloc_ioend_bio(bh);
 495		} else if (bh->b_blocknr != lastblock + 1) {
 496			xfs_submit_ioend_bio(wbc, ioend, bio);
 497			goto retry;
 498		}
 
 499
 500		if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
 501			xfs_submit_ioend_bio(wbc, ioend, bio);
 502			goto retry;
 503		}
 
 
 
 
 
 
 
 504
 505		lastblock = bh->b_blocknr;
 506	}
 507	if (bio)
 508		xfs_submit_ioend_bio(wbc, ioend, bio);
 509	xfs_finish_ioend(ioend);
 510	return 0;
 
 
 
 
 
 
 511}
 512
 513/*
 514 * Test to see if we've been building up a completion structure for
 515 * earlier buffers -- if so, we try to append to this ioend if we
 516 * can, otherwise we finish off any current ioend and start another.
 517 * Return the ioend we finished off so that the caller can submit it
 518 * once it has finished processing the dirty page.
 519 */
 520STATIC void
 521xfs_add_to_ioend(
 522	struct inode		*inode,
 523	struct buffer_head	*bh,
 524	xfs_off_t		offset,
 525	struct xfs_writepage_ctx *wpc,
 526	struct list_head	*iolist)
 
 527{
 528	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
 529	    bh->b_blocknr != wpc->last_block + 1 ||
 530	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
 531		struct xfs_ioend	*new;
 532
 533		if (wpc->ioend)
 534			list_add(&wpc->ioend->io_list, iolist);
 535
 536		new = xfs_alloc_ioend(inode, wpc->io_type);
 537		new->io_offset = offset;
 538		new->io_buffer_head = bh;
 539		new->io_buffer_tail = bh;
 540		wpc->ioend = new;
 541	} else {
 542		wpc->ioend->io_buffer_tail->b_private = bh;
 543		wpc->ioend->io_buffer_tail = bh;
 544	}
 545
 546	bh->b_private = NULL;
 547	wpc->ioend->io_size += bh->b_size;
 548	wpc->last_block = bh->b_blocknr;
 549	xfs_start_buffer_writeback(bh);
 550}
 551
 552STATIC void
 553xfs_map_buffer(
 554	struct inode		*inode,
 555	struct buffer_head	*bh,
 556	struct xfs_bmbt_irec	*imap,
 557	xfs_off_t		offset)
 558{
 559	sector_t		bn;
 560	struct xfs_mount	*m = XFS_I(inode)->i_mount;
 561	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
 562	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
 563
 564	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 565	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 566
 567	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
 568	      ((offset - iomap_offset) >> inode->i_blkbits);
 569
 570	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
 571
 572	bh->b_blocknr = bn;
 573	set_buffer_mapped(bh);
 574}
 575
 576STATIC void
 577xfs_map_at_offset(
 578	struct inode		*inode,
 579	struct buffer_head	*bh,
 580	struct xfs_bmbt_irec	*imap,
 581	xfs_off_t		offset)
 582{
 583	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 584	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 585
 586	xfs_map_buffer(inode, bh, imap, offset);
 587	set_buffer_mapped(bh);
 588	clear_buffer_delay(bh);
 589	clear_buffer_unwritten(bh);
 590}
 591
 592/*
 593 * Test if a given page contains at least one buffer of a given @type.
 594 * If @check_all_buffers is true, then we walk all the buffers in the page to
 595 * try to find one of the type passed in. If it is not set, then the caller only
 596 * needs to check the first buffer on the page for a match.
 597 */
 598STATIC bool
 599xfs_check_page_type(
 600	struct page		*page,
 601	unsigned int		type,
 602	bool			check_all_buffers)
 603{
 604	struct buffer_head	*bh;
 605	struct buffer_head	*head;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607	if (PageWriteback(page))
 608		return false;
 609	if (!page->mapping)
 610		return false;
 611	if (!page_has_buffers(page))
 612		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 613
 614	bh = head = page_buffers(page);
 615	do {
 616		if (buffer_unwritten(bh)) {
 617			if (type == XFS_IO_UNWRITTEN)
 618				return true;
 619		} else if (buffer_delay(bh)) {
 620			if (type == XFS_IO_DELALLOC)
 621				return true;
 622		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
 623			if (type == XFS_IO_OVERWRITE)
 624				return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 625		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 626
 627		/* If we are only checking the first buffer, we are done now. */
 628		if (!check_all_buffers)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 629			break;
 630	} while ((bh = bh->b_this_page) != head);
 631
 632	return false;
 
 
 
 
 
 
 
 
 
