Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2  adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
   3  monitoring
   4  Based on lm75.c and lm85.c
   5  Supports adm1030 / adm1031
   6  Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
   7  Reworked by Jean Delvare <khali@linux-fr.org>
   8
   9  This program is free software; you can redistribute it and/or modify
  10  it under the terms of the GNU General Public License as published by
  11  the Free Software Foundation; either version 2 of the License, or
  12  (at your option) any later version.
  13
  14  This program is distributed in the hope that it will be useful,
  15  but WITHOUT ANY WARRANTY; without even the implied warranty of
  16  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17  GNU General Public License for more details.
  18
  19  You should have received a copy of the GNU General Public License
  20  along with this program; if not, write to the Free Software
  21  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  22*/
  23
  24#include <linux/module.h>
  25#include <linux/init.h>
  26#include <linux/slab.h>
  27#include <linux/jiffies.h>
  28#include <linux/i2c.h>
  29#include <linux/hwmon.h>
  30#include <linux/hwmon-sysfs.h>
  31#include <linux/err.h>
  32#include <linux/mutex.h>
  33
  34/* Following macros takes channel parameter starting from 0 to 2 */
  35#define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
  36#define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
  37#define ADM1031_REG_PWM			(0x22)
  38#define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
  39#define ADM1031_REG_FAN_FILTER		(0x23)
  40
  41#define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
  42#define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
  43#define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
  44#define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
  45
  46#define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
  47#define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
  48
  49#define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
  50
  51#define ADM1031_REG_CONF1		0x00
  52#define ADM1031_REG_CONF2		0x01
  53#define ADM1031_REG_EXT_TEMP		0x06
  54
  55#define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
  56#define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
  57#define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
  58
  59#define ADM1031_CONF2_PWM1_ENABLE	0x01
  60#define ADM1031_CONF2_PWM2_ENABLE	0x02
  61#define ADM1031_CONF2_TACH1_ENABLE	0x04
  62#define ADM1031_CONF2_TACH2_ENABLE	0x08
  63#define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
  64
  65#define ADM1031_UPDATE_RATE_MASK	0x1c
  66#define ADM1031_UPDATE_RATE_SHIFT	2
  67
  68/* Addresses to scan */
  69static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  70
  71enum chips { adm1030, adm1031 };
  72
  73typedef u8 auto_chan_table_t[8][2];
  74
  75/* Each client has this additional data */
  76struct adm1031_data {
  77	struct device *hwmon_dev;
 
  78	struct mutex update_lock;
  79	int chip_type;
  80	char valid;		/* !=0 if following fields are valid */
  81	unsigned long last_updated;	/* In jiffies */
  82	unsigned int update_interval;	/* In milliseconds */
  83	/* The chan_select_table contains the possible configurations for
 
  84	 * auto fan control.
  85	 */
  86	const auto_chan_table_t *chan_select_table;
  87	u16 alarm;
  88	u8 conf1;
  89	u8 conf2;
  90	u8 fan[2];
  91	u8 fan_div[2];
  92	u8 fan_min[2];
  93	u8 pwm[2];
  94	u8 old_pwm[2];
  95	s8 temp[3];
  96	u8 ext_temp[3];
  97	u8 auto_temp[3];
  98	u8 auto_temp_min[3];
  99	u8 auto_temp_off[3];
 100	u8 auto_temp_max[3];
 101	s8 temp_offset[3];
 102	s8 temp_min[3];
 103	s8 temp_max[3];
 104	s8 temp_crit[3];
 105};
 106
 107static int adm1031_probe(struct i2c_client *client,
 108			 const struct i2c_device_id *id);
 109static int adm1031_detect(struct i2c_client *client,
 110			  struct i2c_board_info *info);
 111static void adm1031_init_client(struct i2c_client *client);
 112static int adm1031_remove(struct i2c_client *client);
 113static struct adm1031_data *adm1031_update_device(struct device *dev);
 114
 115static const struct i2c_device_id adm1031_id[] = {
 116	{ "adm1030", adm1030 },
 117	{ "adm1031", adm1031 },
 118	{ }
 119};
 120MODULE_DEVICE_TABLE(i2c, adm1031_id);
 121
 122/* This is the driver that will be inserted */
 123static struct i2c_driver adm1031_driver = {
 124	.class		= I2C_CLASS_HWMON,
 125	.driver = {
 126		.name = "adm1031",
 127	},
 128	.probe		= adm1031_probe,
 129	.remove		= adm1031_remove,
 130	.id_table	= adm1031_id,
 131	.detect		= adm1031_detect,
 132	.address_list	= normal_i2c,
 133};
 134
 135static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
 136{
 137	return i2c_smbus_read_byte_data(client, reg);
 138}
 139
 140static inline int
 141adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
 142{
 143	return i2c_smbus_write_byte_data(client, reg, value);
 144}
 145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 146
 147#define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
 148					((val + 500) / 1000)))
 149
 150#define TEMP_FROM_REG(val)		((val) * 1000)
 151
 152#define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
 153
 154#define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
 155#define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
 156						      (val) | 0x70 : (val))
 157
 158#define FAN_FROM_REG(reg, div)		((reg) ? (11250 * 60) / ((reg) * (div)) : 0)
 
 159
 160static int FAN_TO_REG(int reg, int div)
 161{
 162	int tmp;
 163	tmp = FAN_FROM_REG(SENSORS_LIMIT(reg, 0, 65535), div);
 164	return tmp > 255 ? 255 : tmp;
 165}
 166
 167#define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
 168
 169#define PWM_TO_REG(val)			(SENSORS_LIMIT((val), 0, 255) >> 4)
 170#define PWM_FROM_REG(val)		((val) << 4)
 171
 172#define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
 173#define FAN_CHAN_TO_REG(val, reg)	\
 174	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
 175
 176#define AUTO_TEMP_MIN_TO_REG(val, reg)	\
 177	((((val)/500) & 0xf8)|((reg) & 0x7))
 178#define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1<< ((reg)&0x7)))
 179#define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
 180
 181#define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
 182
 183#define AUTO_TEMP_OFF_FROM_REG(reg)		\
 184	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
 185
 186#define AUTO_TEMP_MAX_FROM_REG(reg)		\
 187	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
 188	AUTO_TEMP_MIN_FROM_REG(reg))
 189
 190static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
 191{
 192	int ret;
 193	int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
 194
 195	range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
 196	ret = ((reg & 0xf8) |
 197	       (range < 10000 ? 0 :
 198		range < 20000 ? 1 :
 199		range < 40000 ? 2 : range < 80000 ? 3 : 4));
 200	return ret;
 201}
 202
 203/* FAN auto control */
 204#define GET_FAN_AUTO_BITFIELD(data, idx)	\
 205	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx%2]
 206
 207/* The tables below contains the possible values for the auto fan
 
 208 * control bitfields. the index in the table is the register value.
 209 * MSb is the auto fan control enable bit, so the four first entries
 210 * in the table disables auto fan control when both bitfields are zero.
 211 */
 212static const auto_chan_table_t auto_channel_select_table_adm1031 = {
 213	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
 214	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
 215	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
 216	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
 217	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
 218};
 219
 220static const auto_chan_table_t auto_channel_select_table_adm1030 = {
 221	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
 222	{ 2 /* 0b10 */		, 0 },
 223	{ 0xff /* invalid */	, 0 },
 224	{ 0xff /* invalid */	, 0 },
 225	{ 3 /* 0b11 */		, 0 },
 226};
 227
 228/* That function checks if a bitfield is valid and returns the other bitfield
 
 229 * nearest match if no exact match where found.
 230 */
 231static int
 232get_fan_auto_nearest(struct adm1031_data *data,
 233		     int chan, u8 val, u8 reg, u8 * new_reg)
 234{
 235	int i;
 236	int first_match = -1, exact_match = -1;
 237	u8 other_reg_val =
 238	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
 239
 240	if (val == 0) {
 241		*new_reg = 0;
 242		return 0;
 243	}
 244
 245	for (i = 0; i < 8; i++) {
 246		if ((val == (*data->chan_select_table)[i][chan]) &&
 247		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
 248		     other_reg_val)) {
 249			/* We found an exact match */
 250			exact_match = i;
 251			break;
 252		} else if (val == (*data->chan_select_table)[i][chan] &&
 253			   first_match == -1) {
 254			/* Save the first match in case of an exact match has
 
 255			 * not been found
 256			 */
 257			first_match = i;
 258		}
 259	}
 260
 261	if (exact_match >= 0) {
 262		*new_reg = exact_match;
 263	} else if (first_match >= 0) {
 264		*new_reg = first_match;
 265	} else {
 266		return -EINVAL;
 267	}
 268	return 0;
 269}
 270
 271static ssize_t show_fan_auto_channel(struct device *dev,
 272				     struct device_attribute *attr, char *buf)
 273{
 274	int nr = to_sensor_dev_attr(attr)->index;
 275	struct adm1031_data *data = adm1031_update_device(dev);
 276	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
 277}
 278
 279static ssize_t
 280set_fan_auto_channel(struct device *dev, struct device_attribute *attr,
 281		     const char *buf, size_t count)
 282{
 283	struct i2c_client *client = to_i2c_client(dev);
 284	struct adm1031_data *data = i2c_get_clientdata(client);
 285	int nr = to_sensor_dev_attr(attr)->index;
 286	int val = simple_strtol(buf, NULL, 10);
 287	u8 reg;
 288	int ret;
 289	u8 old_fan_mode;
 290
 
