Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Keystone Queue Manager subsystem driver
   3 *
   4 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
   5 * Authors:	Sandeep Nair <sandeep_n@ti.com>
   6 *		Cyril Chemparathy <cyril@ti.com>
   7 *		Santosh Shilimkar <santosh.shilimkar@ti.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * version 2 as published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/device.h>
  22#include <linux/clk.h>
  23#include <linux/io.h>
  24#include <linux/interrupt.h>
  25#include <linux/bitops.h>
  26#include <linux/slab.h>
  27#include <linux/spinlock.h>
  28#include <linux/platform_device.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/of.h>
  31#include <linux/of_irq.h>
  32#include <linux/of_device.h>
  33#include <linux/of_address.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/firmware.h>
  36#include <linux/debugfs.h>
  37#include <linux/seq_file.h>
  38#include <linux/string.h>
  39#include <linux/soc/ti/knav_qmss.h>
  40
  41#include "knav_qmss.h"
  42
  43static struct knav_device *kdev;
  44static DEFINE_MUTEX(knav_dev_lock);
  45
  46/* Queue manager register indices in DTS */
  47#define KNAV_QUEUE_PEEK_REG_INDEX	0
  48#define KNAV_QUEUE_STATUS_REG_INDEX	1
  49#define KNAV_QUEUE_CONFIG_REG_INDEX	2
  50#define KNAV_QUEUE_REGION_REG_INDEX	3
  51#define KNAV_QUEUE_PUSH_REG_INDEX	4
  52#define KNAV_QUEUE_POP_REG_INDEX	5
  53
  54/* PDSP register indices in DTS */
  55#define KNAV_QUEUE_PDSP_IRAM_REG_INDEX	0
  56#define KNAV_QUEUE_PDSP_REGS_REG_INDEX	1
  57#define KNAV_QUEUE_PDSP_INTD_REG_INDEX	2
  58#define KNAV_QUEUE_PDSP_CMD_REG_INDEX	3
  59
  60#define knav_queue_idx_to_inst(kdev, idx)			\
  61	(kdev->instances + (idx << kdev->inst_shift))
  62
  63#define for_each_handle_rcu(qh, inst)			\
  64	list_for_each_entry_rcu(qh, &inst->handles, list)
  65
  66#define for_each_instance(idx, inst, kdev)		\
  67	for (idx = 0, inst = kdev->instances;		\
  68	     idx < (kdev)->num_queues_in_use;			\
  69	     idx++, inst = knav_queue_idx_to_inst(kdev, idx))
  70
  71/* All firmware file names end up here. List the firmware file names below.
  72 * Newest followed by older ones. Search is done from start of the array
  73 * until a firmware file is found.
  74 */
  75const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
  76
  77/**
  78 * knav_queue_notify: qmss queue notfier call
  79 *
  80 * @inst:		qmss queue instance like accumulator
  81 */
  82void knav_queue_notify(struct knav_queue_inst *inst)
  83{
  84	struct knav_queue *qh;
  85
  86	if (!inst)
  87		return;
  88
  89	rcu_read_lock();
  90	for_each_handle_rcu(qh, inst) {
  91		if (atomic_read(&qh->notifier_enabled) <= 0)
  92			continue;
  93		if (WARN_ON(!qh->notifier_fn))
  94			continue;
  95		atomic_inc(&qh->stats.notifies);
  96		qh->notifier_fn(qh->notifier_fn_arg);
  97	}
  98	rcu_read_unlock();
  99}
 100EXPORT_SYMBOL_GPL(knav_queue_notify);
 101
 102static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
 103{
 104	struct knav_queue_inst *inst = _instdata;
 105
 106	knav_queue_notify(inst);
 107	return IRQ_HANDLED;
 108}
 109
 110static int knav_queue_setup_irq(struct knav_range_info *range,
 111			  struct knav_queue_inst *inst)
 112{
 113	unsigned queue = inst->id - range->queue_base;
 114	unsigned long cpu_map;
 115	int ret = 0, irq;
 116
 117	if (range->flags & RANGE_HAS_IRQ) {
 118		irq = range->irqs[queue].irq;
 119		cpu_map = range->irqs[queue].cpu_map;
 120		ret = request_irq(irq, knav_queue_int_handler, 0,
 121					inst->irq_name, inst);
 122		if (ret)
 123			return ret;
 124		disable_irq(irq);
 125		if (cpu_map) {
 126			ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
 127			if (ret) {
 128				dev_warn(range->kdev->dev,
 129					 "Failed to set IRQ affinity\n");
 130				return ret;
 131			}
 132		}
 133	}
 134	return ret;
 135}
 136
 137static void knav_queue_free_irq(struct knav_queue_inst *inst)
 138{
 139	struct knav_range_info *range = inst->range;
 140	unsigned queue = inst->id - inst->range->queue_base;
 141	int irq;
 142
 143	if (range->flags & RANGE_HAS_IRQ) {
 144		irq = range->irqs[queue].irq;
 145		irq_set_affinity_hint(irq, NULL);
 146		free_irq(irq, inst);
 147	}
 148}
 149
 150static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
 151{
 152	return !list_empty(&inst->handles);
 153}
 154
 155static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
 156{
 157	return inst->range->flags & RANGE_RESERVED;
 158}
 159
 160static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
 161{
 162	struct knav_queue *tmp;
 163
 164	rcu_read_lock();
 165	for_each_handle_rcu(tmp, inst) {
 166		if (tmp->flags & KNAV_QUEUE_SHARED) {
 167			rcu_read_unlock();
 168			return true;
 169		}
 170	}
 171	rcu_read_unlock();
 172	return false;
 173}
 174
 175static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
 176						unsigned type)
 177{
 178	if ((type == KNAV_QUEUE_QPEND) &&
 179	    (inst->range->flags & RANGE_HAS_IRQ)) {
 180		return true;
 181	} else if ((type == KNAV_QUEUE_ACC) &&
 182		(inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
 183		return true;
 184	} else if ((type == KNAV_QUEUE_GP) &&
 185		!(inst->range->flags &
 186			(RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
 187		return true;
 188	}
 189	return false;
 190}
 191
 192static inline struct knav_queue_inst *
 193knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
 194{
 195	struct knav_queue_inst *inst;
 196	int idx;
 197
 198	for_each_instance(idx, inst, kdev) {
 199		if (inst->id == id)
 200			return inst;
 201	}
 202	return NULL;
 203}
 204
 205static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
 206{
 207	if (kdev->base_id <= id &&
 208	    kdev->base_id + kdev->num_queues > id) {
 209		id -= kdev->base_id;
 210		return knav_queue_match_id_to_inst(kdev, id);
 211	}
 212	return NULL;
 213}
 214
 215static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
 216				      const char *name, unsigned flags)
 217{
 218	struct knav_queue *qh;
 219	unsigned id;
 220	int ret = 0;
 221
 222	qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
 223	if (!qh)
 224		return ERR_PTR(-ENOMEM);
 225
 226	qh->flags = flags;
 227	qh->inst = inst;
 228	id = inst->id - inst->qmgr->start_queue;
 229	qh->reg_push = &inst->qmgr->reg_push[id];
 230	qh->reg_pop = &inst->qmgr->reg_pop[id];
 231	qh->reg_peek = &inst->qmgr->reg_peek[id];
 232
 233	/* first opener? */
 234	if (!knav_queue_is_busy(inst)) {
 235		struct knav_range_info *range = inst->range;
 236
 237		inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
 238		if (range->ops && range->ops->open_queue)
 239			ret = range->ops->open_queue(range, inst, flags);
 240
 241		if (ret) {
 242			devm_kfree(inst->kdev->dev, qh);
 243			return ERR_PTR(ret);
 244		}
 245	}
 246	list_add_tail_rcu(&qh->list, &inst->handles);
 247	return qh;
 248}
 249
 250static struct knav_queue *
 251knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
 252{
