Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 *
   3 * Intel Management Engine Interface (Intel MEI) Linux driver
   4 * Copyright (c) 2013-2014, Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13 * more details.
  14 *
  15 */
  16
  17#include <linux/pci.h>
  18#include <linux/jiffies.h>
  19#include <linux/ktime.h>
  20#include <linux/delay.h>
  21#include <linux/kthread.h>
  22#include <linux/irqreturn.h>
  23
  24#include <linux/mei.h>
  25
  26#include "mei_dev.h"
  27#include "hw-txe.h"
  28#include "client.h"
  29#include "hbm.h"
  30
  31#include "mei-trace.h"
  32
  33
  34/**
  35 * mei_txe_reg_read - Reads 32bit data from the txe device
  36 *
  37 * @base_addr: registers base address
  38 * @offset: register offset
  39 *
  40 * Return: register value
  41 */
  42static inline u32 mei_txe_reg_read(void __iomem *base_addr,
  43					unsigned long offset)
  44{
  45	return ioread32(base_addr + offset);
  46}
  47
  48/**
  49 * mei_txe_reg_write - Writes 32bit data to the txe device
  50 *
  51 * @base_addr: registers base address
  52 * @offset: register offset
  53 * @value: the value to write
  54 */
  55static inline void mei_txe_reg_write(void __iomem *base_addr,
  56				unsigned long offset, u32 value)
  57{
  58	iowrite32(value, base_addr + offset);
  59}
  60
  61/**
  62 * mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
  63 *
  64 * @hw: the txe hardware structure
  65 * @offset: register offset
  66 *
  67 * Doesn't check for aliveness while Reads 32bit data from the SeC BAR
  68 *
  69 * Return: register value
  70 */
  71static inline u32 mei_txe_sec_reg_read_silent(struct mei_txe_hw *hw,
  72				unsigned long offset)
  73{
  74	return mei_txe_reg_read(hw->mem_addr[SEC_BAR], offset);
  75}
  76
  77/**
  78 * mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
  79 *
  80 * @hw: the txe hardware structure
  81 * @offset: register offset
  82 *
  83 * Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
  84 *
  85 * Return: register value
  86 */
  87static inline u32 mei_txe_sec_reg_read(struct mei_txe_hw *hw,
  88				unsigned long offset)
  89{
  90	WARN(!hw->aliveness, "sec read: aliveness not asserted\n");
  91	return mei_txe_sec_reg_read_silent(hw, offset);
  92}
  93/**
  94 * mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
  95 *   doesn't check for aliveness
  96 *
  97 * @hw: the txe hardware structure
  98 * @offset: register offset
  99 * @value: value to write
 100 *
 101 * Doesn't check for aliveness while writes 32bit data from to the SeC BAR
 102 */
 103static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw *hw,
 104				unsigned long offset, u32 value)
 105{
 106	mei_txe_reg_write(hw->mem_addr[SEC_BAR], offset, value);
 107}
 108
 109/**
 110 * mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
 111 *
 112 * @hw: the txe hardware structure
 113 * @offset: register offset
 114 * @value: value to write
 115 *
 116 * Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
 117 */
 118static inline void mei_txe_sec_reg_write(struct mei_txe_hw *hw,
 119				unsigned long offset, u32 value)
 120{
 121	WARN(!hw->aliveness, "sec write: aliveness not asserted\n");
 122	mei_txe_sec_reg_write_silent(hw, offset, value);
 123}
 124/**
 125 * mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
 126 *
 127 * @hw: the txe hardware structure
 128 * @offset: offset from which to read the data
 129 *
 130 * Return: the byte read.
 131 */
 132static inline u32 mei_txe_br_reg_read(struct mei_txe_hw *hw,
 133				unsigned long offset)
 134{
 135	return mei_txe_reg_read(hw->mem_addr[BRIDGE_BAR], offset);
 136}
 137
 138/**
 139 * mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
 140 *
 141 * @hw: the txe hardware structure
 142 * @offset: offset from which to write the data
 143 * @value: the byte to write
 144 */
 145static inline void mei_txe_br_reg_write(struct mei_txe_hw *hw,
 146				unsigned long offset, u32 value)
 147{
 148	mei_txe_reg_write(hw->mem_addr[BRIDGE_BAR], offset, value);
 149}
 150
 151/**
 152 * mei_txe_aliveness_set - request for aliveness change
 153 *
 154 * @dev: the device structure
 155 * @req: requested aliveness value
 156 *
 157 * Request for aliveness change and returns true if the change is
 158 *   really needed and false if aliveness is already
 159 *   in the requested state
 160 *
 161 * Locking: called under "dev->device_lock" lock
 162 *
 163 * Return: true if request was send
 164 */
 165static bool mei_txe_aliveness_set(struct mei_device *dev, u32 req)
 166{
 167
 168	struct mei_txe_hw *hw = to_txe_hw(dev);
 169	bool do_req = hw->aliveness != req;
 170
 171	dev_dbg(dev->dev, "Aliveness current=%d request=%d\n",
 172				hw->aliveness, req);
 173	if (do_req) {
 174		dev->pg_event = MEI_PG_EVENT_WAIT;
 175		mei_txe_br_reg_write(hw, SICR_HOST_ALIVENESS_REQ_REG, req);
