Loading...
1#include <linux/init.h>
2#include <linux/clocksource.h>
3#include <linux/clockchips.h>
4#include <linux/interrupt.h>
5#include <linux/irq.h>
6
7#include <linux/clk.h>
8#include <linux/err.h>
9#include <linux/ioport.h>
10#include <linux/io.h>
11#include <linux/platform_device.h>
12#include <linux/atmel_tc.h>
13
14
15/*
16 * We're configured to use a specific TC block, one that's not hooked
17 * up to external hardware, to provide a time solution:
18 *
19 * - Two channels combine to create a free-running 32 bit counter
20 * with a base rate of 5+ MHz, packaged as a clocksource (with
21 * resolution better than 200 nsec).
22 *
23 * - The third channel may be used to provide a 16-bit clockevent
24 * source, used in either periodic or oneshot mode. This runs
25 * at 32 KiHZ, and can handle delays of up to two seconds.
26 *
27 * A boot clocksource and clockevent source are also currently needed,
28 * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
29 * this code can be used when init_timers() is called, well before most
30 * devices are set up. (Some low end AT91 parts, which can run uClinux,
31 * have only the timers in one TC block... they currently don't support
32 * the tclib code, because of that initialization issue.)
33 *
34 * REVISIT behavior during system suspend states... we should disable
35 * all clocks and save the power. Easily done for clockevent devices,
36 * but clocksources won't necessarily get the needed notifications.
37 * For deeper system sleep states, this will be mandatory...
38 */
39
40static void __iomem *tcaddr;
41
42static cycle_t tc_get_cycles(struct clocksource *cs)
43{
44 unsigned long flags;
45 u32 lower, upper;
46
47 raw_local_irq_save(flags);
48 do {
49 upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
50 lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
51 } while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
52
53 raw_local_irq_restore(flags);
54 return (upper << 16) | lower;
55}
56
57static struct clocksource clksrc = {
58 .name = "tcb_clksrc",
59 .rating = 200,
60 .read = tc_get_cycles,
61 .mask = CLOCKSOURCE_MASK(32),
62 .shift = 18,
63 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
64};
65
66#ifdef CONFIG_GENERIC_CLOCKEVENTS
67
68struct tc_clkevt_device {
69 struct clock_event_device clkevt;
70 struct clk *clk;
71 void __iomem *regs;
72};
73
74static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
75{
76 return container_of(clkevt, struct tc_clkevt_device, clkevt);
77}
78
79/* For now, we always use the 32K clock ... this optimizes for NO_HZ,
80 * because using one of the divided clocks would usually mean the
81 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
82 *
83 * A divided clock could be good for high resolution timers, since
84 * 30.5 usec resolution can seem "low".
85 */
86static u32 timer_clock;
87
88static void tc_mode(enum clock_event_mode m, struct clock_event_device *d)
89{
90 struct tc_clkevt_device *tcd = to_tc_clkevt(d);
91 void __iomem *regs = tcd->regs;
92
93 if (tcd->clkevt.mode == CLOCK_EVT_MODE_PERIODIC
94 || tcd->clkevt.mode == CLOCK_EVT_MODE_ONESHOT) {
95 __raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
96 __raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
97 clk_disable(tcd->clk);
98 }
99
100 switch (m) {
101
102 /* By not making the gentime core emulate periodic mode on top
103 * of oneshot, we get lower overhead and improved accuracy.
