Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 */
  14#include <linux/kernel.h>
  15#include <linux/wait.h>
  16#include <linux/blkdev.h>
  17#include <linux/slab.h>
  18#include <linux/raid/md_p.h>
  19#include <linux/crc32c.h>
  20#include <linux/random.h>
  21#include "md.h"
  22#include "raid5.h"
  23
  24/*
  25 * metadata/data stored in disk with 4k size unit (a block) regardless
  26 * underneath hardware sector size. only works with PAGE_SIZE == 4096
  27 */
  28#define BLOCK_SECTORS (8)
  29
  30/*
  31 * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
  32 * recovery scans a very long log
  33 */
  34#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
  35#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
  36
  37/*
  38 * We only need 2 bios per I/O unit to make progress, but ensure we
  39 * have a few more available to not get too tight.
  40 */
  41#define R5L_POOL_SIZE	4
  42
  43struct r5l_log {
  44	struct md_rdev *rdev;
  45
  46	u32 uuid_checksum;
  47
  48	sector_t device_size;		/* log device size, round to
  49					 * BLOCK_SECTORS */
  50	sector_t max_free_space;	/* reclaim run if free space is at
  51					 * this size */
  52
  53	sector_t last_checkpoint;	/* log tail. where recovery scan
  54					 * starts from */
  55	u64 last_cp_seq;		/* log tail sequence */
  56
  57	sector_t log_start;		/* log head. where new data appends */
  58	u64 seq;			/* log head sequence */
  59
  60	sector_t next_checkpoint;
  61	u64 next_cp_seq;
  62
  63	struct mutex io_mutex;
  64	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
  65
  66	spinlock_t io_list_lock;
  67	struct list_head running_ios;	/* io_units which are still running,
  68					 * and have not yet been completely
  69					 * written to the log */
  70	struct list_head io_end_ios;	/* io_units which have been completely
  71					 * written to the log but not yet written
  72					 * to the RAID */
  73	struct list_head flushing_ios;	/* io_units which are waiting for log
  74					 * cache flush */
  75	struct list_head finished_ios;	/* io_units which settle down in log disk */
  76	struct bio flush_bio;
  77
  78	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
  79
  80	struct kmem_cache *io_kc;
  81	mempool_t *io_pool;
  82	struct bio_set *bs;
  83	mempool_t *meta_pool;
  84
  85	struct md_thread *reclaim_thread;
  86	unsigned long reclaim_target;	/* number of space that need to be
  87					 * reclaimed.  if it's 0, reclaim spaces
  88					 * used by io_units which are in
  89					 * IO_UNIT_STRIPE_END state (eg, reclaim
  90					 * dones't wait for specific io_unit
  91					 * switching to IO_UNIT_STRIPE_END
  92					 * state) */
  93	wait_queue_head_t iounit_wait;
  94
  95	struct list_head no_space_stripes; /* pending stripes, log has no space */
  96	spinlock_t no_space_stripes_lock;
  97
  98	bool need_cache_flush;
  99	bool in_teardown;
 100};
 101
 102/*
 103 * an IO range starts from a meta data block and end at the next meta data
 104 * block. The io unit's the meta data block tracks data/parity followed it. io
 105 * unit is written to log disk with normal write, as we always flush log disk
 106 * first and then start move data to raid disks, there is no requirement to
 107 * write io unit with FLUSH/FUA
 108 */
 109struct r5l_io_unit {
 110	struct r5l_log *log;
 111
 112	struct page *meta_page;	/* store meta block */
 113	int meta_offset;	/* current offset in meta_page */
 114
 115	struct bio *current_bio;/* current_bio accepting new data */
 116
 117	atomic_t pending_stripe;/* how many stripes not flushed to raid */
 118	u64 seq;		/* seq number of the metablock */
 119	sector_t log_start;	/* where the io_unit starts */
 120	sector_t log_end;	/* where the io_unit ends */
 121	struct list_head log_sibling; /* log->running_ios */
 122	struct list_head stripe_list; /* stripes added to the io_unit */
 123
 124	int state;
 125	bool need_split_bio;
 126};
 127
 128/* r5l_io_unit state */
 129enum r5l_io_unit_state {
 130	IO_UNIT_RUNNING = 0,	/* accepting new IO */
 131	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
 132				 * don't accepting new bio */
 133	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
 134	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
 135};
 136
 137static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
 138{
 139	start += inc;
 140	if (start >= log->device_size)
 141		start = start - log->device_size;
 142	return start;
 143}
 144
 145static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
 146				  sector_t end)
 147{
 148	if (end >= start)
 149		return end - start;
 150	else
 151		return end + log->device_size - start;
 152}
 153
 154static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
 155{
 156	sector_t used_size;
 157
 158	used_size = r5l_ring_distance(log, log->last_checkpoint,
 159					log->log_start);
 160
 161	return log->device_size > used_size + size;
 162}
 163
 164static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
 165				    enum r5l_io_unit_state state)
 166{
 167	if (WARN_ON(io->state >= state))
 168		return;
 169	io->state = state;
 170}
 171
 172static void r5l_io_run_stripes(struct r5l_io_unit *io)
 173{
 174	struct stripe_head *sh, *next;
 175