 176	}
 177	return do_req;
 178}
 179
 180
 181/**
 182 * mei_txe_aliveness_req_get - get aliveness requested register value
 183 *
 184 * @dev: the device structure
 185 *
 186 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
 187 * from HICR_HOST_ALIVENESS_REQ register value
 188 *
 189 * Return: SICR_HOST_ALIVENESS_REQ_REQUESTED bit value
 190 */
 191static u32 mei_txe_aliveness_req_get(struct mei_device *dev)
 192{
 193	struct mei_txe_hw *hw = to_txe_hw(dev);
 194	u32 reg;
 195
 196	reg = mei_txe_br_reg_read(hw, SICR_HOST_ALIVENESS_REQ_REG);
 197	return reg & SICR_HOST_ALIVENESS_REQ_REQUESTED;
 198}
 199
 200/**
 201 * mei_txe_aliveness_get - get aliveness response register value
 202 *
 203 * @dev: the device structure
 204 *
 205 * Return: HICR_HOST_ALIVENESS_RESP_ACK bit from HICR_HOST_ALIVENESS_RESP
 206 *         register
 207 */
 208static u32 mei_txe_aliveness_get(struct mei_device *dev)
 209{
 210	struct mei_txe_hw *hw = to_txe_hw(dev);
 211	u32 reg;
 212
 213	reg = mei_txe_br_reg_read(hw, HICR_HOST_ALIVENESS_RESP_REG);
 214	return reg & HICR_HOST_ALIVENESS_RESP_ACK;
 215}
 216
 217/**
 218 * mei_txe_aliveness_poll - waits for aliveness to settle
 219 *
 220 * @dev: the device structure
 221 * @expected: expected aliveness value
 222 *
 223 * Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
 224 *
 225 * Return: 0 if the expected value was received, -ETIME otherwise
 226 */
 227static int mei_txe_aliveness_poll(struct mei_device *dev, u32 expected)
 228{
 229	struct mei_txe_hw *hw = to_txe_hw(dev);
 230	ktime_t stop, start;
 231
 232	start = ktime_get();
 233	stop = ktime_add(start, ms_to_ktime(SEC_ALIVENESS_WAIT_TIMEOUT));
 234	do {
 235		hw->aliveness = mei_txe_aliveness_get(dev);
 236		if (hw->aliveness == expected) {
 237			dev->pg_event = MEI_PG_EVENT_IDLE;
 238			dev_dbg(dev->dev, "aliveness settled after %lld usecs\n",
 239				ktime_to_us(ktime_sub(ktime_get(), start)));
 240			return 0;
 241		}
 242		usleep_range(20, 50);
 243	} while (ktime_before(ktime_get(), stop));
 244
 245	dev->pg_event = MEI_PG_EVENT_IDLE;
 246	dev_err(dev->dev, "aliveness timed out\n");
 247	return -ETIME;
 248}
 249
 250/**
 251 * mei_txe_aliveness_wait - waits for aliveness to settle
 252 *
 253 * @dev: the device structure
 254 * @expected: expected aliveness value
 255 *
 256 * Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
 257 *
 258 * Return: 0 on success and < 0 otherwise
 259 */
 260static int mei_txe_aliveness_wait(struct mei_device *dev, u32 expected)
 261{
 262	struct mei_txe_hw *hw = to_txe_hw(dev);
 263	const unsigned long timeout =
 264			msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT);
 265	long err;
 266	int ret;
 267
 268	hw->aliveness = mei_txe_aliveness_get(dev);
 269	if (hw->aliveness == expected)
 270		return 0;
 271
 272	mutex_unlock(&dev->device_lock);
 273	err = wait_event_timeout(hw->wait_aliveness_resp,
 274			dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
 275	mutex_lock(&dev->device_lock);
 276
 277	hw->aliveness = mei_txe_aliveness_get(dev);
 278	ret = hw->aliveness == expected ? 0 : -ETIME;
 279
 280	if (ret)
 281		dev_warn(dev->dev, "aliveness timed out = %ld aliveness = %d event = %d\n",
 282			err, hw->aliveness, dev->pg_event);
 283	else
 284		dev_dbg(dev->dev, "aliveness settled after = %d msec aliveness = %d event = %d\n",
 285			jiffies_to_msecs(timeout - err),
 286			hw->aliveness, dev->pg_event);
 287
 288	dev->pg_event = MEI_PG_EVENT_IDLE;
 289	return ret;
 290}
 291
 292/**
 293 * mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
 294 *
 295 * @dev: the device structure
 296 * @req: requested aliveness value
 297 *
 298 * Return: 0 on success and < 0 otherwise
 299 */
 300int mei_txe_aliveness_set_sync(struct mei_device *dev, u32 req)
 301{
 302	if (mei_txe_aliveness_set(dev, req))
 303		return mei_txe_aliveness_wait(dev, req);
 304	return 0;
 305}
 306
 307/**
 308 * mei_txe_pg_in_transition - is device now in pg transition
 309 *
 310 * @dev: the device structure
 311 *
 312 * Return: true if in pg transition, false otherwise
 313 */
 314static bool mei_txe_pg_in_transition(struct mei_device *dev)
 315{
 316	return dev->pg_event == MEI_PG_EVENT_WAIT;
 317}
 318
 319/**
 320 * mei_txe_pg_is_enabled - detect if PG is supported by HW
 321 *
 322 * @dev: the device structure
 323 *
 324 * Return: true is pg supported, false otherwise
 325 */
 326static bool mei_txe_pg_is_enabled(struct mei_device *dev)
 327{
 328	return true;
 329}
 330
 331/**
 332 * mei_txe_pg_state  - translate aliveness register value
 333 *   to the mei power gating state
 334 *
 335 * @dev: the device structure
 336 *
 337 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
 338 */
 339static inline enum mei_pg_state mei_txe_pg_state(struct mei_device *dev)
 340{
 341	struct mei_txe_hw *hw = to_txe_hw(dev);
 342
