Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2
   3  he.c
   4
   5  ForeRunnerHE ATM Adapter driver for ATM on Linux
   6  Copyright (C) 1999-2001  Naval Research Laboratory
   7
   8  This library is free software; you can redistribute it and/or
   9  modify it under the terms of the GNU Lesser General Public
  10  License as published by the Free Software Foundation; either
  11  version 2.1 of the License, or (at your option) any later version.
  12
  13  This library is distributed in the hope that it will be useful,
  14  but WITHOUT ANY WARRANTY; without even the implied warranty of
  15  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16  Lesser General Public License for more details.
  17
  18  You should have received a copy of the GNU Lesser General Public
  19  License along with this library; if not, write to the Free Software
  20  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21
  22*/
  23
  24/*
  25
  26  he.c
  27
  28  ForeRunnerHE ATM Adapter driver for ATM on Linux
  29  Copyright (C) 1999-2001  Naval Research Laboratory
  30
  31  Permission to use, copy, modify and distribute this software and its
  32  documentation is hereby granted, provided that both the copyright
  33  notice and this permission notice appear in all copies of the software,
  34  derivative works or modified versions, and any portions thereof, and
  35  that both notices appear in supporting documentation.
  36
  37  NRL ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION AND
  38  DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
  39  RESULTING FROM THE USE OF THIS SOFTWARE.
  40
  41  This driver was written using the "Programmer's Reference Manual for
  42  ForeRunnerHE(tm)", MANU0361-01 - Rev. A, 08/21/98.
  43
  44  AUTHORS:
  45	chas williams <chas@cmf.nrl.navy.mil>
  46	eric kinzie <ekinzie@cmf.nrl.navy.mil>
  47
  48  NOTES:
  49	4096 supported 'connections'
  50	group 0 is used for all traffic
  51	interrupt queue 0 is used for all interrupts
  52	aal0 support (based on work from ulrich.u.muller@nokia.com)
  53
  54 */
  55
  56#include <linux/module.h>
  57#include <linux/kernel.h>
  58#include <linux/skbuff.h>
  59#include <linux/pci.h>
  60#include <linux/errno.h>
  61#include <linux/types.h>
  62#include <linux/string.h>
  63#include <linux/delay.h>
  64#include <linux/init.h>
  65#include <linux/mm.h>
  66#include <linux/sched.h>
  67#include <linux/timer.h>
  68#include <linux/interrupt.h>
  69#include <linux/dma-mapping.h>
  70#include <linux/bitmap.h>
  71#include <linux/slab.h>
  72#include <asm/io.h>
  73#include <asm/byteorder.h>
  74#include <asm/uaccess.h>
  75
  76#include <linux/atmdev.h>
  77#include <linux/atm.h>
  78#include <linux/sonet.h>
  79
  80#undef USE_SCATTERGATHER
  81#undef USE_CHECKSUM_HW			/* still confused about this */
  82/* #undef HE_DEBUG */
  83
  84#include "he.h"
  85#include "suni.h"
  86#include <linux/atm_he.h>
  87
  88#define hprintk(fmt,args...)	printk(KERN_ERR DEV_LABEL "%d: " fmt, he_dev->number , ##args)
  89
  90#ifdef HE_DEBUG
  91#define HPRINTK(fmt,args...)	printk(KERN_DEBUG DEV_LABEL "%d: " fmt, he_dev->number , ##args)
  92#else /* !HE_DEBUG */
  93#define HPRINTK(fmt,args...)	do { } while (0)
  94#endif /* HE_DEBUG */
  95
  96/* declarations */
  97
  98static int he_open(struct atm_vcc *vcc);
  99static void he_close(struct atm_vcc *vcc);
 100static int he_send(struct atm_vcc *vcc, struct sk_buff *skb);
 101static int he_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg);
 102static irqreturn_t he_irq_handler(int irq, void *dev_id);
 103static void he_tasklet(unsigned long data);
 104static int he_proc_read(struct atm_dev *dev,loff_t *pos,char *page);
 105static int he_start(struct atm_dev *dev);
 106static void he_stop(struct he_dev *dev);
 107static void he_phy_put(struct atm_dev *, unsigned char, unsigned long);
 108static unsigned char he_phy_get(struct atm_dev *, unsigned long);
 109
 110static u8 read_prom_byte(struct he_dev *he_dev, int addr);
 111
 112/* globals */
 113
 114static struct he_dev *he_devs;
 115static int disable64;
 116static short nvpibits = -1;
 117static short nvcibits = -1;
 118static short rx_skb_reserve = 16;
 119static int irq_coalesce = 1;
 120static int sdh = 0;
 121
 122/* Read from EEPROM = 0000 0011b */
 123static unsigned int readtab[] = {
 124	CS_HIGH | CLK_HIGH,
 125	CS_LOW | CLK_LOW,
 126	CLK_HIGH,               /* 0 */
 127	CLK_LOW,
 128	CLK_HIGH,               /* 0 */
 129	CLK_LOW,
 130	CLK_HIGH,               /* 0 */
 131	CLK_LOW,
 132	CLK_HIGH,               /* 0 */
 133	CLK_LOW,
 134	CLK_HIGH,               /* 0 */
 135	CLK_LOW,
 136	CLK_HIGH,               /* 0 */
 137	CLK_LOW | SI_HIGH,
 138	CLK_HIGH | SI_HIGH,     /* 1 */
 139	CLK_LOW | SI_HIGH,
 140	CLK_HIGH | SI_HIGH      /* 1 */
 141};     
 142 
 143/* Clock to read from/write to the EEPROM */
 144static unsigned int clocktab[] = {
 145	CLK_LOW,
 146	CLK_HIGH,
 147	CLK_LOW,
 148	CLK_HIGH,
 149	CLK_LOW,
 150	CLK_HIGH,
 151	CLK_LOW,
 152	CLK_HIGH,
 153	CLK_LOW,
 154	CLK_HIGH,
 155	CLK_LOW,
 156	CLK_HIGH,
 157	CLK_LOW,
 158	CLK_HIGH,
 159	CLK_LOW,
 160	CLK_HIGH,
 161	CLK_LOW
 162};     
 163
 164static struct atmdev_ops he_ops =
 165{
 166	.open =		he_open,
 167	.close =	he_close,	
 168	.ioctl =	he_ioctl,	
 169	.send =		he_send,
 170	.phy_put =	he_phy_put,
 171	.phy_get =	he_phy_get,
 172	.proc_read =	he_proc_read,
 173	.owner =	THIS_MODULE
 174};
 175
 176#define he_writel(dev, val, reg)	do { writel(val, (dev)->membase + (reg)); wmb(); } while (0)
 177#define he_readl(dev, reg)		readl((dev)->membase + (reg))
 178
 179/* section 2.12 connection memory access */
 180
 181static __inline__ void
 182he_writel_internal(struct he_dev *he_dev, unsigned val, unsigned addr,
 183								unsigned flags)
 184{
 185	he_writel(he_dev, val, CON_DAT);
 186	(void) he_readl(he_dev, CON_DAT);		/* flush posted writes */
 187	he_writel(he_dev, flags | CON_CTL_WRITE | CON_CTL_ADDR(addr), CON_CTL);
 188	while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
 189}
 190
 191#define he_writel_rcm(dev, val, reg) 				\
 192			he_writel_internal(dev, val, reg, CON_CTL_RCM)
 193
 194#define he_writel_tcm(dev, val, reg) 				\
 195			he_writel_internal(dev, val, reg, CON_CTL_TCM)
 196
 197#define he_writel_mbox(dev, val, reg) 				\
 198			he_writel_internal(dev, val, reg, CON_CTL_MBOX)
 199
 200static unsigned
 201he_readl_internal(struct he_dev *he_dev, unsigned addr, unsigned flags)
 202{
 203	he_writel(he_dev, flags | CON_CTL_READ | CON_CTL_ADDR(addr), CON_CTL);
 204	while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
 205	return he_readl(he_dev, CON_DAT);
 206}
 207
 208#define he_readl_rcm(dev, reg) \
 209			he_readl_internal(dev, reg, CON_CTL_RCM)
 210
 211#define he_readl_tcm(dev, reg) \
 212			he_readl_internal(dev, reg, CON_CTL_TCM)
 213
 214#define he_readl_mbox(dev, reg) \
 215			he_readl_internal(dev, reg, CON_CTL_MBOX)
 216
 217
 218/* figure 2.2 connection id */
 219
 220#define he_mkcid(dev, vpi, vci)		(((vpi << (dev)->vcibits) | vci) & 0x1fff)
 221
 222/* 2.5.1 per connection transmit state registers */
 223
 224#define he_writel_tsr0(dev, val, cid) \
 225		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 0)
 226#define he_readl_tsr0(dev, cid) \
 227		he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 0)
 228
 229#define he_writel_tsr1(dev, val, cid) \
 230		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 1)
 231
 232#define he_writel_tsr2(dev, val, cid) \
 233		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 2)
 234
 235#define he_writel_tsr3(dev, val, cid) \
 236		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 3)
 237
 238#define he_writel_tsr4(dev, val, cid) \
 239		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 4)
 240
 241	/* from page 2-20
 242	 *
 243	 * NOTE While the transmit connection is active, bits 23 through 0
 244	 *      of this register must not be written by the host.  Byte
 245	 *      enables should be used during normal operation when writing
 246	 *      the most significant byte.
