Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23/*
  24 * Ring initialization rules:
  25 * 1. Each segment is initialized to zero, except for link TRBs.
  26 * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or
  27 *    Consumer Cycle State (CCS), depending on ring function.
  28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
  29 *
  30 * Ring behavior rules:
  31 * 1. A ring is empty if enqueue == dequeue.  This means there will always be at
  32 *    least one free TRB in the ring.  This is useful if you want to turn that
  33 *    into a link TRB and expand the ring.
  34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
  35 *    link TRB, then load the pointer with the address in the link TRB.  If the
  36 *    link TRB had its toggle bit set, you may need to update the ring cycle
  37 *    state (see cycle bit rules).  You may have to do this multiple times
  38 *    until you reach a non-link TRB.
  39 * 3. A ring is full if enqueue++ (for the definition of increment above)
  40 *    equals the dequeue pointer.
  41 *
  42 * Cycle bit rules:
  43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
  44 *    in a link TRB, it must toggle the ring cycle state.
  45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
  46 *    in a link TRB, it must toggle the ring cycle state.
  47 *
  48 * Producer rules:
  49 * 1. Check if ring is full before you enqueue.
  50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
  51 *    Update enqueue pointer between each write (which may update the ring
  52 *    cycle state).
  53 * 3. Notify consumer.  If SW is producer, it rings the doorbell for command
  54 *    and endpoint rings.  If HC is the producer for the event ring,
  55 *    and it generates an interrupt according to interrupt modulation rules.
  56 *
  57 * Consumer rules:
  58 * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state,
  59 *    the TRB is owned by the consumer.
  60 * 2. Update dequeue pointer (which may update the ring cycle state) and
  61 *    continue processing TRBs until you reach a TRB which is not owned by you.
  62 * 3. Notify the producer.  SW is the consumer for the event ring, and it
  63 *   updates event ring dequeue pointer.  HC is the consumer for the command and
  64 *   endpoint rings; it generates events on the event ring for these.
  65 */
  66
  67#include <linux/scatterlist.h>
  68#include <linux/slab.h>
  69#include "xhci.h"
  70
  71static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
  72		struct xhci_virt_device *virt_dev,
  73		struct xhci_event_cmd *event);
  74
  75/*
  76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
  77 * address of the TRB.
  78 */
  79dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
  80		union xhci_trb *trb)
  81{
  82	unsigned long segment_offset;
  83
  84	if (!seg || !trb || trb < seg->trbs)
  85		return 0;
  86	/* offset in TRBs */
  87	segment_offset = trb - seg->trbs;
  88	if (segment_offset > TRBS_PER_SEGMENT)
  89		return 0;
  90	return seg->dma + (segment_offset * sizeof(*trb));
  91}
  92
  93/* Does this link TRB point to the first segment in a ring,
  94 * or was the previous TRB the last TRB on the last segment in the ERST?
  95 */
  96static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
  97		struct xhci_segment *seg, union xhci_trb *trb)
  98{
  99	if (ring == xhci->event_ring)
 100		return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
 101			(seg->next == xhci->event_ring->first_seg);
 102	else
 103		return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
 104}
 105
 106/* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
 107 * segment?  I.e. would the updated event TRB pointer step off the end of the
 108 * event seg?
 109 */
 110static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
 111		struct xhci_segment *seg, union xhci_trb *trb)
 112{
 113	if (ring == xhci->event_ring)
 114		return trb == &seg->trbs[TRBS_PER_SEGMENT];
 115	else
 116		return TRB_TYPE_LINK_LE32(trb->link.control);
 117}
 118
 119static int enqueue_is_link_trb(struct xhci_ring *ring)
 120{
 121	struct xhci_link_trb *link = &ring->enqueue->link;
 122	return TRB_TYPE_LINK_LE32(link->control);
 123}
 124
 125/* Updates trb to point to the next TRB in the ring, and updates seg if the next
 126 * TRB is in a new segment.  This does not skip over link TRBs, and it does not
 127 * effect the ring dequeue or enqueue pointers.
 128 */
 129static void next_trb(struct xhci_hcd *xhci,
 130		struct xhci_ring *ring,
 131		struct xhci_segment **seg,
 132		union xhci_trb **trb)
 133{
 134	if (last_trb(xhci, ring, *seg, *trb)) {
 135		*seg = (*seg)->next;
 136		*trb = ((*seg)->trbs);
 137	} else {
 138		(*trb)++;
 139	}
 140}
 141
 142/*
 143 * See Cycle bit rules. SW is the consumer for the event ring only.
 144 * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
 145 */
 146static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer)
 147{
 148	union xhci_trb *next = ++(ring->dequeue);
 149	unsigned long long addr;
 150
 151	ring->deq_updates++;
 152	/* Update the dequeue pointer further if that was a link TRB or we're at
 153	 * the end of an event ring segment (which doesn't have link TRBS)
 
 
 154	 */
 155	while (last_trb(xhci, ring, ring->deq_seg, next)) {
 156		if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) {
 157			ring->cycle_state = (ring->cycle_state ? 0 : 1);
 158			if (!in_interrupt())
 159				xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
 160						ring,
 161						(unsigned int) ring->cycle_state);
 162		}
 163		ring->deq_seg = ring->deq_seg->next;
 164		ring->dequeue = ring->deq_seg->trbs;
 165		next = ring->dequeue;
 166	}
 167	addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
 
 
 
 
 
 
 
 
 
 168}
 169
 170/*
 171 * See Cycle bit rules. SW is the consumer for the event ring only.
 172 * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
 173 *
 174 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
 175 * chain bit is set), then set the chain bit in all the following link TRBs.
 176 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
 177 * have their chain bit cleared (so that each Link TRB is a separate TD).
 178 *
 179 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
 180 * set, but other sections talk about dealing with the chain bit set.  This was
 181 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
 182 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
 183 *
 184 * @more_trbs_coming:	Will you enqueue more TRBs before calling
 185 *			prepare_transfer()?
 186 */
 187static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
 188		bool consumer, bool more_trbs_coming)
 189{
 190	u32 chain;
 191	union xhci_trb *next;
 192	unsigned long long addr;
 193
 194	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
 
 
 
 
 195	next = ++(ring->enqueue);
 196
 197	ring->enq_updates++;
 198	/* Update the dequeue pointer further if that was a link TRB or we're at
 199	 * the end of an event ring segment (which doesn't have link TRBS)
 200	 */
 201	while (last_trb(xhci, ring, ring->enq_seg, next)) {
 202		if (!consumer) {
 203			if (ring != xhci->event_ring) {
 204				/*
 205				 * If the caller doesn't plan on enqueueing more
 206				 * TDs before ringing the doorbell, then we
 207				 * don't want to give the link TRB to the
 208				 * hardware just yet.  We'll give the link TRB
 209				 * back in prepare_ring() just before we enqueue
 210				 * the TD at the top of the ring.
 211				 */
 212				if (!chain && !more_trbs_coming)
 213					break;
 214
 215				/* If we're not dealing with 0.95 hardware,
 216				 * carry over the chain bit of the previous TRB
 217				 * (which may mean the chain bit is cleared).
 218				 */
 219				if (!xhci_link_trb_quirk(xhci)) {
 220					next->link.control &=
 221						cpu_to_le32(~TRB_CHAIN);
 222					next->link.control |=
 223						cpu_to_le32(chain);
 224				}
 225				/* Give this link TRB to the hardware */
 226				wmb();
 227				next->link.control ^= cpu_to_le32(TRB_CYCLE);
 228			}
 
 
 
 
 229			/* Toggle the cycle bit after the last ring segment. */
 230			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
 231				ring->cycle_state = (ring->cycle_state ? 0 : 1);
 232				if (!in_interrupt())
 233					xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
 234							ring,
 235							(unsigned int) ring->cycle_state);
 236			}
 237		}
 238		ring->enq_seg = ring->enq_seg->next;
 239		ring->enqueue = ring->enq_seg->trbs;
 240		next = ring->enqueue;
 241	}
 242	addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
 243}
 244
 245/*
 246 * Check to see if there's room to enqueue num_trbs on the ring.  See rules
 247 * above.
 248 * FIXME: this would be simpler and faster if we just kept track of the number
 249 * of free TRBs in a ring.
 250 */
 251static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
 252		unsigned int num_trbs)
 253{
 254	int i;
 255	union xhci_trb *enq = ring->enqueue;
 256	struct xhci_segment *enq_seg = ring->enq_seg;
 257	struct xhci_segment *cur_seg;
 258	unsigned int left_on_ring;
 259
 260	/* If we are currently pointing to a link TRB, advance the
 261	 * enqueue pointer before checking for space */
 262	while (last_trb(xhci, ring, enq_seg, enq)) {
 263		enq_seg = enq_seg->next;
 264		enq = enq_seg->trbs;
 265	}
 266
 267	/* Check if ring is empty */
 268	if (enq == ring->dequeue) {
 269		/* Can't use link trbs */
 270		left_on_ring = TRBS_PER_SEGMENT - 1;
 271		for (cur_seg = enq_seg->next; cur_seg != enq_seg;
 272				cur_seg = cur_seg->next)
 273			left_on_ring += TRBS_PER_SEGMENT - 1;
 274
 275		/* Always need one TRB free in the ring. */
 276		left_on_ring -= 1;
 277		if (num_trbs > left_on_ring) {
 278			xhci_warn(xhci, "Not enough room on ring; "
 279					"need %u TRBs, %u TRBs left\n",
 280					num_trbs, left_on_ring);
 281			return 0;
 282		}
 283		return 1;
 284	}
 285	/* Make sure there's an extra empty TRB available */
 286	for (i = 0; i <= num_trbs; ++i) {
 287		if (enq == ring->dequeue)
 288			return 0;
 289		enq++;
 290		while (last_trb(xhci, ring, enq_seg, enq)) {
 291			enq_seg = enq_seg->next;
 292			enq = enq_seg->trbs;
 293		}
 294	}
 
 295	return 1;
 296}
 297
 298/* Ring the host controller doorbell after placing a command on the ring */
 299void xhci_ring_cmd_db(struct xhci_hcd *xhci)
 300{
 
 
 
 301	xhci_dbg(xhci, "// Ding dong!\n");
 302	xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
 303	/* Flush PCI posted writes */
 304	xhci_readl(xhci, &xhci->dba->doorbell[0]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 305}
 306
 307void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
 308		unsigned int slot_id,
 309		unsigned int ep_index,
 310		unsigned int stream_id)
 311{
 312	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
 313	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
 314	unsigned int ep_state = ep->ep_state;
 315
 316	/* Don't ring the doorbell for this endpoint if there are pending
 317	 * cancellations because we don't want to interrupt processing.
 318	 * We don't want to restart any stream rings if there's a set dequeue
 319	 * pointer command pending because the device can choose to start any
 320	 * stream once the endpoint is on the HW schedule.
 321	 * FIXME - check all the stream rings for pending cancellations.
 322	 */
 323	if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
 324	    (ep_state & EP_HALTED))
 325		return;
 326	xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
 327	/* The CPU has better things to do at this point than wait for a
 328	 * write-posting flush.  It'll get there soon enough.
 329	 */
 330}
 331
 332/* Ring the doorbell for any rings with pending URBs */
 333static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
 334		unsigned int slot_id,
 335		unsigned int ep_index)
 336{
 337	unsigned int stream_id;
 338	struct xhci_virt_ep *ep;
 339
 340	ep = &xhci->devs[slot_id]->eps[ep_index];
 341
 342	/* A ring has pending URBs if its TD list is not empty */
 343	if (!(ep->ep_state & EP_HAS_STREAMS)) {
 344		if (!(list_empty(&ep->ring->td_list)))
 345			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
 346		return;
 347	}
 348
 349	for (stream_id = 1; stream_id < ep->stream_info->num_streams;
 350			stream_id++) {
 351		struct xhci_stream_info *stream_info = ep->stream_info;
 352		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
 353			xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
 354						stream_id);
 355	}
 356}
 357
 358/*
 359 * Find the segment that trb is in.  Start searching in start_seg.
 360 * If we must move past a segment that has a link TRB with a toggle cycle state
 361 * bit set, then we will toggle the value pointed at by cycle_state.
 362 */
 363static struct xhci_segment *find_trb_seg(
 364		struct xhci_segment *start_seg,
 365		union xhci_trb	*trb, int *cycle_state)
 366{
 367	struct xhci_segment *cur_seg = start_seg;
 368	struct xhci_generic_trb *generic_trb;
 369
 370	while (cur_seg->trbs > trb ||
 371			&cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
 372		generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
 373		if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
 374			*cycle_state ^= 0x1;
 375		cur_seg = cur_seg->next;
 376		if (cur_seg == start_seg)
 377			/* Looped over the entire list.  Oops! */
 378			return NULL;
 379	}
 380	return cur_seg;
 381}
 382
 383
 384static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
 385		unsigned int slot_id, unsigned int ep_index,
 386		unsigned int stream_id)
 387{
 388	struct xhci_virt_ep *ep;
 389
 390	ep = &xhci->devs[slot_id]->eps[ep_index];
 391	/* Common case: no streams */
 392	if (!(ep->ep_state & EP_HAS_STREAMS))
 393		return ep->ring;
 394
 395	if (stream_id == 0) {
 396		xhci_warn(xhci,
 397				"WARN: Slot ID %u, ep index %u has streams, "
 398				"but URB has no stream ID.\n",
 399				slot_id, ep_index);
 400		return NULL;
 401	}
 402
 403	if (stream_id < ep->stream_info->num_streams)
 404		return ep->stream_info->stream_rings[stream_id];
 405
 406	xhci_warn(xhci,
 407			"WARN: Slot ID %u, ep index %u has "
 408			"stream IDs 1 to %u allocated, "
 409			"but stream ID %u is requested.\n",
 410			slot_id, ep_index,
 411			ep->stream_info->num_streams - 1,
 412			stream_id);
 413	return NULL;
 414}
 415
 416/* Get the right ring for the given URB.
 417 * If the endpoint supports streams, boundary check the URB's stream ID.
 418 * If the endpoint doesn't support streams, return the singular endpoint ring.
 419 */
 420static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
 421		struct urb *urb)
 422{
 423	return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
 424		xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
 425}
 426
 427/*
 428 * Move the xHC's endpoint ring dequeue pointer past cur_td.
 429 * Record the new state of the xHC's endpoint ring dequeue segment,
 430 * dequeue pointer, and new consumer cycle state in state.
 431 * Update our internal representation of the ring's dequeue pointer.
 432 *
 433 * We do this in three jumps:
 434 *  - First we update our new ring state to be the same as when the xHC stopped.
 435 *  - Then we traverse the ring to find the segment that contains
 436 *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass
 437 *    any link TRBs with the toggle cycle bit set.
 438 *  - Finally we move the dequeue state one TRB further, toggling the cycle bit
 439 *    if we've moved it past a link TRB with the toggle cycle bit set.
 440 *
 441 * Some of the uses of xhci_generic_trb are grotty, but if they're done
 442 * with correct __le32 accesses they should work fine.  Only users of this are
 443 * in here.
 444 */
 445void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
 446		unsigned int slot_id, unsigned int ep_index,
 447		unsigned int stream_id, struct xhci_td *cur_td,
 448		struct xhci_dequeue_state *state)
 449{
 450	struct xhci_virt_device *dev = xhci->devs[slot_id];
 
 451	struct xhci_ring *ep_ring;
 452	struct xhci_generic_trb *trb;
 453	struct xhci_ep_ctx *ep_ctx;
 454	dma_addr_t addr;
 
 
 
 455
 456	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
 457			ep_index, stream_id);
 458	if (!ep_ring) {
 459		xhci_warn(xhci, "WARN can't find new dequeue state "
 460				"for invalid stream ID %u.\n",
 461				stream_id);
 462		return;
 463	}
 464	state->new_cycle_state = 0;
 465	xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
 466	state->new_deq_seg = find_trb_seg(cur_td->start_seg,
 467			dev->eps[ep_index].stopped_trb,
 468			&state->new_cycle_state);
 469	if (!state->new_deq_seg) {
 470		WARN_ON(1);
 471		return;
 472	}
 473
 474	/* Dig out the cycle state saved by the xHC during the stop ep cmd */
 475	xhci_dbg(xhci, "Finding endpoint context\n");
 476	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
 477	state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
 478
 479	state->new_deq_ptr = cur_td->last_trb;
 480	xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
 481	state->new_deq_seg = find_trb_seg(state->new_deq_seg,
 482			state->new_deq_ptr,
 483			&state->new_cycle_state);
 484	if (!state->new_deq_seg) {
 485		WARN_ON(1);
 486		return;
 487	}
 488
 489	trb = &state->new_deq_ptr->generic;
 490	if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
 491	    (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
 492		state->new_cycle_state ^= 0x1;
 493	next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
 494
 495	/*
 496	 * If there is only one segment in a ring, find_trb_seg()'s while loop
 497	 * will not run, and it will return before it has a chance to see if it
 498	 * needs to toggle the cycle bit.  It can't tell if the stalled transfer
 499	 * ended just before the link TRB on a one-segment ring, or if the TD
 500	 * wrapped around the top of the ring, because it doesn't have the TD in
 501	 * question.  Look for the one-segment case where stalled TRB's address
 502	 * is greater than the new dequeue pointer address.
 503	 */
 504	if (ep_ring->first_seg == ep_ring->first_seg->next &&
 505			state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
 506		state->new_cycle_state ^= 0x1;
 507	xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508
 509	/* Don't update the ring cycle state for the producer (us). */
 510	xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
 
 
 
 
 511			state->new_deq_seg);
 512	addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
 513	xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
 
 514			(unsigned long long) addr);
 515}
 516
 517/* flip_cycle means flip the cycle bit of all but the first and last TRB.
 518 * (The last TRB actually points to the ring enqueue pointer, which is not part
 519 * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring.
 520 */
 521static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
 522		struct xhci_td *cur_td, bool flip_cycle)
 523{
 524	struct xhci_segment *cur_seg;
 525	union xhci_trb *cur_trb;
 526
 527	for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
 528			true;
 529			next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
 530		if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
 531			/* Unchain any chained Link TRBs, but
 532			 * leave the pointers intact.
 533			 */
 534			cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
 535			/* Flip the cycle bit (link TRBs can't be the first
 536			 * or last TRB).
 537			 */
 538			if (flip_cycle)
 539				cur_trb->generic.field[3] ^=
 540					cpu_to_le32(TRB_CYCLE);
 541			xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
 542			xhci_dbg(xhci, "Address = %p (0x%llx dma); "
 543					"in seg %p (0x%llx dma)\n",
 
 
 544					cur_trb,
 545					(unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
 546					cur_seg,
 547					(unsigned long long)cur_seg->dma);
 548		} else {
 549			cur_trb->generic.field[0] = 0;
 550			cur_trb->generic.field[1] = 0;
 551			cur_trb->generic.field[2] = 0;
 552			/* Preserve only the cycle bit of this TRB */
 553			cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
 554			/* Flip the cycle bit except on the first or last TRB */
 555			if (flip_cycle && cur_trb != cur_td->first_trb &&
 556					cur_trb != cur_td->last_trb)
 557				cur_trb->generic.field[3] ^=
 558					cpu_to_le32(TRB_CYCLE);
 559			cur_trb->generic.field[3] |= cpu_to_le32(
 560				TRB_TYPE(TRB_TR_NOOP));
 561			xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) "
 562					"in seg %p (0x%llx dma)\n",
 563					cur_trb,
 564					(unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
 565					cur_seg,
 566					(unsigned long long)cur_seg->dma);
 567		}
 568		if (cur_trb == cur_td->last_trb)
 569			break;
 570	}
 571}
 572
 573static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
 574		unsigned int ep_index, unsigned int stream_id,
 575		struct xhci_segment *deq_seg,
 576		union xhci_trb *deq_ptr, u32 cycle_state);
 577
 578void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
 579		unsigned int slot_id, unsigned int ep_index,
 580		unsigned int stream_id,
 581		struct xhci_dequeue_state *deq_state)
 582{
 583	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
 584
 585	xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
 586			"new deq ptr = %p (0x%llx dma), new cycle = %u\n",
 587			deq_state->new_deq_seg,
 588			(unsigned long long)deq_state->new_deq_seg->dma,
 589			deq_state->new_deq_ptr,
 590			(unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
 591			deq_state->new_cycle_state);
 592	queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
 593			deq_state->new_deq_seg,
 594			deq_state->new_deq_ptr,
 595			(u32) deq_state->new_cycle_state);
 596	/* Stop the TD queueing code from ringing the doorbell until
 597	 * this command completes.  The HC won't set the dequeue pointer
 598	 * if the ring is running, and ringing the doorbell starts the
 599	 * ring running.
 600	 */
 601	ep->ep_state |= SET_DEQ_PENDING;
 602}
 603
 604static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
 605		struct xhci_virt_ep *ep)
 606{
 607	ep->ep_state &= ~EP_HALT_PENDING;
 608	/* Can't del_timer_sync in interrupt, so we attempt to cancel.  If the
 609	 * timer is running on another CPU, we don't decrement stop_cmds_pending
 610	 * (since we didn't successfully stop the watchdog timer).
 611	 */
 612	if (del_timer(&ep->stop_cmd_timer))
 613		ep->stop_cmds_pending--;
 614}
 615
 616/* Must be called with xhci->lock held in interrupt context */
 617static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
 618		struct xhci_td *cur_td, int status, char *adjective)
 619{
 620	struct usb_hcd *hcd;
 621	struct urb	*urb;
 622	struct urb_priv	*urb_priv;
 623
 624	urb = cur_td->urb;
 625	urb_priv = urb->hcpriv;
 626	urb_priv->td_cnt++;
 627	hcd = bus_to_hcd(urb->dev->bus);
 628
 629	/* Only giveback urb when this is the last td in urb */
 630	if (urb_priv->td_cnt == urb_priv->length) {
 631		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
 632			xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
 633			if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) {
 634				if (xhci->quirks & XHCI_AMD_PLL_FIX)
 635					usb_amd_quirk_pll_enable();
 636			}
 637		}
 638		usb_hcd_unlink_urb_from_ep(hcd, urb);
 639
 640		spin_unlock(&xhci->lock);
 641		usb_hcd_giveback_urb(hcd, urb, status);
 642		xhci_urb_free_priv(xhci, urb_priv);
 643		spin_lock(&xhci->lock);
 644	}
 645}
 646
 647/*
 648 * When we get a command completion for a Stop Endpoint Command, we need to
 649 * unlink any cancelled TDs from the ring.  There are two ways to do that:
 650 *
 651 *  1. If the HW was in the middle of processing the TD that needs to be
 652 *     cancelled, then we must move the ring's dequeue pointer past the last TRB
 653 *     in the TD with a Set Dequeue Pointer Command.
 654 *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
 655 *     bit cleared) so that the HW will skip over them.
 656 */
 657static void handle_stopped_endpoint(struct xhci_hcd *xhci,
 658		union xhci_trb *trb, struct xhci_event_cmd *event)
 659{
 660	unsigned int slot_id;
 661	unsigned int ep_index;
 662	struct xhci_virt_device *virt_dev;
 663	struct xhci_ring *ep_ring;
 664	struct xhci_virt_ep *ep;
 665	struct list_head *entry;
 666	struct xhci_td *cur_td = NULL;
 667	struct xhci_td *last_unlinked_td;
 668
 669	struct xhci_dequeue_state deq_state;
 670
 671	if (unlikely(TRB_TO_SUSPEND_PORT(
 672			     le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
 673		slot_id = TRB_TO_SLOT_ID(
 674			le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
 675		virt_dev = xhci->devs[slot_id];
 676		if (virt_dev)
 677			handle_cmd_in_cmd_wait_list(xhci, virt_dev,
 678				event);
 679		else
 680			xhci_warn(xhci, "Stop endpoint command "
 681				"completion for disabled slot %u\n",
 682				slot_id);
 683		return;
 684	}
 685
 686	memset(&deq_state, 0, sizeof(deq_state));
 687	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
 688	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
 689	ep = &xhci->devs[slot_id]->eps[ep_index];
 690
 691	if (list_empty(&ep->cancelled_td_list)) {
 692		xhci_stop_watchdog_timer_in_irq(xhci, ep);
 693		ep->stopped_td = NULL;
 694		ep->stopped_trb = NULL;
 695		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
 696		return;
 697	}
 698
 699	/* Fix up the ep ring first, so HW stops executing cancelled TDs.
 700	 * We have the xHCI lock, so nothing can modify this list until we drop
 701	 * it.  We're also in the event handler, so we can't get re-interrupted
 702	 * if another Stop Endpoint command completes
 703	 */
 704	list_for_each(entry, &ep->cancelled_td_list) {
 705		cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
 706		xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n",
 707				cur_td->first_trb,
 708				(unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb));
 
 709		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
 710		if (!ep_ring) {
 711			/* This shouldn't happen unless a driver is mucking
 712			 * with the stream ID after submission.  This will
 713			 * leave the TD on the hardware ring, and the hardware
 714			 * will try to execute it, and may access a buffer
 715			 * that has already been freed.  In the best case, the
 716			 * hardware will execute it, and the event handler will
 717			 * ignore the completion event for that TD, since it was
 718			 * removed from the td_list for that endpoint.  In
 719			 * short, don't muck with the stream ID after
 720			 * submission.
 721			 */
 722			xhci_warn(xhci, "WARN Cancelled URB %p "
 723					"has invalid stream ID %u.\n",
 724					cur_td->urb,
 725					cur_td->urb->stream_id);
 726			goto remove_finished_td;
 727		}
 728		/*
 729		 * If we stopped on the TD we need to cancel, then we have to
 730		 * move the xHC endpoint ring dequeue pointer past this TD.
 731		 */
 732		if (cur_td == ep->stopped_td)
 733			xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
 734					cur_td->urb->stream_id,
 735					cur_td, &deq_state);
 736		else
 737			td_to_noop(xhci, ep_ring, cur_td, false);
 738remove_finished_td:
 739		/*
 740		 * The event handler won't see a completion for this TD anymore,
 741		 * so remove it from the endpoint ring's TD list.  Keep it in
 742		 * the cancelled TD list for URB completion later.
 743		 */
 744		list_del_init(&cur_td->td_list);
 745	}
 746	last_unlinked_td = cur_td;
 747	xhci_stop_watchdog_timer_in_irq(xhci, ep);
 748
 749	/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
 750	if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
 751		xhci_queue_new_dequeue_state(xhci,
 752				slot_id, ep_index,
 753				ep->stopped_td->urb->stream_id,
 754				&deq_state);
 755		xhci_ring_cmd_db(xhci);
 756	} else {
 757		/* Otherwise ring the doorbell(s) to restart queued transfers */
 758		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
 759	}
 
 760	ep->stopped_td = NULL;
 761	ep->stopped_trb = NULL;
 762
 763	/*
 764	 * Drop the lock and complete the URBs in the cancelled TD list.
 765	 * New TDs to be cancelled might be added to the end of the list before
 766	 * we can complete all the URBs for the TDs we already unlinked.
 767	 * So stop when we've completed the URB for the last TD we unlinked.
 768	 */
 769	do {
 770		cur_td = list_entry(ep->cancelled_td_list.next,
 771				struct xhci_td, cancelled_td_list);
 772		list_del_init(&cur_td->cancelled_td_list);
 773
 774		/* Clean up the cancelled URB */
 775		/* Doesn't matter what we pass for status, since the core will
 776		 * just overwrite it (because the URB has been unlinked).
 777		 */
 778		xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
 779
 780		/* Stop processing the cancelled list if the watchdog timer is
 781		 * running.
 782		 */
 783		if (xhci->xhc_state & XHCI_STATE_DYING)
 784			return;
 785	} while (cur_td != last_unlinked_td);
 786
 787	/* Return to the event handler with xhci->lock re-acquired */
 788}
 789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790/* Watchdog timer function for when a stop endpoint command fails to complete.
 791 * In this case, we assume the host controller is broken or dying or dead.  The
 792 * host may still be completing some other events, so we have to be careful to
 793 * let the event ring handler and the URB dequeueing/enqueueing functions know
 794 * through xhci->state.
 795 *
 796 * The timer may also fire if the host takes a very long time to respond to the
 797 * command, and the stop endpoint command completion handler cannot delete the
 798 * timer before the timer function is called.  Another endpoint cancellation may
 799 * sneak in before the timer function can grab the lock, and that may queue
 800 * another stop endpoint command and add the timer back.  So we cannot use a
 801 * simple flag to say whether there is a pending stop endpoint command for a
 802 * particular endpoint.
 803 *
 804 * Instead we use a combination of that flag and a counter for the number of
 805 * pending stop endpoint commands.  If the timer is the tail end of the last
 806 * stop endpoint command, and the endpoint's command is still pending, we assume
 807 * the host is dying.
 808 */
 809void xhci_stop_endpoint_command_watchdog(unsigned long arg)
 810{
 811	struct xhci_hcd *xhci;
 812	struct xhci_virt_ep *ep;
 813	struct xhci_virt_ep *temp_ep;
 814	struct xhci_ring *ring;
 815	struct xhci_td *cur_td;
 816	int ret, i, j;
 
 817
 818	ep = (struct xhci_virt_ep *) arg;
 819	xhci = ep->xhci;
 820
 821	spin_lock(&xhci->lock);
 822
 823	ep->stop_cmds_pending--;
 824	if (xhci->xhc_state & XHCI_STATE_DYING) {
 825		xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
 826				"xHCI as DYING, exiting.\n");
 827		spin_unlock(&xhci->lock);
 
 828		return;
 829	}
 830	if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
 831		xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
 832				"exiting.\n");
 833		spin_unlock(&xhci->lock);
 
 834		return;
 835	}
 836
 837	xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
 838	xhci_warn(xhci, "Assuming host is dying, halting host.\n");
 839	/* Oops, HC is dead or dying or at least not responding to the stop
 840	 * endpoint command.
 841	 */
 842	xhci->xhc_state |= XHCI_STATE_DYING;
 843	/* Disable interrupts from the host controller and start halting it */
 844	xhci_quiesce(xhci);
 845	spin_unlock(&xhci->lock);
 846
 847	ret = xhci_halt(xhci);
 848
 849	spin_lock(&xhci->lock);
 850	if (ret < 0) {
 851		/* This is bad; the host is not responding to commands and it's
 852		 * not allowing itself to be halted.  At least interrupts are
 853		 * disabled. If we call usb_hc_died(), it will attempt to
 854		 * disconnect all device drivers under this host.  Those
 855		 * disconnect() methods will wait for all URBs to be unlinked,
 856		 * so we must complete them.
 857		 */
 858		xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
 859		xhci_warn(xhci, "Completing active URBs anyway.\n");
 860		/* We could turn all TDs on the rings to no-ops.  This won't
 861		 * help if the host has cached part of the ring, and is slow if
 862		 * we want to preserve the cycle bit.  Skip it and hope the host
 863		 * doesn't touch the memory.
 864		 */
 865	}
 866	for (i = 0; i < MAX_HC_SLOTS; i++) {
 867		if (!xhci->devs[i])
 868			continue;
 869		for (j = 0; j < 31; j++) {
 870			temp_ep = &xhci->devs[i]->eps[j];
 871			ring = temp_ep->ring;
 872			if (!ring)
 873				continue;
 874			xhci_dbg(xhci, "Killing URBs for slot ID %u, "
 875					"ep index %u\n", i, j);
 876			while (!list_empty(&ring->td_list)) {
 877				cur_td = list_first_entry(&ring->td_list,
 878						struct xhci_td,
 879						td_list);
 880				list_del_init(&cur_td->td_list);
 881				if (!list_empty(&cur_td->cancelled_td_list))
 882					list_del_init(&cur_td->cancelled_td_list);
 883				xhci_giveback_urb_in_irq(xhci, cur_td,
 884						-ESHUTDOWN, "killed");
 885			}
 886			while (!list_empty(&temp_ep->cancelled_td_list)) {
 887				cur_td = list_first_entry(
 888						&temp_ep->cancelled_td_list,
 889						struct xhci_td,
 890						cancelled_td_list);
 891				list_del_init(&cur_td->cancelled_td_list);
 892				xhci_giveback_urb_in_irq(xhci, cur_td,
 893						-ESHUTDOWN, "killed");
 894			}
 895		}
 896	}
 897	spin_unlock(&xhci->lock);
 898	xhci_dbg(xhci, "Calling usb_hc_died()\n");
 
 899	usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
 900	xhci_dbg(xhci, "xHCI host controller is dead.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 901}
 902
 903/*
 904 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
 905 * we need to clear the set deq pending flag in the endpoint ring state, so that
 906 * the TD queueing code can ring the doorbell again.  We also need to ring the
 907 * endpoint doorbell to restart the ring, but only if there aren't more
 908 * cancellations pending.
 909 */
 910static void handle_set_deq_completion(struct xhci_hcd *xhci,
 911		struct xhci_event_cmd *event,
 912		union xhci_trb *trb)
 913{
 914	unsigned int slot_id;
 915	unsigned int ep_index;
 916	unsigned int stream_id;
 917	struct xhci_ring *ep_ring;
 918	struct xhci_virt_device *dev;
 
 919	struct xhci_ep_ctx *ep_ctx;
 920	struct xhci_slot_ctx *slot_ctx;
 921
 922	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
 923	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
 924	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
 925	dev = xhci->devs[slot_id];
 
