Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * linux/fs/ext4/page-io.c
  3 *
  4 * This contains the new page_io functions for ext4
  5 *
  6 * Written by Theodore Ts'o, 2010.
  7 */
  8
  9#include <linux/module.h>
 10#include <linux/fs.h>
 11#include <linux/time.h>
 12#include <linux/jbd2.h>
 13#include <linux/highuid.h>
 14#include <linux/pagemap.h>
 15#include <linux/quotaops.h>
 16#include <linux/string.h>
 17#include <linux/buffer_head.h>
 18#include <linux/writeback.h>
 19#include <linux/pagevec.h>
 20#include <linux/mpage.h>
 21#include <linux/namei.h>
 22#include <linux/uio.h>
 23#include <linux/bio.h>
 24#include <linux/workqueue.h>
 25#include <linux/kernel.h>
 26#include <linux/slab.h>
 
 
 27
 28#include "ext4_jbd2.h"
 29#include "xattr.h"
 30#include "acl.h"
 31#include "ext4_extents.h"
 32
 33static struct kmem_cache *io_page_cachep, *io_end_cachep;
 34
 35int __init ext4_init_pageio(void)
 36{
 37	io_page_cachep = KMEM_CACHE(ext4_io_page, SLAB_RECLAIM_ACCOUNT);
 38	if (io_page_cachep == NULL)
 39		return -ENOMEM;
 40	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
 41	if (io_end_cachep == NULL) {
 42		kmem_cache_destroy(io_page_cachep);
 43		return -ENOMEM;
 44	}
 45	return 0;
 46}
 47
 48void ext4_exit_pageio(void)
 49{
 50	kmem_cache_destroy(io_end_cachep);
 51	kmem_cache_destroy(io_page_cachep);
 52}
 53
 54void ext4_ioend_wait(struct inode *inode)
 
 
 
 
 
 
 
 55{
 56	wait_queue_head_t *wq = ext4_ioend_wq(inode);
 57
 58	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0));
 59}
 60
 61static void put_io_page(struct ext4_io_page *io_page)
 62{
 63	if (atomic_dec_and_test(&io_page->p_count)) {
 64		end_page_writeback(io_page->p_page);
 65		put_page(io_page->p_page);
 66		kmem_cache_free(io_page_cachep, io_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 67	}
 68}
 69
 70void ext4_free_io_end(ext4_io_end_t *io)
 71{
 72	int i;
 73	wait_queue_head_t *wq;
 74
 75	BUG_ON(!io);
 76	if (io->page)
 77		put_page(io->page);
 78	for (i = 0; i < io->num_io_pages; i++)
 79		put_io_page(io->pages[i]);
 80	io->num_io_pages = 0;
 81	wq = ext4_ioend_wq(io->inode);
 82	if (atomic_dec_and_test(&EXT4_I(io->inode)->i_ioend_count) &&
 83	    waitqueue_active(wq))
 84		wake_up_all(wq);
 85	kmem_cache_free(io_end_cachep, io);
 86}
 87
 88/*
 89 * check a range of space and convert unwritten extents to written.
 
 
 
 
 
 90 */
 91int ext4_end_io_nolock(ext4_io_end_t *io)
 92{
 93	struct inode *inode = io->inode;
 94	loff_t offset = io->offset;
 95	ssize_t size = io->size;
 96	wait_queue_head_t *wq;
 97	int ret = 0;
 98
 99	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
100		   "list->prev 0x%p\n",
101		   io, inode->i_ino, io->list.next, io->list.prev);
102
103	if (list_empty(&io->list))
104		return ret;
105
106	if (!(io->flag & EXT4_IO_END_UNWRITTEN))
107		return ret;
108
109	ret = ext4_convert_unwritten_extents(inode, offset, size);
110	if (ret < 0) {
111		printk(KERN_EMERG "%s: failed to convert unwritten "
112			"extents to written extents, error is %d "
113			"io is still on inode %lu aio dio list\n",
114		       __func__, ret, inode->i_ino);
115		return ret;
116	}
117
118	if (io->iocb)
119		aio_complete(io->iocb, io->result, 0);
120	/* clear the DIO AIO unwritten flag */
121	if (io->flag & EXT4_IO_END_UNWRITTEN) {
122		io->flag &= ~EXT4_IO_END_UNWRITTEN;
123		/* Wake up anyone waiting on unwritten extent conversion */
124		wq = ext4_ioend_wq(io->inode);
125		if (atomic_dec_and_test(&EXT4_I(inode)->i_aiodio_unwritten) &&
126		    waitqueue_active(wq)) {
127			wake_up_all(wq);
128		}
129	}
130
 
