Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.1.
   1/*
   2 *
   3 *  Bluetooth HCI UART driver for Intel devices
   4 *
   5 *  Copyright (C) 2015  Intel Corporation
   6 *
   7 *
   8 *  This program is free software; you can redistribute it and/or modify
   9 *  it under the terms of the GNU General Public License as published by
  10 *  the Free Software Foundation; either version 2 of the License, or
  11 *  (at your option) any later version.
  12 *
  13 *  This program is distributed in the hope that it will be useful,
  14 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 *  GNU General Public License for more details.
  17 *
  18 *  You should have received a copy of the GNU General Public License
  19 *  along with this program; if not, write to the Free Software
  20 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 *
  22 */
  23
  24#include <linux/kernel.h>
  25#include <linux/errno.h>
  26#include <linux/skbuff.h>
  27#include <linux/firmware.h>
  28#include <linux/module.h>
  29#include <linux/wait.h>
  30#include <linux/tty.h>
  31#include <linux/platform_device.h>
  32#include <linux/gpio/consumer.h>
  33#include <linux/acpi.h>
  34#include <linux/interrupt.h>
  35#include <linux/pm_runtime.h>
  36
  37#include <net/bluetooth/bluetooth.h>
  38#include <net/bluetooth/hci_core.h>
  39
  40#include "hci_uart.h"
  41#include "btintel.h"
  42
  43#define STATE_BOOTLOADER	0
  44#define STATE_DOWNLOADING	1
  45#define STATE_FIRMWARE_LOADED	2
  46#define STATE_FIRMWARE_FAILED	3
  47#define STATE_BOOTING		4
  48#define STATE_LPM_ENABLED	5
  49#define STATE_TX_ACTIVE		6
  50#define STATE_SUSPENDED		7
  51#define STATE_LPM_TRANSACTION	8
  52
  53#define HCI_LPM_WAKE_PKT 0xf0
  54#define HCI_LPM_PKT 0xf1
  55#define HCI_LPM_MAX_SIZE 10
  56#define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
  57
  58#define LPM_OP_TX_NOTIFY 0x00
  59#define LPM_OP_SUSPEND_ACK 0x02
  60#define LPM_OP_RESUME_ACK 0x03
  61
  62#define LPM_SUSPEND_DELAY_MS 1000
  63
  64struct hci_lpm_pkt {
  65	__u8 opcode;
  66	__u8 dlen;
  67	__u8 data[0];
  68} __packed;
  69
  70struct intel_device {
  71	struct list_head list;
  72	struct platform_device *pdev;
  73	struct gpio_desc *reset;
  74	struct hci_uart *hu;
  75	struct mutex hu_lock;
  76	int irq;
  77};
  78
  79static LIST_HEAD(intel_device_list);
  80static DEFINE_MUTEX(intel_device_list_lock);
  81
  82struct intel_data {
  83	struct sk_buff *rx_skb;
  84	struct sk_buff_head txq;
  85	struct work_struct busy_work;
  86	struct hci_uart *hu;
  87	unsigned long flags;
  88};
  89
  90static u8 intel_convert_speed(unsigned int speed)
  91{
  92	switch (speed) {
  93	case 9600:
  94		return 0x00;
  95	case 19200:
  96		return 0x01;
  97	case 38400:
  98		return 0x02;
  99	case 57600:
 100		return 0x03;
 101	case 115200:
 102		return 0x04;
 103	case 230400:
 104		return 0x05;
 105	case 460800:
 106		return 0x06;
 107	case 921600:
 108		return 0x07;
 109	case 1843200:
 110		return 0x08;
 111	case 3250000:
 112		return 0x09;
 113	case 2000000:
 114		return 0x0a;
 115	case 3000000:
 116		return 0x0b;
 117	default:
 118		return 0xff;
 119	}
 120}
 121
 122static int intel_wait_booting(struct hci_uart *hu)
 123{
 124	struct intel_data *intel = hu->priv;
 125	int err;
 126
 127	err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
 128				  TASK_INTERRUPTIBLE,
 129				  msecs_to_jiffies(1000));
 130
 131	if (err == 1) {
 132		bt_dev_err(hu->hdev, "Device boot interrupted");
 133		return -EINTR;
 134	}
 135
 136	if (err) {
 137		bt_dev_err(hu->hdev, "Device boot timeout");
 138		return -ETIMEDOUT;
 139	}
 140
 141	return err;
 142}
 143
 144#ifdef CONFIG_PM
 145static int intel_wait_lpm_transaction(struct hci_uart *hu)
 146{
 147	struct intel_data *intel = hu->priv;
 148	int err;
 149
 150	err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
 151				  TASK_INTERRUPTIBLE,
 152				  msecs_to_jiffies(1000));
 153
 154	if (err == 1) {
 155		bt_dev_err(hu->hdev, "LPM transaction interrupted");
 156		return -EINTR;
 157	}
 158
 159	if (err) {
 160		bt_dev_err(hu->hdev, "LPM transaction timeout");
 161		return -ETIMEDOUT;
 162	}
 163
 164	return err;
 165}
 166
 167static int intel_lpm_suspend(struct hci_uart *hu)
 168{
 169	static const u8 suspend[] = { 0x01, 0x01, 0x01 };
 170	struct intel_data *intel = hu->priv;
 171	struct sk_buff *skb;
 172
 173	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
 174	    test_bit(STATE_SUSPENDED, &intel->flags))
 175		return 0;
 176