104 */
105 case CLOCK_EVT_MODE_PERIODIC:
106 clk_enable(tcd->clk);
107
108 /* slow clock, count up to RC, then irq and restart */
109 __raw_writel(timer_clock
110 | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
111 regs + ATMEL_TC_REG(2, CMR));
112 __raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
113
114 /* Enable clock and interrupts on RC compare */
115 __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
116
117 /* go go gadget! */
118 __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
119 regs + ATMEL_TC_REG(2, CCR));
120 break;
121
122 case CLOCK_EVT_MODE_ONESHOT:
123 clk_enable(tcd->clk);
124
125 /* slow clock, count up to RC, then irq and stop */
126 __raw_writel(timer_clock | ATMEL_TC_CPCSTOP
127 | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
128 regs + ATMEL_TC_REG(2, CMR));
129 __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
130
131 /* set_next_event() configures and starts the timer */
132 break;
133
134 default:
135 break;
136 }
137}
138
139static int tc_next_event(unsigned long delta, struct clock_event_device *d)
140{
141 __raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
142
143 /* go go gadget! */
144 __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
145 tcaddr + ATMEL_TC_REG(2, CCR));
146 return 0;
147}
148
149static struct tc_clkevt_device clkevt = {
150 .clkevt = {
151 .name = "tc_clkevt",
152 .features = CLOCK_EVT_FEAT_PERIODIC
153 | CLOCK_EVT_FEAT_ONESHOT,
154 .shift = 32,
155 /* Should be lower than at91rm9200's system timer */
156 .rating = 125,
157 .set_next_event = tc_next_event,
158 .set_mode = tc_mode,
159 },
160};
161
162static irqreturn_t ch2_irq(int irq, void *handle)
163{
164 struct tc_clkevt_device *dev = handle;
165 unsigned int sr;
166
167 sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
168 if (sr & ATMEL_TC_CPCS) {
169 dev->clkevt.event_handler(&dev->clkevt);
170 return IRQ_HANDLED;
171 }
172
173 return IRQ_NONE;
174}
175
176static struct irqaction tc_irqaction = {
177 .name = "tc_clkevt",
178 .flags = IRQF_TIMER | IRQF_DISABLED,
179 .handler = ch2_irq,
180};
181
182static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
183{
184 struct clk *t2_clk = tc->clk[2];
185 int irq = tc->irq[2];
186
187 clkevt.regs = tc->regs;
188 clkevt.clk = t2_clk;
189 tc_irqaction.dev_id = &clkevt;
190
191 timer_clock = clk32k_divisor_idx;
192
193 clkevt.clkevt.mult = div_sc(32768, NSEC_PER_SEC, clkevt.clkevt.shift);
194 clkevt.clkevt.max_delta_ns
195 = clockevent_delta2ns(0xffff, &clkevt.clkevt);
196 clkevt.clkevt.min_delta_ns = clockevent_delta2ns(1, &clkevt.clkevt) + 1;
197 clkevt.clkevt.cpumask = cpumask_of(0);
198
199 clockevents_register_device(&clkevt.clkevt);
200
201 setup_irq(irq, &tc_irqaction);
202}
203
204#else /* !CONFIG_GENERIC_CLOCKEVENTS */
205
206static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
207{
208 /* NOTHING */
209}
210
211#endif
212
213static int __init tcb_clksrc_init(void)
214{
215 static char bootinfo[] __initdata
216 = KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
217
218 struct platform_device *pdev;
219 struct atmel_tc *tc;
220 struct clk *t0_clk;
221 u32 rate, divided_rate = 0;
222 int best_divisor_idx = -1;
223 int clk32k_divisor_idx = -1;
224 int i;
225
226 tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK, clksrc.name);
227 if (!tc) {
228 pr_debug("can't alloc TC for clocksource\n");
229 return -ENODEV;
230 }
231 tcaddr = tc->regs;
232 pdev = tc->pdev;
233
234 t0_clk = tc->clk[0];
235 clk_enable(t0_clk);
236
237 /* How fast will we be counting? Pick something over 5 MHz. */
238 rate = (u32) clk_get_rate(t0_clk);
239 for (i = 0; i < 5; i++) {
240 unsigned divisor = atmel_tc_divisors[i];
241 unsigned tmp;
242
243 /* remember 32 KiHz clock for later */
244 if (!divisor) {
245 clk32k_divisor_idx = i;
246 continue;
247 }
248
249 tmp = rate / divisor;
250 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
251 if (best_divisor_idx > 0) {
252 if (tmp < 5 * 1000 * 1000)
253 continue;
254 }
255 divided_rate = tmp;
256 best_divisor_idx = i;
257 }
258
259 clksrc.mult = clocksource_hz2mult(divided_rate, clksrc.shift);
260
261 printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
262 divided_rate / 1000000,
263 ((divided_rate + 500000) % 1000000) / 1000);
264
265 /* tclib will give us three clocks no matter what the
266 * underlying platform supports.
