Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 */
  23
  24#include <linux/slab.h>
  25#include <linux/list.h>
  26#include <linux/types.h>
  27#include <linux/printk.h>
  28#include <linux/bitops.h>
  29#include <linux/sched.h>
  30#include "kfd_priv.h"
  31#include "kfd_device_queue_manager.h"
  32#include "kfd_mqd_manager.h"
  33#include "cik_regs.h"
  34#include "kfd_kernel_queue.h"
  35
  36/* Size of the per-pipe EOP queue */
  37#define CIK_HPD_EOP_BYTES_LOG2 11
  38#define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
  39
  40static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
  41					unsigned int pasid, unsigned int vmid);
  42
  43static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
  44					struct queue *q,
  45					struct qcm_process_device *qpd);
  46
  47static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
  48static int destroy_queues_cpsch(struct device_queue_manager *dqm,
  49				bool preempt_static_queues, bool lock);
  50
  51static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
  52					struct queue *q,
  53					struct qcm_process_device *qpd);
  54
  55static void deallocate_sdma_queue(struct device_queue_manager *dqm,
  56				unsigned int sdma_queue_id);
  57
  58static inline
  59enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
  60{
  61	if (type == KFD_QUEUE_TYPE_SDMA)
  62		return KFD_MQD_TYPE_SDMA;
  63	return KFD_MQD_TYPE_CP;
  64}
  65
  66unsigned int get_first_pipe(struct device_queue_manager *dqm)
  67{
  68	BUG_ON(!dqm || !dqm->dev);
  69	return dqm->dev->shared_resources.first_compute_pipe;
  70}
  71
  72unsigned int get_pipes_num(struct device_queue_manager *dqm)
  73{
  74	BUG_ON(!dqm || !dqm->dev);
  75	return dqm->dev->shared_resources.compute_pipe_count;
  76}
  77
  78static inline unsigned int get_pipes_num_cpsch(void)
  79{
  80	return PIPE_PER_ME_CP_SCHEDULING;
  81}
  82
  83void program_sh_mem_settings(struct device_queue_manager *dqm,
  84					struct qcm_process_device *qpd)
  85{
  86	return dqm->dev->kfd2kgd->program_sh_mem_settings(
  87						dqm->dev->kgd, qpd->vmid,
  88						qpd->sh_mem_config,
  89						qpd->sh_mem_ape1_base,
  90						qpd->sh_mem_ape1_limit,
  91						qpd->sh_mem_bases);
  92}
  93
  94static int allocate_vmid(struct device_queue_manager *dqm,
  95			struct qcm_process_device *qpd,
  96			struct queue *q)
  97{
  98	int bit, allocated_vmid;
  99
 100	if (dqm->vmid_bitmap == 0)
 101		return -ENOMEM;
 102
 103	bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
 104	clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
 105
 106	/* Kaveri kfd vmid's starts from vmid 8 */
 107	allocated_vmid = bit + KFD_VMID_START_OFFSET;
 108	pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
 109	qpd->vmid = allocated_vmid;
 110	q->properties.vmid = allocated_vmid;
 111
 112	set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
 113	program_sh_mem_settings(dqm, qpd);
 114
 115	return 0;
 116}
 117
 118static void deallocate_vmid(struct device_queue_manager *dqm,
 119				struct qcm_process_device *qpd,
 120				struct queue *q)
 121{
 122	int bit = qpd->vmid - KFD_VMID_START_OFFSET;
 123
 124	/* Release the vmid mapping */
 125	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
 126
 127	set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
 128	qpd->vmid = 0;
 129	q->properties.vmid = 0;
 130}
 131
 132static int create_queue_nocpsch(struct device_queue_manager *dqm,
 133				struct queue *q,
 134				struct qcm_process_device *qpd,
 135				int *allocated_vmid)
 136{
 137	int retval;
 138
 139	BUG_ON(!dqm || !q || !qpd || !allocated_vmid);
 140
 141	pr_debug("kfd: In func %s\n", __func__);
 142	print_queue(q);
 143
 144	mutex_lock(&dqm->lock);
 145
 146	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
 147		pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
 148				dqm->total_queue_count);
 149		mutex_unlock(&dqm->lock);
 150		return -EPERM;
 151	}
 152
 153	if (list_empty(&qpd->queues_list)) {
 154		retval = allocate_vmid(dqm, qpd, q);
 155		if (retval != 0) {
 156			mutex_unlock(&dqm->lock);
 157			return retval;
 158		}
 159	}
 160	*allocated_vmid = qpd->vmid;
 161	q->properties.vmid = qpd->vmid;
 162
 163	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
 164		retval = create_compute_queue_nocpsch(dqm, q, qpd);
 165	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
 166		retval = create_sdma_queue_nocpsch(dqm, q, qpd);
 167
 168	if (retval != 0) {
 169		if (list_empty(&qpd->queues_list)) {
 170			deallocate_vmid(dqm, qpd, q);
 171			*allocated_vmid = 0;
 172		}
 173		mutex_unlock(&dqm->lock);
 174		return retval;
 175	}
 176
 177	list_add(&q->list, &qpd->queues_list);
 178	if (q->properties.is_active)
 179		dqm->queue_count++;
 180
 181	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
 182		dqm->sdma_queue_count++;
 183
 184	/*
 185	 * Unconditionally increment this counter, regardless of the queue's
 186	 * type or whether the queue is active.