131	return ret;
132}
133
134/*
135 * work on completed aio dio IO, to convert unwritten extents to extents
136 */
137static void ext4_end_io_work(struct work_struct *work)
138{
139	ext4_io_end_t		*io = container_of(work, ext4_io_end_t, work);
140	struct inode		*inode = io->inode;
141	struct ext4_inode_info	*ei = EXT4_I(inode);
142	unsigned long		flags;
143	int			ret;
144
145	if (!mutex_trylock(&inode->i_mutex)) {
146		/*
147		 * Requeue the work instead of waiting so that the work
148		 * items queued after this can be processed.
149		 */
150		queue_work(EXT4_SB(inode->i_sb)->dio_unwritten_wq, &io->work);
151		/*
152		 * To prevent the ext4-dio-unwritten thread from keeping
153		 * requeueing end_io requests and occupying cpu for too long,
154		 * yield the cpu if it sees an end_io request that has already
155		 * been requeued.
156		 */
157		if (io->flag & EXT4_IO_END_QUEUED)
158			yield();
159		io->flag |= EXT4_IO_END_QUEUED;
160		return;
161	}
162	ret = ext4_end_io_nolock(io);
163	if (ret < 0) {
164		mutex_unlock(&inode->i_mutex);
165		return;
 
 
 
 
 
 
 
 
 
 
 
166	}
 
 
167
 
 
 
 
 
 
 
 
 
 
 
168	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
169	if (!list_empty(&io->list))
170		list_del_init(&io->list);
 
 
171	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
172	mutex_unlock(&inode->i_mutex);
173	ext4_free_io_end(io);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174}
175
176ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
177{
178	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
179	if (io) {
180		atomic_inc(&EXT4_I(inode)->i_ioend_count);
181		io->inode = inode;
182		INIT_WORK(&io->work, ext4_end_io_work);
183		INIT_LIST_HEAD(&io->list);
 
184	}
185	return io;
186}
187
188/*
189 * Print an buffer I/O error compatible with the fs/buffer.c.  This
190 * provides compatibility with dmesg scrapers that look for a specific
191 * buffer I/O error message.  We really need a unified error reporting
192 * structure to userspace ala Digital Unix's uerf system, but it's
193 * probably not going to happen in my lifetime, due to LKML politics...
194 */
195static void buffer_io_error(struct buffer_head *bh)
196{
197	char b[BDEVNAME_SIZE];
198	printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
199			bdevname(bh->b_bdev, b),
200			(unsigned long long)bh->b_blocknr);
 
 
 
201}
202
203static void ext4_end_bio(struct bio *bio, int error)
204{
205	ext4_io_end_t *io_end = bio->bi_private;
206	struct workqueue_struct *wq;
207	struct inode *inode;
208	unsigned long flags;
209	int i;
210	sector_t bi_sector = bio->bi_sector;
211
212	BUG_ON(!io_end);
213	bio->bi_private = NULL;
214	bio->bi_end_io = NULL;
215	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
216		error = 0;
217	bio_put(bio);
218
219	for (i = 0; i < io_end->num_io_pages; i++) {
220		struct page *page = io_end->pages[i]->p_page;
221		struct buffer_head *bh, *head;
222		loff_t offset;
223		loff_t io_end_offset;
 
 
 
 
 
 
 