 247	 */
 248
 249#define he_writel_tsr4_upper(dev, val, cid) \
 250		he_writel_internal(dev, val, CONFIG_TSRA | (cid << 3) | 4, \
 251							CON_CTL_TCM \
 252							| CON_BYTE_DISABLE_2 \
 253							| CON_BYTE_DISABLE_1 \
 254							| CON_BYTE_DISABLE_0)
 255
 256#define he_readl_tsr4(dev, cid) \
 257		he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 4)
 258
 259#define he_writel_tsr5(dev, val, cid) \
 260		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 5)
 261
 262#define he_writel_tsr6(dev, val, cid) \
 263		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 6)
 264
 265#define he_writel_tsr7(dev, val, cid) \
 266		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 7)
 267
 268
 269#define he_writel_tsr8(dev, val, cid) \
 270		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 0)
 271
 272#define he_writel_tsr9(dev, val, cid) \
 273		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 1)
 274
 275#define he_writel_tsr10(dev, val, cid) \
 276		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 2)
 277
 278#define he_writel_tsr11(dev, val, cid) \
 279		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 3)
 280
 281
 282#define he_writel_tsr12(dev, val, cid) \
 283		he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 0)
 284
 285#define he_writel_tsr13(dev, val, cid) \
 286		he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 1)
 287
 288
 289#define he_writel_tsr14(dev, val, cid) \
 290		he_writel_tcm(dev, val, CONFIG_TSRD | cid)
 291
 292#define he_writel_tsr14_upper(dev, val, cid) \
 293		he_writel_internal(dev, val, CONFIG_TSRD | cid, \
 294							CON_CTL_TCM \
 295							| CON_BYTE_DISABLE_2 \
 296							| CON_BYTE_DISABLE_1 \
 297							| CON_BYTE_DISABLE_0)
 298
 299/* 2.7.1 per connection receive state registers */
 300
 301#define he_writel_rsr0(dev, val, cid) \
 302		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 0)
 303#define he_readl_rsr0(dev, cid) \
 304		he_readl_rcm(dev, 0x00000 | (cid << 3) | 0)
 305
 306#define he_writel_rsr1(dev, val, cid) \
 307		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 1)
 308
 309#define he_writel_rsr2(dev, val, cid) \
 310		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 2)
 311
 312#define he_writel_rsr3(dev, val, cid) \
 313		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 3)
 314
 315#define he_writel_rsr4(dev, val, cid) \
 316		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 4)
 317
 318#define he_writel_rsr5(dev, val, cid) \
 319		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 5)
 320
 321#define he_writel_rsr6(dev, val, cid) \
 322		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 6)
 323
 324#define he_writel_rsr7(dev, val, cid) \
 325		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 7)
 326
 327static __inline__ struct atm_vcc*
 328__find_vcc(struct he_dev *he_dev, unsigned cid)
 329{
 330	struct hlist_head *head;
 331	struct atm_vcc *vcc;
 332	struct hlist_node *node;
 333	struct sock *s;
 334	short vpi;
 335	int vci;
 336
 337	vpi = cid >> he_dev->vcibits;
 338	vci = cid & ((1 << he_dev->vcibits) - 1);
 339	head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)];
 340
 341	sk_for_each(s, node, head) {
 342		vcc = atm_sk(s);
 343		if (vcc->dev == he_dev->atm_dev &&
 344		    vcc->vci == vci && vcc->vpi == vpi &&
 345		    vcc->qos.rxtp.traffic_class != ATM_NONE) {
 346				return vcc;
 347		}
 348	}
 349	return NULL;
 350}
 351
 352static int __devinit
 353he_init_one(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
 354{
 355	struct atm_dev *atm_dev = NULL;
 356	struct he_dev *he_dev = NULL;
 357	int err = 0;
 358
 359	printk(KERN_INFO "ATM he driver\n");
 360
 361	if (pci_enable_device(pci_dev))
 362		return -EIO;
 363	if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32)) != 0) {
 364		printk(KERN_WARNING "he: no suitable dma available\n");
 365		err = -EIO;
 366		goto init_one_failure;
 367	}
 368
 369	atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &he_ops, -1, NULL);
 370	if (!atm_dev) {
 371		err = -ENODEV;
 372		goto init_one_failure;
 373	}
 374	pci_set_drvdata(pci_dev, atm_dev);
 375
 376	he_dev = kzalloc(sizeof(struct he_dev),
 377							GFP_KERNEL);
 378	if (!he_dev) {
 379		err = -ENOMEM;
 380		goto init_one_failure;
 381	}
 382	he_dev->pci_dev = pci_dev;
 383	he_dev->atm_dev = atm_dev;
 384	he_dev->atm_dev->dev_data = he_dev;
 385	atm_dev->dev_data = he_dev;
 386	he_dev->number = atm_dev->number;
 387	tasklet_init(&he_dev->tasklet, he_tasklet, (unsigned long) he_dev);
 388	spin_lock_init(&he_dev->global_lock);
 389
 390	if (he_start(atm_dev)) {
 391		he_stop(he_dev);
 392		err = -ENODEV;
 393		goto init_one_failure;
 394	}
 395	he_dev->next = NULL;
 396	if (he_devs)
 397		he_dev->next = he_devs;
 398	he_devs = he_dev;
 399	return 0;
 400
 401init_one_failure:
 402	if (atm_dev)
 403		atm_dev_deregister(atm_dev);
 404	kfree(he_dev);
 405	pci_disable_device(pci_dev);
 406	return err;
 407}
 408
 409static void __devexit
 410he_remove_one (struct pci_dev *pci_dev)
 411{
 412	struct atm_dev *atm_dev;
 413	struct he_dev *he_dev;
 414
 415	atm_dev = pci_get_drvdata(pci_dev);
 416	he_dev = HE_DEV(atm_dev);
 417
 418	/* need to remove from he_devs */
 419
 420	he_stop(he_dev);
 421	atm_dev_deregister(atm_dev);
 422	kfree(he_dev);
 423
 424	pci_set_drvdata(pci_dev, NULL);
 425	pci_disable_device(pci_dev);
 426}
 427
 428
 429static unsigned
 430rate_to_atmf(unsigned rate)		/* cps to atm forum format */
 431{
 432#define NONZERO (1 << 14)
 433
 434	unsigned exp = 0;
 435
 436	if (rate == 0)
 437		return 0;
 438
 439	rate <<= 9;
 440	while (rate > 0x3ff) {
 441		++exp;
 442		rate >>= 1;
 443	}
 444
 445	return (NONZERO | (exp << 9) | (rate & 0x1ff));
 446}
 447
 448static void __devinit
 449he_init_rx_lbfp0(struct he_dev *he_dev)
 450{
 451	unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
 452	unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
 453	unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
 454	unsigned row_offset = he_dev->r0_startrow * he_dev->bytes_per_row;
 455	
 456	lbufd_index = 0;
 457	lbm_offset = he_readl(he_dev, RCMLBM_BA);
 458
 459	he_writel(he_dev, lbufd_index, RLBF0_H);
 460
 461	for (i = 0, lbuf_count = 0; i < he_dev->r0_numbuffs; ++i) {
 462		lbufd_index += 2;
 463		lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
 464
 465		he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
 466		he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
 467
 468		if (++lbuf_count == lbufs_per_row) {
 469			lbuf_count = 0;
 470			row_offset += he_dev->bytes_per_row;
 471		}
 472		lbm_offset += 4;
 473	}
 474		
 475	he_writel(he_dev, lbufd_index - 2, RLBF0_T);
 476	he_writel(he_dev, he_dev->r0_numbuffs, RLBF0_C);
 477}
 478
 479static void __devinit
 480he_init_rx_lbfp1(struct he_dev *he_dev)
 481{
 482	unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
 483	unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
 484	unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
 485	unsigned row_offset = he_dev->r1_startrow * he_dev->bytes_per_row;
 486	
 487	lbufd_index = 1;
 488	lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
 489
 490	he_writel(he_dev, lbufd_index, RLBF1_H);
 491
 492	for (i = 0, lbuf_count = 0; i < he_dev->r1_numbuffs; ++i) {
 493		lbufd_index += 2;
 494		lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
 495
 496		he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
 497		he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
 498
 499		if (++lbuf_count == lbufs_per_row) {
 500			lbuf_count = 0;
 501			row_offset += he_dev->bytes_per_row;
 502		}
 503		lbm_offset += 4;
 504	}
 505		
 506	he_writel(he_dev, lbufd_index - 2, RLBF1_T);
 507	he_writel(he_dev, he_dev->r1_numbuffs, RLBF1_C);
 508}
 509
 510static void __devinit
 511he_init_tx_lbfp(struct he_dev *he_dev)
 512{
 513	unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
 514	unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
 515	unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
 516	unsigned row_offset = he_dev->tx_startrow * he_dev->bytes_per_row;
 517	
 518	lbufd_index = he_dev->r0_numbuffs + he_dev->r1_numbuffs;
 519	lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
 520
 521	he_writel(he_dev, lbufd_index, TLBF_H);
 522
 523	for (i = 0, lbuf_count = 0; i < he_dev->tx_numbuffs; ++i) {
 524		lbufd_index += 1;
 525		lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
 526
 527		he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
 528		he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
 529
 530		if (++lbuf_count == lbufs_per_row) {
 531			lbuf_count = 0;
 532			row_offset += he_dev->bytes_per_row;
 533		}
 534		lbm_offset += 2;
 535	}
 536		
 537	he_writel(he_dev, lbufd_index - 1, TLBF_T);
 538}
 539
 540static int __devinit
 541he_init_tpdrq(struct he_dev *he_dev)
 542{
 543	he_dev->tpdrq_base = pci_alloc_consistent(he_dev->pci_dev,
 544		CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq), &he_dev->tpdrq_phys);
 
 545	if (he_dev->tpdrq_base == NULL) {
 546		hprintk("failed to alloc tpdrq\n");
 547		return -ENOMEM;
 548	}
 549	memset(he_dev->tpdrq_base, 0,
 550				CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq));
 551
 552	he_dev->tpdrq_tail = he_dev->tpdrq_base;
 553	he_dev->tpdrq_head = he_dev->tpdrq_base;
 554
 555	he_writel(he_dev, he_dev->tpdrq_phys, TPDRQ_B_H);
 556	he_writel(he_dev, 0, TPDRQ_T);	
 557	he_writel(he_dev, CONFIG_TPDRQ_SIZE - 1, TPDRQ_S);
 558
 559	return 0;
 560}
 561
 562static void __devinit
 563he_init_cs_block(struct he_dev *he_dev)
 564{
 565	unsigned clock, rate, delta;
 566	int reg;
 567
 568	/* 5.1.7 cs block initialization */
 569
 570	for (reg = 0; reg < 0x20; ++reg)
 571		he_writel_mbox(he_dev, 0x0, CS_STTIM0 + reg);
 572
 573	/* rate grid timer reload values */
 574
 575	clock = he_is622(he_dev) ? 66667000 : 50000000;
 576	rate = he_dev->atm_dev->link_rate;
 577	delta = rate / 16 / 2;
 578
 579	for (reg = 0; reg < 0x10; ++reg) {
 580		/* 2.4 internal transmit function
 581		 *
 582	 	 * we initialize the first row in the rate grid.