 187	 */
 188	dqm->total_queue_count++;
 189	pr_debug("Total of %d queues are accountable so far\n",
 190			dqm->total_queue_count);
 191
 192	mutex_unlock(&dqm->lock);
 193	return 0;
 194}
 195
 196static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
 197{
 198	bool set;
 199	int pipe, bit, i;
 200
 201	set = false;
 202
 203	for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_num(dqm);
 204			pipe = ((pipe + 1) % get_pipes_num(dqm)), ++i) {
 205		if (dqm->allocated_queues[pipe] != 0) {
 206			bit = find_first_bit(
 207				(unsigned long *)&dqm->allocated_queues[pipe],
 208				QUEUES_PER_PIPE);
 209
 210			clear_bit(bit,
 211				(unsigned long *)&dqm->allocated_queues[pipe]);
 212			q->pipe = pipe;
 213			q->queue = bit;
 214			set = true;
 215			break;
 216		}
 217	}
 218
 219	if (set == false)
 220		return -EBUSY;
 221
 222	pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
 223				__func__, q->pipe, q->queue);
 224	/* horizontal hqd allocation */
 225	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);
 226
 227	return 0;
 228}
 229
 230static inline void deallocate_hqd(struct device_queue_manager *dqm,
 231				struct queue *q)
 232{
 233	set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
 234}
 235
 236static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
 237					struct queue *q,
 238					struct qcm_process_device *qpd)
 239{
 240	int retval;
 241	struct mqd_manager *mqd;
 242
 243	BUG_ON(!dqm || !q || !qpd);
 244
 245	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
 246	if (mqd == NULL)
 247		return -ENOMEM;
 248
 249	retval = allocate_hqd(dqm, q);
 250	if (retval != 0)
 251		return retval;
 252
 253	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
 254				&q->gart_mqd_addr, &q->properties);
 255	if (retval != 0) {
 256		deallocate_hqd(dqm, q);
 257		return retval;
 258	}
 259
 260	pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n",
 261			q->pipe,
 262			q->queue);
 263
 264	retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
 265			q->queue, (uint32_t __user *) q->properties.write_ptr);
 266	if (retval != 0) {
 267		deallocate_hqd(dqm, q);
 268		mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
 269		return retval;
 270	}
 271
 272	return 0;
 273}
 274
 275static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
 276				struct qcm_process_device *qpd,
 277				struct queue *q)
 278{
 279	int retval;
 280	struct mqd_manager *mqd;
 281
 282	BUG_ON(!dqm || !q || !q->mqd || !qpd);
 283
 284	retval = 0;
 285
 286	pr_debug("kfd: In Func %s\n", __func__);
 287
 288	mutex_lock(&dqm->lock);
 289
 290	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
 291		mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
 292		if (mqd == NULL) {
 293			retval = -ENOMEM;
 294			goto out;
 295		}
 296		deallocate_hqd(dqm, q);
 297	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
 298		mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
 299		if (mqd == NULL) {
 300			retval = -ENOMEM;
 301			goto out;
 302		}
 303		dqm->sdma_queue_count--;
 304		deallocate_sdma_queue(dqm, q->sdma_id);
 305	} else {
 306		pr_debug("q->properties.type is invalid (%d)\n",
 307				q->properties.type);
 308		retval = -EINVAL;
 309		goto out;
 310	}
 311
 312	retval = mqd->destroy_mqd(mqd, q->mqd,
 313				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
 314				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
 315				q->pipe, q->queue);
 316
 317	if (retval != 0)
 318		goto out;
 319
 320	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
 321
 322	list_del(&q->list);
 323	if (list_empty(&qpd->queues_list))
 324		deallocate_vmid(dqm, qpd, q);
 325	if (q->properties.is_active)
 326		dqm->queue_count--;
 327
 328	/*
 329	 * Unconditionally decrement this counter, regardless of the queue's
 330	 * type
 331	 */
 332	dqm->total_queue_count--;