267 */
268 clk_enable(tc->clk[1]);
269
270 /* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
271 __raw_writel(best_divisor_idx /* likely divide-by-8 */
272 | ATMEL_TC_WAVE
273 | ATMEL_TC_WAVESEL_UP /* free-run */
274 | ATMEL_TC_ACPA_SET /* TIOA0 rises at 0 */
275 | ATMEL_TC_ACPC_CLEAR, /* (duty cycle 50%) */
276 tcaddr + ATMEL_TC_REG(0, CMR));
277 __raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
278 __raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
279 __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
280 __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
281
282 /* channel 1: waveform mode, input TIOA0 */
283 __raw_writel(ATMEL_TC_XC1 /* input: TIOA0 */
284 | ATMEL_TC_WAVE
285 | ATMEL_TC_WAVESEL_UP, /* free-run */
286 tcaddr + ATMEL_TC_REG(1, CMR));
287 __raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR)); /* no irqs */
288 __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
289
290 /* chain channel 0 to channel 1, then reset all the timers */
291 __raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
292 __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
293
294 /* and away we go! */
295 clocksource_register(&clksrc);
296
297 /* channel 2: periodic and oneshot timer support */
298 setup_clkevents(tc, clk32k_divisor_idx);
299
300 return 0;
301}
302arch_initcall(tcb_clksrc_init);
1#include <linux/init.h>
2#include <linux/clocksource.h>
3#include <linux/clockchips.h>
4#include <linux/interrupt.h>
5#include <linux/irq.h>
6
7#include <linux/clk.h>
8#include <linux/err.h>
9#include <linux/ioport.h>
10#include <linux/io.h>
11#include <linux/platform_device.h>
12#include <linux/atmel_tc.h>
13
14
15/*
16 * We're configured to use a specific TC block, one that's not hooked
17 * up to external hardware, to provide a time solution:
18 *
19 * - Two channels combine to create a free-running 32 bit counter
20 * with a base rate of 5+ MHz, packaged as a clocksource (with
21 * resolution better than 200 nsec).
22 * - Some chips support 32 bit counter. A single channel is used for
23 * this 32 bit free-running counter. the second channel is not used.
24 *
25 * - The third channel may be used to provide a 16-bit clockevent
26 * source, used in either periodic or oneshot mode. This runs
27 * at 32 KiHZ, and can handle delays of up to two seconds.
28 *
29 * A boot clocksource and clockevent source are also currently needed,
30 * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
31 * this code can be used when init_timers() is called, well before most
32 * devices are set up. (Some low end AT91 parts, which can run uClinux,
33 * have only the timers in one TC block... they currently don't support
34 * the tclib code, because of that initialization issue.)
35 *
36 * REVISIT behavior during system suspend states... we should disable
37 * all clocks and save the power. Easily done for clockevent devices,
38 * but clocksources won't necessarily get the needed notifications.
39 * For deeper system sleep states, this will be mandatory...
40 */
41
42static void __iomem *tcaddr;
43
44static cycle_t tc_get_cycles(struct clocksource *cs)
45{
46 unsigned long flags;
47 u32 lower, upper;
48
49 raw_local_irq_save(flags);
50 do {
51 upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
52 lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
53 } while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
54
55 raw_local_irq_restore(flags);
56 return (upper << 16) | lower;
57}
58
59static cycle_t tc_get_cycles32(struct clocksource *cs)
60{
61 return __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
62}
63
64static struct clocksource clksrc = {
65 .name = "tcb_clksrc",
66 .rating = 200,
67 .read = tc_get_cycles,
68 .mask = CLOCKSOURCE_MASK(32),
69 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
70};
71
72#ifdef CONFIG_GENERIC_CLOCKEVENTS
73
74struct tc_clkevt_device {
75 struct clock_event_device clkevt;
76 struct clk *clk;
77 void __iomem *regs;
78};
79
80static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
81{
82 return container_of(clkevt, struct tc_clkevt_device, clkevt);
83}
84
85/* For now, we always use the 32K clock ... this optimizes for NO_HZ,
86 * because using one of the divided clocks would usually mean the
87 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
88 *
89 * A divided clock could be good for high resolution timers, since
90 * 30.5 usec resolution can seem "low".