 
 
 
 291	old_fan_mode = data->conf1;
 292
 293	mutex_lock(&data->update_lock);
 294
 295	if ((ret = get_fan_auto_nearest(data, nr, val, data->conf1, &reg))) {
 
 296		mutex_unlock(&data->update_lock);
 297		return ret;
 298	}
 
 299	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
 300	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
 301	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
 302		if (data->conf1 & ADM1031_CONF1_AUTO_MODE){
 303			/* Switch to Auto Fan Mode
 
 304			 * Save PWM registers
 305			 * Set PWM registers to 33% Both */
 
 306			data->old_pwm[0] = data->pwm[0];
 307			data->old_pwm[1] = data->pwm[1];
 308			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
 309		} else {
 310			/* Switch to Manual Mode */
 311			data->pwm[0] = data->old_pwm[0];
 312			data->pwm[1] = data->old_pwm[1];
 313			/* Restore PWM registers */
 314			adm1031_write_value(client, ADM1031_REG_PWM,
 315					    data->pwm[0] | (data->pwm[1] << 4));
 316		}
 317	}
 318	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
 319	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
 320	mutex_unlock(&data->update_lock);
 321	return count;
 322}
 323
 324static SENSOR_DEVICE_ATTR(auto_fan1_channel, S_IRUGO | S_IWUSR,
 325		show_fan_auto_channel, set_fan_auto_channel, 0);
 326static SENSOR_DEVICE_ATTR(auto_fan2_channel, S_IRUGO | S_IWUSR,
 327		show_fan_auto_channel, set_fan_auto_channel, 1);
 328
 329/* Auto Temps */
 330static ssize_t show_auto_temp_off(struct device *dev,
 331				  struct device_attribute *attr, char *buf)
 332{
 333	int nr = to_sensor_dev_attr(attr)->index;
 334	struct adm1031_data *data = adm1031_update_device(dev);
 335	return sprintf(buf, "%d\n",
 336		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
 337}
 338static ssize_t show_auto_temp_min(struct device *dev,
 339				  struct device_attribute *attr, char *buf)
 340{
 341	int nr = to_sensor_dev_attr(attr)->index;
 342	struct adm1031_data *data = adm1031_update_device(dev);
 343	return sprintf(buf, "%d\n",
 344		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
 345}
 346static ssize_t
 347set_auto_temp_min(struct device *dev, struct device_attribute *attr,
 348		  const char *buf, size_t count)
 349{
 350	struct i2c_client *client = to_i2c_client(dev);
 351	struct adm1031_data *data = i2c_get_clientdata(client);
 352	int nr = to_sensor_dev_attr(attr)->index;
 353	int val = simple_strtol(buf, NULL, 10);
 
 354
 
 
 
 
 
 355	mutex_lock(&data->update_lock);
 356	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
 357	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
 358			    data->auto_temp[nr]);
 359	mutex_unlock(&data->update_lock);
 360	return count;
 361}
 362static ssize_t show_auto_temp_max(struct device *dev,
 363				  struct device_attribute *attr, char *buf)
 364{
 365	int nr = to_sensor_dev_attr(attr)->index;
 366	struct adm1031_data *data = adm1031_update_device(dev);
 367	return sprintf(buf, "%d\n",
 368		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
 369}
 370static ssize_t
 371set_auto_temp_max(struct device *dev, struct device_attribute *attr,
 372		  const char *buf, size_t count)
 373{
 374	struct i2c_client *client = to_i2c_client(dev);
 375	struct adm1031_data *data = i2c_get_clientdata(client);
 376	int nr = to_sensor_dev_attr(attr)->index;
 377	int val = simple_strtol(buf, NULL, 10);
 
 378
 
 
 
 
 
 379	mutex_lock(&data->update_lock);
 380	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr], data->pwm[nr]);
 
 381	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
 382			    data->temp_max[nr]);
 383	mutex_unlock(&data->update_lock);
 384	return count;
 385}
 386
 387#define auto_temp_reg(offset)						\
 388static SENSOR_DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO,		\
 389		show_auto_temp_off, NULL, offset - 1);			\
 390static SENSOR_DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR,	\
 391		show_auto_temp_min, set_auto_temp_min, offset - 1);	\
 392static SENSOR_DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR,	\
 393		show_auto_temp_max, set_auto_temp_max, offset - 1)
 394
 395auto_temp_reg(1);
 396auto_temp_reg(2);
 397auto_temp_reg(3);
 398
 399/* pwm */
 400static ssize_t show_pwm(struct device *dev,
 401			struct device_attribute *attr, char *buf)
 402{
 403	int nr = to_sensor_dev_attr(attr)->index;
 404	struct adm1031_data *data = adm1031_update_device(dev);
 405	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
 406}
 407static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
 408		       const char *buf, size_t count)
 409{
 410	struct i2c_client *client = to_i2c_client(dev);
 411	struct adm1031_data *data = i2c_get_clientdata(client);
 412	int nr = to_sensor_dev_attr(attr)->index;
 413	int val = simple_strtol(buf, NULL, 10);
 414	int reg;
 
 
 
 
 415
 416	mutex_lock(&data->update_lock);
 417	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
 418	    (((val>>4) & 0xf) != 5)) {
 419		/* In automatic mode, the only PWM accepted is 33% */
 420		mutex_unlock(&data->update_lock);
 421		return -EINVAL;
 422	}
 423	data->pwm[nr] = PWM_TO_REG(val);
 424	reg = adm1031_read_value(client, ADM1031_REG_PWM);
 425	adm1031_write_value(client, ADM1031_REG_PWM,
 426			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
 427			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
 428	mutex_unlock(&data->update_lock);
 429	return count;
 430}
 431
 432static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0);
 433static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1);
 434static SENSOR_DEVICE_ATTR(auto_fan1_min_pwm, S_IRUGO | S_IWUSR,
 435		show_pwm, set_pwm, 0);
 436static SENSOR_DEVICE_ATTR(auto_fan2_min_pwm, S_IRUGO | S_IWUSR,
 437		show_pwm, set_pwm, 1);
 438
 439/* Fans */
 440
 441/*
 442 * That function checks the cases where the fan reading is not
 443 * relevant.  It is used to provide 0 as fan reading when the fan is
 444 * not supposed to run
 445 */
 446static int trust_fan_readings(struct adm1031_data *data, int chan)
 447{
 448	int res = 0;
 449
 450	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
 451		switch (data->conf1 & 0x60) {
 452		case 0x00:	/* remote temp1 controls fan1 remote temp2 controls fan2 */
 
 
 
 
 453			res = data->temp[chan+1] >=
 454			      AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
 455			break;
 456		case 0x20:	/* remote temp1 controls both fans */
 457			res =
 458			    data->temp[1] >=
 459			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
 460			break;
 461		case 0x40:	/* remote temp2 controls both fans */
 462			res =
 463			    data->temp[2] >=
 464			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
 465			break;
 466		case 0x60:	/* max controls both fans */
 467			res =
 468			    data->temp[0] >=
 469			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
 470			    || data->temp[1] >=
 471			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
 472			    || (data->chip_type == adm1031
 473				&& data->temp[2] >=
 474				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
 475			break;
 476		}
 477	} else {
 478		res = data->pwm[chan] > 0;
 479	}
 480	return res;
 481}
 482
 483
 484static ssize_t show_fan(struct device *dev,
 485			struct device_attribute *attr, char *buf)
 486{
 487	int nr = to_sensor_dev_attr(attr)->index;
 488	struct adm1031_data *data = adm1031_update_device(dev);
 489	int value;
 490
 491	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
 492				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
 493	return sprintf(buf, "%d\n", value);
 494}
 495
 496static ssize_t show_fan_div(struct device *dev,
 497			    struct device_attribute *attr, char *buf)
 498{
 499	int nr = to_sensor_dev_attr(attr)->index;
 500	struct adm1031_data *data = adm1031_update_device(dev);
 501	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
 502}
 503static ssize_t show_fan_min(struct device *dev,
 504			    struct device_attribute *attr, char *buf)
 505{
 506	int nr = to_sensor_dev_attr(attr)->index;
 507	struct adm1031_data *data = adm1031_update_device(dev);
 508	return sprintf(buf, "%d\n",
 509		       FAN_FROM_REG(data->fan_min[nr],
 510				    FAN_DIV_FROM_REG(data->fan_div[nr])));
 511}
 512static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
 513			   const char *buf, size_t count)
 514{
 515	struct i2c_client *client = to_i2c_client(dev);
 516	struct adm1031_data *data = i2c_get_clientdata(client);
 517	int nr = to_sensor_dev_attr(attr)->index;
 518	int val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 519
 520	mutex_lock(&data->update_lock);
 521	if (val) {
 522		data->fan_min[nr] =
 523			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
 524	} else {
 525		data->fan_min[nr] = 0xff;
 526	}
 527	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
 528	mutex_unlock(&data->update_lock);
 529	return count;
 530}
 531static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
 532			   const char *buf, size_t count)
 533{
 534	struct i2c_client *client = to_i2c_client(dev);
 535	struct adm1031_data *data = i2c_get_clientdata(client);
 536	int nr = to_sensor_dev_attr(attr)->index;
 537	int val = simple_strtol(buf, NULL, 10);
 538	u8 tmp;
 539	int old_div;
 540	int new_min;
 