 583		 * values are period (in clock cycles) of timer
 584		 */
 585		unsigned period = clock / rate;
 586
 587		he_writel_mbox(he_dev, period, CS_TGRLD0 + reg);
 588		rate -= delta;
 589	}
 590
 591	if (he_is622(he_dev)) {
 592		/* table 5.2 (4 cells per lbuf) */
 593		he_writel_mbox(he_dev, 0x000800fa, CS_ERTHR0);
 594		he_writel_mbox(he_dev, 0x000c33cb, CS_ERTHR1);
 595		he_writel_mbox(he_dev, 0x0010101b, CS_ERTHR2);
 596		he_writel_mbox(he_dev, 0x00181dac, CS_ERTHR3);
 597		he_writel_mbox(he_dev, 0x00280600, CS_ERTHR4);
 598
 599		/* table 5.3, 5.4, 5.5, 5.6, 5.7 */
 600		he_writel_mbox(he_dev, 0x023de8b3, CS_ERCTL0);
 601		he_writel_mbox(he_dev, 0x1801, CS_ERCTL1);
 602		he_writel_mbox(he_dev, 0x68b3, CS_ERCTL2);
 603		he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
 604		he_writel_mbox(he_dev, 0x68b3, CS_ERSTAT1);
 605		he_writel_mbox(he_dev, 0x14585, CS_RTFWR);
 606
 607		he_writel_mbox(he_dev, 0x4680, CS_RTATR);
 608
 609		/* table 5.8 */
 610		he_writel_mbox(he_dev, 0x00159ece, CS_TFBSET);
 611		he_writel_mbox(he_dev, 0x68b3, CS_WCRMAX);
 612		he_writel_mbox(he_dev, 0x5eb3, CS_WCRMIN);
 613		he_writel_mbox(he_dev, 0xe8b3, CS_WCRINC);
 614		he_writel_mbox(he_dev, 0xdeb3, CS_WCRDEC);
 615		he_writel_mbox(he_dev, 0x68b3, CS_WCRCEIL);
 616
 617		/* table 5.9 */
 618		he_writel_mbox(he_dev, 0x5, CS_OTPPER);
 619		he_writel_mbox(he_dev, 0x14, CS_OTWPER);
 620	} else {
 621		/* table 5.1 (4 cells per lbuf) */
 622		he_writel_mbox(he_dev, 0x000400ea, CS_ERTHR0);
 623		he_writel_mbox(he_dev, 0x00063388, CS_ERTHR1);
 624		he_writel_mbox(he_dev, 0x00081018, CS_ERTHR2);
 625		he_writel_mbox(he_dev, 0x000c1dac, CS_ERTHR3);
 626		he_writel_mbox(he_dev, 0x0014051a, CS_ERTHR4);
 627
 628		/* table 5.3, 5.4, 5.5, 5.6, 5.7 */
 629		he_writel_mbox(he_dev, 0x0235e4b1, CS_ERCTL0);
 630		he_writel_mbox(he_dev, 0x4701, CS_ERCTL1);
 631		he_writel_mbox(he_dev, 0x64b1, CS_ERCTL2);
 632		he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
 633		he_writel_mbox(he_dev, 0x64b1, CS_ERSTAT1);
 634		he_writel_mbox(he_dev, 0xf424, CS_RTFWR);
 635
 636		he_writel_mbox(he_dev, 0x4680, CS_RTATR);
 637
 638		/* table 5.8 */
 639		he_writel_mbox(he_dev, 0x000563b7, CS_TFBSET);
 640		he_writel_mbox(he_dev, 0x64b1, CS_WCRMAX);
 641		he_writel_mbox(he_dev, 0x5ab1, CS_WCRMIN);
 642		he_writel_mbox(he_dev, 0xe4b1, CS_WCRINC);
 643		he_writel_mbox(he_dev, 0xdab1, CS_WCRDEC);
 644		he_writel_mbox(he_dev, 0x64b1, CS_WCRCEIL);
 645
 646		/* table 5.9 */
 647		he_writel_mbox(he_dev, 0x6, CS_OTPPER);
 648		he_writel_mbox(he_dev, 0x1e, CS_OTWPER);
 649	}
 650
 651	he_writel_mbox(he_dev, 0x8, CS_OTTLIM);
 652
 653	for (reg = 0; reg < 0x8; ++reg)
 654		he_writel_mbox(he_dev, 0x0, CS_HGRRT0 + reg);
 655
 656}
 657
 658static int __devinit
 659he_init_cs_block_rcm(struct he_dev *he_dev)
 660{
 661	unsigned (*rategrid)[16][16];
 662	unsigned rate, delta;
 663	int i, j, reg;
 664
 665	unsigned rate_atmf, exp, man;
 666	unsigned long long rate_cps;
 667	int mult, buf, buf_limit = 4;
 668
 669	rategrid = kmalloc( sizeof(unsigned) * 16 * 16, GFP_KERNEL);
 670	if (!rategrid)
 671		return -ENOMEM;
 672
 673	/* initialize rate grid group table */
 674
 675	for (reg = 0x0; reg < 0xff; ++reg)
 676		he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
 677
 678	/* initialize rate controller groups */
 679
 680	for (reg = 0x100; reg < 0x1ff; ++reg)
 681		he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
 682	
 683	/* initialize tNrm lookup table */
 684
 685	/* the manual makes reference to a routine in a sample driver
 686	   for proper configuration; fortunately, we only need this
 687	   in order to support abr connection */
 688	
 689	/* initialize rate to group table */
 690
 691	rate = he_dev->atm_dev->link_rate;
 692	delta = rate / 32;
 693
 694	/*
 695	 * 2.4 transmit internal functions
 696	 * 
 697	 * we construct a copy of the rate grid used by the scheduler
 698	 * in order to construct the rate to group table below
 699	 */
 700
 701	for (j = 0; j < 16; j++) {
 702		(*rategrid)[0][j] = rate;
 703		rate -= delta;
 704	}
 705
 706	for (i = 1; i < 16; i++)
 707		for (j = 0; j < 16; j++)
 708			if (i > 14)
 709				(*rategrid)[i][j] = (*rategrid)[i - 1][j] / 4;
 710			else
 711				(*rategrid)[i][j] = (*rategrid)[i - 1][j] / 2;
 712
 713	/*
 714	 * 2.4 transmit internal function
 715	 *
 716	 * this table maps the upper 5 bits of exponent and mantissa
 717	 * of the atm forum representation of the rate into an index
 718	 * on rate grid  
 719	 */
 720
 721	rate_atmf = 0;
 722	while (rate_atmf < 0x400) {
 723		man = (rate_atmf & 0x1f) << 4;
 724		exp = rate_atmf >> 5;
 725
 726		/* 
 727			instead of '/ 512', use '>> 9' to prevent a call
 728			to divdu3 on x86 platforms
 729		*/
 730		rate_cps = (unsigned long long) (1 << exp) * (man + 512) >> 9;
 731
 732		if (rate_cps < 10)
 733			rate_cps = 10;	/* 2.2.1 minimum payload rate is 10 cps */
 734
 735		for (i = 255; i > 0; i--)
 736			if ((*rategrid)[i/16][i%16] >= rate_cps)
 737				break;	 /* pick nearest rate instead? */
 738
 739		/*
 740		 * each table entry is 16 bits: (rate grid index (8 bits)
 741		 * and a buffer limit (8 bits)
 742		 * there are two table entries in each 32-bit register
 743		 */
 744
 745#ifdef notdef
 746		buf = rate_cps * he_dev->tx_numbuffs /
 747				(he_dev->atm_dev->link_rate * 2);
 748#else
 749		/* this is pretty, but avoids _divdu3 and is mostly correct */
 750		mult = he_dev->atm_dev->link_rate / ATM_OC3_PCR;
 751		if (rate_cps > (272 * mult))
 752			buf = 4;
 753		else if (rate_cps > (204 * mult))
 754			buf = 3;
 755		else if (rate_cps > (136 * mult))
 756			buf = 2;
 757		else if (rate_cps > (68 * mult))
 758			buf = 1;
 759		else
 760			buf = 0;
 761#endif
 762		if (buf > buf_limit)
 763			buf = buf_limit;
 764		reg = (reg << 16) | ((i << 8) | buf);
 765
 766#define RTGTBL_OFFSET 0x400
 767	  
 768		if (rate_atmf & 0x1)
 769			he_writel_rcm(he_dev, reg,
 770				CONFIG_RCMABR + RTGTBL_OFFSET + (rate_atmf >> 1));
 771
 772		++rate_atmf;
 773	}
 774
 775	kfree(rategrid);
 776	return 0;
 777}
 778
 779static int __devinit
 780he_init_group(struct he_dev *he_dev, int group)
 781{
 782	struct he_buff *heb, *next;
 783	dma_addr_t mapping;
 784	int i;
 785
 786	he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
 787	he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
 788	he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
 789	he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
 790		  G0_RBPS_BS + (group * 32));
 791
 792	/* bitmap table */
 793	he_dev->rbpl_table = kmalloc(BITS_TO_LONGS(RBPL_TABLE_SIZE)
 794				     * sizeof(unsigned long), GFP_KERNEL);
 795	if (!he_dev->rbpl_table) {
 796		hprintk("unable to allocate rbpl bitmap table\n");
 797		return -ENOMEM;
 798	}
 799	bitmap_zero(he_dev->rbpl_table, RBPL_TABLE_SIZE);
 800
 801	/* rbpl_virt 64-bit pointers */
 802	he_dev->rbpl_virt = kmalloc(RBPL_TABLE_SIZE
 803				    * sizeof(struct he_buff *), GFP_KERNEL);
 804	if (!he_dev->rbpl_virt) {
 805		hprintk("unable to allocate rbpl virt table\n");
 806		goto out_free_rbpl_table;
 807	}
 808
 809	/* large buffer pool */
 810	he_dev->rbpl_pool = pci_pool_create("rbpl", he_dev->pci_dev,
 811					    CONFIG_RBPL_BUFSIZE, 64, 0);
 812	if (he_dev->rbpl_pool == NULL) {
 813		hprintk("unable to create rbpl pool\n");
 814		goto out_free_rbpl_virt;
 815	}
 816
 817	he_dev->rbpl_base = pci_alloc_consistent(he_dev->pci_dev,
 818		CONFIG_RBPL_SIZE * sizeof(struct he_rbp), &he_dev->rbpl_phys);
 
 819	if (he_dev->rbpl_base == NULL) {
 820		hprintk("failed to alloc rbpl_base\n");
 821		goto out_destroy_rbpl_pool;
 822	}
 823	memset(he_dev->rbpl_base, 0, CONFIG_RBPL_SIZE * sizeof(struct he_rbp));
 824
 825	INIT_LIST_HEAD(&he_dev->rbpl_outstanding);
 826
 827	for (i = 0; i < CONFIG_RBPL_SIZE; ++i) {
 828
 829		heb = pci_pool_alloc(he_dev->rbpl_pool, GFP_KERNEL|GFP_DMA, &mapping);
 830		if (!heb)
 831			goto out_free_rbpl;
 832		heb->mapping = mapping;
 833		list_add(&heb->entry, &he_dev->rbpl_outstanding);
 834
 835		set_bit(i, he_dev->rbpl_table);
 836		he_dev->rbpl_virt[i] = heb;
 837		he_dev->rbpl_hint = i + 1;
 838		he_dev->rbpl_base[i].idx =  i << RBP_IDX_OFFSET;
 839		he_dev->rbpl_base[i].phys = mapping + offsetof(struct he_buff, data);
 840	}
 841	he_dev->rbpl_tail = &he_dev->rbpl_base[CONFIG_RBPL_SIZE - 1];
 842
 843	he_writel(he_dev, he_dev->rbpl_phys, G0_RBPL_S + (group * 32));
 844	he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail),
 845						G0_RBPL_T + (group * 32));
 846	he_writel(he_dev, (CONFIG_RBPL_BUFSIZE - sizeof(struct he_buff))/4,