 633}
 634
 635STATIC void
 636xfs_vm_invalidatepage(
 637	struct page		*page,
 638	unsigned int		offset,
 639	unsigned int		length)
 640{
 641	trace_xfs_invalidatepage(page->mapping->host, page, offset,
 642				 length);
 643	block_invalidatepage(page, offset, length);
 644}
 645
 646/*
 647 * If the page has delalloc buffers on it, we need to punch them out before we
 648 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
 649 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
 650 * is done on that same region - the delalloc extent is returned when none is
 651 * supposed to be there.
 652 *
 653 * We prevent this by truncating away the delalloc regions on the page before
 654 * invalidating it. Because they are delalloc, we can do this without needing a
 655 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
 656 * truncation without a transaction as there is no space left for block
 657 * reservation (typically why we see a ENOSPC in writeback).
 658 *
 659 * This is not a performance critical path, so for now just do the punching a
 660 * buffer head at a time.
 661 */
 662STATIC void
 663xfs_aops_discard_page(
 664	struct page		*page)
 665{
 666	struct inode		*inode = page->mapping->host;
 667	struct xfs_inode	*ip = XFS_I(inode);
 668	struct buffer_head	*bh, *head;
 669	loff_t			offset = page_offset(page);
 670
 671	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
 672		goto out_invalidate;
 673
 674	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 675		goto out_invalidate;
 676
 677	xfs_alert(ip->i_mount,
 678		"page discard on page %p, inode 0x%llx, offset %llu.",
 679			page, ip->i_ino, offset);
 680
 681	xfs_ilock(ip, XFS_ILOCK_EXCL);
 682	bh = head = page_buffers(page);
 683	do {
 684		int		error;
 685		xfs_fileoff_t	start_fsb;
 686
 687		if (!buffer_delay(bh))
 688			goto next_buffer;
 689
 690		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 691		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
 692		if (error) {
 693			/* something screwed, just bail */
 694			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 695				xfs_alert(ip->i_mount,
 696			"page discard unable to remove delalloc mapping.");
 697			}
 698			break;
 699		}
 700next_buffer:
 701		offset += 1 << inode->i_blkbits;
 702
 703	} while ((bh = bh->b_this_page) != head);
 704
 705	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 706out_invalidate:
 707	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
 708	return;
 709}
 710
 711/*
 712 * We implement an immediate ioend submission policy here to avoid needing to
 713 * chain multiple ioends and hence nest mempool allocations which can violate
 714 * forward progress guarantees we need to provide. The current ioend we are
 715 * adding buffers to is cached on the writepage context, and if the new buffer
 716 * does not append to the cached ioend it will create a new ioend and cache that
 717 * instead.
 718 *
 719 * If a new ioend is created and cached, the old ioend is returned and queued
 720 * locally for submission once the entire page is processed or an error has been
 721 * detected.  While ioends are submitted immediately after they are completed,
 722 * batching optimisations are provided by higher level block plugging.
 723 *
 724 * At the end of a writeback pass, there will be a cached ioend remaining on the
 725 * writepage context that the caller will need to submit.
 726 */
 727static int
 728xfs_writepage_map(
 729	struct xfs_writepage_ctx *wpc,
 730	struct writeback_control *wbc,
 731	struct inode		*inode,
 732	struct page		*page,
 733	loff_t			offset,
 734	__uint64_t              end_offset)
 735{
 736	LIST_HEAD(submit_list);
 737	struct xfs_ioend	*ioend, *next;
 738	struct buffer_head	*bh, *head;
 739	ssize_t			len = 1 << inode->i_blkbits;
 740	int			error = 0;
 
 
 
 
 
 
 741	int			count = 0;
 742	int			uptodate = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 743
 744	bh = head = page_buffers(page);
 745	offset = page_offset(page);
 
 
 
 
 
 746	do {
 
 
 747		if (offset >= end_offset)
 748			break;
 749		if (!buffer_uptodate(bh))
 750			uptodate = 0;
 751
 752		/*
 753		 * set_page_dirty dirties all buffers in a page, independent
 754		 * of their state.  The dirty state however is entirely
 755		 * meaningless for holes (!mapped && uptodate), so skip
 756		 * buffers covering holes here.
 757		 */
 758		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
 759			wpc->imap_valid = false;
 760			continue;
 761		}
 762
 763		if (buffer_unwritten(bh)) {
 764			if (wpc->io_type != XFS_IO_UNWRITTEN) {
 765				wpc->io_type = XFS_IO_UNWRITTEN;
 766				wpc->imap_valid = false;
 767			}
 768		} else if (buffer_delay(bh)) {
 769			if (wpc->io_type != XFS_IO_DELALLOC) {
 770				wpc->io_type = XFS_IO_DELALLOC;
 771				wpc->imap_valid = false;
 772			}
 773		} else if (buffer_uptodate(bh)) {
 774			if (wpc->io_type != XFS_IO_OVERWRITE) {
 775				wpc->io_type = XFS_IO_OVERWRITE;
 776				wpc->imap_valid = false;
 777			}
 778		} else {
 779			if (PageUptodate(page))
 780				ASSERT(buffer_mapped(bh));
 781			/*
 782			 * This buffer is not uptodate and will not be
 783			 * written to disk.  Ensure that we will put any
 784			 * subsequent writeable buffers into a new
 785			 * ioend.
 786			 */
 787			wpc->imap_valid = false;
 788			continue;
 789		}
 790
 791		if (wpc->imap_valid)
 792			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
 793							 offset);
 794		if (!wpc->imap_valid) {
 795			error = xfs_map_blocks(inode, offset, &wpc->imap,
 796					     wpc->io_type);
 797			if (error)
 798				goto out;
 799			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
 800							 offset);
 
 
 
 
 
 
 
 801		}
 802		if (wpc->imap_valid) {
 803			lock_buffer(bh);
 804			if (wpc->io_type != XFS_IO_OVERWRITE)
 805				xfs_map_at_offset(inode, bh, &wpc->imap, offset);
 806			xfs_add_to_ioend(inode, bh, offset, wpc, &submit_list);
 
 807			count++;
 808		}
 809
 
 
 