 926
 927	ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
 928	if (!ep_ring) {
 929		xhci_warn(xhci, "WARN Set TR deq ptr command for "
 930				"freed stream ID %u\n",
 931				stream_id);
 932		/* XXX: Harmless??? */
 933		dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
 934		return;
 935	}
 936
 937	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
 938	slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
 939
 940	if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
 941		unsigned int ep_state;
 942		unsigned int slot_state;
 943
 944		switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
 945		case COMP_TRB_ERR:
 946			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
 947					"of stream ID configuration\n");
 948			break;
 949		case COMP_CTX_STATE:
 950			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
 951					"to incorrect slot or ep state.\n");
 952			ep_state = le32_to_cpu(ep_ctx->ep_info);
 953			ep_state &= EP_STATE_MASK;
 954			slot_state = le32_to_cpu(slot_ctx->dev_state);
 955			slot_state = GET_SLOT_STATE(slot_state);
 956			xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
 
 957					slot_state, ep_state);
 958			break;
 959		case COMP_EBADSLT:
 960			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
 961					"slot %u was not enabled.\n", slot_id);
 962			break;
 963		default:
 964			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
 965					"completion code of %u.\n",
 966				  GET_COMP_CODE(le32_to_cpu(event->status)));
 967			break;
 968		}
 969		/* OK what do we do now?  The endpoint state is hosed, and we
 970		 * should never get to this point if the synchronization between
 971		 * queueing, and endpoint state are correct.  This might happen
 972		 * if the device gets disconnected after we've finished
 973		 * cancelling URBs, which might not be an error...
 974		 */
 975	} else {
 976		xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
 977			 le64_to_cpu(ep_ctx->deq));
 978		if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
 979					 dev->eps[ep_index].queued_deq_ptr) ==
 980		    (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
 
 
 
 
 
 
 
 
 981			/* Update the ring's dequeue segment and dequeue pointer
 982			 * to reflect the new position.
 983			 */
 984			ep_ring->deq_seg = dev->eps[ep_index].queued_deq_seg;
 985			ep_ring->dequeue = dev->eps[ep_index].queued_deq_ptr;
 986		} else {
 987			xhci_warn(xhci, "Mismatch between completed Set TR Deq "
 988					"Ptr command & xHCI internal state.\n");
 989			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
 990					dev->eps[ep_index].queued_deq_seg,
 991					dev->eps[ep_index].queued_deq_ptr);
 992		}
 993	}
 994
 
 995	dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
 996	dev->eps[ep_index].queued_deq_seg = NULL;
 997	dev->eps[ep_index].queued_deq_ptr = NULL;
 998	/* Restart any rings with pending URBs */
 999	ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1000}
1001
1002static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1003		struct xhci_event_cmd *event,
1004		union xhci_trb *trb)
1005{
1006	int slot_id;
1007	unsigned int ep_index;
1008
1009	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1010	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1011	/* This command will only fail if the endpoint wasn't halted,
1012	 * but we don't care.
1013	 */
1014	xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1015		 GET_COMP_CODE(le32_to_cpu(event->status)));
1016
1017	/* HW with the reset endpoint quirk needs to have a configure endpoint
1018	 * command complete before the endpoint can be used.  Queue that here
1019	 * because the HW can't handle two commands being queued in a row.
1020	 */
1021	if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1022		xhci_dbg(xhci, "Queueing configure endpoint command\n");
1023		xhci_queue_configure_endpoint(xhci,
 
 
 
 
 
 
 
1024				xhci->devs[slot_id]->in_ctx->dma, slot_id,
1025				false);
1026		xhci_ring_cmd_db(xhci);
1027	} else {
1028		/* Clear our internal halted state and restart the ring(s) */
1029		xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1030		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
 
1031	}
 
1032}
1033
1034/* Check to see if a command in the device's command queue matches this one.
1035 * Signal the completion or free the command, and return 1.  Return 0 if the
1036 * completed command isn't at the head of the command list.
1037 */
1038static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1039		struct xhci_virt_device *virt_dev,
1040		struct xhci_event_cmd *event)
1041{
1042	struct xhci_command *command;
 
 
 
 
1043
1044	if (list_empty(&virt_dev->cmd_list))
1045		return 0;
 
 
 
 
 
 
 
 
 
 
1046
1047	command = list_entry(virt_dev->cmd_list.next,
1048			struct xhci_command, cmd_list);
1049	if (xhci->cmd_ring->dequeue != command->command_trb)
1050		return 0;
1051
1052	command->status = GET_COMP_CODE(le32_to_cpu(event->status));
1053	list_del(&command->cmd_list);
1054	if (command->completion)
1055		complete(command->completion);
1056	else
1057		xhci_free_command(xhci, command);
1058	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059}
1060
1061static void handle_cmd_completion(struct xhci_hcd *xhci,
1062		struct xhci_event_cmd *event)
1063{
1064	int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1065	u64 cmd_dma;
1066	dma_addr_t cmd_dequeue_dma;
1067	struct xhci_input_control_ctx *ctrl_ctx;
1068	struct xhci_virt_device *virt_dev;
1069	unsigned int ep_index;
1070	struct xhci_ring *ep_ring;
1071	unsigned int ep_state;
1072
1073	cmd_dma = le64_to_cpu(event->cmd_trb);
 
1074	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1075			xhci->cmd_ring->dequeue);
1076	/* Is the command ring deq ptr out of sync with the deq seg ptr? */
1077	if (cmd_dequeue_dma == 0) {
1078		xhci->error_bitmask |= 1 << 4;
1079		return;
1080	}
1081	/* Does the DMA address match our internal dequeue pointer address? */
1082	if (cmd_dma != (u64) cmd_dequeue_dma) {
1083		xhci->error_bitmask |= 1 << 5;
1084		return;
1085	}
1086	switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1087		& TRB_TYPE_BITMASK) {
1088	case TRB_TYPE(TRB_ENABLE_SLOT):
1089		if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1090			xhci->slot_id = slot_id;
1091		else
1092			xhci->slot_id = 0;
1093		complete(&xhci->addr_dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094		break;
1095	case TRB_TYPE(TRB_DISABLE_SLOT):
1096		if (xhci->devs[slot_id]) {
1097			if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1098				/* Delete default control endpoint resources */
1099				xhci_free_device_endpoint_resources(xhci,
1100						xhci->devs[slot_id], true);
1101			xhci_free_virt_device(xhci, slot_id);
1102		}
1103		break;
1104	case TRB_TYPE(TRB_CONFIG_EP):
1105		virt_dev = xhci->devs[slot_id];
1106		if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1107			break;
1108		/*
1109		 * Configure endpoint commands can come from the USB core
1110		 * configuration or alt setting changes, or because the HW
1111		 * needed an extra configure endpoint command after a reset
1112		 * endpoint command or streams were being configured.
1113		 * If the command was for a halted endpoint, the xHCI driver
1114		 * is not waiting on the configure endpoint command.
1115		 */
1116		ctrl_ctx = xhci_get_input_control_ctx(xhci,
1117				virt_dev->in_ctx);
1118		/* Input ctx add_flags are the endpoint index plus one */
1119		ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1120		/* A usb_set_interface() call directly after clearing a halted
1121		 * condition may race on this quirky hardware.  Not worth
1122		 * worrying about, since this is prototype hardware.  Not sure
1123		 * if this will work for streams, but streams support was
1124		 * untested on this prototype.
1125		 */
1126		if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1127				ep_index != (unsigned int) -1 &&
1128		    le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1129		    le32_to_cpu(ctrl_ctx->drop_flags)) {
1130			ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1131			ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1132			if (!(ep_state & EP_HALTED))
1133				goto bandwidth_change;
1134			xhci_dbg(xhci, "Completed config ep cmd - "
1135					"last ep index = %d, state = %d\n",
1136					ep_index, ep_state);
1137			/* Clear internal halted state and restart ring(s) */
1138			xhci->devs[slot_id]->eps[ep_index].ep_state &=
1139				~EP_HALTED;
1140			ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1141			break;
1142		}
1143bandwidth_change:
1144		xhci_dbg(xhci, "Completed config ep cmd\n");
1145		xhci->devs[slot_id]->cmd_status =
1146			GET_COMP_CODE(le32_to_cpu(event->status));
1147		complete(&xhci->devs[slot_id]->cmd_completion);
1148		break;
1149	case TRB_TYPE(TRB_EVAL_CONTEXT):
1150		virt_dev = xhci->devs[slot_id];
1151		if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1152			break;
1153		xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1154		complete(&xhci->devs[slot_id]->cmd_completion);
1155		break;
1156	case TRB_TYPE(TRB_ADDR_DEV):
1157		xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1158		complete(&xhci->addr_dev);
1159		break;
1160	case TRB_TYPE(TRB_STOP_RING):
1161		handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
 
 
1162		break;
1163	case TRB_TYPE(TRB_SET_DEQ):
1164		handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
 
 
1165		break;
1166	case TRB_TYPE(TRB_CMD_NOOP):
 
 
 
1167		break;
1168	case TRB_TYPE(TRB_RESET_EP):
1169		handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
 
 
1170		break;
1171	case TRB_TYPE(TRB_RESET_DEV):
1172		xhci_dbg(xhci, "Completed reset device command.\n");
 
 
1173		slot_id = TRB_TO_SLOT_ID(
1174			le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1175		virt_dev = xhci->devs[slot_id];
1176		if (virt_dev)
1177			handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1178		else
1179			xhci_warn(xhci, "Reset device command completion "
1180					"for disabled slot %u\n", slot_id);
1181		break;
1182	case TRB_TYPE(TRB_NEC_GET_FW):
1183		if (!(xhci->quirks & XHCI_NEC_HOST)) {
1184			xhci->error_bitmask |= 1 << 6;
1185			break;
1186		}
1187		xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1188			 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1189			 NEC_FW_MINOR(le32_to_cpu(event->status)));
1190		break;
1191	default:
1192		/* Skip over unknown commands on the event ring */
1193		xhci->error_bitmask |= 1 << 6;
1194		break;
1195	}
1196	inc_deq(xhci, xhci->cmd_ring, false);
 
 
 
 
 
 
 
 
 
 
 
1197}
1198
1199static void handle_vendor_event(struct xhci_hcd *xhci,
1200		union xhci_trb *event)
1201{
1202	u32 trb_type;
1203
1204	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1205	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1206	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1207		handle_cmd_completion(xhci, &event->event_cmd);
1208}
1209
1210/* @port_id: the one-based port ID from the hardware (indexed from array of all
1211 * port registers -- USB 3.0 and USB 2.0).
1212 *
1213 * Returns a zero-based port number, which is suitable for indexing into each of
1214 * the split roothubs' port arrays and bus state arrays.
 
1215 */
1216static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1217		struct xhci_hcd *xhci, u32 port_id)
1218{
1219	unsigned int i;
1220	unsigned int num_similar_speed_ports = 0;
1221
1222	/* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1223	 * and usb2_ports are 0-based indexes.  Count the number of similar
1224	 * speed ports, up to 1 port before this port.
1225	 */
1226	for (i = 0; i < (port_id - 1); i++) {
1227		u8 port_speed = xhci->port_array[i];
1228
1229		/*
1230		 * Skip ports that don't have known speeds, or have duplicate
1231		 * Extended Capabilities port speed entries.
1232		 */
1233		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1234			continue;
1235
1236		/*
1237		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
1238		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
1239		 * matches the device speed, it's a similar speed port.
1240		 */
1241		if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1242			num_similar_speed_ports++;
1243	}
1244	return num_similar_speed_ports;
1245}
1246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1247static void handle_port_status(struct xhci_hcd *xhci,
1248		union xhci_trb *event)
1249{
1250	struct usb_hcd *hcd;
1251	u32 port_id;
1252	u32 temp, temp1;
1253	int max_ports;
1254	int slot_id;
1255	unsigned int faked_port_index;
1256	u8 major_revision;
1257	struct xhci_bus_state *bus_state;
1258	__le32 __iomem **port_array;
1259	bool bogus_port_status = false;
1260
1261	/* Port status change events always have a successful completion code */
1262	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1263		xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1264		xhci->error_bitmask |= 1 << 8;
1265	}
1266	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1267	xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1268
1269	max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1270	if ((port_id <= 0) || (port_id > max_ports)) {
1271		xhci_warn(xhci, "Invalid port id %d\n", port_id);
1272		bogus_port_status = true;
1273		goto cleanup;
1274	}
1275
1276	/* Figure out which usb_hcd this port is attached to:
1277	 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1278	 */
1279	major_revision = xhci->port_array[port_id - 1];
 
 
 
 
 
 
1280	if (major_revision == 0) {
1281		xhci_warn(xhci, "Event for port %u not in "
1282				"Extended Capabilities, ignoring.\n",
1283				port_id);
1284		bogus_port_status = true;
1285		goto cleanup;
1286	}
1287	if (major_revision == DUPLICATE_ENTRY) {
1288		xhci_warn(xhci, "Event for port %u duplicated in"
1289				"Extended Capabilities, ignoring.\n",
1290				port_id);
1291		bogus_port_status = true;
1292		goto cleanup;
1293	}
1294
1295	/*
1296	 * Hardware port IDs reported by a Port Status Change Event include USB
1297	 * 3.0 and USB 2.0 ports.  We want to check if the port has reported a
1298	 * resume event, but we first need to translate the hardware port ID
1299	 * into the index into the ports on the correct split roothub, and the
1300	 * correct bus_state structure.
1301	 */
1302	/* Find the right roothub. */
1303	hcd = xhci_to_hcd(xhci);
1304	if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1305		hcd = xhci->shared_hcd;
1306	bus_state = &xhci->bus_state[hcd_index(hcd)];
1307	if (hcd->speed == HCD_USB3)
1308		port_array = xhci->usb3_ports;
1309	else
1310		port_array = xhci->usb2_ports;
1311	/* Find the faked port hub number */
1312	faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1313			port_id);
1314
1315	temp = xhci_readl(xhci, port_array[faked_port_index]);
1316	if (hcd->state == HC_STATE_SUSPENDED) {
1317		xhci_dbg(xhci, "resume root hub\n");
1318		usb_hcd_resume_root_hub(hcd);
1319	}
1320
 
 
 
1321	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1322		xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1323
1324		temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1325		if (!(temp1 & CMD_RUN)) {
1326			xhci_warn(xhci, "xHC is not running.\n");
1327			goto cleanup;
1328		}
1329
1330		if (DEV_SUPERSPEED(temp)) {
1331			xhci_dbg(xhci, "resume SS port %d\n", port_id);
1332			temp = xhci_port_state_to_neutral(temp);
1333			temp &= ~PORT_PLS_MASK;
1334			temp |= PORT_LINK_STROBE | XDEV_U0;
1335			xhci_writel(xhci, temp, port_array[faked_port_index]);
1336			slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1337					faked_port_index);
1338			if (!slot_id) {
1339				xhci_dbg(xhci, "slot_id is zero\n");
1340				goto cleanup;
1341			}
1342			xhci_ring_device(xhci, slot_id);
1343			xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1344			/* Clear PORT_PLC */
1345			temp = xhci_readl(xhci, port_array[faked_port_index]);
1346			temp = xhci_port_state_to_neutral(temp);
1347			temp |= PORT_PLC;
1348			xhci_writel(xhci, temp, port_array[faked_port_index]);
1349		} else {
1350			xhci_dbg(xhci, "resume HS port %d\n", port_id);
1351			bus_state->resume_done[faked_port_index] = jiffies +
1352				msecs_to_jiffies(20);
 
1353			mod_timer(&hcd->rh_timer,
1354				  bus_state->resume_done[faked_port_index]);
1355			/* Do the rest in GetPortStatus */
1356		}
1357	}
1358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1359cleanup:
1360	/* Update event ring dequeue pointer before dropping the lock */
1361	inc_deq(xhci, xhci->event_ring, true);
1362
1363	/* Don't make the USB core poll the roothub if we got a bad port status
1364	 * change event.  Besides, at that point we can't tell which roothub
1365	 * (USB 2.0 or USB 3.0) to kick.
1366	 */
1367	if (bogus_port_status)
1368		return;
1369
 
 
 
 
 
 
 
 
 
1370	spin_unlock(&xhci->lock);
1371	/* Pass this up to the core */
1372	usb_hcd_poll_rh_status(hcd);
1373	spin_lock(&xhci->lock);
1374}
1375
1376/*
1377 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1378 * at end_trb, which may be in another segment.  If the suspect DMA address is a
1379 * TRB in this TD, this function returns that TRB's segment.  Otherwise it
1380 * returns 0.
1381 */
1382struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
 
1383		union xhci_trb	*start_trb,
1384		union xhci_trb	*end_trb,
1385		dma_addr_t	suspect_dma)
 
1386{
1387	dma_addr_t start_dma;
1388	dma_addr_t end_seg_dma;
1389	dma_addr_t end_trb_dma;
1390	struct xhci_segment *cur_seg;
1391
1392	start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1393	cur_seg = start_seg;
1394
1395	do {
1396		if (start_dma == 0)
1397			return NULL;
1398		/* We may get an event for a Link TRB in the middle of a TD */
1399		end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1400				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1401		/* If the end TRB isn't in this segment, this is set to 0 */
1402		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1403
 
 
 
 
 
 
 
 
 
1404		if (end_trb_dma > 0) {
1405			/* The end TRB is in this segment, so suspect should be here */
1406			if (start_dma <= end_trb_dma) {
1407				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1408					return cur_seg;
1409			} else {
1410				/* Case for one segment with
1411				 * a TD wrapped around to the top
1412				 */
1413				if ((suspect_dma >= start_dma &&
1414							suspect_dma <= end_seg_dma) ||
1415						(suspect_dma >= cur_seg->dma &&
1416						 suspect_dma <= end_trb_dma))
1417					return cur_seg;
1418			}
1419			return NULL;
1420		} else {
1421			/* Might still be somewhere in this segment */
1422			if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1423				return cur_seg;
1424		}
1425		cur_seg = cur_seg->next;
1426		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1427	} while (cur_seg != start_seg);
1428
1429	return NULL;
1430}
1431
1432static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1433		unsigned int slot_id, unsigned int ep_index,
1434		unsigned int stream_id,
1435		struct xhci_td *td, union xhci_trb *event_trb)
1436{
1437	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
 
 
 
 
 
1438	ep->ep_state |= EP_HALTED;
1439	ep->stopped_td = td;
1440	ep->stopped_trb = event_trb;
1441	ep->stopped_stream = stream_id;
1442
1443	xhci_queue_reset_ep(xhci, slot_id, ep_index);
1444	xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1445
1446	ep->stopped_td = NULL;
1447	ep->stopped_trb = NULL;
1448	ep->stopped_stream = 0;
1449
1450	xhci_ring_cmd_db(xhci);
1451}
1452
1453/* Check if an error has halted the endpoint ring.  The class driver will
1454 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1455 * However, a babble and other errors also halt the endpoint ring, and the class
1456 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1457 * Ring Dequeue Pointer command manually.
1458 */
1459static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1460		struct xhci_ep_ctx *ep_ctx,
1461		unsigned int trb_comp_code)
1462{
1463	/* TRB completion codes that may require a manual halt cleanup */
1464	if (trb_comp_code == COMP_TX_ERR ||
1465			trb_comp_code == COMP_BABBLE ||
1466			trb_comp_code == COMP_SPLIT_ERR)
1467		/* The 0.96 spec says a babbling control endpoint
1468		 * is not halted. The 0.96 spec says it is.  Some HW
1469		 * claims to be 0.95 compliant, but it halts the control
1470		 * endpoint anyway.  Check if a babble halted the
1471		 * endpoint.
1472		 */
1473		if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1474		    cpu_to_le32(EP_STATE_HALTED))
1475			return 1;
1476
1477	return 0;
1478}
1479
1480int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1481{
1482	if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1483		/* Vendor defined "informational" completion code,
1484		 * treat as not-an-error.
1485		 */
1486		xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1487				trb_comp_code);
1488		xhci_dbg(xhci, "Treating code as success.\n");
1489		return 1;
1490	}
1491	return 0;
1492}
1493
1494/*
1495 * Finish the td processing, remove the td from td list;
1496 * Return 1 if the urb can be given back.
1497 */
1498static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1499	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1500	struct xhci_virt_ep *ep, int *status, bool skip)
1501{
1502	struct xhci_virt_device *xdev;
1503	struct xhci_ring *ep_ring;
1504	unsigned int slot_id;
1505	int ep_index;
1506	struct urb *urb = NULL;
1507	struct xhci_ep_ctx *ep_ctx;
1508	int ret = 0;
1509	struct urb_priv	*urb_priv;
1510	u32 trb_comp_code;
1511
1512	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1513	xdev = xhci->devs[slot_id];
1514	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1515	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1516	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1517	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1518
1519	if (skip)
1520		goto td_cleanup;
1521
1522	if (trb_comp_code == COMP_STOP_INVAL ||
1523			trb_comp_code == COMP_STOP) {
 
1524		/* The Endpoint Stop Command completion will take care of any
1525		 * stopped TDs.  A stopped TD may be restarted, so don't update
1526		 * the ring dequeue pointer or take this TD off any lists yet.
1527		 */
1528		ep->stopped_td = td;
1529		ep->stopped_trb = event_trb;
1530		return 0;
 
 
 
 
 
 
 
 
 
 
 
1531	} else {
1532		if (trb_comp_code == COMP_STALL) {
1533			/* The transfer is completed from the driver's
1534			 * perspective, but we need to issue a set dequeue
1535			 * command for this stalled endpoint to move the dequeue
1536			 * pointer past the TD.  We can't do that here because
1537			 * the halt condition must be cleared first.  Let the
1538			 * USB class driver clear the stall later.
1539			 */
1540			ep->stopped_td = td;
1541			ep->stopped_trb = event_trb;
1542			ep->stopped_stream = ep_ring->stream_id;
1543		} else if (xhci_requires_manual_halt_cleanup(xhci,
1544					ep_ctx, trb_comp_code)) {
1545			/* Other types of errors halt the endpoint, but the
1546			 * class driver doesn't call usb_reset_endpoint() unless
1547			 * the error is -EPIPE.  Clear the halted status in the
1548			 * xHCI hardware manually.
1549			 */
1550			xhci_cleanup_halted_endpoint(xhci,
1551					slot_id, ep_index, ep_ring->stream_id,
1552					td, event_trb);
1553		} else {
1554			/* Update ring dequeue pointer */
1555			while (ep_ring->dequeue != td->last_trb)
1556				inc_deq(xhci, ep_ring, false);
1557			inc_deq(xhci, ep_ring, false);
1558		}
1559
1560td_cleanup:
1561		/* Clean up the endpoint's TD list */
1562		urb = td->urb;
1563		urb_priv = urb->hcpriv;
1564
1565		/* Do one last check of the actual transfer length.
1566		 * If the host controller said we transferred more data than
1567		 * the buffer length, urb->actual_length will be a very big
1568		 * number (since it's unsigned).  Play it safe and say we didn't
1569		 * transfer anything.
1570		 */
1571		if (urb->actual_length > urb->transfer_buffer_length) {
1572			xhci_warn(xhci, "URB transfer length is wrong, "
1573					"xHC issue? req. len = %u, "
1574					"act. len = %u\n",
1575					urb->transfer_buffer_length,
1576					urb->actual_length);
1577			urb->actual_length = 0;
1578			if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1579				*status = -EREMOTEIO;
1580			else
1581				*status = 0;
1582		}
1583		list_del_init(&td->td_list);
1584		/* Was this TD slated to be cancelled but completed anyway? */
1585		if (!list_empty(&td->cancelled_td_list))
1586			list_del_init(&td->cancelled_td_list);
1587
1588		urb_priv->td_cnt++;
1589		/* Giveback the urb when all the tds are completed */
1590		if (urb_priv->td_cnt == urb_priv->length) {
1591			ret = 1;
1592			if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1593				xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1594				if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1595					== 0) {
1596					if (xhci->quirks & XHCI_AMD_PLL_FIX)
1597						usb_amd_quirk_pll_enable();
1598				}
1599			}
1600		}
1601	}
1602
1603	return ret;
1604}
1605
1606/*
1607 * Process control tds, update urb status and actual_length.
1608 */
1609static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1610	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1611	struct xhci_virt_ep *ep, int *status)
1612{
1613	struct xhci_virt_device *xdev;
1614	struct xhci_ring *ep_ring;
1615	unsigned int slot_id;
1616	int ep_index;
1617	struct xhci_ep_ctx *ep_ctx;
1618	u32 trb_comp_code;
1619
1620	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1621	xdev = xhci->devs[slot_id];
1622	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1623	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1624	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1625	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1626
1627	xhci_debug_trb(xhci, xhci->event_ring->dequeue);
1628	switch (trb_comp_code) {
1629	case COMP_SUCCESS:
1630		if (event_trb == ep_ring->dequeue) {
1631			xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1632					"without IOC set??\n");
1633			*status = -ESHUTDOWN;
1634		} else if (event_trb != td->last_trb) {
1635			xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1636					"without IOC set??\n");
1637			*status = -ESHUTDOWN;
1638		} else {
1639			*status = 0;
1640		}
1641		break;
1642	case COMP_SHORT_TX:
1643		xhci_warn(xhci, "WARN: short transfer on control ep\n");
1644		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1645			*status = -EREMOTEIO;
1646		else
1647			*status = 0;
1648		break;
1649	case COMP_STOP_INVAL:
 
 
 
 
 
 
 
1650	case COMP_STOP:
 
 
 
 
 
 
 
1651		return finish_td(xhci, td, event_trb, event, ep, status, false);
1652	default:
1653		if (!xhci_requires_manual_halt_cleanup(xhci,
1654					ep_ctx, trb_comp_code))
1655			break;
1656		xhci_dbg(xhci, "TRB error code %u, "
1657				"halted endpoint index = %u\n",
1658				trb_comp_code, ep_index);
1659		/* else fall through */
1660	case COMP_STALL:
1661		/* Did we transfer part of the data (middle) phase? */
1662		if (event_trb != ep_ring->dequeue &&
1663				event_trb != td->last_trb)
1664			td->urb->actual_length =
1665				td->urb->transfer_buffer_length
1666				- TRB_LEN(le32_to_cpu(event->transfer_len));
1667		else
1668			td->urb->actual_length = 0;
1669
1670		xhci_cleanup_halted_endpoint(xhci,
1671			slot_id, ep_index, 0, td, event_trb);
1672		return finish_td(xhci, td, event_trb, event, ep, status, true);
1673	}
1674	/*
1675	 * Did we transfer any data, despite the errors that might have
1676	 * happened?  I.e. did we get past the setup stage?
1677	 */
1678	if (event_trb != ep_ring->dequeue) {
1679		/* The event was for the status stage */
1680		if (event_trb == td->last_trb) {
1681			if (td->urb->actual_length != 0) {
1682				/* Don't overwrite a previously set error code
1683				 */
1684				if ((*status == -EINPROGRESS || *status == 0) &&
1685						(td->urb->transfer_flags
1686						 & URB_SHORT_NOT_OK))
1687					/* Did we already see a short data
1688					 * stage? */
1689					*status = -EREMOTEIO;
1690			} else {
1691				td->urb->actual_length =
1692					td->urb->transfer_buffer_length;
1693			}
1694		} else {
1695		/* Maybe the event was for the data stage? */
 
 
 
 
 
 
1696			td->urb->actual_length =
1697				td->urb->transfer_buffer_length -
1698				TRB_LEN(le32_to_cpu(event->transfer_len));
1699			xhci_dbg(xhci, "Waiting for status "
1700					"stage event\n");
1701			return 0;
1702		}
1703	}
1704
1705	return finish_td(xhci, td, event_trb, event, ep, status, false);
1706}
1707
1708/*
1709 * Process isochronous tds, update urb packet status and actual_length.
1710 */
1711static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1712	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1713	struct xhci_virt_ep *ep, int *status)
1714{
1715	struct xhci_ring *ep_ring;
1716	struct urb_priv *urb_priv;
1717	int idx;
1718	int len = 0;
1719	union xhci_trb *cur_trb;
1720	struct xhci_segment *cur_seg;
1721	struct usb_iso_packet_descriptor *frame;
1722	u32 trb_comp_code;
1723	bool skip_td = false;
1724
1725	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1726	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1727	urb_priv = td->urb->hcpriv;
1728	idx = urb_priv->td_cnt;
1729	frame = &td->urb->iso_frame_desc[idx];
1730
1731	/* handle completion code */
1732	switch (trb_comp_code) {
1733	case COMP_SUCCESS:
1734		frame->status = 0;
1735		break;
 
 
 
 
 
 
1736	case COMP_SHORT_TX:
1737		frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
1738				-EREMOTEIO : 0;
1739		break;
1740	case COMP_BW_OVER:
1741		frame->status = -ECOMM;
1742		skip_td = true;
1743		break;
1744	case COMP_BUFF_OVER:
1745	case COMP_BABBLE:
1746		frame->status = -EOVERFLOW;
1747		skip_td = true;
1748		break;
1749	case COMP_DEV_ERR:
1750	case COMP_STALL:
1751		frame->status = -EPROTO;
1752		skip_td = true;
1753		break;
 
 
 
 
 
 
1754	case COMP_STOP:
1755	case COMP_STOP_INVAL:
1756		break;
1757	default:
1758		frame->status = -1;
1759		break;
1760	}
1761
1762	if (trb_comp_code == COMP_SUCCESS || skip_td) {
1763		frame->actual_length = frame->length;
1764		td->urb->actual_length += frame->length;
 
 
 
 
1765	} else {
1766		for (cur_trb = ep_ring->dequeue,
1767		     cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
1768		     next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1769			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1770			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1771				len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1772		}
1773		len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1774			TRB_LEN(le32_to_cpu(event->transfer_len));
1775
1776		if (trb_comp_code != COMP_STOP_INVAL) {
1777			frame->actual_length = len;
1778			td->urb->actual_length += len;
1779		}
1780	}
1781
1782	return finish_td(xhci, td, event_trb, event, ep, status, false);
1783}
1784
1785static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1786			struct xhci_transfer_event *event,
1787			struct xhci_virt_ep *ep, int *status)
1788{
1789	struct xhci_ring *ep_ring;
1790	struct urb_priv *urb_priv;
1791	struct usb_iso_packet_descriptor *frame;
1792	int idx;
1793
1794	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1795	urb_priv = td->urb->hcpriv;
1796	idx = urb_priv->td_cnt;
1797	frame = &td->urb->iso_frame_desc[idx];
1798
1799	/* The transfer is partly done. */
1800	frame->status = -EXDEV;
1801
1802	/* calc actual length */
1803	frame->actual_length = 0;
1804
1805	/* Update ring dequeue pointer */
1806	while (ep_ring->dequeue != td->last_trb)
1807		inc_deq(xhci, ep_ring, false);
1808	inc_deq(xhci, ep_ring, false);
1809
1810	return finish_td(xhci, td, NULL, event, ep, status, true);
1811}
1812
1813/*
1814 * Process bulk and interrupt tds, update urb status and actual_length.
1815 */
1816static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
1817	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1818	struct xhci_virt_ep *ep, int *status)
1819{
1820	struct xhci_ring *ep_ring;
1821	union xhci_trb *cur_trb;
1822	struct xhci_segment *cur_seg;
1823	u32 trb_comp_code;
1824
1825	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1826	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1827
1828	switch (trb_comp_code) {
1829	case COMP_SUCCESS:
1830		/* Double check that the HW transferred everything. */
1831		if (event_trb != td->last_trb) {
 
1832			xhci_warn(xhci, "WARN Successful completion "
1833					"on short TX\n");
1834			if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1835				*status = -EREMOTEIO;
1836			else
1837				*status = 0;
 
 
1838		} else {
1839			*status = 0;
1840		}
1841		break;
 
1842	case COMP_SHORT_TX:
1843		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1844			*status = -EREMOTEIO;
1845		else
1846			*status = 0;
1847		break;
1848	default:
1849		/* Others already handled above */
1850		break;
1851	}
1852	if (trb_comp_code == COMP_SHORT_TX)
1853		xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
1854				"%d bytes untransferred\n",
1855				td->urb->ep->desc.bEndpointAddress,
1856				td->urb->transfer_buffer_length,
1857				TRB_LEN(le32_to_cpu(event->transfer_len)));
 
 
 
 
 
 
 
 
 
 
 
 
1858	/* Fast path - was this the last TRB in the TD for this URB? */
1859	if (event_trb == td->last_trb) {
1860		if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
1861			td->urb->actual_length =
1862				td->urb->transfer_buffer_length -
1863				TRB_LEN(le32_to_cpu(event->transfer_len));
1864			if (td->urb->transfer_buffer_length <
1865					td->urb->actual_length) {
1866				xhci_warn(xhci, "HC gave bad length "
1867						"of %d bytes left\n",
1868					  TRB_LEN(le32_to_cpu(event->transfer_len)));
1869				td->urb->actual_length = 0;
1870				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1871					*status = -EREMOTEIO;
1872				else
1873					*status = 0;
1874			}
1875			/* Don't overwrite a previously set error code */
1876			if (*status == -EINPROGRESS) {
1877				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1878					*status = -EREMOTEIO;
1879				else
1880					*status = 0;
1881			}
1882		} else {
1883			td->urb->actual_length =
1884				td->urb->transfer_buffer_length;
1885			/* Ignore a short packet completion if the
1886			 * untransferred length was zero.
1887			 */
1888			if (*status == -EREMOTEIO)
1889				*status = 0;
1890		}
1891	} else {
1892		/* Slow path - walk the list, starting from the dequeue
1893		 * pointer, to get the actual length transferred.
1894		 */
1895		td->urb->actual_length = 0;
1896		for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
1897				cur_trb != event_trb;
1898				next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1899			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1900			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1901				td->urb->actual_length +=
1902					TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1903		}
1904		/* If the ring didn't stop on a Link or No-op TRB, add
1905		 * in the actual bytes transferred from the Normal TRB
1906		 */
1907		if (trb_comp_code != COMP_STOP_INVAL)
1908			td->urb->actual_length +=
1909				TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1910				TRB_LEN(le32_to_cpu(event->transfer_len));
1911	}
1912
1913	return finish_td(xhci, td, event_trb, event, ep, status, false);
1914}
1915
1916/*
1917 * If this function returns an error condition, it means it got a Transfer
1918 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
1919 * At this point, the host controller is probably hosed and should be reset.
1920 */
1921static int handle_tx_event(struct xhci_hcd *xhci,
1922		struct xhci_transfer_event *event)
 