 177	if (test_bit(STATE_TX_ACTIVE, &intel->flags))
 178		return -EAGAIN;
 179
 180	bt_dev_dbg(hu->hdev, "Suspending");
 181
 182	skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
 183	if (!skb) {
 184		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
 185		return -ENOMEM;
 186	}
 187
 188	memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend));
 189	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
 190
 191	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
 192
 193	/* LPM flow is a priority, enqueue packet at list head */
 194	skb_queue_head(&intel->txq, skb);
 195	hci_uart_tx_wakeup(hu);
 196
 197	intel_wait_lpm_transaction(hu);
 198	/* Even in case of failure, continue and test the suspended flag */
 199
 200	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
 201
 202	if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
 203		bt_dev_err(hu->hdev, "Device suspend error");
 204		return -EINVAL;
 205	}
 206
 207	bt_dev_dbg(hu->hdev, "Suspended");
 208
 209	hci_uart_set_flow_control(hu, true);
 210
 211	return 0;
 212}
 213
 214static int intel_lpm_resume(struct hci_uart *hu)
 215{
 216	struct intel_data *intel = hu->priv;
 217	struct sk_buff *skb;
 218
 219	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
 220	    !test_bit(STATE_SUSPENDED, &intel->flags))
 221		return 0;
 222
 223	bt_dev_dbg(hu->hdev, "Resuming");
 224
 225	hci_uart_set_flow_control(hu, false);
 226
 227	skb = bt_skb_alloc(0, GFP_KERNEL);
 228	if (!skb) {
 229		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
 230		return -ENOMEM;
 231	}
 232
 233	hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
 234
 235	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
 236
 237	/* LPM flow is a priority, enqueue packet at list head */
 238	skb_queue_head(&intel->txq, skb);
 239	hci_uart_tx_wakeup(hu);
 240
 241	intel_wait_lpm_transaction(hu);
 242	/* Even in case of failure, continue and test the suspended flag */
 243
 244	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
 245
 246	if (test_bit(STATE_SUSPENDED, &intel->flags)) {
 247		bt_dev_err(hu->hdev, "Device resume error");
 248		return -EINVAL;
 249	}
 250
 251	bt_dev_dbg(hu->hdev, "Resumed");
 252
 253	return 0;
 254}
 255#endif /* CONFIG_PM */
 256
 257static int intel_lpm_host_wake(struct hci_uart *hu)
 258{
 259	static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
 260	struct intel_data *intel = hu->priv;
 261	struct sk_buff *skb;
 262
 263	hci_uart_set_flow_control(hu, false);
 264
 265	clear_bit(STATE_SUSPENDED, &intel->flags);
 266
 267	skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
 268	if (!skb) {
 269		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
 270		return -ENOMEM;
 271	}
 272
 273	memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack,
 274	       sizeof(lpm_resume_ack));
 275	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
 276
 277	/* LPM flow is a priority, enqueue packet at list head */
 278	skb_queue_head(&intel->txq, skb);
 279	hci_uart_tx_wakeup(hu);
 280
 281	bt_dev_dbg(hu->hdev, "Resumed by controller");
 282
 283	return 0;
 284}
 285
 286static irqreturn_t intel_irq(int irq, void *dev_id)
 287{
 288	struct intel_device *idev = dev_id;
 289
 290	dev_info(&idev->pdev->dev, "hci_intel irq\n");
 291
 292	mutex_lock(&idev->hu_lock);
 293	if (idev->hu)
 294		intel_lpm_host_wake(idev->hu);
 295	mutex_unlock(&idev->hu_lock);
 296
 297	/* Host/Controller are now LPM resumed, trigger a new delayed suspend */
 298	pm_runtime_get(&idev->pdev->dev);
 299	pm_runtime_mark_last_busy(&idev->pdev->dev);
 300	pm_runtime_put_autosuspend(&idev->pdev->dev);
 301
 302	return IRQ_HANDLED;
 303}
 304
 305static int intel_set_power(struct hci_uart *hu, bool powered)
 306{
 307	struct list_head *p;
 308	int err = -ENODEV;
 309
 310	mutex_lock(&intel_device_list_lock);
 311
 312	list_for_each(p, &intel_device_list) {
 313		struct intel_device *idev = list_entry(p, struct intel_device,
 314						       list);
 315
 316		/* tty device and pdev device should share the same parent
 317		 * which is the UART port.
 318		 */
 319		if (hu->tty->dev->parent != idev->pdev->dev.parent)
 320			continue;
 321
 322		if (!idev->reset) {
 323			err = -ENOTSUPP;
 324			break;
 325		}
 326
 327		BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
 328			hu, dev_name(&idev->pdev->dev), powered);
 329
 330		gpiod_set_value(idev->reset, powered);
 331
 332		/* Provide to idev a hu reference which is used to run LPM
 333		 * transactions (lpm suspend/resume) from PM callbacks.