 176	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
 177		list_del_init(&sh->log_list);
 178		set_bit(STRIPE_HANDLE, &sh->state);
 179		raid5_release_stripe(sh);
 180	}
 181}
 182
 183static void r5l_log_run_stripes(struct r5l_log *log)
 184{
 185	struct r5l_io_unit *io, *next;
 186
 187	assert_spin_locked(&log->io_list_lock);
 188
 189	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
 190		/* don't change list order */
 191		if (io->state < IO_UNIT_IO_END)
 192			break;
 193
 194		list_move_tail(&io->log_sibling, &log->finished_ios);
 195		r5l_io_run_stripes(io);
 196	}
 197}
 198
 199static void r5l_move_to_end_ios(struct r5l_log *log)
 200{
 201	struct r5l_io_unit *io, *next;
 202
 203	assert_spin_locked(&log->io_list_lock);
 204
 205	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
 206		/* don't change list order */
 207		if (io->state < IO_UNIT_IO_END)
 208			break;
 209		list_move_tail(&io->log_sibling, &log->io_end_ios);
 210	}
 211}
 212
 213static void r5l_log_endio(struct bio *bio)
 214{
 215	struct r5l_io_unit *io = bio->bi_private;
 216	struct r5l_log *log = io->log;
 217	unsigned long flags;
 218
 219	if (bio->bi_error)
 220		md_error(log->rdev->mddev, log->rdev);
 221
 222	bio_put(bio);
 223	mempool_free(io->meta_page, log->meta_pool);
 224
 225	spin_lock_irqsave(&log->io_list_lock, flags);
 226	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
 227	if (log->need_cache_flush)
 228		r5l_move_to_end_ios(log);
 229	else
 230		r5l_log_run_stripes(log);
 231	spin_unlock_irqrestore(&log->io_list_lock, flags);
 232
 233	if (log->need_cache_flush)
 234		md_wakeup_thread(log->rdev->mddev->thread);
 235}
 236
 237static void r5l_submit_current_io(struct r5l_log *log)
 238{
 239	struct r5l_io_unit *io = log->current_io;
 240	struct r5l_meta_block *block;
 241	unsigned long flags;
 242	u32 crc;
 243
 244	if (!io)
 245		return;
 246
 247	block = page_address(io->meta_page);
 248	block->meta_size = cpu_to_le32(io->meta_offset);
 249	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
 250	block->checksum = cpu_to_le32(crc);
 251
 252	log->current_io = NULL;
 253	spin_lock_irqsave(&log->io_list_lock, flags);
 254	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
 255	spin_unlock_irqrestore(&log->io_list_lock, flags);
 256
 257	submit_bio(WRITE, io->current_bio);
 258}
 259
 260static struct bio *r5l_bio_alloc(struct r5l_log *log)
 261{
 262	struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
 263
 264	bio->bi_rw = WRITE;
 265	bio->bi_bdev = log->rdev->bdev;
 266	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
 267
 268	return bio;
 269}
 270
 271static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
 272{
 273	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
 274
 275	/*
 276	 * If we filled up the log device start from the beginning again,
 277	 * which will require a new bio.
 278	 *
 279	 * Note: for this to work properly the log size needs to me a multiple
 280	 * of BLOCK_SECTORS.
 281	 */
 282	if (log->log_start == 0)
 283		io->need_split_bio = true;
 284
 285	io->log_end = log->log_start;
 286}
 287
 288static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
 289{
 290	struct r5l_io_unit *io;
 291	struct r5l_meta_block *block;
 292
 293	io = mempool_alloc(log->io_pool, GFP_ATOMIC);
 294	if (!io)
 295		return NULL;
 296	memset(io, 0, sizeof(*io));
 297
 298	io->log = log;
 299	INIT_LIST_HEAD(&io->log_sibling);
 300	INIT_LIST_HEAD(&io->stripe_list);
 301	io->state = IO_UNIT_RUNNING;
 302
 303	io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
 304	block = page_address(io->meta_page);
 305	clear_page(block);
 306	block->magic = cpu_to_le32(R5LOG_MAGIC);
 307	block->version = R5LOG_VERSION;
 308	block->seq = cpu_to_le64(log->seq);
 309	block->position = cpu_to_le64(log->log_start);
 310
 311	io->log_start = log->log_start;
 312	io->meta_offset = sizeof(struct r5l_meta_block);
 313	io->seq = log->seq++;
 314
 315	io->current_bio = r5l_bio_alloc(log);
 316	io->current_bio->bi_end_io = r5l_log_endio;
 317	io->current_bio->bi_private = io;
 318	bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
 319
 320	r5_reserve_log_entry(log, io);
 321
 322	spin_lock_irq(&log->io_list_lock);
 323	list_add_tail(&io->log_sibling, &log->running_ios);
 324	spin_unlock_irq(&log->io_list_lock);
 325
 326	return io;
 327}
 328
 329static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
 330{
 331	if (log->current_io &&
 332	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
 333		r5l_submit_current_io(log);
 334
 335	if (!log->current_io) {
 336		log->current_io = r5l_new_meta(log);
 337		if (!log->current_io)
 338			return -ENOMEM;
 339	}
 340
 341	return 0;
 342}
 343
 344static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
 345				    sector_t location,
 346				    u32 checksum1, u32 checksum2,
 347				    bool checksum2_valid)
 348{
 349	struct r5l_io_unit *io = log->current_io;
 350	struct r5l_payload_data_parity *payload;
 351
 352	payload = page_address(io->meta_page) + io->meta_offset;
 353	payload->header.type = cpu_to_le16(type);
 354	payload->header.flags = cpu_to_le16(0);
 355	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
 356				    (PAGE_SHIFT - 9));
 357	payload->location = cpu_to_le64(location);