 810	} while (offset += len, ((bh = bh->b_this_page) != head));
 811
 812	if (uptodate && bh == head)
 813		SetPageUptodate(page);
 814
 815	ASSERT(wpc->ioend || list_empty(&submit_list));
 816
 817out:
 818	/*
 819	 * On error, we have to fail the ioend here because we have locked
 820	 * buffers in the ioend. If we don't do this, we'll deadlock
 821	 * invalidating the page as that tries to lock the buffers on the page.
 822	 * Also, because we may have set pages under writeback, we have to make
 823	 * sure we run IO completion to mark the error state of the IO
 824	 * appropriately, so we can't cancel the ioend directly here. That means
 825	 * we have to mark this page as under writeback if we included any
 826	 * buffers from it in the ioend chain so that completion treats it
 827	 * correctly.
 828	 *
 829	 * If we didn't include the page in the ioend, the on error we can
 830	 * simply discard and unlock it as there are no other users of the page
 831	 * or it's buffers right now. The caller will still need to trigger
 832	 * submission of outstanding ioends on the writepage context so they are
 833	 * treated correctly on error.
 834	 */
 835	if (count) {
 836		xfs_start_page_writeback(page, !error);
 837
 838		/*
 839		 * Preserve the original error if there was one, otherwise catch
 840		 * submission errors here and propagate into subsequent ioend
 841		 * submissions.
 842		 */
 843		list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
 844			int error2;
 845
 846			list_del_init(&ioend->io_list);
 847			error2 = xfs_submit_ioend(wbc, ioend, error);
 848			if (error2 && !error)
 849				error = error2;
 850		}
 851	} else if (error) {
 852		xfs_aops_discard_page(page);
 853		ClearPageUptodate(page);
 854		unlock_page(page);
 855	} else {
 856		/*
 857		 * We can end up here with no error and nothing to write if we
 858		 * race with a partial page truncate on a sub-page block sized
 859		 * filesystem. In that case we need to mark the page clean.
 860		 */
 861		xfs_start_page_writeback(page, 1);
 862		end_page_writeback(page);
 863	}
 864
 865	mapping_set_error(page->mapping, error);
 866	return error;
 867}
 868
 869/*
 870 * Write out a dirty page.
 871 *
 872 * For delalloc space on the page we need to allocate space and flush it.
 873 * For unwritten space on the page we need to start the conversion to
 874 * regular allocated space.
 875 * For any other dirty buffer heads on the page we should flush them.
 876 */
 877STATIC int
 878xfs_do_writepage(
 879	struct page		*page,
 880	struct writeback_control *wbc,
 881	void			*data)
 882{
 883	struct xfs_writepage_ctx *wpc = data;
 884	struct inode		*inode = page->mapping->host;
 885	loff_t			offset;
 886	__uint64_t              end_offset;
 887	pgoff_t                 end_index;
 888
 889	trace_xfs_writepage(inode, page, 0, 0);
 