 
 
 
 
 541
 542	tmp = val == 8 ? 0xc0 :
 543	      val == 4 ? 0x80 :
 544	      val == 2 ? 0x40 :
 545	      val == 1 ? 0x00 :
 546	      0xff;
 547	if (tmp == 0xff)
 548		return -EINVAL;
 549
 550	mutex_lock(&data->update_lock);
 551	/* Get fresh readings */
 552	data->fan_div[nr] = adm1031_read_value(client,
 553					       ADM1031_REG_FAN_DIV(nr));
 554	data->fan_min[nr] = adm1031_read_value(client,
 555					       ADM1031_REG_FAN_MIN(nr));
 556
 557	/* Write the new clock divider and fan min */
 558	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
 559	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
 560	new_min = data->fan_min[nr] * old_div / val;
 561	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
 562
 563	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
 564			    data->fan_div[nr]);
 565	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
 566			    data->fan_min[nr]);
 567
 568	/* Invalidate the cache: fan speed is no longer valid */
 569	data->valid = 0;
 570	mutex_unlock(&data->update_lock);
 571	return count;
 572}
 573
 574#define fan_offset(offset)						\
 575static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
 576		show_fan, NULL, offset - 1);				\
 577static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
 578		show_fan_min, set_fan_min, offset - 1);			\
 579static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR,		\
 580		show_fan_div, set_fan_div, offset - 1)
 581
 582fan_offset(1);
 583fan_offset(2);
 584
 585
 586/* Temps */
 587static ssize_t show_temp(struct device *dev,
 588			 struct device_attribute *attr, char *buf)
 589{
 590	int nr = to_sensor_dev_attr(attr)->index;
 591	struct adm1031_data *data = adm1031_update_device(dev);
 592	int ext;
 593	ext = nr == 0 ?
 594	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
 595	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
 596	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
 597}
 598static ssize_t show_temp_offset(struct device *dev,
 599				struct device_attribute *attr, char *buf)
 600{
 601	int nr = to_sensor_dev_attr(attr)->index;
 602	struct adm1031_data *data = adm1031_update_device(dev);
 603	return sprintf(buf, "%d\n",
 604		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
 605}
 606static ssize_t show_temp_min(struct device *dev,
 607			     struct device_attribute *attr, char *buf)
 608{
 609	int nr = to_sensor_dev_attr(attr)->index;
 610	struct adm1031_data *data = adm1031_update_device(dev);
 611	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
 612}
 613static ssize_t show_temp_max(struct device *dev,
 614			     struct device_attribute *attr, char *buf)
 615{
 616	int nr = to_sensor_dev_attr(attr)->index;
 617	struct adm1031_data *data = adm1031_update_device(dev);
 618	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
 619}
 620static ssize_t show_temp_crit(struct device *dev,
 621			      struct device_attribute *attr, char *buf)
 622{
 623	int nr = to_sensor_dev_attr(attr)->index;
 624	struct adm1031_data *data = adm1031_update_device(dev);
 625	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
 626}
 627static ssize_t set_temp_offset(struct device *dev,
 628			       struct device_attribute *attr, const char *buf,
 629			       size_t count)
 630{
 631	struct i2c_client *client = to_i2c_client(dev);
 632	struct adm1031_data *data = i2c_get_clientdata(client);
 633	int nr = to_sensor_dev_attr(attr)->index;
 634	int val;
 
 
 
 
 
 635
 636	val = simple_strtol(buf, NULL, 10);
 637	val = SENSORS_LIMIT(val, -15000, 15000);
 638	mutex_lock(&data->update_lock);
 639	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
 640	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
 641			    data->temp_offset[nr]);
 642	mutex_unlock(&data->update_lock);
 643	return count;
 644}
 645static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
 646			    const char *buf, size_t count)
 647{
 648	struct i2c_client *client = to_i2c_client(dev);
 649	struct adm1031_data *data = i2c_get_clientdata(client);
 650	int nr = to_sensor_dev_attr(attr)->index;
 651	int val;
 
 652
 653	val = simple_strtol(buf, NULL, 10);
 654	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
 
 
 
 655	mutex_lock(&data->update_lock);
 656	data->temp_min[nr] = TEMP_TO_REG(val);
 657	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
 658			    data->temp_min[nr]);
 659	mutex_unlock(&data->update_lock);
 660	return count;
 661}
 662static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
 663			    const char *buf, size_t count)
 664{
 665	struct i2c_client *client = to_i2c_client(dev);
 666	struct adm1031_data *data = i2c_get_clientdata(client);
 667	int nr = to_sensor_dev_attr(attr)->index;
 668	int val;
 
 
 
 
 
 669
 670	val = simple_strtol(buf, NULL, 10);
 671	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
 672	mutex_lock(&data->update_lock);
 673	data->temp_max[nr] = TEMP_TO_REG(val);
 674	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
 675			    data->temp_max[nr]);
 676	mutex_unlock(&data->update_lock);
 677	return count;
 678}
 679static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
 680			     const char *buf, size_t count)
 681{
 682	struct i2c_client *client = to_i2c_client(dev);
 683	struct adm1031_data *data = i2c_get_clientdata(client);
 684	int nr = to_sensor_dev_attr(attr)->index;
 685	int val;
 
 
 
 
 
 686
 687	val = simple_strtol(buf, NULL, 10);
 688	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
 689	mutex_lock(&data->update_lock);
 690	data->temp_crit[nr] = TEMP_TO_REG(val);
 691	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
 692			    data->temp_crit[nr]);
 693	mutex_unlock(&data->update_lock);
 694	return count;
 695}
 696
 697#define temp_reg(offset)						\
 698static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
 699		show_temp, NULL, offset - 1);				\
 700static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR,	\
 701		show_temp_offset, set_temp_offset, offset - 1);		\
 702static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
 703		show_temp_min, set_temp_min, offset - 1);		\
 704static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
 705		show_temp_max, set_temp_max, offset - 1);		\
 706static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR,	\
 707		show_temp_crit, set_temp_crit, offset - 1)
 708
 709temp_reg(1);
 710temp_reg(2);
 711temp_reg(3);
 712
 713/* Alarms */
 714static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
 