 333	pr_debug("Total of %d queues are accountable so far\n",
 334			dqm->total_queue_count);
 335
 336out:
 337	mutex_unlock(&dqm->lock);
 338	return retval;
 339}
 340
 341static int update_queue(struct device_queue_manager *dqm, struct queue *q)
 342{
 343	int retval;
 344	struct mqd_manager *mqd;
 345	bool prev_active = false;
 346
 347	BUG_ON(!dqm || !q || !q->mqd);
 348
 349	mutex_lock(&dqm->lock);
 350	mqd = dqm->ops.get_mqd_manager(dqm,
 351			get_mqd_type_from_queue_type(q->properties.type));
 352	if (mqd == NULL) {
 353		mutex_unlock(&dqm->lock);
 354		return -ENOMEM;
 355	}
 356
 357	if (q->properties.is_active == true)
 358		prev_active = true;
 359
 360	/*
 361	 *
 362	 * check active state vs. the previous state
 363	 * and modify counter accordingly
 364	 */
 365	retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
 366	if ((q->properties.is_active == true) && (prev_active == false))
 367		dqm->queue_count++;
 368	else if ((q->properties.is_active == false) && (prev_active == true))
 369		dqm->queue_count--;
 370
 371	if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
 372		retval = execute_queues_cpsch(dqm, false);
 373
 374	mutex_unlock(&dqm->lock);
 375	return retval;
 376}
 377
 378static struct mqd_manager *get_mqd_manager_nocpsch(
 379		struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
 380{
 381	struct mqd_manager *mqd;
 382
 383	BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);
 384
 385	pr_debug("kfd: In func %s mqd type %d\n", __func__, type);
 386
 387	mqd = dqm->mqds[type];
 388	if (!mqd) {
 389		mqd = mqd_manager_init(type, dqm->dev);
 390		if (mqd == NULL)
 391			pr_err("kfd: mqd manager is NULL");
 392		dqm->mqds[type] = mqd;
 393	}
 394
 395	return mqd;
 396}
 397
 398static int register_process_nocpsch(struct device_queue_manager *dqm,
 399					struct qcm_process_device *qpd)
 400{
 401	struct device_process_node *n;
 402	int retval;
 403
 404	BUG_ON(!dqm || !qpd);
 405
 406	pr_debug("kfd: In func %s\n", __func__);
 407
 408	n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
 409	if (!n)
 410		return -ENOMEM;
 411
 412	n->qpd = qpd;
 413
 414	mutex_lock(&dqm->lock);
 415	list_add(&n->list, &dqm->queues);
 416
 417	retval = dqm->ops_asic_specific.register_process(dqm, qpd);
 418
 419	dqm->processes_count++;
 420
 421	mutex_unlock(&dqm->lock);
 422
 423	return retval;
 424}
 425
 426static int unregister_process_nocpsch(struct device_queue_manager *dqm,
 427					struct qcm_process_device *qpd)
 428{
 429	int retval;
 430	struct device_process_node *cur, *next;
 431
 432	BUG_ON(!dqm || !qpd);
 433
 434	pr_debug("In func %s\n", __func__);
 435
 436	pr_debug("qpd->queues_list is %s\n",
 437			list_empty(&qpd->queues_list) ? "empty" : "not empty");
 438
 439	retval = 0;
 440	mutex_lock(&dqm->lock);
 441
 442	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
 443		if (qpd == cur->qpd) {
 444			list_del(&cur->list);
 445			kfree(cur);
 446			dqm->processes_count--;
 447			goto out;
 448		}
 449	}
 450	/* qpd not found in dqm list */
 451	retval = 1;
 452out:
 453	mutex_unlock(&dqm->lock);
 454	return retval;
 455}
 456
 457static int
 458set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
 459			unsigned int vmid)
 460{
 461	uint32_t pasid_mapping;
 462
 463	pasid_mapping = (pasid == 0) ? 0 :
 464		(uint32_t)pasid |
 465		ATC_VMID_PASID_MAPPING_VALID;
 466
 467	return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
 468						dqm->dev->kgd, pasid_mapping,
 469						vmid);
 470}
 471
 472int init_pipelines(struct device_queue_manager *dqm,
 473			unsigned int pipes_num, unsigned int first_pipe)
 474{
 475	void *hpdptr;
 476	struct mqd_manager *mqd;
 477	unsigned int i, err, inx;
 478	uint64_t pipe_hpd_addr;
 479
 480	BUG_ON(!dqm || !dqm->dev);
 481
 482	pr_debug("kfd: In func %s\n", __func__);
 483
 484	/*
 485	 * Allocate memory for the HPDs. This is hardware-owned per-pipe data.