 334		 * hu needs to be protected against concurrent removing during
 335		 * these PM ops.
 336		 */
 337		mutex_lock(&idev->hu_lock);
 338		idev->hu = powered ? hu : NULL;
 339		mutex_unlock(&idev->hu_lock);
 340
 341		if (idev->irq < 0)
 342			break;
 343
 344		if (powered && device_can_wakeup(&idev->pdev->dev)) {
 345			err = devm_request_threaded_irq(&idev->pdev->dev,
 346							idev->irq, NULL,
 347							intel_irq,
 348							IRQF_ONESHOT,
 349							"bt-host-wake", idev);
 350			if (err) {
 351				BT_ERR("hu %p, unable to allocate irq-%d",
 352				       hu, idev->irq);
 353				break;
 354			}
 355
 356			device_wakeup_enable(&idev->pdev->dev);
 357
 358			pm_runtime_set_active(&idev->pdev->dev);
 359			pm_runtime_use_autosuspend(&idev->pdev->dev);
 360			pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
 361							 LPM_SUSPEND_DELAY_MS);
 362			pm_runtime_enable(&idev->pdev->dev);
 363		} else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
 364			devm_free_irq(&idev->pdev->dev, idev->irq, idev);
 365			device_wakeup_disable(&idev->pdev->dev);
 366
 367			pm_runtime_disable(&idev->pdev->dev);
 368		}
 369	}
 370
 371	mutex_unlock(&intel_device_list_lock);
 372
 373	return err;
 374}
 375
 376static void intel_busy_work(struct work_struct *work)
 377{
 378	struct list_head *p;
 379	struct intel_data *intel = container_of(work, struct intel_data,
 380						busy_work);
 381
 382	/* Link is busy, delay the suspend */
 383	mutex_lock(&intel_device_list_lock);
 384	list_for_each(p, &intel_device_list) {
 385		struct intel_device *idev = list_entry(p, struct intel_device,
 386						       list);
 387
 388		if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
 389			pm_runtime_get(&idev->pdev->dev);
 390			pm_runtime_mark_last_busy(&idev->pdev->dev);
 391			pm_runtime_put_autosuspend(&idev->pdev->dev);
 392			break;
 393		}
 394	}
 395	mutex_unlock(&intel_device_list_lock);
 396}
 397
 398static int intel_open(struct hci_uart *hu)
 399{
 400	struct intel_data *intel;
 401
 402	BT_DBG("hu %p", hu);
 403
 404	intel = kzalloc(sizeof(*intel), GFP_KERNEL);
 405	if (!intel)
 406		return -ENOMEM;
 407
 408	skb_queue_head_init(&intel->txq);
 409	INIT_WORK(&intel->busy_work, intel_busy_work);
 410
 411	intel->hu = hu;
 412
 413	hu->priv = intel;
 414
 415	if (!intel_set_power(hu, true))
 416		set_bit(STATE_BOOTING, &intel->flags);
 417
 418	return 0;
 419}
 420
 421static int intel_close(struct hci_uart *hu)
 422{
 423	struct intel_data *intel = hu->priv;
 424
 425	BT_DBG("hu %p", hu);
 426
 427	cancel_work_sync(&intel->busy_work);
 428
 429	intel_set_power(hu, false);
 430
 431	skb_queue_purge(&intel->txq);
 432	kfree_skb(intel->rx_skb);
 433	kfree(intel);
 434
 435	hu->priv = NULL;
 436	return 0;
 437}
 438
 439static int intel_flush(struct hci_uart *hu)
 440{
 441	struct intel_data *intel = hu->priv;
 442
 443	BT_DBG("hu %p", hu);
 444
 445	skb_queue_purge(&intel->txq);
 446
 447	return 0;
 448}
 449
 450static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
 451{
 452	struct sk_buff *skb;
 453	struct hci_event_hdr *hdr;
 454	struct hci_ev_cmd_complete *evt;
 455
 456	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
 457	if (!skb)
 458		return -ENOMEM;
 459
 460	hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
 461	hdr->evt = HCI_EV_CMD_COMPLETE;
 462	hdr->plen = sizeof(*evt) + 1;
 463
 464	evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
 465	evt->ncmd = 0x01;
 466	evt->opcode = cpu_to_le16(opcode);
 467
 468	*skb_put(skb, 1) = 0x00;
 469
 470	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
 471
 472	return hci_recv_frame(hdev, skb);
 473}
 474
 475static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
 476{
 477	struct intel_data *intel = hu->priv;
 478	struct hci_dev *hdev = hu->hdev;
 479	u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
 480	struct sk_buff *skb;
 481	int err;
 482
 483	/* This can be the first command sent to the chip, check
 484	 * that the controller is ready.