224
225		if (error) {
226			SetPageError(page);
227			set_bit(AS_EIO, &page->mapping->flags);
228			head = page_buffers(page);
229			BUG_ON(!head);
230
231			io_end_offset = io_end->offset + io_end->size;
 
 
 
 
232
233			offset = (sector_t) page->index << PAGE_CACHE_SHIFT;
234			bh = head;
235			do {
236				if ((offset >= io_end->offset) &&
237				    (offset+bh->b_size <= io_end_offset))
238					buffer_io_error(bh);
239
240				offset += bh->b_size;
241				bh = bh->b_this_page;
242			} while (bh != head);
243		}
244
245		put_io_page(io_end->pages[i]);
246	}
247	io_end->num_io_pages = 0;
248	inode = io_end->inode;
249
250	if (error) {
251		io_end->flag |= EXT4_IO_END_ERROR;
252		ext4_warning(inode->i_sb, "I/O error writing to inode %lu "
253			     "(offset %llu size %ld starting block %llu)",
254			     inode->i_ino,
255			     (unsigned long long) io_end->offset,
256			     (long) io_end->size,
257			     (unsigned long long)
258			     bi_sector >> (inode->i_blkbits - 9));
 
259	}
260
261	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
262		ext4_free_io_end(io_end);
263		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
264	}
265
266	/* Add the io_end to per-inode completed io list*/
267	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
268	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
269	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
270
271	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
272	/* queue the work to convert unwritten extents to written */
273	queue_work(wq, &io_end->work);
274}
275
276void ext4_io_submit(struct ext4_io_submit *io)
277{
278	struct bio *bio = io->io_bio;
279
280	if (bio) {
 
 
281		bio_get(io->io_bio);
282		submit_bio(io->io_op, io->io_bio);
283		BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP));
284		bio_put(io->io_bio);
285	}
286	io->io_bio = NULL;
287	io->io_op = 0;
 
 
 
 
 
 
288	io->io_end = NULL;
289}
290
291static int io_submit_init(struct ext4_io_submit *io,
292			  struct inode *inode,
293			  struct writeback_control *wbc,
294			  struct buffer_head *bh)
295{
296	ext4_io_end_t *io_end;
297	struct page *page = bh->b_page;
298	int nvecs = bio_get_nr_vecs(bh->b_bdev);
299	struct bio *bio;
300
301	io_end = ext4_init_io_end(inode, GFP_NOFS);
302	if (!io_end)
303		return -ENOMEM;
304	bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES));
305	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
306	bio->bi_bdev = bh->b_bdev;
307	bio->bi_private = io->io_end = io_end;
308	bio->bi_end_io = ext4_end_bio;
309
310	io_end->offset = (page->index << PAGE_CACHE_SHIFT) + bh_offset(bh);
311
312	io->io_bio = bio;
313	io->io_op = (wbc->sync_mode == WB_SYNC_ALL ?  WRITE_SYNC : WRITE);
314	io->io_next_block = bh->b_blocknr;
315	return 0;
316}
317
318static int io_submit_add_bh(struct ext4_io_submit *io,
319			    struct ext4_io_page *io_page,
320			    struct inode *inode,
321			    struct writeback_control *wbc,
322			    struct buffer_head *bh)
323{
324	ext4_io_end_t *io_end;
325	int ret;
326
327	if (buffer_new(bh)) {
328		clear_buffer_new(bh);
329		unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
330	}
331
332	if (!buffer_mapped(bh) || buffer_delay(bh)) {
333		if (!buffer_mapped(bh))
334			clear_buffer_dirty(bh);
335		if (io->io_bio)
336			ext4_io_submit(io);
337		return 0;
338	}
339
340	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
341submit_and_retry:
342		ext4_io_submit(io);
343	}
344	if (io->io_bio == NULL) {
345		ret = io_submit_init(io, inode, wbc, bh);
346		if (ret)
347			return ret;
348	}
349	io_end = io->io_end;
350	if ((io_end->num_io_pages >= MAX_IO_PAGES) &&
351	    (io_end->pages[io_end->num_io_pages-1] != io_page))
352		goto submit_and_retry;
353	if (buffer_uninit(bh) && !(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
354		io_end->flag |= EXT4_IO_END_UNWRITTEN;
355		atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
356	}
357	io->io_end->size += bh->b_size;
358	io->io_next_block++;
359	ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh));
360	if (ret != bh->b_size)
361		goto submit_and_retry;
362	if ((io_end->num_io_pages == 0) ||
363	    (io_end->pages[io_end->num_io_pages-1] != io_page)) {
364		io_end->pages[io_end->num_io_pages++] = io_page;
365		atomic_inc(&io_page->p_count);
366	}
367	return 0;
368}
369
370int ext4_bio_write_page(struct ext4_io_submit *io,
371			struct page *page,
372			int len,
373			struct writeback_control *wbc)
 