 253	struct knav_queue_inst *inst;
 254	struct knav_queue *qh;
 255
 256	mutex_lock(&knav_dev_lock);
 257
 258	qh = ERR_PTR(-ENODEV);
 259	inst = knav_queue_find_by_id(id);
 260	if (!inst)
 261		goto unlock_ret;
 262
 263	qh = ERR_PTR(-EEXIST);
 264	if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
 265		goto unlock_ret;
 266
 267	qh = ERR_PTR(-EBUSY);
 268	if ((flags & KNAV_QUEUE_SHARED) &&
 269	    (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
 270		goto unlock_ret;
 271
 272	qh = __knav_queue_open(inst, name, flags);
 273
 274unlock_ret:
 275	mutex_unlock(&knav_dev_lock);
 276
 277	return qh;
 278}
 279
 280static struct knav_queue *knav_queue_open_by_type(const char *name,
 281						unsigned type, unsigned flags)
 282{
 283	struct knav_queue_inst *inst;
 284	struct knav_queue *qh = ERR_PTR(-EINVAL);
 285	int idx;
 286
 287	mutex_lock(&knav_dev_lock);
 288
 289	for_each_instance(idx, inst, kdev) {
 290		if (knav_queue_is_reserved(inst))
 291			continue;
 292		if (!knav_queue_match_type(inst, type))
 293			continue;
 294		if (knav_queue_is_busy(inst))
 295			continue;
 296		qh = __knav_queue_open(inst, name, flags);
 297		goto unlock_ret;
 298	}
 299
 300unlock_ret:
 301	mutex_unlock(&knav_dev_lock);
 302	return qh;
 303}
 304
 305static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
 306{
 307	struct knav_range_info *range = inst->range;
 308
 309	if (range->ops && range->ops->set_notify)
 310		range->ops->set_notify(range, inst, enabled);
 311}
 312
 313static int knav_queue_enable_notifier(struct knav_queue *qh)
 314{
 315	struct knav_queue_inst *inst = qh->inst;
 316	bool first;
 317
 318	if (WARN_ON(!qh->notifier_fn))
 319		return -EINVAL;
 320
 321	/* Adjust the per handle notifier count */
 322	first = (atomic_inc_return(&qh->notifier_enabled) == 1);
 323	if (!first)
 324		return 0; /* nothing to do */
 325
 326	/* Now adjust the per instance notifier count */
 327	first = (atomic_inc_return(&inst->num_notifiers) == 1);
 328	if (first)
 329		knav_queue_set_notify(inst, true);
 330
 331	return 0;
 332}
 333
 334static int knav_queue_disable_notifier(struct knav_queue *qh)
 335{
 336	struct knav_queue_inst *inst = qh->inst;
 337	bool last;
 338
 339	last = (atomic_dec_return(&qh->notifier_enabled) == 0);
 340	if (!last)
 341		return 0; /* nothing to do */
 342
 343	last = (atomic_dec_return(&inst->num_notifiers) == 0);
 344	if (last)
 345		knav_queue_set_notify(inst, false);
 346
 347	return 0;
 348}
 349
 350static int knav_queue_set_notifier(struct knav_queue *qh,
 351				struct knav_queue_notify_config *cfg)
 352{
 353	knav_queue_notify_fn old_fn = qh->notifier_fn;
 354
 355	if (!cfg)
 356		return -EINVAL;
 357
 358	if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
 359		return -ENOTSUPP;
 360
 361	if (!cfg->fn && old_fn)
 362		knav_queue_disable_notifier(qh);
 363
 364	qh->notifier_fn = cfg->fn;
 365	qh->notifier_fn_arg = cfg->fn_arg;
 366
 367	if (cfg->fn && !old_fn)
 368		knav_queue_enable_notifier(qh);
 369
 370	return 0;
 371}
 372
 373static int knav_gp_set_notify(struct knav_range_info *range,
 374			       struct knav_queue_inst *inst,
 375			       bool enabled)
 376{
 377	unsigned queue;
 378
 379	if (range->flags & RANGE_HAS_IRQ) {
 380		queue = inst->id - range->queue_base;
 381		if (enabled)
 382			enable_irq(range->irqs[queue].irq);
 383		else
 384			disable_irq_nosync(range->irqs[queue].irq);
 385	}
 386	return 0;
 387}
 388
 389static int knav_gp_open_queue(struct knav_range_info *range,
 390				struct knav_queue_inst *inst, unsigned flags)
 391{
 392	return knav_queue_setup_irq(range, inst);
 393}
 394
 395static int knav_gp_close_queue(struct knav_range_info *range,
 396				struct knav_queue_inst *inst)
 397{
 398	knav_queue_free_irq(inst);
 399	return 0;
 400}
 401
 402struct knav_range_ops knav_gp_range_ops = {
 403	.set_notify	= knav_gp_set_notify,
 404	.open_queue	= knav_gp_open_queue,
 405	.close_queue	= knav_gp_close_queue,
 406};
 407
 408
 409static int knav_queue_get_count(void *qhandle)
 410{
 411	struct knav_queue *qh = qhandle;
 412	struct knav_queue_inst *inst = qh->inst;
 413
 414	return readl_relaxed(&qh->reg_peek[0].entry_count) +
 415		atomic_read(&inst->desc_count);
 416}
 417
 418static void knav_queue_debug_show_instance(struct seq_file *s,
 419					struct knav_queue_inst *inst)
 420{
 421	struct knav_device *kdev = inst->kdev;
 422	struct knav_queue *qh;
 423
 424	if (!knav_queue_is_busy(inst))
 425		return;
 426
 427	seq_printf(s, "\tqueue id %d (%s)\n",
 428		   kdev->base_id + inst->id, inst->name);
 429	for_each_handle_rcu(qh, inst) {
 430		seq_printf(s, "\t\thandle %p: ", qh);
 431		seq_printf(s, "pushes %8d, ",
 432			   atomic_read(&qh->stats.pushes));
 433		seq_printf(s, "pops %8d, ",
 434			   atomic_read(&qh->stats.pops));
 435		seq_printf(s, "count %8d, ",
 436			   knav_queue_get_count(qh));
 437		seq_printf(s, "notifies %8d, ",
 438			   atomic_read(&qh->stats.notifies));
 439		seq_printf(s, "push errors %8d, ",
 440			   atomic_read(&qh->stats.push_errors));
 441		seq_printf(s, "pop errors %8d\n",
 442			   atomic_read(&qh->stats.pop_errors));
 443	}
 444}
 445
 446static int knav_queue_debug_show(struct seq_file *s, void *v)
 447{
 448	struct knav_queue_inst *inst;
 449	int idx;
 450
 451	mutex_lock(&knav_dev_lock);
 452	seq_printf(s, "%s: %u-%u\n",
 453		   dev_name(kdev->dev), kdev->base_id,
 454		   kdev->base_id + kdev->num_queues - 1);
 455	for_each_instance(idx, inst, kdev)
 456		knav_queue_debug_show_instance(s, inst);
 457	mutex_unlock(&knav_dev_lock);
 458
 459	return 0;
 460}
 461
 462static int knav_queue_debug_open(struct inode *inode, struct file *file)
 463{
 464	return single_open(file, knav_queue_debug_show, NULL);
 465}
 466
 467static const struct file_operations knav_queue_debug_ops = {
 468	.open		= knav_queue_debug_open,
 469	.read		= seq_read,
 470	.llseek		= seq_lseek,
 471	.release	= single_release,
 472};
 473
 474static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
 475					u32 flags)
 476{
 477	unsigned long end;
 478	u32 val = 0;
 479
 480	end = jiffies + msecs_to_jiffies(timeout);
 481	while (time_after(end, jiffies)) {
 482		val = readl_relaxed(addr);
 483		if (flags)
 484			val &= flags;
 485		if (!val)
 486			break;
 487		cpu_relax();
 488	}
 489	return val ? -ETIMEDOUT : 0;
 490}
 491
 492
 493static int knav_queue_flush(struct knav_queue *qh)
 494{
 495	struct knav_queue_inst *inst = qh->inst;
 496	unsigned id = inst->id - inst->qmgr->start_queue;
 497
 498	atomic_set(&inst->desc_count, 0);
 499	writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
 500	return 0;
 501}
 502
 503/**
 504 * knav_queue_open()	- open a hardware queue
 505 * @name		- name to give the queue handle
 506 * @id			- desired queue number if any or specifes the type
 507 *			  of queue
 508 * @flags		- the following flags are applicable to queues:
 509 *	KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
 510 *			     exclusive by default.