 847						G0_RBPL_BS + (group * 32));
 848	he_writel(he_dev,
 849			RBP_THRESH(CONFIG_RBPL_THRESH) |
 850			RBP_QSIZE(CONFIG_RBPL_SIZE - 1) |
 851			RBP_INT_ENB,
 852						G0_RBPL_QI + (group * 32));
 853
 854	/* rx buffer ready queue */
 855
 856	he_dev->rbrq_base = pci_alloc_consistent(he_dev->pci_dev,
 857		CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq), &he_dev->rbrq_phys);
 
 858	if (he_dev->rbrq_base == NULL) {
 859		hprintk("failed to allocate rbrq\n");
 860		goto out_free_rbpl;
 861	}
 862	memset(he_dev->rbrq_base, 0, CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq));
 863
 864	he_dev->rbrq_head = he_dev->rbrq_base;
 865	he_writel(he_dev, he_dev->rbrq_phys, G0_RBRQ_ST + (group * 16));
 866	he_writel(he_dev, 0, G0_RBRQ_H + (group * 16));
 867	he_writel(he_dev,
 868		RBRQ_THRESH(CONFIG_RBRQ_THRESH) | RBRQ_SIZE(CONFIG_RBRQ_SIZE - 1),
 869						G0_RBRQ_Q + (group * 16));
 870	if (irq_coalesce) {
 871		hprintk("coalescing interrupts\n");
 872		he_writel(he_dev, RBRQ_TIME(768) | RBRQ_COUNT(7),
 873						G0_RBRQ_I + (group * 16));
 874	} else
 875		he_writel(he_dev, RBRQ_TIME(0) | RBRQ_COUNT(1),
 876						G0_RBRQ_I + (group * 16));
 877
 878	/* tx buffer ready queue */
 879
 880	he_dev->tbrq_base = pci_alloc_consistent(he_dev->pci_dev,
 881		CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq), &he_dev->tbrq_phys);
 
 882	if (he_dev->tbrq_base == NULL) {
 883		hprintk("failed to allocate tbrq\n");
 884		goto out_free_rbpq_base;
 885	}
 886	memset(he_dev->tbrq_base, 0, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq));
 887
 888	he_dev->tbrq_head = he_dev->tbrq_base;
 889
 890	he_writel(he_dev, he_dev->tbrq_phys, G0_TBRQ_B_T + (group * 16));
 891	he_writel(he_dev, 0, G0_TBRQ_H + (group * 16));
 892	he_writel(he_dev, CONFIG_TBRQ_SIZE - 1, G0_TBRQ_S + (group * 16));
 893	he_writel(he_dev, CONFIG_TBRQ_THRESH, G0_TBRQ_THRESH + (group * 16));
 894
 895	return 0;
 896
 897out_free_rbpq_base:
 898	pci_free_consistent(he_dev->pci_dev, CONFIG_RBRQ_SIZE *
 899			sizeof(struct he_rbrq), he_dev->rbrq_base,
 900			he_dev->rbrq_phys);
 901out_free_rbpl:
 902	list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
 903		pci_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
 904
 905	pci_free_consistent(he_dev->pci_dev, CONFIG_RBPL_SIZE *
 906			sizeof(struct he_rbp), he_dev->rbpl_base,
 907			he_dev->rbpl_phys);
 908out_destroy_rbpl_pool:
 909	pci_pool_destroy(he_dev->rbpl_pool);
 910out_free_rbpl_virt:
 911	kfree(he_dev->rbpl_virt);
 912out_free_rbpl_table:
 913	kfree(he_dev->rbpl_table);
 914
 915	return -ENOMEM;
 916}
 917
 918static int __devinit
 919he_init_irq(struct he_dev *he_dev)
 920{
 921	int i;
 922
 923	/* 2.9.3.5  tail offset for each interrupt queue is located after the
 924		    end of the interrupt queue */
 925
 926	he_dev->irq_base = pci_alloc_consistent(he_dev->pci_dev,
 927			(CONFIG_IRQ_SIZE+1) * sizeof(struct he_irq), &he_dev->irq_phys);
 
 
 
 928	if (he_dev->irq_base == NULL) {
 929		hprintk("failed to allocate irq\n");
 930		return -ENOMEM;
 931	}
 932	he_dev->irq_tailoffset = (unsigned *)
 933					&he_dev->irq_base[CONFIG_IRQ_SIZE];
 934	*he_dev->irq_tailoffset = 0;
 935	he_dev->irq_head = he_dev->irq_base;
 936	he_dev->irq_tail = he_dev->irq_base;
 937
 938	for (i = 0; i < CONFIG_IRQ_SIZE; ++i)
 939		he_dev->irq_base[i].isw = ITYPE_INVALID;
 940
 941	he_writel(he_dev, he_dev->irq_phys, IRQ0_BASE);
 942	he_writel(he_dev,
 943		IRQ_SIZE(CONFIG_IRQ_SIZE) | IRQ_THRESH(CONFIG_IRQ_THRESH),
 944								IRQ0_HEAD);
 945	he_writel(he_dev, IRQ_INT_A | IRQ_TYPE_LINE, IRQ0_CNTL);
 946	he_writel(he_dev, 0x0, IRQ0_DATA);
 947
 948	he_writel(he_dev, 0x0, IRQ1_BASE);
 949	he_writel(he_dev, 0x0, IRQ1_HEAD);
 950	he_writel(he_dev, 0x0, IRQ1_CNTL);
 951	he_writel(he_dev, 0x0, IRQ1_DATA);
 952
 953	he_writel(he_dev, 0x0, IRQ2_BASE);
 954	he_writel(he_dev, 0x0, IRQ2_HEAD);
 955	he_writel(he_dev, 0x0, IRQ2_CNTL);
 956	he_writel(he_dev, 0x0, IRQ2_DATA);
 957
 958	he_writel(he_dev, 0x0, IRQ3_BASE);
 959	he_writel(he_dev, 0x0, IRQ3_HEAD);
 960	he_writel(he_dev, 0x0, IRQ3_CNTL);
 961	he_writel(he_dev, 0x0, IRQ3_DATA);
 962
 963	/* 2.9.3.2 interrupt queue mapping registers */
 964
 965	he_writel(he_dev, 0x0, GRP_10_MAP);
 966	he_writel(he_dev, 0x0, GRP_32_MAP);
 967	he_writel(he_dev, 0x0, GRP_54_MAP);
 968	he_writel(he_dev, 0x0, GRP_76_MAP);
 969
 970	if (request_irq(he_dev->pci_dev->irq,
 971			he_irq_handler, IRQF_SHARED, DEV_LABEL, he_dev)) {
 972		hprintk("irq %d already in use\n", he_dev->pci_dev->irq);
 973		return -EINVAL;
 974	}   
 975
 976	he_dev->irq = he_dev->pci_dev->irq;
 977
 978	return 0;
 979}
 980
 981static int __devinit
 982he_start(struct atm_dev *dev)
 983{
 984	struct he_dev *he_dev;
 985	struct pci_dev *pci_dev;
 986	unsigned long membase;
 987
 988	u16 command;
 989	u32 gen_cntl_0, host_cntl, lb_swap;
 990	u8 cache_size, timer;
 991	
 992	unsigned err;
 993	unsigned int status, reg;
 994	int i, group;
 995
 996	he_dev = HE_DEV(dev);
 997	pci_dev = he_dev->pci_dev;
 998
 999	membase = pci_resource_start(pci_dev, 0);
1000	HPRINTK("membase = 0x%lx  irq = %d.\n", membase, pci_dev->irq);
1001
1002	/*
1003	 * pci bus controller initialization 
1004	 */
1005
1006	/* 4.3 pci bus controller-specific initialization */
1007	if (pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0) != 0) {
1008		hprintk("can't read GEN_CNTL_0\n");
1009		return -EINVAL;
1010	}
1011	gen_cntl_0 |= (MRL_ENB | MRM_ENB | IGNORE_TIMEOUT);
1012	if (pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0) != 0) {
1013		hprintk("can't write GEN_CNTL_0.\n");
1014		return -EINVAL;
1015	}
1016
1017	if (pci_read_config_word(pci_dev, PCI_COMMAND, &command) != 0) {
1018		hprintk("can't read PCI_COMMAND.\n");
1019		return -EINVAL;
1020	}
1021
1022	command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE);
1023	if (pci_write_config_word(pci_dev, PCI_COMMAND, command) != 0) {
1024		hprintk("can't enable memory.\n");
1025		return -EINVAL;
1026	}
1027
1028	if (pci_read_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, &cache_size)) {
1029		hprintk("can't read cache line size?\n");
1030		return -EINVAL;
1031	}
1032
1033	if (cache_size < 16) {
1034		cache_size = 16;
1035		if (pci_write_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, cache_size))
1036			hprintk("can't set cache line size to %d\n", cache_size);
1037	}
1038
1039	if (pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &timer)) {
1040		hprintk("can't read latency timer?\n");
1041		return -EINVAL;
1042	}
1043
1044	/* from table 3.9
1045	 *
1046	 * LAT_TIMER = 1 + AVG_LAT + BURST_SIZE/BUS_SIZE
1047	 * 
1048	 * AVG_LAT: The average first data read/write latency [maximum 16 clock cycles]
1049	 * BURST_SIZE: 1536 bytes (read) for 622, 768 bytes (read) for 155 [192 clock cycles]
1050	 *
1051	 */ 
1052#define LAT_TIMER 209
1053	if (timer < LAT_TIMER) {
1054		HPRINTK("latency timer was %d, setting to %d\n", timer, LAT_TIMER);
1055		timer = LAT_TIMER;
1056		if (pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, timer))
1057			hprintk("can't set latency timer to %d\n", timer);
1058	}
1059
1060	if (!(he_dev->membase = ioremap(membase, HE_REGMAP_SIZE))) {
1061		hprintk("can't set up page mapping\n");
1062		return -EINVAL;
1063	}
1064
1065	/* 4.4 card reset */
1066	he_writel(he_dev, 0x0, RESET_CNTL);
1067	he_writel(he_dev, 0xff, RESET_CNTL);
1068
1069	udelay(16*1000);	/* 16 ms */
1070	status = he_readl(he_dev, RESET_CNTL);
1071	if ((status & BOARD_RST_STATUS) == 0) {
1072		hprintk("reset failed\n");
1073		return -EINVAL;
1074	}
1075
1076	/* 4.5 set bus width */
1077	host_cntl = he_readl(he_dev, HOST_CNTL);
1078	if (host_cntl & PCI_BUS_SIZE64)
1079		gen_cntl_0 |= ENBL_64;
1080	else
1081		gen_cntl_0 &= ~ENBL_64;
1082
1083	if (disable64 == 1) {
1084		hprintk("disabling 64-bit pci bus transfers\n");
1085		gen_cntl_0 &= ~ENBL_64;
1086	}
1087
1088	if (gen_cntl_0 & ENBL_64)
1089		hprintk("64-bit transfers enabled\n");
1090
1091	pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1092
1093	/* 4.7 read prom contents */
1094	for (i = 0; i < PROD_ID_LEN; ++i)
1095		he_dev->prod_id[i] = read_prom_byte(he_dev, PROD_ID + i);
1096
1097	he_dev->media = read_prom_byte(he_dev, MEDIA);
1098
1099	for (i = 0; i < 6; ++i)
1100		dev->esi[i] = read_prom_byte(he_dev, MAC_ADDR + i);
1101
1102	hprintk("%s%s, %x:%x:%x:%x:%x:%x\n",
1103				he_dev->prod_id,
1104					he_dev->media & 0x40 ? "SM" : "MM",
1105						dev->esi[0],
1106						dev->esi[1],
1107						dev->esi[2],
1108						dev->esi[3],
1109						dev->esi[4],
1110						dev->esi[5]);
1111	he_dev->atm_dev->link_rate = he_is622(he_dev) ?