 715{
 716	struct adm1031_data *data = adm1031_update_device(dev);
 717	return sprintf(buf, "%d\n", data->alarm);
 718}
 719
 720static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
 721
 722static ssize_t show_alarm(struct device *dev,
 723			  struct device_attribute *attr, char *buf)
 724{
 725	int bitnr = to_sensor_dev_attr(attr)->index;
 726	struct adm1031_data *data = adm1031_update_device(dev);
 727	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
 728}
 729
 730static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 0);
 731static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, show_alarm, NULL, 1);
 732static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 2);
 733static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
 734static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 4);
 735static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 5);
 736static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
 737static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 7);
 738static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 8);
 739static SENSOR_DEVICE_ATTR(fan2_fault, S_IRUGO, show_alarm, NULL, 9);
 740static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 10);
 741static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
 742static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 12);
 743static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 13);
 744static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 14);
 745
 746/* Update Interval */
 747static const unsigned int update_intervals[] = {
 748	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
 749};
 750
 751static ssize_t show_update_interval(struct device *dev,
 752				    struct device_attribute *attr, char *buf)
 753{
 754	struct i2c_client *client = to_i2c_client(dev);
 755	struct adm1031_data *data = i2c_get_clientdata(client);
 756
 757	return sprintf(buf, "%u\n", data->update_interval);
 758}
 759
 760static ssize_t set_update_interval(struct device *dev,
 761				   struct device_attribute *attr,
 762				   const char *buf, size_t count)
 763{
 764	struct i2c_client *client = to_i2c_client(dev);
 765	struct adm1031_data *data = i2c_get_clientdata(client);
 766	unsigned long val;
 767	int i, err;
 768	u8 reg;
 769
 770	err = strict_strtoul(buf, 10, &val);
 771	if (err)
 772		return err;
 773
 774	/*
 775	 * Find the nearest update interval from the table.
 776	 * Use it to determine the matching update rate.
 777	 */
 778	for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
 779		if (val >= update_intervals[i])
 780			break;
 781	}
 782	/* if not found, we point to the last entry (lowest update interval) */
 783
 784	/* set the new update rate while preserving other settings */
 785	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
 786	reg &= ~ADM1031_UPDATE_RATE_MASK;
 787	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
 788	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
 789
 790	mutex_lock(&data->update_lock);
 791	data->update_interval = update_intervals[i];
 792	mutex_unlock(&data->update_lock);
 793
 794	return count;
 795}
 796
 797static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval,
 798		   set_update_interval);
 799
 800static struct attribute *adm1031_attributes[] = {
 801	&sensor_dev_attr_fan1_input.dev_attr.attr,
 802	&sensor_dev_attr_fan1_div.dev_attr.attr,
 803	&sensor_dev_attr_fan1_min.dev_attr.attr,
 804	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
 805	&sensor_dev_attr_fan1_fault.dev_attr.attr,
 806	&sensor_dev_attr_pwm1.dev_attr.attr,
 807	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
 808	&sensor_dev_attr_temp1_input.dev_attr.attr,
 809	&sensor_dev_attr_temp1_offset.dev_attr.attr,
 810	&sensor_dev_attr_temp1_min.dev_attr.attr,
 811	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
 812	&sensor_dev_attr_temp1_max.dev_attr.attr,
 813	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
 814	&sensor_dev_attr_temp1_crit.dev_attr.attr,
 815	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
 816	&sensor_dev_attr_temp2_input.dev_attr.attr,
 817	&sensor_dev_attr_temp2_offset.dev_attr.attr,
 818	&sensor_dev_attr_temp2_min.dev_attr.attr,
 819	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
 820	&sensor_dev_attr_temp2_max.dev_attr.attr,
 821	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
 822	&sensor_dev_attr_temp2_crit.dev_attr.attr,
 823	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
 824	&sensor_dev_attr_temp2_fault.dev_attr.attr,
 825
 826	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
 827	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
 828	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
 829
 830	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
 831	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
 832	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
 833
 834	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
 835
 836	&dev_attr_update_interval.attr,
 837	&dev_attr_alarms.attr,
 838
 839	NULL
 840};
 841
 842static const struct attribute_group adm1031_group = {
 843	.attrs = adm1031_attributes,
 844};
 845
 846static struct attribute *adm1031_attributes_opt[] = {
 847	&sensor_dev_attr_fan2_input.dev_attr.attr,
 848	&sensor_dev_attr_fan2_div.dev_attr.attr,
 849	&sensor_dev_attr_fan2_min.dev_attr.attr,
 850	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
 851	&sensor_dev_attr_fan2_fault.dev_attr.attr,
 852	&sensor_dev_attr_pwm2.dev_attr.attr,
 853	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
 854	&sensor_dev_attr_temp3_input.dev_attr.attr,
 855	&sensor_dev_attr_temp3_offset.dev_attr.attr,
 856	&sensor_dev_attr_temp3_min.dev_attr.attr,
 857	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
 858	&sensor_dev_attr_temp3_max.dev_attr.attr,
 859	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
 860	&sensor_dev_attr_temp3_crit.dev_attr.attr,
 861	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
 862	&sensor_dev_attr_temp3_fault.dev_attr.attr,
 863	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
 864	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
 865	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
 866	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
 867	NULL
 868};
 869
 870static const struct attribute_group adm1031_group_opt = {
 871	.attrs = adm1031_attributes_opt,
 872};
 873
 874/* Return 0 if detection is successful, -ENODEV otherwise */
 875static int adm1031_detect(struct i2c_client *client,
 876			  struct i2c_board_info *info)
 877{
 878	struct i2c_adapter *adapter = client->adapter;
 879	const char *name;
 880	int id, co;
 881
 882	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
 883		return -ENODEV;
 884
 885	id = i2c_smbus_read_byte_data(client, 0x3d);
 886	co = i2c_smbus_read_byte_data(client, 0x3e);
 887
 888	if (!((id == 0x31 || id == 0x30) && co == 0x41))
 889		return -ENODEV;
 890	name = (id == 0x30) ? "adm1030" : "adm1031";
 891
 892	strlcpy(info->type, name, I2C_NAME_SIZE);
 893
 894	return 0;
 895}
 896
 897static int adm1031_probe(struct i2c_client *client,
 898			 const struct i2c_device_id *id)
 899{
 900	struct adm1031_data *data;
 901	int err;
 902
 903	data = kzalloc(sizeof(struct adm1031_data), GFP_KERNEL);
 904	if (!data) {
 905		err = -ENOMEM;
 906		goto exit;
 907	}
 908
 909	i2c_set_clientdata(client, data);
 910	data->chip_type = id->driver_data;
 911	mutex_init(&data->update_lock);
 912
 913	if (data->chip_type == adm1030)
 914		data->chan_select_table = &auto_channel_select_table_adm1030;
 915	else
 916		data->chan_select_table = &auto_channel_select_table_adm1031;
 917
 918	/* Initialize the ADM1031 chip */
 919	adm1031_init_client(client);
 920
 921	/* Register sysfs hooks */
 922	if ((err = sysfs_create_group(&client->dev.kobj, &adm1031_group)))
 923		goto exit_free;
 924
 925	if (data->chip_type == adm1031) {
 926		if ((err = sysfs_create_group(&client->dev.kobj,
 927						&adm1031_group_opt)))
 928			goto exit_remove;
 929	}
 930
 931	data->hwmon_dev = hwmon_device_register(&client->dev);
 932	if (IS_ERR(data->hwmon_dev)) {
 933		err = PTR_ERR(data->hwmon_dev);
 934		goto exit_remove;
 935	}
 936
 937	return 0;
 938
 939exit_remove:
 940	sysfs_remove_group(&client->dev.kobj, &adm1031_group);
 941	sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
 942exit_free:
 943	kfree(data);
 944exit:
 945	return err;
 946}
 947
 948static int adm1031_remove(struct i2c_client *client)
 949{
 950	struct adm1031_data *data = i2c_get_clientdata(client);
 951
 952	hwmon_device_unregister(data->hwmon_dev);
 953	sysfs_remove_group(&client->dev.kobj, &adm1031_group);
 954	sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
 955	kfree(data);
 956	return 0;
 957}
 958
 959static void adm1031_init_client(struct i2c_client *client)
 960{
 961	unsigned int read_val;
 962	unsigned int mask;
 963	int i;
 964	struct adm1031_data *data = i2c_get_clientdata(client);
 965
 966	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
 967	if (data->chip_type == adm1031) {
 968		mask |= (ADM1031_CONF2_PWM2_ENABLE |
 969			ADM1031_CONF2_TACH2_ENABLE);
 970	}
 971	/* Initialize the ADM1031 chip (enables fan speed reading ) */
 972	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
 973	if ((read_val | mask) != read_val) {
 974	    adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
 975	}
 976
 977	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
 978	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
 979	    adm1031_write_value(client, ADM1031_REG_CONF1, read_val |
 980				ADM1031_CONF1_MONITOR_ENABLE);
 981	}
 982
 983	/* Read the chip's update rate */
 984	mask = ADM1031_UPDATE_RATE_MASK;
 985	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
 986	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
 987	/* Save it as update interval */
 988	data->update_interval = update_intervals[i];
 989}
 990
 991static struct adm1031_data *adm1031_update_device(struct device *dev)
 
 992{
 993	struct i2c_client *client = to_i2c_client(dev);
 994	struct adm1031_data *data = i2c_get_clientdata(client);
 995	unsigned long next_update;
 996	int chan;
 997
 998	mutex_lock(&data->update_lock);
 999
1000	next_update = data->last_updated
1001	  + msecs_to_jiffies(data->update_interval);
1002	if (time_after(jiffies, next_update) || !data->valid) {
1003
1004		dev_dbg(&client->dev, "Starting adm1031 update\n");
1005		for (chan = 0;
1006		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
1007			u8 oldh, newh;
1008
1009			oldh =
1010			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
1011			data->ext_temp[chan] =
1012			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
1013			newh =
1014			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
1015			if (newh != oldh) {
1016				data->ext_temp[chan] =
1017				    adm1031_read_value(client,
1018						       ADM1031_REG_EXT_TEMP);
1019#ifdef DEBUG
1020				oldh =
1021				    adm1031_read_value(client,
1022						       ADM1031_REG_TEMP(chan));
1023
1024				/* oldh is actually newer */
1025				if (newh != oldh)
1026					dev_warn(&client->dev,
1027						 "Remote temperature may be "
1028						 "wrong.\n");
1029#endif
1030			}
1031			data->temp[chan] = newh;
1032
1033			data->temp_offset[chan] =
1034			    adm1031_read_value(client,
1035					       ADM1031_REG_TEMP_OFFSET(chan));
1036			data->temp_min[chan] =
1037			    adm1031_read_value(client,
1038					       ADM1031_REG_TEMP_MIN(chan));
1039			data->temp_max[chan] =
1040			    adm1031_read_value(client,
1041					       ADM1031_REG_TEMP_MAX(chan));
1042			data->temp_crit[chan] =
1043			    adm1031_read_value(client,
1044					       ADM1031_REG_TEMP_CRIT(chan));
1045			data->auto_temp[chan] =
1046			    adm1031_read_value(client,
1047					       ADM1031_REG_AUTO_TEMP(chan));
1048
1049		}
1050
1051		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
1052		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
 