 511 *			     Subsequent attempts to open a shared queue should
 512 *			     also have this flag.
 513 *
 514 * Returns a handle to the open hardware queue if successful. Use IS_ERR()
 515 * to check the returned value for error codes.
 516 */
 517void *knav_queue_open(const char *name, unsigned id,
 518					unsigned flags)
 519{
 520	struct knav_queue *qh = ERR_PTR(-EINVAL);
 521
 522	switch (id) {
 523	case KNAV_QUEUE_QPEND:
 524	case KNAV_QUEUE_ACC:
 525	case KNAV_QUEUE_GP:
 526		qh = knav_queue_open_by_type(name, id, flags);
 527		break;
 528
 529	default:
 530		qh = knav_queue_open_by_id(name, id, flags);
 531		break;
 532	}
 533	return qh;
 534}
 535EXPORT_SYMBOL_GPL(knav_queue_open);
 536
 537/**
 538 * knav_queue_close()	- close a hardware queue handle
 539 * @qh			- handle to close
 540 */
 541void knav_queue_close(void *qhandle)
 542{
 543	struct knav_queue *qh = qhandle;
 544	struct knav_queue_inst *inst = qh->inst;
 545
 546	while (atomic_read(&qh->notifier_enabled) > 0)
 547		knav_queue_disable_notifier(qh);
 548
 549	mutex_lock(&knav_dev_lock);
 550	list_del_rcu(&qh->list);
 551	mutex_unlock(&knav_dev_lock);
 552	synchronize_rcu();
 553	if (!knav_queue_is_busy(inst)) {
 554		struct knav_range_info *range = inst->range;
 555
 556		if (range->ops && range->ops->close_queue)
 557			range->ops->close_queue(range, inst);
 558	}
 559	devm_kfree(inst->kdev->dev, qh);
 560}
 561EXPORT_SYMBOL_GPL(knav_queue_close);
 562
 563/**
 564 * knav_queue_device_control()	- Perform control operations on a queue
 565 * @qh				- queue handle
 566 * @cmd				- control commands
 567 * @arg				- command argument
 568 *
 569 * Returns 0 on success, errno otherwise.
 570 */
 571int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
 572				unsigned long arg)
 573{
 574	struct knav_queue *qh = qhandle;
 575	struct knav_queue_notify_config *cfg;
 576	int ret;
 577
 578	switch ((int)cmd) {
 579	case KNAV_QUEUE_GET_ID:
 580		ret = qh->inst->kdev->base_id + qh->inst->id;
 581		break;
 582
 583	case KNAV_QUEUE_FLUSH:
 584		ret = knav_queue_flush(qh);
 585		break;
 586
 587	case KNAV_QUEUE_SET_NOTIFIER:
 588		cfg = (void *)arg;
 589		ret = knav_queue_set_notifier(qh, cfg);
 590		break;
 591
 592	case KNAV_QUEUE_ENABLE_NOTIFY:
 593		ret = knav_queue_enable_notifier(qh);
 594		break;
 595
 596	case KNAV_QUEUE_DISABLE_NOTIFY:
 597		ret = knav_queue_disable_notifier(qh);
 598		break;
 599
 600	case KNAV_QUEUE_GET_COUNT:
 601		ret = knav_queue_get_count(qh);
 602		break;
 603
 604	default:
 605		ret = -ENOTSUPP;
 606		break;
 607	}
 608	return ret;
 609}
 610EXPORT_SYMBOL_GPL(knav_queue_device_control);
 611
 612
 613
 614/**
 615 * knav_queue_push()	- push data (or descriptor) to the tail of a queue
 616 * @qh			- hardware queue handle
 617 * @data		- data to push
 618 * @size		- size of data to push
 619 * @flags		- can be used to pass additional information
 620 *
 621 * Returns 0 on success, errno otherwise.
 622 */
 623int knav_queue_push(void *qhandle, dma_addr_t dma,
 624					unsigned size, unsigned flags)
 625{
 626	struct knav_queue *qh = qhandle;
 627	u32 val;
 628
 629	val = (u32)dma | ((size / 16) - 1);
 630	writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
 631
 632	atomic_inc(&qh->stats.pushes);
 633	return 0;
 634}
 635EXPORT_SYMBOL_GPL(knav_queue_push);
 636
 637/**
 638 * knav_queue_pop()	- pop data (or descriptor) from the head of a queue
 639 * @qh			- hardware queue handle
 640 * @size		- (optional) size of the data pop'ed.
 641 *
 642 * Returns a DMA address on success, 0 on failure.
 643 */
 644dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
 645{
 646	struct knav_queue *qh = qhandle;
 647	struct knav_queue_inst *inst = qh->inst;
 648	dma_addr_t dma;
 649	u32 val, idx;
 650
 651	/* are we accumulated? */
 652	if (inst->descs) {
 653		if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
 654			atomic_inc(&inst->desc_count);
 655			return 0;
 656		}
 657		idx  = atomic_inc_return(&inst->desc_head);
 658		idx &= ACC_DESCS_MASK;
 659		val = inst->descs[idx];
 660	} else {
 661		val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
 662		if (unlikely(!val))
 663			return 0;
 664	}
 665
 666	dma = val & DESC_PTR_MASK;
 667	if (size)
 668		*size = ((val & DESC_SIZE_MASK) + 1) * 16;
 669
 670	atomic_inc(&qh->stats.pops);
 671	return dma;
 672}
 673EXPORT_SYMBOL_GPL(knav_queue_pop);
 674
 675/* carve out descriptors and push into queue */
 676static void kdesc_fill_pool(struct knav_pool *pool)
 677{
 678	struct knav_region *region;
 679	int i;
 680
 681	region = pool->region;
 682	pool->desc_size = region->desc_size;
 683	for (i = 0; i < pool->num_desc; i++) {
 684		int index = pool->region_offset + i;
 685		dma_addr_t dma_addr;
 686		unsigned dma_size;
 687		dma_addr = region->dma_start + (region->desc_size * index);
 688		dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
 689		dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
 690					   DMA_TO_DEVICE);
 691		knav_queue_push(pool->queue, dma_addr, dma_size, 0);
 692	}
 693}
 694
 695/* pop out descriptors and close the queue */
 696static void kdesc_empty_pool(struct knav_pool *pool)
 697{
 698	dma_addr_t dma;
 699	unsigned size;
 700	void *desc;
 701	int i;
 702
 703	if (!pool->queue)
 704		return;
 705
 706	for (i = 0;; i++) {
 707		dma = knav_queue_pop(pool->queue, &size);
 708		if (!dma)
 709			break;
 710		desc = knav_pool_desc_dma_to_virt(pool, dma);
 711		if (!desc) {
 712			dev_dbg(pool->kdev->dev,
 713				"couldn't unmap desc, continuing\n");
 714			continue;
 715		}
 716	}
 717	WARN_ON(i != pool->num_desc);
 718	knav_queue_close(pool->queue);
 719}
 720
 721
 722/* Get the DMA address of a descriptor */
 723dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
 724{
 725	struct knav_pool *pool = ph;
 726	return pool->region->dma_start + (virt - pool->region->virt_start);
 727}
 728EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
 729
 730void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
 731{
 732	struct knav_pool *pool = ph;
 733	return pool->region->virt_start + (dma - pool->region->dma_start);
 734}
 735EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
 736
 737/**
 738 * knav_pool_create()	- Create a pool of descriptors
 739 * @name		- name to give the pool handle
 740 * @num_desc		- numbers of descriptors in the pool
 741 * @region_id		- QMSS region id from which the descriptors are to be
 742 *			  allocated.