1112						ATM_OC12_PCR : ATM_OC3_PCR;
1113
1114	/* 4.6 set host endianess */
1115	lb_swap = he_readl(he_dev, LB_SWAP);
1116	if (he_is622(he_dev))
1117		lb_swap &= ~XFER_SIZE;		/* 4 cells */
1118	else
1119		lb_swap |= XFER_SIZE;		/* 8 cells */
1120#ifdef __BIG_ENDIAN
1121	lb_swap |= DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST;
1122#else
1123	lb_swap &= ~(DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST |
1124			DATA_WR_SWAP | DATA_RD_SWAP | DESC_RD_SWAP);
1125#endif /* __BIG_ENDIAN */
1126	he_writel(he_dev, lb_swap, LB_SWAP);
1127
1128	/* 4.8 sdram controller initialization */
1129	he_writel(he_dev, he_is622(he_dev) ? LB_64_ENB : 0x0, SDRAM_CTL);
1130
1131	/* 4.9 initialize rnum value */
1132	lb_swap |= SWAP_RNUM_MAX(0xf);
1133	he_writel(he_dev, lb_swap, LB_SWAP);
1134
1135	/* 4.10 initialize the interrupt queues */
1136	if ((err = he_init_irq(he_dev)) != 0)
1137		return err;
1138
1139	/* 4.11 enable pci bus controller state machines */
1140	host_cntl |= (OUTFF_ENB | CMDFF_ENB |
1141				QUICK_RD_RETRY | QUICK_WR_RETRY | PERR_INT_ENB);
1142	he_writel(he_dev, host_cntl, HOST_CNTL);
1143
1144	gen_cntl_0 |= INT_PROC_ENBL|INIT_ENB;
1145	pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1146
1147	/*
1148	 * atm network controller initialization
1149	 */
1150
1151	/* 5.1.1 generic configuration state */
1152
1153	/*
1154	 *		local (cell) buffer memory map
1155	 *                    
1156	 *             HE155                          HE622
1157	 *                                                      
1158	 *        0 ____________1023 bytes  0 _______________________2047 bytes
1159	 *         |            |            |                   |   |
1160	 *         |  utility   |            |        rx0        |   |
1161	 *        5|____________|         255|___________________| u |
1162	 *        6|            |         256|                   | t |
1163	 *         |            |            |                   | i |
1164	 *         |    rx0     |     row    |        tx         | l |
1165	 *         |            |            |                   | i |
1166	 *         |            |         767|___________________| t |
1167	 *      517|____________|         768|                   | y |
1168	 * row  518|            |            |        rx1        |   |
1169	 *         |            |        1023|___________________|___|
1170	 *         |            |
1171	 *         |    tx      |
1172	 *         |            |
1173	 *         |            |
1174	 *     1535|____________|
1175	 *     1536|            |
1176	 *         |    rx1     |
1177	 *     2047|____________|
1178	 *
1179	 */
1180
1181	/* total 4096 connections */
1182	he_dev->vcibits = CONFIG_DEFAULT_VCIBITS;
1183	he_dev->vpibits = CONFIG_DEFAULT_VPIBITS;
1184
1185	if (nvpibits != -1 && nvcibits != -1 && nvpibits+nvcibits != HE_MAXCIDBITS) {
1186		hprintk("nvpibits + nvcibits != %d\n", HE_MAXCIDBITS);
1187		return -ENODEV;
1188	}
1189
1190	if (nvpibits != -1) {
1191		he_dev->vpibits = nvpibits;
1192		he_dev->vcibits = HE_MAXCIDBITS - nvpibits;
1193	}
1194
1195	if (nvcibits != -1) {
1196		he_dev->vcibits = nvcibits;
1197		he_dev->vpibits = HE_MAXCIDBITS - nvcibits;
1198	}
1199
1200
1201	if (he_is622(he_dev)) {
1202		he_dev->cells_per_row = 40;
1203		he_dev->bytes_per_row = 2048;
1204		he_dev->r0_numrows = 256;
1205		he_dev->tx_numrows = 512;
1206		he_dev->r1_numrows = 256;
1207		he_dev->r0_startrow = 0;
1208		he_dev->tx_startrow = 256;
1209		he_dev->r1_startrow = 768;
1210	} else {
1211		he_dev->cells_per_row = 20;
1212		he_dev->bytes_per_row = 1024;
1213		he_dev->r0_numrows = 512;
1214		he_dev->tx_numrows = 1018;
1215		he_dev->r1_numrows = 512;
1216		he_dev->r0_startrow = 6;
1217		he_dev->tx_startrow = 518;
1218		he_dev->r1_startrow = 1536;
1219	}
1220
1221	he_dev->cells_per_lbuf = 4;
1222	he_dev->buffer_limit = 4;
1223	he_dev->r0_numbuffs = he_dev->r0_numrows *
1224				he_dev->cells_per_row / he_dev->cells_per_lbuf;
1225	if (he_dev->r0_numbuffs > 2560)
1226		he_dev->r0_numbuffs = 2560;
1227
1228	he_dev->r1_numbuffs = he_dev->r1_numrows *
1229				he_dev->cells_per_row / he_dev->cells_per_lbuf;
1230	if (he_dev->r1_numbuffs > 2560)
1231		he_dev->r1_numbuffs = 2560;
1232
1233	he_dev->tx_numbuffs = he_dev->tx_numrows *
1234				he_dev->cells_per_row / he_dev->cells_per_lbuf;
1235	if (he_dev->tx_numbuffs > 5120)
1236		he_dev->tx_numbuffs = 5120;
1237
1238	/* 5.1.2 configure hardware dependent registers */
1239
1240	he_writel(he_dev, 
1241		SLICE_X(0x2) | ARB_RNUM_MAX(0xf) | TH_PRTY(0x3) |
1242		RH_PRTY(0x3) | TL_PRTY(0x2) | RL_PRTY(0x1) |
1243		(he_is622(he_dev) ? BUS_MULTI(0x28) : BUS_MULTI(0x46)) |
1244		(he_is622(he_dev) ? NET_PREF(0x50) : NET_PREF(0x8c)),
1245								LBARB);
1246
1247	he_writel(he_dev, BANK_ON |
1248		(he_is622(he_dev) ? (REF_RATE(0x384) | WIDE_DATA) : REF_RATE(0x150)),
1249								SDRAMCON);
1250
1251	he_writel(he_dev,
1252		(he_is622(he_dev) ? RM_BANK_WAIT(1) : RM_BANK_WAIT(0)) |
1253						RM_RW_WAIT(1), RCMCONFIG);
1254	he_writel(he_dev,
1255		(he_is622(he_dev) ? TM_BANK_WAIT(2) : TM_BANK_WAIT(1)) |
1256						TM_RW_WAIT(1), TCMCONFIG);
1257
1258	he_writel(he_dev, he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD, LB_CONFIG);
1259
1260	he_writel(he_dev, 
1261		(he_is622(he_dev) ? UT_RD_DELAY(8) : UT_RD_DELAY(0)) |
1262		(he_is622(he_dev) ? RC_UT_MODE(0) : RC_UT_MODE(1)) |
1263		RX_VALVP(he_dev->vpibits) |
1264		RX_VALVC(he_dev->vcibits),			 RC_CONFIG);
1265
1266	he_writel(he_dev, DRF_THRESH(0x20) |
1267		(he_is622(he_dev) ? TX_UT_MODE(0) : TX_UT_MODE(1)) |
1268		TX_VCI_MASK(he_dev->vcibits) |
1269		LBFREE_CNT(he_dev->tx_numbuffs), 		TX_CONFIG);
1270
1271	he_writel(he_dev, 0x0, TXAAL5_PROTO);
1272
1273	he_writel(he_dev, PHY_INT_ENB |
1274		(he_is622(he_dev) ? PTMR_PRE(67 - 1) : PTMR_PRE(50 - 1)),
1275								RH_CONFIG);
1276
1277	/* 5.1.3 initialize connection memory */
1278
1279	for (i = 0; i < TCM_MEM_SIZE; ++i)
1280		he_writel_tcm(he_dev, 0, i);
1281
1282	for (i = 0; i < RCM_MEM_SIZE; ++i)
1283		he_writel_rcm(he_dev, 0, i);
1284
1285	/*
1286	 *	transmit connection memory map
1287	 *
1288	 *                  tx memory
1289	 *          0x0 ___________________
1290	 *             |                   |
1291	 *             |                   |
1292	 *             |       TSRa        |
1293	 *             |                   |
1294	 *             |                   |
1295	 *       0x8000|___________________|
1296	 *             |                   |
1297	 *             |       TSRb        |
1298	 *       0xc000|___________________|
1299	 *             |                   |
1300	 *             |       TSRc        |
1301	 *       0xe000|___________________|
1302	 *             |       TSRd        |
1303	 *       0xf000|___________________|
1304	 *             |       tmABR       |
1305	 *      0x10000|___________________|
1306	 *             |                   |
1307	 *             |       tmTPD       |
1308	 *             |___________________|
1309	 *             |                   |
1310	 *                      ....
1311	 *      0x1ffff|___________________|
1312	 *
1313	 *
1314	 */
1315
1316	he_writel(he_dev, CONFIG_TSRB, TSRB_BA);
1317	he_writel(he_dev, CONFIG_TSRC, TSRC_BA);
1318	he_writel(he_dev, CONFIG_TSRD, TSRD_BA);
1319	he_writel(he_dev, CONFIG_TMABR, TMABR_BA);
1320	he_writel(he_dev, CONFIG_TPDBA, TPD_BA);
1321
1322
1323	/*
1324	 *	receive connection memory map
1325	 *
1326	 *          0x0 ___________________
1327	 *             |                   |
1328	 *             |                   |
1329	 *             |       RSRa        |
1330	 *             |                   |
1331	 *             |                   |
1332	 *       0x8000|___________________|
1333	 *             |                   |
1334	 *             |             rx0/1 |
1335	 *             |       LBM         |   link lists of local
1336	 *             |             tx    |   buffer memory 
1337	 *             |                   |
1338	 *       0xd000|___________________|
1339	 *             |                   |
1340	 *             |      rmABR        |
1341	 *       0xe000|___________________|
1342	 *             |                   |
1343	 *             |       RSRb        |
1344	 *             |___________________|
1345	 *             |                   |
1346	 *                      ....