 
1923{
1924	struct xhci_virt_device *xdev;
1925	struct xhci_virt_ep *ep;
1926	struct xhci_ring *ep_ring;
1927	unsigned int slot_id;
1928	int ep_index;
1929	struct xhci_td *td = NULL;
1930	dma_addr_t event_dma;
1931	struct xhci_segment *event_seg;
1932	union xhci_trb *event_trb;
1933	struct urb *urb = NULL;
1934	int status = -EINPROGRESS;
1935	struct urb_priv *urb_priv;
1936	struct xhci_ep_ctx *ep_ctx;
1937	struct list_head *tmp;
1938	u32 trb_comp_code;
1939	int ret = 0;
1940	int td_num = 0;
 
1941
1942	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1943	xdev = xhci->devs[slot_id];
1944	if (!xdev) {
1945		xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
 
 
 
 
 
 
 
 
 
 
1946		return -ENODEV;
1947	}
1948
1949	/* Endpoint ID is 1 based, our index is zero based */
1950	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1951	ep = &xdev->eps[ep_index];
1952	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1953	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1954	if (!ep_ring ||
1955	    (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
1956	    EP_STATE_DISABLED) {
1957		xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
1958				"or incorrect stream ring\n");
 
 
 
 
 
 
 
 
 
 
1959		return -ENODEV;
1960	}
1961
1962	/* Count current td numbers if ep->skip is set */
1963	if (ep->skip) {
1964		list_for_each(tmp, &ep_ring->td_list)
1965			td_num++;
1966	}
1967
1968	event_dma = le64_to_cpu(event->buffer);
1969	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1970	/* Look for common error cases */
1971	switch (trb_comp_code) {
1972	/* Skip codes that require special handling depending on
1973	 * transfer type
1974	 */
1975	case COMP_SUCCESS:
 
 
 
 
 
 
 
1976	case COMP_SHORT_TX:
1977		break;
1978	case COMP_STOP:
1979		xhci_dbg(xhci, "Stopped on Transfer TRB\n");
1980		break;
1981	case COMP_STOP_INVAL:
1982		xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
1983		break;
 
 
 
1984	case COMP_STALL:
1985		xhci_warn(xhci, "WARN: Stalled endpoint\n");
1986		ep->ep_state |= EP_HALTED;
1987		status = -EPIPE;
1988		break;
1989	case COMP_TRB_ERR:
1990		xhci_warn(xhci, "WARN: TRB error on endpoint\n");
1991		status = -EILSEQ;
1992		break;
1993	case COMP_SPLIT_ERR:
1994	case COMP_TX_ERR:
1995		xhci_warn(xhci, "WARN: transfer error on endpoint\n");
1996		status = -EPROTO;
1997		break;
1998	case COMP_BABBLE:
1999		xhci_warn(xhci, "WARN: babble error on endpoint\n");
2000		status = -EOVERFLOW;
2001		break;
2002	case COMP_DB_ERR:
2003		xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2004		status = -ENOSR;
2005		break;
2006	case COMP_BW_OVER:
2007		xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2008		break;
2009	case COMP_BUFF_OVER:
2010		xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2011		break;
2012	case COMP_UNDERRUN:
2013		/*
2014		 * When the Isoch ring is empty, the xHC will generate
2015		 * a Ring Overrun Event for IN Isoch endpoint or Ring
2016		 * Underrun Event for OUT Isoch endpoint.
2017		 */
2018		xhci_dbg(xhci, "underrun event on endpoint\n");
2019		if (!list_empty(&ep_ring->td_list))
2020			xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2021					"still with TDs queued?\n",
2022				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2023				 ep_index);
2024		goto cleanup;
2025	case COMP_OVERRUN:
2026		xhci_dbg(xhci, "overrun event on endpoint\n");
2027		if (!list_empty(&ep_ring->td_list))
2028			xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2029					"still with TDs queued?\n",
2030				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2031				 ep_index);
2032		goto cleanup;
2033	case COMP_DEV_ERR:
2034		xhci_warn(xhci, "WARN: detect an incompatible device");
2035		status = -EPROTO;
2036		break;
2037	case COMP_MISSED_INT:
2038		/*
2039		 * When encounter missed service error, one or more isoc tds
2040		 * may be missed by xHC.
2041		 * Set skip flag of the ep_ring; Complete the missed tds as
2042		 * short transfer when process the ep_ring next time.
2043		 */
2044		ep->skip = true;
2045		xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2046		goto cleanup;
 
 
 
 
2047	default:
2048		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2049			status = 0;
2050			break;
2051		}
2052		xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2053				"busted\n");
2054		goto cleanup;
2055	}
2056
2057	do {
2058		/* This TRB should be in the TD at the head of this ring's
2059		 * TD list.
2060		 */
2061		if (list_empty(&ep_ring->td_list)) {
2062			xhci_warn(xhci, "WARN Event TRB for slot %d ep %d "
2063					"with no TDs queued?\n",
2064				  TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2065				  ep_index);
2066			xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2067				 (le32_to_cpu(event->flags) &
2068				  TRB_TYPE_BITMASK)>>10);
2069			xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
 
 
 
 
 
 
 
2070			if (ep->skip) {
2071				ep->skip = false;
2072				xhci_dbg(xhci, "td_list is empty while skip "
2073						"flag set. Clear skip flag.\n");
2074			}
2075			ret = 0;
2076			goto cleanup;
2077		}
2078
2079		/* We've skipped all the TDs on the ep ring when ep->skip set */
2080		if (ep->skip && td_num == 0) {
2081			ep->skip = false;
2082			xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2083						"Clear skip flag.\n");
2084			ret = 0;
2085			goto cleanup;
2086		}
2087
2088		td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2089		if (ep->skip)
2090			td_num--;
2091
2092		/* Is this a TRB in the currently executing TD? */
2093		event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2094				td->last_trb, event_dma);
2095
2096		/*
2097		 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2098		 * is not in the current TD pointed by ep_ring->dequeue because
2099		 * that the hardware dequeue pointer still at the previous TRB
2100		 * of the current TD. The previous TRB maybe a Link TD or the
2101		 * last TRB of the previous TD. The command completion handle
2102		 * will take care the rest.
2103		 */
2104		if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
 
2105			ret = 0;
2106			goto cleanup;
2107		}
2108
2109		if (!event_seg) {
2110			if (!ep->skip ||
2111			    !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2112				/* Some host controllers give a spurious
2113				 * successful event after a short transfer.
2114				 * Ignore it.
2115				 */
2116				if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && 
2117						ep_ring->last_td_was_short) {
2118					ep_ring->last_td_was_short = false;
2119					ret = 0;
2120					goto cleanup;
2121				}
2122				/* HC is busted, give up! */
2123				xhci_err(xhci,
2124					"ERROR Transfer event TRB DMA ptr not "
2125					"part of current TD\n");
 
 
 
 
 
2126				return -ESHUTDOWN;
2127			}
2128
2129			ret = skip_isoc_td(xhci, td, event, ep, &status);
2130			goto cleanup;
2131		}
2132		if (trb_comp_code == COMP_SHORT_TX)
2133			ep_ring->last_td_was_short = true;
2134		else
2135			ep_ring->last_td_was_short = false;
2136
2137		if (ep->skip) {
2138			xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2139			ep->skip = false;
2140		}
2141
2142		event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2143						sizeof(*event_trb)];
2144		/*
2145		 * No-op TRB should not trigger interrupts.
2146		 * If event_trb is a no-op TRB, it means the
2147		 * corresponding TD has been cancelled. Just ignore
2148		 * the TD.
2149		 */
2150		if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2151			xhci_dbg(xhci,
2152				 "event_trb is a no-op TRB. Skip it\n");
2153			goto cleanup;
2154		}
2155
2156		/* Now update the urb's actual_length and give back to
2157		 * the core
2158		 */
2159		if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2160			ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2161						 &status);
2162		else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2163			ret = process_isoc_td(xhci, td, event_trb, event, ep,
2164						 &status);
2165		else
2166			ret = process_bulk_intr_td(xhci, td, event_trb, event,
2167						 ep, &status);
2168
2169cleanup:
 
 
 
 
 
 
2170		/*
2171		 * Do not update event ring dequeue pointer if ep->skip is set.
2172		 * Will roll back to continue process missed tds.
2173		 */
2174		if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2175			inc_deq(xhci, xhci->event_ring, true);
2176		}
2177
2178		if (ret) {
2179			urb = td->urb;
2180			urb_priv = urb->hcpriv;
2181			/* Leave the TD around for the reset endpoint function
2182			 * to use(but only if it's not a control endpoint,
2183			 * since we already queued the Set TR dequeue pointer
2184			 * command for stalled control endpoints).
2185			 */
2186			if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2187				(trb_comp_code != COMP_STALL &&
2188					trb_comp_code != COMP_BABBLE))
2189				xhci_urb_free_priv(xhci, urb_priv);
2190
2191			usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2192			if ((urb->actual_length != urb->transfer_buffer_length &&
2193						(urb->transfer_flags &
2194						 URB_SHORT_NOT_OK)) ||
2195					status != 0)
 
2196				xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2197						"expected = %x, status = %d\n",
2198						urb, urb->actual_length,
2199						urb->transfer_buffer_length,
2200						status);
2201			spin_unlock(&xhci->lock);
2202			/* EHCI, UHCI, and OHCI always unconditionally set the
2203			 * urb->status of an isochronous endpoint to 0.
2204			 */
2205			if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2206				status = 0;
2207			usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2208			spin_lock(&xhci->lock);
2209		}
2210
2211	/*
2212	 * If ep->skip is set, it means there are missed tds on the
2213	 * endpoint ring need to take care of.
2214	 * Process them as short transfer until reach the td pointed by
2215	 * the event.
2216	 */
2217	} while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2218
2219	return 0;
2220}
2221
2222/*
2223 * This function handles all OS-owned events on the event ring.  It may drop
2224 * xhci->lock between event processing (e.g. to pass up port status changes).
2225 * Returns >0 for "possibly more events to process" (caller should call again),
2226 * otherwise 0 if done.  In future, <0 returns should indicate error code.
2227 */
2228static int xhci_handle_event(struct xhci_hcd *xhci)
2229{
2230	union xhci_trb *event;
2231	int update_ptrs = 1;
2232	int ret;
2233
2234	if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2235		xhci->error_bitmask |= 1 << 1;
2236		return 0;
2237	}
2238
2239	event = xhci->event_ring->dequeue;
2240	/* Does the HC or OS own the TRB? */
2241	if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2242	    xhci->event_ring->cycle_state) {
2243		xhci->error_bitmask |= 1 << 2;
2244		return 0;
2245	}
2246
2247	/*
2248	 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2249	 * speculative reads of the event's flags/data below.
2250	 */
2251	rmb();
2252	/* FIXME: Handle more event types. */
2253	switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2254	case TRB_TYPE(TRB_COMPLETION):
2255		handle_cmd_completion(xhci, &event->event_cmd);
2256		break;
2257	case TRB_TYPE(TRB_PORT_STATUS):
2258		handle_port_status(xhci, event);
2259		update_ptrs = 0;
2260		break;
2261	case TRB_TYPE(TRB_TRANSFER):
2262		ret = handle_tx_event(xhci, &event->trans_event);
2263		if (ret < 0)
2264			xhci->error_bitmask |= 1 << 9;
2265		else
2266			update_ptrs = 0;
2267		break;
 
 
 
2268	default:
2269		if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2270		    TRB_TYPE(48))
2271			handle_vendor_event(xhci, event);
2272		else
2273			xhci->error_bitmask |= 1 << 3;
2274	}
2275	/* Any of the above functions may drop and re-acquire the lock, so check
2276	 * to make sure a watchdog timer didn't mark the host as non-responsive.
2277	 */
2278	if (xhci->xhc_state & XHCI_STATE_DYING) {
2279		xhci_dbg(xhci, "xHCI host dying, returning from "
2280				"event handler.\n");
2281		return 0;
2282	}
2283
2284	if (update_ptrs)
2285		/* Update SW event ring dequeue pointer */
2286		inc_deq(xhci, xhci->event_ring, true);
2287
2288	/* Are there more items on the event ring?  Caller will call us again to
2289	 * check.
2290	 */
2291	return 1;
2292}
2293
2294/*
2295 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2296 * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of
2297 * indicators of an event TRB error, but we check the status *first* to be safe.
2298 */
2299irqreturn_t xhci_irq(struct usb_hcd *hcd)
2300{
2301	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2302	u32 status;
2303	union xhci_trb *trb;
2304	u64 temp_64;
2305	union xhci_trb *event_ring_deq;
2306	dma_addr_t deq;
2307
2308	spin_lock(&xhci->lock);
2309	trb = xhci->event_ring->dequeue;
2310	/* Check if the xHC generated the interrupt, or the irq is shared */
2311	status = xhci_readl(xhci, &xhci->op_regs->status);
2312	if (status == 0xffffffff)
2313		goto hw_died;
2314
2315	if (!(status & STS_EINT)) {
2316		spin_unlock(&xhci->lock);
2317		return IRQ_NONE;
2318	}
2319	if (status & STS_FATAL) {
2320		xhci_warn(xhci, "WARNING: Host System Error\n");
2321		xhci_halt(xhci);
2322hw_died:
2323		spin_unlock(&xhci->lock);
2324		return -ESHUTDOWN;
2325	}
2326
2327	/*
2328	 * Clear the op reg interrupt status first,
2329	 * so we can receive interrupts from other MSI-X interrupters.
2330	 * Write 1 to clear the interrupt status.
2331	 */
2332	status |= STS_EINT;
2333	xhci_writel(xhci, status, &xhci->op_regs->status);
2334	/* FIXME when MSI-X is supported and there are multiple vectors */
2335	/* Clear the MSI-X event interrupt status */
2336
2337	if (hcd->irq != -1) {
2338		u32 irq_pending;
2339		/* Acknowledge the PCI interrupt */
2340		irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2341		irq_pending |= 0x3;
2342		xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2343	}
2344
2345	if (xhci->xhc_state & XHCI_STATE_DYING) {
2346		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2347				"Shouldn't IRQs be disabled?\n");
2348		/* Clear the event handler busy flag (RW1C);
2349		 * the event ring should be empty.
2350		 */
2351		temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2352		xhci_write_64(xhci, temp_64 | ERST_EHB,
2353				&xhci->ir_set->erst_dequeue);
2354		spin_unlock(&xhci->lock);
2355
2356		return IRQ_HANDLED;
2357	}
2358
2359	event_ring_deq = xhci->event_ring->dequeue;
2360	/* FIXME this should be a delayed service routine
2361	 * that clears the EHB.
2362	 */
2363	while (xhci_handle_event(xhci) > 0) {}
2364
2365	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2366	/* If necessary, update the HW's version of the event ring deq ptr. */
2367	if (event_ring_deq != xhci->event_ring->dequeue) {
2368		deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2369				xhci->event_ring->dequeue);
2370		if (deq == 0)
2371			xhci_warn(xhci, "WARN something wrong with SW event "
2372					"ring dequeue ptr.\n");
2373		/* Update HC event ring dequeue pointer */
2374		temp_64 &= ERST_PTR_MASK;
2375		temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2376	}
2377
2378	/* Clear the event handler busy flag (RW1C); event ring is empty. */
2379	temp_64 |= ERST_EHB;
2380	xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2381
2382	spin_unlock(&xhci->lock);
2383
2384	return IRQ_HANDLED;
2385}
2386
2387irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2388{
2389	irqreturn_t ret;
2390	struct xhci_hcd *xhci;
2391
2392	xhci = hcd_to_xhci(hcd);
2393	set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2394	if (xhci->shared_hcd)
2395		set_bit(HCD_FLAG_SAW_IRQ, &xhci->shared_hcd->flags);
2396
2397	ret = xhci_irq(hcd);
2398
2399	return ret;
2400}
2401
2402/****		Endpoint Ring Operations	****/
2403
2404/*
2405 * Generic function for queueing a TRB on a ring.
2406 * The caller must have checked to make sure there's room on the ring.
2407 *
2408 * @more_trbs_coming:	Will you enqueue more TRBs before calling
2409 *			prepare_transfer()?
2410 */
2411static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2412		bool consumer, bool more_trbs_coming,
2413		u32 field1, u32 field2, u32 field3, u32 field4)
2414{
2415	struct xhci_generic_trb *trb;
2416
2417	trb = &ring->enqueue->generic;
2418	trb->field[0] = cpu_to_le32(field1);
2419	trb->field[1] = cpu_to_le32(field2);
2420	trb->field[2] = cpu_to_le32(field3);
2421	trb->field[3] = cpu_to_le32(field4);
2422	inc_enq(xhci, ring, consumer, more_trbs_coming);
2423}
2424
2425/*
2426 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2427 * FIXME allocate segments if the ring is full.
2428 */
2429static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2430		u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2431{
 
 
2432	/* Make sure the endpoint has been added to xHC schedule */
2433	switch (ep_state) {
2434	case EP_STATE_DISABLED:
2435		/*
2436		 * USB core changed config/interfaces without notifying us,
2437		 * or hardware is reporting the wrong state.
2438		 */
2439		xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2440		return -ENOENT;
2441	case EP_STATE_ERROR:
2442		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2443		/* FIXME event handling code for error needs to clear it */
2444		/* XXX not sure if this should be -ENOENT or not */
2445		return -EINVAL;
2446	case EP_STATE_HALTED:
2447		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2448	case EP_STATE_STOPPED:
2449	case EP_STATE_RUNNING:
2450		break;
2451	default:
2452		xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2453		/*
2454		 * FIXME issue Configure Endpoint command to try to get the HC
2455		 * back into a known state.
2456		 */
2457		return -EINVAL;
2458	}
2459	if (!room_on_ring(xhci, ep_ring, num_trbs)) {
2460		/* FIXME allocate more room */
2461		xhci_err(xhci, "ERROR no room on ep ring\n");
2462		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2463	}
2464
2465	if (enqueue_is_link_trb(ep_ring)) {
2466		struct xhci_ring *ring = ep_ring;
2467		union xhci_trb *next;
2468
2469		next = ring->enqueue;
2470
2471		while (last_trb(xhci, ring, ring->enq_seg, next)) {
2472			/* If we're not dealing with 0.95 hardware,
2473			 * clear the chain bit.
2474			 */
2475			if (!xhci_link_trb_quirk(xhci))
 
 
2476				next->link.control &= cpu_to_le32(~TRB_CHAIN);
2477			else
2478				next->link.control |= cpu_to_le32(TRB_CHAIN);
2479
2480			wmb();
2481			next->link.control ^= cpu_to_le32(TRB_CYCLE);
2482
2483			/* Toggle the cycle bit after the last ring segment. */
2484			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2485				ring->cycle_state = (ring->cycle_state ? 0 : 1);
2486				if (!in_interrupt()) {
2487					xhci_dbg(xhci, "queue_trb: Toggle cycle "
2488						"state for ring %p = %i\n",
2489						ring, (unsigned int)ring->cycle_state);
2490				}
2491			}
2492			ring->enq_seg = ring->enq_seg->next;
2493			ring->enqueue = ring->enq_seg->trbs;
2494			next = ring->enqueue;
2495		}
2496	}
2497
2498	return 0;
2499}
2500
2501static int prepare_transfer(struct xhci_hcd *xhci,
2502		struct xhci_virt_device *xdev,
2503		unsigned int ep_index,
2504		unsigned int stream_id,
2505		unsigned int num_trbs,
2506		struct urb *urb,
2507		unsigned int td_index,
2508		gfp_t mem_flags)
2509{
2510	int ret;
2511	struct urb_priv *urb_priv;
2512	struct xhci_td	*td;
2513	struct xhci_ring *ep_ring;
2514	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2515
2516	ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2517	if (!ep_ring) {
2518		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2519				stream_id);
2520		return -EINVAL;
2521	}
2522
2523	ret = prepare_ring(xhci, ep_ring,
2524			   le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2525			   num_trbs, mem_flags);
2526	if (ret)
2527		return ret;
2528
2529	urb_priv = urb->hcpriv;
2530	td = urb_priv->td[td_index];
2531
2532	INIT_LIST_HEAD(&td->td_list);
2533	INIT_LIST_HEAD(&td->cancelled_td_list);
2534
2535	if (td_index == 0) {
2536		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2537		if (unlikely(ret))
2538			return ret;
2539	}
2540
2541	td->urb = urb;
2542	/* Add this TD to the tail of the endpoint ring's TD list */
2543	list_add_tail(&td->td_list, &ep_ring->td_list);
2544	td->start_seg = ep_ring->enq_seg;
2545	td->first_trb = ep_ring->enqueue;
2546
2547	urb_priv->td[td_index] = td;
2548
2549	return 0;
2550}
2551
2552static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2553{
2554	int num_sgs, num_trbs, running_total, temp, i;
2555	struct scatterlist *sg;
2556
2557	sg = NULL;
2558	num_sgs = urb->num_sgs;
2559	temp = urb->transfer_buffer_length;
2560
2561	xhci_dbg(xhci, "count sg list trbs: \n");
2562	num_trbs = 0;
2563	for_each_sg(urb->sg, sg, num_sgs, i) {
2564		unsigned int previous_total_trbs = num_trbs;
2565		unsigned int len = sg_dma_len(sg);
2566
2567		/* Scatter gather list entries may cross 64KB boundaries */
2568		running_total = TRB_MAX_BUFF_SIZE -
2569			(sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2570		running_total &= TRB_MAX_BUFF_SIZE - 1;
2571		if (running_total != 0)
2572			num_trbs++;
2573
2574		/* How many more 64KB chunks to transfer, how many more TRBs? */
2575		while (running_total < sg_dma_len(sg) && running_total < temp) {
2576			num_trbs++;
2577			running_total += TRB_MAX_BUFF_SIZE;
2578		}
2579		xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n",
2580				i, (unsigned long long)sg_dma_address(sg),
2581				len, len, num_trbs - previous_total_trbs);
2582
2583		len = min_t(int, len, temp);
2584		temp -= len;
2585		if (temp == 0)
2586			break;
2587	}
2588	xhci_dbg(xhci, "\n");
2589	if (!in_interrupt())
2590		xhci_dbg(xhci, "ep %#x - urb len = %d, sglist used, "
2591				"num_trbs = %d\n",
2592				urb->ep->desc.bEndpointAddress,
2593				urb->transfer_buffer_length,
2594				num_trbs);
2595	return num_trbs;
2596}
2597
2598static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2599{
2600	if (num_trbs != 0)
2601		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2602				"TRBs, %d left\n", __func__,
2603				urb->ep->desc.bEndpointAddress, num_trbs);
2604	if (running_total != urb->transfer_buffer_length)
2605		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2606				"queued %#x (%d), asked for %#x (%d)\n",
2607				__func__,
2608				urb->ep->desc.bEndpointAddress,
2609				running_total, running_total,
2610				urb->transfer_buffer_length,
2611				urb->transfer_buffer_length);
2612}
2613
2614static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2615		unsigned int ep_index, unsigned int stream_id, int start_cycle,
2616		struct xhci_generic_trb *start_trb)
2617{
2618	/*
2619	 * Pass all the TRBs to the hardware at once and make sure this write
2620	 * isn't reordered.
2621	 */
2622	wmb();
2623	if (start_cycle)
2624		start_trb->field[3] |= cpu_to_le32(start_cycle);
2625	else
2626		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2627	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2628}
2629
2630/*
2631 * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt
2632 * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD
2633 * (comprised of sg list entries) can take several service intervals to
2634 * transmit.
2635 */
2636int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2637		struct urb *urb, int slot_id, unsigned int ep_index)
2638{
2639	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
2640			xhci->devs[slot_id]->out_ctx, ep_index);
2641	int xhci_interval;
2642	int ep_interval;
2643
2644	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2645	ep_interval = urb->interval;
2646	/* Convert to microframes */
2647	if (urb->dev->speed == USB_SPEED_LOW ||
2648			urb->dev->speed == USB_SPEED_FULL)
2649		ep_interval *= 8;
2650	/* FIXME change this to a warning and a suggestion to use the new API
2651	 * to set the polling interval (once the API is added).
2652	 */
2653	if (xhci_interval != ep_interval) {
2654		if (printk_ratelimit())
2655			dev_dbg(&urb->dev->dev, "Driver uses different interval"
2656					" (%d microframe%s) than xHCI "
2657					"(%d microframe%s)\n",
2658					ep_interval,
2659					ep_interval == 1 ? "" : "s",
2660					xhci_interval,
2661					xhci_interval == 1 ? "" : "s");
2662		urb->interval = xhci_interval;
2663		/* Convert back to frames for LS/FS devices */
2664		if (urb->dev->speed == USB_SPEED_LOW ||
2665				urb->dev->speed == USB_SPEED_FULL)
2666			urb->interval /= 8;
2667	}
2668	return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
2669}
2670
2671/*
2672 * The TD size is the number of bytes remaining in the TD (including this TRB),
2673 * right shifted by 10.
2674 * It must fit in bits 21:17, so it can't be bigger than 31.
2675 */
2676static u32 xhci_td_remainder(unsigned int remainder)
2677{
2678	u32 max = (1 << (21 - 17 + 1)) - 1;
2679
2680	if ((remainder >> 10) >= max)
2681		return max << 17;
2682	else
2683		return (remainder >> 10) << 17;
2684}
2685
2686/*
2687 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in
2688 * the TD (*not* including this TRB).
2689 *
2690 * Total TD packet count = total_packet_count =
2691 *     roundup(TD size in bytes / wMaxPacketSize)
2692 *
2693 * Packets transferred up to and including this TRB = packets_transferred =
2694 *     rounddown(total bytes transferred including this TRB / wMaxPacketSize)
2695 *
2696 * TD size = total_packet_count - packets_transferred
2697 *
2698 * It must fit in bits 21:17, so it can't be bigger than 31.
 
 
 
 
 
 
2699 */
2700
2701static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
2702		unsigned int total_packet_count, struct urb *urb)
2703{
2704	int packets_transferred;
 
 
 
 
2705
2706	/* One TRB with a zero-length data packet. */
2707	if (running_total == 0 && trb_buff_len == 0)
 
2708		return 0;
2709
2710	/* All the TRB queueing functions don't count the current TRB in
2711	 * running_total.
2712	 */
2713	packets_transferred = (running_total + trb_buff_len) /
2714		le16_to_cpu(urb->ep->desc.wMaxPacketSize);
 
2715
2716	return xhci_td_remainder(total_packet_count - packets_transferred);
 
2717}
2718
 
2719static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2720		struct urb *urb, int slot_id, unsigned int ep_index)
2721{
2722	struct xhci_ring *ep_ring;
2723	unsigned int num_trbs;
2724	struct urb_priv *urb_priv;
2725	struct xhci_td *td;
2726	struct scatterlist *sg;
2727	int num_sgs;
2728	int trb_buff_len, this_sg_len, running_total;
2729	unsigned int total_packet_count;
 
2730	bool first_trb;
 
2731	u64 addr;
2732	bool more_trbs_coming;
2733
2734	struct xhci_generic_trb *start_trb;
2735	int start_cycle;
2736
2737	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2738	if (!ep_ring)
2739		return -EINVAL;
2740
2741	num_trbs = count_sg_trbs_needed(xhci, urb);
2742	num_sgs = urb->num_sgs;
2743	total_packet_count = roundup(urb->transfer_buffer_length,
2744			le16_to_cpu(urb->ep->desc.wMaxPacketSize));
2745
2746	trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
2747			ep_index, urb->stream_id,
2748			num_trbs, urb, 0, mem_flags);
2749	if (trb_buff_len < 0)
2750		return trb_buff_len;
2751
2752	urb_priv = urb->hcpriv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2753	td = urb_priv->td[0];
2754
2755	/*
2756	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2757	 * until we've finished creating all the other TRBs.  The ring's cycle
2758	 * state may change as we enqueue the other TRBs, so save it too.
2759	 */
2760	start_trb = &ep_ring->enqueue->generic;
2761	start_cycle = ep_ring->cycle_state;
2762
2763	running_total = 0;
2764	/*
2765	 * How much data is in the first TRB?
2766	 *
2767	 * There are three forces at work for TRB buffer pointers and lengths:
2768	 * 1. We don't want to walk off the end of this sg-list entry buffer.
2769	 * 2. The transfer length that the driver requested may be smaller than
2770	 *    the amount of memory allocated for this scatter-gather list.
2771	 * 3. TRBs buffers can't cross 64KB boundaries.
2772	 */
2773	sg = urb->sg;
2774	addr = (u64) sg_dma_address(sg);
2775	this_sg_len = sg_dma_len(sg);
2776	trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
2777	trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2778	if (trb_buff_len > urb->transfer_buffer_length)
2779		trb_buff_len = urb->transfer_buffer_length;
2780	xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n",
2781			trb_buff_len);
2782
2783	first_trb = true;
 
2784	/* Queue the first TRB, even if it's zero-length */
2785	do {
2786		u32 field = 0;
2787		u32 length_field = 0;
2788		u32 remainder = 0;
2789
2790		/* Don't change the cycle bit of the first TRB until later */
2791		if (first_trb) {
2792			first_trb = false;
2793			if (start_cycle == 0)
2794				field |= 0x1;
2795		} else
2796			field |= ep_ring->cycle_state;
2797
2798		/* Chain all the TRBs together; clear the chain bit in the last
2799		 * TRB to indicate it's the last TRB in the chain.
2800		 */
2801		if (num_trbs > 1) {
2802			field |= TRB_CHAIN;
2803		} else {
2804			/* FIXME - add check for ZERO_PACKET flag before this */
2805			td->last_trb = ep_ring->enqueue;
2806			field |= TRB_IOC;
 
 
 
 
2807		}
2808
2809		/* Only set interrupt on short packet for IN endpoints */
2810		if (usb_urb_dir_in(urb))
2811			field |= TRB_ISP;
2812
2813		xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), "
2814				"64KB boundary at %#x, end dma = %#x\n",
2815				(unsigned int) addr, trb_buff_len, trb_buff_len,
2816				(unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2817				(unsigned int) addr + trb_buff_len);
2818		if (TRB_MAX_BUFF_SIZE -
2819				(addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
2820			xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
2821			xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
2822					(unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2823					(unsigned int) addr + trb_buff_len);
2824		}
2825
2826		/* Set the TRB length, TD size, and interrupter fields. */
2827		if (xhci->hci_version < 0x100) {
2828			remainder = xhci_td_remainder(
2829					urb->transfer_buffer_length -
2830					running_total);
2831		} else {
2832			remainder = xhci_v1_0_td_remainder(running_total,
2833					trb_buff_len, total_packet_count, urb);
2834		}
2835		length_field = TRB_LEN(trb_buff_len) |
2836			remainder |
2837			TRB_INTR_TARGET(0);
2838
2839		if (num_trbs > 1)
2840			more_trbs_coming = true;
2841		else
2842			more_trbs_coming = false;
2843		queue_trb(xhci, ep_ring, false, more_trbs_coming,
2844				lower_32_bits(addr),
2845				upper_32_bits(addr),
2846				length_field,
2847				field | TRB_TYPE(TRB_NORMAL));
2848		--num_trbs;
2849		running_total += trb_buff_len;
2850
2851		/* Calculate length for next transfer --
2852		 * Are we done queueing all the TRBs for this sg entry?
2853		 */
2854		this_sg_len -= trb_buff_len;
2855		if (this_sg_len == 0) {
2856			--num_sgs;
2857			if (num_sgs == 0)
2858				break;
2859			sg = sg_next(sg);
2860			addr = (u64) sg_dma_address(sg);
2861			this_sg_len = sg_dma_len(sg);
2862		} else {
2863			addr += trb_buff_len;
2864		}
2865
2866		trb_buff_len = TRB_MAX_BUFF_SIZE -
2867			(addr & (TRB_MAX_BUFF_SIZE - 1));
2868		trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2869		if (running_total + trb_buff_len > urb->transfer_buffer_length)
2870			trb_buff_len =
2871				urb->transfer_buffer_length - running_total;
2872	} while (running_total < urb->transfer_buffer_length);
2873
2874	check_trb_math(urb, num_trbs, running_total);
2875	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2876			start_cycle, start_trb);
2877	return 0;
2878}
2879
2880/* This is very similar to what ehci-q.c qtd_fill() does */
2881int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2882		struct urb *urb, int slot_id, unsigned int ep_index)
2883{
2884	struct xhci_ring *ep_ring;
2885	struct urb_priv *urb_priv;
2886	struct xhci_td *td;
2887	int num_trbs;
2888	struct xhci_generic_trb *start_trb;
2889	bool first_trb;
 