 486	 * The driver never accesses this memory after zeroing it.
 487	 * It doesn't even have to be saved/restored on suspend/resume
 488	 * because it contains no data when there are no active queues.
 489	 */
 490
 491	err = kfd_gtt_sa_allocate(dqm->dev, CIK_HPD_EOP_BYTES * pipes_num,
 492					&dqm->pipeline_mem);
 493
 494	if (err) {
 495		pr_err("kfd: error allocate vidmem num pipes: %d\n",
 496			pipes_num);
 497		return -ENOMEM;
 498	}
 499
 500	hpdptr = dqm->pipeline_mem->cpu_ptr;
 501	dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;
 502
 503	memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);
 504
 505	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
 506	if (mqd == NULL) {
 507		kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
 508		return -ENOMEM;
 509	}
 510
 511	for (i = 0; i < pipes_num; i++) {
 512		inx = i + first_pipe;
 513		/*
 514		 * HPD buffer on GTT is allocated by amdkfd, no need to waste
 515		 * space in GTT for pipelines we don't initialize
 516		 */
 517		pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
 518		pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
 519		/* = log2(bytes/4)-1 */
 520		dqm->dev->kfd2kgd->init_pipeline(dqm->dev->kgd, inx,
 521				CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
 522	}
 523
 524	return 0;
 525}
 526
 527static void init_interrupts(struct device_queue_manager *dqm)
 528{
 529	unsigned int i;
 530
 531	BUG_ON(dqm == NULL);
 532
 533	for (i = 0 ; i < get_pipes_num(dqm) ; i++)
 534		dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd,
 535				i + get_first_pipe(dqm));
 536}
 537
 538static int init_scheduler(struct device_queue_manager *dqm)
 539{
 540	int retval;
 541
 542	BUG_ON(!dqm);
 543
 544	pr_debug("kfd: In %s\n", __func__);
 545
 546	retval = init_pipelines(dqm, get_pipes_num(dqm), get_first_pipe(dqm));
 547	return retval;
 548}
 549
 550static int initialize_nocpsch(struct device_queue_manager *dqm)
 551{
 552	int i;
 553
 554	BUG_ON(!dqm);
 555
 556	pr_debug("kfd: In func %s num of pipes: %d\n",
 557			__func__, get_pipes_num(dqm));
 558
 559	mutex_init(&dqm->lock);
 560	INIT_LIST_HEAD(&dqm->queues);
 561	dqm->queue_count = dqm->next_pipe_to_allocate = 0;
 562	dqm->sdma_queue_count = 0;
 563	dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
 564					sizeof(unsigned int), GFP_KERNEL);
 565	if (!dqm->allocated_queues) {
 566		mutex_destroy(&dqm->lock);
 567		return -ENOMEM;
 568	}
 569
 570	for (i = 0; i < get_pipes_num(dqm); i++)
 571		dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;
 572
 573	dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
 574	dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
 575
 576	init_scheduler(dqm);
 577	return 0;
 578}
 579
 580static void uninitialize_nocpsch(struct device_queue_manager *dqm)
 581{
 582	int i;
 583
 584	BUG_ON(!dqm);
 585
 586	BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
 587
 588	kfree(dqm->allocated_queues);
 589	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
 590		kfree(dqm->mqds[i]);
 591	mutex_destroy(&dqm->lock);
 592	kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
 593}
 594
 595static int start_nocpsch(struct device_queue_manager *dqm)
 596{
 597	init_interrupts(dqm);
 598	return 0;
 599}
 600
 601static int stop_nocpsch(struct device_queue_manager *dqm)
 602{
 603	return 0;
 604}
 605
 606static int allocate_sdma_queue(struct device_queue_manager *dqm,
 607				unsigned int *sdma_queue_id)
 608{
 609	int bit;
 610
 611	if (dqm->sdma_bitmap == 0)
 612		return -ENOMEM;
 613
 614	bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap,
 615				CIK_SDMA_QUEUES);
 616
 617	clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap);
 618	*sdma_queue_id = bit;
 619
 620	return 0;
 621}
 622
 623static void deallocate_sdma_queue(struct device_queue_manager *dqm,
 624				unsigned int sdma_queue_id)
 625{
 626	if (sdma_queue_id >= CIK_SDMA_QUEUES)
 627		return;
 628	set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap);
 629}
 630
 631static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
 632					struct queue *q,
 633					struct qcm_process_device *qpd)
 634{
 635	struct mqd_manager *mqd;
 636	int retval;
 637
 638	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
 639	if (!mqd)
 640		return -ENOMEM;
 641
 642	retval = allocate_sdma_queue(dqm, &q->sdma_id);
 643	if (retval != 0)
 644		return retval;
 645
 646	q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
 647	q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM;