 343	return hw->aliveness ? MEI_PG_OFF : MEI_PG_ON;
 344}
 345
 346/**
 347 * mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
 348 *
 349 * @dev: the device structure
 350 */
 351static void mei_txe_input_ready_interrupt_enable(struct mei_device *dev)
 352{
 353	struct mei_txe_hw *hw = to_txe_hw(dev);
 354	u32 hintmsk;
 355	/* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
 356	hintmsk = mei_txe_sec_reg_read(hw, SEC_IPC_HOST_INT_MASK_REG);
 357	hintmsk |= SEC_IPC_HOST_INT_MASK_IN_RDY;
 358	mei_txe_sec_reg_write(hw, SEC_IPC_HOST_INT_MASK_REG, hintmsk);
 359}
 360
 361/**
 362 * mei_txe_input_doorbell_set - sets bit 0 in
 363 *    SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
 364 *
 365 * @hw: the txe hardware structure
 366 */
 367static void mei_txe_input_doorbell_set(struct mei_txe_hw *hw)
 368{
 369	/* Clear the interrupt cause */
 370	clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause);
 371	mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_DOORBELL_REG, 1);
 372}
 373
 374/**
 375 * mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
 376 *
 377 * @hw: the txe hardware structure
 378 */
 379static void mei_txe_output_ready_set(struct mei_txe_hw *hw)
 380{
 381	mei_txe_br_reg_write(hw,
 382			SICR_SEC_IPC_OUTPUT_STATUS_REG,
 383			SEC_IPC_OUTPUT_STATUS_RDY);
 384}
 385
 386/**
 387 * mei_txe_is_input_ready - check if TXE is ready for receiving data
 388 *
 389 * @dev: the device structure
 390 *
 391 * Return: true if INPUT STATUS READY bit is set
 392 */
 393static bool mei_txe_is_input_ready(struct mei_device *dev)
 394{
 395	struct mei_txe_hw *hw = to_txe_hw(dev);
 396	u32 status;
 397
 398	status = mei_txe_sec_reg_read(hw, SEC_IPC_INPUT_STATUS_REG);
 399	return !!(SEC_IPC_INPUT_STATUS_RDY & status);
 400}
 401
 402/**
 403 * mei_txe_intr_clear - clear all interrupts
 404 *
 405 * @dev: the device structure
 406 */
 407static inline void mei_txe_intr_clear(struct mei_device *dev)
 408{
 409	struct mei_txe_hw *hw = to_txe_hw(dev);
 410
 411	mei_txe_sec_reg_write_silent(hw, SEC_IPC_HOST_INT_STATUS_REG,
 412		SEC_IPC_HOST_INT_STATUS_PENDING);
 413	mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_STS_MSK);
 414	mei_txe_br_reg_write(hw, HHISR_REG, IPC_HHIER_MSK);
 415}
 416
 417/**
 418 * mei_txe_intr_disable - disable all interrupts
 419 *
 420 * @dev: the device structure
 421 */
 422static void mei_txe_intr_disable(struct mei_device *dev)
 423{
 424	struct mei_txe_hw *hw = to_txe_hw(dev);
 425
 426	mei_txe_br_reg_write(hw, HHIER_REG, 0);
 427	mei_txe_br_reg_write(hw, HIER_REG, 0);
 428}
 429/**
 430 * mei_txe_intr_enable - enable all interrupts
 431 *
 432 * @dev: the device structure
 433 */
 434static void mei_txe_intr_enable(struct mei_device *dev)
 435{
 436	struct mei_txe_hw *hw = to_txe_hw(dev);
 437
 438	mei_txe_br_reg_write(hw, HHIER_REG, IPC_HHIER_MSK);
 439	mei_txe_br_reg_write(hw, HIER_REG, HIER_INT_EN_MSK);
 440}
 441
 442/**
 443 * mei_txe_pending_interrupts - check if there are pending interrupts
 444 *	only Aliveness, Input ready, and output doorbell are of relevance
 445 *
 446 * @dev: the device structure
 447 *
 448 * Checks if there are pending interrupts
 449 * only Aliveness, Readiness, Input ready, and Output doorbell are relevant
 450 *
 451 * Return: true if there are pending interrupts
 452 */
 453static bool mei_txe_pending_interrupts(struct mei_device *dev)
 454{
 455
 456	struct mei_txe_hw *hw = to_txe_hw(dev);
 457	bool ret = (hw->intr_cause & (TXE_INTR_READINESS |
 458				      TXE_INTR_ALIVENESS |
 459				      TXE_INTR_IN_READY  |
 460				      TXE_INTR_OUT_DB));
 461
 462	if (ret) {
 463		dev_dbg(dev->dev,
 464			"Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
 465			!!(hw->intr_cause & TXE_INTR_IN_READY),
 466			!!(hw->intr_cause & TXE_INTR_READINESS),
 467			!!(hw->intr_cause & TXE_INTR_ALIVENESS),
 468			!!(hw->intr_cause & TXE_INTR_OUT_DB));
 469	}
 470	return ret;
 471}
 472
 473/**
 474 * mei_txe_input_payload_write - write a dword to the host buffer
 475 *	at offset idx
 476 *
 477 * @dev: the device structure
 478 * @idx: index in the host buffer
 479 * @value: value
 480 */
 481static void mei_txe_input_payload_write(struct mei_device *dev,
 482			unsigned long idx, u32 value)
 483{
 484	struct mei_txe_hw *hw = to_txe_hw(dev);
 485
 486	mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_PAYLOAD_REG +
 487			(idx * sizeof(u32)), value);
 488}
 489
 490/**
 491 * mei_txe_out_data_read - read dword from the device buffer
 492 *	at offset idx
 493 *
 494 * @dev: the device structure
 495 * @idx: index in the device buffer
 496 *
 497 * Return: register value at index
 498 */
 499static u32 mei_txe_out_data_read(const struct mei_device *dev,
 500					unsigned long idx)
 501{
 502	struct mei_txe_hw *hw = to_txe_hw(dev);
 503
 504	return mei_txe_br_reg_read(hw,