2890	bool more_trbs_coming;
 
2891	int start_cycle;
2892	u32 field, length_field;
2893
2894	int running_total, trb_buff_len, ret;
2895	unsigned int total_packet_count;
2896	u64 addr;
2897
2898	if (urb->num_sgs)
2899		return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
2900
2901	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2902	if (!ep_ring)
2903		return -EINVAL;
2904
2905	num_trbs = 0;
2906	/* How much data is (potentially) left before the 64KB boundary? */
2907	running_total = TRB_MAX_BUFF_SIZE -
2908		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2909	running_total &= TRB_MAX_BUFF_SIZE - 1;
2910
2911	/* If there's some data on this 64KB chunk, or we have to send a
2912	 * zero-length transfer, we need at least one TRB
2913	 */
2914	if (running_total != 0 || urb->transfer_buffer_length == 0)
2915		num_trbs++;
2916	/* How many more 64KB chunks to transfer, how many more TRBs? */
2917	while (running_total < urb->transfer_buffer_length) {
2918		num_trbs++;
2919		running_total += TRB_MAX_BUFF_SIZE;
2920	}
2921	/* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
2922
2923	if (!in_interrupt())
2924		xhci_dbg(xhci, "ep %#x - urb len = %#x (%d), "
2925				"addr = %#llx, num_trbs = %d\n",
2926				urb->ep->desc.bEndpointAddress,
2927				urb->transfer_buffer_length,
2928				urb->transfer_buffer_length,
2929				(unsigned long long)urb->transfer_dma,
2930				num_trbs);
2931
2932	ret = prepare_transfer(xhci, xhci->devs[slot_id],
2933			ep_index, urb->stream_id,
2934			num_trbs, urb, 0, mem_flags);
2935	if (ret < 0)
2936		return ret;
2937
2938	urb_priv = urb->hcpriv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2939	td = urb_priv->td[0];
2940
2941	/*
2942	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2943	 * until we've finished creating all the other TRBs.  The ring's cycle
2944	 * state may change as we enqueue the other TRBs, so save it too.
2945	 */
2946	start_trb = &ep_ring->enqueue->generic;
2947	start_cycle = ep_ring->cycle_state;
2948
2949	running_total = 0;
2950	total_packet_count = roundup(urb->transfer_buffer_length,
2951			le16_to_cpu(urb->ep->desc.wMaxPacketSize));
2952	/* How much data is in the first TRB? */
2953	addr = (u64) urb->transfer_dma;
2954	trb_buff_len = TRB_MAX_BUFF_SIZE -
2955		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2956	if (trb_buff_len > urb->transfer_buffer_length)
2957		trb_buff_len = urb->transfer_buffer_length;
2958
2959	first_trb = true;
2960
2961	/* Queue the first TRB, even if it's zero-length */
2962	do {
2963		u32 remainder = 0;
2964		field = 0;
2965
2966		/* Don't change the cycle bit of the first TRB until later */
2967		if (first_trb) {
2968			first_trb = false;
2969			if (start_cycle == 0)
2970				field |= 0x1;
2971		} else
2972			field |= ep_ring->cycle_state;
2973
2974		/* Chain all the TRBs together; clear the chain bit in the last
2975		 * TRB to indicate it's the last TRB in the chain.
2976		 */
2977		if (num_trbs > 1) {
2978			field |= TRB_CHAIN;
2979		} else {
2980			/* FIXME - add check for ZERO_PACKET flag before this */
2981			td->last_trb = ep_ring->enqueue;
2982			field |= TRB_IOC;
 
 
 
 
2983		}
2984
2985		/* Only set interrupt on short packet for IN endpoints */
2986		if (usb_urb_dir_in(urb))
2987			field |= TRB_ISP;
2988
2989		/* Set the TRB length, TD size, and interrupter fields. */
2990		if (xhci->hci_version < 0x100) {
2991			remainder = xhci_td_remainder(
2992					urb->transfer_buffer_length -
2993					running_total);
2994		} else {
2995			remainder = xhci_v1_0_td_remainder(running_total,
2996					trb_buff_len, total_packet_count, urb);
2997		}
2998		length_field = TRB_LEN(trb_buff_len) |
2999			remainder |
3000			TRB_INTR_TARGET(0);
3001
3002		if (num_trbs > 1)
3003			more_trbs_coming = true;
3004		else
3005			more_trbs_coming = false;
3006		queue_trb(xhci, ep_ring, false, more_trbs_coming,
3007				lower_32_bits(addr),
3008				upper_32_bits(addr),
3009				length_field,
3010				field | TRB_TYPE(TRB_NORMAL));
3011		--num_trbs;
3012		running_total += trb_buff_len;
3013
3014		/* Calculate length for next transfer */
3015		addr += trb_buff_len;
3016		trb_buff_len = urb->transfer_buffer_length - running_total;
3017		if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3018			trb_buff_len = TRB_MAX_BUFF_SIZE;
3019	} while (running_total < urb->transfer_buffer_length);
3020
3021	check_trb_math(urb, num_trbs, running_total);
3022	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3023			start_cycle, start_trb);
3024	return 0;
3025}
3026
3027/* Caller must have locked xhci->lock */
3028int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3029		struct urb *urb, int slot_id, unsigned int ep_index)
3030{
3031	struct xhci_ring *ep_ring;
3032	int num_trbs;
3033	int ret;
3034	struct usb_ctrlrequest *setup;
3035	struct xhci_generic_trb *start_trb;
3036	int start_cycle;
3037	u32 field, length_field;
3038	struct urb_priv *urb_priv;
3039	struct xhci_td *td;
3040
3041	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3042	if (!ep_ring)
3043		return -EINVAL;
3044
3045	/*
3046	 * Need to copy setup packet into setup TRB, so we can't use the setup
3047	 * DMA address.
3048	 */
3049	if (!urb->setup_packet)
3050		return -EINVAL;
3051
3052	if (!in_interrupt())
3053		xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n",
3054				slot_id, ep_index);
3055	/* 1 TRB for setup, 1 for status */
3056	num_trbs = 2;
3057	/*
3058	 * Don't need to check if we need additional event data and normal TRBs,
3059	 * since data in control transfers will never get bigger than 16MB
3060	 * XXX: can we get a buffer that crosses 64KB boundaries?
3061	 */
3062	if (urb->transfer_buffer_length > 0)
3063		num_trbs++;
3064	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3065			ep_index, urb->stream_id,
3066			num_trbs, urb, 0, mem_flags);
3067	if (ret < 0)
3068		return ret;
3069
3070	urb_priv = urb->hcpriv;
3071	td = urb_priv->td[0];
3072
3073	/*
3074	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3075	 * until we've finished creating all the other TRBs.  The ring's cycle
3076	 * state may change as we enqueue the other TRBs, so save it too.
3077	 */
3078	start_trb = &ep_ring->enqueue->generic;
3079	start_cycle = ep_ring->cycle_state;
3080
3081	/* Queue setup TRB - see section 6.4.1.2.1 */
3082	/* FIXME better way to translate setup_packet into two u32 fields? */
3083	setup = (struct usb_ctrlrequest *) urb->setup_packet;
3084	field = 0;
3085	field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3086	if (start_cycle == 0)
3087		field |= 0x1;
3088
3089	/* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3090	if (xhci->hci_version == 0x100) {
3091		if (urb->transfer_buffer_length > 0) {
3092			if (setup->bRequestType & USB_DIR_IN)
3093				field |= TRB_TX_TYPE(TRB_DATA_IN);
3094			else
3095				field |= TRB_TX_TYPE(TRB_DATA_OUT);
3096		}
3097	}
3098
3099	queue_trb(xhci, ep_ring, false, true,
3100		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3101		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3102		  TRB_LEN(8) | TRB_INTR_TARGET(0),
3103		  /* Immediate data in pointer */
3104		  field);
3105
3106	/* If there's data, queue data TRBs */
3107	/* Only set interrupt on short packet for IN endpoints */
3108	if (usb_urb_dir_in(urb))
3109		field = TRB_ISP | TRB_TYPE(TRB_DATA);
3110	else
3111		field = TRB_TYPE(TRB_DATA);
3112
 
 
 
 
 
3113	length_field = TRB_LEN(urb->transfer_buffer_length) |
3114		xhci_td_remainder(urb->transfer_buffer_length) |
3115		TRB_INTR_TARGET(0);
 
3116	if (urb->transfer_buffer_length > 0) {
3117		if (setup->bRequestType & USB_DIR_IN)
3118			field |= TRB_DIR_IN;
3119		queue_trb(xhci, ep_ring, false, true,
3120				lower_32_bits(urb->transfer_dma),
3121				upper_32_bits(urb->transfer_dma),
3122				length_field,
3123				field | ep_ring->cycle_state);
3124	}
3125
3126	/* Save the DMA address of the last TRB in the TD */
3127	td->last_trb = ep_ring->enqueue;
3128
3129	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3130	/* If the device sent data, the status stage is an OUT transfer */
3131	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3132		field = 0;
3133	else
3134		field = TRB_DIR_IN;
3135	queue_trb(xhci, ep_ring, false, false,
3136			0,
3137			0,
3138			TRB_INTR_TARGET(0),
3139			/* Event on completion */
3140			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3141
3142	giveback_first_trb(xhci, slot_id, ep_index, 0,
3143			start_cycle, start_trb);
3144	return 0;
3145}
3146
3147static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3148		struct urb *urb, int i)
3149{
3150	int num_trbs = 0;
3151	u64 addr, td_len;
3152
3153	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3154	td_len = urb->iso_frame_desc[i].length;
3155
3156	num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3157			TRB_MAX_BUFF_SIZE);
3158	if (num_trbs == 0)
3159		num_trbs++;
3160
3161	return num_trbs;
3162}
3163
3164/*
3165 * The transfer burst count field of the isochronous TRB defines the number of
3166 * bursts that are required to move all packets in this TD.  Only SuperSpeed
3167 * devices can burst up to bMaxBurst number of packets per service interval.
3168 * This field is zero based, meaning a value of zero in the field means one
3169 * burst.  Basically, for everything but SuperSpeed devices, this field will be
3170 * zero.  Only xHCI 1.0 host controllers support this field.
3171 */
3172static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3173		struct usb_device *udev,
3174		struct urb *urb, unsigned int total_packet_count)
3175{
3176	unsigned int max_burst;
3177
3178	if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3179		return 0;
3180
3181	max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3182	return roundup(total_packet_count, max_burst + 1) - 1;
3183}
3184
3185/*
3186 * Returns the number of packets in the last "burst" of packets.  This field is
3187 * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so
3188 * the last burst packet count is equal to the total number of packets in the
3189 * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst
3190 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3191 * contain 1 to (bMaxBurst + 1) packets.
3192 */
3193static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3194		struct usb_device *udev,
3195		struct urb *urb, unsigned int total_packet_count)
3196{
3197	unsigned int max_burst;
3198	unsigned int residue;
3199
3200	if (xhci->hci_version < 0x100)
3201		return 0;
3202
3203	switch (udev->speed) {
3204	case USB_SPEED_SUPER:
3205		/* bMaxBurst is zero based: 0 means 1 packet per burst */
3206		max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3207		residue = total_packet_count % (max_burst + 1);
3208		/* If residue is zero, the last burst contains (max_burst + 1)
3209		 * number of packets, but the TLBPC field is zero-based.
3210		 */
3211		if (residue == 0)
3212			return max_burst;
3213		return residue - 1;
3214	default:
3215		if (total_packet_count == 0)
3216			return 0;
3217		return total_packet_count - 1;
3218	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3219}
3220
3221/* This is for isoc transfer */
3222static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3223		struct urb *urb, int slot_id, unsigned int ep_index)
3224{
3225	struct xhci_ring *ep_ring;
3226	struct urb_priv *urb_priv;
3227	struct xhci_td *td;
3228	int num_tds, trbs_per_td;
3229	struct xhci_generic_trb *start_trb;
3230	bool first_trb;
3231	int start_cycle;
3232	u32 field, length_field;
3233	int running_total, trb_buff_len, td_len, td_remain_len, ret;
3234	u64 start_addr, addr;
3235	int i, j;
3236	bool more_trbs_coming;
 
 
3237
 
3238	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3239
3240	num_tds = urb->number_of_packets;
3241	if (num_tds < 1) {
3242		xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3243		return -EINVAL;
3244	}
3245
3246	if (!in_interrupt())
3247		xhci_dbg(xhci, "ep %#x - urb len = %#x (%d),"
3248				" addr = %#llx, num_tds = %d\n",
3249				urb->ep->desc.bEndpointAddress,
3250				urb->transfer_buffer_length,
3251				urb->transfer_buffer_length,
3252				(unsigned long long)urb->transfer_dma,
3253				num_tds);
3254
3255	start_addr = (u64) urb->transfer_dma;
3256	start_trb = &ep_ring->enqueue->generic;
3257	start_cycle = ep_ring->cycle_state;
3258
3259	urb_priv = urb->hcpriv;
3260	/* Queue the first TRB, even if it's zero-length */
3261	for (i = 0; i < num_tds; i++) {
3262		unsigned int total_packet_count;
3263		unsigned int burst_count;
3264		unsigned int residue;
3265
3266		first_trb = true;
3267		running_total = 0;
3268		addr = start_addr + urb->iso_frame_desc[i].offset;
3269		td_len = urb->iso_frame_desc[i].length;
3270		td_remain_len = td_len;
3271		total_packet_count = roundup(td_len,
3272				le16_to_cpu(urb->ep->desc.wMaxPacketSize));
 
3273		/* A zero-length transfer still involves at least one packet. */
3274		if (total_packet_count == 0)
3275			total_packet_count++;
3276		burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3277				total_packet_count);
3278		residue = xhci_get_last_burst_packet_count(xhci,
3279				urb->dev, urb, total_packet_count);
3280
3281		trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3282
3283		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3284				urb->stream_id, trbs_per_td, urb, i, mem_flags);
3285		if (ret < 0) {
3286			if (i == 0)
3287				return ret;
3288			goto cleanup;
3289		}
3290
3291		td = urb_priv->td[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3292		for (j = 0; j < trbs_per_td; j++) {
3293			u32 remainder = 0;
3294			field = TRB_TBC(burst_count) | TRB_TLBPC(residue);
3295
3296			if (first_trb) {
3297				/* Queue the isoc TRB */
3298				field |= TRB_TYPE(TRB_ISOC);
3299				/* Assume URB_ISO_ASAP is set */
3300				field |= TRB_SIA;
3301				if (i == 0) {
3302					if (start_cycle == 0)
3303						field |= 0x1;
3304				} else
3305					field |= ep_ring->cycle_state;
3306				first_trb = false;
3307			} else {
3308				/* Queue other normal TRBs */
3309				field |= TRB_TYPE(TRB_NORMAL);
3310				field |= ep_ring->cycle_state;
3311			}
3312
3313			/* Only set interrupt on short packet for IN EPs */
3314			if (usb_urb_dir_in(urb))
3315				field |= TRB_ISP;
3316
3317			/* Chain all the TRBs together; clear the chain bit in
3318			 * the last TRB to indicate it's the last TRB in the
3319			 * chain.
3320			 */
3321			if (j < trbs_per_td - 1) {
3322				field |= TRB_CHAIN;
3323				more_trbs_coming = true;
 
3324			} else {
 
3325				td->last_trb = ep_ring->enqueue;
3326				field |= TRB_IOC;
3327				if (xhci->hci_version == 0x100) {
3328					/* Set BEI bit except for the last td */
3329					if (i < num_tds - 1)
3330						field |= TRB_BEI;
3331				}
3332				more_trbs_coming = false;
3333			}
3334
3335			/* Calculate TRB length */
3336			trb_buff_len = TRB_MAX_BUFF_SIZE -
3337				(addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3338			if (trb_buff_len > td_remain_len)
3339				trb_buff_len = td_remain_len;
3340
3341			/* Set the TRB length, TD size, & interrupter fields. */
3342			if (xhci->hci_version < 0x100) {
3343				remainder = xhci_td_remainder(
3344						td_len - running_total);
3345			} else {
3346				remainder = xhci_v1_0_td_remainder(
3347						running_total, trb_buff_len,
3348						total_packet_count, urb);
3349			}
3350			length_field = TRB_LEN(trb_buff_len) |
3351				remainder |
3352				TRB_INTR_TARGET(0);
3353
3354			queue_trb(xhci, ep_ring, false, more_trbs_coming,
 
 
 
 
 
 
 
3355				lower_32_bits(addr),
3356				upper_32_bits(addr),
3357				length_field,
3358				field);
3359			running_total += trb_buff_len;
3360
3361			addr += trb_buff_len;
3362			td_remain_len -= trb_buff_len;
3363		}
3364
3365		/* Check TD length */
3366		if (running_total != td_len) {
3367			xhci_err(xhci, "ISOC TD length unmatch\n");
3368			return -EINVAL;
 
3369		}
3370	}
3371
 
 
 
 
3372	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3373		if (xhci->quirks & XHCI_AMD_PLL_FIX)
3374			usb_amd_quirk_pll_disable();
3375	}
3376	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3377
3378	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3379			start_cycle, start_trb);
3380	return 0;
3381cleanup:
3382	/* Clean up a partially enqueued isoc transfer. */
3383
3384	for (i--; i >= 0; i--)
3385		list_del_init(&urb_priv->td[i]->td_list);
3386
3387	/* Use the first TD as a temporary variable to turn the TDs we've queued
3388	 * into No-ops with a software-owned cycle bit. That way the hardware
3389	 * won't accidentally start executing bogus TDs when we partially
3390	 * overwrite them.  td->first_trb and td->start_seg are already set.
3391	 */
3392	urb_priv->td[0]->last_trb = ep_ring->enqueue;
3393	/* Every TRB except the first & last will have its cycle bit flipped. */
3394	td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3395
3396	/* Reset the ring enqueue back to the first TRB and its cycle bit. */
3397	ep_ring->enqueue = urb_priv->td[0]->first_trb;
3398	ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3399	ep_ring->cycle_state = start_cycle;
 
3400	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3401	return ret;
3402}
3403
3404/*
3405 * Check transfer ring to guarantee there is enough room for the urb.
3406 * Update ISO URB start_frame and interval.
3407 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3408 * update the urb->start_frame by now.
3409 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3410 */
3411int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3412		struct urb *urb, int slot_id, unsigned int ep_index)
3413{
3414	struct xhci_virt_device *xdev;
3415	struct xhci_ring *ep_ring;
3416	struct xhci_ep_ctx *ep_ctx;
3417	int start_frame;
3418	int xhci_interval;
3419	int ep_interval;
3420	int num_tds, num_trbs, i;
3421	int ret;
 
 
3422
3423	xdev = xhci->devs[slot_id];
 
3424	ep_ring = xdev->eps[ep_index].ring;
3425	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3426
3427	num_trbs = 0;
3428	num_tds = urb->number_of_packets;
3429	for (i = 0; i < num_tds; i++)
3430		num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3431
3432	/* Check the ring to guarantee there is enough room for the whole urb.
3433	 * Do not insert any td of the urb to the ring if the check failed.
3434	 */
3435	ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3436			   num_trbs, mem_flags);
3437	if (ret)
3438		return ret;
3439
3440	start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3441	start_frame &= 0x3fff;
3442
3443	urb->start_frame = start_frame;
3444	if (urb->dev->speed == USB_SPEED_LOW ||
3445			urb->dev->speed == USB_SPEED_FULL)
3446		urb->start_frame >>= 3;
3447
3448	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3449	ep_interval = urb->interval;
3450	/* Convert to microframes */
3451	if (urb->dev->speed == USB_SPEED_LOW ||
3452			urb->dev->speed == USB_SPEED_FULL)
3453		ep_interval *= 8;
3454	/* FIXME change this to a warning and a suggestion to use the new API
3455	 * to set the polling interval (once the API is added).
3456	 */
3457	if (xhci_interval != ep_interval) {
3458		if (printk_ratelimit())
3459			dev_dbg(&urb->dev->dev, "Driver uses different interval"
3460					" (%d microframe%s) than xHCI "
3461					"(%d microframe%s)\n",
3462					ep_interval,
3463					ep_interval == 1 ? "" : "s",
3464					xhci_interval,
3465					xhci_interval == 1 ? "" : "s");
3466		urb->interval = xhci_interval;
3467		/* Convert back to frames for LS/FS devices */
3468		if (urb->dev->speed == USB_SPEED_LOW ||
3469				urb->dev->speed == USB_SPEED_FULL)
3470			urb->interval /= 8;
3471	}
3472	return xhci_queue_isoc_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3473}
3474
3475/****		Command Ring Operations		****/
3476
3477/* Generic function for queueing a command TRB on the command ring.
3478 * Check to make sure there's room on the command ring for one command TRB.
3479 * Also check that there's room reserved for commands that must not fail.
3480 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3481 * then only check for the number of reserved spots.
3482 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3483 * because the command event handler may want to resubmit a failed command.
3484 */
3485static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3486		u32 field3, u32 field4, bool command_must_succeed)
 
3487{
3488	int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3489	int ret;
3490
 
 
 
 
 
 
3491	if (!command_must_succeed)
3492		reserved_trbs++;
3493
3494	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3495			reserved_trbs, GFP_ATOMIC);
3496	if (ret < 0) {
3497		xhci_err(xhci, "ERR: No room for command on command ring\n");
3498		if (command_must_succeed)
3499			xhci_err(xhci, "ERR: Reserved TRB counting for "
3500					"unfailable commands failed.\n");
3501		return ret;
3502	}
3503	queue_trb(xhci, xhci->cmd_ring, false, false, field1, field2, field3,
 
 
 
 
 
 
 
 
 
 
 
3504			field4 | xhci->cmd_ring->cycle_state);
3505	return 0;
3506}
3507
3508/* Queue a slot enable or disable request on the command ring */
3509int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
 
3510{
3511	return queue_command(xhci, 0, 0, 0,
3512			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3513}
3514
3515/* Queue an address device command TRB */
3516int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3517		u32 slot_id)
3518{
3519	return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3520			upper_32_bits(in_ctx_ptr), 0,
3521			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3522			false);
3523}
3524
3525int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3526		u32 field1, u32 field2, u32 field3, u32 field4)
3527{
3528	return queue_command(xhci, field1, field2, field3, field4, false);
3529}
3530
3531/* Queue a reset device command TRB */
3532int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
 
3533{
3534	return queue_command(xhci, 0, 0, 0,
3535			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3536			false);
3537}
3538
3539/* Queue a configure endpoint command TRB */
3540int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
 
3541		u32 slot_id, bool command_must_succeed)
3542{
3543	return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3544			upper_32_bits(in_ctx_ptr), 0,
3545			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3546			command_must_succeed);
3547}
3548
3549/* Queue an evaluate context command TRB */
3550int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3551		u32 slot_id)
3552{
3553	return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3554			upper_32_bits(in_ctx_ptr), 0,
3555			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3556			false);
3557}
3558
3559/*
3560 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3561 * activity on an endpoint that is about to be suspended.
3562 */
3563int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3564		unsigned int ep_index, int suspend)
3565{
3566	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3567	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3568	u32 type = TRB_TYPE(TRB_STOP_RING);
3569	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3570
3571	return queue_command(xhci, 0, 0, 0,
3572			trb_slot_id | trb_ep_index | type | trb_suspend, false);
3573}
3574
3575/* Set Transfer Ring Dequeue Pointer command.
3576 * This should not be used for endpoints that have streams enabled.
3577 */
3578static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
3579		unsigned int ep_index, unsigned int stream_id,
3580		struct xhci_segment *deq_seg,
3581		union xhci_trb *deq_ptr, u32 cycle_state)
3582{
3583	dma_addr_t addr;
3584	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3585	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3586	u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
 
3587	u32 type = TRB_TYPE(TRB_SET_DEQ);
3588	struct xhci_virt_ep *ep;
 
 
 
 
 
 
 
 
 
 
 
3589
3590	addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
 
3591	if (addr == 0) {
3592		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3593		xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3594				deq_seg, deq_ptr);
3595		return 0;
3596	}
3597	ep = &xhci->devs[slot_id]->eps[ep_index];
3598	if ((ep->ep_state & SET_DEQ_PENDING)) {
3599		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3600		xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3601		return 0;
3602	}
3603	ep->queued_deq_seg = deq_seg;
3604	ep->queued_deq_ptr = deq_ptr;
3605	return queue_command(xhci, lower_32_bits(addr) | cycle_state,
3606			upper_32_bits(addr), trb_stream_id,
3607			trb_slot_id | trb_ep_index | type, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3608}
3609
3610int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
3611		unsigned int ep_index)
3612{
3613	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3614	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3615	u32 type = TRB_TYPE(TRB_RESET_EP);
3616
3617	return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
3618			false);
3619}
v4.6
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23/*
  24 * Ring initialization rules:
  25 * 1. Each segment is initialized to zero, except for link TRBs.
  26 * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or
  27 *    Consumer Cycle State (CCS), depending on ring function.
  28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
  29 *
  30 * Ring behavior rules:
  31 * 1. A ring is empty if enqueue == dequeue.  This means there will always be at
  32 *    least one free TRB in the ring.  This is useful if you want to turn that
  33 *    into a link TRB and expand the ring.
  34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
  35 *    link TRB, then load the pointer with the address in the link TRB.  If the
  36 *    link TRB had its toggle bit set, you may need to update the ring cycle
  37 *    state (see cycle bit rules).  You may have to do this multiple times
  38 *    until you reach a non-link TRB.
  39 * 3. A ring is full if enqueue++ (for the definition of increment above)
  40 *    equals the dequeue pointer.
  41 *
  42 * Cycle bit rules:
  43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
  44 *    in a link TRB, it must toggle the ring cycle state.
  45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
  46 *    in a link TRB, it must toggle the ring cycle state.
  47 *
  48 * Producer rules:
  49 * 1. Check if ring is full before you enqueue.
  50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
  51 *    Update enqueue pointer between each write (which may update the ring
  52 *    cycle state).
  53 * 3. Notify consumer.  If SW is producer, it rings the doorbell for command
  54 *    and endpoint rings.  If HC is the producer for the event ring,
  55 *    and it generates an interrupt according to interrupt modulation rules.
  56 *
  57 * Consumer rules:
  58 * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state,
  59 *    the TRB is owned by the consumer.
  60 * 2. Update dequeue pointer (which may update the ring cycle state) and
  61 *    continue processing TRBs until you reach a TRB which is not owned by you.
  62 * 3. Notify the producer.  SW is the consumer for the event ring, and it
  63 *   updates event ring dequeue pointer.  HC is the consumer for the command and
  64 *   endpoint rings; it generates events on the event ring for these.
  65 */
  66
  67#include <linux/scatterlist.h>
  68#include <linux/slab.h>
  69#include "xhci.h"
  70#include "xhci-trace.h"
  71#include "xhci-mtk.h"
 
 
  72
  73/*
  74 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
  75 * address of the TRB.
  76 */
  77dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
  78		union xhci_trb *trb)
  79{
  80	unsigned long segment_offset;
  81
  82	if (!seg || !trb || trb < seg->trbs)
  83		return 0;
  84	/* offset in TRBs */
  85	segment_offset = trb - seg->trbs;
  86	if (segment_offset >= TRBS_PER_SEGMENT)
  87		return 0;
  88	return seg->dma + (segment_offset * sizeof(*trb));
  89}
  90
  91/* Does this link TRB point to the first segment in a ring,
  92 * or was the previous TRB the last TRB on the last segment in the ERST?
  93 */
  94static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
  95		struct xhci_segment *seg, union xhci_trb *trb)
  96{
  97	if (ring == xhci->event_ring)
  98		return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
  99			(seg->next == xhci->event_ring->first_seg);
 100	else
 101		return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
 102}
 103
 104/* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
 105 * segment?  I.e. would the updated event TRB pointer step off the end of the
 106 * event seg?
 107 */
 108static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
 109		struct xhci_segment *seg, union xhci_trb *trb)
 110{
 111	if (ring == xhci->event_ring)
 112		return trb == &seg->trbs[TRBS_PER_SEGMENT];
 113	else
 114		return TRB_TYPE_LINK_LE32(trb->link.control);
 115}
 116
 117static int enqueue_is_link_trb(struct xhci_ring *ring)
 118{
 119	struct xhci_link_trb *link = &ring->enqueue->link;
 120	return TRB_TYPE_LINK_LE32(link->control);
 121}
 122
 123/* Updates trb to point to the next TRB in the ring, and updates seg if the next
 124 * TRB is in a new segment.  This does not skip over link TRBs, and it does not
 125 * effect the ring dequeue or enqueue pointers.
 126 */
 127static void next_trb(struct xhci_hcd *xhci,
 128		struct xhci_ring *ring,
 129		struct xhci_segment **seg,
 130		union xhci_trb **trb)
 131{
 132	if (last_trb(xhci, ring, *seg, *trb)) {
 133		*seg = (*seg)->next;
 134		*trb = ((*seg)->trbs);
 135	} else {
 136		(*trb)++;
 137	}
 138}
 139
 140/*
 141 * See Cycle bit rules. SW is the consumer for the event ring only.
 142 * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
 143 */
 144static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
 145{
 
 
 
 146	ring->deq_updates++;
 147
 148	/*
 149	 * If this is not event ring, and the dequeue pointer
 150	 * is not on a link TRB, there is one more usable TRB
 151	 */
 152	if (ring->type != TYPE_EVENT &&
 153			!last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
 154		ring->num_trbs_free++;
 155
 156	do {
 157		/*
 158		 * Update the dequeue pointer further if that was a link TRB or
 159		 * we're at the end of an event ring segment (which doesn't have
 160		 * link TRBS)
 161		 */
 162		if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
 163			if (ring->type == TYPE_EVENT &&
 164					last_trb_on_last_seg(xhci, ring,
 165						ring->deq_seg, ring->dequeue)) {
 166				ring->cycle_state ^= 1;
 167			}
 168			ring->deq_seg = ring->deq_seg->next;
 169			ring->dequeue = ring->deq_seg->trbs;
 170		} else {
 171			ring->dequeue++;
 172		}
 173	} while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
 174}
 175
 176/*
 177 * See Cycle bit rules. SW is the consumer for the event ring only.
 178 * Don't make a ring full of link TRBs.  That would be dumb and this would loop.
 179 *
 180 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
 181 * chain bit is set), then set the chain bit in all the following link TRBs.
 182 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
 183 * have their chain bit cleared (so that each Link TRB is a separate TD).
 184 *
 185 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
 186 * set, but other sections talk about dealing with the chain bit set.  This was
 187 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
 188 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
 189 *
 190 * @more_trbs_coming:	Will you enqueue more TRBs before calling
 191 *			prepare_transfer()?
 192 */
 193static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
 194			bool more_trbs_coming)
 195{
 196	u32 chain;
 197	union xhci_trb *next;
 
 198
 199	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
 200	/* If this is not event ring, there is one less usable TRB */
 201	if (ring->type != TYPE_EVENT &&
 202			!last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
 203		ring->num_trbs_free--;
 204	next = ++(ring->enqueue);
 205
 206	ring->enq_updates++;
 207	/* Update the dequeue pointer further if that was a link TRB or we're at
 208	 * the end of an event ring segment (which doesn't have link TRBS)
 209	 */
 210	while (last_trb(xhci, ring, ring->enq_seg, next)) {
 211		if (ring->type != TYPE_EVENT) {
 212			/*
 213			 * If the caller doesn't plan on enqueueing more
 214			 * TDs before ringing the doorbell, then we
 215			 * don't want to give the link TRB to the
 216			 * hardware just yet.  We'll give the link TRB
 217			 * back in prepare_ring() just before we enqueue
 218			 * the TD at the top of the ring.
 219			 */
 220			if (!chain && !more_trbs_coming)
 221				break;
 
 222
 223			/* If we're not dealing with 0.95 hardware or
 224			 * isoc rings on AMD 0.96 host,
 225			 * carry over the chain bit of the previous TRB
 226			 * (which may mean the chain bit is cleared).
 227			 */
 228			if (!(ring->type == TYPE_ISOC &&
 229					(xhci->quirks & XHCI_AMD_0x96_HOST))
 230						&& !xhci_link_trb_quirk(xhci)) {
 231				next->link.control &=
 232					cpu_to_le32(~TRB_CHAIN);
 233				next->link.control |=
 234					cpu_to_le32(chain);
 
 235			}
 236			/* Give this link TRB to the hardware */
 237			wmb();
 238			next->link.control ^= cpu_to_le32(TRB_CYCLE);
 239
 240			/* Toggle the cycle bit after the last ring segment. */
 241			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
 242				ring->cycle_state ^= 1;
 
 
 
 
 243			}
 244		}
 245		ring->enq_seg = ring->enq_seg->next;
 246		ring->enqueue = ring->enq_seg->trbs;
 247		next = ring->enqueue;
 248	}
 
 249}
 250
 251/*
 252 * Check to see if there's room to enqueue num_trbs on the ring and make sure
 253 * enqueue pointer will not advance into dequeue segment. See rules above.
 