1347	 *       0xffff|___________________|
1348	 */
1349
1350	he_writel(he_dev, 0x08000, RCMLBM_BA);
1351	he_writel(he_dev, 0x0e000, RCMRSRB_BA);
1352	he_writel(he_dev, 0x0d800, RCMABR_BA);
1353
1354	/* 5.1.4 initialize local buffer free pools linked lists */
1355
1356	he_init_rx_lbfp0(he_dev);
1357	he_init_rx_lbfp1(he_dev);
1358
1359	he_writel(he_dev, 0x0, RLBC_H);
1360	he_writel(he_dev, 0x0, RLBC_T);
1361	he_writel(he_dev, 0x0, RLBC_H2);
1362
1363	he_writel(he_dev, 512, RXTHRSH);	/* 10% of r0+r1 buffers */
1364	he_writel(he_dev, 256, LITHRSH); 	/* 5% of r0+r1 buffers */
1365
1366	he_init_tx_lbfp(he_dev);
1367
1368	he_writel(he_dev, he_is622(he_dev) ? 0x104780 : 0x800, UBUFF_BA);
1369
1370	/* 5.1.5 initialize intermediate receive queues */
1371
1372	if (he_is622(he_dev)) {
1373		he_writel(he_dev, 0x000f, G0_INMQ_S);
1374		he_writel(he_dev, 0x200f, G0_INMQ_L);
1375
1376		he_writel(he_dev, 0x001f, G1_INMQ_S);
1377		he_writel(he_dev, 0x201f, G1_INMQ_L);
1378
1379		he_writel(he_dev, 0x002f, G2_INMQ_S);
1380		he_writel(he_dev, 0x202f, G2_INMQ_L);
1381
1382		he_writel(he_dev, 0x003f, G3_INMQ_S);
1383		he_writel(he_dev, 0x203f, G3_INMQ_L);
1384
1385		he_writel(he_dev, 0x004f, G4_INMQ_S);
1386		he_writel(he_dev, 0x204f, G4_INMQ_L);
1387
1388		he_writel(he_dev, 0x005f, G5_INMQ_S);
1389		he_writel(he_dev, 0x205f, G5_INMQ_L);
1390
1391		he_writel(he_dev, 0x006f, G6_INMQ_S);
1392		he_writel(he_dev, 0x206f, G6_INMQ_L);
1393
1394		he_writel(he_dev, 0x007f, G7_INMQ_S);
1395		he_writel(he_dev, 0x207f, G7_INMQ_L);
1396	} else {
1397		he_writel(he_dev, 0x0000, G0_INMQ_S);
1398		he_writel(he_dev, 0x0008, G0_INMQ_L);
1399
1400		he_writel(he_dev, 0x0001, G1_INMQ_S);
1401		he_writel(he_dev, 0x0009, G1_INMQ_L);
1402
1403		he_writel(he_dev, 0x0002, G2_INMQ_S);
1404		he_writel(he_dev, 0x000a, G2_INMQ_L);
1405
1406		he_writel(he_dev, 0x0003, G3_INMQ_S);
1407		he_writel(he_dev, 0x000b, G3_INMQ_L);
1408
1409		he_writel(he_dev, 0x0004, G4_INMQ_S);
1410		he_writel(he_dev, 0x000c, G4_INMQ_L);
1411
1412		he_writel(he_dev, 0x0005, G5_INMQ_S);
1413		he_writel(he_dev, 0x000d, G5_INMQ_L);
1414
1415		he_writel(he_dev, 0x0006, G6_INMQ_S);
1416		he_writel(he_dev, 0x000e, G6_INMQ_L);
1417
1418		he_writel(he_dev, 0x0007, G7_INMQ_S);
1419		he_writel(he_dev, 0x000f, G7_INMQ_L);
1420	}
1421
1422	/* 5.1.6 application tunable parameters */
1423
1424	he_writel(he_dev, 0x0, MCC);
1425	he_writel(he_dev, 0x0, OEC);
1426	he_writel(he_dev, 0x0, DCC);
1427	he_writel(he_dev, 0x0, CEC);
1428	
1429	/* 5.1.7 cs block initialization */
1430
1431	he_init_cs_block(he_dev);
1432
1433	/* 5.1.8 cs block connection memory initialization */
1434	
1435	if (he_init_cs_block_rcm(he_dev) < 0)
1436		return -ENOMEM;
1437
1438	/* 5.1.10 initialize host structures */
1439
1440	he_init_tpdrq(he_dev);
1441
1442	he_dev->tpd_pool = pci_pool_create("tpd", he_dev->pci_dev,
1443		sizeof(struct he_tpd), TPD_ALIGNMENT, 0);
1444	if (he_dev->tpd_pool == NULL) {
1445		hprintk("unable to create tpd pci_pool\n");
1446		return -ENOMEM;         
1447	}
1448
1449	INIT_LIST_HEAD(&he_dev->outstanding_tpds);
1450
1451	if (he_init_group(he_dev, 0) != 0)
1452		return -ENOMEM;
1453
1454	for (group = 1; group < HE_NUM_GROUPS; ++group) {
1455		he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
1456		he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
1457		he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
1458		he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1459						G0_RBPS_BS + (group * 32));
1460
1461		he_writel(he_dev, 0x0, G0_RBPL_S + (group * 32));
1462		he_writel(he_dev, 0x0, G0_RBPL_T + (group * 32));
1463		he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1464						G0_RBPL_QI + (group * 32));
1465		he_writel(he_dev, 0x0, G0_RBPL_BS + (group * 32));
1466
1467		he_writel(he_dev, 0x0, G0_RBRQ_ST + (group * 16));
1468		he_writel(he_dev, 0x0, G0_RBRQ_H + (group * 16));
1469		he_writel(he_dev, RBRQ_THRESH(0x1) | RBRQ_SIZE(0x0),
1470						G0_RBRQ_Q + (group * 16));
1471		he_writel(he_dev, 0x0, G0_RBRQ_I + (group * 16));
1472
1473		he_writel(he_dev, 0x0, G0_TBRQ_B_T + (group * 16));
1474		he_writel(he_dev, 0x0, G0_TBRQ_H + (group * 16));
1475		he_writel(he_dev, TBRQ_THRESH(0x1),
1476						G0_TBRQ_THRESH + (group * 16));
1477		he_writel(he_dev, 0x0, G0_TBRQ_S + (group * 16));
1478	}
1479
1480	/* host status page */
1481
1482	he_dev->hsp = pci_alloc_consistent(he_dev->pci_dev,
1483				sizeof(struct he_hsp), &he_dev->hsp_phys);
 
1484	if (he_dev->hsp == NULL) {
1485		hprintk("failed to allocate host status page\n");
1486		return -ENOMEM;
1487	}
1488	memset(he_dev->hsp, 0, sizeof(struct he_hsp));
1489	he_writel(he_dev, he_dev->hsp_phys, HSP_BA);
1490
1491	/* initialize framer */
1492
1493#ifdef CONFIG_ATM_HE_USE_SUNI
1494	if (he_isMM(he_dev))
1495		suni_init(he_dev->atm_dev);
1496	if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->start)
1497		he_dev->atm_dev->phy->start(he_dev->atm_dev);
1498#endif /* CONFIG_ATM_HE_USE_SUNI */
1499
1500	if (sdh) {
1501		/* this really should be in suni.c but for now... */
1502		int val;
1503
1504		val = he_phy_get(he_dev->atm_dev, SUNI_TPOP_APM);
1505		val = (val & ~SUNI_TPOP_APM_S) | (SUNI_TPOP_S_SDH << SUNI_TPOP_APM_S_SHIFT);
1506		he_phy_put(he_dev->atm_dev, val, SUNI_TPOP_APM);
1507		he_phy_put(he_dev->atm_dev, SUNI_TACP_IUCHP_CLP, SUNI_TACP_IUCHP);
1508	}
1509
1510	/* 5.1.12 enable transmit and receive */
1511
1512	reg = he_readl_mbox(he_dev, CS_ERCTL0);
1513	reg |= TX_ENABLE|ER_ENABLE;
1514	he_writel_mbox(he_dev, reg, CS_ERCTL0);
1515
1516	reg = he_readl(he_dev, RC_CONFIG);
1517	reg |= RX_ENABLE;
1518	he_writel(he_dev, reg, RC_CONFIG);
1519
1520	for (i = 0; i < HE_NUM_CS_STPER; ++i) {
1521		he_dev->cs_stper[i].inuse = 0;
1522		he_dev->cs_stper[i].pcr = -1;
1523	}
1524	he_dev->total_bw = 0;
1525
1526
1527	/* atm linux initialization */
1528
1529	he_dev->atm_dev->ci_range.vpi_bits = he_dev->vpibits;
1530	he_dev->atm_dev->ci_range.vci_bits = he_dev->vcibits;
1531
1532	he_dev->irq_peak = 0;
1533	he_dev->rbrq_peak = 0;
1534	he_dev->rbpl_peak = 0;
1535	he_dev->tbrq_peak = 0;
1536
1537	HPRINTK("hell bent for leather!\n");
1538
1539	return 0;
1540}
1541
1542static void
1543he_stop(struct he_dev *he_dev)
1544{
1545	struct he_buff *heb, *next;
1546	struct pci_dev *pci_dev;
1547	u32 gen_cntl_0, reg;
1548	u16 command;
1549
1550	pci_dev = he_dev->pci_dev;
1551
1552	/* disable interrupts */
1553
1554	if (he_dev->membase) {
1555		pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0);
1556		gen_cntl_0 &= ~(INT_PROC_ENBL | INIT_ENB);
1557		pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1558
1559		tasklet_disable(&he_dev->tasklet);
1560
1561		/* disable recv and transmit */
1562
1563		reg = he_readl_mbox(he_dev, CS_ERCTL0);
1564		reg &= ~(TX_ENABLE|ER_ENABLE);
1565		he_writel_mbox(he_dev, reg, CS_ERCTL0);
1566
1567		reg = he_readl(he_dev, RC_CONFIG);
1568		reg &= ~(RX_ENABLE);
1569		he_writel(he_dev, reg, RC_CONFIG);
1570	}
1571
1572#ifdef CONFIG_ATM_HE_USE_SUNI
1573	if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->stop)
1574		he_dev->atm_dev->phy->stop(he_dev->atm_dev);
1575#endif /* CONFIG_ATM_HE_USE_SUNI */
1576
1577	if (he_dev->irq)
1578		free_irq(he_dev->irq, he_dev);
1579
1580	if (he_dev->irq_base)
1581		pci_free_consistent(he_dev->pci_dev, (CONFIG_IRQ_SIZE+1)
1582			* sizeof(struct he_irq), he_dev->irq_base, he_dev->irq_phys);
1583
1584	if (he_dev->hsp)
1585		pci_free_consistent(he_dev->pci_dev, sizeof(struct he_hsp),
1586						he_dev->hsp, he_dev->hsp_phys);
1587
1588	if (he_dev->rbpl_base) {
1589		list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
1590			pci_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1591
1592		pci_free_consistent(he_dev->pci_dev, CONFIG_RBPL_SIZE
1593			* sizeof(struct he_rbp), he_dev->rbpl_base, he_dev->rbpl_phys);
1594	}
1595
1596	kfree(he_dev->rbpl_virt);
1597	kfree(he_dev->rbpl_table);
1598
1599	if (he_dev->rbpl_pool)
1600		pci_pool_destroy(he_dev->rbpl_pool);
1601
1602	if (he_dev->rbrq_base)
1603		pci_free_consistent(he_dev->pci_dev, CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
1604							he_dev->rbrq_base, he_dev->rbrq_phys);
1605
1606	if (he_dev->tbrq_base)
1607		pci_free_consistent(he_dev->pci_dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1608							he_dev->tbrq_base, he_dev->tbrq_phys);
1609
1610	if (he_dev->tpdrq_base)
1611		pci_free_consistent(he_dev->pci_dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1612							he_dev->tpdrq_base, he_dev->tpdrq_phys);
1613
1614	if (he_dev->tpd_pool)
1615		pci_pool_destroy(he_dev->tpd_pool);