374{
 
375	struct inode *inode = page->mapping->host;
376	unsigned block_start, block_end, blocksize;
377	struct ext4_io_page *io_page;
378	struct buffer_head *bh, *head;
379	int ret = 0;
 
 
380
381	blocksize = 1 << inode->i_blkbits;
382
383	BUG_ON(!PageLocked(page));
384	BUG_ON(PageWriteback(page));
385
386	io_page = kmem_cache_alloc(io_page_cachep, GFP_NOFS);
387	if (!io_page) {
388		set_page_dirty(page);
389		unlock_page(page);
390		return -ENOMEM;
391	}
392	io_page->p_page = page;
393	atomic_set(&io_page->p_count, 1);
394	get_page(page);
395	set_page_writeback(page);
396	ClearPageError(page);
397
398	for (bh = head = page_buffers(page), block_start = 0;
399	     bh != head || !block_start;
400	     block_start = block_end, bh = bh->b_this_page) {
401
402		block_end = block_start + blocksize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
403		if (block_start >= len) {
404			clear_buffer_dirty(bh);
405			set_buffer_uptodate(bh);
406			continue;
407		}
408		clear_buffer_dirty(bh);
409		ret = io_submit_add_bh(io, io_page, inode, wbc, bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410		if (ret) {
411			/*
412			 * We only get here on ENOMEM.  Not much else
413			 * we can do but mark the page as dirty, and
414			 * better luck next time.
415			 */
416			set_page_dirty(page);
417			break;
418		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419	}
420	unlock_page(page);
421	/*
422	 * If the page was truncated before we could do the writeback,
423	 * or we had a memory allocation error while trying to write
424	 * the first buffer head, we won't have submitted any pages for
425	 * I/O.  In that case we need to make sure we've cleared the
426	 * PageWriteback bit from the page to prevent the system from
427	 * wedging later on.
428	 */
429	put_io_page(io_page);
430	return ret;
431}
v4.6
  1/*
  2 * linux/fs/ext4/page-io.c
  3 *
  4 * This contains the new page_io functions for ext4
  5 *
  6 * Written by Theodore Ts'o, 2010.
  7 */
  8
 
  9#include <linux/fs.h>
 10#include <linux/time.h>
 
 11#include <linux/highuid.h>
 12#include <linux/pagemap.h>
 13#include <linux/quotaops.h>
 14#include <linux/string.h>
 15#include <linux/buffer_head.h>
 16#include <linux/writeback.h>
 17#include <linux/pagevec.h>
 18#include <linux/mpage.h>
 19#include <linux/namei.h>
 20#include <linux/uio.h>
 21#include <linux/bio.h>
 22#include <linux/workqueue.h>
 23#include <linux/kernel.h>
 24#include <linux/slab.h>
 25#include <linux/mm.h>
 26#include <linux/backing-dev.h>
 27
 28#include "ext4_jbd2.h"
 29#include "xattr.h"
 30#include "acl.h"
 
 31
 32static struct kmem_cache *io_end_cachep;
 33
 34int __init ext4_init_pageio(void)
 35{
 