 505		BRIDGE_IPC_OUTPUT_PAYLOAD_REG + (idx * sizeof(u32)));
 506}
 507
 508/* Readiness */
 509
 510/**
 511 * mei_txe_readiness_set_host_rdy - set host readiness bit
 512 *
 513 * @dev: the device structure
 514 */
 515static void mei_txe_readiness_set_host_rdy(struct mei_device *dev)
 516{
 517	struct mei_txe_hw *hw = to_txe_hw(dev);
 518
 519	mei_txe_br_reg_write(hw,
 520		SICR_HOST_IPC_READINESS_REQ_REG,
 521		SICR_HOST_IPC_READINESS_HOST_RDY);
 522}
 523
 524/**
 525 * mei_txe_readiness_clear - clear host readiness bit
 526 *
 527 * @dev: the device structure
 528 */
 529static void mei_txe_readiness_clear(struct mei_device *dev)
 530{
 531	struct mei_txe_hw *hw = to_txe_hw(dev);
 532
 533	mei_txe_br_reg_write(hw, SICR_HOST_IPC_READINESS_REQ_REG,
 534				SICR_HOST_IPC_READINESS_RDY_CLR);
 535}
 536/**
 537 * mei_txe_readiness_get - Reads and returns
 538 *	the HICR_SEC_IPC_READINESS register value
 539 *
 540 * @dev: the device structure
 541 *
 542 * Return: the HICR_SEC_IPC_READINESS register value
 543 */
 544static u32 mei_txe_readiness_get(struct mei_device *dev)
 545{
 546	struct mei_txe_hw *hw = to_txe_hw(dev);
 547
 548	return mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
 549}
 550
 551
 552/**
 553 * mei_txe_readiness_is_sec_rdy - check readiness
 554 *  for HICR_SEC_IPC_READINESS_SEC_RDY
 555 *
 556 * @readiness: cached readiness state
 557 *
 558 * Return: true if readiness bit is set
 559 */
 560static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness)
 561{
 562	return !!(readiness & HICR_SEC_IPC_READINESS_SEC_RDY);
 563}
 564
 565/**
 566 * mei_txe_hw_is_ready - check if the hw is ready
 567 *
 568 * @dev: the device structure
 569 *
 570 * Return: true if sec is ready
 571 */
 572static bool mei_txe_hw_is_ready(struct mei_device *dev)
 573{
 574	u32 readiness =  mei_txe_readiness_get(dev);
 575
 576	return mei_txe_readiness_is_sec_rdy(readiness);
 577}
 578
 579/**
 580 * mei_txe_host_is_ready - check if the host is ready
 581 *
 582 * @dev: the device structure
 583 *
 584 * Return: true if host is ready
 585 */
 586static inline bool mei_txe_host_is_ready(struct mei_device *dev)
 587{
 588	struct mei_txe_hw *hw = to_txe_hw(dev);
 589	u32 reg = mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
 590
 591	return !!(reg & HICR_SEC_IPC_READINESS_HOST_RDY);
 592}
 593
 594/**
 595 * mei_txe_readiness_wait - wait till readiness settles
 596 *
 597 * @dev: the device structure
 598 *
 599 * Return: 0 on success and -ETIME on timeout
 600 */
 601static int mei_txe_readiness_wait(struct mei_device *dev)
 602{
 603	if (mei_txe_hw_is_ready(dev))
 604		return 0;
 605
 606	mutex_unlock(&dev->device_lock);
 607	wait_event_timeout(dev->wait_hw_ready, dev->recvd_hw_ready,
 608			msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT));
 609	mutex_lock(&dev->device_lock);
 610	if (!dev->recvd_hw_ready) {
 611		dev_err(dev->dev, "wait for readiness failed\n");
 612		return -ETIME;
 613	}
 614
 615	dev->recvd_hw_ready = false;
 616	return 0;
 617}
 618
 619static const struct mei_fw_status mei_txe_fw_sts = {
 620	.count = 2,
 621	.status[0] = PCI_CFG_TXE_FW_STS0,
 622	.status[1] = PCI_CFG_TXE_FW_STS1
 623};
 624
 625/**
 626 * mei_txe_fw_status - read fw status register from pci config space
 627 *
 628 * @dev: mei device
 629 * @fw_status: fw status register values
 630 *
 631 * Return: 0 on success, error otherwise
 632 */
 633static int mei_txe_fw_status(struct mei_device *dev,
 634			     struct mei_fw_status *fw_status)
 635{
 636	const struct mei_fw_status *fw_src = &mei_txe_fw_sts;
 637	struct pci_dev *pdev = to_pci_dev(dev->dev);
 638	int ret;
 639	int i;
 640
 641	if (!fw_status)
 642		return -EINVAL;
 643
 644	fw_status->count = fw_src->count;
 645	for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
 646		ret = pci_read_config_dword(pdev, fw_src->status[i],
 647					    &fw_status->status[i]);
 648		trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
 649				       fw_src->status[i],
 650				       fw_status->status[i]);
 651		if (ret)
 652			return ret;
 653	}
 654
 655	return 0;
 656}
 657
 658/**
 659 *  mei_txe_hw_config - configure hardware at the start of the devices
 660 *
 661 * @dev: the device structure
 662 *
 663 * Configure hardware at the start of the device should be done only
 664 *   once at the device probe time
 665 */
 666static void mei_txe_hw_config(struct mei_device *dev)
 667{
 668
 669	struct mei_txe_hw *hw = to_txe_hw(dev);
 670
 671	/* Doesn't change in runtime */
 672	dev->hbuf_depth = PAYLOAD_SIZE / 4;
 673
 674	hw->aliveness = mei_txe_aliveness_get(dev);
 675	hw->readiness = mei_txe_readiness_get(dev);
 676
 677	dev_dbg(dev->dev, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
 678		hw->aliveness, hw->readiness);
 679}
 680
 681
 682/**
 683 * mei_txe_write - writes a message to device.