 743 *
 744 * Returns a pool handle on success.
 745 * Use IS_ERR_OR_NULL() to identify error values on return.
 746 */
 747void *knav_pool_create(const char *name,
 748					int num_desc, int region_id)
 749{
 750	struct knav_region *reg_itr, *region = NULL;
 751	struct knav_pool *pool, *pi;
 752	struct list_head *node;
 753	unsigned last_offset;
 754	bool slot_found;
 755	int ret;
 756
 757	if (!kdev->dev)
 758		return ERR_PTR(-ENODEV);
 759
 760	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
 761	if (!pool) {
 762		dev_err(kdev->dev, "out of memory allocating pool\n");
 763		return ERR_PTR(-ENOMEM);
 764	}
 765
 766	for_each_region(kdev, reg_itr) {
 767		if (reg_itr->id != region_id)
 768			continue;
 769		region = reg_itr;
 770		break;
 771	}
 772
 773	if (!region) {
 774		dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
 775		ret = -EINVAL;
 776		goto err;
 777	}
 778
 779	pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
 780	if (IS_ERR_OR_NULL(pool->queue)) {
 781		dev_err(kdev->dev,
 782			"failed to open queue for pool(%s), error %ld\n",
 783			name, PTR_ERR(pool->queue));
 784		ret = PTR_ERR(pool->queue);
 785		goto err;
 786	}
 787
 788	pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
 789	pool->kdev = kdev;
 790	pool->dev = kdev->dev;
 791
 792	mutex_lock(&knav_dev_lock);
 793
 794	if (num_desc > (region->num_desc - region->used_desc)) {
 795		dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
 796			region_id, name);
 797		ret = -ENOMEM;
 798		goto err_unlock;
 799	}
 800
 801	/* Region maintains a sorted (by region offset) list of pools
 802	 * use the first free slot which is large enough to accomodate
 803	 * the request
 804	 */
 805	last_offset = 0;
 806	slot_found = false;
 807	node = &region->pools;
 808	list_for_each_entry(pi, &region->pools, region_inst) {
 809		if ((pi->region_offset - last_offset) >= num_desc) {
 810			slot_found = true;
 811			break;
 812		}
 813		last_offset = pi->region_offset + pi->num_desc;
 814	}
 815	node = &pi->region_inst;
 816
 817	if (slot_found) {
 818		pool->region = region;
 819		pool->num_desc = num_desc;
 820		pool->region_offset = last_offset;
 821		region->used_desc += num_desc;
 822		list_add_tail(&pool->list, &kdev->pools);
 823		list_add_tail(&pool->region_inst, node);
 824	} else {
 825		dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
 826			name, region_id);
 827		ret = -ENOMEM;
 828		goto err_unlock;
 829	}
 830
 831	mutex_unlock(&knav_dev_lock);
 832	kdesc_fill_pool(pool);
 833	return pool;
 834
 835err_unlock:
 836	mutex_unlock(&knav_dev_lock);
 837err:
 838	kfree(pool->name);
 839	devm_kfree(kdev->dev, pool);
 840	return ERR_PTR(ret);
 841}
 842EXPORT_SYMBOL_GPL(knav_pool_create);
 843
 844/**
 845 * knav_pool_destroy()	- Free a pool of descriptors
 846 * @pool		- pool handle
 847 */
 848void knav_pool_destroy(void *ph)
 849{
 850	struct knav_pool *pool = ph;
 851
 852	if (!pool)
 853		return;
 854
 855	if (!pool->region)
 856		return;
 857
 858	kdesc_empty_pool(pool);
 859	mutex_lock(&knav_dev_lock);
 860
 861	pool->region->used_desc -= pool->num_desc;
 862	list_del(&pool->region_inst);
 863	list_del(&pool->list);
 864
 865	mutex_unlock(&knav_dev_lock);
 866	kfree(pool->name);
 867	devm_kfree(kdev->dev, pool);
 868}
 869EXPORT_SYMBOL_GPL(knav_pool_destroy);
 870
 871
 872/**
 873 * knav_pool_desc_get()	- Get a descriptor from the pool
 874 * @pool			- pool handle
 875 *
 876 * Returns descriptor from the pool.
 877 */
 878void *knav_pool_desc_get(void *ph)
 879{
 880	struct knav_pool *pool = ph;
 881	dma_addr_t dma;
 882	unsigned size;
 883	void *data;
 884
 885	dma = knav_queue_pop(pool->queue, &size);
 886	if (unlikely(!dma))
 887		return ERR_PTR(-ENOMEM);
 888	data = knav_pool_desc_dma_to_virt(pool, dma);
 889	return data;
 890}
 891EXPORT_SYMBOL_GPL(knav_pool_desc_get);
 892
 893/**
 894 * knav_pool_desc_put()	- return a descriptor to the pool
 895 * @pool			- pool handle
 896 */
 897void knav_pool_desc_put(void *ph, void *desc)
 898{
 899	struct knav_pool *pool = ph;
 900	dma_addr_t dma;
 901	dma = knav_pool_desc_virt_to_dma(pool, desc);
 902	knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
 903}
 904EXPORT_SYMBOL_GPL(knav_pool_desc_put);
 905
 906/**
 907 * knav_pool_desc_map()	- Map descriptor for DMA transfer
 908 * @pool			- pool handle
 909 * @desc			- address of descriptor to map
 910 * @size			- size of descriptor to map
 911 * @dma				- DMA address return pointer
 912 * @dma_sz			- adjusted return pointer
 913 *
 914 * Returns 0 on success, errno otherwise.
 915 */
 916int knav_pool_desc_map(void *ph, void *desc, unsigned size,
 917					dma_addr_t *dma, unsigned *dma_sz)
 918{
 919	struct knav_pool *pool = ph;
 920	*dma = knav_pool_desc_virt_to_dma(pool, desc);
 921	size = min(size, pool->region->desc_size);
 922	size = ALIGN(size, SMP_CACHE_BYTES);
 923	*dma_sz = size;
 924	dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
 925
 926	/* Ensure the descriptor reaches to the memory */
 927	__iowmb();
 928
 929	return 0;
 930}
 931EXPORT_SYMBOL_GPL(knav_pool_desc_map);
 932
 933/**
 934 * knav_pool_desc_unmap()	- Unmap descriptor after DMA transfer
 935 * @pool			- pool handle
 936 * @dma				- DMA address of descriptor to unmap
 937 * @dma_sz			- size of descriptor to unmap
 938 *
 939 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
 940 * error values on return.