 
 
 36	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
 37	if (io_end_cachep == NULL)
 
 38		return -ENOMEM;
 
 39	return 0;
 40}
 41
 42void ext4_exit_pageio(void)
 43{
 44	kmem_cache_destroy(io_end_cachep);
 
 45}
 46
 47/*
 48 * Print an buffer I/O error compatible with the fs/buffer.c.  This
 49 * provides compatibility with dmesg scrapers that look for a specific
 50 * buffer I/O error message.  We really need a unified error reporting
 51 * structure to userspace ala Digital Unix's uerf system, but it's
 52 * probably not going to happen in my lifetime, due to LKML politics...
 53 */
 54static void buffer_io_error(struct buffer_head *bh)
 55{
 56	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
 57		       bh->b_bdev,
 58			(unsigned long long)bh->b_blocknr);
 59}
 60
 61static void ext4_finish_bio(struct bio *bio)
 62{
 63	int i;
 64	struct bio_vec *bvec;
 65
 66	bio_for_each_segment_all(bvec, bio, i) {
 67		struct page *page = bvec->bv_page;
 68#ifdef CONFIG_EXT4_FS_ENCRYPTION
 69		struct page *data_page = NULL;
 70		struct ext4_crypto_ctx *ctx = NULL;
 71#endif
 72		struct buffer_head *bh, *head;
 73		unsigned bio_start = bvec->bv_offset;
 74		unsigned bio_end = bio_start + bvec->bv_len;
 75		unsigned under_io = 0;
 76		unsigned long flags;
 77
 78		if (!page)
 79			continue;
 80
 81#ifdef CONFIG_EXT4_FS_ENCRYPTION
 82		if (!page->mapping) {
 83			/* The bounce data pages are unmapped. */
 84			data_page = page;
 85			ctx = (struct ext4_crypto_ctx *)page_private(data_page);
 86			page = ctx->w.control_page;
 87		}
 88#endif
 89
 90		if (bio->bi_error) {
 91			SetPageError(page);
 92			set_bit(AS_EIO, &page->mapping->flags);
 93		}
 94		bh = head = page_buffers(page);
 95		/*
 96		 * We check all buffers in the page under BH_Uptodate_Lock
 97		 * to avoid races with other end io clearing async_write flags
 98		 */
 99		local_irq_save(flags);
100		bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
101		do {
102			if (bh_offset(bh) < bio_start ||
103			    bh_offset(bh) + bh->b_size > bio_end) {
104				if (buffer_async_write(bh))
105					under_io++;
106				continue;
107			}
108			clear_buffer_async_write(bh);
109			if (bio->bi_error)
110				buffer_io_error(bh);
111		} while ((bh = bh->b_this_page) != head);
112		bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
113		local_irq_restore(flags);
114		if (!under_io) {
115#ifdef CONFIG_EXT4_FS_ENCRYPTION
116			if (ctx)
117				ext4_restore_control_page(data_page);
118#endif
119			end_page_writeback(page);
120		}
121	}
122}
123
124static void ext4_release_io_end(ext4_io_end_t *io_end)
125{
126	struct bio *bio, *next_bio;
 
127
128	BUG_ON(!list_empty(&io_end->list));
129	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
130	WARN_ON(io_end->handle);
131
132	for (bio = io_end->bio; bio; bio = next_bio) {
133		next_bio = bio->bi_private;
134		ext4_finish_bio(bio);
135		bio_put(bio);
136	}
137	kmem_cache_free(io_end_cachep, io_end);
 
138}
139
140/*
141 * Check a range of space and convert unwritten extents to written. Note that
142 * we are protected from truncate touching same part of extent tree by the
143 * fact that truncate code waits for all DIO to finish (thus exclusion from
144 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
145 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
146 * completed (happens from ext4_free_ioend()).
147 */
148static int ext4_end_io(ext4_io_end_t *io)
149{
150	struct inode *inode = io->inode;
151	loff_t offset = io->offset;
152	ssize_t size = io->size;
153	handle_t *handle = io->handle;
154	int ret = 0;
155
156	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
157		   "list->prev 0x%p\n",
158		   io, inode->i_ino, io->list.next, io->list.prev);
159
160	io->handle = NULL;	/* Following call will use up the handle */
161	ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
 