 485	 */
 486	err = intel_wait_booting(hu);
 487
 488	clear_bit(STATE_BOOTING, &intel->flags);
 489
 490	/* In case of timeout, try to continue anyway */
 491	if (err && err != -ETIMEDOUT)
 492		return err;
 493
 494	bt_dev_info(hdev, "Change controller speed to %d", speed);
 495
 496	speed_cmd[3] = intel_convert_speed(speed);
 497	if (speed_cmd[3] == 0xff) {
 498		bt_dev_err(hdev, "Unsupported speed");
 499		return -EINVAL;
 500	}
 501
 502	/* Device will not accept speed change if Intel version has not been
 503	 * previously requested.
 504	 */
 505	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
 506	if (IS_ERR(skb)) {
 507		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
 508			   PTR_ERR(skb));
 509		return PTR_ERR(skb);
 510	}
 511	kfree_skb(skb);
 512
 513	skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
 514	if (!skb) {
 515		bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
 516		return -ENOMEM;
 517	}
 518
 519	memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd));
 520	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
 521
 522	hci_uart_set_flow_control(hu, true);
 523
 524	skb_queue_tail(&intel->txq, skb);
 525	hci_uart_tx_wakeup(hu);
 526
 527	/* wait 100ms to change baudrate on controller side */
 528	msleep(100);
 529
 530	hci_uart_set_baudrate(hu, speed);
 531	hci_uart_set_flow_control(hu, false);
 532
 533	return 0;
 534}
 535
 536static int intel_setup(struct hci_uart *hu)
 537{
 538	static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
 539					  0x00, 0x08, 0x04, 0x00 };
 540	static const u8 lpm_param[] = { 0x03, 0x07, 0x01, 0x0b };
 541	struct intel_data *intel = hu->priv;
 542	struct intel_device *idev = NULL;
 543	struct hci_dev *hdev = hu->hdev;
 544	struct sk_buff *skb;
 545	struct intel_version ver;
 546	struct intel_boot_params *params;
 547	struct list_head *p;
 548	const struct firmware *fw;
 549	const u8 *fw_ptr;
 550	char fwname[64];
 551	u32 frag_len;
 552	ktime_t calltime, delta, rettime;
 553	unsigned long long duration;
 554	unsigned int init_speed, oper_speed;
 555	int speed_change = 0;
 556	int err;
 557
 558	bt_dev_dbg(hdev, "start intel_setup");
 559
 560	hu->hdev->set_diag = btintel_set_diag;
 561	hu->hdev->set_bdaddr = btintel_set_bdaddr;
 562
 563	calltime = ktime_get();
 564
 565	if (hu->init_speed)
 566		init_speed = hu->init_speed;
 567	else
 568		init_speed = hu->proto->init_speed;
 569
 570	if (hu->oper_speed)
 571		oper_speed = hu->oper_speed;
 572	else
 573		oper_speed = hu->proto->oper_speed;
 574
 575	if (oper_speed && init_speed && oper_speed != init_speed)
 576		speed_change = 1;
 577
 578	/* Check that the controller is ready */
 579	err = intel_wait_booting(hu);
 580
 581	clear_bit(STATE_BOOTING, &intel->flags);
 582
 583	/* In case of timeout, try to continue anyway */
 584	if (err && err != -ETIMEDOUT)
 585		return err;
 586
 587	set_bit(STATE_BOOTLOADER, &intel->flags);
 588
 589	/* Read the Intel version information to determine if the device
 590	 * is in bootloader mode or if it already has operational firmware
 591	 * loaded.
 592	 */
 593	 err = btintel_read_version(hdev, &ver);
 594	 if (err)
 595		return err;
 596
 597	/* The hardware platform number has a fixed value of 0x37 and
 598	 * for now only accept this single value.
 599	 */
 600	if (ver.hw_platform != 0x37) {
 601		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
 602			   ver.hw_platform);
 603		return -EINVAL;
 604	}
 605
 606	/* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is
 607	 * supported by this firmware loading method. This check has been
 608	 * put in place to ensure correct forward compatibility options
 609	 * when newer hardware variants come along.
 610	 */
 611	if (ver.hw_variant != 0x0b) {
 612		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
 613			   ver.hw_variant);
 614		return -EINVAL;
 615	}
 616
 617	btintel_version_info(hdev, &ver);
 618
 619	/* The firmware variant determines if the device is in bootloader
 620	 * mode or is running operational firmware. The value 0x06 identifies
 621	 * the bootloader and the value 0x23 identifies the operational
 622	 * firmware.
 623	 *
 624	 * When the operational firmware is already present, then only
 625	 * the check for valid Bluetooth device address is needed. This
 626	 * determines if the device will be added as configured or
 627	 * unconfigured controller.
 628	 *
 629	 * It is not possible to use the Secure Boot Parameters in this
 630	 * case since that command is only available in bootloader mode.
 631	 */
 632	if (ver.fw_variant == 0x23) {
 633		clear_bit(STATE_BOOTLOADER, &intel->flags);
 634		btintel_check_bdaddr(hdev);
 635		return 0;
 636	}
 637
 638	/* If the device is not in bootloader mode, then the only possible
 639	 * choice is to return an error and abort the device initialization.
 640	 */
 641	if (ver.fw_variant != 0x06) {
 642		bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
 643			   ver.fw_variant);
 644		return -ENODEV;
 645	}
 646
 647	/* Read the secure boot parameters to identify the operating
 648	 * details of the bootloader.