91 */
92static u32 timer_clock;
93
94static int tc_shutdown(struct clock_event_device *d)
95{
96 struct tc_clkevt_device *tcd = to_tc_clkevt(d);
97 void __iomem *regs = tcd->regs;
98
99 __raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
100 __raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
101 if (!clockevent_state_detached(d))
102 clk_disable(tcd->clk);
103
104 return 0;
105}
106
107static int tc_set_oneshot(struct clock_event_device *d)
108{
109 struct tc_clkevt_device *tcd = to_tc_clkevt(d);
110 void __iomem *regs = tcd->regs;
111
112 if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
113 tc_shutdown(d);
114
115 clk_enable(tcd->clk);
116
117 /* slow clock, count up to RC, then irq and stop */
118 __raw_writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
119 ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
120 __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
121
122 /* set_next_event() configures and starts the timer */
123 return 0;
124}
125
126static int tc_set_periodic(struct clock_event_device *d)
127{
128 struct tc_clkevt_device *tcd = to_tc_clkevt(d);
129 void __iomem *regs = tcd->regs;
130
131 if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
132 tc_shutdown(d);
133
134 /* By not making the gentime core emulate periodic mode on top
135 * of oneshot, we get lower overhead and improved accuracy.
136 */
137 clk_enable(tcd->clk);
138
139 /* slow clock, count up to RC, then irq and restart */
140 __raw_writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
141 regs + ATMEL_TC_REG(2, CMR));
142 __raw_writel((32768 + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
143
144 /* Enable clock and interrupts on RC compare */
145 __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
146
147 /* go go gadget! */
148 __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
149 ATMEL_TC_REG(2, CCR));
150 return 0;
151}
152
153static int tc_next_event(unsigned long delta, struct clock_event_device *d)
154{
155 __raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
156
157 /* go go gadget! */
158 __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
159 tcaddr + ATMEL_TC_REG(2, CCR));
160 return 0;
161}
162
163static struct tc_clkevt_device clkevt = {
164 .clkevt = {
165 .name = "tc_clkevt",
166 .features = CLOCK_EVT_FEAT_PERIODIC |
167 CLOCK_EVT_FEAT_ONESHOT,
168 /* Should be lower than at91rm9200's system timer */
169 .rating = 125,
170 .set_next_event = tc_next_event,
171 .set_state_shutdown = tc_shutdown,
172 .set_state_periodic = tc_set_periodic,
173 .set_state_oneshot = tc_set_oneshot,
174 },
175};
176
177static irqreturn_t ch2_irq(int irq, void *handle)
178{
179 struct tc_clkevt_device *dev = handle;
180 unsigned int sr;
181
182 sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
183 if (sr & ATMEL_TC_CPCS) {
184 dev->clkevt.event_handler(&dev->clkevt);
185 return IRQ_HANDLED;
186 }
187
188 return IRQ_NONE;
189}
190
191static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
192{
193 int ret;
194 struct clk *t2_clk = tc->clk[2];
195 int irq = tc->irq[2];
196
197 ret = clk_prepare_enable(tc->slow_clk);
198 if (ret)
199 return ret;
200
201 /* try to enable t2 clk to avoid future errors in mode change */
202 ret = clk_prepare_enable(t2_clk);
203 if (ret) {
204 clk_disable_unprepare(tc->slow_clk);
205 return ret;
206 }
207
208 clk_disable(t2_clk);
209
210 clkevt.regs = tc->regs;
211 clkevt.clk = t2_clk;
212
213 timer_clock = clk32k_divisor_idx;
214
215 clkevt.clkevt.cpumask = cpumask_of(0);
216
217 ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
218 if (ret) {
219 clk_unprepare(t2_clk);
220 clk_disable_unprepare(tc->slow_clk);
221 return ret;
222 }
223
224 clockevents_config_and_register(&clkevt.clkevt, 32768, 1, 0xffff);
225
226 return ret;
227}
228
229#else /* !CONFIG_GENERIC_CLOCKEVENTS */
230
231static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
232{
233 /* NOTHING */
234 return 0;
235}
236
237#endif
238
239static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
240{
241 /* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
242 __raw_writel(mck_divisor_idx /* likely divide-by-8 */