 
 
 
 
162	if (ret < 0) {
163		ext4_msg(inode->i_sb, KERN_EMERG,
164			 "failed to convert unwritten extents to written "
165			 "extents -- potential data loss!  "
166			 "(inode %lu, offset %llu, size %zd, error %d)",
167			 inode->i_ino, offset, size, ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
168	}
169	ext4_clear_io_unwritten_flag(io);
170	ext4_release_io_end(io);
171	return ret;
172}
173
174static void dump_completed_IO(struct inode *inode, struct list_head *head)
 
 
 
175{
176#ifdef	EXT4FS_DEBUG
177	struct list_head *cur, *before, *after;
178	ext4_io_end_t *io, *io0, *io1;
 
 
179
180	if (list_empty(head))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181		return;
182
183	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
184	list_for_each_entry(io, head, list) {
185		cur = &io->list;
186		before = cur->prev;
187		io0 = container_of(before, ext4_io_end_t, list);
188		after = cur->next;
189		io1 = container_of(after, ext4_io_end_t, list);
190
191		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
192			    io, inode->i_ino, io0, io1);
193	}
194#endif
195}
196
197/* Add the io_end to per-inode completed end_io list. */
198static void ext4_add_complete_io(ext4_io_end_t *io_end)
199{
200	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
201	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
202	struct workqueue_struct *wq;
203	unsigned long flags;
204
205	/* Only reserved conversions from writeback should enter here */
206	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
207	WARN_ON(!io_end->handle && sbi->s_journal);
208	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
209	wq = sbi->rsv_conversion_wq;
210	if (list_empty(&ei->i_rsv_conversion_list))
211		queue_work(wq, &ei->i_rsv_conversion_work);
212	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
213	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
214}
215
216static int ext4_do_flush_completed_IO(struct inode *inode,
217				      struct list_head *head)
218{
219	ext4_io_end_t *io;
220	struct list_head unwritten;
221	unsigned long flags;
222	struct ext4_inode_info *ei = EXT4_I(inode);
223	int err, ret = 0;
224
225	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
226	dump_completed_IO(inode, head);
227	list_replace_init(head, &unwritten);
228	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
229
230	while (!list_empty(&unwritten)) {
231		io = list_entry(unwritten.next, ext4_io_end_t, list);
232		BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
233		list_del_init(&io->list);
234
235		err = ext4_end_io(io);
236		if (unlikely(!ret && err))
237			ret = err;
238	}
239	return ret;
240}
241
242/*
243 * work on completed IO, to convert unwritten extents to extents
244 */
245void ext4_end_io_rsv_work(struct work_struct *work)
246{
247	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
248						  i_rsv_conversion_work);
249	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
250}
251
252ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
253{
254	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
255	if (io) {
 
256		io->inode = inode;
 
257		INIT_LIST_HEAD(&io->list);
258		atomic_set(&io->count, 1);
259	}
260	return io;
261}
262
263void ext4_put_io_end_defer(ext4_io_end_t *io_end)
 
 
 
 
 
 
 
264{
265	if (atomic_dec_and_test(&io_end->count)) {
266		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
267			ext4_release_io_end(io_end);
268			return;
269		}
270		ext4_add_complete_io(io_end);
271	}
272}
273
274int ext4_put_io_end(ext4_io_end_t *io_end)
275{
276	int err = 0;
 
 
 
 
 
 
 
 
 
 
 