 684 *
 685 * @dev: the device structure
 686 * @header: header of message
 687 * @buf: message buffer will be written
 688 *
 689 * Return: 0 if success, <0 - otherwise.
 690 */
 691
 692static int mei_txe_write(struct mei_device *dev,
 693		struct mei_msg_hdr *header, unsigned char *buf)
 694{
 695	struct mei_txe_hw *hw = to_txe_hw(dev);
 696	unsigned long rem;
 697	unsigned long length;
 698	int slots = dev->hbuf_depth;
 699	u32 *reg_buf = (u32 *)buf;
 700	u32 dw_cnt;
 701	int i;
 702
 703	if (WARN_ON(!header || !buf))
 704		return -EINVAL;
 705
 706	length = header->length;
 707
 708	dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
 709
 710	dw_cnt = mei_data2slots(length);
 711	if (dw_cnt > slots)
 712		return -EMSGSIZE;
 713
 714	if (WARN(!hw->aliveness, "txe write: aliveness not asserted\n"))
 715		return -EAGAIN;
 716
 717	/* Enable Input Ready Interrupt. */
 718	mei_txe_input_ready_interrupt_enable(dev);
 719
 720	if (!mei_txe_is_input_ready(dev)) {
 721		char fw_sts_str[MEI_FW_STATUS_STR_SZ];
 722
 723		mei_fw_status_str(dev, fw_sts_str, MEI_FW_STATUS_STR_SZ);
 724		dev_err(dev->dev, "Input is not ready %s\n", fw_sts_str);
 725		return -EAGAIN;
 726	}
 727
 728	mei_txe_input_payload_write(dev, 0, *((u32 *)header));
 729
 730	for (i = 0; i < length / 4; i++)
 731		mei_txe_input_payload_write(dev, i + 1, reg_buf[i]);
 732
 733	rem = length & 0x3;
 734	if (rem > 0) {
 735		u32 reg = 0;
 736
 737		memcpy(&reg, &buf[length - rem], rem);
 738		mei_txe_input_payload_write(dev, i + 1, reg);
 739	}
 740
 741	/* after each write the whole buffer is consumed */
 742	hw->slots = 0;
 743
 744	/* Set Input-Doorbell */
 745	mei_txe_input_doorbell_set(hw);
 746
 747	return 0;
 748}
 749
 750/**
 751 * mei_txe_hbuf_max_len - mimics the me hbuf circular buffer
 752 *
 753 * @dev: the device structure
 754 *
 755 * Return: the PAYLOAD_SIZE - 4
 756 */
 757static size_t mei_txe_hbuf_max_len(const struct mei_device *dev)
 758{
 759	return PAYLOAD_SIZE - sizeof(struct mei_msg_hdr);
 760}
 761
 762/**
 763 * mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
 764 *
 765 * @dev: the device structure
 766 *
 767 * Return: always hbuf_depth
 768 */
 769static int mei_txe_hbuf_empty_slots(struct mei_device *dev)
 770{
 771	struct mei_txe_hw *hw = to_txe_hw(dev);
 772
 773	return hw->slots;
 774}
 775
 776/**
 777 * mei_txe_count_full_read_slots - mimics the me device circular buffer
 778 *
 779 * @dev: the device structure
 780 *
 781 * Return: always buffer size in dwords count
 782 */
 783static int mei_txe_count_full_read_slots(struct mei_device *dev)
 784{
 785	/* read buffers has static size */
 786	return  PAYLOAD_SIZE / 4;
 787}
 788
 789/**
 790 * mei_txe_read_hdr - read message header which is always in 4 first bytes
 791 *
 792 * @dev: the device structure
 793 *
 794 * Return: mei message header
 795 */
 796
 797static u32 mei_txe_read_hdr(const struct mei_device *dev)
 798{
 799	return mei_txe_out_data_read(dev, 0);
 800}
 801/**
 802 * mei_txe_read - reads a message from the txe device.