 890
 891	ASSERT(page_has_buffers(page));
 892
 893	/*
 894	 * Refuse to write the page out if we are called from reclaim context.
 895	 *
 896	 * This avoids stack overflows when called from deeply used stacks in
 897	 * random callers for direct reclaim or memcg reclaim.  We explicitly
 898	 * allow reclaim from kswapd as the stack usage there is relatively low.
 899	 *
 900	 * This should never happen except in the case of a VM regression so
 901	 * warn about it.
 902	 */
 903	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
 904			PF_MEMALLOC))
 905		goto redirty;
 906
 907	/*
 908	 * Given that we do not allow direct reclaim to call us, we should
 909	 * never be called while in a filesystem transaction.
 910	 */
 911	if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
 912		goto redirty;
 913
 914	/*
 915	 * Is this page beyond the end of the file?
 916	 *
 917	 * The page index is less than the end_index, adjust the end_offset
 918	 * to the highest offset that this page should represent.
 919	 * -----------------------------------------------------
 920	 * |			file mapping	       | <EOF> |
 921	 * -----------------------------------------------------
 922	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
 923	 * ^--------------------------------^----------|--------
 924	 * |     desired writeback range    |      see else    |
 925	 * ---------------------------------^------------------|
 926	 */
 927	offset = i_size_read(inode);
 928	end_index = offset >> PAGE_SHIFT;
 929	if (page->index < end_index)
 930		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
 931	else {
 932		/*
 933		 * Check whether the page to write out is beyond or straddles
 934		 * i_size or not.
 935		 * -------------------------------------------------------
 936		 * |		file mapping		        | <EOF>  |
 937		 * -------------------------------------------------------
 938		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
 939		 * ^--------------------------------^-----------|---------
 940		 * |				    |      Straddles     |
 941		 * ---------------------------------^-----------|--------|
 942		 */
 943		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
 944
 945		/*
 946		 * Skip the page if it is fully outside i_size, e.g. due to a
 947		 * truncate operation that is in progress. We must redirty the
 948		 * page so that reclaim stops reclaiming it. Otherwise
 949		 * xfs_vm_releasepage() is called on it and gets confused.
 950		 *
 951		 * Note that the end_index is unsigned long, it would overflow
 952		 * if the given offset is greater than 16TB on 32-bit system
 953		 * and if we do check the page is fully outside i_size or not
 954		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
 955		 * will be evaluated to 0.  Hence this page will be redirtied
 956		 * and be written out repeatedly which would result in an
 957		 * infinite loop, the user program that perform this operation
 958		 * will hang.  Instead, we can verify this situation by checking
 959		 * if the page to write is totally beyond the i_size or if it's
 960		 * offset is just equal to the EOF.
 961		 */
 962		if (page->index > end_index ||
 963		    (page->index == end_index && offset_into_page == 0))
 964			goto redirty;
 965
 966		/*
 967		 * The page straddles i_size.  It must be zeroed out on each
 968		 * and every writepage invocation because it may be mmapped.
 969		 * "A file is mapped in multiples of the page size.  For a file
 970		 * that is not a multiple of the page size, the remaining
 971		 * memory is zeroed when mapped, and writes to that region are
 972		 * not written out to the file."
 973		 */
 974		zero_user_segment(page, offset_into_page, PAGE_SIZE);
 975
 976		/* Adjust the end_offset to the end of file */
 977		end_offset = offset;
 978	}
 979
 980	return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
 981
 982redirty:
 983	redirty_page_for_writepage(wbc, page);
 984	unlock_page(page);
 985	return 0;
 986}
 987
 988STATIC int
 989xfs_vm_writepage(
 990	struct page		*page,
 991	struct writeback_control *wbc)
 992{
 993	struct xfs_writepage_ctx wpc = {
 994		.io_type = XFS_IO_INVALID,
 995	};
 996	int			ret;
 997
 998	ret = xfs_do_writepage(page, wbc, &wpc);
 999	if (wpc.ioend)
1000		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1001	return ret;
1002}
1003
1004STATIC int
1005xfs_vm_writepages(
1006	struct address_space	*mapping,
1007	struct writeback_control *wbc)
1008{
1009	struct xfs_writepage_ctx wpc = {
1010		.io_type = XFS_IO_INVALID,
1011	};
1012	int			ret;
1013
1014	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1015	if (dax_mapping(mapping))
1016		return dax_writeback_mapping_range(mapping,
1017				xfs_find_bdev_for_inode(mapping->host), wbc);
1018
1019	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1020	if (wpc.ioend)
1021		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1022	return ret;
1023}
1024
1025/*
1026 * Called to move a page into cleanable state - and from there
1027 * to be released. The page should already be clean. We always
1028 * have buffer heads in this call.
1029 *
1030 * Returns 1 if the page is ok to release, 0 otherwise.
1031 */
1032STATIC int
1033xfs_vm_releasepage(
1034	struct page		*page,
1035	gfp_t			gfp_mask)
1036{
1037	int			delalloc, unwritten;
1038
1039	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1040
1041	xfs_count_page_state(page, &delalloc, &unwritten);
1042
1043	if (WARN_ON_ONCE(delalloc))
1044		return 0;
1045	if (WARN_ON_ONCE(unwritten))
1046		return 0;
1047
1048	return try_to_free_buffers(page);
1049}
1050
1051/*
1052 * When we map a DIO buffer, we may need to pass flags to
1053 * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
1054 *
1055 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1056 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1057 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1058 * extending the file size. We won't know for sure until IO completion is run
1059 * and the actual max write offset is communicated to the IO completion
1060 * routine.
1061 */
1062static void
1063xfs_map_direct(
1064	struct inode		*inode,
1065	struct buffer_head	*bh_result,
1066	struct xfs_bmbt_irec	*imap,
1067	xfs_off_t		offset)
1068{
1069	uintptr_t		*flags = (uintptr_t *)&bh_result->b_private;
1070	xfs_off_t		size = bh_result->b_size;
1071
1072	trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
1073		ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, imap);
1074
1075	if (ISUNWRITTEN(imap)) {
1076		*flags |= XFS_DIO_FLAG_UNWRITTEN;
1077		set_buffer_defer_completion(bh_result);
1078	} else if (offset + size > i_size_read(inode) || offset + size < 0) {
1079		*flags |= XFS_DIO_FLAG_APPEND;
1080		set_buffer_defer_completion(bh_result);
1081	}
1082}
1083
1084/*
1085 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1086 * is, so that we can avoid repeated get_blocks calls.
1087 *
1088 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1089 * for blocks beyond EOF must be marked new so that sub block regions can be
1090 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1091 * was just allocated or is unwritten, otherwise the callers would overwrite
1092 * existing data with zeros. Hence we have to split the mapping into a range up
1093 * to and including EOF, and a second mapping for beyond EOF.
1094 */
1095static void
1096xfs_map_trim_size(
1097	struct inode		*inode,
1098	sector_t		iblock,
1099	struct buffer_head	*bh_result,
1100	struct xfs_bmbt_irec	*imap,
1101	xfs_off_t		offset,
1102	ssize_t			size)
1103{
1104	xfs_off_t		mapping_size;
1105
1106	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1107	mapping_size <<= inode->i_blkbits;
1108
1109	ASSERT(mapping_size > 0);
1110	if (mapping_size > size)
1111		mapping_size = size;
1112	if (offset < i_size_read(inode) &&
1113	    offset + mapping_size >= i_size_read(inode)) {
1114		/* limit mapping to block that spans EOF */
1115		mapping_size = roundup_64(i_size_read(inode) - offset,
1116					  1 << inode->i_blkbits);
1117	}
1118	if (mapping_size > LONG_MAX)
1119		mapping_size = LONG_MAX;
1120
1121	bh_result->b_size = mapping_size;
1122}
1123
1124STATIC int
1125__xfs_get_blocks(
1126	struct inode		*inode,
1127	sector_t		iblock,
1128	struct buffer_head	*bh_result,
1129	int			create,
1130	bool			direct,
1131	bool			dax_fault)
1132{
1133	struct xfs_inode	*ip = XFS_I(inode);
1134	struct xfs_mount	*mp = ip->i_mount;
1135	xfs_fileoff_t		offset_fsb, end_fsb;
1136	int			error = 0;
1137	int			lockmode = 0;
1138	struct xfs_bmbt_irec	imap;
1139	int			nimaps = 1;
1140	xfs_off_t		offset;
1141	ssize_t			size;
1142	int			new = 0;
1143
1144	if (XFS_FORCED_SHUTDOWN(mp))
1145		return -EIO;
1146
1147	offset = (xfs_off_t)iblock << inode->i_blkbits;
1148	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1149	size = bh_result->b_size;
1150
1151	if (!create && direct && offset >= i_size_read(inode))
1152		return 0;
1153
1154	/*
1155	 * Direct I/O is usually done on preallocated files, so try getting
1156	 * a block mapping without an exclusive lock first.  For buffered
1157	 * writes we already have the exclusive iolock anyway, so avoiding
1158	 * a lock roundtrip here by taking the ilock exclusive from the
1159	 * beginning is a useful micro optimization.
1160	 */
1161	if (create && !direct) {
1162		lockmode = XFS_ILOCK_EXCL;
1163		xfs_ilock(ip, lockmode);
1164	} else {
1165		lockmode = xfs_ilock_data_map_shared(ip);
1166	}
1167
1168	ASSERT(offset <= mp->m_super->s_maxbytes);
1169	if (offset + size > mp->m_super->s_maxbytes)
1170		size = mp->m_super->s_maxbytes - offset;
1171	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1172	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1173
1174	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1175				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1176	if (error)
1177		goto out_unlock;
1178
1179	/* for DAX, we convert unwritten extents directly */
1180	if (create &&
1181	    (!nimaps ||
1182	     (imap.br_startblock == HOLESTARTBLOCK ||
1183	      imap.br_startblock == DELAYSTARTBLOCK) ||
1184	     (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
1185		if (direct || xfs_get_extsz_hint(ip)) {
1186			/*
1187			 * xfs_iomap_write_direct() expects the shared lock. It
1188			 * is unlocked on return.
1189			 */
1190			if (lockmode == XFS_ILOCK_EXCL)
1191				xfs_ilock_demote(ip, lockmode);
1192
1193			error = xfs_iomap_write_direct(ip, offset, size,
1194						       &imap, nimaps);
1195			if (error)
1196				return error;
1197			new = 1;
1198
1199		} else {
1200			/*
1201			 * Delalloc reservations do not require a transaction,
1202			 * we can go on without dropping the lock here. If we
1203			 * are allocating a new delalloc block, make sure that
1204			 * we set the new flag so that we mark the buffer new so
1205			 * that we know that it is newly allocated if the write
1206			 * fails.
1207			 */
1208			if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1209				new = 1;
1210			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1211			if (error)
1212				goto out_unlock;
 