 
277
278	if (atomic_dec_and_test(&io_end->count)) {
279		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
280			err = ext4_convert_unwritten_extents(io_end->handle,
281						io_end->inode, io_end->offset,
282						io_end->size);
283			io_end->handle = NULL;
284			ext4_clear_io_unwritten_flag(io_end);
285		}
286		ext4_release_io_end(io_end);
287	}
288	return err;
289}
290
291ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
292{
293	atomic_inc(&io_end->count);
294	return io_end;
295}
296
297/* BIO completion function for page writeback */
298static void ext4_end_bio(struct bio *bio)
299{
300	ext4_io_end_t *io_end = bio->bi_private;
301	sector_t bi_sector = bio->bi_iter.bi_sector;
302
303	BUG_ON(!io_end);
304	bio->bi_end_io = NULL;
 
 
 
 
 
 
 
 
 
305
306	if (bio->bi_error) {
307		struct inode *inode = io_end->inode;
 
 
308
309		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
 
 
310			     "(offset %llu size %ld starting block %llu)",
311			     bio->bi_error, inode->i_ino,
312			     (unsigned long long) io_end->offset,
313			     (long) io_end->size,
314			     (unsigned long long)
315			     bi_sector >> (inode->i_blkbits - 9));
316		mapping_set_error(inode->i_mapping, bio->bi_error);
317	}
318
319	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
320		/*
321		 * Link bio into list hanging from io_end. We have to do it
322		 * atomically as bio completions can be racing against each
323		 * other.
324		 */
325		bio->bi_private = xchg(&io_end->bio, bio);
326		ext4_put_io_end_defer(io_end);
327	} else {
328		/*
329		 * Drop io_end reference early. Inode can get freed once
330		 * we finish the bio.
331		 */
332		ext4_put_io_end_defer(io_end);
333		ext4_finish_bio(bio);
334		bio_put(bio);
335	}
 
 
 
 
 
 
 
 
 
336}
337
338void ext4_io_submit(struct ext4_io_submit *io)
339{
340	struct bio *bio = io->io_bio;
341
342	if (bio) {
343		int io_op = io->io_wbc->sync_mode == WB_SYNC_ALL ?
344			    WRITE_SYNC : WRITE;
345		bio_get(io->io_bio);
346		submit_bio(io_op, io->io_bio);
 
347		bio_put(io->io_bio);
348	}
349	io->io_bio = NULL;
350}
351
352void ext4_io_submit_init(struct ext4_io_submit *io,
353			 struct writeback_control *wbc)
354{
355	io->io_wbc = wbc;
356	io->io_bio = NULL;
357	io->io_end = NULL;
358}
359
360static int io_submit_init_bio(struct ext4_io_submit *io,
361			      struct buffer_head *bh)
362{
 
 
 
 
 
363	struct bio *bio;
364
365	bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
366	if (!bio)
367		return -ENOMEM;
368	wbc_init_bio(io->io_wbc, bio);
369	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
370	bio->bi_bdev = bh->b_bdev;
 
371	bio->bi_end_io = ext4_end_bio;
372	bio->bi_private = ext4_get_io_end(io->io_end);
 
 
373	io->io_bio = bio;
 
374	io->io_next_block = bh->b_blocknr;
375	return 0;
376}
377
378static int io_submit_add_bh(struct ext4_io_submit *io,
 
379			    struct inode *inode,
380			    struct page *page,
381			    struct buffer_head *bh)
382{
 
383	int ret;
384
 
 
 
 
 
 
 
 
 
 
 
 
 
385	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
386submit_and_retry:
387		ext4_io_submit(io);
388	}
389	if (io->io_bio == NULL) {
390		ret = io_submit_init_bio(io, bh);
391		if (ret)
392			return ret;
393	}
394	ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
 
 
 
 
 
 
 
 
 
 
395	if (ret != bh->b_size)
396		goto submit_and_retry;
397	wbc_account_io(io->io_wbc, page, bh->b_size);
398	io->io_next_block++;
 
 
 
399	return 0;
400}
401
402int ext4_bio_write_page(struct ext4_io_submit *io,
403			struct page *page,
404			int len,
405			struct writeback_control *wbc,
406			bool keep_towrite)
407{
408	struct page *data_page = NULL;
409	struct inode *inode = page->mapping->host;
410	unsigned block_start, blocksize;
 