 941 */
 942void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
 943{
 944	struct knav_pool *pool = ph;
 945	unsigned desc_sz;
 946	void *desc;
 947
 948	desc_sz = min(dma_sz, pool->region->desc_size);
 949	desc = knav_pool_desc_dma_to_virt(pool, dma);
 950	dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
 951	prefetch(desc);
 952	return desc;
 953}
 954EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
 955
 956/**
 957 * knav_pool_count()	- Get the number of descriptors in pool.
 958 * @pool		- pool handle
 959 * Returns number of elements in the pool.
 960 */
 961int knav_pool_count(void *ph)
 962{
 963	struct knav_pool *pool = ph;
 964	return knav_queue_get_count(pool->queue);
 965}
 966EXPORT_SYMBOL_GPL(knav_pool_count);
 967
 968static void knav_queue_setup_region(struct knav_device *kdev,
 969					struct knav_region *region)
 970{
 971	unsigned hw_num_desc, hw_desc_size, size;
 972	struct knav_reg_region __iomem  *regs;
 973	struct knav_qmgr_info *qmgr;
 974	struct knav_pool *pool;
 975	int id = region->id;
 976	struct page *page;
 977
 978	/* unused region? */
 979	if (!region->num_desc) {
 980		dev_warn(kdev->dev, "unused region %s\n", region->name);
 981		return;
 982	}
 983
 984	/* get hardware descriptor value */
 985	hw_num_desc = ilog2(region->num_desc - 1) + 1;
 986
 987	/* did we force fit ourselves into nothingness? */
 988	if (region->num_desc < 32) {
 989		region->num_desc = 0;
 990		dev_warn(kdev->dev, "too few descriptors in region %s\n",
 991			 region->name);
 992		return;
 993	}
 994
 995	size = region->num_desc * region->desc_size;
 996	region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
 997						GFP_DMA32);
 998	if (!region->virt_start) {
 999		region->num_desc = 0;
1000		dev_err(kdev->dev, "memory alloc failed for region %s\n",
1001			region->name);
1002		return;
1003	}
1004	region->virt_end = region->virt_start + size;
1005	page = virt_to_page(region->virt_start);
1006
1007	region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1008					 DMA_BIDIRECTIONAL);
1009	if (dma_mapping_error(kdev->dev, region->dma_start)) {
1010		dev_err(kdev->dev, "dma map failed for region %s\n",
1011			region->name);
1012		goto fail;
1013	}
1014	region->dma_end = region->dma_start + size;
1015
1016	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1017	if (!pool) {
1018		dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1019		goto fail;
1020	}
1021	pool->num_desc = 0;
1022	pool->region_offset = region->num_desc;
1023	list_add(&pool->region_inst, &region->pools);
1024
1025	dev_dbg(kdev->dev,
1026		"region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1027		region->name, id, region->desc_size, region->num_desc,
1028		region->link_index, &region->dma_start, &region->dma_end,
1029		region->virt_start, region->virt_end);
1030
1031	hw_desc_size = (region->desc_size / 16) - 1;
1032	hw_num_desc -= 5;
1033
1034	for_each_qmgr(kdev, qmgr) {
1035		regs = qmgr->reg_region + id;
1036		writel_relaxed((u32)region->dma_start, &regs->base);
1037		writel_relaxed(region->link_index, &regs->start_index);
1038		writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1039			       &regs->size_count);
1040	}
1041	return;
1042
1043fail:
1044	if (region->dma_start)
1045		dma_unmap_page(kdev->dev, region->dma_start, size,
1046				DMA_BIDIRECTIONAL);
1047	if (region->virt_start)
1048		free_pages_exact(region->virt_start, size);
1049	region->num_desc = 0;
1050	return;
1051}
1052
1053static const char *knav_queue_find_name(struct device_node *node)
1054{
1055	const char *name;
1056
1057	if (of_property_read_string(node, "label", &name) < 0)
1058		name = node->name;
1059	if (!name)
1060		name = "unknown";
1061	return name;
1062}
1063
1064static int knav_queue_setup_regions(struct knav_device *kdev,
1065					struct device_node *regions)
1066{
1067	struct device *dev = kdev->dev;
1068	struct knav_region *region;
1069	struct device_node *child;
1070	u32 temp[2];
1071	int ret;
1072
1073	for_each_child_of_node(regions, child) {
1074		region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1075		if (!region) {
1076			dev_err(dev, "out of memory allocating region\n");
1077			return -ENOMEM;
1078		}
1079
1080		region->name = knav_queue_find_name(child);
1081		of_property_read_u32(child, "id", &region->id);
1082		ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1083		if (!ret) {
1084			region->num_desc  = temp[0];
1085			region->desc_size = temp[1];
1086		} else {
1087			dev_err(dev, "invalid region info %s\n", region->name);
1088			devm_kfree(dev, region);
1089			continue;
1090		}
1091
1092		if (!of_get_property(child, "link-index", NULL)) {
1093			dev_err(dev, "No link info for %s\n", region->name);
1094			devm_kfree(dev, region);
1095			continue;
1096		}
1097		ret = of_property_read_u32(child, "link-index",
1098					   &region->link_index);
1099		if (ret) {
1100			dev_err(dev, "link index not found for %s\n",
1101				region->name);
1102			devm_kfree(dev, region);
1103			continue;
1104		}
1105
1106		INIT_LIST_HEAD(&region->pools);
1107		list_add_tail(&region->list, &kdev->regions);
1108	}
1109	if (list_empty(&kdev->regions)) {
1110		dev_err(dev, "no valid region information found\n");
1111		return -ENODEV;
1112	}
1113
1114	/* Next, we run through the regions and set things up */
1115	for_each_region(kdev, region)
1116		knav_queue_setup_region(kdev, region);
1117
1118	return 0;
1119}
1120
1121static int knav_get_link_ram(struct knav_device *kdev,
1122				       const char *name,
1123				       struct knav_link_ram_block *block)
1124{
1125	struct platform_device *pdev = to_platform_device(kdev->dev);
1126	struct device_node *node = pdev->dev.of_node;
1127	u32 temp[2];
1128
1129	/*
1130	 * Note: link ram resources are specified in "entry" sized units. In
1131	 * reality, although entries are ~40bits in hardware, we treat them as
1132	 * 64-bit entities here.
1133	 *
1134	 * For example, to specify the internal link ram for Keystone-I class
1135	 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1136	 *
1137	 * This gets a bit weird when other link rams are used.  For example,
1138	 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1139	 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1140	 * which accounts for 64-bits per entry, for 16K entries.