243 | ATMEL_TC_WAVE
244 | ATMEL_TC_WAVESEL_UP /* free-run */
245 | ATMEL_TC_ACPA_SET /* TIOA0 rises at 0 */
246 | ATMEL_TC_ACPC_CLEAR, /* (duty cycle 50%) */
247 tcaddr + ATMEL_TC_REG(0, CMR));
248 __raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
249 __raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
250 __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
251 __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
252
253 /* channel 1: waveform mode, input TIOA0 */
254 __raw_writel(ATMEL_TC_XC1 /* input: TIOA0 */
255 | ATMEL_TC_WAVE
256 | ATMEL_TC_WAVESEL_UP, /* free-run */
257 tcaddr + ATMEL_TC_REG(1, CMR));
258 __raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR)); /* no irqs */
259 __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
260
261 /* chain channel 0 to channel 1*/
262 __raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
263 /* then reset all the timers */
264 __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
265}
266
267static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
268{
269 /* channel 0: waveform mode, input mclk/8 */
270 __raw_writel(mck_divisor_idx /* likely divide-by-8 */
271 | ATMEL_TC_WAVE
272 | ATMEL_TC_WAVESEL_UP, /* free-run */
273 tcaddr + ATMEL_TC_REG(0, CMR));
274 __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
275 __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
276
277 /* then reset all the timers */
278 __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
279}
280
281static int __init tcb_clksrc_init(void)
282{
283 static char bootinfo[] __initdata
284 = KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
285
286 struct platform_device *pdev;
287 struct atmel_tc *tc;
288 struct clk *t0_clk;
289 u32 rate, divided_rate = 0;
290 int best_divisor_idx = -1;
291 int clk32k_divisor_idx = -1;
292 int i;
293 int ret;
294
295 tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK);
296 if (!tc) {
297 pr_debug("can't alloc TC for clocksource\n");
298 return -ENODEV;
299 }
300 tcaddr = tc->regs;
301 pdev = tc->pdev;
302
303 t0_clk = tc->clk[0];
304 ret = clk_prepare_enable(t0_clk);
305 if (ret) {
306 pr_debug("can't enable T0 clk\n");
307 goto err_free_tc;
308 }
309
310 /* How fast will we be counting? Pick something over 5 MHz. */
311 rate = (u32) clk_get_rate(t0_clk);
312 for (i = 0; i < 5; i++) {
313 unsigned divisor = atmel_tc_divisors[i];
314 unsigned tmp;
315
316 /* remember 32 KiHz clock for later */
317 if (!divisor) {
318 clk32k_divisor_idx = i;
319 continue;
320 }
321
322 tmp = rate / divisor;
323 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
324 if (best_divisor_idx > 0) {
325 if (tmp < 5 * 1000 * 1000)
326 continue;
327 }
328 divided_rate = tmp;
329 best_divisor_idx = i;
330 }
331
332
333 printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
334 divided_rate / 1000000,
335 ((divided_rate + 500000) % 1000000) / 1000);
336
337 if (tc->tcb_config && tc->tcb_config->counter_width == 32) {
338 /* use apropriate function to read 32 bit counter */
339 clksrc.read = tc_get_cycles32;
340 /* setup ony channel 0 */
341 tcb_setup_single_chan(tc, best_divisor_idx);
342 } else {
343 /* tclib will give us three clocks no matter what the
344 * underlying platform supports.
345 */
346 ret = clk_prepare_enable(tc->clk[1]);
347 if (ret) {
348 pr_debug("can't enable T1 clk\n");
349 goto err_disable_t0;
350 }
351 /* setup both channel 0 & 1 */
352 tcb_setup_dual_chan(tc, best_divisor_idx);
353 }
354
355 /* and away we go! */
356 ret = clocksource_register_hz(&clksrc, divided_rate);
357 if (ret)
358 goto err_disable_t1;
359
360 /* channel 2: periodic and oneshot timer support */
361 ret = setup_clkevents(tc, clk32k_divisor_idx);
362 if (ret)
363 goto err_unregister_clksrc;
364
365 return 0;
366
367err_unregister_clksrc:
368 clocksource_unregister(&clksrc);
369
370err_disable_t1:
371 if (!tc->tcb_config || tc->tcb_config->counter_width != 32)
372 clk_disable_unprepare(tc->clk[1]);
373
374err_disable_t0:
375 clk_disable_unprepare(t0_clk);
376
377err_free_tc:
378 atmel_tc_free(tc);
379 return ret;
380}
381arch_initcall(tcb_clksrc_init);