 648
 649	pr_debug("kfd: sdma id is:    %d\n", q->sdma_id);
 650	pr_debug("     sdma queue id: %d\n", q->properties.sdma_queue_id);
 651	pr_debug("     sdma engine id: %d\n", q->properties.sdma_engine_id);
 652
 653	dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd);
 654	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
 655				&q->gart_mqd_addr, &q->properties);
 656	if (retval != 0) {
 657		deallocate_sdma_queue(dqm, q->sdma_id);
 658		return retval;
 659	}
 660
 661	retval = mqd->load_mqd(mqd, q->mqd, 0,
 662				0, NULL);
 663	if (retval != 0) {
 664		deallocate_sdma_queue(dqm, q->sdma_id);
 665		mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
 666		return retval;
 667	}
 668
 669	return 0;
 670}
 671
 672/*
 673 * Device Queue Manager implementation for cp scheduler
 674 */
 675
 676static int set_sched_resources(struct device_queue_manager *dqm)
 677{
 678	struct scheduling_resources res;
 679	unsigned int queue_num, queue_mask;
 680
 681	BUG_ON(!dqm);
 682
 683	pr_debug("kfd: In func %s\n", __func__);
 684
 685	queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
 686	queue_mask = (1 << queue_num) - 1;
 687	res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
 688	res.vmid_mask <<= KFD_VMID_START_OFFSET;
 689	res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
 690	res.gws_mask = res.oac_mask = res.gds_heap_base =
 691						res.gds_heap_size = 0;
 692
 693	pr_debug("kfd: scheduling resources:\n"
 694			"      vmid mask: 0x%8X\n"
 695			"      queue mask: 0x%8llX\n",
 696			res.vmid_mask, res.queue_mask);
 697
 698	return pm_send_set_resources(&dqm->packets, &res);
 699}
 700
 701static int initialize_cpsch(struct device_queue_manager *dqm)
 702{
 703	int retval;
 704
 705	BUG_ON(!dqm);
 706
 707	pr_debug("kfd: In func %s num of pipes: %d\n",
 708			__func__, get_pipes_num_cpsch());
 709
 710	mutex_init(&dqm->lock);
 711	INIT_LIST_HEAD(&dqm->queues);
 712	dqm->queue_count = dqm->processes_count = 0;
 713	dqm->sdma_queue_count = 0;
 714	dqm->active_runlist = false;
 715	retval = dqm->ops_asic_specific.initialize(dqm);
 716	if (retval != 0)
 717		goto fail_init_pipelines;
 718
 719	return 0;
 720
 721fail_init_pipelines:
 722	mutex_destroy(&dqm->lock);
 723	return retval;
 724}
 725
 726static int start_cpsch(struct device_queue_manager *dqm)
 727{
 728	struct device_process_node *node;
 729	int retval;
 730
 731	BUG_ON(!dqm);
 732
 733	retval = 0;
 734
 735	retval = pm_init(&dqm->packets, dqm);
 736	if (retval != 0)
 737		goto fail_packet_manager_init;
 738
 739	retval = set_sched_resources(dqm);
 740	if (retval != 0)
 741		goto fail_set_sched_resources;
 742
 743	pr_debug("kfd: allocating fence memory\n");
 744
 745	/* allocate fence memory on the gart */
 746	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
 747					&dqm->fence_mem);
 748
 749	if (retval != 0)
 750		goto fail_allocate_vidmem;
 751
 752	dqm->fence_addr = dqm->fence_mem->cpu_ptr;
 753	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
 754
 755	init_interrupts(dqm);
 756
 757	list_for_each_entry(node, &dqm->queues, list)
 758		if (node->qpd->pqm->process && dqm->dev)
 759			kfd_bind_process_to_device(dqm->dev,
 760						node->qpd->pqm->process);
 761
 762	execute_queues_cpsch(dqm, true);
 763
 764	return 0;
 765fail_allocate_vidmem:
 766fail_set_sched_resources:
 767	pm_uninit(&dqm->packets);
 768fail_packet_manager_init:
 769	return retval;
 770}
 771
 772static int stop_cpsch(struct device_queue_manager *dqm)
 773{
 774	struct device_process_node *node;
 775	struct kfd_process_device *pdd;
 776
 777	BUG_ON(!dqm);
 778
 779	destroy_queues_cpsch(dqm, true, true);
 780
 781	list_for_each_entry(node, &dqm->queues, list) {
 782		pdd = qpd_to_pdd(node->qpd);
 783		pdd->bound = false;
 784	}
 785	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
 786	pm_uninit(&dqm->packets);
 787
 788	return 0;
 789}
 790
 791static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
 792					struct kernel_queue *kq,
 793					struct qcm_process_device *qpd)
 794{
 795	BUG_ON(!dqm || !kq || !qpd);
 796
 797	pr_debug("kfd: In func %s\n", __func__);
 798
 799	mutex_lock(&dqm->lock);
 800	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
 801		pr_warn("amdkfd: Can't create new kernel queue because %d queues were already created\n",
 802				dqm->total_queue_count);
 803		mutex_unlock(&dqm->lock);
 804		return -EPERM;
 805	}
 806
 807	/*
 808	 * Unconditionally increment this counter, regardless of the queue's
 809	 * type or whether the queue is active.