 358	payload->checksum[0] = cpu_to_le32(checksum1);
 359	if (checksum2_valid)
 360		payload->checksum[1] = cpu_to_le32(checksum2);
 361
 362	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
 363		sizeof(__le32) * (1 + !!checksum2_valid);
 364}
 365
 366static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
 367{
 368	struct r5l_io_unit *io = log->current_io;
 369
 370	if (io->need_split_bio) {
 371		struct bio *prev = io->current_bio;
 372
 373		io->current_bio = r5l_bio_alloc(log);
 374		bio_chain(io->current_bio, prev);
 375
 376		submit_bio(WRITE, prev);
 377	}
 378
 379	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
 380		BUG();
 381
 382	r5_reserve_log_entry(log, io);
 383}
 384
 385static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
 386			   int data_pages, int parity_pages)
 387{
 388	int i;
 389	int meta_size;
 390	int ret;
 391	struct r5l_io_unit *io;
 392
 393	meta_size =
 394		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
 395		 * data_pages) +
 396		sizeof(struct r5l_payload_data_parity) +
 397		sizeof(__le32) * parity_pages;
 398
 399	ret = r5l_get_meta(log, meta_size);
 400	if (ret)
 401		return ret;
 402
 403	io = log->current_io;
 404
 405	for (i = 0; i < sh->disks; i++) {
 406		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
 407			continue;
 408		if (i == sh->pd_idx || i == sh->qd_idx)
 409			continue;
 410		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
 411					raid5_compute_blocknr(sh, i, 0),
 412					sh->dev[i].log_checksum, 0, false);
 413		r5l_append_payload_page(log, sh->dev[i].page);
 414	}
 415
 416	if (sh->qd_idx >= 0) {
 417		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
 418					sh->sector, sh->dev[sh->pd_idx].log_checksum,
 419					sh->dev[sh->qd_idx].log_checksum, true);
 420		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
 421		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
 422	} else {
 423		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
 424					sh->sector, sh->dev[sh->pd_idx].log_checksum,
 425					0, false);
 426		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
 427	}
 428
 429	list_add_tail(&sh->log_list, &io->stripe_list);
 430	atomic_inc(&io->pending_stripe);
 431	sh->log_io = io;
 432
 433	return 0;
 434}
 435
 436static void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
 437/*
 438 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
 439 * data from log to raid disks), so we shouldn't wait for reclaim here
 440 */
 441int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
 442{
 443	int write_disks = 0;
 444	int data_pages, parity_pages;
 445	int meta_size;
 446	int reserve;
 447	int i;
 448	int ret = 0;
 449
 450	if (!log)
 451		return -EAGAIN;
 452	/* Don't support stripe batch */
 453	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
 454	    test_bit(STRIPE_SYNCING, &sh->state)) {
 455		/* the stripe is written to log, we start writing it to raid */
 456		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
 457		return -EAGAIN;
 458	}
 459
 460	for (i = 0; i < sh->disks; i++) {
 461		void *addr;
 462
 463		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
 464			continue;
 465		write_disks++;
 466		/* checksum is already calculated in last run */
 467		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
 468			continue;
 469		addr = kmap_atomic(sh->dev[i].page);
 470		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
 471						    addr, PAGE_SIZE);
 472		kunmap_atomic(addr);
 473	}
 474	parity_pages = 1 + !!(sh->qd_idx >= 0);
 475	data_pages = write_disks - parity_pages;
 476
 477	meta_size =
 478		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
 479		 * data_pages) +
 480		sizeof(struct r5l_payload_data_parity) +
 481		sizeof(__le32) * parity_pages;
 482	/* Doesn't work with very big raid array */
 483	if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE)
 484		return -EINVAL;
 485
 486	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
 487	/*
 488	 * The stripe must enter state machine again to finish the write, so
 489	 * don't delay.
 490	 */
 491	clear_bit(STRIPE_DELAYED, &sh->state);
 492	atomic_inc(&sh->count);
 493
 494	mutex_lock(&log->io_mutex);
 495	/* meta + data */
 496	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
 497	if (!r5l_has_free_space(log, reserve)) {
 498		spin_lock(&log->no_space_stripes_lock);
 499		list_add_tail(&sh->log_list, &log->no_space_stripes);
 500		spin_unlock(&log->no_space_stripes_lock);
 501
 502		r5l_wake_reclaim(log, reserve);
 503	} else {
 504		ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
 505		if (ret) {
 506			spin_lock_irq(&log->io_list_lock);
 507			list_add_tail(&sh->log_list, &log->no_mem_stripes);
 508			spin_unlock_irq(&log->io_list_lock);
 509		}
 510	}
 511
 512	mutex_unlock(&log->io_mutex);
 513	return 0;
 514}
 515
 516void r5l_write_stripe_run(struct r5l_log *log)
 517{
 518	if (!log)
 519		return;
 520	mutex_lock(&log->io_mutex);
 521	r5l_submit_current_io(log);
 522	mutex_unlock(&log->io_mutex);
 523}
 524
 525int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
 526{
 527	if (!log)
 528		return -ENODEV;
 529	/*
 530	 * we flush log disk cache first, then write stripe data to raid disks.