1053
1054		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
1055			     | (adm1031_read_value(client, ADM1031_REG_STATUS(1))
1056				<< 8);
1057		if (data->chip_type == adm1030) {
1058			data->alarm &= 0xc0ff;
1059		}
1060
1061		for (chan=0; chan<(data->chip_type == adm1030 ? 1 : 2); chan++) {
1062			data->fan_div[chan] =
1063			    adm1031_read_value(client, ADM1031_REG_FAN_DIV(chan));
1064			data->fan_min[chan] =
1065			    adm1031_read_value(client, ADM1031_REG_FAN_MIN(chan));
1066			data->fan[chan] =
1067			    adm1031_read_value(client, ADM1031_REG_FAN_SPEED(chan));
1068			data->pwm[chan] =
1069			    0xf & (adm1031_read_value(client, ADM1031_REG_PWM) >>
1070				   (4*chan));
1071		}
1072		data->last_updated = jiffies;
1073		data->valid = 1;
1074	}
1075
1076	mutex_unlock(&data->update_lock);
 
1077
1078	return data;
 
 
 
 
 
 
 
1079}
1080
1081static int __init sensors_adm1031_init(void)
1082{
1083	return i2c_add_driver(&adm1031_driver);
1084}
 
 
1085
1086static void __exit sensors_adm1031_exit(void)
1087{
1088	i2c_del_driver(&adm1031_driver);
1089}
 
 
 
 
 
 
 
 
1090
1091MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1092MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1093MODULE_LICENSE("GPL");
1094
1095module_init(sensors_adm1031_init);
1096module_exit(sensors_adm1031_exit);
v4.6
   1/*
   2 * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
   3 *	       monitoring
   4 * Based on lm75.c and lm85.c
   5 * Supports adm1030 / adm1031
   6 * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
   7 * Reworked by Jean Delvare <jdelvare@suse.de>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/init.h>
  26#include <linux/slab.h>
  27#include <linux/jiffies.h>
  28#include <linux/i2c.h>
  29#include <linux/hwmon.h>
  30#include <linux/hwmon-sysfs.h>
  31#include <linux/err.h>
  32#include <linux/mutex.h>
  33
  34/* Following macros takes channel parameter starting from 0 to 2 */
  35#define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
  36#define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
  37#define ADM1031_REG_PWM			(0x22)
  38#define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
  39#define ADM1031_REG_FAN_FILTER		(0x23)
  40
  41#define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
  42#define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
  43#define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
  44#define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
  45
  46#define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
  47#define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
  48
  49#define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
  50
  51#define ADM1031_REG_CONF1		0x00
  52#define ADM1031_REG_CONF2		0x01
  53#define ADM1031_REG_EXT_TEMP		0x06
  54
  55#define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
  56#define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
  57#define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
  58
  59#define ADM1031_CONF2_PWM1_ENABLE	0x01
  60#define ADM1031_CONF2_PWM2_ENABLE	0x02
  61#define ADM1031_CONF2_TACH1_ENABLE	0x04
  62#define ADM1031_CONF2_TACH2_ENABLE	0x08
  63#define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
  64
  65#define ADM1031_UPDATE_RATE_MASK	0x1c
  66#define ADM1031_UPDATE_RATE_SHIFT	2
  67
  68/* Addresses to scan */
  69static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  70
  71enum chips { adm1030, adm1031 };
  72
  73typedef u8 auto_chan_table_t[8][2];
  74
  75/* Each client has this additional data */
  76struct adm1031_data {
  77	struct i2c_client *client;
  78	const struct attribute_group *groups[3];
  79	struct mutex update_lock;
  80	int chip_type;
  81	char valid;		/* !=0 if following fields are valid */
  82	unsigned long last_updated;	/* In jiffies */
  83	unsigned int update_interval;	/* In milliseconds */
  84	/*
  85	 * The chan_select_table contains the possible configurations for
  86	 * auto fan control.
  87	 */
  88	const auto_chan_table_t *chan_select_table;
  89	u16 alarm;
  90	u8 conf1;
  91	u8 conf2;
  92	u8 fan[2];
  93	u8 fan_div[2];
  94	u8 fan_min[2];
  95	u8 pwm[2];
  96	u8 old_pwm[2];
  97	s8 temp[3];
  98	u8 ext_temp[3];
  99	u8 auto_temp[3];
 100	u8 auto_temp_min[3];
 101	u8 auto_temp_off[3];
 102	u8 auto_temp_max[3];
 103	s8 temp_offset[3];
 104	s8 temp_min[3];
 105	s8 temp_max[3];
 106	s8 temp_crit[3];
 107};
 108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
 110{
 111	return i2c_smbus_read_byte_data(client, reg);
 112}
 113
 114static inline int
 115adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
 116{
 117	return i2c_smbus_write_byte_data(client, reg, value);
 118}
 119
 120static struct adm1031_data *adm1031_update_device(struct device *dev)
 121{
 122	struct adm1031_data *data = dev_get_drvdata(dev);
 123	struct i2c_client *client = data->client;
 124	unsigned long next_update;
 125	int chan;
 126
 127	mutex_lock(&data->update_lock);
 128
 129	next_update = data->last_updated
 130	  + msecs_to_jiffies(data->update_interval);
 131	if (time_after(jiffies, next_update) || !data->valid) {
 132
 133		dev_dbg(&client->dev, "Starting adm1031 update\n");
 134		for (chan = 0;
 135		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
 136			u8 oldh, newh;
 137
 138			oldh =
 139			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
 140			data->ext_temp[chan] =
 141			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
 142			newh =
 143			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
 144			if (newh != oldh) {
 145				data->ext_temp[chan] =
 146				    adm1031_read_value(client,
 147						       ADM1031_REG_EXT_TEMP);
 148#ifdef DEBUG
 149				oldh =
 150				    adm1031_read_value(client,
 151						       ADM1031_REG_TEMP(chan));
 152
 153				/* oldh is actually newer */
 154				if (newh != oldh)
 155					dev_warn(&client->dev,
 156					  "Remote temperature may be wrong.\n");
 157#endif
 158			}
 159			data->temp[chan] = newh;
 160
 161			data->temp_offset[chan] =
 162			    adm1031_read_value(client,
 163					       ADM1031_REG_TEMP_OFFSET(chan));
 164			data->temp_min[chan] =
 165			    adm1031_read_value(client,
 166					       ADM1031_REG_TEMP_MIN(chan));
 167			data->temp_max[chan] =
 168			    adm1031_read_value(client,
 169					       ADM1031_REG_TEMP_MAX(chan));
 170			data->temp_crit[chan] =
 171			    adm1031_read_value(client,
 172					       ADM1031_REG_TEMP_CRIT(chan));
 173			data->auto_temp[chan] =
 174			    adm1031_read_value(client,
 175					       ADM1031_REG_AUTO_TEMP(chan));
 176
 177		}
 178
 179		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
 180		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
 181
 182		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
 183		    | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
 184		if (data->chip_type == adm1030)
 185			data->alarm &= 0xc0ff;
 186
 187		for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
 188		     chan++) {
 189			data->fan_div[chan] =
 190			    adm1031_read_value(client,
 191					       ADM1031_REG_FAN_DIV(chan));
 192			data->fan_min[chan] =
 193			    adm1031_read_value(client,
 194					       ADM1031_REG_FAN_MIN(chan));
 195			data->fan[chan] =
 196			    adm1031_read_value(client,
 197					       ADM1031_REG_FAN_SPEED(chan));
 198			data->pwm[chan] =
 199			  (adm1031_read_value(client,
 200					ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
 201		}
 202		data->last_updated = jiffies;
 203		data->valid = 1;
 204	}
 205
 206	mutex_unlock(&data->update_lock);
 207
 208	return data;
 209}
 210
 211#define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
 212					((val + 500) / 1000)))
 213
 214#define TEMP_FROM_REG(val)		((val) * 1000)
 215
 216#define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
 217
 218#define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
 219#define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
 220						      (val) | 0x70 : (val))
 221
 222#define FAN_FROM_REG(reg, div)		((reg) ? \
 223					 (11250 * 60) / ((reg) * (div)) : 0)
 224
 225static int FAN_TO_REG(int reg, int div)
 226{
 227	int tmp;
 228	tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
 229	return tmp > 255 ? 255 : tmp;
 230}
 231
 232#define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
 233
 234#define PWM_TO_REG(val)			(clamp_val((val), 0, 255) >> 4)
 235#define PWM_FROM_REG(val)		((val) << 4)
 236
 237#define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
 238#define FAN_CHAN_TO_REG(val, reg)	\
 239	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
 240
 241#define AUTO_TEMP_MIN_TO_REG(val, reg)	\
 242	((((val) / 500) & 0xf8) | ((reg) & 0x7))
 243#define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1 << ((reg) & 0x7)))
 244#define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
 245
 246#define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
 247
 248#define AUTO_TEMP_OFF_FROM_REG(reg)		\
 249	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
 250
 251#define AUTO_TEMP_MAX_FROM_REG(reg)		\
 252	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
 253	AUTO_TEMP_MIN_FROM_REG(reg))
 254
 255static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
 256{
 257	int ret;
 258	int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
 259
 260	range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
 261	ret = ((reg & 0xf8) |
 262	       (range < 10000 ? 0 :
 263		range < 20000 ? 1 :
 264		range < 40000 ? 2 : range < 80000 ? 3 : 4));
 265	return ret;
 266}
 267
 268/* FAN auto control */
 269#define GET_FAN_AUTO_BITFIELD(data, idx)	\
 270	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
 271
 272/*
 273 * The tables below contains the possible values for the auto fan
 274 * control bitfields. the index in the table is the register value.
 275 * MSb is the auto fan control enable bit, so the four first entries
 276 * in the table disables auto fan control when both bitfields are zero.
 277 */
 278static const auto_chan_table_t auto_channel_select_table_adm1031 = {
 279	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
 280	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
 281	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
 282	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
 283	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
 284};
 285
 286static const auto_chan_table_t auto_channel_select_table_adm1030 = {
 287	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
 288	{ 2 /* 0b10 */		, 0 },
 289	{ 0xff /* invalid */	, 0 },
 290	{ 0xff /* invalid */	, 0 },
 291	{ 3 /* 0b11 */		, 0 },
 292};
 293
 294/*
 295 * That function checks if a bitfield is valid and returns the other bitfield
 296 * nearest match if no exact match where found.
 297 */
 298static int
 299get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
 