1141	 */
1142	if (!of_property_read_u32_array(node, name , temp, 2)) {
1143		if (temp[0]) {
1144			/*
1145			 * queue_base specified => using internal or onchip
1146			 * link ram WARNING - we do not "reserve" this block
1147			 */
1148			block->dma = (dma_addr_t)temp[0];
1149			block->virt = NULL;
1150			block->size = temp[1];
1151		} else {
1152			block->size = temp[1];
1153			/* queue_base not specific => allocate requested size */
1154			block->virt = dmam_alloc_coherent(kdev->dev,
1155						  8 * block->size, &block->dma,
1156						  GFP_KERNEL);
1157			if (!block->virt) {
1158				dev_err(kdev->dev, "failed to alloc linkram\n");
1159				return -ENOMEM;
1160			}
1161		}
1162	} else {
1163		return -ENODEV;
1164	}
1165	return 0;
1166}
1167
1168static int knav_queue_setup_link_ram(struct knav_device *kdev)
1169{
1170	struct knav_link_ram_block *block;
1171	struct knav_qmgr_info *qmgr;
1172
1173	for_each_qmgr(kdev, qmgr) {
1174		block = &kdev->link_rams[0];
1175		dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1176			&block->dma, block->virt, block->size);
1177		writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1178		writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0);
1179
1180		block++;
1181		if (!block->size)
1182			continue;
1183
1184		dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1185			&block->dma, block->virt, block->size);
1186		writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1187	}
1188
1189	return 0;
1190}
1191
1192static int knav_setup_queue_range(struct knav_device *kdev,
1193					struct device_node *node)
1194{
1195	struct device *dev = kdev->dev;
1196	struct knav_range_info *range;
1197	struct knav_qmgr_info *qmgr;
1198	u32 temp[2], start, end, id, index;
1199	int ret, i;
1200
1201	range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1202	if (!range) {
1203		dev_err(dev, "out of memory allocating range\n");
1204		return -ENOMEM;
1205	}
1206
1207	range->kdev = kdev;
1208	range->name = knav_queue_find_name(node);
1209	ret = of_property_read_u32_array(node, "qrange", temp, 2);
1210	if (!ret) {
1211		range->queue_base = temp[0] - kdev->base_id;
1212		range->num_queues = temp[1];
1213	} else {
1214		dev_err(dev, "invalid queue range %s\n", range->name);
1215		devm_kfree(dev, range);
1216		return -EINVAL;
1217	}
1218
1219	for (i = 0; i < RANGE_MAX_IRQS; i++) {
1220		struct of_phandle_args oirq;
1221
1222		if (of_irq_parse_one(node, i, &oirq))
1223			break;
1224
1225		range->irqs[i].irq = irq_create_of_mapping(&oirq);
1226		if (range->irqs[i].irq == IRQ_NONE)
1227			break;
1228
1229		range->num_irqs++;
1230
1231		if (oirq.args_count == 3)
1232			range->irqs[i].cpu_map =
1233				(oirq.args[2] & 0x0000ff00) >> 8;
1234	}
1235
1236	range->num_irqs = min(range->num_irqs, range->num_queues);
1237	if (range->num_irqs)
1238		range->flags |= RANGE_HAS_IRQ;
1239
1240	if (of_get_property(node, "qalloc-by-id", NULL))
1241		range->flags |= RANGE_RESERVED;
1242
1243	if (of_get_property(node, "accumulator", NULL)) {
1244		ret = knav_init_acc_range(kdev, node, range);
1245		if (ret < 0) {
1246			devm_kfree(dev, range);
1247			return ret;
1248		}
1249	} else {
1250		range->ops = &knav_gp_range_ops;
1251	}
1252
1253	/* set threshold to 1, and flush out the queues */
1254	for_each_qmgr(kdev, qmgr) {
1255		start = max(qmgr->start_queue, range->queue_base);
1256		end   = min(qmgr->start_queue + qmgr->num_queues,
1257			    range->queue_base + range->num_queues);
1258		for (id = start; id < end; id++) {
1259			index = id - qmgr->start_queue;
1260			writel_relaxed(THRESH_GTE | 1,
1261				       &qmgr->reg_peek[index].ptr_size_thresh);
1262			writel_relaxed(0,
1263				       &qmgr->reg_push[index].ptr_size_thresh);
1264		}
1265	}
1266
1267	list_add_tail(&range->list, &kdev->queue_ranges);
1268	dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1269		range->name, range->queue_base,
1270		range->queue_base + range->num_queues - 1,
1271		range->num_irqs,
1272		(range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1273		(range->flags & RANGE_RESERVED) ? ", reserved" : "",
1274		(range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1275	kdev->num_queues_in_use += range->num_queues;
1276	return 0;
1277}
1278
1279static int knav_setup_queue_pools(struct knav_device *kdev,
1280				   struct device_node *queue_pools)
1281{
1282	struct device_node *type, *range;
1283	int ret;
1284
1285	for_each_child_of_node(queue_pools, type) {
1286		for_each_child_of_node(type, range) {
1287			ret = knav_setup_queue_range(kdev, range);
1288			/* return value ignored, we init the rest... */
1289		}
1290	}
1291
1292	/* ... and barf if they all failed! */
1293	if (list_empty(&kdev->queue_ranges)) {
1294		dev_err(kdev->dev, "no valid queue range found\n");
1295		return -ENODEV;
1296	}
1297	return 0;
1298}
1299
1300static void knav_free_queue_range(struct knav_device *kdev,
1301				  struct knav_range_info *range)
1302{
1303	if (range->ops && range->ops->free_range)
1304		range->ops->free_range(range);
1305	list_del(&range->list);
1306	devm_kfree(kdev->dev, range);
1307}
1308
1309static void knav_free_queue_ranges(struct knav_device *kdev)
1310{
1311	struct knav_range_info *range;
1312
1313	for (;;) {
1314		range = first_queue_range(kdev);
1315		if (!range)
1316			break;
1317		knav_free_queue_range(kdev, range);
1318	}
1319}
1320
1321static void knav_queue_free_regions(struct knav_device *kdev)
1322{
1323	struct knav_region *region;
1324	struct knav_pool *pool, *tmp;
1325	unsigned size;
1326
1327	for (;;) {
1328		region = first_region(kdev);
1329		if (!region)
1330			break;
1331		list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1332			knav_pool_destroy(pool);
1333
1334		size = region->virt_end - region->virt_start;
1335		if (size)
1336			free_pages_exact(region->virt_start, size);
1337		list_del(&region->list);
1338		devm_kfree(kdev->dev, region);
1339	}
1340}
1341
1342static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1343					struct device_node *node, int index)
1344{
1345	struct resource res;
1346	void __iomem *regs;
1347	int ret;
1348
1349	ret = of_address_to_resource(node, index, &res);
1350	if (ret) {
1351		dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
1352			node->name, index);
1353		return ERR_PTR(ret);
1354	}
1355
1356	regs = devm_ioremap_resource(kdev->dev, &res);
1357	if (IS_ERR(regs))
1358		dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
1359			index, node->name);
1360	return regs;
1361}
1362
1363static int knav_queue_init_qmgrs(struct knav_device *kdev,
1364					struct device_node *qmgrs)
1365{
1366	struct device *dev = kdev->dev;
1367	struct knav_qmgr_info *qmgr;
1368	struct device_node *child;
1369	u32 temp[2];
1370	int ret;
1371
1372	for_each_child_of_node(qmgrs, child) {
1373		qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1374		if (!qmgr) {
1375			dev_err(dev, "out of memory allocating qmgr\n");
1376			return -ENOMEM;
1377		}
1378
1379		ret = of_property_read_u32_array(child, "managed-queues",
1380						 temp, 2);
1381		if (!ret) {