 531	 * So if bio is finished, the log disk cache is flushed already. The
 532	 * recovery guarantees we can recovery the bio from log disk, so we
 533	 * don't need to flush again
 534	 */
 535	if (bio->bi_iter.bi_size == 0) {
 536		bio_endio(bio);
 537		return 0;
 538	}
 539	bio->bi_rw &= ~REQ_FLUSH;
 540	return -EAGAIN;
 541}
 542
 543/* This will run after log space is reclaimed */
 544static void r5l_run_no_space_stripes(struct r5l_log *log)
 545{
 546	struct stripe_head *sh;
 547
 548	spin_lock(&log->no_space_stripes_lock);
 549	while (!list_empty(&log->no_space_stripes)) {
 550		sh = list_first_entry(&log->no_space_stripes,
 551				      struct stripe_head, log_list);
 552		list_del_init(&sh->log_list);
 553		set_bit(STRIPE_HANDLE, &sh->state);
 554		raid5_release_stripe(sh);
 555	}
 556	spin_unlock(&log->no_space_stripes_lock);
 557}
 558
 559static sector_t r5l_reclaimable_space(struct r5l_log *log)
 560{
 561	return r5l_ring_distance(log, log->last_checkpoint,
 562				 log->next_checkpoint);
 563}
 564
 565static void r5l_run_no_mem_stripe(struct r5l_log *log)
 566{
 567	struct stripe_head *sh;
 568
 569	assert_spin_locked(&log->io_list_lock);
 570
 571	if (!list_empty(&log->no_mem_stripes)) {
 572		sh = list_first_entry(&log->no_mem_stripes,
 573				      struct stripe_head, log_list);
 574		list_del_init(&sh->log_list);
 575		set_bit(STRIPE_HANDLE, &sh->state);
 576		raid5_release_stripe(sh);
 577	}
 578}
 579
 580static bool r5l_complete_finished_ios(struct r5l_log *log)
 581{
 582	struct r5l_io_unit *io, *next;
 583	bool found = false;
 584
 585	assert_spin_locked(&log->io_list_lock);
 586
 587	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
 588		/* don't change list order */
 589		if (io->state < IO_UNIT_STRIPE_END)
 590			break;
 591
 592		log->next_checkpoint = io->log_start;
 593		log->next_cp_seq = io->seq;
 594
 595		list_del(&io->log_sibling);
 596		mempool_free(io, log->io_pool);
 597		r5l_run_no_mem_stripe(log);
 598
 599		found = true;
 600	}
 601
 602	return found;
 603}
 604
 605static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
 606{
 607	struct r5l_log *log = io->log;
 608	unsigned long flags;
 609
 610	spin_lock_irqsave(&log->io_list_lock, flags);
 611	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
 612
 613	if (!r5l_complete_finished_ios(log)) {
 614		spin_unlock_irqrestore(&log->io_list_lock, flags);
 615		return;
 616	}
 617
 618	if (r5l_reclaimable_space(log) > log->max_free_space)
 619		r5l_wake_reclaim(log, 0);
 620
 621	spin_unlock_irqrestore(&log->io_list_lock, flags);
 622	wake_up(&log->iounit_wait);
 623}
 624
 625void r5l_stripe_write_finished(struct stripe_head *sh)
 626{
 627	struct r5l_io_unit *io;
 628
 629	io = sh->log_io;
 630	sh->log_io = NULL;
 631
 632	if (io && atomic_dec_and_test(&io->pending_stripe))
 633		__r5l_stripe_write_finished(io);
 634}
 635
 636static void r5l_log_flush_endio(struct bio *bio)
 637{
 638	struct r5l_log *log = container_of(bio, struct r5l_log,
 639		flush_bio);
 640	unsigned long flags;
 641	struct r5l_io_unit *io;
 642
 643	if (bio->bi_error)
 644		md_error(log->rdev->mddev, log->rdev);
 645
 646	spin_lock_irqsave(&log->io_list_lock, flags);
 647	list_for_each_entry(io, &log->flushing_ios, log_sibling)
 648		r5l_io_run_stripes(io);
 649	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
 650	spin_unlock_irqrestore(&log->io_list_lock, flags);
 651}
 652
 653/*
 654 * Starting dispatch IO to raid.
 655 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
 656 * broken meta in the middle of a log causes recovery can't find meta at the
 657 * head of log. If operations require meta at the head persistent in log, we
 658 * must make sure meta before it persistent in log too. A case is:
 659 *
 660 * stripe data/parity is in log, we start write stripe to raid disks. stripe
 661 * data/parity must be persistent in log before we do the write to raid disks.
 662 *
 663 * The solution is we restrictly maintain io_unit list order. In this case, we
 664 * only write stripes of an io_unit to raid disks till the io_unit is the first
 665 * one whose data/parity is in log.