 300{
 301	int i;
 302	int first_match = -1, exact_match = -1;
 303	u8 other_reg_val =
 304	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
 305
 306	if (val == 0)
 
 307		return 0;
 
 308
 309	for (i = 0; i < 8; i++) {
 310		if ((val == (*data->chan_select_table)[i][chan]) &&
 311		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
 312		     other_reg_val)) {
 313			/* We found an exact match */
 314			exact_match = i;
 315			break;
 316		} else if (val == (*data->chan_select_table)[i][chan] &&
 317			   first_match == -1) {
 318			/*
 319			 * Save the first match in case of an exact match has
 320			 * not been found
 321			 */
 322			first_match = i;
 323		}
 324	}
 325
 326	if (exact_match >= 0)
 327		return exact_match;
 328	else if (first_match >= 0)
 329		return first_match;
 330
 331	return -EINVAL;
 
 
 332}
 333
 334static ssize_t show_fan_auto_channel(struct device *dev,
 335				     struct device_attribute *attr, char *buf)
 336{
 337	int nr = to_sensor_dev_attr(attr)->index;
 338	struct adm1031_data *data = adm1031_update_device(dev);
 339	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
 340}
 341
 342static ssize_t
 343set_fan_auto_channel(struct device *dev, struct device_attribute *attr,
 344		     const char *buf, size_t count)
 345{
 346	struct adm1031_data *data = dev_get_drvdata(dev);
 347	struct i2c_client *client = data->client;
 348	int nr = to_sensor_dev_attr(attr)->index;
 349	long val;
 350	u8 reg;
 351	int ret;
 352	u8 old_fan_mode;
 353
 354	ret = kstrtol(buf, 10, &val);
 355	if (ret)
 356		return ret;
 357
 358	old_fan_mode = data->conf1;
 359
 360	mutex_lock(&data->update_lock);
 361
 362	ret = get_fan_auto_nearest(data, nr, val, data->conf1);
 363	if (ret < 0) {
 364		mutex_unlock(&data->update_lock);
 365		return ret;
 366	}
 367	reg = ret;
 368	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
 369	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
 370	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
 371		if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
 372			/*
 373			 * Switch to Auto Fan Mode
 374			 * Save PWM registers
 375			 * Set PWM registers to 33% Both
 376			 */
 377			data->old_pwm[0] = data->pwm[0];
 378			data->old_pwm[1] = data->pwm[1];
 379			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
 380		} else {
 381			/* Switch to Manual Mode */
 382			data->pwm[0] = data->old_pwm[0];
 383			data->pwm[1] = data->old_pwm[1];
 384			/* Restore PWM registers */
 385			adm1031_write_value(client, ADM1031_REG_PWM,
 386					    data->pwm[0] | (data->pwm[1] << 4));
 387		}
 388	}
 389	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
 390	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
 391	mutex_unlock(&data->update_lock);
 392	return count;
 393}
 394
 395static SENSOR_DEVICE_ATTR(auto_fan1_channel, S_IRUGO | S_IWUSR,
 396		show_fan_auto_channel, set_fan_auto_channel, 0);
 397static SENSOR_DEVICE_ATTR(auto_fan2_channel, S_IRUGO | S_IWUSR,
 398		show_fan_auto_channel, set_fan_auto_channel, 1);
 399
 400/* Auto Temps */
 401static ssize_t show_auto_temp_off(struct device *dev,
 402				  struct device_attribute *attr, char *buf)
 403{
 404	int nr = to_sensor_dev_attr(attr)->index;
 405	struct adm1031_data *data = adm1031_update_device(dev);
 406	return sprintf(buf, "%d\n",
 407		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
 408}
 409static ssize_t show_auto_temp_min(struct device *dev,
 410				  struct device_attribute *attr, char *buf)
 411{
 412	int nr = to_sensor_dev_attr(attr)->index;
 413	struct adm1031_data *data = adm1031_update_device(dev);
 414	return sprintf(buf, "%d\n",
 415		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
 416}
 417static ssize_t
 418set_auto_temp_min(struct device *dev, struct device_attribute *attr,
 419		  const char *buf, size_t count)
 420{
 421	struct adm1031_data *data = dev_get_drvdata(dev);
 422	struct i2c_client *client = data->client;
 423	int nr = to_sensor_dev_attr(attr)->index;
 424	long val;
 425	int ret;
 426
 427	ret = kstrtol(buf, 10, &val);
 428	if (ret)
 429		return ret;
 430
 431	val = clamp_val(val, 0, 127000);
 432	mutex_lock(&data->update_lock);
 433	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
 434	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
 435			    data->auto_temp[nr]);
 436	mutex_unlock(&data->update_lock);
 437	return count;
 438}
 439static ssize_t show_auto_temp_max(struct device *dev,
 440				  struct device_attribute *attr, char *buf)
 441{
 442	int nr = to_sensor_dev_attr(attr)->index;
 443	struct adm1031_data *data = adm1031_update_device(dev);
 444	return sprintf(buf, "%d\n",
 445		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
 446}
 447static ssize_t
 448set_auto_temp_max(struct device *dev, struct device_attribute *attr,
 449		  const char *buf, size_t count)
 450{
 451	struct adm1031_data *data = dev_get_drvdata(dev);
 452	struct i2c_client *client = data->client;
 453	int nr = to_sensor_dev_attr(attr)->index;
 454	long val;
 455	int ret;
 456
 457	ret = kstrtol(buf, 10, &val);
 458	if (ret)
 459		return ret;
 460
 461	val = clamp_val(val, 0, 127000);
 462	mutex_lock(&data->update_lock);
 463	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
 464						  data->pwm[nr]);
 465	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
 466			    data->temp_max[nr]);
 467	mutex_unlock(&data->update_lock);
 468	return count;
 469}
 470
 471#define auto_temp_reg(offset)						\
 472static SENSOR_DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO,		\
 473		show_auto_temp_off, NULL, offset - 1);			\
 474static SENSOR_DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR,	\
 475		show_auto_temp_min, set_auto_temp_min, offset - 1);	\
 476static SENSOR_DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR,	\
 477		show_auto_temp_max, set_auto_temp_max, offset - 1)
 478
 479auto_temp_reg(1);
 480auto_temp_reg(2);
 481auto_temp_reg(3);
 482
 483/* pwm */
 484static ssize_t show_pwm(struct device *dev,
 485			struct device_attribute *attr, char *buf)
 486{
 487	int nr = to_sensor_dev_attr(attr)->index;
 488	struct adm1031_data *data = adm1031_update_device(dev);
 489	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
 490}
 491static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
 492		       const char *buf, size_t count)
 493{
 494	struct adm1031_data *data = dev_get_drvdata(dev);
 495	struct i2c_client *client = data->client;
 496	int nr = to_sensor_dev_attr(attr)->index;
 497	long val;
 498	int ret, reg;
 499
 500	ret = kstrtol(buf, 10, &val);
 501	if (ret)
 502		return ret;
 503
 504	mutex_lock(&data->update_lock);
 505	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
 506	    (((val>>4) & 0xf) != 5)) {
 507		/* In automatic mode, the only PWM accepted is 33% */
 508		mutex_unlock(&data->update_lock);
 509		return -EINVAL;
 510	}
 511	data->pwm[nr] = PWM_TO_REG(val);
 512	reg = adm1031_read_value(client, ADM1031_REG_PWM);
 513	adm1031_write_value(client, ADM1031_REG_PWM,
 514			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
 515			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
 516	mutex_unlock(&data->update_lock);
 517	return count;
 518}
 519
 520static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0);
 521static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1);
 522static SENSOR_DEVICE_ATTR(auto_fan1_min_pwm, S_IRUGO | S_IWUSR,
 523		show_pwm, set_pwm, 0);
 524static SENSOR_DEVICE_ATTR(auto_fan2_min_pwm, S_IRUGO | S_IWUSR,
 525		show_pwm, set_pwm, 1);
 526
 527/* Fans */
 528
 529/*
 530 * That function checks the cases where the fan reading is not
 531 * relevant.  It is used to provide 0 as fan reading when the fan is
 532 * not supposed to run
 533 */
 534static int trust_fan_readings(struct adm1031_data *data, int chan)
 535{
 536	int res = 0;
 537
 538	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
 539		switch (data->conf1 & 0x60) {
 540		case 0x00:
 541			/*
 542			 * remote temp1 controls fan1,
 543			 * remote temp2 controls fan2
 544			 */
 545			res = data->temp[chan+1] >=
 546			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
 547			break;
 548		case 0x20:	/* remote temp1 controls both fans */
 549			res =
 550			    data->temp[1] >=
 551			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
 552			break;
 553		case 0x40:	/* remote temp2 controls both fans */
 554			res =
 555			    data->temp[2] >=
 556			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
 557			break;
 558		case 0x60:	/* max controls both fans */
 559			res =
 560			    data->temp[0] >=
 561			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
 562			    || data->temp[1] >=
 563			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
 564			    || (data->chip_type == adm1031
 565				&& data->temp[2] >=
 566				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
 567			break;
 568		}
 569	} else {
 570		res = data->pwm[chan] > 0;
 571	}
 572	return res;
 573}
 574
 575
 576static ssize_t show_fan(struct device *dev,
 577			struct device_attribute *attr, char *buf)
 578{
 579	int nr = to_sensor_dev_attr(attr)->index;
 580	struct adm1031_data *data = adm1031_update_device(dev);
 581	int value;
 582
 583	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
 584				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
 585	return sprintf(buf, "%d\n", value);
 586}
 587
 588static ssize_t show_fan_div(struct device *dev,
 589			    struct device_attribute *attr, char *buf)
 590{
 591	int nr = to_sensor_dev_attr(attr)->index;
 592	struct adm1031_data *data = adm1031_update_device(dev);
 593	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
 594}
 595static ssize_t show_fan_min(struct device *dev,
 596			    struct device_attribute *attr, char *buf)
 597{
 598	int nr = to_sensor_dev_attr(attr)->index;
 599	struct adm1031_data *data = adm1031_update_device(dev);
 600	return sprintf(buf, "%d\n",
 601		       FAN_FROM_REG(data->fan_min[nr],
 602				    FAN_DIV_FROM_REG(data->fan_div[nr])));
 603}
 604static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
 605			   const char *buf, size_t count)
 606{
 607	struct adm1031_data *data = dev_get_drvdata(dev);
 608	struct i2c_client *client = data->client;
 609	int nr = to_sensor_dev_attr(attr)->index;
 610	long val;
 611	int ret;
 612
 613	ret = kstrtol(buf, 10, &val);
 614	if (ret)
 615		return ret;
 616
 617	mutex_lock(&data->update_lock);
 618	if (val) {
 619		data->fan_min[nr] =
 620			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
 621	} else {
 622		data->fan_min[nr] = 0xff;
 623	}
 624	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
 625	mutex_unlock(&data->update_lock);
 626	return count;
 627}
 628static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
 629			   const char *buf, size_t count)
 630{
 631	struct adm1031_data *data = dev_get_drvdata(dev);
 632	struct i2c_client *client = data->client;
 633	int nr = to_sensor_dev_attr(attr)->index;
 634	long val;
 635	u8 tmp;
 636	int old_div;
 637	int new_min;
 638	int ret;
 639
 640	ret = kstrtol(buf, 10, &val);
 641	if (ret)
 642		return ret;
 643
 644	tmp = val == 8 ? 0xc0 :
 645	      val == 4 ? 0x80 :
 646	      val == 2 ? 0x40 :
 647	      val == 1 ? 0x00 :
 648	      0xff;
 649	if (tmp == 0xff)
 650		return -EINVAL;
 651
 652	mutex_lock(&data->update_lock);
 653	/* Get fresh readings */
 654	data->fan_div[nr] = adm1031_read_value(client,
 655					       ADM1031_REG_FAN_DIV(nr));
 656	data->fan_min[nr] = adm1031_read_value(client,
 657					       ADM1031_REG_FAN_MIN(nr));
 658
 659	/* Write the new clock divider and fan min */
 660	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
 661	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
 662	new_min = data->fan_min[nr] * old_div / val;
 663	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
 664
 665	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
 666			    data->fan_div[nr]);
 667	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
 668			    data->fan_min[nr]);
 669
 670	/* Invalidate the cache: fan speed is no longer valid */
 671	data->valid = 0;
 672	mutex_unlock(&data->update_lock);
 673	return count;
 674}
 675
 676#define fan_offset(offset)						\
 677static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
 678		show_fan, NULL, offset - 1);				\
 679static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
 680		show_fan_min, set_fan_min, offset - 1);			\
 681static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR,		\
 682		show_fan_div, set_fan_div, offset - 1)
 683
 684fan_offset(1);
 685fan_offset(2);
 686
 687
 688/* Temps */
 689static ssize_t show_temp(struct device *dev,
 690			 struct device_attribute *attr, char *buf)
 691{
 692	int nr = to_sensor_dev_attr(attr)->index;
 693	struct adm1031_data *data = adm1031_update_device(dev);
 694	int ext;
 695	ext = nr == 0 ?
 696	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
 697	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
 698	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
 699}
 700static ssize_t show_temp_offset(struct device *dev,
 701				struct device_attribute *attr, char *buf)
 702{
 703	int nr = to_sensor_dev_attr(attr)->index;
 704	struct adm1031_data *data = adm1031_update_device(dev);
 705	return sprintf(buf, "%d\n",
 706		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
 707}
 708static ssize_t show_temp_min(struct device *dev,
 709			     struct device_attribute *attr, char *buf)
 710{
 711	int nr = to_sensor_dev_attr(attr)->index;
 712	struct adm1031_data *data = adm1031_update_device(dev);
 713	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
 714}
 715static ssize_t show_temp_max(struct device *dev,
 716			     struct device_attribute *attr, char *buf)
 717{
 718	int nr = to_sensor_dev_attr(attr)->index;
 719	struct adm1031_data *data = adm1031_update_device(dev);
 720	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
 721}
 722static ssize_t show_temp_crit(struct device *dev,
 723			      struct device_attribute *attr, char *buf)
 724{
 725	int nr = to_sensor_dev_attr(attr)->index;
 726	struct adm1031_data *data = adm1031_update_device(dev);
 727	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
 728}
 729static ssize_t set_temp_offset(struct device *dev,
 730			       struct device_attribute *attr, const char *buf,
 731			       size_t count)
 732{
 733	struct adm1031_data *data = dev_get_drvdata(dev);
 734	struct i2c_client *client = data->client;
 735	int nr = to_sensor_dev_attr(attr)->index;
 736	long val;
 737	int ret;
 738
 739	ret = kstrtol(buf, 10, &val);
 740	if (ret)
 741		return ret;
 742
 743	val = clamp_val(val, -15000, 15000);
 