 
 254 */
 255static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
 256		unsigned int num_trbs)
 257{
 258	int num_trbs_in_deq_seg;
 
 
 
 
 259
 260	if (ring->num_trbs_free < num_trbs)
 261		return 0;
 262
 263	if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
 264		num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
 265		if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266			return 0;
 
 
 
 
 
 267	}
 268
 269	return 1;
 270}
 271
 272/* Ring the host controller doorbell after placing a command on the ring */
 273void xhci_ring_cmd_db(struct xhci_hcd *xhci)
 274{
 275	if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
 276		return;
 277
 278	xhci_dbg(xhci, "// Ding dong!\n");
 279	writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
 280	/* Flush PCI posted writes */
 281	readl(&xhci->dba->doorbell[0]);
 282}
 283
 284static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
 285{
 286	u64 temp_64;
 287	int ret;
 288
 289	xhci_dbg(xhci, "Abort command ring\n");
 290
 291	temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 292	xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
 293	xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
 294			&xhci->op_regs->cmd_ring);
 295
 296	/* Section 4.6.1.2 of xHCI 1.0 spec says software should
 297	 * time the completion od all xHCI commands, including
 298	 * the Command Abort operation. If software doesn't see
 299	 * CRR negated in a timely manner (e.g. longer than 5
 300	 * seconds), then it should assume that the there are
 301	 * larger problems with the xHC and assert HCRST.
 302	 */
 303	ret = xhci_handshake(&xhci->op_regs->cmd_ring,
 304			CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
 305	if (ret < 0) {
 306		/* we are about to kill xhci, give it one more chance */
 307		xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
 308			      &xhci->op_regs->cmd_ring);
 309		udelay(1000);
 310		ret = xhci_handshake(&xhci->op_regs->cmd_ring,
 311				     CMD_RING_RUNNING, 0, 3 * 1000 * 1000);
 312		if (ret == 0)
 313			return 0;
 314
 315		xhci_err(xhci, "Stopped the command ring failed, "
 316				"maybe the host is dead\n");
 317		xhci->xhc_state |= XHCI_STATE_DYING;
 318		xhci_quiesce(xhci);
 319		xhci_halt(xhci);
 320		return -ESHUTDOWN;
 321	}
 322
 323	return 0;
 324}
 325
 326void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
 327		unsigned int slot_id,
 328		unsigned int ep_index,
 329		unsigned int stream_id)
 330{
 331	__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
 332	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
 333	unsigned int ep_state = ep->ep_state;
 334
 335	/* Don't ring the doorbell for this endpoint if there are pending
 336	 * cancellations because we don't want to interrupt processing.
 337	 * We don't want to restart any stream rings if there's a set dequeue
 338	 * pointer command pending because the device can choose to start any
 339	 * stream once the endpoint is on the HW schedule.
 
 340	 */
 341	if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
 342	    (ep_state & EP_HALTED))
 343		return;
 344	writel(DB_VALUE(ep_index, stream_id), db_addr);
 345	/* The CPU has better things to do at this point than wait for a
 346	 * write-posting flush.  It'll get there soon enough.
 347	 */
 348}
 349
 350/* Ring the doorbell for any rings with pending URBs */
 351static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
 352		unsigned int slot_id,
 353		unsigned int ep_index)
 354{
 355	unsigned int stream_id;
 356	struct xhci_virt_ep *ep;
 357
 358	ep = &xhci->devs[slot_id]->eps[ep_index];
 359
 360	/* A ring has pending URBs if its TD list is not empty */
 361	if (!(ep->ep_state & EP_HAS_STREAMS)) {
 362		if (ep->ring && !(list_empty(&ep->ring->td_list)))
 363			xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
 364		return;
 365	}
 366
 367	for (stream_id = 1; stream_id < ep->stream_info->num_streams;
 368			stream_id++) {
 369		struct xhci_stream_info *stream_info = ep->stream_info;
 370		if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
 371			xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
 372						stream_id);
 373	}
 374}
 375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
 377		unsigned int slot_id, unsigned int ep_index,
 378		unsigned int stream_id)
 379{
 380	struct xhci_virt_ep *ep;
 381
 382	ep = &xhci->devs[slot_id]->eps[ep_index];
 383	/* Common case: no streams */
 384	if (!(ep->ep_state & EP_HAS_STREAMS))
 385		return ep->ring;
 386
 387	if (stream_id == 0) {
 388		xhci_warn(xhci,
 389				"WARN: Slot ID %u, ep index %u has streams, "
 390				"but URB has no stream ID.\n",
 391				slot_id, ep_index);
 392		return NULL;
 393	}
 394
 395	if (stream_id < ep->stream_info->num_streams)
 396		return ep->stream_info->stream_rings[stream_id];
 397
 398	xhci_warn(xhci,
 399			"WARN: Slot ID %u, ep index %u has "
 400			"stream IDs 1 to %u allocated, "
 401			"but stream ID %u is requested.\n",
 402			slot_id, ep_index,
 403			ep->stream_info->num_streams - 1,
 404			stream_id);
 405	return NULL;
 406}
 407
 408/* Get the right ring for the given URB.
 409 * If the endpoint supports streams, boundary check the URB's stream ID.
 410 * If the endpoint doesn't support streams, return the singular endpoint ring.
 411 */
 412static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
 413		struct urb *urb)
 414{
 415	return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
 416		xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
 417}
 418
 419/*
 420 * Move the xHC's endpoint ring dequeue pointer past cur_td.
 421 * Record the new state of the xHC's endpoint ring dequeue segment,
 422 * dequeue pointer, and new consumer cycle state in state.
 423 * Update our internal representation of the ring's dequeue pointer.
 424 *
 425 * We do this in three jumps:
 426 *  - First we update our new ring state to be the same as when the xHC stopped.
 427 *  - Then we traverse the ring to find the segment that contains
 428 *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass
 429 *    any link TRBs with the toggle cycle bit set.
 430 *  - Finally we move the dequeue state one TRB further, toggling the cycle bit
 431 *    if we've moved it past a link TRB with the toggle cycle bit set.
 432 *
 433 * Some of the uses of xhci_generic_trb are grotty, but if they're done
 434 * with correct __le32 accesses they should work fine.  Only users of this are
 435 * in here.
 436 */
 437void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
 438		unsigned int slot_id, unsigned int ep_index,
 439		unsigned int stream_id, struct xhci_td *cur_td,
 440		struct xhci_dequeue_state *state)
 441{
 442	struct xhci_virt_device *dev = xhci->devs[slot_id];
 443	struct xhci_virt_ep *ep = &dev->eps[ep_index];
 444	struct xhci_ring *ep_ring;
 445	struct xhci_segment *new_seg;
 446	union xhci_trb *new_deq;
 447	dma_addr_t addr;
 448	u64 hw_dequeue;
 449	bool cycle_found = false;
 450	bool td_last_trb_found = false;
 451
 452	ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
 453			ep_index, stream_id);
 454	if (!ep_ring) {
 455		xhci_warn(xhci, "WARN can't find new dequeue state "
 456				"for invalid stream ID %u.\n",
 457				stream_id);
 458		return;
 459	}
 
 
 
 
 
 
 
 
 
 460
 461	/* Dig out the cycle state saved by the xHC during the stop ep cmd */
 462	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 463			"Finding endpoint context");
 464	/* 4.6.9 the css flag is written to the stream context for streams */
 465	if (ep->ep_state & EP_HAS_STREAMS) {
 466		struct xhci_stream_ctx *ctx =
 467			&ep->stream_info->stream_ctx_array[stream_id];
 468		hw_dequeue = le64_to_cpu(ctx->stream_ring);
 469	} else {
 470		struct xhci_ep_ctx *ep_ctx
 471			= xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
 472		hw_dequeue = le64_to_cpu(ep_ctx->deq);
 
 473	}
 474
 475	new_seg = ep_ring->deq_seg;
 476	new_deq = ep_ring->dequeue;
 477	state->new_cycle_state = hw_dequeue & 0x1;
 478
 479	/*
 480	 * We want to find the pointer, segment and cycle state of the new trb
 481	 * (the one after current TD's last_trb). We know the cycle state at
 482	 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
 483	 * found.
 484	 */
 485	do {
 486		if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
 487		    == (dma_addr_t)(hw_dequeue & ~0xf)) {
 488			cycle_found = true;
 489			if (td_last_trb_found)
 490				break;
 491		}
 492		if (new_deq == cur_td->last_trb)
 493			td_last_trb_found = true;
 494
 495		if (cycle_found &&
 496		    TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) &&
 497		    new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE))
 498			state->new_cycle_state ^= 0x1;
 499
 500		next_trb(xhci, ep_ring, &new_seg, &new_deq);
 501
 502		/* Search wrapped around, bail out */
 503		if (new_deq == ep->ring->dequeue) {
 504			xhci_err(xhci, "Error: Failed finding new dequeue state\n");
 505			state->new_deq_seg = NULL;
 506			state->new_deq_ptr = NULL;
 507			return;
 508		}
 509
 510	} while (!cycle_found || !td_last_trb_found);
 511
 512	state->new_deq_seg = new_seg;
 513	state->new_deq_ptr = new_deq;
 514
 515	/* Don't update the ring cycle state for the producer (us). */
 516	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 517			"Cycle state = 0x%x", state->new_cycle_state);
 518
 519	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 520			"New dequeue segment = %p (virtual)",
 521			state->new_deq_seg);
 522	addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
 523	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 524			"New dequeue pointer = 0x%llx (DMA)",
 525			(unsigned long long) addr);
 526}
 527
 528/* flip_cycle means flip the cycle bit of all but the first and last TRB.
 529 * (The last TRB actually points to the ring enqueue pointer, which is not part
 530 * of this TD.)  This is used to remove partially enqueued isoc TDs from a ring.
 531 */
 532static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
 533		struct xhci_td *cur_td, bool flip_cycle)
 534{
 535	struct xhci_segment *cur_seg;
 536	union xhci_trb *cur_trb;
 537
 538	for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
 539			true;
 540			next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
 541		if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
 542			/* Unchain any chained Link TRBs, but
 543			 * leave the pointers intact.
 544			 */
 545			cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
 546			/* Flip the cycle bit (link TRBs can't be the first
 547			 * or last TRB).
 548			 */
 549			if (flip_cycle)
 550				cur_trb->generic.field[3] ^=
 551					cpu_to_le32(TRB_CYCLE);
 552			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 553					"Cancel (unchain) link TRB");
 554			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 555					"Address = %p (0x%llx dma); "
 556					"in seg %p (0x%llx dma)",
 557					cur_trb,
 558					(unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
 559					cur_seg,
 560					(unsigned long long)cur_seg->dma);
 561		} else {
 562			cur_trb->generic.field[0] = 0;
 563			cur_trb->generic.field[1] = 0;
 564			cur_trb->generic.field[2] = 0;
 565			/* Preserve only the cycle bit of this TRB */
 566			cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
 567			/* Flip the cycle bit except on the first or last TRB */
 568			if (flip_cycle && cur_trb != cur_td->first_trb &&
 569					cur_trb != cur_td->last_trb)
 570				cur_trb->generic.field[3] ^=
 571					cpu_to_le32(TRB_CYCLE);
 572			cur_trb->generic.field[3] |= cpu_to_le32(
 573				TRB_TYPE(TRB_TR_NOOP));
 574			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 575					"TRB to noop at offset 0x%llx",
 576					(unsigned long long)
 577					xhci_trb_virt_to_dma(cur_seg, cur_trb));
 
 
 578		}
 579		if (cur_trb == cur_td->last_trb)
 580			break;
 581	}
 582}
 583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 584static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
 585		struct xhci_virt_ep *ep)
 586{
 587	ep->ep_state &= ~EP_HALT_PENDING;
 588	/* Can't del_timer_sync in interrupt, so we attempt to cancel.  If the
 589	 * timer is running on another CPU, we don't decrement stop_cmds_pending
 590	 * (since we didn't successfully stop the watchdog timer).
 591	 */
 592	if (del_timer(&ep->stop_cmd_timer))
 593		ep->stop_cmds_pending--;
 594}
 595
 596/* Must be called with xhci->lock held in interrupt context */
 597static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
 598		struct xhci_td *cur_td, int status)
 599{
 600	struct usb_hcd *hcd;
 601	struct urb	*urb;
 602	struct urb_priv	*urb_priv;
 603
 604	urb = cur_td->urb;
 605	urb_priv = urb->hcpriv;
 606	urb_priv->td_cnt++;
 607	hcd = bus_to_hcd(urb->dev->bus);
 608
 609	/* Only giveback urb when this is the last td in urb */
 610	if (urb_priv->td_cnt == urb_priv->length) {
 611		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
 612			xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
 613			if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs	== 0) {
 614				if (xhci->quirks & XHCI_AMD_PLL_FIX)
 615					usb_amd_quirk_pll_enable();
 616			}
 617		}
 618		usb_hcd_unlink_urb_from_ep(hcd, urb);
 619
 620		spin_unlock(&xhci->lock);
 621		usb_hcd_giveback_urb(hcd, urb, status);
 622		xhci_urb_free_priv(urb_priv);
 623		spin_lock(&xhci->lock);
 624	}
 625}
 626
 627/*
 628 * When we get a command completion for a Stop Endpoint Command, we need to
 629 * unlink any cancelled TDs from the ring.  There are two ways to do that:
 630 *
 631 *  1. If the HW was in the middle of processing the TD that needs to be
 632 *     cancelled, then we must move the ring's dequeue pointer past the last TRB
 633 *     in the TD with a Set Dequeue Pointer Command.
 634 *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
 635 *     bit cleared) so that the HW will skip over them.
 636 */
 637static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
 638		union xhci_trb *trb, struct xhci_event_cmd *event)
 639{
 
 640	unsigned int ep_index;
 
 641	struct xhci_ring *ep_ring;
 642	struct xhci_virt_ep *ep;
 643	struct list_head *entry;
 644	struct xhci_td *cur_td = NULL;
 645	struct xhci_td *last_unlinked_td;
 646
 647	struct xhci_dequeue_state deq_state;
 648
 649	if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
 650		if (!xhci->devs[slot_id])
 
 
 
 
 
 
 
 651			xhci_warn(xhci, "Stop endpoint command "
 652				"completion for disabled slot %u\n",
 653				slot_id);
 654		return;
 655	}
 656
 657	memset(&deq_state, 0, sizeof(deq_state));
 
 658	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
 659	ep = &xhci->devs[slot_id]->eps[ep_index];
 660
 661	if (list_empty(&ep->cancelled_td_list)) {
 662		xhci_stop_watchdog_timer_in_irq(xhci, ep);
 663		ep->stopped_td = NULL;
 
 664		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
 665		return;
 666	}
 667
 668	/* Fix up the ep ring first, so HW stops executing cancelled TDs.
 669	 * We have the xHCI lock, so nothing can modify this list until we drop
 670	 * it.  We're also in the event handler, so we can't get re-interrupted
 671	 * if another Stop Endpoint command completes
 672	 */
 673	list_for_each(entry, &ep->cancelled_td_list) {
 674		cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
 675		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 676				"Removing canceled TD starting at 0x%llx (dma).",
 677				(unsigned long long)xhci_trb_virt_to_dma(
 678					cur_td->start_seg, cur_td->first_trb));
 679		ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
 680		if (!ep_ring) {
 681			/* This shouldn't happen unless a driver is mucking
 682			 * with the stream ID after submission.  This will
 683			 * leave the TD on the hardware ring, and the hardware
 684			 * will try to execute it, and may access a buffer
 685			 * that has already been freed.  In the best case, the
 686			 * hardware will execute it, and the event handler will
 687			 * ignore the completion event for that TD, since it was
 688			 * removed from the td_list for that endpoint.  In
 689			 * short, don't muck with the stream ID after
 690			 * submission.
 691			 */
 692			xhci_warn(xhci, "WARN Cancelled URB %p "
 693					"has invalid stream ID %u.\n",
 694					cur_td->urb,
 695					cur_td->urb->stream_id);
 696			goto remove_finished_td;
 697		}
 698		/*
 699		 * If we stopped on the TD we need to cancel, then we have to
 700		 * move the xHC endpoint ring dequeue pointer past this TD.
 701		 */
 702		if (cur_td == ep->stopped_td)
 703			xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
 704					cur_td->urb->stream_id,
 705					cur_td, &deq_state);
 706		else
 707			td_to_noop(xhci, ep_ring, cur_td, false);
 708remove_finished_td:
 709		/*
 710		 * The event handler won't see a completion for this TD anymore,
 711		 * so remove it from the endpoint ring's TD list.  Keep it in
 712		 * the cancelled TD list for URB completion later.
 713		 */
 714		list_del_init(&cur_td->td_list);
 715	}
 716	last_unlinked_td = cur_td;
 717	xhci_stop_watchdog_timer_in_irq(xhci, ep);
 718
 719	/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
 720	if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
 721		xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
 722				ep->stopped_td->urb->stream_id, &deq_state);
 
 
 723		xhci_ring_cmd_db(xhci);
 724	} else {
 725		/* Otherwise ring the doorbell(s) to restart queued transfers */
 726		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
 727	}
 728
 729	ep->stopped_td = NULL;
 
 730
 731	/*
 732	 * Drop the lock and complete the URBs in the cancelled TD list.
 733	 * New TDs to be cancelled might be added to the end of the list before
 734	 * we can complete all the URBs for the TDs we already unlinked.
 735	 * So stop when we've completed the URB for the last TD we unlinked.
 736	 */
 737	do {
 738		cur_td = list_entry(ep->cancelled_td_list.next,
 739				struct xhci_td, cancelled_td_list);
 740		list_del_init(&cur_td->cancelled_td_list);
 741
 742		/* Clean up the cancelled URB */
 743		/* Doesn't matter what we pass for status, since the core will
 744		 * just overwrite it (because the URB has been unlinked).
 745		 */
 746		xhci_giveback_urb_in_irq(xhci, cur_td, 0);
 747
 748		/* Stop processing the cancelled list if the watchdog timer is
 749		 * running.
 750		 */
 751		if (xhci->xhc_state & XHCI_STATE_DYING)
 752			return;
 753	} while (cur_td != last_unlinked_td);
 754
 755	/* Return to the event handler with xhci->lock re-acquired */
 756}
 757
 758static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
 759{
 760	struct xhci_td *cur_td;
 761
 762	while (!list_empty(&ring->td_list)) {
 763		cur_td = list_first_entry(&ring->td_list,
 764				struct xhci_td, td_list);
 765		list_del_init(&cur_td->td_list);
 766		if (!list_empty(&cur_td->cancelled_td_list))
 767			list_del_init(&cur_td->cancelled_td_list);
 768		xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
 769	}
 770}
 771
 772static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
 773		int slot_id, int ep_index)
 774{
 775	struct xhci_td *cur_td;
 776	struct xhci_virt_ep *ep;
 777	struct xhci_ring *ring;
 778
 779	ep = &xhci->devs[slot_id]->eps[ep_index];
 780	if ((ep->ep_state & EP_HAS_STREAMS) ||
 781			(ep->ep_state & EP_GETTING_NO_STREAMS)) {
 782		int stream_id;
 783
 784		for (stream_id = 0; stream_id < ep->stream_info->num_streams;
 785				stream_id++) {
 786			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 787					"Killing URBs for slot ID %u, ep index %u, stream %u",
 788					slot_id, ep_index, stream_id + 1);
 789			xhci_kill_ring_urbs(xhci,
 790					ep->stream_info->stream_rings[stream_id]);
 791		}
 792	} else {
 793		ring = ep->ring;
 794		if (!ring)
 795			return;
 796		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 797				"Killing URBs for slot ID %u, ep index %u",
 798				slot_id, ep_index);
 799		xhci_kill_ring_urbs(xhci, ring);
 800	}
 801	while (!list_empty(&ep->cancelled_td_list)) {
 802		cur_td = list_first_entry(&ep->cancelled_td_list,
 803				struct xhci_td, cancelled_td_list);
 804		list_del_init(&cur_td->cancelled_td_list);
 805		xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
 806	}
 807}
 808
 809/* Watchdog timer function for when a stop endpoint command fails to complete.
 810 * In this case, we assume the host controller is broken or dying or dead.  The
 811 * host may still be completing some other events, so we have to be careful to
 812 * let the event ring handler and the URB dequeueing/enqueueing functions know
 813 * through xhci->state.
 814 *
 815 * The timer may also fire if the host takes a very long time to respond to the
 816 * command, and the stop endpoint command completion handler cannot delete the
 817 * timer before the timer function is called.  Another endpoint cancellation may
 818 * sneak in before the timer function can grab the lock, and that may queue
 819 * another stop endpoint command and add the timer back.  So we cannot use a
 820 * simple flag to say whether there is a pending stop endpoint command for a
 821 * particular endpoint.
 822 *
 823 * Instead we use a combination of that flag and a counter for the number of
 824 * pending stop endpoint commands.  If the timer is the tail end of the last
 825 * stop endpoint command, and the endpoint's command is still pending, we assume
 826 * the host is dying.
 827 */
 828void xhci_stop_endpoint_command_watchdog(unsigned long arg)
 829{
 830	struct xhci_hcd *xhci;
 831	struct xhci_virt_ep *ep;
 
 
 
 832	int ret, i, j;
 833	unsigned long flags;
 834
 835	ep = (struct xhci_virt_ep *) arg;
 836	xhci = ep->xhci;
 837
 838	spin_lock_irqsave(&xhci->lock, flags);
 839
 840	ep->stop_cmds_pending--;
 841	if (xhci->xhc_state & XHCI_STATE_DYING) {
 842		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 843				"Stop EP timer ran, but another timer marked "
 844				"xHCI as DYING, exiting.");
 845		spin_unlock_irqrestore(&xhci->lock, flags);
 846		return;
 847	}
 848	if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
 849		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 850				"Stop EP timer ran, but no command pending, "
 851				"exiting.");
 852		spin_unlock_irqrestore(&xhci->lock, flags);
 853		return;
 854	}
 855
 856	xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
 857	xhci_warn(xhci, "Assuming host is dying, halting host.\n");
 858	/* Oops, HC is dead or dying or at least not responding to the stop
 859	 * endpoint command.
 860	 */
 861	xhci->xhc_state |= XHCI_STATE_DYING;
 862	/* Disable interrupts from the host controller and start halting it */
 863	xhci_quiesce(xhci);
 864	spin_unlock_irqrestore(&xhci->lock, flags);
 865
 866	ret = xhci_halt(xhci);
 867
 868	spin_lock_irqsave(&xhci->lock, flags);
 869	if (ret < 0) {
 870		/* This is bad; the host is not responding to commands and it's
 871		 * not allowing itself to be halted.  At least interrupts are
 872		 * disabled. If we call usb_hc_died(), it will attempt to
 873		 * disconnect all device drivers under this host.  Those
 874		 * disconnect() methods will wait for all URBs to be unlinked,
 875		 * so we must complete them.
 876		 */
 877		xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
 878		xhci_warn(xhci, "Completing active URBs anyway.\n");
 879		/* We could turn all TDs on the rings to no-ops.  This won't
 880		 * help if the host has cached part of the ring, and is slow if
 881		 * we want to preserve the cycle bit.  Skip it and hope the host
 882		 * doesn't touch the memory.
 883		 */
 884	}
 885	for (i = 0; i < MAX_HC_SLOTS; i++) {
 886		if (!xhci->devs[i])
 887			continue;
 888		for (j = 0; j < 31; j++)
 889			xhci_kill_endpoint_urbs(xhci, i, j);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 890	}
 891	spin_unlock_irqrestore(&xhci->lock, flags);
 892	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 893			"Calling usb_hc_died()");
 894	usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
 895	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 896			"xHCI host controller is dead.");
 897}
 898
 899
 900static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
 901		struct xhci_virt_device *dev,
 902		struct xhci_ring *ep_ring,
 903		unsigned int ep_index)
 904{
 905	union xhci_trb *dequeue_temp;
 906	int num_trbs_free_temp;
 907	bool revert = false;
 908
 909	num_trbs_free_temp = ep_ring->num_trbs_free;
 910	dequeue_temp = ep_ring->dequeue;
 911
 912	/* If we get two back-to-back stalls, and the first stalled transfer
 913	 * ends just before a link TRB, the dequeue pointer will be left on
 914	 * the link TRB by the code in the while loop.  So we have to update
 915	 * the dequeue pointer one segment further, or we'll jump off
 916	 * the segment into la-la-land.
 917	 */
 918	if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
 919		ep_ring->deq_seg = ep_ring->deq_seg->next;
 920		ep_ring->dequeue = ep_ring->deq_seg->trbs;
 921	}
 922
 923	while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
 924		/* We have more usable TRBs */
 925		ep_ring->num_trbs_free++;
 926		ep_ring->dequeue++;
 927		if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
 928				ep_ring->dequeue)) {
 929			if (ep_ring->dequeue ==
 930					dev->eps[ep_index].queued_deq_ptr)
 931				break;
 932			ep_ring->deq_seg = ep_ring->deq_seg->next;
 933			ep_ring->dequeue = ep_ring->deq_seg->trbs;
 934		}
 935		if (ep_ring->dequeue == dequeue_temp) {
 936			revert = true;
 937			break;
 938		}
 939	}
 940
 941	if (revert) {
 942		xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
 943		ep_ring->num_trbs_free = num_trbs_free_temp;
 944	}
 945}
 946
 947/*
 948 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
 949 * we need to clear the set deq pending flag in the endpoint ring state, so that
 950 * the TD queueing code can ring the doorbell again.  We also need to ring the
 951 * endpoint doorbell to restart the ring, but only if there aren't more
 952 * cancellations pending.
 953 */
 954static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
 955		union xhci_trb *trb, u32 cmd_comp_code)
 
 956{
 
 957	unsigned int ep_index;
 958	unsigned int stream_id;
 959	struct xhci_ring *ep_ring;
 960	struct xhci_virt_device *dev;
 961	struct xhci_virt_ep *ep;
 962	struct xhci_ep_ctx *ep_ctx;
 963	struct xhci_slot_ctx *slot_ctx;
 964
 
 965	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
 966	stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
 967	dev = xhci->devs[slot_id];
 968	ep = &dev->eps[ep_index];
 969
 970	ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
 971	if (!ep_ring) {
 972		xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
 
 973				stream_id);
 974		/* XXX: Harmless??? */
 975		goto cleanup;
 
 976	}
 977
 978	ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
 979	slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
 980
 981	if (cmd_comp_code != COMP_SUCCESS) {
 982		unsigned int ep_state;
 983		unsigned int slot_state;
 984
 985		switch (cmd_comp_code) {
 986		case COMP_TRB_ERR:
 987			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
 
 988			break;
 989		case COMP_CTX_STATE:
 990			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
 
 991			ep_state = le32_to_cpu(ep_ctx->ep_info);
 992			ep_state &= EP_STATE_MASK;
 993			slot_state = le32_to_cpu(slot_ctx->dev_state);
 994			slot_state = GET_SLOT_STATE(slot_state);
 995			xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
 996					"Slot state = %u, EP state = %u",
 997					slot_state, ep_state);
 998			break;
 999		case COMP_EBADSLT:
1000			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1001					slot_id);
1002			break;
1003		default:
1004			xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1005					cmd_comp_code);
 
1006			break;
1007		}
1008		/* OK what do we do now?  The endpoint state is hosed, and we
1009		 * should never get to this point if the synchronization between
1010		 * queueing, and endpoint state are correct.  This might happen
1011		 * if the device gets disconnected after we've finished
1012		 * cancelling URBs, which might not be an error...
1013		 */
1014	} else {
1015		u64 deq;
1016		/* 4.6.10 deq ptr is written to the stream ctx for streams */
1017		if (ep->ep_state & EP_HAS_STREAMS) {
1018			struct xhci_stream_ctx *ctx =
1019				&ep->stream_info->stream_ctx_array[stream_id];
1020			deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1021		} else {
1022			deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1023		}
1024		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1025			"Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1026		if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1027					 ep->queued_deq_ptr) == deq) {
1028			/* Update the ring's dequeue segment and dequeue pointer
1029			 * to reflect the new position.
1030			 */
1031			update_ring_for_set_deq_completion(xhci, dev,
1032				ep_ring, ep_index);
1033		} else {
1034			xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
 
1035			xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1036				  ep->queued_deq_seg, ep->queued_deq_ptr);
 
1037		}
1038	}
1039
1040cleanup:
1041	dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1042	dev->eps[ep_index].queued_deq_seg = NULL;
1043	dev->eps[ep_index].queued_deq_ptr = NULL;
1044	/* Restart any rings with pending URBs */
1045	ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1046}
1047
1048static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1049		union xhci_trb *trb, u32 cmd_comp_code)
 
1050{
 
1051	unsigned int ep_index;
1052
 
1053	ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1054	/* This command will only fail if the endpoint wasn't halted,
1055	 * but we don't care.
1056	 */
1057	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1058		"Ignoring reset ep completion code of %u", cmd_comp_code);
1059
1060	/* HW with the reset endpoint quirk needs to have a configure endpoint
1061	 * command complete before the endpoint can be used.  Queue that here
1062	 * because the HW can't handle two commands being queued in a row.
1063	 */
1064	if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1065		struct xhci_command *command;
1066		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1067		if (!command) {
1068			xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n");
1069			return;
1070		}
1071		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1072				"Queueing configure endpoint command");
1073		xhci_queue_configure_endpoint(xhci, command,
1074				xhci->devs[slot_id]->in_ctx->dma, slot_id,
1075				false);
1076		xhci_ring_cmd_db(xhci);
1077	} else {
1078		/* Clear our internal halted state */
1079		xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1080	}
1081}
1082
1083static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1084		u32 cmd_comp_code)
1085{
1086	if (cmd_comp_code == COMP_SUCCESS)
1087		xhci->slot_id = slot_id;
1088	else
1089		xhci->slot_id = 0;
1090}
1091
1092static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1093{
1094	struct xhci_virt_device *virt_dev;
1095
1096	virt_dev = xhci->devs[slot_id];
1097	if (!virt_dev)
1098		return;
1099	if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1100		/* Delete default control endpoint resources */
1101		xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1102	xhci_free_virt_device(xhci, slot_id);
1103}
1104
1105static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1106		struct xhci_event_cmd *event, u32 cmd_comp_code)
1107{
1108	struct xhci_virt_device *virt_dev;
1109	struct xhci_input_control_ctx *ctrl_ctx;
1110	unsigned int ep_index;
1111	unsigned int ep_state;
1112	u32 add_flags, drop_flags;
1113
1114	/*
1115	 * Configure endpoint commands can come from the USB core
1116	 * configuration or alt setting changes, or because the HW
1117	 * needed an extra configure endpoint command after a reset
1118	 * endpoint command or streams were being configured.
1119	 * If the command was for a halted endpoint, the xHCI driver
1120	 * is not waiting on the configure endpoint command.
1121	 */
1122	virt_dev = xhci->devs[slot_id];
1123	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1124	if (!ctrl_ctx) {
1125		xhci_warn(xhci, "Could not get input context, bad type.\n");
1126		return;
1127	}
1128
1129	add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1130	drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1131	/* Input ctx add_flags are the endpoint index plus one */
1132	ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1133
1134	/* A usb_set_interface() call directly after clearing a halted
1135	 * condition may race on this quirky hardware.  Not worth
1136	 * worrying about, since this is prototype hardware.  Not sure
1137	 * if this will work for streams, but streams support was
1138	 * untested on this prototype.
1139	 */
1140	if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1141			ep_index != (unsigned int) -1 &&
1142			add_flags - SLOT_FLAG == drop_flags) {
1143		ep_state = virt_dev->eps[ep_index].ep_state;
1144		if (!(ep_state & EP_HALTED))
1145			return;
1146		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1147				"Completed config ep cmd - "
1148				"last ep index = %d, state = %d",
1149				ep_index, ep_state);
1150		/* Clear internal halted state and restart ring(s) */
1151		virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1152		ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1153		return;
1154	}
1155	return;
1156}
1157
1158static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
 
 
 
 
 
1159		struct xhci_event_cmd *event)
1160{
1161	xhci_dbg(xhci, "Completed reset device command.\n");
1162	if (!xhci->devs[slot_id])
1163		xhci_warn(xhci, "Reset device command completion "
1164				"for disabled slot %u\n", slot_id);
1165}
1166
1167static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1168		struct xhci_event_cmd *event)
1169{
1170	if (!(xhci->quirks & XHCI_NEC_HOST)) {
1171		xhci->error_bitmask |= 1 << 6;
1172		return;
1173	}
1174	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1175			"NEC firmware version %2x.%02x",
1176			NEC_FW_MAJOR(le32_to_cpu(event->status)),
1177			NEC_FW_MINOR(le32_to_cpu(event->status)));
1178}
1179
1180static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1181{
1182	list_del(&cmd->cmd_list);
 