 803 *
 804 * @dev: the device structure
 805 * @buf: message buffer will be written
 806 * @len: message size will be read
 807 *
 808 * Return: -EINVAL on error wrong argument and 0 on success
 809 */
 810static int mei_txe_read(struct mei_device *dev,
 811		unsigned char *buf, unsigned long len)
 812{
 813
 814	struct mei_txe_hw *hw = to_txe_hw(dev);
 815	u32 *reg_buf, reg;
 816	u32 rem;
 817	u32 i;
 818
 819	if (WARN_ON(!buf || !len))
 820		return -EINVAL;
 821
 822	reg_buf = (u32 *)buf;
 823	rem = len & 0x3;
 824
 825	dev_dbg(dev->dev, "buffer-length = %lu buf[0]0x%08X\n",
 826		len, mei_txe_out_data_read(dev, 0));
 827
 828	for (i = 0; i < len / 4; i++) {
 829		/* skip header: index starts from 1 */
 830		reg = mei_txe_out_data_read(dev, i + 1);
 831		dev_dbg(dev->dev, "buf[%d] = 0x%08X\n", i, reg);
 832		*reg_buf++ = reg;
 833	}
 834
 835	if (rem) {
 836		reg = mei_txe_out_data_read(dev, i + 1);
 837		memcpy(reg_buf, &reg, rem);
 838	}
 839
 840	mei_txe_output_ready_set(hw);
 841	return 0;
 842}
 843
 844/**
 845 * mei_txe_hw_reset - resets host and fw.
 846 *
 847 * @dev: the device structure
 848 * @intr_enable: if interrupt should be enabled after reset.
 849 *
 850 * Return: 0 on success and < 0 in case of error
 851 */
 852static int mei_txe_hw_reset(struct mei_device *dev, bool intr_enable)
 853{
 854	struct mei_txe_hw *hw = to_txe_hw(dev);
 855
 856	u32 aliveness_req;
 857	/*
 858	 * read input doorbell to ensure consistency between  Bridge and SeC
 859	 * return value might be garbage return
 860	 */
 861	(void)mei_txe_sec_reg_read_silent(hw, SEC_IPC_INPUT_DOORBELL_REG);
 862
 863	aliveness_req = mei_txe_aliveness_req_get(dev);
 864	hw->aliveness = mei_txe_aliveness_get(dev);
 865
 866	/* Disable interrupts in this stage we will poll */
 867	mei_txe_intr_disable(dev);
 868
 869	/*
 870	 * If Aliveness Request and Aliveness Response are not equal then
 871	 * wait for them to be equal
 872	 * Since we might have interrupts disabled - poll for it
 873	 */
 874	if (aliveness_req != hw->aliveness)
 875		if (mei_txe_aliveness_poll(dev, aliveness_req) < 0) {
 876			dev_err(dev->dev, "wait for aliveness settle failed ... bailing out\n");
 877			return -EIO;
 878		}
 879
 880	/*
 881	 * If Aliveness Request and Aliveness Response are set then clear them
 882	 */
 883	if (aliveness_req) {
 884		mei_txe_aliveness_set(dev, 0);
 885		if (mei_txe_aliveness_poll(dev, 0) < 0) {
 886			dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
 887			return -EIO;
 888		}
 889	}
 890
 891	/*
 892	 * Set readiness RDY_CLR bit
 893	 */
 894	mei_txe_readiness_clear(dev);
 895
 896	return 0;
 897}
 898
 899/**
 900 * mei_txe_hw_start - start the hardware after reset
 901 *
 902 * @dev: the device structure
 903 *
 904 * Return: 0 on success an error code otherwise
 905 */
 906static int mei_txe_hw_start(struct mei_device *dev)
 907{
 908	struct mei_txe_hw *hw = to_txe_hw(dev);
 909	int ret;
 910
 911	u32 hisr;
 912
 913	/* bring back interrupts */
 914	mei_txe_intr_enable(dev);
 915
 916	ret = mei_txe_readiness_wait(dev);
 917	if (ret < 0) {
 918		dev_err(dev->dev, "waiting for readiness failed\n");
 919		return ret;
 920	}
 921
 922	/*
 923	 * If HISR.INT2_STS interrupt status bit is set then clear it.
 924	 */
 925	hisr = mei_txe_br_reg_read(hw, HISR_REG);
 926	if (hisr & HISR_INT_2_STS)
 927		mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_2_STS);
 928
 929	/* Clear the interrupt cause of OutputDoorbell */
 930	clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause);
 931
 932	ret = mei_txe_aliveness_set_sync(dev, 1);
 933	if (ret < 0) {
 934		dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
 935		return ret;
 936	}
 937
 938	/* enable input ready interrupts:
 939	 * SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
 940	 */
 941	mei_txe_input_ready_interrupt_enable(dev);
 942
 943
 944	/*  Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
 945	mei_txe_output_ready_set(hw);
 946
 947	/* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
 948	 */
 949	mei_txe_readiness_set_host_rdy(dev);
 950
 951	return 0;
 952}
 953
 954/**
 955 * mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
 956 *  single bit mask and acknowledge the interrupts
 957 *
 958 * @dev: the device structure
 959 * @do_ack: acknowledge interrupts
 960 *
 961 * Return: true if found interrupts to process.