 744	mutex_lock(&data->update_lock);
 745	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
 746	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
 747			    data->temp_offset[nr]);
 748	mutex_unlock(&data->update_lock);
 749	return count;
 750}
 751static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
 752			    const char *buf, size_t count)
 753{
 754	struct adm1031_data *data = dev_get_drvdata(dev);
 755	struct i2c_client *client = data->client;
 756	int nr = to_sensor_dev_attr(attr)->index;
 757	long val;
 758	int ret;
 759
 760	ret = kstrtol(buf, 10, &val);
 761	if (ret)
 762		return ret;
 763
 764	val = clamp_val(val, -55000, 127000);
 765	mutex_lock(&data->update_lock);
 766	data->temp_min[nr] = TEMP_TO_REG(val);
 767	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
 768			    data->temp_min[nr]);
 769	mutex_unlock(&data->update_lock);
 770	return count;
 771}
 772static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
 773			    const char *buf, size_t count)
 774{
 775	struct adm1031_data *data = dev_get_drvdata(dev);
 776	struct i2c_client *client = data->client;
 777	int nr = to_sensor_dev_attr(attr)->index;
 778	long val;
 779	int ret;
 780
 781	ret = kstrtol(buf, 10, &val);
 782	if (ret)
 783		return ret;
 784
 785	val = clamp_val(val, -55000, 127000);
 
 786	mutex_lock(&data->update_lock);
 787	data->temp_max[nr] = TEMP_TO_REG(val);
 788	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
 789			    data->temp_max[nr]);
 790	mutex_unlock(&data->update_lock);
 791	return count;
 792}
 793static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
 794			     const char *buf, size_t count)
 795{
 796	struct adm1031_data *data = dev_get_drvdata(dev);
 797	struct i2c_client *client = data->client;
 798	int nr = to_sensor_dev_attr(attr)->index;
 799	long val;
 800	int ret;
 801
 802	ret = kstrtol(buf, 10, &val);
 803	if (ret)
 804		return ret;
 805
 806	val = clamp_val(val, -55000, 127000);
 