1616
1617	if (he_dev->pci_dev) {
1618		pci_read_config_word(he_dev->pci_dev, PCI_COMMAND, &command);
1619		command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
1620		pci_write_config_word(he_dev->pci_dev, PCI_COMMAND, command);
1621	}
1622	
1623	if (he_dev->membase)
1624		iounmap(he_dev->membase);
1625}
1626
1627static struct he_tpd *
1628__alloc_tpd(struct he_dev *he_dev)
1629{
1630	struct he_tpd *tpd;
1631	dma_addr_t mapping;
1632
1633	tpd = pci_pool_alloc(he_dev->tpd_pool, GFP_ATOMIC|GFP_DMA, &mapping);
1634	if (tpd == NULL)
1635		return NULL;
1636			
1637	tpd->status = TPD_ADDR(mapping);
1638	tpd->reserved = 0; 
1639	tpd->iovec[0].addr = 0; tpd->iovec[0].len = 0;
1640	tpd->iovec[1].addr = 0; tpd->iovec[1].len = 0;
1641	tpd->iovec[2].addr = 0; tpd->iovec[2].len = 0;
1642
1643	return tpd;
1644}
1645
1646#define AAL5_LEN(buf,len) 						\
1647			((((unsigned char *)(buf))[(len)-6] << 8) |	\
1648				(((unsigned char *)(buf))[(len)-5]))
1649
1650/* 2.10.1.2 receive
1651 *
1652 * aal5 packets can optionally return the tcp checksum in the lower
1653 * 16 bits of the crc (RSR0_TCP_CKSUM)
1654 */
1655
1656#define TCP_CKSUM(buf,len) 						\
1657			((((unsigned char *)(buf))[(len)-2] << 8) |	\
1658				(((unsigned char *)(buf))[(len-1)]))
1659
1660static int
1661he_service_rbrq(struct he_dev *he_dev, int group)
1662{
1663	struct he_rbrq *rbrq_tail = (struct he_rbrq *)
1664				((unsigned long)he_dev->rbrq_base |
1665					he_dev->hsp->group[group].rbrq_tail);
1666	unsigned cid, lastcid = -1;
1667	struct sk_buff *skb;
1668	struct atm_vcc *vcc = NULL;
1669	struct he_vcc *he_vcc;
1670	struct he_buff *heb, *next;
1671	int i;
1672	int pdus_assembled = 0;
1673	int updated = 0;
1674
1675	read_lock(&vcc_sklist_lock);
1676	while (he_dev->rbrq_head != rbrq_tail) {
1677		++updated;
1678
1679		HPRINTK("%p rbrq%d 0x%x len=%d cid=0x%x %s%s%s%s%s%s\n",
1680			he_dev->rbrq_head, group,
1681			RBRQ_ADDR(he_dev->rbrq_head),
1682			RBRQ_BUFLEN(he_dev->rbrq_head),
1683			RBRQ_CID(he_dev->rbrq_head),
1684			RBRQ_CRC_ERR(he_dev->rbrq_head) ? " CRC_ERR" : "",
1685			RBRQ_LEN_ERR(he_dev->rbrq_head) ? " LEN_ERR" : "",
1686			RBRQ_END_PDU(he_dev->rbrq_head) ? " END_PDU" : "",
1687			RBRQ_AAL5_PROT(he_dev->rbrq_head) ? " AAL5_PROT" : "",
1688			RBRQ_CON_CLOSED(he_dev->rbrq_head) ? " CON_CLOSED" : "",
1689			RBRQ_HBUF_ERR(he_dev->rbrq_head) ? " HBUF_ERR" : "");
1690
1691		i = RBRQ_ADDR(he_dev->rbrq_head) >> RBP_IDX_OFFSET;
1692		heb = he_dev->rbpl_virt[i];
1693
1694		cid = RBRQ_CID(he_dev->rbrq_head);
1695		if (cid != lastcid)
1696			vcc = __find_vcc(he_dev, cid);
1697		lastcid = cid;
1698
1699		if (vcc == NULL || (he_vcc = HE_VCC(vcc)) == NULL) {
1700			hprintk("vcc/he_vcc == NULL  (cid 0x%x)\n", cid);
1701			if (!RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1702				clear_bit(i, he_dev->rbpl_table);
1703				list_del(&heb->entry);
1704				pci_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1705			}
1706					
1707			goto next_rbrq_entry;
1708		}
1709
1710		if (RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1711			hprintk("HBUF_ERR!  (cid 0x%x)\n", cid);
1712				atomic_inc(&vcc->stats->rx_drop);
1713			goto return_host_buffers;
1714		}
1715
1716		heb->len = RBRQ_BUFLEN(he_dev->rbrq_head) * 4;
1717		clear_bit(i, he_dev->rbpl_table);
1718		list_move_tail(&heb->entry, &he_vcc->buffers);
1719		he_vcc->pdu_len += heb->len;
1720
1721		if (RBRQ_CON_CLOSED(he_dev->rbrq_head)) {
1722			lastcid = -1;
1723			HPRINTK("wake_up rx_waitq  (cid 0x%x)\n", cid);
1724			wake_up(&he_vcc->rx_waitq);
1725			goto return_host_buffers;
1726		}
1727
1728		if (!RBRQ_END_PDU(he_dev->rbrq_head))
1729			goto next_rbrq_entry;
1730
1731		if (RBRQ_LEN_ERR(he_dev->rbrq_head)
1732				|| RBRQ_CRC_ERR(he_dev->rbrq_head)) {
1733			HPRINTK("%s%s (%d.%d)\n",
1734				RBRQ_CRC_ERR(he_dev->rbrq_head)
1735							? "CRC_ERR " : "",
1736				RBRQ_LEN_ERR(he_dev->rbrq_head)
1737							? "LEN_ERR" : "",
1738							vcc->vpi, vcc->vci);
1739			atomic_inc(&vcc->stats->rx_err);
1740			goto return_host_buffers;
1741		}
1742
1743		skb = atm_alloc_charge(vcc, he_vcc->pdu_len + rx_skb_reserve,
1744							GFP_ATOMIC);
1745		if (!skb) {
1746			HPRINTK("charge failed (%d.%d)\n", vcc->vpi, vcc->vci);
1747			goto return_host_buffers;
1748		}
1749
1750		if (rx_skb_reserve > 0)
1751			skb_reserve(skb, rx_skb_reserve);
1752
1753		__net_timestamp(skb);
1754
1755		list_for_each_entry(heb, &he_vcc->buffers, entry)
1756			memcpy(skb_put(skb, heb->len), &heb->data, heb->len);
1757
1758		switch (vcc->qos.aal) {
1759			case ATM_AAL0:
1760				/* 2.10.1.5 raw cell receive */
1761				skb->len = ATM_AAL0_SDU;
1762				skb_set_tail_pointer(skb, skb->len);
1763				break;
1764			case ATM_AAL5:
1765				/* 2.10.1.2 aal5 receive */
1766
1767				skb->len = AAL5_LEN(skb->data, he_vcc->pdu_len);
1768				skb_set_tail_pointer(skb, skb->len);
1769#ifdef USE_CHECKSUM_HW
1770				if (vcc->vpi == 0 && vcc->vci >= ATM_NOT_RSV_VCI) {
1771					skb->ip_summed = CHECKSUM_COMPLETE;
1772					skb->csum = TCP_CKSUM(skb->data,
1773							he_vcc->pdu_len);
1774				}
1775#endif
1776				break;
1777		}
1778
1779#ifdef should_never_happen
1780		if (skb->len > vcc->qos.rxtp.max_sdu)
1781			hprintk("pdu_len (%d) > vcc->qos.rxtp.max_sdu (%d)!  cid 0x%x\n", skb->len, vcc->qos.rxtp.max_sdu, cid);
1782#endif
1783
1784#ifdef notdef
1785		ATM_SKB(skb)->vcc = vcc;
1786#endif
1787		spin_unlock(&he_dev->global_lock);
1788		vcc->push(vcc, skb);
1789		spin_lock(&he_dev->global_lock);
1790
1791		atomic_inc(&vcc->stats->rx);
1792
1793return_host_buffers:
1794		++pdus_assembled;
1795
1796		list_for_each_entry_safe(heb, next, &he_vcc->buffers, entry)
1797			pci_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1798		INIT_LIST_HEAD(&he_vcc->buffers);
1799		he_vcc->pdu_len = 0;
1800
1801next_rbrq_entry:
1802		he_dev->rbrq_head = (struct he_rbrq *)
1803				((unsigned long) he_dev->rbrq_base |
1804					RBRQ_MASK(he_dev->rbrq_head + 1));
1805
1806	}
1807	read_unlock(&vcc_sklist_lock);
1808
1809	if (updated) {
1810		if (updated > he_dev->rbrq_peak)
1811			he_dev->rbrq_peak = updated;
1812
1813		he_writel(he_dev, RBRQ_MASK(he_dev->rbrq_head),
1814						G0_RBRQ_H + (group * 16));
1815	}
1816
1817	return pdus_assembled;
1818}
1819
1820static void
1821he_service_tbrq(struct he_dev *he_dev, int group)
1822{
1823	struct he_tbrq *tbrq_tail = (struct he_tbrq *)
1824				((unsigned long)he_dev->tbrq_base |
1825					he_dev->hsp->group[group].tbrq_tail);
1826	struct he_tpd *tpd;
1827	int slot, updated = 0;
1828	struct he_tpd *__tpd;
1829
1830	/* 2.1.6 transmit buffer return queue */
1831
1832	while (he_dev->tbrq_head != tbrq_tail) {
1833		++updated;
1834
1835		HPRINTK("tbrq%d 0x%x%s%s\n",
1836			group,
1837			TBRQ_TPD(he_dev->tbrq_head), 
1838			TBRQ_EOS(he_dev->tbrq_head) ? " EOS" : "",
1839			TBRQ_MULTIPLE(he_dev->tbrq_head) ? " MULTIPLE" : "");
1840		tpd = NULL;
1841		list_for_each_entry(__tpd, &he_dev->outstanding_tpds, entry) {
1842			if (TPD_ADDR(__tpd->status) == TBRQ_TPD(he_dev->tbrq_head)) {
1843				tpd = __tpd;
1844				list_del(&__tpd->entry);
1845				break;
1846			}
1847		}
1848
1849		if (tpd == NULL) {
1850			hprintk("unable to locate tpd for dma buffer %x\n",
1851						TBRQ_TPD(he_dev->tbrq_head));
1852			goto next_tbrq_entry;
1853		}
1854
1855		if (TBRQ_EOS(he_dev->tbrq_head)) {
1856			HPRINTK("wake_up(tx_waitq) cid 0x%x\n",
1857				he_mkcid(he_dev, tpd->vcc->vpi, tpd->vcc->vci));
1858			if (tpd->vcc)
1859				wake_up(&HE_VCC(tpd->vcc)->tx_waitq);
1860
1861			goto next_tbrq_entry;
1862		}
1863
1864		for (slot = 0; slot < TPD_MAXIOV; ++slot) {
1865			if (tpd->iovec[slot].addr)
1866				pci_unmap_single(he_dev->pci_dev,
1867					tpd->iovec[slot].addr,
1868					tpd->iovec[slot].len & TPD_LEN_MASK,
1869							PCI_DMA_TODEVICE);
1870			if (tpd->iovec[slot].len & TPD_LST)
1871				break;
1872				
1873		}
1874
1875		if (tpd->skb) {	/* && !TBRQ_MULTIPLE(he_dev->tbrq_head) */
1876			if (tpd->vcc && tpd->vcc->pop)
1877				tpd->vcc->pop(tpd->vcc, tpd->skb);
1878			else
1879				dev_kfree_skb_any(tpd->skb);
1880		}
1881
1882next_tbrq_entry:
1883		if (tpd)
1884			pci_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
1885		he_dev->tbrq_head = (struct he_tbrq *)
1886				((unsigned long) he_dev->tbrq_base |
1887					TBRQ_MASK(he_dev->tbrq_head + 1));
1888	}
1889
1890	if (updated) {
1891		if (updated > he_dev->tbrq_peak)
1892			he_dev->tbrq_peak = updated;
1893
1894		he_writel(he_dev, TBRQ_MASK(he_dev->tbrq_head),
1895						G0_TBRQ_H + (group * 16));
1896	}
1897}
1898
1899static void
1900he_service_rbpl(struct he_dev *he_dev, int group)