1213
1214			xfs_iunlock(ip, lockmode);
1215		}
1216		trace_xfs_get_blocks_alloc(ip, offset, size,
1217				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1218						   : XFS_IO_DELALLOC, &imap);
1219	} else if (nimaps) {
1220		trace_xfs_get_blocks_found(ip, offset, size,
1221				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1222						   : XFS_IO_OVERWRITE, &imap);
1223		xfs_iunlock(ip, lockmode);
1224	} else {
1225		trace_xfs_get_blocks_notfound(ip, offset, size);
1226		goto out_unlock;
1227	}
 
1228
1229	if (IS_DAX(inode) && create) {
1230		ASSERT(!ISUNWRITTEN(&imap));
1231		/* zeroing is not needed at a higher layer */
1232		new = 0;
1233	}
1234
1235	/* trim mapping down to size requested */
1236	if (direct || size > (1 << inode->i_blkbits))
1237		xfs_map_trim_size(inode, iblock, bh_result,
1238				  &imap, offset, size);
1239
1240	/*
1241	 * For unwritten extents do not report a disk address in the buffered
1242	 * read case (treat as if we're reading into a hole).
1243	 */
1244	if (imap.br_startblock != HOLESTARTBLOCK &&
1245	    imap.br_startblock != DELAYSTARTBLOCK &&
1246	    (create || !ISUNWRITTEN(&imap))) {
1247		xfs_map_buffer(inode, bh_result, &imap, offset);
1248		if (ISUNWRITTEN(&imap))
 
 
 
 
 