 649	 */
 650	skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_CMD_TIMEOUT);
 651	if (IS_ERR(skb)) {
 652		bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
 653			   PTR_ERR(skb));
 654		return PTR_ERR(skb);
 655	}
 656
 657	if (skb->len != sizeof(*params)) {
 658		bt_dev_err(hdev, "Intel boot parameters size mismatch");
 659		kfree_skb(skb);
 660		return -EILSEQ;
 661	}
 662
 663	params = (struct intel_boot_params *)skb->data;
 664	if (params->status) {
 665		bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
 666			   params->status);
 667		err = -bt_to_errno(params->status);
 668		kfree_skb(skb);
 669		return err;
 670	}
 671
 672	bt_dev_info(hdev, "Device revision is %u",
 673		    le16_to_cpu(params->dev_revid));
 674
 675	bt_dev_info(hdev, "Secure boot is %s",
 676		    params->secure_boot ? "enabled" : "disabled");
 677
 678	bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
 679		params->min_fw_build_nn, params->min_fw_build_cw,
 680		2000 + params->min_fw_build_yy);
 681
 682	/* It is required that every single firmware fragment is acknowledged
 683	 * with a command complete event. If the boot parameters indicate
 684	 * that this bootloader does not send them, then abort the setup.
 685	 */
 686	if (params->limited_cce != 0x00) {
 687		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
 688			   params->limited_cce);
 689		kfree_skb(skb);
 690		return -EINVAL;
 691	}
 692
 693	/* If the OTP has no valid Bluetooth device address, then there will
 694	 * also be no valid address for the operational firmware.
 695	 */
 696	if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
 697		bt_dev_info(hdev, "No device address configured");
 698		set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
 699	}
 700
 701	/* With this Intel bootloader only the hardware variant and device
 702	 * revision information are used to select the right firmware.
 703	 *
 704	 * Currently this bootloader support is limited to hardware variant
 705	 * iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b).
 706	 */
 707	snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi",
 708		 le16_to_cpu(params->dev_revid));
 709
 710	err = request_firmware(&fw, fwname, &hdev->dev);
 711	if (err < 0) {
 712		bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
 713			   err);
 714		kfree_skb(skb);
 715		return err;
 716	}
 717
 718	bt_dev_info(hdev, "Found device firmware: %s", fwname);
 719
 720	/* Save the DDC file name for later */
 721	snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.ddc",
 722		 le16_to_cpu(params->dev_revid));
 723
 724	kfree_skb(skb);
 725
 726	if (fw->size < 644) {
 727		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
 728			   fw->size);
 729		err = -EBADF;
 730		goto done;
 731	}
 732
 733	set_bit(STATE_DOWNLOADING, &intel->flags);
 734
 735	/* Start the firmware download transaction with the Init fragment
 736	 * represented by the 128 bytes of CSS header.
 737	 */
 738	err = btintel_secure_send(hdev, 0x00, 128, fw->data);
 739	if (err < 0) {
 740		bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
 741		goto done;
 742	}
 743
 744	/* Send the 256 bytes of public key information from the firmware
 745	 * as the PKey fragment.
 746	 */
 747	err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
 748	if (err < 0) {
 749		bt_dev_err(hdev, "Failed to send firmware public key (%d)",
 750			   err);
 751		goto done;
 752	}
 753
 754	/* Send the 256 bytes of signature information from the firmware
 755	 * as the Sign fragment.
 756	 */
 757	err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
 758	if (err < 0) {
 759		bt_dev_err(hdev, "Failed to send firmware signature (%d)",
 760			   err);
 761		goto done;
 762	}
 763
 764	fw_ptr = fw->data + 644;
 765	frag_len = 0;
 766
 767	while (fw_ptr - fw->data < fw->size) {
 768		struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
 769
 770		frag_len += sizeof(*cmd) + cmd->plen;
 771
 772		bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
 773			   fw->size);
 774
 775		/* The parameter length of the secure send command requires
 776		 * a 4 byte alignment. It happens so that the firmware file
 777		 * contains proper Intel_NOP commands to align the fragments
 778		 * as needed.
 779		 *
 780		 * Send set of commands with 4 byte alignment from the
 781		 * firmware data buffer as a single Data fragement.
 782		 */
 783		if (frag_len % 4)
 784			continue;
 785
 786		/* Send each command from the firmware data buffer as
 787		 * a single Data fragment.
 788		 */
 789		err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
 790		if (err < 0) {
 791			bt_dev_err(hdev, "Failed to send firmware data (%d)",
 792				   err);
 793			goto done;
 794		}
 795
 796		fw_ptr += frag_len;
 797		frag_len = 0;
 798	}
 799
 800	set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
 801
 802	bt_dev_info(hdev, "Waiting for firmware download to complete");
 803
 804	/* Before switching the device into operational mode and with that
 805	 * booting the loaded firmware, wait for the bootloader notification
 806	 * that all fragments have been successfully received.
 807	 *
 808	 * When the event processing receives the notification, then the
 809	 * STATE_DOWNLOADING flag will be cleared.