 810	 */
 811	dqm->total_queue_count++;
 812	pr_debug("Total of %d queues are accountable so far\n",
 813			dqm->total_queue_count);
 814
 815	list_add(&kq->list, &qpd->priv_queue_list);
 816	dqm->queue_count++;
 817	qpd->is_debug = true;
 818	execute_queues_cpsch(dqm, false);
 819	mutex_unlock(&dqm->lock);
 820
 821	return 0;
 822}
 823
 824static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
 825					struct kernel_queue *kq,
 826					struct qcm_process_device *qpd)
 827{
 828	BUG_ON(!dqm || !kq);
 829
 830	pr_debug("kfd: In %s\n", __func__);
 831
 832	mutex_lock(&dqm->lock);
 833	/* here we actually preempt the DIQ */
 834	destroy_queues_cpsch(dqm, true, false);
 835	list_del(&kq->list);
 836	dqm->queue_count--;
 837	qpd->is_debug = false;
 838	execute_queues_cpsch(dqm, false);
 839	/*
 840	 * Unconditionally decrement this counter, regardless of the queue's
 841	 * type.
 842	 */
 843	dqm->total_queue_count--;
 844	pr_debug("Total of %d queues are accountable so far\n",
 845			dqm->total_queue_count);
 846	mutex_unlock(&dqm->lock);
 847}
 848
 849static void select_sdma_engine_id(struct queue *q)
 850{
 851	static int sdma_id;
 852
 853	q->sdma_id = sdma_id;
 854	sdma_id = (sdma_id + 1) % 2;
 855}
 856
 857static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
 858			struct qcm_process_device *qpd, int *allocate_vmid)
 859{
 860	int retval;
 861	struct mqd_manager *mqd;
 862
 863	BUG_ON(!dqm || !q || !qpd);
 864
 865	retval = 0;
 866
 867	if (allocate_vmid)
 868		*allocate_vmid = 0;
 869
 870	mutex_lock(&dqm->lock);
 871
 872	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
 873		pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
 874				dqm->total_queue_count);
 875		retval = -EPERM;
 876		goto out;
 877	}
 878
 879	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
 880		select_sdma_engine_id(q);
 881
 882	mqd = dqm->ops.get_mqd_manager(dqm,
 883			get_mqd_type_from_queue_type(q->properties.type));
 884
 885	if (mqd == NULL) {
 886		mutex_unlock(&dqm->lock);
 887		return -ENOMEM;
 888	}
 889
 890	dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd);
 891	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
 892				&q->gart_mqd_addr, &q->properties);
 893	if (retval != 0)
 894		goto out;
 895
 896	list_add(&q->list, &qpd->queues_list);
 897	if (q->properties.is_active) {
 898		dqm->queue_count++;
 899		retval = execute_queues_cpsch(dqm, false);
 900	}
 901
 902	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
 903			dqm->sdma_queue_count++;
 904	/*
 905	 * Unconditionally increment this counter, regardless of the queue's
 906	 * type or whether the queue is active.