 
1249			set_buffer_unwritten(bh_result);
1250		/* direct IO needs special help */
1251		if (create && direct) {
1252			if (dax_fault)
1253				ASSERT(!ISUNWRITTEN(&imap));
1254			else
1255				xfs_map_direct(inode, bh_result, &imap, offset);
1256		}
1257	}
1258
1259	/*
1260	 * If this is a realtime file, data may be on a different device.
1261	 * to that pointed to from the buffer_head b_bdev currently.
1262	 */
1263	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1264
1265	/*
1266	 * If we previously allocated a block out beyond eof and we are now
1267	 * coming back to use it then we will need to flag it as new even if it
1268	 * has a disk address.
1269	 *
1270	 * With sub-block writes into unwritten extents we also need to mark
1271	 * the buffer as new so that the unwritten parts of the buffer gets
1272	 * correctly zeroed.
1273	 */
1274	if (create &&
1275	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1276	     (offset >= i_size_read(inode)) ||
1277	     (new || ISUNWRITTEN(&imap))))
1278		set_buffer_new(bh_result);
1279
1280	if (imap.br_startblock == DELAYSTARTBLOCK) {
1281		BUG_ON(direct);
1282		if (create) {
1283			set_buffer_uptodate(bh_result);
1284			set_buffer_mapped(bh_result);
1285			set_buffer_delay(bh_result);
1286		}
1287	}
1288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289	return 0;
1290
1291out_unlock:
1292	xfs_iunlock(ip, lockmode);
1293	return error;
1294}
1295
1296int
1297xfs_get_blocks(
1298	struct inode		*inode,
1299	sector_t		iblock,
1300	struct buffer_head	*bh_result,
1301	int			create)
1302{
1303	return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1304}
1305
1306int
1307xfs_get_blocks_direct(
1308	struct inode		*inode,
1309	sector_t		iblock,
1310	struct buffer_head	*bh_result,
1311	int			create)
1312{
1313	return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1314}
1315
1316int
1317xfs_get_blocks_dax_fault(
1318	struct inode		*inode,
1319	sector_t		iblock,
1320	struct buffer_head	*bh_result,
1321	int			create)
1322{
1323	return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1324}
1325
1326/*
1327 * Complete a direct I/O write request.
1328 *
1329 * xfs_map_direct passes us some flags in the private data to tell us what to
1330 * do.  If no flags are set, then the write IO is an overwrite wholly within
1331 * the existing allocated file size and so there is nothing for us to do.
1332 *
1333 * Note that in this case the completion can be called in interrupt context,
1334 * whereas if we have flags set we will always be called in task context
1335 * (i.e. from a workqueue).
1336 */
1337STATIC int
1338xfs_end_io_direct_write(
1339	struct kiocb		*iocb,
1340	loff_t			offset,
1341	ssize_t			size,
1342	void			*private)
 
 
1343{
1344	struct inode		*inode = file_inode(iocb->ki_filp);
1345	struct xfs_inode	*ip = XFS_I(inode);
1346	struct xfs_mount	*mp = ip->i_mount;
1347	uintptr_t		flags = (uintptr_t)private;
1348	int			error = 0;
1349
1350	trace_xfs_end_io_direct_write(ip, offset, size);
1351
1352	if (XFS_FORCED_SHUTDOWN(mp))
1353		return -EIO;
1354
1355	if (size <= 0)
1356		return size;
1357
1358	/*
1359	 * The flags tell us whether we are doing unwritten extent conversions
1360	 * or an append transaction that updates the on-disk file size. These
1361	 * cases are the only cases where we should *potentially* be needing
1362	 * to update the VFS inode size.
1363	 */
1364	if (flags == 0) {
1365		ASSERT(offset + size <= i_size_read(inode));
1366		return 0;
1367	}
1368
1369	/*
1370	 * We need to update the in-core inode size here so that we don't end up
1371	 * with the on-disk inode size being outside the in-core inode size. We
1372	 * have no other method of updating EOF for AIO, so always do it here
1373	 * if necessary.
1374	 *
1375	 * We need to lock the test/set EOF update as we can be racing with
1376	 * other IO completions here to update the EOF. Failing to serialise
1377	 * here can result in EOF moving backwards and Bad Things Happen when
1378	 * that occurs.
1379	 */
1380	spin_lock(&ip->i_flags_lock);
1381	if (offset + size > i_size_read(inode))
1382		i_size_write(inode, offset + size);
1383	spin_unlock(&ip->i_flags_lock);
1384
1385	if (flags & XFS_DIO_FLAG_UNWRITTEN) {
1386		trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
1387
1388		error = xfs_iomap_write_unwritten(ip, offset, size);
1389	} else if (flags & XFS_DIO_FLAG_APPEND) {
1390		struct xfs_trans *tp;
1391
1392		trace_xfs_end_io_direct_write_append(ip, offset, size);
1393
1394		tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
1395		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
1396		if (error) {
1397			xfs_trans_cancel(tp);
1398			return error;
 
 
 
 
1399		}
1400		error = xfs_setfilesize(ip, tp, offset, size);
 
 
1401	}
1402
1403	return error;
 
1404}
1405
1406STATIC ssize_t
1407xfs_vm_direct_IO(
 
1408	struct kiocb		*iocb,
1409	struct iov_iter		*iter,
1410	loff_t			offset)
 
1411{
1412	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1413	dio_iodone_t		*endio = NULL;
1414	int			flags = 0;
1415	struct block_device	*bdev;
1416
1417	if (iov_iter_rw(iter) == WRITE) {
1418		endio = xfs_end_io_direct_write;
1419		flags = DIO_ASYNC_EXTEND;
1420	}
1421
1422	if (IS_DAX(inode)) {
1423		return dax_do_io(iocb, inode, iter, offset,
1424				 xfs_get_blocks_direct, endio, 0);
 
 
 
 
 
 
 