 810	 *
 811	 * The firmware loading should not take longer than 5 seconds
 812	 * and thus just timeout if that happens and fail the setup
 813	 * of this device.
 814	 */
 815	err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
 816				  TASK_INTERRUPTIBLE,
 817				  msecs_to_jiffies(5000));
 818	if (err == 1) {
 819		bt_dev_err(hdev, "Firmware loading interrupted");
 820		err = -EINTR;
 821		goto done;
 822	}
 823
 824	if (err) {
 825		bt_dev_err(hdev, "Firmware loading timeout");
 826		err = -ETIMEDOUT;
 827		goto done;
 828	}
 829
 830	if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
 831		bt_dev_err(hdev, "Firmware loading failed");
 832		err = -ENOEXEC;
 833		goto done;
 834	}
 835
 836	rettime = ktime_get();
 837	delta = ktime_sub(rettime, calltime);
 838	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
 839
 840	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
 841
 842done:
 843	release_firmware(fw);
 844
 845	if (err < 0)
 846		return err;
 847
 848	/* We need to restore the default speed before Intel reset */
 849	if (speed_change) {
 850		err = intel_set_baudrate(hu, init_speed);
 851		if (err)
 852			return err;
 853	}
 854
 855	calltime = ktime_get();
 856
 857	set_bit(STATE_BOOTING, &intel->flags);
 858
 859	skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
 860			     HCI_CMD_TIMEOUT);
 861	if (IS_ERR(skb))
 862		return PTR_ERR(skb);
 863
 864	kfree_skb(skb);
 865
 866	/* The bootloader will not indicate when the device is ready. This
 867	 * is done by the operational firmware sending bootup notification.
 868	 *
 869	 * Booting into operational firmware should not take longer than
 870	 * 1 second. However if that happens, then just fail the setup
 871	 * since something went wrong.
 872	 */
 873	bt_dev_info(hdev, "Waiting for device to boot");
 874
 875	err = intel_wait_booting(hu);
 876	if (err)
 877		return err;
 878
 879	clear_bit(STATE_BOOTING, &intel->flags);
 880
 881	rettime = ktime_get();
 882	delta = ktime_sub(rettime, calltime);
 883	duration = (unsigned long long) ktime_to_ns(delta) >> 10;
 884
 885	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
 886
 887	/* Enable LPM if matching pdev with wakeup enabled */
 888	mutex_lock(&intel_device_list_lock);
 889	list_for_each(p, &intel_device_list) {
 890		struct intel_device *dev = list_entry(p, struct intel_device,
 891						      list);
 892		if (hu->tty->dev->parent == dev->pdev->dev.parent) {
 893			if (device_may_wakeup(&dev->pdev->dev))
 894				idev = dev;
 895			break;
 896		}
 897	}
 898	mutex_unlock(&intel_device_list_lock);
 899
 900	if (!idev)
 901		goto no_lpm;
 902
 903	bt_dev_info(hdev, "Enabling LPM");
 904
 905	skb = __hci_cmd_sync(hdev, 0xfc8b, sizeof(lpm_param), lpm_param,
 906			     HCI_CMD_TIMEOUT);
 907	if (IS_ERR(skb)) {
 908		bt_dev_err(hdev, "Failed to enable LPM");
 909		goto no_lpm;
 910	}
 911	kfree_skb(skb);
 912
 913	set_bit(STATE_LPM_ENABLED, &intel->flags);
 914
 915no_lpm:
 916	/* Ignore errors, device can work without DDC parameters */
 917	btintel_load_ddc_config(hdev, fwname);
 918
 919	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
 920	if (IS_ERR(skb))
 921		return PTR_ERR(skb);
 922	kfree_skb(skb);
 923
 924	if (speed_change) {
 925		err = intel_set_baudrate(hu, oper_speed);
 926		if (err)
 927			return err;
 928	}
 929
 930	bt_dev_info(hdev, "Setup complete");
 931
 932	clear_bit(STATE_BOOTLOADER, &intel->flags);
 933
 934	return 0;
 935}
 936
 937static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
 938{
 939	struct hci_uart *hu = hci_get_drvdata(hdev);
 940	struct intel_data *intel = hu->priv;
 941	struct hci_event_hdr *hdr;
 942
 943	if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
 944	    !test_bit(STATE_BOOTING, &intel->flags))
 945		goto recv;
 946
 947	hdr = (void *)skb->data;
 948
 949	/* When the firmware loading completes the device sends
 950	 * out a vendor specific event indicating the result of
 951	 * the firmware loading.
 952	 */
 953	if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
 954	    skb->data[2] == 0x06) {
 955		if (skb->data[3] != 0x00)
 956			set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
 957
 958		if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
 959		    test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
 960			smp_mb__after_atomic();
 961			wake_up_bit(&intel->flags, STATE_DOWNLOADING);
 962		}
 963
 964	/* When switching to the operational firmware the device
 965	 * sends a vendor specific event indicating that the bootup
 966	 * completed.