 907	 */
 908	dqm->total_queue_count++;
 909
 910	pr_debug("Total of %d queues are accountable so far\n",
 911			dqm->total_queue_count);
 912
 913out:
 914	mutex_unlock(&dqm->lock);
 915	return retval;
 916}
 917
 918int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
 919				unsigned int fence_value,
 920				unsigned long timeout)
 921{
 922	BUG_ON(!fence_addr);
 923	timeout += jiffies;
 924
 925	while (*fence_addr != fence_value) {
 926		if (time_after(jiffies, timeout)) {
 927			pr_err("kfd: qcm fence wait loop timeout expired\n");
 928			return -ETIME;
 929		}
 930		schedule();
 931	}
 932
 933	return 0;
 934}
 935
 936static int destroy_sdma_queues(struct device_queue_manager *dqm,
 937				unsigned int sdma_engine)
 938{
 939	return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
 940			KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES, 0, false,
 941			sdma_engine);
 942}
 943
 944static int destroy_queues_cpsch(struct device_queue_manager *dqm,
 945				bool preempt_static_queues, bool lock)
 946{
 947	int retval;
 948	enum kfd_preempt_type_filter preempt_type;
 949	struct kfd_process_device *pdd;
 950
 951	BUG_ON(!dqm);
 952
 953	retval = 0;
 954
 955	if (lock)
 956		mutex_lock(&dqm->lock);
 957	if (dqm->active_runlist == false)
 958		goto out;
 959
 960	pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n",
 961		dqm->sdma_queue_count);
 962
 963	if (dqm->sdma_queue_count > 0) {
 964		destroy_sdma_queues(dqm, 0);
 965		destroy_sdma_queues(dqm, 1);
 966	}
 967
 968	preempt_type = preempt_static_queues ?
 969			KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES :
 970			KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES;
 971
 972	retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
 973			preempt_type, 0, false, 0);
 974	if (retval != 0)
 975		goto out;
 976
 977	*dqm->fence_addr = KFD_FENCE_INIT;
 978	pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
 979				KFD_FENCE_COMPLETED);
 980	/* should be timed out */
 981	retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
 982				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
 983	if (retval != 0) {
 984		pdd = kfd_get_process_device_data(dqm->dev,
 985				kfd_get_process(current));
 986		pdd->reset_wavefronts = true;
 987		goto out;
 988	}
 989	pm_release_ib(&dqm->packets);
 990	dqm->active_runlist = false;
 991
 992out:
 993	if (lock)
 994		mutex_unlock(&dqm->lock);
 995	return retval;
 996}
 997
 998static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
 999{
1000	int retval;
1001
1002	BUG_ON(!dqm);
1003
1004	if (lock)
1005		mutex_lock(&dqm->lock);
1006
1007	retval = destroy_queues_cpsch(dqm, false, false);
1008	if (retval != 0) {
1009		pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
1010		goto out;
1011	}
1012
1013	if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
1014		retval = 0;
1015		goto out;
1016	}
1017
1018	if (dqm->active_runlist) {
1019		retval = 0;
1020		goto out;
1021	}
1022
1023	retval = pm_send_runlist(&dqm->packets, &dqm->queues);
1024	if (retval != 0) {
1025		pr_err("kfd: failed to execute runlist");
1026		goto out;
1027	}
1028	dqm->active_runlist = true;
1029
1030out:
1031	if (lock)
1032		mutex_unlock(&dqm->lock);
1033	return retval;
1034}
1035
1036static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1037				struct qcm_process_device *qpd,
1038				struct queue *q)
1039{
1040	int retval;
1041	struct mqd_manager *mqd;
1042	bool preempt_all_queues;
1043
1044	BUG_ON(!dqm || !qpd || !q);
1045
1046	preempt_all_queues = false;
1047
1048	retval = 0;
1049
1050	/* remove queue from list to prevent rescheduling after preemption */
1051	mutex_lock(&dqm->lock);
1052
1053	if (qpd->is_debug) {
1054		/*
1055		 * error, currently we do not allow to destroy a queue
1056		 * of a currently debugged process
1057		 */
1058		retval = -EBUSY;
1059		goto failed_try_destroy_debugged_queue;
1060
1061	}
1062
1063	mqd = dqm->ops.get_mqd_manager(dqm,
1064			get_mqd_type_from_queue_type(q->properties.type));
1065	if (!mqd) {
1066		retval = -ENOMEM;
1067		goto failed;
1068	}
1069
1070	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1071		dqm->sdma_queue_count--;
1072
1073	list_del(&q->list);
1074	if (q->properties.is_active)
1075		dqm->queue_count--;
1076
1077	execute_queues_cpsch(dqm, false);
1078
1079	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
1080
1081	/*
1082	 * Unconditionally decrement this counter, regardless of the queue's
1083	 * type
1084	 */
1085	dqm->total_queue_count--;
1086	pr_debug("Total of %d queues are accountable so far\n",
1087			dqm->total_queue_count);
1088
1089	mutex_unlock(&dqm->lock);
1090
1091	return 0;
1092
1093failed:
1094failed_try_destroy_debugged_queue:
1095
1096	mutex_unlock(&dqm->lock);
1097	return retval;
1098}
1099
1100/*
1101 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1102 * stay in user mode.