1183
1184	if (cmd->completion) {
1185		cmd->status = status;
1186		complete(cmd->completion);
1187	} else {
1188		kfree(cmd);
1189	}
1190}
1191
1192void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1193{
1194	struct xhci_command *cur_cmd, *tmp_cmd;
1195	list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1196		xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT);
1197}
1198
1199/*
1200 * Turn all commands on command ring with status set to "aborted" to no-op trbs.
1201 * If there are other commands waiting then restart the ring and kick the timer.
1202 * This must be called with command ring stopped and xhci->lock held.
1203 */
1204static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1205					 struct xhci_command *cur_cmd)
1206{
1207	struct xhci_command *i_cmd, *tmp_cmd;
1208	u32 cycle_state;
1209
1210	/* Turn all aborted commands in list to no-ops, then restart */
1211	list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list,
1212				 cmd_list) {
1213
1214		if (i_cmd->status != COMP_CMD_ABORT)
1215			continue;
1216
1217		i_cmd->status = COMP_CMD_STOP;
1218
1219		xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
1220			 i_cmd->command_trb);
1221		/* get cycle state from the original cmd trb */
1222		cycle_state = le32_to_cpu(
1223			i_cmd->command_trb->generic.field[3]) &	TRB_CYCLE;
1224		/* modify the command trb to no-op command */
1225		i_cmd->command_trb->generic.field[0] = 0;
1226		i_cmd->command_trb->generic.field[1] = 0;
1227		i_cmd->command_trb->generic.field[2] = 0;
1228		i_cmd->command_trb->generic.field[3] = cpu_to_le32(
1229			TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1230
1231		/*
1232		 * caller waiting for completion is called when command
1233		 *  completion event is received for these no-op commands
1234		 */
1235	}
1236
1237	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1238
1239	/* ring command ring doorbell to restart the command ring */
1240	if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
1241	    !(xhci->xhc_state & XHCI_STATE_DYING)) {
1242		xhci->current_cmd = cur_cmd;
1243		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1244		xhci_ring_cmd_db(xhci);
1245	}
1246	return;
1247}
1248
1249
1250void xhci_handle_command_timeout(unsigned long data)
1251{
1252	struct xhci_hcd *xhci;
1253	int ret;
1254	unsigned long flags;
1255	u64 hw_ring_state;
1256	struct xhci_command *cur_cmd = NULL;
1257	xhci = (struct xhci_hcd *) data;
1258
1259	/* mark this command to be cancelled */
1260	spin_lock_irqsave(&xhci->lock, flags);
1261	if (xhci->current_cmd) {
1262		cur_cmd = xhci->current_cmd;
1263		cur_cmd->status = COMP_CMD_ABORT;
1264	}
1265
1266
1267	/* Make sure command ring is running before aborting it */
1268	hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1269	if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1270	    (hw_ring_state & CMD_RING_RUNNING))  {
1271
1272		spin_unlock_irqrestore(&xhci->lock, flags);
1273		xhci_dbg(xhci, "Command timeout\n");
1274		ret = xhci_abort_cmd_ring(xhci);
1275		if (unlikely(ret == -ESHUTDOWN)) {
1276			xhci_err(xhci, "Abort command ring failed\n");
1277			xhci_cleanup_command_queue(xhci);
1278			usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1279			xhci_dbg(xhci, "xHCI host controller is dead.\n");
1280		}
1281		return;
1282	}
1283	/* command timeout on stopped ring, ring can't be aborted */
1284	xhci_dbg(xhci, "Command timeout on stopped ring\n");
1285	xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1286	spin_unlock_irqrestore(&xhci->lock, flags);
1287	return;
1288}
1289
1290static void handle_cmd_completion(struct xhci_hcd *xhci,
1291		struct xhci_event_cmd *event)
1292{
1293	int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1294	u64 cmd_dma;
1295	dma_addr_t cmd_dequeue_dma;
1296	u32 cmd_comp_code;
1297	union xhci_trb *cmd_trb;
1298	struct xhci_command *cmd;
1299	u32 cmd_type;
 
1300
1301	cmd_dma = le64_to_cpu(event->cmd_trb);
1302	cmd_trb = xhci->cmd_ring->dequeue;
1303	cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1304			cmd_trb);
1305	/* Is the command ring deq ptr out of sync with the deq seg ptr? */
1306	if (cmd_dequeue_dma == 0) {
1307		xhci->error_bitmask |= 1 << 4;
1308		return;
1309	}
1310	/* Does the DMA address match our internal dequeue pointer address? */
1311	if (cmd_dma != (u64) cmd_dequeue_dma) {
1312		xhci->error_bitmask |= 1 << 5;
1313		return;
1314	}
1315
1316	cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list);
1317
1318	if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1319		xhci_err(xhci,
1320			 "Command completion event does not match command\n");
1321		return;
1322	}
1323
1324	del_timer(&xhci->cmd_timer);
1325
1326	trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event);
1327
1328	cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1329
1330	/* If CMD ring stopped we own the trbs between enqueue and dequeue */
1331	if (cmd_comp_code == COMP_CMD_STOP) {
1332		xhci_handle_stopped_cmd_ring(xhci, cmd);
1333		return;
1334	}
1335	/*
1336	 * Host aborted the command ring, check if the current command was
1337	 * supposed to be aborted, otherwise continue normally.
1338	 * The command ring is stopped now, but the xHC will issue a Command
1339	 * Ring Stopped event which will cause us to restart it.
1340	 */
1341	if (cmd_comp_code == COMP_CMD_ABORT) {
1342		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1343		if (cmd->status == COMP_CMD_ABORT)
1344			goto event_handled;
1345	}
1346
1347	cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1348	switch (cmd_type) {
1349	case TRB_ENABLE_SLOT:
1350		xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code);
1351		break;
1352	case TRB_DISABLE_SLOT:
1353		xhci_handle_cmd_disable_slot(xhci, slot_id);
 
 
 
 
 
 
1354		break;
1355	case TRB_CONFIG_EP:
1356		if (!cmd->completion)
1357			xhci_handle_cmd_config_ep(xhci, slot_id, event,
1358						  cmd_comp_code);
1359		break;
1360	case TRB_EVAL_CONTEXT:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1361		break;
1362	case TRB_ADDR_DEV:
 
 
1363		break;
1364	case TRB_STOP_RING:
1365		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1366				le32_to_cpu(cmd_trb->generic.field[3])));
1367		xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1368		break;
1369	case TRB_SET_DEQ:
1370		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1371				le32_to_cpu(cmd_trb->generic.field[3])));
1372		xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1373		break;
1374	case TRB_CMD_NOOP:
1375		/* Is this an aborted command turned to NO-OP? */
1376		if (cmd->status == COMP_CMD_STOP)
1377			cmd_comp_code = COMP_CMD_STOP;
1378		break;
1379	case TRB_RESET_EP:
1380		WARN_ON(slot_id != TRB_TO_SLOT_ID(
1381				le32_to_cpu(cmd_trb->generic.field[3])));
1382		xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1383		break;
1384	case TRB_RESET_DEV:
1385		/* SLOT_ID field in reset device cmd completion event TRB is 0.
1386		 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1387		 */
1388		slot_id = TRB_TO_SLOT_ID(
1389				le32_to_cpu(cmd_trb->generic.field[3]));
1390		xhci_handle_cmd_reset_dev(xhci, slot_id, event);
 
 
 
 
 
1391		break;
1392	case TRB_NEC_GET_FW:
1393		xhci_handle_cmd_nec_get_fw(xhci, event);
 
 
 
 
 
 
1394		break;
1395	default:
1396		/* Skip over unknown commands on the event ring */
1397		xhci->error_bitmask |= 1 << 6;
1398		break;
1399	}
1400
1401	/* restart timer if this wasn't the last command */
1402	if (cmd->cmd_list.next != &xhci->cmd_list) {
1403		xhci->current_cmd = list_entry(cmd->cmd_list.next,
1404					       struct xhci_command, cmd_list);
1405		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1406	}
1407
1408event_handled:
1409	xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1410
1411	inc_deq(xhci, xhci->cmd_ring);
1412}
1413
1414static void handle_vendor_event(struct xhci_hcd *xhci,
1415		union xhci_trb *event)
1416{
1417	u32 trb_type;
1418
1419	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1420	xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1421	if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1422		handle_cmd_completion(xhci, &event->event_cmd);
1423}
1424
1425/* @port_id: the one-based port ID from the hardware (indexed from array of all
1426 * port registers -- USB 3.0 and USB 2.0).
1427 *
1428 * Returns a zero-based port number, which is suitable for indexing into each of
1429 * the split roothubs' port arrays and bus state arrays.
1430 * Add one to it in order to call xhci_find_slot_id_by_port.
1431 */
1432static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1433		struct xhci_hcd *xhci, u32 port_id)
1434{
1435	unsigned int i;
1436	unsigned int num_similar_speed_ports = 0;
1437
1438	/* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1439	 * and usb2_ports are 0-based indexes.  Count the number of similar
1440	 * speed ports, up to 1 port before this port.
1441	 */
1442	for (i = 0; i < (port_id - 1); i++) {
1443		u8 port_speed = xhci->port_array[i];
1444
1445		/*
1446		 * Skip ports that don't have known speeds, or have duplicate
1447		 * Extended Capabilities port speed entries.
1448		 */
1449		if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1450			continue;
1451
1452		/*
1453		 * USB 3.0 ports are always under a USB 3.0 hub.  USB 2.0 and
1454		 * 1.1 ports are under the USB 2.0 hub.  If the port speed
1455		 * matches the device speed, it's a similar speed port.
1456		 */
1457		if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3))
1458			num_similar_speed_ports++;
1459	}
1460	return num_similar_speed_ports;
1461}
1462
1463static void handle_device_notification(struct xhci_hcd *xhci,
1464		union xhci_trb *event)
1465{
1466	u32 slot_id;
1467	struct usb_device *udev;
1468
1469	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1470	if (!xhci->devs[slot_id]) {
1471		xhci_warn(xhci, "Device Notification event for "
1472				"unused slot %u\n", slot_id);
1473		return;
1474	}
1475
1476	xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1477			slot_id);
1478	udev = xhci->devs[slot_id]->udev;
1479	if (udev && udev->parent)
1480		usb_wakeup_notification(udev->parent, udev->portnum);
1481}
1482
1483static void handle_port_status(struct xhci_hcd *xhci,
1484		union xhci_trb *event)
1485{
1486	struct usb_hcd *hcd;
1487	u32 port_id;
1488	u32 temp, temp1;
1489	int max_ports;
1490	int slot_id;
1491	unsigned int faked_port_index;
1492	u8 major_revision;
1493	struct xhci_bus_state *bus_state;
1494	__le32 __iomem **port_array;
1495	bool bogus_port_status = false;
1496
1497	/* Port status change events always have a successful completion code */
1498	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1499		xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1500		xhci->error_bitmask |= 1 << 8;
1501	}
1502	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1503	xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1504
1505	max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1506	if ((port_id <= 0) || (port_id > max_ports)) {
1507		xhci_warn(xhci, "Invalid port id %d\n", port_id);
1508		inc_deq(xhci, xhci->event_ring);
1509		return;
1510	}
1511
1512	/* Figure out which usb_hcd this port is attached to:
1513	 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1514	 */
1515	major_revision = xhci->port_array[port_id - 1];
1516
1517	/* Find the right roothub. */
1518	hcd = xhci_to_hcd(xhci);
1519	if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3))
1520		hcd = xhci->shared_hcd;
1521
1522	if (major_revision == 0) {
1523		xhci_warn(xhci, "Event for port %u not in "
1524				"Extended Capabilities, ignoring.\n",
1525				port_id);
1526		bogus_port_status = true;
1527		goto cleanup;
1528	}
1529	if (major_revision == DUPLICATE_ENTRY) {
1530		xhci_warn(xhci, "Event for port %u duplicated in"
1531				"Extended Capabilities, ignoring.\n",
1532				port_id);
1533		bogus_port_status = true;
1534		goto cleanup;
1535	}
1536
1537	/*
1538	 * Hardware port IDs reported by a Port Status Change Event include USB
1539	 * 3.0 and USB 2.0 ports.  We want to check if the port has reported a
1540	 * resume event, but we first need to translate the hardware port ID
1541	 * into the index into the ports on the correct split roothub, and the
1542	 * correct bus_state structure.
1543	 */
 
 
 
 
1544	bus_state = &xhci->bus_state[hcd_index(hcd)];
1545	if (hcd->speed >= HCD_USB3)
1546		port_array = xhci->usb3_ports;
1547	else
1548		port_array = xhci->usb2_ports;
1549	/* Find the faked port hub number */
1550	faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1551			port_id);
1552
1553	temp = readl(port_array[faked_port_index]);
1554	if (hcd->state == HC_STATE_SUSPENDED) {
1555		xhci_dbg(xhci, "resume root hub\n");
1556		usb_hcd_resume_root_hub(hcd);
1557	}
1558
1559	if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE)
1560		bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
1561
1562	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1563		xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1564
1565		temp1 = readl(&xhci->op_regs->command);
1566		if (!(temp1 & CMD_RUN)) {
1567			xhci_warn(xhci, "xHC is not running.\n");
1568			goto cleanup;
1569		}
1570
1571		if (DEV_SUPERSPEED_ANY(temp)) {
1572			xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1573			/* Set a flag to say the port signaled remote wakeup,
1574			 * so we can tell the difference between the end of
1575			 * device and host initiated resume.
1576			 */
1577			bus_state->port_remote_wakeup |= 1 << faked_port_index;
1578			xhci_test_and_clear_bit(xhci, port_array,
1579					faked_port_index, PORT_PLC);
1580			xhci_set_link_state(xhci, port_array, faked_port_index,
1581						XDEV_U0);
1582			/* Need to wait until the next link state change
1583			 * indicates the device is actually in U0.
1584			 */
1585			bogus_port_status = true;
1586			goto cleanup;
1587		} else if (!test_bit(faked_port_index,
1588				     &bus_state->resuming_ports)) {
 
 
1589			xhci_dbg(xhci, "resume HS port %d\n", port_id);
1590			bus_state->resume_done[faked_port_index] = jiffies +
1591				msecs_to_jiffies(USB_RESUME_TIMEOUT);
1592			set_bit(faked_port_index, &bus_state->resuming_ports);
1593			mod_timer(&hcd->rh_timer,
1594				  bus_state->resume_done[faked_port_index]);
1595			/* Do the rest in GetPortStatus */
1596		}
1597	}
1598
1599	if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1600			DEV_SUPERSPEED_ANY(temp)) {
1601		xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1602		/* We've just brought the device into U0 through either the
1603		 * Resume state after a device remote wakeup, or through the
1604		 * U3Exit state after a host-initiated resume.  If it's a device
1605		 * initiated remote wake, don't pass up the link state change,
1606		 * so the roothub behavior is consistent with external
1607		 * USB 3.0 hub behavior.
1608		 */
1609		slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1610				faked_port_index + 1);
1611		if (slot_id && xhci->devs[slot_id])
1612			xhci_ring_device(xhci, slot_id);
1613		if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1614			bus_state->port_remote_wakeup &=
1615				~(1 << faked_port_index);
1616			xhci_test_and_clear_bit(xhci, port_array,
1617					faked_port_index, PORT_PLC);
1618			usb_wakeup_notification(hcd->self.root_hub,
1619					faked_port_index + 1);
1620			bogus_port_status = true;
1621			goto cleanup;
1622		}
1623	}
1624
1625	/*
1626	 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1627	 * RExit to a disconnect state).  If so, let the the driver know it's
1628	 * out of the RExit state.
1629	 */
1630	if (!DEV_SUPERSPEED_ANY(temp) &&
1631			test_and_clear_bit(faked_port_index,
1632				&bus_state->rexit_ports)) {
1633		complete(&bus_state->rexit_done[faked_port_index]);
1634		bogus_port_status = true;
1635		goto cleanup;
1636	}
1637
1638	if (hcd->speed < HCD_USB3)
1639		xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1640					PORT_PLC);
1641
1642cleanup:
1643	/* Update event ring dequeue pointer before dropping the lock */
1644	inc_deq(xhci, xhci->event_ring);
1645
1646	/* Don't make the USB core poll the roothub if we got a bad port status
1647	 * change event.  Besides, at that point we can't tell which roothub
1648	 * (USB 2.0 or USB 3.0) to kick.
1649	 */
1650	if (bogus_port_status)
1651		return;
1652
1653	/*
1654	 * xHCI port-status-change events occur when the "or" of all the
1655	 * status-change bits in the portsc register changes from 0 to 1.
1656	 * New status changes won't cause an event if any other change
1657	 * bits are still set.  When an event occurs, switch over to
1658	 * polling to avoid losing status changes.
1659	 */
1660	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1661	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1662	spin_unlock(&xhci->lock);
1663	/* Pass this up to the core */
1664	usb_hcd_poll_rh_status(hcd);
1665	spin_lock(&xhci->lock);
1666}
1667
1668/*
1669 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1670 * at end_trb, which may be in another segment.  If the suspect DMA address is a
1671 * TRB in this TD, this function returns that TRB's segment.  Otherwise it
1672 * returns 0.
1673 */
1674struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1675		struct xhci_segment *start_seg,
1676		union xhci_trb	*start_trb,
1677		union xhci_trb	*end_trb,
1678		dma_addr_t	suspect_dma,
1679		bool		debug)
1680{
1681	dma_addr_t start_dma;
1682	dma_addr_t end_seg_dma;
1683	dma_addr_t end_trb_dma;
1684	struct xhci_segment *cur_seg;
1685
1686	start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1687	cur_seg = start_seg;
1688
1689	do {
1690		if (start_dma == 0)
1691			return NULL;
1692		/* We may get an event for a Link TRB in the middle of a TD */
1693		end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1694				&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1695		/* If the end TRB isn't in this segment, this is set to 0 */
1696		end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1697
1698		if (debug)
1699			xhci_warn(xhci,
1700				"Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1701				(unsigned long long)suspect_dma,
1702				(unsigned long long)start_dma,
1703				(unsigned long long)end_trb_dma,
1704				(unsigned long long)cur_seg->dma,
1705				(unsigned long long)end_seg_dma);
1706
1707		if (end_trb_dma > 0) {
1708			/* The end TRB is in this segment, so suspect should be here */
1709			if (start_dma <= end_trb_dma) {
1710				if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1711					return cur_seg;
1712			} else {
1713				/* Case for one segment with
1714				 * a TD wrapped around to the top
1715				 */
1716				if ((suspect_dma >= start_dma &&
1717							suspect_dma <= end_seg_dma) ||
1718						(suspect_dma >= cur_seg->dma &&
1719						 suspect_dma <= end_trb_dma))
1720					return cur_seg;
1721			}
1722			return NULL;
1723		} else {
1724			/* Might still be somewhere in this segment */
1725			if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1726				return cur_seg;
1727		}
1728		cur_seg = cur_seg->next;
1729		start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1730	} while (cur_seg != start_seg);
1731
1732	return NULL;
1733}
1734
1735static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1736		unsigned int slot_id, unsigned int ep_index,
1737		unsigned int stream_id,
1738		struct xhci_td *td, union xhci_trb *event_trb)
1739{
1740	struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1741	struct xhci_command *command;
1742	command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1743	if (!command)
1744		return;
1745
1746	ep->ep_state |= EP_HALTED;
 
 
1747	ep->stopped_stream = stream_id;
1748
1749	xhci_queue_reset_ep(xhci, command, slot_id, ep_index);
1750	xhci_cleanup_stalled_ring(xhci, ep_index, td);
1751
 
 
1752	ep->stopped_stream = 0;
1753
1754	xhci_ring_cmd_db(xhci);
1755}
1756
1757/* Check if an error has halted the endpoint ring.  The class driver will
1758 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1759 * However, a babble and other errors also halt the endpoint ring, and the class
1760 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1761 * Ring Dequeue Pointer command manually.
1762 */
1763static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1764		struct xhci_ep_ctx *ep_ctx,
1765		unsigned int trb_comp_code)
1766{
1767	/* TRB completion codes that may require a manual halt cleanup */
1768	if (trb_comp_code == COMP_TX_ERR ||
1769			trb_comp_code == COMP_BABBLE ||
1770			trb_comp_code == COMP_SPLIT_ERR)
1771		/* The 0.96 spec says a babbling control endpoint
1772		 * is not halted. The 0.96 spec says it is.  Some HW
1773		 * claims to be 0.95 compliant, but it halts the control
1774		 * endpoint anyway.  Check if a babble halted the
1775		 * endpoint.
1776		 */
1777		if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1778		    cpu_to_le32(EP_STATE_HALTED))
1779			return 1;
1780
1781	return 0;
1782}
1783
1784int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1785{
1786	if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1787		/* Vendor defined "informational" completion code,
1788		 * treat as not-an-error.
1789		 */
1790		xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1791				trb_comp_code);
1792		xhci_dbg(xhci, "Treating code as success.\n");
1793		return 1;
1794	}
1795	return 0;
1796}
1797
1798/*
1799 * Finish the td processing, remove the td from td list;
1800 * Return 1 if the urb can be given back.
1801 */
1802static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1803	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1804	struct xhci_virt_ep *ep, int *status, bool skip)
1805{
1806	struct xhci_virt_device *xdev;
1807	struct xhci_ring *ep_ring;
1808	unsigned int slot_id;
1809	int ep_index;
1810	struct urb *urb = NULL;
1811	struct xhci_ep_ctx *ep_ctx;
1812	int ret = 0;
1813	struct urb_priv	*urb_priv;
1814	u32 trb_comp_code;
1815
1816	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1817	xdev = xhci->devs[slot_id];
1818	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1819	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1820	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1821	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1822
1823	if (skip)
1824		goto td_cleanup;
1825
1826	if (trb_comp_code == COMP_STOP_INVAL ||
1827			trb_comp_code == COMP_STOP ||
1828			trb_comp_code == COMP_STOP_SHORT) {
1829		/* The Endpoint Stop Command completion will take care of any
1830		 * stopped TDs.  A stopped TD may be restarted, so don't update
1831		 * the ring dequeue pointer or take this TD off any lists yet.
1832		 */
1833		ep->stopped_td = td;
 
1834		return 0;
1835	}
1836	if (trb_comp_code == COMP_STALL ||
1837		xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1838						trb_comp_code)) {
1839		/* Issue a reset endpoint command to clear the host side
1840		 * halt, followed by a set dequeue command to move the
1841		 * dequeue pointer past the TD.
1842		 * The class driver clears the device side halt later.
1843		 */
1844		xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1845					ep_ring->stream_id, td, event_trb);
1846	} else {
1847		/* Update ring dequeue pointer */
1848		while (ep_ring->dequeue != td->last_trb)
1849			inc_deq(xhci, ep_ring);
1850		inc_deq(xhci, ep_ring);
1851	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1852
1853td_cleanup:
1854	/* Clean up the endpoint's TD list */
1855	urb = td->urb;
1856	urb_priv = urb->hcpriv;
1857
1858	/* Do one last check of the actual transfer length.
1859	 * If the host controller said we transferred more data than the buffer
1860	 * length, urb->actual_length will be a very big number (since it's
1861	 * unsigned).  Play it safe and say we didn't transfer anything.
1862	 */
1863	if (urb->actual_length > urb->transfer_buffer_length) {
1864		xhci_warn(xhci, "URB transfer length is wrong, xHC issue? req. len = %u, act. len = %u\n",
1865			urb->transfer_buffer_length,
1866			urb->actual_length);
1867		urb->actual_length = 0;
1868		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1869			*status = -EREMOTEIO;
1870		else
1871			*status = 0;
1872	}
1873	list_del_init(&td->td_list);
1874	/* Was this TD slated to be cancelled but completed anyway? */
1875	if (!list_empty(&td->cancelled_td_list))
1876		list_del_init(&td->cancelled_td_list);
1877
1878	urb_priv->td_cnt++;
1879	/* Giveback the urb when all the tds are completed */
1880	if (urb_priv->td_cnt == urb_priv->length) {
1881		ret = 1;
1882		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1883			xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1884			if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
1885				if (xhci->quirks & XHCI_AMD_PLL_FIX)
1886					usb_amd_quirk_pll_enable();
 
 
 
 
 
1887			}
1888		}
1889	}
1890
1891	return ret;
1892}
1893
1894/*
1895 * Process control tds, update urb status and actual_length.
1896 */
1897static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1898	union xhci_trb *event_trb, struct xhci_transfer_event *event,
1899	struct xhci_virt_ep *ep, int *status)
1900{
1901	struct xhci_virt_device *xdev;
1902	struct xhci_ring *ep_ring;
1903	unsigned int slot_id;
1904	int ep_index;
1905	struct xhci_ep_ctx *ep_ctx;
1906	u32 trb_comp_code;
1907
1908	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1909	xdev = xhci->devs[slot_id];
1910	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1911	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1912	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1913	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1914
 
1915	switch (trb_comp_code) {
1916	case COMP_SUCCESS:
1917		if (event_trb == ep_ring->dequeue) {
1918			xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1919					"without IOC set??\n");
1920			*status = -ESHUTDOWN;
1921		} else if (event_trb != td->last_trb) {
1922			xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1923					"without IOC set??\n");
1924			*status = -ESHUTDOWN;
1925		} else {
1926			*status = 0;
1927		}
1928		break;
1929	case COMP_SHORT_TX:
 
1930		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1931			*status = -EREMOTEIO;
1932		else
1933			*status = 0;
1934		break;
1935	case COMP_STOP_SHORT:
1936		if (event_trb == ep_ring->dequeue || event_trb == td->last_trb)
1937			xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
1938		else
1939			td->urb->actual_length =
1940				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1941
1942		return finish_td(xhci, td, event_trb, event, ep, status, false);
1943	case COMP_STOP:
1944		/* Did we stop at data stage? */
1945		if (event_trb != ep_ring->dequeue && event_trb != td->last_trb)
1946			td->urb->actual_length =
1947				td->urb->transfer_buffer_length -
1948				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1949		/* fall through */
1950	case COMP_STOP_INVAL:
1951		return finish_td(xhci, td, event_trb, event, ep, status, false);
1952	default:
1953		if (!xhci_requires_manual_halt_cleanup(xhci,
1954					ep_ctx, trb_comp_code))
1955			break;
1956		xhci_dbg(xhci, "TRB error code %u, "
1957				"halted endpoint index = %u\n",
1958				trb_comp_code, ep_index);
1959		/* else fall through */
1960	case COMP_STALL:
1961		/* Did we transfer part of the data (middle) phase? */
1962		if (event_trb != ep_ring->dequeue &&
1963				event_trb != td->last_trb)
1964			td->urb->actual_length =
1965				td->urb->transfer_buffer_length -
1966				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1967		else if (!td->urb_length_set)
1968			td->urb->actual_length = 0;
1969
1970		return finish_td(xhci, td, event_trb, event, ep, status, false);
 