411	struct buffer_head *bh, *head;
412	int ret = 0;
413	int nr_submitted = 0;
414	int nr_to_submit = 0;
415
416	blocksize = 1 << inode->i_blkbits;
417
418	BUG_ON(!PageLocked(page));
419	BUG_ON(PageWriteback(page));
420
421	if (keep_towrite)
422		set_page_writeback_keepwrite(page);
423	else
424		set_page_writeback(page);
 
 
 
 
 
 
425	ClearPageError(page);
426
427	/*
428	 * Comments copied from block_write_full_page:
429	 *
430	 * The page straddles i_size.  It must be zeroed out on each and every
431	 * writepage invocation because it may be mmapped.  "A file is mapped
432	 * in multiples of the page size.  For a file that is not a multiple of
433	 * the page size, the remaining memory is zeroed when mapped, and
434	 * writes to that region are not written out to the file."
435	 */
436	if (len < PAGE_SIZE)
437		zero_user_segment(page, len, PAGE_SIZE);
438	/*
439	 * In the first loop we prepare and mark buffers to submit. We have to
440	 * mark all buffers in the page before submitting so that
441	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
442	 * on the first buffer finishes and we are still working on submitting
443	 * the second buffer.
444	 */
445	bh = head = page_buffers(page);
446	do {
447		block_start = bh_offset(bh);
448		if (block_start >= len) {
449			clear_buffer_dirty(bh);
450			set_buffer_uptodate(bh);
451			continue;
452		}
453		if (!buffer_dirty(bh) || buffer_delay(bh) ||
454		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
455			/* A hole? We can safely clear the dirty bit */
456			if (!buffer_mapped(bh))
457				clear_buffer_dirty(bh);
458			if (io->io_bio)
459				ext4_io_submit(io);
460			continue;
461		}
462		if (buffer_new(bh)) {
463			clear_buffer_new(bh);
464			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
465		}
466		set_buffer_async_write(bh);
467		nr_to_submit++;
468	} while ((bh = bh->b_this_page) != head);
469
470	bh = head = page_buffers(page);
471
472	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode) &&
473	    nr_to_submit) {
474		gfp_t gfp_flags = GFP_NOFS;
475
476	retry_encrypt:
477		data_page = ext4_encrypt(inode, page, gfp_flags);
478		if (IS_ERR(data_page)) {
479			ret = PTR_ERR(data_page);
480			if (ret == -ENOMEM && wbc->sync_mode == WB_SYNC_ALL) {
481				if (io->io_bio) {
482					ext4_io_submit(io);
483					congestion_wait(BLK_RW_ASYNC, HZ/50);
484				}
485				gfp_flags |= __GFP_NOFAIL;
486				goto retry_encrypt;
487			}
488			data_page = NULL;
489			goto out;
490		}
491	}
492
493	/* Now submit buffers to write */
494	do {
495		if (!buffer_async_write(bh))
496			continue;
497		ret = io_submit_add_bh(io, inode,
498				       data_page ? data_page : page, bh);
499		if (ret) {
500			/*
501			 * We only get here on ENOMEM.  Not much else
502			 * we can do but mark the page as dirty, and
503			 * better luck next time.
504			 */
 
505			break;
506		}
507		nr_submitted++;
508		clear_buffer_dirty(bh);
509	} while ((bh = bh->b_this_page) != head);
510
511	/* Error stopped previous loop? Clean up buffers... */
512	if (ret) {
513	out:
514		if (data_page)
515			ext4_restore_control_page(data_page);
516		printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
517		redirty_page_for_writepage(wbc, page);
518		do {
519			clear_buffer_async_write(bh);
520			bh = bh->b_this_page;
521		} while (bh != head);
522	}
523	unlock_page(page);
524	/* Nothing submitted - we have to end page writeback */
525	if (!nr_submitted)
526		end_page_writeback(page);
 
 
 
 
 
 
527	return ret;
528}