 
1425	}
1426
1427	bdev = xfs_find_bdev_for_inode(inode);
1428	return  __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1429			xfs_get_blocks_direct, endio, NULL, flags);
1430}
1431
1432/*
1433 * Punch out the delalloc blocks we have already allocated.
1434 *
1435 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1436 * as the page is still locked at this point.
1437 */
1438STATIC void
1439xfs_vm_kill_delalloc_range(
1440	struct inode		*inode,
1441	loff_t			start,
1442	loff_t			end)
1443{
1444	struct xfs_inode	*ip = XFS_I(inode);
1445	xfs_fileoff_t		start_fsb;
1446	xfs_fileoff_t		end_fsb;
1447	int			error;
1448
1449	start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1450	end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1451	if (end_fsb <= start_fsb)
1452		return;
1453
1454	xfs_ilock(ip, XFS_ILOCK_EXCL);
1455	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1456						end_fsb - start_fsb);
1457	if (error) {
1458		/* something screwed, just bail */
1459		if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1460			xfs_alert(ip->i_mount,
1461		"xfs_vm_write_failed: unable to clean up ino %lld",
1462					ip->i_ino);
1463		}
1464	}
1465	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1466}
1467
1468STATIC void
1469xfs_vm_write_failed(
1470	struct inode		*inode,
1471	struct page		*page,
1472	loff_t			pos,
1473	unsigned		len)
1474{
1475	loff_t			block_offset;
1476	loff_t			block_start;
1477	loff_t			block_end;
1478	loff_t			from = pos & (PAGE_SIZE - 1);
1479	loff_t			to = from + len;
1480	struct buffer_head	*bh, *head;
1481	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
1482
1483	/*
1484	 * The request pos offset might be 32 or 64 bit, this is all fine
1485	 * on 64-bit platform.  However, for 64-bit pos request on 32-bit
1486	 * platform, the high 32-bit will be masked off if we evaluate the
1487	 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1488	 * 0xfffff000 as an unsigned long, hence the result is incorrect
1489	 * which could cause the following ASSERT failed in most cases.
1490	 * In order to avoid this, we can evaluate the block_offset of the
1491	 * start of the page by using shifts rather than masks the mismatch
1492	 * problem.
1493	 */
1494	block_offset = (pos >> PAGE_SHIFT) << PAGE_SHIFT;
1495
1496	ASSERT(block_offset + from == pos);
1497
1498	head = page_buffers(page);
1499	block_start = 0;
1500	for (bh = head; bh != head || !block_start;
1501	     bh = bh->b_this_page, block_start = block_end,
1502				   block_offset += bh->b_size) {
1503		block_end = block_start + bh->b_size;
1504
1505		/* skip buffers before the write */
1506		if (block_end <= from)
1507			continue;
1508
1509		/* if the buffer is after the write, we're done */
1510		if (block_start >= to)
1511			break;
1512
 
1513		/*
1514		 * Process delalloc and unwritten buffers beyond EOF. We can
1515		 * encounter unwritten buffers in the event that a file has
1516		 * post-EOF unwritten extents and an extending write happens to
1517		 * fail (e.g., an unaligned write that also involves a delalloc
1518		 * to the same page).
 
1519		 */
1520		if (!buffer_delay(bh) && !buffer_unwritten(bh))
1521			continue;
1522
1523		if (!xfs_mp_fail_writes(mp) && !buffer_new(bh) &&
1524		    block_offset < i_size_read(inode))
1525			continue;
1526
1527		if (buffer_delay(bh))
1528			xfs_vm_kill_delalloc_range(inode, block_offset,
1529						   block_offset + bh->b_size);
1530
1531		/*
1532		 * This buffer does not contain data anymore. make sure anyone
1533		 * who finds it knows that for certain.
1534		 */
1535		clear_buffer_delay(bh);
1536		clear_buffer_uptodate(bh);
1537		clear_buffer_mapped(bh);
1538		clear_buffer_new(bh);
1539		clear_buffer_dirty(bh);
1540		clear_buffer_unwritten(bh);
 
 
 
 
 
 
 
 
 
 
 