 
1971	}
1972	/*
1973	 * Did we transfer any data, despite the errors that might have
1974	 * happened?  I.e. did we get past the setup stage?
1975	 */
1976	if (event_trb != ep_ring->dequeue) {
1977		/* The event was for the status stage */
1978		if (event_trb == td->last_trb) {
1979			if (td->urb_length_set) {
1980				/* Don't overwrite a previously set error code
1981				 */
1982				if ((*status == -EINPROGRESS || *status == 0) &&
1983						(td->urb->transfer_flags
1984						 & URB_SHORT_NOT_OK))
1985					/* Did we already see a short data
1986					 * stage? */
1987					*status = -EREMOTEIO;
1988			} else {
1989				td->urb->actual_length =
1990					td->urb->transfer_buffer_length;
1991			}
1992		} else {
1993			/*
1994			 * Maybe the event was for the data stage? If so, update
1995			 * already the actual_length of the URB and flag it as
1996			 * set, so that it is not overwritten in the event for
1997			 * the last TRB.
1998			 */
1999			td->urb_length_set = true;
2000			td->urb->actual_length =
2001				td->urb->transfer_buffer_length -
2002				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2003			xhci_dbg(xhci, "Waiting for status "
2004					"stage event\n");
2005			return 0;
2006		}
2007	}
2008
2009	return finish_td(xhci, td, event_trb, event, ep, status, false);
2010}
2011
2012/*
2013 * Process isochronous tds, update urb packet status and actual_length.
2014 */
2015static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2016	union xhci_trb *event_trb, struct xhci_transfer_event *event,
2017	struct xhci_virt_ep *ep, int *status)
2018{
2019	struct xhci_ring *ep_ring;
2020	struct urb_priv *urb_priv;
2021	int idx;
2022	int len = 0;
2023	union xhci_trb *cur_trb;
2024	struct xhci_segment *cur_seg;
2025	struct usb_iso_packet_descriptor *frame;
2026	u32 trb_comp_code;
2027	bool skip_td = false;
2028
2029	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2030	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2031	urb_priv = td->urb->hcpriv;
2032	idx = urb_priv->td_cnt;
2033	frame = &td->urb->iso_frame_desc[idx];
2034
2035	/* handle completion code */
2036	switch (trb_comp_code) {
2037	case COMP_SUCCESS:
2038		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2039			frame->status = 0;
2040			break;
2041		}
2042		if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2043			trb_comp_code = COMP_SHORT_TX;
2044	/* fallthrough */
2045	case COMP_STOP_SHORT:
2046	case COMP_SHORT_TX:
2047		frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2048				-EREMOTEIO : 0;
2049		break;
2050	case COMP_BW_OVER:
2051		frame->status = -ECOMM;
2052		skip_td = true;
2053		break;
2054	case COMP_BUFF_OVER:
2055	case COMP_BABBLE:
2056		frame->status = -EOVERFLOW;
2057		skip_td = true;
2058		break;
2059	case COMP_DEV_ERR:
2060	case COMP_STALL:
2061		frame->status = -EPROTO;
2062		skip_td = true;
2063		break;
2064	case COMP_TX_ERR:
2065		frame->status = -EPROTO;
2066		if (event_trb != td->last_trb)
2067			return 0;
2068		skip_td = true;
2069		break;
2070	case COMP_STOP:
2071	case COMP_STOP_INVAL:
2072		break;
2073	default:
2074		frame->status = -1;
2075		break;
2076	}
2077
2078	if (trb_comp_code == COMP_SUCCESS || skip_td) {
2079		frame->actual_length = frame->length;
2080		td->urb->actual_length += frame->length;
2081	} else if (trb_comp_code == COMP_STOP_SHORT) {
2082		frame->actual_length =
2083			EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2084		td->urb->actual_length += frame->actual_length;
2085	} else {
2086		for (cur_trb = ep_ring->dequeue,
2087		     cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2088		     next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2089			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2090			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2091				len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2092		}
2093		len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2094			EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2095
2096		if (trb_comp_code != COMP_STOP_INVAL) {
2097			frame->actual_length = len;
2098			td->urb->actual_length += len;
2099		}
2100	}
2101
2102	return finish_td(xhci, td, event_trb, event, ep, status, false);
2103}
2104
2105static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2106			struct xhci_transfer_event *event,
2107			struct xhci_virt_ep *ep, int *status)
2108{
2109	struct xhci_ring *ep_ring;
2110	struct urb_priv *urb_priv;
2111	struct usb_iso_packet_descriptor *frame;
2112	int idx;
2113
2114	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2115	urb_priv = td->urb->hcpriv;
2116	idx = urb_priv->td_cnt;
2117	frame = &td->urb->iso_frame_desc[idx];
2118
2119	/* The transfer is partly done. */
2120	frame->status = -EXDEV;
2121
2122	/* calc actual length */
2123	frame->actual_length = 0;
2124
2125	/* Update ring dequeue pointer */
2126	while (ep_ring->dequeue != td->last_trb)
2127		inc_deq(xhci, ep_ring);
2128	inc_deq(xhci, ep_ring);
2129
2130	return finish_td(xhci, td, NULL, event, ep, status, true);
2131}
2132
2133/*
2134 * Process bulk and interrupt tds, update urb status and actual_length.
2135 */
2136static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2137	union xhci_trb *event_trb, struct xhci_transfer_event *event,
2138	struct xhci_virt_ep *ep, int *status)
2139{
2140	struct xhci_ring *ep_ring;
2141	union xhci_trb *cur_trb;
2142	struct xhci_segment *cur_seg;
2143	u32 trb_comp_code;
2144
2145	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2146	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2147
2148	switch (trb_comp_code) {
2149	case COMP_SUCCESS:
2150		/* Double check that the HW transferred everything. */
2151		if (event_trb != td->last_trb ||
2152		    EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2153			xhci_warn(xhci, "WARN Successful completion "
2154					"on short TX\n");
2155			if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2156				*status = -EREMOTEIO;
2157			else
2158				*status = 0;
2159			if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2160				trb_comp_code = COMP_SHORT_TX;
2161		} else {
2162			*status = 0;
2163		}
2164		break;
2165	case COMP_STOP_SHORT:
2166	case COMP_SHORT_TX:
2167		if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2168			*status = -EREMOTEIO;
2169		else
2170			*status = 0;
2171		break;
2172	default:
2173		/* Others already handled above */
2174		break;
2175	}
2176	if (trb_comp_code == COMP_SHORT_TX)
2177		xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2178				"%d bytes untransferred\n",
2179				td->urb->ep->desc.bEndpointAddress,
2180				td->urb->transfer_buffer_length,
2181				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2182	/* Stopped - short packet completion */
2183	if (trb_comp_code == COMP_STOP_SHORT) {
2184		td->urb->actual_length =
2185			EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2186
2187		if (td->urb->transfer_buffer_length <
2188				td->urb->actual_length) {
2189			xhci_warn(xhci, "HC gave bad length of %d bytes txed\n",
2190				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2191			td->urb->actual_length = 0;
2192			 /* status will be set by usb core for canceled urbs */
2193		}
2194	/* Fast path - was this the last TRB in the TD for this URB? */
2195	} else if (event_trb == td->last_trb) {
2196		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2197			td->urb->actual_length =
2198				td->urb->transfer_buffer_length -
2199				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2200			if (td->urb->transfer_buffer_length <
2201					td->urb->actual_length) {
2202				xhci_warn(xhci, "HC gave bad length "
2203						"of %d bytes left\n",
2204					  EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2205				td->urb->actual_length = 0;
2206				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2207					*status = -EREMOTEIO;
2208				else
2209					*status = 0;
2210			}
2211			/* Don't overwrite a previously set error code */
2212			if (*status == -EINPROGRESS) {
2213				if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2214					*status = -EREMOTEIO;
2215				else
2216					*status = 0;
2217			}
2218		} else {
2219			td->urb->actual_length =
2220				td->urb->transfer_buffer_length;
2221			/* Ignore a short packet completion if the
2222			 * untransferred length was zero.
2223			 */
2224			if (*status == -EREMOTEIO)
2225				*status = 0;
2226		}
2227	} else {
2228		/* Slow path - walk the list, starting from the dequeue
2229		 * pointer, to get the actual length transferred.
2230		 */
2231		td->urb->actual_length = 0;
2232		for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2233				cur_trb != event_trb;
2234				next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2235			if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2236			    !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2237				td->urb->actual_length +=
2238					TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2239		}
2240		/* If the ring didn't stop on a Link or No-op TRB, add
2241		 * in the actual bytes transferred from the Normal TRB
2242		 */
2243		if (trb_comp_code != COMP_STOP_INVAL)
2244			td->urb->actual_length +=
2245				TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2246				EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2247	}
2248
2249	return finish_td(xhci, td, event_trb, event, ep, status, false);
2250}
2251
2252/*
2253 * If this function returns an error condition, it means it got a Transfer
2254 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2255 * At this point, the host controller is probably hosed and should be reset.
2256 */
2257static int handle_tx_event(struct xhci_hcd *xhci,
2258		struct xhci_transfer_event *event)
2259	__releases(&xhci->lock)
2260	__acquires(&xhci->lock)
2261{
2262	struct xhci_virt_device *xdev;
2263	struct xhci_virt_ep *ep;
2264	struct xhci_ring *ep_ring;
2265	unsigned int slot_id;
2266	int ep_index;
2267	struct xhci_td *td = NULL;
2268	dma_addr_t event_dma;
2269	struct xhci_segment *event_seg;
2270	union xhci_trb *event_trb;
2271	struct urb *urb = NULL;
2272	int status = -EINPROGRESS;
2273	struct urb_priv *urb_priv;
2274	struct xhci_ep_ctx *ep_ctx;
2275	struct list_head *tmp;
2276	u32 trb_comp_code;
2277	int ret = 0;
2278	int td_num = 0;
2279	bool handling_skipped_tds = false;
2280
2281	slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2282	xdev = xhci->devs[slot_id];
2283	if (!xdev) {
2284		xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2285		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2286			 (unsigned long long) xhci_trb_virt_to_dma(
2287				 xhci->event_ring->deq_seg,
2288				 xhci->event_ring->dequeue),
2289			 lower_32_bits(le64_to_cpu(event->buffer)),
2290			 upper_32_bits(le64_to_cpu(event->buffer)),
2291			 le32_to_cpu(event->transfer_len),
2292			 le32_to_cpu(event->flags));
2293		xhci_dbg(xhci, "Event ring:\n");
2294		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2295		return -ENODEV;
2296	}
2297
2298	/* Endpoint ID is 1 based, our index is zero based */
2299	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2300	ep = &xdev->eps[ep_index];
2301	ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2302	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2303	if (!ep_ring ||
2304	    (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2305	    EP_STATE_DISABLED) {
2306		xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2307				"or incorrect stream ring\n");
2308		xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2309			 (unsigned long long) xhci_trb_virt_to_dma(
2310				 xhci->event_ring->deq_seg,
2311				 xhci->event_ring->dequeue),
2312			 lower_32_bits(le64_to_cpu(event->buffer)),
2313			 upper_32_bits(le64_to_cpu(event->buffer)),
2314			 le32_to_cpu(event->transfer_len),
2315			 le32_to_cpu(event->flags));
2316		xhci_dbg(xhci, "Event ring:\n");
2317		xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2318		return -ENODEV;
2319	}
2320
2321	/* Count current td numbers if ep->skip is set */
2322	if (ep->skip) {
2323		list_for_each(tmp, &ep_ring->td_list)
2324			td_num++;
2325	}
2326
2327	event_dma = le64_to_cpu(event->buffer);
2328	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2329	/* Look for common error cases */
2330	switch (trb_comp_code) {
2331	/* Skip codes that require special handling depending on
2332	 * transfer type
2333	 */
2334	case COMP_SUCCESS:
2335		if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2336			break;
2337		if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2338			trb_comp_code = COMP_SHORT_TX;
2339		else
2340			xhci_warn_ratelimited(xhci,
2341					"WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2342	case COMP_SHORT_TX:
2343		break;
2344	case COMP_STOP:
2345		xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2346		break;
2347	case COMP_STOP_INVAL:
2348		xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2349		break;
2350	case COMP_STOP_SHORT:
2351		xhci_dbg(xhci, "Stopped with short packet transfer detected\n");
2352		break;
2353	case COMP_STALL:
2354		xhci_dbg(xhci, "Stalled endpoint\n");
2355		ep->ep_state |= EP_HALTED;
2356		status = -EPIPE;
2357		break;
2358	case COMP_TRB_ERR:
2359		xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2360		status = -EILSEQ;
2361		break;
2362	case COMP_SPLIT_ERR:
2363	case COMP_TX_ERR:
2364		xhci_dbg(xhci, "Transfer error on endpoint\n");
2365		status = -EPROTO;
2366		break;
2367	case COMP_BABBLE:
2368		xhci_dbg(xhci, "Babble error on endpoint\n");
2369		status = -EOVERFLOW;
2370		break;
2371	case COMP_DB_ERR:
2372		xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2373		status = -ENOSR;
2374		break;
2375	case COMP_BW_OVER:
2376		xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2377		break;
2378	case COMP_BUFF_OVER:
2379		xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2380		break;
2381	case COMP_UNDERRUN:
2382		/*
2383		 * When the Isoch ring is empty, the xHC will generate
2384		 * a Ring Overrun Event for IN Isoch endpoint or Ring
2385		 * Underrun Event for OUT Isoch endpoint.
2386		 */
2387		xhci_dbg(xhci, "underrun event on endpoint\n");
2388		if (!list_empty(&ep_ring->td_list))
2389			xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2390					"still with TDs queued?\n",
2391				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2392				 ep_index);
2393		goto cleanup;
2394	case COMP_OVERRUN:
2395		xhci_dbg(xhci, "overrun event on endpoint\n");
2396		if (!list_empty(&ep_ring->td_list))
2397			xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2398					"still with TDs queued?\n",
2399				 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2400				 ep_index);
2401		goto cleanup;
2402	case COMP_DEV_ERR:
2403		xhci_warn(xhci, "WARN: detect an incompatible device");
2404		status = -EPROTO;
2405		break;
2406	case COMP_MISSED_INT:
2407		/*
2408		 * When encounter missed service error, one or more isoc tds
2409		 * may be missed by xHC.
2410		 * Set skip flag of the ep_ring; Complete the missed tds as
2411		 * short transfer when process the ep_ring next time.
2412		 */
2413		ep->skip = true;
2414		xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2415		goto cleanup;
2416	case COMP_PING_ERR:
2417		ep->skip = true;
2418		xhci_dbg(xhci, "No Ping response error, Skip one Isoc TD\n");
2419		goto cleanup;
2420	default:
2421		if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2422			status = 0;
2423			break;
2424		}
2425		xhci_warn(xhci, "ERROR Unknown event condition %u, HC probably busted\n",
2426			  trb_comp_code);
2427		goto cleanup;
2428	}
2429
2430	do {
2431		/* This TRB should be in the TD at the head of this ring's
2432		 * TD list.
2433		 */
2434		if (list_empty(&ep_ring->td_list)) {
2435			/*
2436			 * A stopped endpoint may generate an extra completion
2437			 * event if the device was suspended.  Don't print
2438			 * warnings.
2439			 */
2440			if (!(trb_comp_code == COMP_STOP ||
2441						trb_comp_code == COMP_STOP_INVAL)) {
2442				xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2443						TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2444						ep_index);
2445				xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2446						(le32_to_cpu(event->flags) &
2447						 TRB_TYPE_BITMASK)>>10);
2448				xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2449			}
2450			if (ep->skip) {
2451				ep->skip = false;
2452				xhci_dbg(xhci, "td_list is empty while skip "
2453						"flag set. Clear skip flag.\n");
2454			}
2455			ret = 0;
2456			goto cleanup;
2457		}
2458
2459		/* We've skipped all the TDs on the ep ring when ep->skip set */
2460		if (ep->skip && td_num == 0) {
2461			ep->skip = false;
2462			xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2463						"Clear skip flag.\n");
2464			ret = 0;
2465			goto cleanup;
2466		}
2467
2468		td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2469		if (ep->skip)
2470			td_num--;
2471
2472		/* Is this a TRB in the currently executing TD? */
2473		event_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2474				td->last_trb, event_dma, false);
2475
2476		/*
2477		 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2478		 * is not in the current TD pointed by ep_ring->dequeue because
2479		 * that the hardware dequeue pointer still at the previous TRB
2480		 * of the current TD. The previous TRB maybe a Link TD or the
2481		 * last TRB of the previous TD. The command completion handle
2482		 * will take care the rest.
2483		 */
2484		if (!event_seg && (trb_comp_code == COMP_STOP ||
2485				   trb_comp_code == COMP_STOP_INVAL)) {
2486			ret = 0;
2487			goto cleanup;
2488		}
2489
2490		if (!event_seg) {
2491			if (!ep->skip ||
2492			    !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2493				/* Some host controllers give a spurious
2494				 * successful event after a short transfer.
2495				 * Ignore it.
2496				 */
2497				if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2498						ep_ring->last_td_was_short) {
2499					ep_ring->last_td_was_short = false;
2500					ret = 0;
2501					goto cleanup;
2502				}
2503				/* HC is busted, give up! */
2504				xhci_err(xhci,
2505					"ERROR Transfer event TRB DMA ptr not "
2506					"part of current TD ep_index %d "
2507					"comp_code %u\n", ep_index,
2508					trb_comp_code);
2509				trb_in_td(xhci, ep_ring->deq_seg,
2510					  ep_ring->dequeue, td->last_trb,
2511					  event_dma, true);
2512				return -ESHUTDOWN;
2513			}
2514
2515			ret = skip_isoc_td(xhci, td, event, ep, &status);
2516			goto cleanup;
2517		}
2518		if (trb_comp_code == COMP_SHORT_TX)
2519			ep_ring->last_td_was_short = true;
2520		else
2521			ep_ring->last_td_was_short = false;
2522
2523		if (ep->skip) {
2524			xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2525			ep->skip = false;
2526		}
2527
2528		event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2529						sizeof(*event_trb)];
2530		/*
2531		 * No-op TRB should not trigger interrupts.
2532		 * If event_trb is a no-op TRB, it means the
2533		 * corresponding TD has been cancelled. Just ignore
2534		 * the TD.
2535		 */
2536		if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2537			xhci_dbg(xhci,
2538				 "event_trb is a no-op TRB. Skip it\n");
2539			goto cleanup;
2540		}
2541
2542		/* Now update the urb's actual_length and give back to
2543		 * the core
2544		 */
2545		if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2546			ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2547						 &status);
2548		else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2549			ret = process_isoc_td(xhci, td, event_trb, event, ep,
2550						 &status);
2551		else
2552			ret = process_bulk_intr_td(xhci, td, event_trb, event,
2553						 ep, &status);
2554
2555cleanup:
2556
2557
2558		handling_skipped_tds = ep->skip &&
2559			trb_comp_code != COMP_MISSED_INT &&
2560			trb_comp_code != COMP_PING_ERR;
2561
2562		/*
2563		 * Do not update event ring dequeue pointer if we're in a loop
2564		 * processing missed tds.
2565		 */
2566		if (!handling_skipped_tds)
2567			inc_deq(xhci, xhci->event_ring);
 
2568
2569		if (ret) {
2570			urb = td->urb;
2571			urb_priv = urb->hcpriv;
2572
2573			xhci_urb_free_priv(urb_priv);
 
 
 
 
 
 
 
2574
2575			usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2576			if ((urb->actual_length != urb->transfer_buffer_length &&
2577						(urb->transfer_flags &
2578						 URB_SHORT_NOT_OK)) ||
2579					(status != 0 &&
2580					 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2581				xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2582						"expected = %d, status = %d\n",
2583						urb, urb->actual_length,
2584						urb->transfer_buffer_length,
2585						status);
2586			spin_unlock(&xhci->lock);
2587			/* EHCI, UHCI, and OHCI always unconditionally set the
2588			 * urb->status of an isochronous endpoint to 0.
2589			 */
2590			if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2591				status = 0;
2592			usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2593			spin_lock(&xhci->lock);
2594		}
2595
2596	/*
2597	 * If ep->skip is set, it means there are missed tds on the
2598	 * endpoint ring need to take care of.
2599	 * Process them as short transfer until reach the td pointed by
2600	 * the event.
2601	 */
2602	} while (handling_skipped_tds);
2603
2604	return 0;
2605}
2606
2607/*
2608 * This function handles all OS-owned events on the event ring.  It may drop
2609 * xhci->lock between event processing (e.g. to pass up port status changes).
2610 * Returns >0 for "possibly more events to process" (caller should call again),
2611 * otherwise 0 if done.  In future, <0 returns should indicate error code.
2612 */
2613static int xhci_handle_event(struct xhci_hcd *xhci)
2614{
2615	union xhci_trb *event;
2616	int update_ptrs = 1;
2617	int ret;
2618
2619	if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2620		xhci->error_bitmask |= 1 << 1;
2621		return 0;
2622	}
2623
2624	event = xhci->event_ring->dequeue;
2625	/* Does the HC or OS own the TRB? */
2626	if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2627	    xhci->event_ring->cycle_state) {
2628		xhci->error_bitmask |= 1 << 2;
2629		return 0;
2630	}
2631
2632	/*
2633	 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2634	 * speculative reads of the event's flags/data below.
2635	 */
2636	rmb();
2637	/* FIXME: Handle more event types. */
2638	switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2639	case TRB_TYPE(TRB_COMPLETION):
2640		handle_cmd_completion(xhci, &event->event_cmd);
2641		break;
2642	case TRB_TYPE(TRB_PORT_STATUS):
2643		handle_port_status(xhci, event);
2644		update_ptrs = 0;
2645		break;
2646	case TRB_TYPE(TRB_TRANSFER):
2647		ret = handle_tx_event(xhci, &event->trans_event);
2648		if (ret < 0)
2649			xhci->error_bitmask |= 1 << 9;
2650		else
2651			update_ptrs = 0;
2652		break;
2653	case TRB_TYPE(TRB_DEV_NOTE):
2654		handle_device_notification(xhci, event);
2655		break;
2656	default:
2657		if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2658		    TRB_TYPE(48))
2659			handle_vendor_event(xhci, event);
2660		else
2661			xhci->error_bitmask |= 1 << 3;
2662	}
2663	/* Any of the above functions may drop and re-acquire the lock, so check
2664	 * to make sure a watchdog timer didn't mark the host as non-responsive.
2665	 */
2666	if (xhci->xhc_state & XHCI_STATE_DYING) {
2667		xhci_dbg(xhci, "xHCI host dying, returning from "
2668				"event handler.\n");
2669		return 0;
2670	}
2671
2672	if (update_ptrs)
2673		/* Update SW event ring dequeue pointer */
2674		inc_deq(xhci, xhci->event_ring);
2675
2676	/* Are there more items on the event ring?  Caller will call us again to
2677	 * check.
2678	 */
2679	return 1;
2680}
2681
2682/*
2683 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2684 * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of
2685 * indicators of an event TRB error, but we check the status *first* to be safe.
2686 */
2687irqreturn_t xhci_irq(struct usb_hcd *hcd)
2688{
2689	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2690	u32 status;
 
2691	u64 temp_64;
2692	union xhci_trb *event_ring_deq;
2693	dma_addr_t deq;
2694
2695	spin_lock(&xhci->lock);
 
2696	/* Check if the xHC generated the interrupt, or the irq is shared */
2697	status = readl(&xhci->op_regs->status);
2698	if (status == 0xffffffff)
2699		goto hw_died;
2700
2701	if (!(status & STS_EINT)) {
2702		spin_unlock(&xhci->lock);
2703		return IRQ_NONE;
2704	}
2705	if (status & STS_FATAL) {
2706		xhci_warn(xhci, "WARNING: Host System Error\n");
2707		xhci_halt(xhci);
2708hw_died:
2709		spin_unlock(&xhci->lock);
2710		return IRQ_HANDLED;
2711	}
2712
2713	/*
2714	 * Clear the op reg interrupt status first,
2715	 * so we can receive interrupts from other MSI-X interrupters.
2716	 * Write 1 to clear the interrupt status.
2717	 */
2718	status |= STS_EINT;
2719	writel(status, &xhci->op_regs->status);
2720	/* FIXME when MSI-X is supported and there are multiple vectors */
2721	/* Clear the MSI-X event interrupt status */
2722
2723	if (hcd->irq) {
2724		u32 irq_pending;
2725		/* Acknowledge the PCI interrupt */
2726		irq_pending = readl(&xhci->ir_set->irq_pending);
2727		irq_pending |= IMAN_IP;
2728		writel(irq_pending, &xhci->ir_set->irq_pending);
2729	}
2730
2731	if (xhci->xhc_state & XHCI_STATE_DYING) {
2732		xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2733				"Shouldn't IRQs be disabled?\n");
2734		/* Clear the event handler busy flag (RW1C);
2735		 * the event ring should be empty.
2736		 */
2737		temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2738		xhci_write_64(xhci, temp_64 | ERST_EHB,
2739				&xhci->ir_set->erst_dequeue);
2740		spin_unlock(&xhci->lock);
2741
2742		return IRQ_HANDLED;
2743	}
2744
2745	event_ring_deq = xhci->event_ring->dequeue;
2746	/* FIXME this should be a delayed service routine
2747	 * that clears the EHB.
2748	 */
2749	while (xhci_handle_event(xhci) > 0) {}
2750
2751	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2752	/* If necessary, update the HW's version of the event ring deq ptr. */
2753	if (event_ring_deq != xhci->event_ring->dequeue) {
2754		deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2755				xhci->event_ring->dequeue);
2756		if (deq == 0)
2757			xhci_warn(xhci, "WARN something wrong with SW event "
2758					"ring dequeue ptr.\n");
2759		/* Update HC event ring dequeue pointer */
2760		temp_64 &= ERST_PTR_MASK;
2761		temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2762	}
2763
2764	/* Clear the event handler busy flag (RW1C); event ring is empty. */
2765	temp_64 |= ERST_EHB;
2766	xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2767
2768	spin_unlock(&xhci->lock);
2769
2770	return IRQ_HANDLED;
2771}
2772
2773irqreturn_t xhci_msi_irq(int irq, void *hcd)
2774{
2775	return xhci_irq(hcd);
 
 
 
 
 
 
 
 
 
 
2776}
2777
2778/****		Endpoint Ring Operations	****/
2779
2780/*
2781 * Generic function for queueing a TRB on a ring.
2782 * The caller must have checked to make sure there's room on the ring.
2783 *
2784 * @more_trbs_coming:	Will you enqueue more TRBs before calling
2785 *			prepare_transfer()?
2786 */
2787static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2788		bool more_trbs_coming,
2789		u32 field1, u32 field2, u32 field3, u32 field4)
2790{
2791	struct xhci_generic_trb *trb;
2792
2793	trb = &ring->enqueue->generic;
2794	trb->field[0] = cpu_to_le32(field1);
2795	trb->field[1] = cpu_to_le32(field2);
2796	trb->field[2] = cpu_to_le32(field3);
2797	trb->field[3] = cpu_to_le32(field4);
2798	inc_enq(xhci, ring, more_trbs_coming);
2799}
2800
2801/*
2802 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2803 * FIXME allocate segments if the ring is full.
2804 */
2805static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2806		u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2807{
2808	unsigned int num_trbs_needed;
2809
2810	/* Make sure the endpoint has been added to xHC schedule */
2811	switch (ep_state) {
2812	case EP_STATE_DISABLED:
2813		/*
2814		 * USB core changed config/interfaces without notifying us,
2815		 * or hardware is reporting the wrong state.
2816		 */
2817		xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2818		return -ENOENT;
2819	case EP_STATE_ERROR:
2820		xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2821		/* FIXME event handling code for error needs to clear it */
2822		/* XXX not sure if this should be -ENOENT or not */
2823		return -EINVAL;
2824	case EP_STATE_HALTED:
2825		xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2826	case EP_STATE_STOPPED:
2827	case EP_STATE_RUNNING:
2828		break;
2829	default:
2830		xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2831		/*
2832		 * FIXME issue Configure Endpoint command to try to get the HC
2833		 * back into a known state.
2834		 */
2835		return -EINVAL;
2836	}
2837
2838	while (1) {
2839		if (room_on_ring(xhci, ep_ring, num_trbs))
2840			break;
2841
2842		if (ep_ring == xhci->cmd_ring) {
2843			xhci_err(xhci, "Do not support expand command ring\n");
2844			return -ENOMEM;
2845		}
2846
2847		xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2848				"ERROR no room on ep ring, try ring expansion");
2849		num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2850		if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2851					mem_flags)) {
2852			xhci_err(xhci, "Ring expansion failed\n");
2853			return -ENOMEM;
2854		}
2855	}
2856
2857	if (enqueue_is_link_trb(ep_ring)) {
2858		struct xhci_ring *ring = ep_ring;
2859		union xhci_trb *next;
2860
2861		next = ring->enqueue;
2862
2863		while (last_trb(xhci, ring, ring->enq_seg, next)) {
2864			/* If we're not dealing with 0.95 hardware or isoc rings
2865			 * on AMD 0.96 host, clear the chain bit.
2866			 */
2867			if (!xhci_link_trb_quirk(xhci) &&
2868					!(ring->type == TYPE_ISOC &&
2869					 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2870				next->link.control &= cpu_to_le32(~TRB_CHAIN);
2871			else
2872				next->link.control |= cpu_to_le32(TRB_CHAIN);
2873
2874			wmb();
2875			next->link.control ^= cpu_to_le32(TRB_CYCLE);
2876
2877			/* Toggle the cycle bit after the last ring segment. */
2878			if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2879				ring->cycle_state ^= 1;
 
 
 
 
 
2880			}
2881			ring->enq_seg = ring->enq_seg->next;
2882			ring->enqueue = ring->enq_seg->trbs;
2883			next = ring->enqueue;
2884		}
2885	}
2886
2887	return 0;
2888}
2889
2890static int prepare_transfer(struct xhci_hcd *xhci,
2891		struct xhci_virt_device *xdev,
2892		unsigned int ep_index,
2893		unsigned int stream_id,
2894		unsigned int num_trbs,
2895		struct urb *urb,
2896		unsigned int td_index,
2897		gfp_t mem_flags)
2898{
2899	int ret;
2900	struct urb_priv *urb_priv;
2901	struct xhci_td	*td;
2902	struct xhci_ring *ep_ring;
2903	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2904
2905	ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2906	if (!ep_ring) {
2907		xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2908				stream_id);
2909		return -EINVAL;
2910	}
2911
2912	ret = prepare_ring(xhci, ep_ring,
2913			   le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2914			   num_trbs, mem_flags);
2915	if (ret)
2916		return ret;
2917
2918	urb_priv = urb->hcpriv;
2919	td = urb_priv->td[td_index];
2920
2921	INIT_LIST_HEAD(&td->td_list);
2922	INIT_LIST_HEAD(&td->cancelled_td_list);
2923
2924	if (td_index == 0) {
2925		ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2926		if (unlikely(ret))
2927			return ret;
2928	}
2929
2930	td->urb = urb;
2931	/* Add this TD to the tail of the endpoint ring's TD list */
2932	list_add_tail(&td->td_list, &ep_ring->td_list);
2933	td->start_seg = ep_ring->enq_seg;
2934	td->first_trb = ep_ring->enqueue;
2935
2936	urb_priv->td[td_index] = td;
2937
2938	return 0;
2939}
2940
2941static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2942{
2943	int num_sgs, num_trbs, running_total, temp, i;
2944	struct scatterlist *sg;
2945
2946	sg = NULL;
2947	num_sgs = urb->num_mapped_sgs;
2948	temp = urb->transfer_buffer_length;
2949
 
2950	num_trbs = 0;
2951	for_each_sg(urb->sg, sg, num_sgs, i) {
 
2952		unsigned int len = sg_dma_len(sg);
2953
2954		/* Scatter gather list entries may cross 64KB boundaries */
2955		running_total = TRB_MAX_BUFF_SIZE -
2956			(sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2957		running_total &= TRB_MAX_BUFF_SIZE - 1;
2958		if (running_total != 0)
2959			num_trbs++;
2960
2961		/* How many more 64KB chunks to transfer, how many more TRBs? */
2962		while (running_total < sg_dma_len(sg) && running_total < temp) {
2963			num_trbs++;
2964			running_total += TRB_MAX_BUFF_SIZE;
2965		}
 
 
 
 
2966		len = min_t(int, len, temp);
2967		temp -= len;
2968		if (temp == 0)
2969			break;
2970	}
 
 
 
 
 
 
 
2971	return num_trbs;
2972}
2973
2974static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2975{
2976	if (num_trbs != 0)
2977		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2978				"TRBs, %d left\n", __func__,
2979				urb->ep->desc.bEndpointAddress, num_trbs);
2980	if (running_total != urb->transfer_buffer_length)
2981		dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2982				"queued %#x (%d), asked for %#x (%d)\n",
2983				__func__,
2984				urb->ep->desc.bEndpointAddress,
2985				running_total, running_total,
2986				urb->transfer_buffer_length,
2987				urb->transfer_buffer_length);
2988}
2989
2990static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2991		unsigned int ep_index, unsigned int stream_id, int start_cycle,
2992		struct xhci_generic_trb *start_trb)
2993{
2994	/*
2995	 * Pass all the TRBs to the hardware at once and make sure this write
2996	 * isn't reordered.
2997	 */
2998	wmb();
2999	if (start_cycle)
3000		start_trb->field[3] |= cpu_to_le32(start_cycle);
3001	else
3002		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3003	xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3004}
3005
3006/*
3007 * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt
3008 * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD
3009 * (comprised of sg list entries) can take several service intervals to
3010 * transmit.
3011 */
3012int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3013		struct urb *urb, int slot_id, unsigned int ep_index)
3014{
3015	struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
3016			xhci->devs[slot_id]->out_ctx, ep_index);
3017	int xhci_interval;
3018	int ep_interval;
3019
3020	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3021	ep_interval = urb->interval;
3022	/* Convert to microframes */
3023	if (urb->dev->speed == USB_SPEED_LOW ||
3024			urb->dev->speed == USB_SPEED_FULL)
3025		ep_interval *= 8;
3026	/* FIXME change this to a warning and a suggestion to use the new API
3027	 * to set the polling interval (once the API is added).
3028	 */
3029	if (xhci_interval != ep_interval) {
3030		dev_dbg_ratelimited(&urb->dev->dev,
3031				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3032				ep_interval, ep_interval == 1 ? "" : "s",
3033				xhci_interval, xhci_interval == 1 ? "" : "s");
 
 
 
 
3034		urb->interval = xhci_interval;
3035		/* Convert back to frames for LS/FS devices */
3036		if (urb->dev->speed == USB_SPEED_LOW ||
3037				urb->dev->speed == USB_SPEED_FULL)
3038			urb->interval /= 8;
3039	}
3040	return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3041}
3042
3043/*
3044 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3045 * packets remaining in the TD (*not* including this TRB).
3046 *
3047 * Total TD packet count = total_packet_count =
3048 *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3049 *
3050 * Packets transferred up to and including this TRB = packets_transferred =
3051 *     rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3052 *
3053 * TD size = total_packet_count - packets_transferred
3054 *
3055 * For xHCI 0.96 and older, TD size field should be the remaining bytes
3056 * including this TRB, right shifted by 10
3057 *
3058 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3059 * This is taken care of in the TRB_TD_SIZE() macro
3060 *
3061 * The last TRB in a TD must have the TD size set to zero.
3062 */
3063static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3064			      int trb_buff_len, unsigned int td_total_len,
3065			      struct urb *urb, unsigned int num_trbs_left)
3066{
3067	u32 maxp, total_packet_count;
3068
3069	/* MTK xHCI is mostly 0.97 but contains some features from 1.0 */
3070	if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3071		return ((td_total_len - transferred) >> 10);
3072
3073	/* One TRB with a zero-length data packet. */
3074	if (num_trbs_left == 0 || (transferred == 0 && trb_buff_len == 0) ||
3075	    trb_buff_len == td_total_len)
3076		return 0;
3077
3078	/* for MTK xHCI, TD size doesn't include this TRB */
3079	if (xhci->quirks & XHCI_MTK_HOST)
3080		trb_buff_len = 0;
3081
3082	maxp = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3083	total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3084
3085	/* Queueing functions don't count the current TRB into transferred */
3086	return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3087}
3088
3089
3090static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3091		struct urb *urb, int slot_id, unsigned int ep_index)
3092{
3093	struct xhci_ring *ep_ring;
3094	unsigned int num_trbs;
3095	struct urb_priv *urb_priv;
3096	struct xhci_td *td;
3097	struct scatterlist *sg;
3098	int num_sgs;
3099	int trb_buff_len, this_sg_len, running_total, ret;
3100	unsigned int total_packet_count;
3101	bool zero_length_needed;
3102	bool first_trb;
3103	int last_trb_num;
3104	u64 addr;
3105	bool more_trbs_coming;
3106
3107	struct xhci_generic_trb *start_trb;
3108	int start_cycle;
3109
3110	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3111	if (!ep_ring)
3112		return -EINVAL;
3113
3114	num_trbs = count_sg_trbs_needed(xhci, urb);
3115	num_sgs = urb->num_mapped_sgs;
3116	total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3117			usb_endpoint_maxp(&urb->ep->desc));
3118
3119	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3120			ep_index, urb->stream_id,
3121			num_trbs, urb, 0, mem_flags);
3122	if (ret < 0)
3123		return ret;
3124
3125	urb_priv = urb->hcpriv;
3126
3127	/* Deal with URB_ZERO_PACKET - need one more td/trb */
3128	zero_length_needed = urb->transfer_flags & URB_ZERO_PACKET &&
3129		urb_priv->length == 2;
3130	if (zero_length_needed) {
3131		num_trbs++;
3132		xhci_dbg(xhci, "Creating zero length td.\n");
3133		ret = prepare_transfer(xhci, xhci->devs[slot_id],
3134				ep_index, urb->stream_id,
3135				1, urb, 1, mem_flags);
3136		if (ret < 0)
3137			return ret;
3138	}
3139
3140	td = urb_priv->td[0];
3141
3142	/*
3143	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3144	 * until we've finished creating all the other TRBs.  The ring's cycle
3145	 * state may change as we enqueue the other TRBs, so save it too.
3146	 */
3147	start_trb = &ep_ring->enqueue->generic;
3148	start_cycle = ep_ring->cycle_state;
3149
3150	running_total = 0;
3151	/*
3152	 * How much data is in the first TRB?
3153	 *
3154	 * There are three forces at work for TRB buffer pointers and lengths:
3155	 * 1. We don't want to walk off the end of this sg-list entry buffer.
3156	 * 2. The transfer length that the driver requested may be smaller than
3157	 *    the amount of memory allocated for this scatter-gather list.
3158	 * 3. TRBs buffers can't cross 64KB boundaries.
3159	 */
3160	sg = urb->sg;
3161	addr = (u64) sg_dma_address(sg);
3162	this_sg_len = sg_dma_len(sg);
3163	trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3164	trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3165	if (trb_buff_len > urb->transfer_buffer_length)
3166		trb_buff_len = urb->transfer_buffer_length;
 
 
3167
3168	first_trb = true;
3169	last_trb_num = zero_length_needed ? 2 : 1;
3170	/* Queue the first TRB, even if it's zero-length */
3171	do {
3172		u32 field = 0;
3173		u32 length_field = 0;
3174		u32 remainder = 0;
3175
3176		/* Don't change the cycle bit of the first TRB until later */
3177		if (first_trb) {
3178			first_trb = false;
3179			if (start_cycle == 0)
3180				field |= 0x1;
3181		} else
3182			field |= ep_ring->cycle_state;
3183
3184		/* Chain all the TRBs together; clear the chain bit in the last
3185		 * TRB to indicate it's the last TRB in the chain.
3186		 */
3187		if (num_trbs > last_trb_num) {
3188			field |= TRB_CHAIN;
3189		} else if (num_trbs == last_trb_num) {
 
3190			td->last_trb = ep_ring->enqueue;
3191			field |= TRB_IOC;
3192		} else if (zero_length_needed && num_trbs == 1) {
3193			trb_buff_len = 0;
3194			urb_priv->td[1]->last_trb = ep_ring->enqueue;
3195			field |= TRB_IOC;
3196		}
3197
3198		/* Only set interrupt on short packet for IN endpoints */
3199		if (usb_urb_dir_in(urb))
3200			field |= TRB_ISP;
3201
 
 
 
 
 
3202		if (TRB_MAX_BUFF_SIZE -
3203				(addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
3204			xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
3205			xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
3206					(unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
3207					(unsigned int) addr + trb_buff_len);
3208		}
3209
3210		/* Set the TRB length, TD size, and interrupter fields. */
3211		remainder = xhci_td_remainder(xhci, running_total, trb_buff_len,
3212					   urb->transfer_buffer_length,
3213					   urb, num_trbs - 1);
3214
 
 
 