 967	 */
 968	} else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
 969		   skb->data[2] == 0x02) {
 970		if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
 971			smp_mb__after_atomic();
 972			wake_up_bit(&intel->flags, STATE_BOOTING);
 973		}
 974	}
 975recv:
 976	return hci_recv_frame(hdev, skb);
 977}
 978
 979static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
 980{
 981	struct hci_uart *hu = hci_get_drvdata(hdev);
 982	struct intel_data *intel = hu->priv;
 983
 984	bt_dev_dbg(hdev, "TX idle notification (%d)", value);
 985
 986	if (value) {
 987		set_bit(STATE_TX_ACTIVE, &intel->flags);
 988		schedule_work(&intel->busy_work);
 989	} else {
 990		clear_bit(STATE_TX_ACTIVE, &intel->flags);
 991	}
 992}
 993
 994static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
 995{
 996	struct hci_lpm_pkt *lpm = (void *)skb->data;
 997	struct hci_uart *hu = hci_get_drvdata(hdev);
 998	struct intel_data *intel = hu->priv;
 999
1000	switch (lpm->opcode) {
1001	case LPM_OP_TX_NOTIFY:
1002		if (lpm->dlen < 1) {
1003			bt_dev_err(hu->hdev, "Invalid LPM notification packet");
1004			break;
1005		}
1006		intel_recv_lpm_notify(hdev, lpm->data[0]);
1007		break;
1008	case LPM_OP_SUSPEND_ACK:
1009		set_bit(STATE_SUSPENDED, &intel->flags);
1010		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1011			smp_mb__after_atomic();
1012			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1013		}
1014		break;
1015	case LPM_OP_RESUME_ACK:
1016		clear_bit(STATE_SUSPENDED, &intel->flags);
1017		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1018			smp_mb__after_atomic();
1019			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1020		}
1021		break;
1022	default:
1023		bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
1024		break;
1025	}
1026
1027	kfree_skb(skb);
1028
1029	return 0;
1030}
1031
1032#define INTEL_RECV_LPM \
1033	.type = HCI_LPM_PKT, \
1034	.hlen = HCI_LPM_HDR_SIZE, \
1035	.loff = 1, \
1036	.lsize = 1, \
1037	.maxlen = HCI_LPM_MAX_SIZE
1038
1039static const struct h4_recv_pkt intel_recv_pkts[] = {
1040	{ H4_RECV_ACL,    .recv = hci_recv_frame   },
1041	{ H4_RECV_SCO,    .recv = hci_recv_frame   },
1042	{ H4_RECV_EVENT,  .recv = intel_recv_event },
1043	{ INTEL_RECV_LPM, .recv = intel_recv_lpm   },
1044};
1045
1046static int intel_recv(struct hci_uart *hu, const void *data, int count)
1047{
1048	struct intel_data *intel = hu->priv;
1049
1050	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1051		return -EUNATCH;
1052
1053	intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
1054				    intel_recv_pkts,
1055				    ARRAY_SIZE(intel_recv_pkts));
1056	if (IS_ERR(intel->rx_skb)) {
1057		int err = PTR_ERR(intel->rx_skb);
1058		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1059		intel->rx_skb = NULL;
1060		return err;
1061	}
1062
1063	return count;
1064}
1065
1066static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1067{
1068	struct intel_data *intel = hu->priv;
1069	struct list_head *p;
1070
1071	BT_DBG("hu %p skb %p", hu, skb);
1072
1073	/* Be sure our controller is resumed and potential LPM transaction
1074	 * completed before enqueuing any packet.
1075	 */
1076	mutex_lock(&intel_device_list_lock);
1077	list_for_each(p, &intel_device_list) {
1078		struct intel_device *idev = list_entry(p, struct intel_device,
1079						       list);
1080
1081		if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1082			pm_runtime_get_sync(&idev->pdev->dev);
1083			pm_runtime_mark_last_busy(&idev->pdev->dev);
1084			pm_runtime_put_autosuspend(&idev->pdev->dev);
1085			break;
1086		}
1087	}
1088	mutex_unlock(&intel_device_list_lock);
1089
1090	skb_queue_tail(&intel->txq, skb);
1091
1092	return 0;
1093}
1094
1095static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1096{
1097	struct intel_data *intel = hu->priv;
1098	struct sk_buff *skb;
1099
1100	skb = skb_dequeue(&intel->txq);
1101	if (!skb)
1102		return skb;
1103
1104	if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1105	    (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1106		struct hci_command_hdr *cmd = (void *)skb->data;
1107		__u16 opcode = le16_to_cpu(cmd->opcode);
1108
1109		/* When the 0xfc01 command is issued to boot into
1110		 * the operational firmware, it will actually not
1111		 * send a command complete event. To keep the flow
1112		 * control working inject that event here.