1103 */
1104#define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1105/* APE1 limit is inclusive and 64K aligned. */
1106#define APE1_LIMIT_ALIGNMENT 0xFFFF
1107
1108static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1109				   struct qcm_process_device *qpd,
1110				   enum cache_policy default_policy,
1111				   enum cache_policy alternate_policy,
1112				   void __user *alternate_aperture_base,
1113				   uint64_t alternate_aperture_size)
1114{
1115	bool retval;
1116
1117	pr_debug("kfd: In func %s\n", __func__);
1118
1119	mutex_lock(&dqm->lock);
1120
1121	if (alternate_aperture_size == 0) {
1122		/* base > limit disables APE1 */
1123		qpd->sh_mem_ape1_base = 1;
1124		qpd->sh_mem_ape1_limit = 0;
1125	} else {
1126		/*
1127		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1128		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
1129		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1130		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1131		 * Verify that the base and size parameters can be
1132		 * represented in this format and convert them.
1133		 * Additionally restrict APE1 to user-mode addresses.
1134		 */
1135
1136		uint64_t base = (uintptr_t)alternate_aperture_base;
1137		uint64_t limit = base + alternate_aperture_size - 1;
1138
1139		if (limit <= base)
1140			goto out;
1141
1142		if ((base & APE1_FIXED_BITS_MASK) != 0)
1143			goto out;
1144
1145		if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
1146			goto out;
1147
1148		qpd->sh_mem_ape1_base = base >> 16;
1149		qpd->sh_mem_ape1_limit = limit >> 16;
1150	}
1151
1152	retval = dqm->ops_asic_specific.set_cache_memory_policy(
1153			dqm,
1154			qpd,
1155			default_policy,
1156			alternate_policy,
1157			alternate_aperture_base,
1158			alternate_aperture_size);
1159
1160	if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1161		program_sh_mem_settings(dqm, qpd);
1162
1163	pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1164		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1165		qpd->sh_mem_ape1_limit);
1166
1167	mutex_unlock(&dqm->lock);
1168	return retval;
1169
1170out:
1171	mutex_unlock(&dqm->lock);
1172	return false;
1173}
1174
1175struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1176{
1177	struct device_queue_manager *dqm;
1178
1179	BUG_ON(!dev);
1180
1181	pr_debug("kfd: loading device queue manager\n");
1182
1183	dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
1184	if (!dqm)
1185		return NULL;
1186
1187	dqm->dev = dev;
1188	switch (sched_policy) {
1189	case KFD_SCHED_POLICY_HWS:
1190	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1191		/* initialize dqm for cp scheduling */
1192		dqm->ops.create_queue = create_queue_cpsch;
1193		dqm->ops.initialize = initialize_cpsch;
1194		dqm->ops.start = start_cpsch;
1195		dqm->ops.stop = stop_cpsch;
1196		dqm->ops.destroy_queue = destroy_queue_cpsch;
1197		dqm->ops.update_queue = update_queue;
1198		dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1199		dqm->ops.register_process = register_process_nocpsch;
1200		dqm->ops.unregister_process = unregister_process_nocpsch;
1201		dqm->ops.uninitialize = uninitialize_nocpsch;
1202		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1203		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1204		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1205		break;
1206	case KFD_SCHED_POLICY_NO_HWS:
1207		/* initialize dqm for no cp scheduling */
1208		dqm->ops.start = start_nocpsch;
1209		dqm->ops.stop = stop_nocpsch;
1210		dqm->ops.create_queue = create_queue_nocpsch;
1211		dqm->ops.destroy_queue = destroy_queue_nocpsch;
1212		dqm->ops.update_queue = update_queue;
1213		dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1214		dqm->ops.register_process = register_process_nocpsch;
1215		dqm->ops.unregister_process = unregister_process_nocpsch;
1216		dqm->ops.initialize = initialize_nocpsch;
1217		dqm->ops.uninitialize = uninitialize_nocpsch;
1218		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1219		break;
1220	default:
1221		BUG();
1222		break;
1223	}
1224
1225	switch (dev->device_info->asic_family) {
1226	case CHIP_CARRIZO:
1227		device_queue_manager_init_vi(&dqm->ops_asic_specific);
1228		break;
1229
1230	case CHIP_KAVERI:
1231		device_queue_manager_init_cik(&dqm->ops_asic_specific);
1232		break;
1233	}
1234
1235	if (dqm->ops.initialize(dqm) != 0) {
1236		kfree(dqm);
1237		return NULL;
1238	}
1239
1240	return dqm;
1241}
1242
1243void device_queue_manager_uninit(struct device_queue_manager *dqm)
1244{
1245	BUG_ON(!dqm);
1246
1247	dqm->ops.uninitialize(dqm);
1248	kfree(dqm);
1249}