 
3215		length_field = TRB_LEN(trb_buff_len) |
3216			TRB_TD_SIZE(remainder) |
3217			TRB_INTR_TARGET(0);
3218
3219		if (num_trbs > 1)
3220			more_trbs_coming = true;
3221		else
3222			more_trbs_coming = false;
3223		queue_trb(xhci, ep_ring, more_trbs_coming,
3224				lower_32_bits(addr),
3225				upper_32_bits(addr),
3226				length_field,
3227				field | TRB_TYPE(TRB_NORMAL));
3228		--num_trbs;
3229		running_total += trb_buff_len;
3230
3231		/* Calculate length for next transfer --
3232		 * Are we done queueing all the TRBs for this sg entry?
3233		 */
3234		this_sg_len -= trb_buff_len;
3235		if (this_sg_len == 0) {
3236			--num_sgs;
3237			if (num_sgs == 0)
3238				break;
3239			sg = sg_next(sg);
3240			addr = (u64) sg_dma_address(sg);
3241			this_sg_len = sg_dma_len(sg);
3242		} else {
3243			addr += trb_buff_len;
3244		}
3245
3246		trb_buff_len = TRB_MAX_BUFF_SIZE -
3247			(addr & (TRB_MAX_BUFF_SIZE - 1));
3248		trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3249		if (running_total + trb_buff_len > urb->transfer_buffer_length)
3250			trb_buff_len =
3251				urb->transfer_buffer_length - running_total;
3252	} while (num_trbs > 0);
3253
3254	check_trb_math(urb, num_trbs, running_total);
3255	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3256			start_cycle, start_trb);
3257	return 0;
3258}
3259
3260/* This is very similar to what ehci-q.c qtd_fill() does */
3261int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3262		struct urb *urb, int slot_id, unsigned int ep_index)
3263{
3264	struct xhci_ring *ep_ring;
3265	struct urb_priv *urb_priv;
3266	struct xhci_td *td;
3267	int num_trbs;
3268	struct xhci_generic_trb *start_trb;
3269	bool first_trb;
3270	int last_trb_num;
3271	bool more_trbs_coming;
3272	bool zero_length_needed;
3273	int start_cycle;
3274	u32 field, length_field;
3275
3276	int running_total, trb_buff_len, ret;
3277	unsigned int total_packet_count;
3278	u64 addr;
3279
3280	if (urb->num_sgs)
3281		return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
3282
3283	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3284	if (!ep_ring)
3285		return -EINVAL;
3286
3287	num_trbs = 0;
3288	/* How much data is (potentially) left before the 64KB boundary? */
3289	running_total = TRB_MAX_BUFF_SIZE -
3290		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3291	running_total &= TRB_MAX_BUFF_SIZE - 1;
3292
3293	/* If there's some data on this 64KB chunk, or we have to send a
3294	 * zero-length transfer, we need at least one TRB
3295	 */
3296	if (running_total != 0 || urb->transfer_buffer_length == 0)
3297		num_trbs++;
3298	/* How many more 64KB chunks to transfer, how many more TRBs? */
3299	while (running_total < urb->transfer_buffer_length) {
3300		num_trbs++;
3301		running_total += TRB_MAX_BUFF_SIZE;
3302	}
 
 
 
 
 
 
 
 
 
 
3303
3304	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3305			ep_index, urb->stream_id,
3306			num_trbs, urb, 0, mem_flags);
3307	if (ret < 0)
3308		return ret;
3309
3310	urb_priv = urb->hcpriv;
3311
3312	/* Deal with URB_ZERO_PACKET - need one more td/trb */
3313	zero_length_needed = urb->transfer_flags & URB_ZERO_PACKET &&
3314		urb_priv->length == 2;
3315	if (zero_length_needed) {
3316		num_trbs++;
3317		xhci_dbg(xhci, "Creating zero length td.\n");
3318		ret = prepare_transfer(xhci, xhci->devs[slot_id],
3319				ep_index, urb->stream_id,
3320				1, urb, 1, mem_flags);
3321		if (ret < 0)
3322			return ret;
3323	}
3324
3325	td = urb_priv->td[0];
3326
3327	/*
3328	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3329	 * until we've finished creating all the other TRBs.  The ring's cycle
3330	 * state may change as we enqueue the other TRBs, so save it too.
3331	 */
3332	start_trb = &ep_ring->enqueue->generic;
3333	start_cycle = ep_ring->cycle_state;
3334
3335	running_total = 0;
3336	total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3337			usb_endpoint_maxp(&urb->ep->desc));
3338	/* How much data is in the first TRB? */
3339	addr = (u64) urb->transfer_dma;
3340	trb_buff_len = TRB_MAX_BUFF_SIZE -
3341		(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3342	if (trb_buff_len > urb->transfer_buffer_length)
3343		trb_buff_len = urb->transfer_buffer_length;
3344
3345	first_trb = true;
3346	last_trb_num = zero_length_needed ? 2 : 1;
3347	/* Queue the first TRB, even if it's zero-length */
3348	do {
3349		u32 remainder = 0;
3350		field = 0;
3351
3352		/* Don't change the cycle bit of the first TRB until later */
3353		if (first_trb) {
3354			first_trb = false;
3355			if (start_cycle == 0)
3356				field |= 0x1;
3357		} else
3358			field |= ep_ring->cycle_state;
3359
3360		/* Chain all the TRBs together; clear the chain bit in the last
3361		 * TRB to indicate it's the last TRB in the chain.
3362		 */
3363		if (num_trbs > last_trb_num) {
3364			field |= TRB_CHAIN;
3365		} else if (num_trbs == last_trb_num) {
 
3366			td->last_trb = ep_ring->enqueue;
3367			field |= TRB_IOC;
3368		} else if (zero_length_needed && num_trbs == 1) {
3369			trb_buff_len = 0;
3370			urb_priv->td[1]->last_trb = ep_ring->enqueue;
3371			field |= TRB_IOC;
3372		}
3373
3374		/* Only set interrupt on short packet for IN endpoints */
3375		if (usb_urb_dir_in(urb))
3376			field |= TRB_ISP;
3377
3378		/* Set the TRB length, TD size, and interrupter fields. */
3379		remainder = xhci_td_remainder(xhci, running_total, trb_buff_len,
3380					   urb->transfer_buffer_length,
3381					   urb, num_trbs - 1);
3382
 
 
 
 
3383		length_field = TRB_LEN(trb_buff_len) |
3384			TRB_TD_SIZE(remainder) |
3385			TRB_INTR_TARGET(0);
3386
3387		if (num_trbs > 1)
3388			more_trbs_coming = true;
3389		else
3390			more_trbs_coming = false;
3391		queue_trb(xhci, ep_ring, more_trbs_coming,
3392				lower_32_bits(addr),
3393				upper_32_bits(addr),
3394				length_field,
3395				field | TRB_TYPE(TRB_NORMAL));
3396		--num_trbs;
3397		running_total += trb_buff_len;
3398
3399		/* Calculate length for next transfer */
3400		addr += trb_buff_len;
3401		trb_buff_len = urb->transfer_buffer_length - running_total;
3402		if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3403			trb_buff_len = TRB_MAX_BUFF_SIZE;
3404	} while (num_trbs > 0);
3405
3406	check_trb_math(urb, num_trbs, running_total);
3407	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3408			start_cycle, start_trb);
3409	return 0;
3410}
3411
3412/* Caller must have locked xhci->lock */
3413int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3414		struct urb *urb, int slot_id, unsigned int ep_index)
3415{
3416	struct xhci_ring *ep_ring;
3417	int num_trbs;
3418	int ret;
3419	struct usb_ctrlrequest *setup;
3420	struct xhci_generic_trb *start_trb;
3421	int start_cycle;
3422	u32 field, length_field, remainder;
3423	struct urb_priv *urb_priv;
3424	struct xhci_td *td;
3425
3426	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3427	if (!ep_ring)
3428		return -EINVAL;
3429
3430	/*
3431	 * Need to copy setup packet into setup TRB, so we can't use the setup
3432	 * DMA address.
3433	 */
3434	if (!urb->setup_packet)
3435		return -EINVAL;
3436
 
 
 
3437	/* 1 TRB for setup, 1 for status */
3438	num_trbs = 2;
3439	/*
3440	 * Don't need to check if we need additional event data and normal TRBs,
3441	 * since data in control transfers will never get bigger than 16MB
3442	 * XXX: can we get a buffer that crosses 64KB boundaries?
3443	 */
3444	if (urb->transfer_buffer_length > 0)
3445		num_trbs++;
3446	ret = prepare_transfer(xhci, xhci->devs[slot_id],
3447			ep_index, urb->stream_id,
3448			num_trbs, urb, 0, mem_flags);
3449	if (ret < 0)
3450		return ret;
3451
3452	urb_priv = urb->hcpriv;
3453	td = urb_priv->td[0];
3454
3455	/*
3456	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3457	 * until we've finished creating all the other TRBs.  The ring's cycle
3458	 * state may change as we enqueue the other TRBs, so save it too.
3459	 */
3460	start_trb = &ep_ring->enqueue->generic;
3461	start_cycle = ep_ring->cycle_state;
3462
3463	/* Queue setup TRB - see section 6.4.1.2.1 */
3464	/* FIXME better way to translate setup_packet into two u32 fields? */
3465	setup = (struct usb_ctrlrequest *) urb->setup_packet;
3466	field = 0;
3467	field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3468	if (start_cycle == 0)
3469		field |= 0x1;
3470
3471	/* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3472	if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3473		if (urb->transfer_buffer_length > 0) {
3474			if (setup->bRequestType & USB_DIR_IN)
3475				field |= TRB_TX_TYPE(TRB_DATA_IN);
3476			else
3477				field |= TRB_TX_TYPE(TRB_DATA_OUT);
3478		}
3479	}
3480
3481	queue_trb(xhci, ep_ring, true,
3482		  setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3483		  le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3484		  TRB_LEN(8) | TRB_INTR_TARGET(0),
3485		  /* Immediate data in pointer */
3486		  field);
3487
3488	/* If there's data, queue data TRBs */
3489	/* Only set interrupt on short packet for IN endpoints */
3490	if (usb_urb_dir_in(urb))
3491		field = TRB_ISP | TRB_TYPE(TRB_DATA);
3492	else
3493		field = TRB_TYPE(TRB_DATA);
3494
3495	remainder = xhci_td_remainder(xhci, 0,
3496				   urb->transfer_buffer_length,
3497				   urb->transfer_buffer_length,
3498				   urb, 1);
3499
3500	length_field = TRB_LEN(urb->transfer_buffer_length) |
3501		TRB_TD_SIZE(remainder) |
3502		TRB_INTR_TARGET(0);
3503
3504	if (urb->transfer_buffer_length > 0) {
3505		if (setup->bRequestType & USB_DIR_IN)
3506			field |= TRB_DIR_IN;
3507		queue_trb(xhci, ep_ring, true,
3508				lower_32_bits(urb->transfer_dma),
3509				upper_32_bits(urb->transfer_dma),
3510				length_field,
3511				field | ep_ring->cycle_state);
3512	}
3513
3514	/* Save the DMA address of the last TRB in the TD */
3515	td->last_trb = ep_ring->enqueue;
3516
3517	/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3518	/* If the device sent data, the status stage is an OUT transfer */
3519	if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3520		field = 0;
3521	else
3522		field = TRB_DIR_IN;
3523	queue_trb(xhci, ep_ring, false,
3524			0,
3525			0,
3526			TRB_INTR_TARGET(0),
3527			/* Event on completion */
3528			field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3529
3530	giveback_first_trb(xhci, slot_id, ep_index, 0,
3531			start_cycle, start_trb);
3532	return 0;
3533}
3534
3535static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3536		struct urb *urb, int i)
3537{
3538	int num_trbs = 0;
3539	u64 addr, td_len;
3540
3541	addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3542	td_len = urb->iso_frame_desc[i].length;
3543
3544	num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3545			TRB_MAX_BUFF_SIZE);
3546	if (num_trbs == 0)
3547		num_trbs++;
3548
3549	return num_trbs;
3550}
3551
3552/*
3553 * The transfer burst count field of the isochronous TRB defines the number of
3554 * bursts that are required to move all packets in this TD.  Only SuperSpeed
3555 * devices can burst up to bMaxBurst number of packets per service interval.
3556 * This field is zero based, meaning a value of zero in the field means one
3557 * burst.  Basically, for everything but SuperSpeed devices, this field will be
3558 * zero.  Only xHCI 1.0 host controllers support this field.
3559 */
3560static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
 
3561		struct urb *urb, unsigned int total_packet_count)
3562{
3563	unsigned int max_burst;
3564
3565	if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3566		return 0;
3567
3568	max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3569	return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3570}
3571
3572/*
3573 * Returns the number of packets in the last "burst" of packets.  This field is
3574 * valid for all speeds of devices.  USB 2.0 devices can only do one "burst", so
3575 * the last burst packet count is equal to the total number of packets in the
3576 * TD.  SuperSpeed endpoints can have up to 3 bursts.  All but the last burst
3577 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3578 * contain 1 to (bMaxBurst + 1) packets.
3579 */
3580static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
 
3581		struct urb *urb, unsigned int total_packet_count)
3582{
3583	unsigned int max_burst;
3584	unsigned int residue;
3585
3586	if (xhci->hci_version < 0x100)
3587		return 0;
3588
3589	if (urb->dev->speed >= USB_SPEED_SUPER) {
 
3590		/* bMaxBurst is zero based: 0 means 1 packet per burst */
3591		max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3592		residue = total_packet_count % (max_burst + 1);
3593		/* If residue is zero, the last burst contains (max_burst + 1)
3594		 * number of packets, but the TLBPC field is zero-based.
3595		 */
3596		if (residue == 0)
3597			return max_burst;
3598		return residue - 1;
 
 
 
 
3599	}
3600	if (total_packet_count == 0)
3601		return 0;
3602	return total_packet_count - 1;
3603}
3604
3605/*
3606 * Calculates Frame ID field of the isochronous TRB identifies the
3607 * target frame that the Interval associated with this Isochronous
3608 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3609 *
3610 * Returns actual frame id on success, negative value on error.
3611 */
3612static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3613		struct urb *urb, int index)
3614{
3615	int start_frame, ist, ret = 0;
3616	int start_frame_id, end_frame_id, current_frame_id;
3617
3618	if (urb->dev->speed == USB_SPEED_LOW ||
3619			urb->dev->speed == USB_SPEED_FULL)
3620		start_frame = urb->start_frame + index * urb->interval;
3621	else
3622		start_frame = (urb->start_frame + index * urb->interval) >> 3;
3623
3624	/* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3625	 *
3626	 * If bit [3] of IST is cleared to '0', software can add a TRB no
3627	 * later than IST[2:0] Microframes before that TRB is scheduled to
3628	 * be executed.
3629	 * If bit [3] of IST is set to '1', software can add a TRB no later
3630	 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3631	 */
3632	ist = HCS_IST(xhci->hcs_params2) & 0x7;
3633	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3634		ist <<= 3;
3635
3636	/* Software shall not schedule an Isoch TD with a Frame ID value that
3637	 * is less than the Start Frame ID or greater than the End Frame ID,
3638	 * where:
3639	 *
3640	 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3641	 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3642	 *
3643	 * Both the End Frame ID and Start Frame ID values are calculated
3644	 * in microframes. When software determines the valid Frame ID value;
3645	 * The End Frame ID value should be rounded down to the nearest Frame
3646	 * boundary, and the Start Frame ID value should be rounded up to the
3647	 * nearest Frame boundary.
3648	 */
3649	current_frame_id = readl(&xhci->run_regs->microframe_index);
3650	start_frame_id = roundup(current_frame_id + ist + 1, 8);
3651	end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3652
3653	start_frame &= 0x7ff;
3654	start_frame_id = (start_frame_id >> 3) & 0x7ff;
3655	end_frame_id = (end_frame_id >> 3) & 0x7ff;
3656
3657	xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3658		 __func__, index, readl(&xhci->run_regs->microframe_index),
3659		 start_frame_id, end_frame_id, start_frame);
3660
3661	if (start_frame_id < end_frame_id) {
3662		if (start_frame > end_frame_id ||
3663				start_frame < start_frame_id)
3664			ret = -EINVAL;
3665	} else if (start_frame_id > end_frame_id) {
3666		if ((start_frame > end_frame_id &&
3667				start_frame < start_frame_id))
3668			ret = -EINVAL;
3669	} else {
3670			ret = -EINVAL;
3671	}
3672
3673	if (index == 0) {
3674		if (ret == -EINVAL || start_frame == start_frame_id) {
3675			start_frame = start_frame_id + 1;
3676			if (urb->dev->speed == USB_SPEED_LOW ||
3677					urb->dev->speed == USB_SPEED_FULL)
3678				urb->start_frame = start_frame;
3679			else
3680				urb->start_frame = start_frame << 3;
3681			ret = 0;
3682		}
3683	}
3684
3685	if (ret) {
3686		xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3687				start_frame, current_frame_id, index,
3688				start_frame_id, end_frame_id);
3689		xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3690		return ret;
3691	}
3692
3693	return start_frame;
3694}
3695
3696/* This is for isoc transfer */
3697static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3698		struct urb *urb, int slot_id, unsigned int ep_index)
3699{
3700	struct xhci_ring *ep_ring;
3701	struct urb_priv *urb_priv;
3702	struct xhci_td *td;
3703	int num_tds, trbs_per_td;
3704	struct xhci_generic_trb *start_trb;
3705	bool first_trb;
3706	int start_cycle;
3707	u32 field, length_field;
3708	int running_total, trb_buff_len, td_len, td_remain_len, ret;
3709	u64 start_addr, addr;
3710	int i, j;
3711	bool more_trbs_coming;
3712	struct xhci_virt_ep *xep;
3713	int frame_id;
3714
3715	xep = &xhci->devs[slot_id]->eps[ep_index];
3716	ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3717
3718	num_tds = urb->number_of_packets;
3719	if (num_tds < 1) {
3720		xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3721		return -EINVAL;
3722	}
 
 
 
 
 
 
 
 
 
 
3723	start_addr = (u64) urb->transfer_dma;
3724	start_trb = &ep_ring->enqueue->generic;
3725	start_cycle = ep_ring->cycle_state;
3726
3727	urb_priv = urb->hcpriv;
3728	/* Queue the TRBs for each TD, even if they are zero-length */
3729	for (i = 0; i < num_tds; i++) {
3730		unsigned int total_pkt_count, max_pkt;
3731		unsigned int burst_count, last_burst_pkt_count;
3732		u32 sia_frame_id;
3733
3734		first_trb = true;
3735		running_total = 0;
3736		addr = start_addr + urb->iso_frame_desc[i].offset;
3737		td_len = urb->iso_frame_desc[i].length;
3738		td_remain_len = td_len;
3739		max_pkt = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3740		total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3741
3742		/* A zero-length transfer still involves at least one packet. */
3743		if (total_pkt_count == 0)
3744			total_pkt_count++;
3745		burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3746		last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3747							urb, total_pkt_count);
 
3748
3749		trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3750
3751		ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3752				urb->stream_id, trbs_per_td, urb, i, mem_flags);
3753		if (ret < 0) {
3754			if (i == 0)
3755				return ret;
3756			goto cleanup;
3757		}
 
3758		td = urb_priv->td[i];
3759
3760		/* use SIA as default, if frame id is used overwrite it */
3761		sia_frame_id = TRB_SIA;
3762		if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3763		    HCC_CFC(xhci->hcc_params)) {
3764			frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3765			if (frame_id >= 0)
3766				sia_frame_id = TRB_FRAME_ID(frame_id);
3767		}
3768		/*
3769		 * Set isoc specific data for the first TRB in a TD.
3770		 * Prevent HW from getting the TRBs by keeping the cycle state
3771		 * inverted in the first TDs isoc TRB.
3772		 */
3773		field = TRB_TYPE(TRB_ISOC) |
3774			TRB_TLBPC(last_burst_pkt_count) |
3775			sia_frame_id |
3776			(i ? ep_ring->cycle_state : !start_cycle);
3777
3778		/* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3779		if (!xep->use_extended_tbc)
3780			field |= TRB_TBC(burst_count);
3781
3782		/* fill the rest of the TRB fields, and remaining normal TRBs */
3783		for (j = 0; j < trbs_per_td; j++) {
3784			u32 remainder = 0;
 
3785
3786			/* only first TRB is isoc, overwrite otherwise */
3787			if (!first_trb)
3788				field = TRB_TYPE(TRB_NORMAL) |
3789					ep_ring->cycle_state;
 
 
 
 
 
 
 
 
 
 
 
 
3790
3791			/* Only set interrupt on short packet for IN EPs */
3792			if (usb_urb_dir_in(urb))
3793				field |= TRB_ISP;
3794
3795			/* Set the chain bit for all except the last TRB  */
 
 
 
3796			if (j < trbs_per_td - 1) {
 
3797				more_trbs_coming = true;
3798				field |= TRB_CHAIN;
3799			} else {
3800				more_trbs_coming = false;
3801				td->last_trb = ep_ring->enqueue;
3802				field |= TRB_IOC;
3803				/* set BEI, except for the last TD */
3804				if (xhci->hci_version >= 0x100 &&
3805				    !(xhci->quirks & XHCI_AVOID_BEI) &&
3806				    i < num_tds - 1)
3807					field |= TRB_BEI;
 
3808			}
 
3809			/* Calculate TRB length */
3810			trb_buff_len = TRB_MAX_BUFF_SIZE -
3811				(addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3812			if (trb_buff_len > td_remain_len)
3813				trb_buff_len = td_remain_len;
3814
3815			/* Set the TRB length, TD size, & interrupter fields. */
3816			remainder = xhci_td_remainder(xhci, running_total,
3817						   trb_buff_len, td_len,
3818						   urb, trbs_per_td - j - 1);
3819
 
 
 
 
3820			length_field = TRB_LEN(trb_buff_len) |
 
3821				TRB_INTR_TARGET(0);
3822
3823			/* xhci 1.1 with ETE uses TD Size field for TBC */
3824			if (first_trb && xep->use_extended_tbc)
3825				length_field |= TRB_TD_SIZE_TBC(burst_count);
3826			else
3827				length_field |= TRB_TD_SIZE(remainder);
3828			first_trb = false;
3829
3830			queue_trb(xhci, ep_ring, more_trbs_coming,
3831				lower_32_bits(addr),
3832				upper_32_bits(addr),
3833				length_field,
3834				field);
3835			running_total += trb_buff_len;
3836
3837			addr += trb_buff_len;
3838			td_remain_len -= trb_buff_len;
3839		}
3840
3841		/* Check TD length */
3842		if (running_total != td_len) {
3843			xhci_err(xhci, "ISOC TD length unmatch\n");
3844			ret = -EINVAL;
3845			goto cleanup;
3846		}
3847	}
3848
3849	/* store the next frame id */
3850	if (HCC_CFC(xhci->hcc_params))
3851		xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3852
3853	if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3854		if (xhci->quirks & XHCI_AMD_PLL_FIX)
3855			usb_amd_quirk_pll_disable();
3856	}
3857	xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3858
3859	giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3860			start_cycle, start_trb);
3861	return 0;
3862cleanup:
3863	/* Clean up a partially enqueued isoc transfer. */
3864
3865	for (i--; i >= 0; i--)
3866		list_del_init(&urb_priv->td[i]->td_list);
3867
3868	/* Use the first TD as a temporary variable to turn the TDs we've queued
3869	 * into No-ops with a software-owned cycle bit. That way the hardware
3870	 * won't accidentally start executing bogus TDs when we partially
3871	 * overwrite them.  td->first_trb and td->start_seg are already set.
3872	 */
3873	urb_priv->td[0]->last_trb = ep_ring->enqueue;
3874	/* Every TRB except the first & last will have its cycle bit flipped. */
3875	td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3876
3877	/* Reset the ring enqueue back to the first TRB and its cycle bit. */
3878	ep_ring->enqueue = urb_priv->td[0]->first_trb;
3879	ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3880	ep_ring->cycle_state = start_cycle;
3881	ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3882	usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3883	return ret;
3884}
3885
3886/*
3887 * Check transfer ring to guarantee there is enough room for the urb.
3888 * Update ISO URB start_frame and interval.
3889 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3890 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3891 * Contiguous Frame ID is not supported by HC.
3892 */
3893int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3894		struct urb *urb, int slot_id, unsigned int ep_index)
3895{
3896	struct xhci_virt_device *xdev;
3897	struct xhci_ring *ep_ring;
3898	struct xhci_ep_ctx *ep_ctx;
3899	int start_frame;
3900	int xhci_interval;
3901	int ep_interval;
3902	int num_tds, num_trbs, i;
3903	int ret;
3904	struct xhci_virt_ep *xep;
3905	int ist;
3906
3907	xdev = xhci->devs[slot_id];
3908	xep = &xhci->devs[slot_id]->eps[ep_index];
3909	ep_ring = xdev->eps[ep_index].ring;
3910	ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3911
3912	num_trbs = 0;
3913	num_tds = urb->number_of_packets;
3914	for (i = 0; i < num_tds; i++)
3915		num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3916
3917	/* Check the ring to guarantee there is enough room for the whole urb.
3918	 * Do not insert any td of the urb to the ring if the check failed.
3919	 */
3920	ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3921			   num_trbs, mem_flags);
3922	if (ret)
3923		return ret;
3924
3925	/*
3926	 * Check interval value. This should be done before we start to
3927	 * calculate the start frame value.
3928	 */
 
 
 
 
3929	xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3930	ep_interval = urb->interval;
3931	/* Convert to microframes */
3932	if (urb->dev->speed == USB_SPEED_LOW ||
3933			urb->dev->speed == USB_SPEED_FULL)
3934		ep_interval *= 8;
3935	/* FIXME change this to a warning and a suggestion to use the new API
3936	 * to set the polling interval (once the API is added).
3937	 */
3938	if (xhci_interval != ep_interval) {
3939		dev_dbg_ratelimited(&urb->dev->dev,
3940				"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3941				ep_interval, ep_interval == 1 ? "" : "s",
3942				xhci_interval, xhci_interval == 1 ? "" : "s");
 
 
 
 
3943		urb->interval = xhci_interval;
3944		/* Convert back to frames for LS/FS devices */
3945		if (urb->dev->speed == USB_SPEED_LOW ||
3946				urb->dev->speed == USB_SPEED_FULL)
3947			urb->interval /= 8;
3948	}
3949
3950	/* Calculate the start frame and put it in urb->start_frame. */
3951	if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3952		if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
3953				EP_STATE_RUNNING) {
3954			urb->start_frame = xep->next_frame_id;
3955			goto skip_start_over;
3956		}
3957	}
3958
3959	start_frame = readl(&xhci->run_regs->microframe_index);
3960	start_frame &= 0x3fff;
3961	/*
3962	 * Round up to the next frame and consider the time before trb really
3963	 * gets scheduled by hardare.
3964	 */
3965	ist = HCS_IST(xhci->hcs_params2) & 0x7;
3966	if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3967		ist <<= 3;
3968	start_frame += ist + XHCI_CFC_DELAY;
3969	start_frame = roundup(start_frame, 8);
3970
3971	/*
3972	 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3973	 * is greate than 8 microframes.
3974	 */
3975	if (urb->dev->speed == USB_SPEED_LOW ||
3976			urb->dev->speed == USB_SPEED_FULL) {
3977		start_frame = roundup(start_frame, urb->interval << 3);
3978		urb->start_frame = start_frame >> 3;
3979	} else {
3980		start_frame = roundup(start_frame, urb->interval);
3981		urb->start_frame = start_frame;
3982	}
3983
3984skip_start_over:
3985	ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3986
3987	return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3988}
3989
3990/****		Command Ring Operations		****/
3991
3992/* Generic function for queueing a command TRB on the command ring.
3993 * Check to make sure there's room on the command ring for one command TRB.
3994 * Also check that there's room reserved for commands that must not fail.
3995 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3996 * then only check for the number of reserved spots.
3997 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3998 * because the command event handler may want to resubmit a failed command.
3999 */
4000static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
4001			 u32 field1, u32 field2,
4002			 u32 field3, u32 field4, bool command_must_succeed)
4003{
4004	int reserved_trbs = xhci->cmd_ring_reserved_trbs;
4005	int ret;
4006
4007	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
4008		(xhci->xhc_state & XHCI_STATE_HALTED)) {
4009		xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
4010		return -ESHUTDOWN;
4011	}
4012
4013	if (!command_must_succeed)
4014		reserved_trbs++;
4015
4016	ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
4017			reserved_trbs, GFP_ATOMIC);
4018	if (ret < 0) {
4019		xhci_err(xhci, "ERR: No room for command on command ring\n");
4020		if (command_must_succeed)
4021			xhci_err(xhci, "ERR: Reserved TRB counting for "
4022					"unfailable commands failed.\n");
4023		return ret;
4024	}
4025
4026	cmd->command_trb = xhci->cmd_ring->enqueue;
4027	list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
4028
4029	/* if there are no other commands queued we start the timeout timer */
4030	if (xhci->cmd_list.next == &cmd->cmd_list &&
4031	    !timer_pending(&xhci->cmd_timer)) {
4032		xhci->current_cmd = cmd;
4033		mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
4034	}
4035
4036	queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
4037			field4 | xhci->cmd_ring->cycle_state);
4038	return 0;
4039}
4040
4041/* Queue a slot enable or disable request on the command ring */
4042int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
4043		u32 trb_type, u32 slot_id)
4044{
4045	return queue_command(xhci, cmd, 0, 0, 0,
4046			TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
4047}
4048
4049/* Queue an address device command TRB */
4050int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
4051		dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
4052{
4053	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4054			upper_32_bits(in_ctx_ptr), 0,
4055			TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
4056			| (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
4057}
4058
4059int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
4060		u32 field1, u32 field2, u32 field3, u32 field4)
4061{
4062	return queue_command(xhci, cmd, field1, field2, field3, field4, false);
4063}
4064
4065/* Queue a reset device command TRB */
4066int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
4067		u32 slot_id)
4068{
4069	return queue_command(xhci, cmd, 0, 0, 0,
4070			TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
4071			false);
4072}
4073
4074/* Queue a configure endpoint command TRB */
4075int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
4076		struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
4077		u32 slot_id, bool command_must_succeed)
4078{
4079	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4080			upper_32_bits(in_ctx_ptr), 0,
4081			TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
4082			command_must_succeed);
4083}
4084
4085/* Queue an evaluate context command TRB */
4086int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
4087		dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
4088{
4089	return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4090			upper_32_bits(in_ctx_ptr), 0,
4091			TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
4092			command_must_succeed);
4093}
4094
4095/*
4096 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
4097 * activity on an endpoint that is about to be suspended.
4098 */
4099int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
4100			     int slot_id, unsigned int ep_index, int suspend)
4101{
4102	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4103	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4104	u32 type = TRB_TYPE(TRB_STOP_RING);
4105	u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
4106
4107	return queue_command(xhci, cmd, 0, 0, 0,
4108			trb_slot_id | trb_ep_index | type | trb_suspend, false);
4109}
4110
4111/* Set Transfer Ring Dequeue Pointer command */
4112void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
4113		unsigned int slot_id, unsigned int ep_index,
4114		unsigned int stream_id,
4115		struct xhci_dequeue_state *deq_state)
 
 
4116{
4117	dma_addr_t addr;
4118	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4119	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4120	u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
4121	u32 trb_sct = 0;
4122	u32 type = TRB_TYPE(TRB_SET_DEQ);
4123	struct xhci_virt_ep *ep;
4124	struct xhci_command *cmd;
4125	int ret;
4126
4127	xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
4128		"Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
4129		deq_state->new_deq_seg,
4130		(unsigned long long)deq_state->new_deq_seg->dma,
4131		deq_state->new_deq_ptr,
4132		(unsigned long long)xhci_trb_virt_to_dma(
4133			deq_state->new_deq_seg, deq_state->new_deq_ptr),
4134		deq_state->new_cycle_state);
4135
4136	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
4137				    deq_state->new_deq_ptr);
4138	if (addr == 0) {
4139		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4140		xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4141			  deq_state->new_deq_seg, deq_state->new_deq_ptr);
4142		return;
4143	}
4144	ep = &xhci->devs[slot_id]->eps[ep_index];
4145	if ((ep->ep_state & SET_DEQ_PENDING)) {
4146		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4147		xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4148		return;
4149	}
4150
4151	/* This function gets called from contexts where it cannot sleep */
4152	cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
4153	if (!cmd) {
4154		xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n");
4155		return;
4156	}
4157
4158	ep->queued_deq_seg = deq_state->new_deq_seg;
4159	ep->queued_deq_ptr = deq_state->new_deq_ptr;
4160	if (stream_id)
4161		trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
4162	ret = queue_command(xhci, cmd,
4163		lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
4164		upper_32_bits(addr), trb_stream_id,
4165		trb_slot_id | trb_ep_index | type, false);
4166	if (ret < 0) {
4167		xhci_free_command(xhci, cmd);
4168		return;
4169	}
4170
4171	/* Stop the TD queueing code from ringing the doorbell until
4172	 * this command completes.  The HC won't set the dequeue pointer
4173	 * if the ring is running, and ringing the doorbell starts the
4174	 * ring running.
4175	 */
4176	ep->ep_state |= SET_DEQ_PENDING;
4177}
4178
4179int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4180			int slot_id, unsigned int ep_index)
4181{
4182	u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4183	u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4184	u32 type = TRB_TYPE(TRB_RESET_EP);
4185
4186	return queue_command(xhci, cmd, 0, 0, 0,
4187			trb_slot_id | trb_ep_index | type, false);
4188}