1382			qmgr->start_queue = temp[0];
1383			qmgr->num_queues = temp[1];
1384		} else {
1385			dev_err(dev, "invalid qmgr queue range\n");
1386			devm_kfree(dev, qmgr);
1387			continue;
1388		}
1389
1390		dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1391			 qmgr->start_queue, qmgr->num_queues);
1392
1393		qmgr->reg_peek =
1394			knav_queue_map_reg(kdev, child,
1395					   KNAV_QUEUE_PEEK_REG_INDEX);
1396		qmgr->reg_status =
1397			knav_queue_map_reg(kdev, child,
1398					   KNAV_QUEUE_STATUS_REG_INDEX);
1399		qmgr->reg_config =
1400			knav_queue_map_reg(kdev, child,
1401					   KNAV_QUEUE_CONFIG_REG_INDEX);
1402		qmgr->reg_region =
1403			knav_queue_map_reg(kdev, child,
1404					   KNAV_QUEUE_REGION_REG_INDEX);
1405		qmgr->reg_push =
1406			knav_queue_map_reg(kdev, child,
1407					   KNAV_QUEUE_PUSH_REG_INDEX);
1408		qmgr->reg_pop =
1409			knav_queue_map_reg(kdev, child,
1410					   KNAV_QUEUE_POP_REG_INDEX);
1411
1412		if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) ||
1413		    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1414		    IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) {
1415			dev_err(dev, "failed to map qmgr regs\n");
1416			if (!IS_ERR(qmgr->reg_peek))
1417				devm_iounmap(dev, qmgr->reg_peek);
1418			if (!IS_ERR(qmgr->reg_status))
1419				devm_iounmap(dev, qmgr->reg_status);
1420			if (!IS_ERR(qmgr->reg_config))
1421				devm_iounmap(dev, qmgr->reg_config);
1422			if (!IS_ERR(qmgr->reg_region))
1423				devm_iounmap(dev, qmgr->reg_region);
1424			if (!IS_ERR(qmgr->reg_push))
1425				devm_iounmap(dev, qmgr->reg_push);
1426			if (!IS_ERR(qmgr->reg_pop))
1427				devm_iounmap(dev, qmgr->reg_pop);
1428			devm_kfree(dev, qmgr);
1429			continue;
1430		}
1431
1432		list_add_tail(&qmgr->list, &kdev->qmgrs);
1433		dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1434			 qmgr->start_queue, qmgr->num_queues,
1435			 qmgr->reg_peek, qmgr->reg_status,
1436			 qmgr->reg_config, qmgr->reg_region,
1437			 qmgr->reg_push, qmgr->reg_pop);
1438	}
1439	return 0;
1440}
1441
1442static int knav_queue_init_pdsps(struct knav_device *kdev,
1443					struct device_node *pdsps)
1444{
1445	struct device *dev = kdev->dev;
1446	struct knav_pdsp_info *pdsp;
1447	struct device_node *child;
1448
1449	for_each_child_of_node(pdsps, child) {
1450		pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1451		if (!pdsp) {
1452			dev_err(dev, "out of memory allocating pdsp\n");
1453			return -ENOMEM;
1454		}
1455		pdsp->name = knav_queue_find_name(child);
1456		pdsp->iram =
1457			knav_queue_map_reg(kdev, child,
1458					   KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1459		pdsp->regs =
1460			knav_queue_map_reg(kdev, child,
1461					   KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1462		pdsp->intd =
1463			knav_queue_map_reg(kdev, child,
1464					   KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1465		pdsp->command =
1466			knav_queue_map_reg(kdev, child,
1467					   KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1468
1469		if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1470		    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1471			dev_err(dev, "failed to map pdsp %s regs\n",
1472				pdsp->name);
1473			if (!IS_ERR(pdsp->command))
1474				devm_iounmap(dev, pdsp->command);
1475			if (!IS_ERR(pdsp->iram))
1476				devm_iounmap(dev, pdsp->iram);
1477			if (!IS_ERR(pdsp->regs))
1478				devm_iounmap(dev, pdsp->regs);
1479			if (!IS_ERR(pdsp->intd))
1480				devm_iounmap(dev, pdsp->intd);
1481			devm_kfree(dev, pdsp);
1482			continue;
1483		}
1484		of_property_read_u32(child, "id", &pdsp->id);
1485		list_add_tail(&pdsp->list, &kdev->pdsps);
1486		dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1487			pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1488			pdsp->intd);
1489	}
1490	return 0;
1491}
1492
1493static int knav_queue_stop_pdsp(struct knav_device *kdev,
1494			  struct knav_pdsp_info *pdsp)
1495{
1496	u32 val, timeout = 1000;
1497	int ret;
1498
1499	val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1500	writel_relaxed(val, &pdsp->regs->control);
1501	ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1502					PDSP_CTRL_RUNNING);
1503	if (ret < 0) {
1504		dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1505		return ret;
1506	}
1507	pdsp->loaded = false;
1508	pdsp->started = false;
1509	return 0;
1510}
1511
1512static int knav_queue_load_pdsp(struct knav_device *kdev,
1513			  struct knav_pdsp_info *pdsp)
1514{
1515	int i, ret, fwlen;
1516	const struct firmware *fw;
1517	bool found = false;
1518	u32 *fwdata;
1519
1520	for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1521		if (knav_acc_firmwares[i]) {
1522			ret = request_firmware_direct(&fw,
1523						      knav_acc_firmwares[i],
1524						      kdev->dev);
1525			if (!ret) {
1526				found = true;
1527				break;
1528			}
1529		}
1530	}
1531
1532	if (!found) {
1533		dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1534		return -ENODEV;
1535	}
1536
1537	dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1538		 knav_acc_firmwares[i]);
1539
1540	writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1541	/* download the firmware */
1542	fwdata = (u32 *)fw->data;
1543	fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1544	for (i = 0; i < fwlen; i++)
1545		writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1546
1547	release_firmware(fw);
1548	return 0;
1549}
1550
1551static int knav_queue_start_pdsp(struct knav_device *kdev,
1552			   struct knav_pdsp_info *pdsp)
1553{
1554	u32 val, timeout = 1000;
1555	int ret;
1556
1557	/* write a command for sync */
1558	writel_relaxed(0xffffffff, pdsp->command);
1559	while (readl_relaxed(pdsp->command) != 0xffffffff)
1560		cpu_relax();
1561
1562	/* soft reset the PDSP */
1563	val  = readl_relaxed(&pdsp->regs->control);
1564	val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1565	writel_relaxed(val, &pdsp->regs->control);
1566
1567	/* enable pdsp */
1568	val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1569	writel_relaxed(val, &pdsp->regs->control);
1570
1571	/* wait for command register to clear */
1572	ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1573	if (ret < 0) {
1574		dev_err(kdev->dev,
1575			"timed out on pdsp %s command register wait\n",
1576			pdsp->name);
1577		return ret;
1578	}
1579	return 0;
1580}
1581
1582static void knav_queue_stop_pdsps(struct knav_device *kdev)
1583{
1584	struct knav_pdsp_info *pdsp;
1585
1586	/* disable all pdsps */
1587	for_each_pdsp(kdev, pdsp)
1588		knav_queue_stop_pdsp(kdev, pdsp);
1589}
1590
1591static int knav_queue_start_pdsps(struct knav_device *kdev)
1592{
1593	struct knav_pdsp_info *pdsp;
1594	int ret;
1595
1596	knav_queue_stop_pdsps(kdev);
1597	/* now load them all. We return success even if pdsp
1598	 * is not loaded as acc channels are optional on having
1599	 * firmware availability in the system. We set the loaded
1600	 * and stated flag and when initialize the acc range, check
1601	 * it and init the range only if pdsp is started.