 962 */
 963static bool mei_txe_check_and_ack_intrs(struct mei_device *dev, bool do_ack)
 964{
 965	struct mei_txe_hw *hw = to_txe_hw(dev);
 966	u32 hisr;
 967	u32 hhisr;
 968	u32 ipc_isr;
 969	u32 aliveness;
 970	bool generated;
 971
 972	/* read interrupt registers */
 973	hhisr = mei_txe_br_reg_read(hw, HHISR_REG);
 974	generated = (hhisr & IPC_HHIER_MSK);
 975	if (!generated)
 976		goto out;
 977
 978	hisr = mei_txe_br_reg_read(hw, HISR_REG);
 979
 980	aliveness = mei_txe_aliveness_get(dev);
 981	if (hhisr & IPC_HHIER_SEC && aliveness)
 982		ipc_isr = mei_txe_sec_reg_read_silent(hw,
 983				SEC_IPC_HOST_INT_STATUS_REG);
 984	else
 985		ipc_isr = 0;
 986
 987	generated = generated ||
 988		(hisr & HISR_INT_STS_MSK) ||
 989		(ipc_isr & SEC_IPC_HOST_INT_STATUS_PENDING);
 990
 991	if (generated && do_ack) {
 992		/* Save the interrupt causes */
 993		hw->intr_cause |= hisr & HISR_INT_STS_MSK;
 994		if (ipc_isr & SEC_IPC_HOST_INT_STATUS_IN_RDY)
 995			hw->intr_cause |= TXE_INTR_IN_READY;
 996
 997
 998		mei_txe_intr_disable(dev);
 999		/* Clear the interrupts in hierarchy:
1000		 * IPC and Bridge, than the High Level */
1001		mei_txe_sec_reg_write_silent(hw,
1002			SEC_IPC_HOST_INT_STATUS_REG, ipc_isr);
1003		mei_txe_br_reg_write(hw, HISR_REG, hisr);
1004		mei_txe_br_reg_write(hw, HHISR_REG, hhisr);
1005	}
1006
1007out:
1008	return generated;
1009}
1010
1011/**
1012 * mei_txe_irq_quick_handler - The ISR of the MEI device
1013 *
1014 * @irq: The irq number
1015 * @dev_id: pointer to the device structure
1016 *
1017 * Return: IRQ_WAKE_THREAD if interrupt is designed for the device
1018 *         IRQ_NONE otherwise
1019 */
1020irqreturn_t mei_txe_irq_quick_handler(int irq, void *dev_id)
1021{
1022	struct mei_device *dev = dev_id;
1023
1024	if (mei_txe_check_and_ack_intrs(dev, true))
1025		return IRQ_WAKE_THREAD;
1026	return IRQ_NONE;
1027}
1028
1029
1030/**
1031 * mei_txe_irq_thread_handler - txe interrupt thread
1032 *
1033 * @irq: The irq number
1034 * @dev_id: pointer to the device structure
1035 *
1036 * Return: IRQ_HANDLED
1037 */
1038irqreturn_t mei_txe_irq_thread_handler(int irq, void *dev_id)
1039{
1040	struct mei_device *dev = (struct mei_device *) dev_id;
1041	struct mei_txe_hw *hw = to_txe_hw(dev);
1042	struct mei_cl_cb complete_list;
1043	s32 slots;
1044	int rets = 0;
1045
1046	dev_dbg(dev->dev, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
1047		mei_txe_br_reg_read(hw, HHISR_REG),
1048		mei_txe_br_reg_read(hw, HISR_REG),
1049		mei_txe_sec_reg_read_silent(hw, SEC_IPC_HOST_INT_STATUS_REG));
1050
1051
1052	/* initialize our complete list */
1053	mutex_lock(&dev->device_lock);
1054	mei_io_list_init(&complete_list);
1055
1056	if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
1057		mei_txe_check_and_ack_intrs(dev, true);
1058
1059	/* show irq events */
1060	mei_txe_pending_interrupts(dev);
1061
1062	hw->aliveness = mei_txe_aliveness_get(dev);
1063	hw->readiness = mei_txe_readiness_get(dev);
1064
1065	/* Readiness:
1066	 * Detection of TXE driver going through reset
1067	 * or TXE driver resetting the HECI interface.
1068	 */
1069	if (test_and_clear_bit(TXE_INTR_READINESS_BIT, &hw->intr_cause)) {
1070		dev_dbg(dev->dev, "Readiness Interrupt was received...\n");
1071
1072		/* Check if SeC is going through reset */
1073		if (mei_txe_readiness_is_sec_rdy(hw->readiness)) {
1074			dev_dbg(dev->dev, "we need to start the dev.\n");
1075			dev->recvd_hw_ready = true;
1076		} else {
1077			dev->recvd_hw_ready = false;
1078			if (dev->dev_state != MEI_DEV_RESETTING) {
1079
1080				dev_warn(dev->dev, "FW not ready: resetting.\n");
1081				schedule_work(&dev->reset_work);
1082				goto end;
1083
1084			}
1085		}
1086		wake_up(&dev->wait_hw_ready);
1087	}
1088
1089	/************************************************************/
1090	/* Check interrupt cause:
1091	 * Aliveness: Detection of SeC acknowledge of host request that
1092	 * it remain alive or host cancellation of that request.