1541	}
1542
1543}
1544
1545/*
1546 * This used to call block_write_begin(), but it unlocks and releases the page
1547 * on error, and we need that page to be able to punch stale delalloc blocks out
1548 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1549 * the appropriate point.
1550 */
1551STATIC int
1552xfs_vm_write_begin(
1553	struct file		*file,
1554	struct address_space	*mapping,
1555	loff_t			pos,
1556	unsigned		len,
1557	unsigned		flags,
1558	struct page		**pagep,
1559	void			**fsdata)
1560{
1561	pgoff_t			index = pos >> PAGE_SHIFT;
1562	struct page		*page;
1563	int			status;
1564	struct xfs_mount	*mp = XFS_I(mapping->host)->i_mount;
1565
1566	ASSERT(len <= PAGE_SIZE);
1567
1568	page = grab_cache_page_write_begin(mapping, index, flags);
1569	if (!page)
1570		return -ENOMEM;
1571
1572	status = __block_write_begin(page, pos, len, xfs_get_blocks);
1573	if (xfs_mp_fail_writes(mp))
1574		status = -EIO;
1575	if (unlikely(status)) {
1576		struct inode	*inode = mapping->host;
1577		size_t		isize = i_size_read(inode);
1578
1579		xfs_vm_write_failed(inode, page, pos, len);
1580		unlock_page(page);
1581
1582		/*
1583		 * If the write is beyond EOF, we only want to kill blocks
1584		 * allocated in this write, not blocks that were previously
1585		 * written successfully.
1586		 */
1587		if (xfs_mp_fail_writes(mp))
1588			isize = 0;
1589		if (pos + len > isize) {
1590			ssize_t start = max_t(ssize_t, pos, isize);
1591
1592			truncate_pagecache_range(inode, start, pos + len);
1593		}
1594
1595		put_page(page);
1596		page = NULL;
1597	}
1598
1599	*pagep = page;
1600	return status;
1601}
1602
1603/*
1604 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1605 * this specific write because they will never be written. Previous writes
1606 * beyond EOF where block allocation succeeded do not need to be trashed, so
1607 * only new blocks from this write should be trashed. For blocks within
1608 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1609 * written with all the other valid data.
1610 */
1611STATIC int
1612xfs_vm_write_end(
1613	struct file		*file,
1614	struct address_space	*mapping,
1615	loff_t			pos,
1616	unsigned		len,
1617	unsigned		copied,
1618	struct page		*page,
1619	void			*fsdata)
1620{
1621	int			ret;
1622
1623	ASSERT(len <= PAGE_SIZE);
1624
1625	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1626	if (unlikely(ret < len)) {
1627		struct inode	*inode = mapping->host;
1628		size_t		isize = i_size_read(inode);
1629		loff_t		to = pos + len;
1630
1631		if (to > isize) {
1632			/* only kill blocks in this write beyond EOF */
1633			if (pos > isize)
1634				isize = pos;
1635			xfs_vm_kill_delalloc_range(inode, isize, to);
1636			truncate_pagecache_range(inode, isize, to);
1637		}
1638	}
1639	return ret;
1640}
1641
1642STATIC sector_t
1643xfs_vm_bmap(
1644	struct address_space	*mapping,
1645	sector_t		block)
1646{
1647	struct inode		*inode = (struct inode *)mapping->host;
1648	struct xfs_inode	*ip = XFS_I(inode);
1649
1650	trace_xfs_vm_bmap(XFS_I(inode));
1651	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1652	filemap_write_and_wait(mapping);
1653	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1654	return generic_block_bmap(mapping, block, xfs_get_blocks);
1655}
1656
1657STATIC int
1658xfs_vm_readpage(
1659	struct file		*unused,
1660	struct page		*page)
1661{
1662	trace_xfs_vm_readpage(page->mapping->host, 1);
1663	return mpage_readpage(page, xfs_get_blocks);
1664}
1665
1666STATIC int
1667xfs_vm_readpages(
1668	struct file		*unused,
1669	struct address_space	*mapping,
1670	struct list_head	*pages,
1671	unsigned		nr_pages)
1672{
1673	trace_xfs_vm_readpages(mapping->host, nr_pages);
1674	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1675}
1676
1677/*
1678 * This is basically a copy of __set_page_dirty_buffers() with one
1679 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1680 * dirty, we'll never be able to clean them because we don't write buffers
1681 * beyond EOF, and that means we can't invalidate pages that span EOF
1682 * that have been marked dirty. Further, the dirty state can leak into
1683 * the file interior if the file is extended, resulting in all sorts of
1684 * bad things happening as the state does not match the underlying data.
1685 *
1686 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1687 * this only exist because of bufferheads and how the generic code manages them.
1688 */
1689STATIC int
1690xfs_vm_set_page_dirty(
1691	struct page		*page)
1692{
1693	struct address_space	*mapping = page->mapping;
1694	struct inode		*inode = mapping->host;
1695	loff_t			end_offset;
1696	loff_t			offset;
1697	int			newly_dirty;
1698
1699	if (unlikely(!mapping))
1700		return !TestSetPageDirty(page);
1701
1702	end_offset = i_size_read(inode);
1703	offset = page_offset(page);
1704
1705	spin_lock(&mapping->private_lock);
1706	if (page_has_buffers(page)) {
1707		struct buffer_head *head = page_buffers(page);
1708		struct buffer_head *bh = head;
1709
1710		do {
1711			if (offset < end_offset)
1712				set_buffer_dirty(bh);
1713			bh = bh->b_this_page;
1714			offset += 1 << inode->i_blkbits;
1715		} while (bh != head);
1716	}
1717	/*
1718	 * Lock out page->mem_cgroup migration to keep PageDirty
1719	 * synchronized with per-memcg dirty page counters.
1720	 */
1721	lock_page_memcg(page);
1722	newly_dirty = !TestSetPageDirty(page);
1723	spin_unlock(&mapping->private_lock);
1724
1725	if (newly_dirty) {
1726		/* sigh - __set_page_dirty() is static, so copy it here, too */
1727		unsigned long flags;
1728
1729		spin_lock_irqsave(&mapping->tree_lock, flags);
1730		if (page->mapping) {	/* Race with truncate? */
1731			WARN_ON_ONCE(!PageUptodate(page));
1732			account_page_dirtied(page, mapping);
1733			radix_tree_tag_set(&mapping->page_tree,
1734					page_index(page), PAGECACHE_TAG_DIRTY);
1735		}
1736		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1737	}
1738	unlock_page_memcg(page);
1739	if (newly_dirty)
1740		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1741	return newly_dirty;
1742}
1743
1744const struct address_space_operations xfs_address_space_operations = {
1745	.readpage		= xfs_vm_readpage,
1746	.readpages		= xfs_vm_readpages,
1747	.writepage		= xfs_vm_writepage,
1748	.writepages		= xfs_vm_writepages,
1749	.set_page_dirty		= xfs_vm_set_page_dirty,
1750	.releasepage		= xfs_vm_releasepage,
1751	.invalidatepage		= xfs_vm_invalidatepage,
1752	.write_begin		= xfs_vm_write_begin,
1753	.write_end		= xfs_vm_write_end,
1754	.bmap			= xfs_vm_bmap,
1755	.direct_IO		= xfs_vm_direct_IO,
1756	.migratepage		= buffer_migrate_page,
1757	.is_partially_uptodate  = block_is_partially_uptodate,
1758	.error_remove_page	= generic_error_remove_page,
1759};