1113		 */
1114		if (opcode == 0xfc01)
1115			inject_cmd_complete(hu->hdev, opcode);
1116	}
1117
1118	/* Prepend skb with frame type */
1119	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1120
1121	return skb;
1122}
1123
1124static const struct hci_uart_proto intel_proto = {
1125	.id		= HCI_UART_INTEL,
1126	.name		= "Intel",
1127	.manufacturer	= 2,
1128	.init_speed	= 115200,
1129	.oper_speed	= 3000000,
1130	.open		= intel_open,
1131	.close		= intel_close,
1132	.flush		= intel_flush,
1133	.setup		= intel_setup,
1134	.set_baudrate	= intel_set_baudrate,
1135	.recv		= intel_recv,
1136	.enqueue	= intel_enqueue,
1137	.dequeue	= intel_dequeue,
1138};
1139
1140#ifdef CONFIG_ACPI
1141static const struct acpi_device_id intel_acpi_match[] = {
1142	{ "INT33E1", 0 },
1143	{ },
1144};
1145MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1146#endif
1147
1148#ifdef CONFIG_PM
1149static int intel_suspend_device(struct device *dev)
1150{
1151	struct intel_device *idev = dev_get_drvdata(dev);
1152
1153	mutex_lock(&idev->hu_lock);
1154	if (idev->hu)
1155		intel_lpm_suspend(idev->hu);
1156	mutex_unlock(&idev->hu_lock);
1157
1158	return 0;
1159}
1160
1161static int intel_resume_device(struct device *dev)
1162{
1163	struct intel_device *idev = dev_get_drvdata(dev);
1164
1165	mutex_lock(&idev->hu_lock);
1166	if (idev->hu)
1167		intel_lpm_resume(idev->hu);
1168	mutex_unlock(&idev->hu_lock);
1169
1170	return 0;
1171}
1172#endif
1173
1174#ifdef CONFIG_PM_SLEEP
1175static int intel_suspend(struct device *dev)
1176{
1177	struct intel_device *idev = dev_get_drvdata(dev);
1178
1179	if (device_may_wakeup(dev))
1180		enable_irq_wake(idev->irq);
1181
1182	return intel_suspend_device(dev);
1183}
1184
1185static int intel_resume(struct device *dev)
1186{
1187	struct intel_device *idev = dev_get_drvdata(dev);
1188
1189	if (device_may_wakeup(dev))
1190		disable_irq_wake(idev->irq);
1191
1192	return intel_resume_device(dev);
1193}
1194#endif
1195
1196static const struct dev_pm_ops intel_pm_ops = {
1197	SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1198	SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1199};
1200
1201static int intel_probe(struct platform_device *pdev)
1202{
1203	struct intel_device *idev;
1204
1205	idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1206	if (!idev)
1207		return -ENOMEM;
1208
1209	mutex_init(&idev->hu_lock);
1210
1211	idev->pdev = pdev;
1212
1213	idev->reset = devm_gpiod_get_optional(&pdev->dev, "reset",
1214					      GPIOD_OUT_LOW);
1215	if (IS_ERR(idev->reset)) {
1216		dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1217		return PTR_ERR(idev->reset);
1218	}
1219
1220	idev->irq = platform_get_irq(pdev, 0);
1221	if (idev->irq < 0) {
1222		struct gpio_desc *host_wake;
1223
1224		dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1225
1226		host_wake = devm_gpiod_get_optional(&pdev->dev, "host-wake",
1227						    GPIOD_IN);
1228		if (IS_ERR(host_wake)) {
1229			dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1230			goto no_irq;
1231		}
1232
1233		idev->irq = gpiod_to_irq(host_wake);
1234		if (idev->irq < 0) {
1235			dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1236			goto no_irq;
1237		}
1238	}
1239
1240	/* Only enable wake-up/irq when controller is powered */
1241	device_set_wakeup_capable(&pdev->dev, true);
1242	device_wakeup_disable(&pdev->dev);
1243
1244no_irq:
1245	platform_set_drvdata(pdev, idev);
1246
1247	/* Place this instance on the device list */
1248	mutex_lock(&intel_device_list_lock);
1249	list_add_tail(&idev->list, &intel_device_list);
1250	mutex_unlock(&intel_device_list_lock);
1251
1252	dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1253		 desc_to_gpio(idev->reset), idev->irq);
1254
1255	return 0;
1256}
1257
1258static int intel_remove(struct platform_device *pdev)
1259{
1260	struct intel_device *idev = platform_get_drvdata(pdev);
1261
1262	device_wakeup_disable(&pdev->dev);
1263
1264	mutex_lock(&intel_device_list_lock);
1265	list_del(&idev->list);
1266	mutex_unlock(&intel_device_list_lock);
1267
1268	dev_info(&pdev->dev, "unregistered.\n");
1269
1270	return 0;
1271}
1272
1273static struct platform_driver intel_driver = {
1274	.probe = intel_probe,
1275	.remove = intel_remove,
1276	.driver = {
1277		.name = "hci_intel",
1278		.acpi_match_table = ACPI_PTR(intel_acpi_match),
1279		.pm = &intel_pm_ops,
1280	},
1281};
1282
1283int __init intel_init(void)
1284{
1285	platform_driver_register(&intel_driver);
1286
1287	return hci_uart_register_proto(&intel_proto);
1288}
1289
1290int __exit intel_deinit(void)
1291{
1292	platform_driver_unregister(&intel_driver);
1293
1294	return hci_uart_unregister_proto(&intel_proto);
1295}