 666 */
 667void r5l_flush_stripe_to_raid(struct r5l_log *log)
 668{
 669	bool do_flush;
 670
 671	if (!log || !log->need_cache_flush)
 672		return;
 673
 674	spin_lock_irq(&log->io_list_lock);
 675	/* flush bio is running */
 676	if (!list_empty(&log->flushing_ios)) {
 677		spin_unlock_irq(&log->io_list_lock);
 678		return;
 679	}
 680	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
 681	do_flush = !list_empty(&log->flushing_ios);
 682	spin_unlock_irq(&log->io_list_lock);
 683
 684	if (!do_flush)
 685		return;
 686	bio_reset(&log->flush_bio);
 687	log->flush_bio.bi_bdev = log->rdev->bdev;
 688	log->flush_bio.bi_end_io = r5l_log_flush_endio;
 689	submit_bio(WRITE_FLUSH, &log->flush_bio);
 690}
 691
 692static void r5l_write_super(struct r5l_log *log, sector_t cp);
 693static void r5l_write_super_and_discard_space(struct r5l_log *log,
 694	sector_t end)
 695{
 696	struct block_device *bdev = log->rdev->bdev;
 697	struct mddev *mddev;
 698
 699	r5l_write_super(log, end);
 700
 701	if (!blk_queue_discard(bdev_get_queue(bdev)))
 702		return;
 703
 704	mddev = log->rdev->mddev;
 705	/*
 706	 * This is to avoid a deadlock. r5l_quiesce holds reconfig_mutex and
 707	 * wait for this thread to finish. This thread waits for
 708	 * MD_CHANGE_PENDING clear, which is supposed to be done in
 709	 * md_check_recovery(). md_check_recovery() tries to get
 710	 * reconfig_mutex. Since r5l_quiesce already holds the mutex,
 711	 * md_check_recovery() fails, so the PENDING never get cleared. The
 712	 * in_teardown check workaround this issue.
 713	 */
 714	if (!log->in_teardown) {
 715		set_bit(MD_CHANGE_DEVS, &mddev->flags);
 716		set_bit(MD_CHANGE_PENDING, &mddev->flags);
 717		md_wakeup_thread(mddev->thread);
 718		wait_event(mddev->sb_wait,
 719			!test_bit(MD_CHANGE_PENDING, &mddev->flags) ||
 720			log->in_teardown);
 721		/*
 722		 * r5l_quiesce could run after in_teardown check and hold
 723		 * mutex first. Superblock might get updated twice.
 724		 */
 725		if (log->in_teardown)
 726			md_update_sb(mddev, 1);
 727	} else {
 728		WARN_ON(!mddev_is_locked(mddev));
 729		md_update_sb(mddev, 1);
 730	}
 731
 732	/* discard IO error really doesn't matter, ignore it */
 733	if (log->last_checkpoint < end) {
 734		blkdev_issue_discard(bdev,
 735				log->last_checkpoint + log->rdev->data_offset,
 736				end - log->last_checkpoint, GFP_NOIO, 0);
 737	} else {
 738		blkdev_issue_discard(bdev,
 739				log->last_checkpoint + log->rdev->data_offset,
 740				log->device_size - log->last_checkpoint,
 741				GFP_NOIO, 0);
 742		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
 743				GFP_NOIO, 0);
 744	}
 745}
 746
 747
 748static void r5l_do_reclaim(struct r5l_log *log)
 749{
 750	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
 751	sector_t reclaimable;
 752	sector_t next_checkpoint;
 753	u64 next_cp_seq;
 754
 755	spin_lock_irq(&log->io_list_lock);
 756	/*
 757	 * move proper io_unit to reclaim list. We should not change the order.
 758	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
 759	 * shouldn't reuse space of an unreclaimable io_unit
 760	 */
 761	while (1) {
 762		reclaimable = r5l_reclaimable_space(log);
 763		if (reclaimable >= reclaim_target ||
 764		    (list_empty(&log->running_ios) &&
 765		     list_empty(&log->io_end_ios) &&
 766		     list_empty(&log->flushing_ios) &&
 767		     list_empty(&log->finished_ios)))
 768			break;
 769
 770		md_wakeup_thread(log->rdev->mddev->thread);
 771		wait_event_lock_irq(log->iounit_wait,
 772				    r5l_reclaimable_space(log) > reclaimable,
 773				    log->io_list_lock);
 774	}
 775
 776	next_checkpoint = log->next_checkpoint;
 777	next_cp_seq = log->next_cp_seq;
 778	spin_unlock_irq(&log->io_list_lock);
 779
 780	BUG_ON(reclaimable < 0);
 781	if (reclaimable == 0)
 782		return;
 783
 784	/*
 785	 * write_super will flush cache of each raid disk. We must write super
 786	 * here, because the log area might be reused soon and we don't want to
 787	 * confuse recovery
 788	 */
 789	r5l_write_super_and_discard_space(log, next_checkpoint);
 790
 791	mutex_lock(&log->io_mutex);
 792	log->last_checkpoint = next_checkpoint;
 793	log->last_cp_seq = next_cp_seq;
 794	mutex_unlock(&log->io_mutex);
 795
 796	r5l_run_no_space_stripes(log);
 797}
 798
 799static void r5l_reclaim_thread(struct md_thread *thread)
 800{
 801	struct mddev *mddev = thread->mddev;
 802	struct r5conf *conf = mddev->private;
 803	struct r5l_log *log = conf->log;
 804
 805	if (!log)
 806		return;
 807	r5l_do_reclaim(log);
 808}
 809
 810static void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
 811{
 812	unsigned long target;
 813	unsigned long new = (unsigned long)space; /* overflow in theory */
 814
 815	do {
 816		target = log->reclaim_target;
 817		if (new < target)
 818			return;
 819	} while (cmpxchg(&log->reclaim_target, target, new) != target);
 820	md_wakeup_thread(log->reclaim_thread);
 821}
 822
 823void r5l_quiesce(struct r5l_log *log, int state)
 824{
 825	struct mddev *mddev;
 826	if (!log || state == 2)
 827		return;
 828	if (state == 0) {
 829		log->in_teardown = 0;
 830		/*
 831		 * This is a special case for hotadd. In suspend, the array has
 832		 * no journal. In resume, journal is initialized as well as the
 833		 * reclaim thread.