1093	 */
1094
1095	if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT, &hw->intr_cause)) {
1096		/* Clear the interrupt cause */
1097		dev_dbg(dev->dev,
1098			"Aliveness Interrupt: Status: %d\n", hw->aliveness);
1099		dev->pg_event = MEI_PG_EVENT_RECEIVED;
1100		if (waitqueue_active(&hw->wait_aliveness_resp))
1101			wake_up(&hw->wait_aliveness_resp);
1102	}
1103
1104
1105	/* Output Doorbell:
1106	 * Detection of SeC having sent output to host
1107	 */
1108	slots = mei_count_full_read_slots(dev);
1109	if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause)) {
1110		/* Read from TXE */
1111		rets = mei_irq_read_handler(dev, &complete_list, &slots);
1112		if (rets && dev->dev_state != MEI_DEV_RESETTING) {
1113			dev_err(dev->dev,
1114				"mei_irq_read_handler ret = %d.\n", rets);
1115
1116			schedule_work(&dev->reset_work);
1117			goto end;
1118		}
1119	}
1120	/* Input Ready: Detection if host can write to SeC */
1121	if (test_and_clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause)) {
1122		dev->hbuf_is_ready = true;
1123		hw->slots = dev->hbuf_depth;
1124	}
1125
1126	if (hw->aliveness && dev->hbuf_is_ready) {
1127		/* get the real register value */
1128		dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1129		rets = mei_irq_write_handler(dev, &complete_list);
1130		if (rets && rets != -EMSGSIZE)
1131			dev_err(dev->dev, "mei_irq_write_handler ret = %d.\n",
1132				rets);
1133		dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1134	}
1135
1136	mei_irq_compl_handler(dev, &complete_list);
1137
1138end:
1139	dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1140
1141	mutex_unlock(&dev->device_lock);
1142
1143	mei_enable_interrupts(dev);
1144	return IRQ_HANDLED;
1145}
1146
1147static const struct mei_hw_ops mei_txe_hw_ops = {
1148
1149	.host_is_ready = mei_txe_host_is_ready,
1150
1151	.fw_status = mei_txe_fw_status,
1152	.pg_state = mei_txe_pg_state,
1153
1154	.hw_is_ready = mei_txe_hw_is_ready,
1155	.hw_reset = mei_txe_hw_reset,
1156	.hw_config = mei_txe_hw_config,
1157	.hw_start = mei_txe_hw_start,
1158
1159	.pg_in_transition = mei_txe_pg_in_transition,
1160	.pg_is_enabled = mei_txe_pg_is_enabled,
1161
1162	.intr_clear = mei_txe_intr_clear,
1163	.intr_enable = mei_txe_intr_enable,
1164	.intr_disable = mei_txe_intr_disable,
1165
1166	.hbuf_free_slots = mei_txe_hbuf_empty_slots,
1167	.hbuf_is_ready = mei_txe_is_input_ready,
1168	.hbuf_max_len = mei_txe_hbuf_max_len,
1169
1170	.write = mei_txe_write,
1171
1172	.rdbuf_full_slots = mei_txe_count_full_read_slots,
1173	.read_hdr = mei_txe_read_hdr,
1174
1175	.read = mei_txe_read,
1176
1177};
1178
1179/**
1180 * mei_txe_dev_init - allocates and initializes txe hardware specific structure
1181 *
1182 * @pdev: pci device
1183 *
1184 * Return: struct mei_device * on success or NULL
1185 */
1186struct mei_device *mei_txe_dev_init(struct pci_dev *pdev)
1187{
1188	struct mei_device *dev;
1189	struct mei_txe_hw *hw;
1190
1191	dev = kzalloc(sizeof(struct mei_device) +
1192			 sizeof(struct mei_txe_hw), GFP_KERNEL);
1193	if (!dev)
1194		return NULL;
1195
1196	mei_device_init(dev, &pdev->dev, &mei_txe_hw_ops);
1197
1198	hw = to_txe_hw(dev);
1199
1200	init_waitqueue_head(&hw->wait_aliveness_resp);
1201
1202	return dev;
1203}
1204
1205/**
1206 * mei_txe_setup_satt2 - SATT2 configuration for DMA support.
1207 *
1208 * @dev:   the device structure
1209 * @addr:  physical address start of the range
1210 * @range: physical range size
1211 *
1212 * Return: 0 on success an error code otherwise
1213 */
1214int mei_txe_setup_satt2(struct mei_device *dev, phys_addr_t addr, u32 range)
1215{
1216	struct mei_txe_hw *hw = to_txe_hw(dev);
1217
1218	u32 lo32 = lower_32_bits(addr);
1219	u32 hi32 = upper_32_bits(addr);
1220	u32 ctrl;
1221
1222	/* SATT is limited to 36 Bits */
1223	if (hi32 & ~0xF)
1224		return -EINVAL;
1225
1226	/* SATT has to be 16Byte aligned */
1227	if (lo32 & 0xF)
1228		return -EINVAL;
1229
1230	/* SATT range has to be 4Bytes aligned */
1231	if (range & 0x4)
1232		return -EINVAL;
1233
1234	/* SATT is limited to 32 MB range*/
1235	if (range > SATT_RANGE_MAX)
1236		return -EINVAL;
1237
1238	ctrl = SATT2_CTRL_VALID_MSK;
1239	ctrl |= hi32  << SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT;
1240
1241	mei_txe_br_reg_write(hw, SATT2_SAP_SIZE_REG, range);
1242	mei_txe_br_reg_write(hw, SATT2_BRG_BA_LSB_REG, lo32);
1243	mei_txe_br_reg_write(hw, SATT2_CTRL_REG, ctrl);
1244	dev_dbg(dev->dev, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",
1245		range, lo32, ctrl);
1246
1247	return 0;
1248}