 807	mutex_lock(&data->update_lock);
 808	data->temp_crit[nr] = TEMP_TO_REG(val);
 809	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
 810			    data->temp_crit[nr]);
 811	mutex_unlock(&data->update_lock);
 812	return count;
 813}
 814
 815#define temp_reg(offset)						\
 816static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
 817		show_temp, NULL, offset - 1);				\
 818static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR,	\
 819		show_temp_offset, set_temp_offset, offset - 1);		\
 820static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
 821		show_temp_min, set_temp_min, offset - 1);		\
 822static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
 823		show_temp_max, set_temp_max, offset - 1);		\
 824static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR,	\
 825		show_temp_crit, set_temp_crit, offset - 1)
 826
 827temp_reg(1);
 828temp_reg(2);
 829temp_reg(3);
 830
 831/* Alarms */
 832static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
 833			   char *buf)
 834{
 835	struct adm1031_data *data = adm1031_update_device(dev);
 836	return sprintf(buf, "%d\n", data->alarm);
 837}
 838
 839static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
 840
 841static ssize_t show_alarm(struct device *dev,
 842			  struct device_attribute *attr, char *buf)
 843{
 844	int bitnr = to_sensor_dev_attr(attr)->index;
 845	struct adm1031_data *data = adm1031_update_device(dev);
 846	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
 847}
 848
 849static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 0);
 850static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, show_alarm, NULL, 1);
 851static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 2);
 852static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
 853static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 4);
 854static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 5);
 855static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
 856static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 7);
 857static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 8);
 858static SENSOR_DEVICE_ATTR(fan2_fault, S_IRUGO, show_alarm, NULL, 9);
 859static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 10);
 860static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
 861static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 12);
 862static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 13);
 863static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 14);
 864
 865/* Update Interval */
 866static const unsigned int update_intervals[] = {
 867	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
 868};
 869
 870static ssize_t show_update_interval(struct device *dev,
 871				    struct device_attribute *attr, char *buf)
 872{
 873	struct adm1031_data *data = dev_get_drvdata(dev);
 
 874
 875	return sprintf(buf, "%u\n", data->update_interval);
 876}
 877
 878static ssize_t set_update_interval(struct device *dev,
 879				   struct device_attribute *attr,
 880				   const char *buf, size_t count)
 881{
 882	struct adm1031_data *data = dev_get_drvdata(dev);
 883	struct i2c_client *client = data->client;
 884	unsigned long val;
 885	int i, err;
 886	u8 reg;
 887
 888	err = kstrtoul(buf, 10, &val);
 889	if (err)
 890		return err;
 891
 892	/*
 893	 * Find the nearest update interval from the table.
 894	 * Use it to determine the matching update rate.
 895	 */
 896	for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
 897		if (val >= update_intervals[i])
 898			break;
 899	}
 900	/* if not found, we point to the last entry (lowest update interval) */
 901
 902	/* set the new update rate while preserving other settings */
 903	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
 904	reg &= ~ADM1031_UPDATE_RATE_MASK;
 905	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
 906	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
 907
 908	mutex_lock(&data->update_lock);
 909	data->update_interval = update_intervals[i];
 910	mutex_unlock(&data->update_lock);
 911
 912	return count;
 913}
 914
 915static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval,
 916		   set_update_interval);
 917
 918static struct attribute *adm1031_attributes[] = {
 919	&sensor_dev_attr_fan1_input.dev_attr.attr,
 920	&sensor_dev_attr_fan1_div.dev_attr.attr,
 921	&sensor_dev_attr_fan1_min.dev_attr.attr,
 922	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
 923	&sensor_dev_attr_fan1_fault.dev_attr.attr,
 924	&sensor_dev_attr_pwm1.dev_attr.attr,
 925	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
 926	&sensor_dev_attr_temp1_input.dev_attr.attr,
 927	&sensor_dev_attr_temp1_offset.dev_attr.attr,
 928	&sensor_dev_attr_temp1_min.dev_attr.attr,
 929	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
 930	&sensor_dev_attr_temp1_max.dev_attr.attr,
 931	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
 932	&sensor_dev_attr_temp1_crit.dev_attr.attr,
 933	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
 934	&sensor_dev_attr_temp2_input.dev_attr.attr,
 935	&sensor_dev_attr_temp2_offset.dev_attr.attr,
 936	&sensor_dev_attr_temp2_min.dev_attr.attr,
 937	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
 938	&sensor_dev_attr_temp2_max.dev_attr.attr,
 939	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
 940	&sensor_dev_attr_temp2_crit.dev_attr.attr,
 941	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
 942	&sensor_dev_attr_temp2_fault.dev_attr.attr,
 943
 944	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
 945	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
 946	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
 947
 948	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
 949	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
 950	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
 951
 952	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
 953
 954	&dev_attr_update_interval.attr,
 955	&dev_attr_alarms.attr,
 956
 957	NULL
 958};
 959
 960static const struct attribute_group adm1031_group = {
 961	.attrs = adm1031_attributes,
 962};
 963
 964static struct attribute *adm1031_attributes_opt[] = {
 965	&sensor_dev_attr_fan2_input.dev_attr.attr,
 966	&sensor_dev_attr_fan2_div.dev_attr.attr,
 967	&sensor_dev_attr_fan2_min.dev_attr.attr,
 968	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
 969	&sensor_dev_attr_fan2_fault.dev_attr.attr,
 970	&sensor_dev_attr_pwm2.dev_attr.attr,
 971	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
 972	&sensor_dev_attr_temp3_input.dev_attr.attr,
 973	&sensor_dev_attr_temp3_offset.dev_attr.attr,
 974	&sensor_dev_attr_temp3_min.dev_attr.attr,
 975	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
 976	&sensor_dev_attr_temp3_max.dev_attr.attr,
 977	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
 978	&sensor_dev_attr_temp3_crit.dev_attr.attr,
 979	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
 980	&sensor_dev_attr_temp3_fault.dev_attr.attr,
 981	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
 982	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
 983	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
 984	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
 985	NULL
 986};
 987
 988static const struct attribute_group adm1031_group_opt = {
 989	.attrs = adm1031_attributes_opt,
 990};
 991
 992/* Return 0 if detection is successful, -ENODEV otherwise */
 993static int adm1031_detect(struct i2c_client *client,
 994			  struct i2c_board_info *info)
 995{
 996	struct i2c_adapter *adapter = client->adapter;
 997	const char *name;
 998	int id, co;
 999
1000	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1001		return -ENODEV;
1002
1003	id = i2c_smbus_read_byte_data(client, 0x3d);
1004	co = i2c_smbus_read_byte_data(client, 0x3e);
1005
1006	if (!((id == 0x31 || id == 0x30) && co == 0x41))
1007		return -ENODEV;
1008	name = (id == 0x30) ? "adm1030" : "adm1031";
1009
1010	strlcpy(info->type, name, I2C_NAME_SIZE);
1011
1012	return 0;
1013}
1014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015static void adm1031_init_client(struct i2c_client *client)
1016{
1017	unsigned int read_val;
1018	unsigned int mask;
1019	int i;
1020	struct adm1031_data *data = i2c_get_clientdata(client);
1021
1022	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
1023	if (data->chip_type == adm1031) {
1024		mask |= (ADM1031_CONF2_PWM2_ENABLE |
1025			ADM1031_CONF2_TACH2_ENABLE);
1026	}
1027	/* Initialize the ADM1031 chip (enables fan speed reading ) */
1028	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
1029	if ((read_val | mask) != read_val)
1030		adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
 
1031
1032	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
1033	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
1034		adm1031_write_value(client, ADM1031_REG_CONF1,
1035				    read_val | ADM1031_CONF1_MONITOR_ENABLE);
1036	}
1037
1038	/* Read the chip's update rate */
1039	mask = ADM1031_UPDATE_RATE_MASK;
1040	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
1041	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
1042	/* Save it as update interval */
1043	data->update_interval = update_intervals[i];
1044}
1045
1046static int adm1031_probe(struct i2c_client *client,
1047			 const struct i2c_device_id *id)
1048{
1049	struct device *dev = &client->dev;
1050	struct device *hwmon_dev;
1051	struct adm1031_data *data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1052
1053	data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL);
1054	if (!data)
1055		return -ENOMEM;
1056
1057	i2c_set_clientdata(client, data);
1058	data->client = client;
1059	data->chip_type = id->driver_data;
1060	mutex_init(&data->update_lock);
 
 
1061
1062	if (data->chip_type == adm1030)
1063		data->chan_select_table = &auto_channel_select_table_adm1030;
1064	else
1065		data->chan_select_table = &auto_channel_select_table_adm1031;
 
 
 
 
 
 
 
 
 
 
1066
1067	/* Initialize the ADM1031 chip */
1068	adm1031_init_client(client);
1069
1070	/* sysfs hooks */
1071	data->groups[0] = &adm1031_group;
1072	if (data->chip_type == adm1031)
1073		data->groups[1] = &adm1031_group_opt;
1074
1075	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1076							   data, data->groups);
1077	return PTR_ERR_OR_ZERO(hwmon_dev);
1078}
1079
1080static const struct i2c_device_id adm1031_id[] = {
1081	{ "adm1030", adm1030 },
1082	{ "adm1031", adm1031 },
1083	{ }
1084};
1085MODULE_DEVICE_TABLE(i2c, adm1031_id);
1086
1087static struct i2c_driver adm1031_driver = {
1088	.class		= I2C_CLASS_HWMON,
1089	.driver = {
1090		.name = "adm1031",
1091	},
1092	.probe		= adm1031_probe,
1093	.id_table	= adm1031_id,
1094	.detect		= adm1031_detect,
1095	.address_list	= normal_i2c,
1096};
1097
1098module_i2c_driver(adm1031_driver);
1099
1100MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1101MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1102MODULE_LICENSE("GPL");