1602	 */
1603	for_each_pdsp(kdev, pdsp) {
1604		ret = knav_queue_load_pdsp(kdev, pdsp);
1605		if (!ret)
1606			pdsp->loaded = true;
1607	}
1608
1609	for_each_pdsp(kdev, pdsp) {
1610		if (pdsp->loaded) {
1611			ret = knav_queue_start_pdsp(kdev, pdsp);
1612			if (!ret)
1613				pdsp->started = true;
1614		}
1615	}
1616	return 0;
1617}
1618
1619static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1620{
1621	struct knav_qmgr_info *qmgr;
1622
1623	for_each_qmgr(kdev, qmgr) {
1624		if ((id >= qmgr->start_queue) &&
1625		    (id < qmgr->start_queue + qmgr->num_queues))
1626			return qmgr;
1627	}
1628	return NULL;
1629}
1630
1631static int knav_queue_init_queue(struct knav_device *kdev,
1632					struct knav_range_info *range,
1633					struct knav_queue_inst *inst,
1634					unsigned id)
1635{
1636	char irq_name[KNAV_NAME_SIZE];
1637	inst->qmgr = knav_find_qmgr(id);
1638	if (!inst->qmgr)
1639		return -1;
1640
1641	INIT_LIST_HEAD(&inst->handles);
1642	inst->kdev = kdev;
1643	inst->range = range;
1644	inst->irq_num = -1;
1645	inst->id = id;
1646	scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1647	inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1648
1649	if (range->ops && range->ops->init_queue)
1650		return range->ops->init_queue(range, inst);
1651	else
1652		return 0;
1653}
1654
1655static int knav_queue_init_queues(struct knav_device *kdev)
1656{
1657	struct knav_range_info *range;
1658	int size, id, base_idx;
1659	int idx = 0, ret = 0;
1660
1661	/* how much do we need for instance data? */
1662	size = sizeof(struct knav_queue_inst);
1663
1664	/* round this up to a power of 2, keep the index to instance
1665	 * arithmetic fast.
1666	 * */
1667	kdev->inst_shift = order_base_2(size);
1668	size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1669	kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1670	if (!kdev->instances)
1671		return -ENOMEM;
1672
1673	for_each_queue_range(kdev, range) {
1674		if (range->ops && range->ops->init_range)
1675			range->ops->init_range(range);
1676		base_idx = idx;
1677		for (id = range->queue_base;
1678		     id < range->queue_base + range->num_queues; id++, idx++) {
1679			ret = knav_queue_init_queue(kdev, range,
1680					knav_queue_idx_to_inst(kdev, idx), id);
1681			if (ret < 0)
1682				return ret;
1683		}
1684		range->queue_base_inst =
1685			knav_queue_idx_to_inst(kdev, base_idx);
1686	}
1687	return 0;
1688}
1689
1690static int knav_queue_probe(struct platform_device *pdev)
1691{
1692	struct device_node *node = pdev->dev.of_node;
1693	struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1694	struct device *dev = &pdev->dev;
1695	u32 temp[2];
1696	int ret;
1697
1698	if (!node) {
1699		dev_err(dev, "device tree info unavailable\n");
1700		return -ENODEV;
1701	}
1702
1703	kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1704	if (!kdev) {
1705		dev_err(dev, "memory allocation failed\n");
1706		return -ENOMEM;
1707	}
1708
1709	platform_set_drvdata(pdev, kdev);
1710	kdev->dev = dev;
1711	INIT_LIST_HEAD(&kdev->queue_ranges);
1712	INIT_LIST_HEAD(&kdev->qmgrs);
1713	INIT_LIST_HEAD(&kdev->pools);
1714	INIT_LIST_HEAD(&kdev->regions);
1715	INIT_LIST_HEAD(&kdev->pdsps);
1716
1717	pm_runtime_enable(&pdev->dev);
1718	ret = pm_runtime_get_sync(&pdev->dev);
1719	if (ret < 0) {
1720		dev_err(dev, "Failed to enable QMSS\n");
1721		return ret;
1722	}
1723
1724	if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1725		dev_err(dev, "queue-range not specified\n");
1726		ret = -ENODEV;
1727		goto err;
1728	}
1729	kdev->base_id    = temp[0];
1730	kdev->num_queues = temp[1];
1731
1732	/* Initialize queue managers using device tree configuration */
1733	qmgrs =  of_get_child_by_name(node, "qmgrs");
1734	if (!qmgrs) {
1735		dev_err(dev, "queue manager info not specified\n");
1736		ret = -ENODEV;
1737		goto err;
1738	}
1739	ret = knav_queue_init_qmgrs(kdev, qmgrs);
1740	of_node_put(qmgrs);
1741	if (ret)
1742		goto err;
1743
1744	/* get pdsp configuration values from device tree */
1745	pdsps =  of_get_child_by_name(node, "pdsps");
1746	if (pdsps) {
1747		ret = knav_queue_init_pdsps(kdev, pdsps);
1748		if (ret)
1749			goto err;
1750
1751		ret = knav_queue_start_pdsps(kdev);
1752		if (ret)
1753			goto err;
1754	}
1755	of_node_put(pdsps);
1756
1757	/* get usable queue range values from device tree */
1758	queue_pools = of_get_child_by_name(node, "queue-pools");
1759	if (!queue_pools) {
1760		dev_err(dev, "queue-pools not specified\n");
1761		ret = -ENODEV;
1762		goto err;
1763	}
1764	ret = knav_setup_queue_pools(kdev, queue_pools);
1765	of_node_put(queue_pools);
1766	if (ret)
1767		goto err;
1768
1769	ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1770	if (ret) {
1771		dev_err(kdev->dev, "could not setup linking ram\n");
1772		goto err;
1773	}
1774
1775	ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1776	if (ret) {
1777		/*
1778		 * nothing really, we have one linking ram already, so we just
1779		 * live within our means
1780		 */
1781	}
1782
1783	ret = knav_queue_setup_link_ram(kdev);
1784	if (ret)
1785		goto err;
1786
1787	regions =  of_get_child_by_name(node, "descriptor-regions");
1788	if (!regions) {
1789		dev_err(dev, "descriptor-regions not specified\n");
1790		goto err;
1791	}
1792	ret = knav_queue_setup_regions(kdev, regions);
1793	of_node_put(regions);
1794	if (ret)
1795		goto err;
1796
1797	ret = knav_queue_init_queues(kdev);
1798	if (ret < 0) {
1799		dev_err(dev, "hwqueue initialization failed\n");
1800		goto err;
1801	}
1802
1803	debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1804			    &knav_queue_debug_ops);
1805	return 0;
1806
1807err:
1808	knav_queue_stop_pdsps(kdev);
1809	knav_queue_free_regions(kdev);
1810	knav_free_queue_ranges(kdev);
1811	pm_runtime_put_sync(&pdev->dev);
1812	pm_runtime_disable(&pdev->dev);
1813	return ret;
1814}
1815
1816static int knav_queue_remove(struct platform_device *pdev)
1817{
1818	/* TODO: Free resources */
1819	pm_runtime_put_sync(&pdev->dev);
1820	pm_runtime_disable(&pdev->dev);
1821	return 0;
1822}
1823
1824/* Match table for of_platform binding */
1825static struct of_device_id keystone_qmss_of_match[] = {
1826	{ .compatible = "ti,keystone-navigator-qmss", },
1827	{},
1828};
1829MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1830
1831static struct platform_driver keystone_qmss_driver = {
1832	.probe		= knav_queue_probe,
1833	.remove		= knav_queue_remove,
1834	.driver		= {
1835		.name	= "keystone-navigator-qmss",
1836		.of_match_table = keystone_qmss_of_match,
1837	},
1838};
1839module_platform_driver(keystone_qmss_driver);
1840
1841MODULE_LICENSE("GPL v2");
1842MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1843MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1844MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");