 834		 */
 835		if (log->reclaim_thread)
 836			return;
 837		log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
 838					log->rdev->mddev, "reclaim");
 839	} else if (state == 1) {
 840		/*
 841		 * at this point all stripes are finished, so io_unit is at
 842		 * least in STRIPE_END state
 843		 */
 844		log->in_teardown = 1;
 845		/* make sure r5l_write_super_and_discard_space exits */
 846		mddev = log->rdev->mddev;
 847		wake_up(&mddev->sb_wait);
 848		r5l_wake_reclaim(log, -1L);
 849		md_unregister_thread(&log->reclaim_thread);
 850		r5l_do_reclaim(log);
 851	}
 852}
 853
 854bool r5l_log_disk_error(struct r5conf *conf)
 855{
 856	struct r5l_log *log;
 857	bool ret;
 858	/* don't allow write if journal disk is missing */
 859	rcu_read_lock();
 860	log = rcu_dereference(conf->log);
 861
 862	if (!log)
 863		ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
 864	else
 865		ret = test_bit(Faulty, &log->rdev->flags);
 866	rcu_read_unlock();
 867	return ret;
 868}
 869
 870struct r5l_recovery_ctx {
 871	struct page *meta_page;		/* current meta */
 872	sector_t meta_total_blocks;	/* total size of current meta and data */
 873	sector_t pos;			/* recovery position */
 874	u64 seq;			/* recovery position seq */
 875};
 876
 877static int r5l_read_meta_block(struct r5l_log *log,
 878			       struct r5l_recovery_ctx *ctx)
 879{
 880	struct page *page = ctx->meta_page;
 881	struct r5l_meta_block *mb;
 882	u32 crc, stored_crc;
 883
 884	if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, READ, false))
 885		return -EIO;
 886
 887	mb = page_address(page);
 888	stored_crc = le32_to_cpu(mb->checksum);
 889	mb->checksum = 0;
 890
 891	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
 892	    le64_to_cpu(mb->seq) != ctx->seq ||
 893	    mb->version != R5LOG_VERSION ||
 894	    le64_to_cpu(mb->position) != ctx->pos)
 895		return -EINVAL;
 896
 897	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
 898	if (stored_crc != crc)
 899		return -EINVAL;
 900
 901	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
 902		return -EINVAL;
 903
 904	ctx->meta_total_blocks = BLOCK_SECTORS;
 905
 906	return 0;
 907}
 908
 909static int r5l_recovery_flush_one_stripe(struct r5l_log *log,
 910					 struct r5l_recovery_ctx *ctx,
 911					 sector_t stripe_sect,
 912					 int *offset, sector_t *log_offset)
 913{
 914	struct r5conf *conf = log->rdev->mddev->private;
 915	struct stripe_head *sh;
 916	struct r5l_payload_data_parity *payload;
 917	int disk_index;
 918
 919	sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0);
 920	while (1) {
 921		payload = page_address(ctx->meta_page) + *offset;
 922
 923		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
 924			raid5_compute_sector(conf,
 925					     le64_to_cpu(payload->location), 0,
 926					     &disk_index, sh);
 927
 928			sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
 929				     sh->dev[disk_index].page, READ, false);
 930			sh->dev[disk_index].log_checksum =
 931				le32_to_cpu(payload->checksum[0]);
 932			set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
 933			ctx->meta_total_blocks += BLOCK_SECTORS;
 934		} else {
 935			disk_index = sh->pd_idx;
 936			sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
 937				     sh->dev[disk_index].page, READ, false);
 938			sh->dev[disk_index].log_checksum =
 939				le32_to_cpu(payload->checksum[0]);
 940			set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
 941
 942			if (sh->qd_idx >= 0) {
 943				disk_index = sh->qd_idx;
 944				sync_page_io(log->rdev,
 945					     r5l_ring_add(log, *log_offset, BLOCK_SECTORS),
 946					     PAGE_SIZE, sh->dev[disk_index].page,
 947					     READ, false);
 948				sh->dev[disk_index].log_checksum =
 949					le32_to_cpu(payload->checksum[1]);
 950				set_bit(R5_Wantwrite,
 951					&sh->dev[disk_index].flags);
 952			}
 953			ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
 954		}
 955
 956		*log_offset = r5l_ring_add(log, *log_offset,
 957					   le32_to_cpu(payload->size));
 958		*offset += sizeof(struct r5l_payload_data_parity) +
 959			sizeof(__le32) *
 960			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
 961		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
 962			break;
 963	}
 964
 965	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
 966		void *addr;
 967		u32 checksum;
 968
 969		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
 970			continue;
 971		addr = kmap_atomic(sh->dev[disk_index].page);
 972		checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
 973		kunmap_atomic(addr);
 974		if (checksum != sh->dev[disk_index].log_checksum)
 975			goto error;
 976	}
 977
 978	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
 979		struct md_rdev *rdev, *rrdev;
 980
 981		if (!test_and_clear_bit(R5_Wantwrite,
 982					&sh->dev[disk_index].flags))
 983			continue;
 984
 985		/* in case device is broken */
 986		rdev = rcu_dereference(conf->disks[disk_index].rdev);
 987		if (rdev)
 988			sync_page_io(rdev, stripe_sect, PAGE_SIZE,
 989				     sh->dev[disk_index].page, WRITE, false);
 990		rrdev = rcu_dereference(conf->disks[disk_index].replacement);
 991		if (rrdev)
 992			sync_page_io(rrdev, stripe_sect, PAGE_SIZE,
 993				     sh->dev[disk_index].page, WRITE, false);
 994	}
 995	raid5_release_stripe(sh);
 996	return 0;
 997
 998error:
 999	for (disk_index = 0; disk_index < sh->disks; disk_index++)
1000		sh->dev[disk_index].flags = 0;
1001	raid5_release_stripe(sh);
1002	return -EINVAL;
1003}
1004
1005static int r5l_recovery_flush_one_meta(struct r5l_log *log,
1006				       struct r5l_recovery_ctx *ctx)
1007{
1008	struct r5conf *conf = log->rdev->mddev->private;
1009	struct r5l_payload_data_parity *payload;
1010	struct r5l_meta_block *mb;
1011	int offset;
1012	sector_t log_offset;
1013	sector_t stripe_sector;
1014
1015	mb = page_address(ctx->meta_page);
1016	offset = sizeof(struct r5l_meta_block);
1017	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1018
1019	while (offset < le32_to_cpu(mb->meta_size)) {
1020		int dd;
1021
1022		payload = (void *)mb + offset;
1023		stripe_sector = raid5_compute_sector(conf,
1024						     le64_to_cpu(payload->location), 0, &dd, NULL);
1025		if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector,
1026						  &offset, &log_offset))
1027			return -EINVAL;
1028	}
1029	return 0;
1030}
1031
1032/* copy data/parity from log to raid disks */
1033static void r5l_recovery_flush_log(struct r5l_log *log,
1034				   struct r5l_recovery_ctx *ctx)
1035{
1036	while (1) {
1037		if (r5l_read_meta_block(log, ctx))
1038			return;
1039		if (r5l_recovery_flush_one_meta(log, ctx))
1040			return;
1041		ctx->seq++;
1042		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
1043	}
1044}
1045
1046static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1047					  u64 seq)
1048{
1049	struct page *page;
1050	struct r5l_meta_block *mb;
1051	u32 crc;
1052
1053	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1054	if (!page)
1055		return -ENOMEM;
1056	mb = page_address(page);
1057	mb->magic = cpu_to_le32(R5LOG_MAGIC);
1058	mb->version = R5LOG_VERSION;
1059	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1060	mb->seq = cpu_to_le64(seq);
1061	mb->position = cpu_to_le64(pos);
1062	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1063	mb->checksum = cpu_to_le32(crc);
1064
1065	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, WRITE_FUA, false)) {
1066		__free_page(page);
1067		return -EIO;
1068	}
1069	__free_page(page);
1070	return 0;
1071}
1072
1073static int r5l_recovery_log(struct r5l_log *log)
1074{
1075	struct r5l_recovery_ctx ctx;
1076
1077	ctx.pos = log->last_checkpoint;
1078	ctx.seq = log->last_cp_seq;
1079	ctx.meta_page = alloc_page(GFP_KERNEL);
1080	if (!ctx.meta_page)
1081		return -ENOMEM;
1082
1083	r5l_recovery_flush_log(log, &ctx);
1084	__free_page(ctx.meta_page);
1085
1086	/*
1087	 * we did a recovery. Now ctx.pos points to an invalid meta block. New
1088	 * log will start here. but we can't let superblock point to last valid
1089	 * meta block. The log might looks like:
1090	 * | meta 1| meta 2| meta 3|
1091	 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
1092	 * superblock points to meta 1, we write a new valid meta 2n.  if crash
1093	 * happens again, new recovery will start from meta 1. Since meta 2n is
1094	 * valid now, recovery will think meta 3 is valid, which is wrong.
1095	 * The solution is we create a new meta in meta2 with its seq == meta
1096	 * 1's seq + 10 and let superblock points to meta2. The same recovery will
1097	 * not think meta 3 is a valid meta, because its seq doesn't match
1098	 */
1099	if (ctx.seq > log->last_cp_seq + 1) {
1100		int ret;
1101
1102		ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10);
1103		if (ret)
1104			return ret;
1105		log->seq = ctx.seq + 11;
1106		log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
1107		r5l_write_super(log, ctx.pos);
1108	} else {
1109		log->log_start = ctx.pos;
1110		log->seq = ctx.seq;
1111	}
1112	return 0;
1113}
1114
1115static void r5l_write_super(struct r5l_log *log, sector_t cp)
1116{
1117	struct mddev *mddev = log->rdev->mddev;
1118
1119	log->rdev->journal_tail = cp;
1120	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1121}
1122
1123static int r5l_load_log(struct r5l_log *log)
1124{
1125	struct md_rdev *rdev = log->rdev;
1126	struct page *page;
1127	struct r5l_meta_block *mb;
1128	sector_t cp = log->rdev->journal_tail;
1129	u32 stored_crc, expected_crc;
1130	bool create_super = false;
1131	int ret;
1132
1133	/* Make sure it's valid */
1134	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
1135		cp = 0;
1136	page = alloc_page(GFP_KERNEL);
1137	if (!page)
1138		return -ENOMEM;
1139
1140	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, READ, false)) {
1141		ret = -EIO;
1142		goto ioerr;
1143	}
1144	mb = page_address(page);
1145
1146	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1147	    mb->version != R5LOG_VERSION) {
1148		create_super = true;
1149		goto create;
1150	}
1151	stored_crc = le32_to_cpu(mb->checksum);
1152	mb->checksum = 0;
1153	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1154	if (stored_crc != expected_crc) {
1155		create_super = true;
1156		goto create;
1157	}
1158	if (le64_to_cpu(mb->position) != cp) {
1159		create_super = true;
1160		goto create;
1161	}
1162create:
1163	if (create_super) {
1164		log->last_cp_seq = prandom_u32();
1165		cp = 0;
1166		/*
1167		 * Make sure super points to correct address. Log might have
1168		 * data very soon. If super hasn't correct log tail address,
1169		 * recovery can't find the log
1170		 */
1171		r5l_write_super(log, cp);
1172	} else
1173		log->last_cp_seq = le64_to_cpu(mb->seq);
1174
1175	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
1176	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
1177	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
1178		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
1179	log->last_checkpoint = cp;
1180
1181	__free_page(page);
1182
1183	return r5l_recovery_log(log);
1184ioerr:
1185	__free_page(page);
1186	return ret;
1187}
1188
1189int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
1190{
1191	struct r5l_log *log;
1192
1193	if (PAGE_SIZE != 4096)
1194		return -EINVAL;
1195	log = kzalloc(sizeof(*log), GFP_KERNEL);
1196	if (!log)
1197		return -ENOMEM;
1198	log->rdev = rdev;
1199
1200	log->need_cache_flush = (rdev->bdev->bd_disk->queue->flush_flags != 0);
1201
1202	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
1203				       sizeof(rdev->mddev->uuid));
1204
1205	mutex_init(&log->io_mutex);
1206
1207	spin_lock_init(&log->io_list_lock);
1208	INIT_LIST_HEAD(&log->running_ios);
1209	INIT_LIST_HEAD(&log->io_end_ios);
1210	INIT_LIST_HEAD(&log->flushing_ios);
1211	INIT_LIST_HEAD(&log->finished_ios);
1212	bio_init(&log->flush_bio);
1213
1214	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
1215	if (!log->io_kc)
1216		goto io_kc;
1217
1218	log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
1219	if (!log->io_pool)
1220		goto io_pool;
1221
1222	log->bs = bioset_create(R5L_POOL_SIZE, 0);
1223	if (!log->bs)
1224		goto io_bs;
1225
1226	log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
1227	if (!log->meta_pool)
1228		goto out_mempool;
1229
1230	log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
1231						 log->rdev->mddev, "reclaim");
1232	if (!log->reclaim_thread)
1233		goto reclaim_thread;
1234	init_waitqueue_head(&log->iounit_wait);
1235
1236	INIT_LIST_HEAD(&log->no_mem_stripes);
1237
1238	INIT_LIST_HEAD(&log->no_space_stripes);
1239	spin_lock_init(&log->no_space_stripes_lock);
1240
1241	if (r5l_load_log(log))
1242		goto error;
1243
1244	rcu_assign_pointer(conf->log, log);
1245	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1246	return 0;
1247
1248error:
1249	md_unregister_thread(&log->reclaim_thread);
1250reclaim_thread:
1251	mempool_destroy(log->meta_pool);
1252out_mempool:
1253	bioset_free(log->bs);
1254io_bs:
1255	mempool_destroy(log->io_pool);
1256io_pool:
1257	kmem_cache_destroy(log->io_kc);
1258io_kc:
1259	kfree(log);
1260	return -EINVAL;
1261}
1262
1263void r5l_exit_log(struct r5l_log *log)
1264{
1265	md_unregister_thread(&log->reclaim_thread);
1266	mempool_destroy(log->meta_pool);
1267	bioset_free(log->bs);
1268	mempool_destroy(log->io_pool);
1269	kmem_cache_destroy(log->io_kc);
1270	kfree(log);
1271}