1901{
1902	struct he_rbp *new_tail;
1903	struct he_rbp *rbpl_head;
1904	struct he_buff *heb;
1905	dma_addr_t mapping;
1906	int i;
1907	int moved = 0;
1908
1909	rbpl_head = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1910					RBPL_MASK(he_readl(he_dev, G0_RBPL_S)));
1911
1912	for (;;) {
1913		new_tail = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1914						RBPL_MASK(he_dev->rbpl_tail+1));
1915
1916		/* table 3.42 -- rbpl_tail should never be set to rbpl_head */
1917		if (new_tail == rbpl_head)
1918			break;
1919
1920		i = find_next_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE, he_dev->rbpl_hint);
1921		if (i > (RBPL_TABLE_SIZE - 1)) {
1922			i = find_first_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE);
1923			if (i > (RBPL_TABLE_SIZE - 1))
1924				break;
1925		}
1926		he_dev->rbpl_hint = i + 1;
1927
1928		heb = pci_pool_alloc(he_dev->rbpl_pool, GFP_ATOMIC|GFP_DMA, &mapping);
1929		if (!heb)
1930			break;
1931		heb->mapping = mapping;
1932		list_add(&heb->entry, &he_dev->rbpl_outstanding);
1933		he_dev->rbpl_virt[i] = heb;
1934		set_bit(i, he_dev->rbpl_table);
1935		new_tail->idx = i << RBP_IDX_OFFSET;
1936		new_tail->phys = mapping + offsetof(struct he_buff, data);
1937
1938		he_dev->rbpl_tail = new_tail;
1939		++moved;
1940	} 
1941
1942	if (moved)
1943		he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail), G0_RBPL_T);
1944}
1945
1946static void
1947he_tasklet(unsigned long data)
1948{
1949	unsigned long flags;
1950	struct he_dev *he_dev = (struct he_dev *) data;
1951	int group, type;
1952	int updated = 0;
1953
1954	HPRINTK("tasklet (0x%lx)\n", data);
1955	spin_lock_irqsave(&he_dev->global_lock, flags);
1956
1957	while (he_dev->irq_head != he_dev->irq_tail) {
1958		++updated;
1959
1960		type = ITYPE_TYPE(he_dev->irq_head->isw);
1961		group = ITYPE_GROUP(he_dev->irq_head->isw);
1962
1963		switch (type) {
1964			case ITYPE_RBRQ_THRESH:
1965				HPRINTK("rbrq%d threshold\n", group);
1966				/* fall through */
1967			case ITYPE_RBRQ_TIMER:
1968				if (he_service_rbrq(he_dev, group))
1969					he_service_rbpl(he_dev, group);
1970				break;
1971			case ITYPE_TBRQ_THRESH:
1972				HPRINTK("tbrq%d threshold\n", group);
1973				/* fall through */
1974			case ITYPE_TPD_COMPLETE:
1975				he_service_tbrq(he_dev, group);
1976				break;
1977			case ITYPE_RBPL_THRESH:
1978				he_service_rbpl(he_dev, group);
1979				break;
1980			case ITYPE_RBPS_THRESH:
1981				/* shouldn't happen unless small buffers enabled */
1982				break;
1983			case ITYPE_PHY:
1984				HPRINTK("phy interrupt\n");
1985#ifdef CONFIG_ATM_HE_USE_SUNI
1986				spin_unlock_irqrestore(&he_dev->global_lock, flags);
1987				if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->interrupt)
1988					he_dev->atm_dev->phy->interrupt(he_dev->atm_dev);
1989				spin_lock_irqsave(&he_dev->global_lock, flags);
1990#endif
1991				break;
1992			case ITYPE_OTHER:
1993				switch (type|group) {
1994					case ITYPE_PARITY:
1995						hprintk("parity error\n");
1996						break;
1997					case ITYPE_ABORT:
1998						hprintk("abort 0x%x\n", he_readl(he_dev, ABORT_ADDR));
1999						break;
2000				}
2001				break;
2002			case ITYPE_TYPE(ITYPE_INVALID):
2003				/* see 8.1.1 -- check all queues */
2004
2005				HPRINTK("isw not updated 0x%x\n", he_dev->irq_head->isw);
2006
2007				he_service_rbrq(he_dev, 0);
2008				he_service_rbpl(he_dev, 0);
2009				he_service_tbrq(he_dev, 0);
2010				break;
2011			default:
2012				hprintk("bad isw 0x%x?\n", he_dev->irq_head->isw);
2013		}
2014
2015		he_dev->irq_head->isw = ITYPE_INVALID;
2016
2017		he_dev->irq_head = (struct he_irq *) NEXT_ENTRY(he_dev->irq_base, he_dev->irq_head, IRQ_MASK);
2018	}
2019
2020	if (updated) {
2021		if (updated > he_dev->irq_peak)
2022			he_dev->irq_peak = updated;
2023
2024		he_writel(he_dev,
2025			IRQ_SIZE(CONFIG_IRQ_SIZE) |
2026			IRQ_THRESH(CONFIG_IRQ_THRESH) |
2027			IRQ_TAIL(he_dev->irq_tail), IRQ0_HEAD);
2028		(void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata; flush posted writes */
2029	}
2030	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2031}
2032
2033static irqreturn_t
2034he_irq_handler(int irq, void *dev_id)
2035{
2036	unsigned long flags;
2037	struct he_dev *he_dev = (struct he_dev * )dev_id;
2038	int handled = 0;
2039
2040	if (he_dev == NULL)
2041		return IRQ_NONE;
2042
2043	spin_lock_irqsave(&he_dev->global_lock, flags);
2044
2045	he_dev->irq_tail = (struct he_irq *) (((unsigned long)he_dev->irq_base) |
2046						(*he_dev->irq_tailoffset << 2));
2047
2048	if (he_dev->irq_tail == he_dev->irq_head) {
2049		HPRINTK("tailoffset not updated?\n");
2050		he_dev->irq_tail = (struct he_irq *) ((unsigned long)he_dev->irq_base |
2051			((he_readl(he_dev, IRQ0_BASE) & IRQ_MASK) << 2));
2052		(void) he_readl(he_dev, INT_FIFO);	/* 8.1.2 controller errata */
2053	}
2054
2055#ifdef DEBUG
2056	if (he_dev->irq_head == he_dev->irq_tail /* && !IRQ_PENDING */)
2057		hprintk("spurious (or shared) interrupt?\n");
2058#endif
2059
2060	if (he_dev->irq_head != he_dev->irq_tail) {
2061		handled = 1;
2062		tasklet_schedule(&he_dev->tasklet);
2063		he_writel(he_dev, INT_CLEAR_A, INT_FIFO);	/* clear interrupt */
2064		(void) he_readl(he_dev, INT_FIFO);		/* flush posted writes */
2065	}
2066	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2067	return IRQ_RETVAL(handled);
2068
2069}
2070
2071static __inline__ void
2072__enqueue_tpd(struct he_dev *he_dev, struct he_tpd *tpd, unsigned cid)
2073{
2074	struct he_tpdrq *new_tail;
2075
2076	HPRINTK("tpdrq %p cid 0x%x -> tpdrq_tail %p\n",
2077					tpd, cid, he_dev->tpdrq_tail);
2078
2079	/* new_tail = he_dev->tpdrq_tail; */
2080	new_tail = (struct he_tpdrq *) ((unsigned long) he_dev->tpdrq_base |
2081					TPDRQ_MASK(he_dev->tpdrq_tail+1));
2082
2083	/*
2084	 * check to see if we are about to set the tail == head
2085	 * if true, update the head pointer from the adapter
2086	 * to see if this is really the case (reading the queue
2087	 * head for every enqueue would be unnecessarily slow)
2088	 */
2089
2090	if (new_tail == he_dev->tpdrq_head) {
2091		he_dev->tpdrq_head = (struct he_tpdrq *)
2092			(((unsigned long)he_dev->tpdrq_base) |
2093				TPDRQ_MASK(he_readl(he_dev, TPDRQ_B_H)));
2094
2095		if (new_tail == he_dev->tpdrq_head) {
2096			int slot;
2097
2098			hprintk("tpdrq full (cid 0x%x)\n", cid);
2099			/*
2100			 * FIXME
2101			 * push tpd onto a transmit backlog queue
2102			 * after service_tbrq, service the backlog
2103			 * for now, we just drop the pdu
2104			 */
2105			for (slot = 0; slot < TPD_MAXIOV; ++slot) {
2106				if (tpd->iovec[slot].addr)
2107					pci_unmap_single(he_dev->pci_dev,
2108						tpd->iovec[slot].addr,
2109						tpd->iovec[slot].len & TPD_LEN_MASK,
2110								PCI_DMA_TODEVICE);
2111			}
2112			if (tpd->skb) {
2113				if (tpd->vcc->pop)
2114					tpd->vcc->pop(tpd->vcc, tpd->skb);
2115				else
2116					dev_kfree_skb_any(tpd->skb);
2117				atomic_inc(&tpd->vcc->stats->tx_err);
2118			}
2119			pci_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
2120			return;
2121		}
2122	}
2123
2124	/* 2.1.5 transmit packet descriptor ready queue */
2125	list_add_tail(&tpd->entry, &he_dev->outstanding_tpds);
2126	he_dev->tpdrq_tail->tpd = TPD_ADDR(tpd->status);
2127	he_dev->tpdrq_tail->cid = cid;
2128	wmb();
2129
2130	he_dev->tpdrq_tail = new_tail;
2131
2132	he_writel(he_dev, TPDRQ_MASK(he_dev->tpdrq_tail), TPDRQ_T);
2133	(void) he_readl(he_dev, TPDRQ_T);		/* flush posted writes */
2134}
2135
2136static int
2137he_open(struct atm_vcc *vcc)
2138{
2139	unsigned long flags;
2140	struct he_dev *he_dev = HE_DEV(vcc->dev);
2141	struct he_vcc *he_vcc;
2142	int err = 0;
2143	unsigned cid, rsr0, rsr1, rsr4, tsr0, tsr0_aal, tsr4, period, reg, clock;
2144	short vpi = vcc->vpi;
2145	int vci = vcc->vci;
2146
2147	if (vci == ATM_VCI_UNSPEC || vpi == ATM_VPI_UNSPEC)
2148		return 0;
2149
2150	HPRINTK("open vcc %p %d.%d\n", vcc, vpi, vci);
2151
2152	set_bit(ATM_VF_ADDR, &vcc->flags);
2153
2154	cid = he_mkcid(he_dev, vpi, vci);
2155
2156	he_vcc = kmalloc(sizeof(struct he_vcc), GFP_ATOMIC);
2157	if (he_vcc == NULL) {
2158		hprintk("unable to allocate he_vcc during open\n");
2159		return -ENOMEM;
2160	}
2161
2162	INIT_LIST_HEAD(&he_vcc->buffers);
2163	he_vcc->pdu_len = 0;
2164	he_vcc->rc_index = -1;
2165
2166	init_waitqueue_head(&he_vcc->rx_waitq);
2167	init_waitqueue_head(&he_vcc->tx_waitq);
2168
2169	vcc->dev_data = he_vcc;
2170
2171	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2172		int pcr_goal;
2173
2174		pcr_goal = atm_pcr_goal(&vcc->qos.txtp);
2175		if (pcr_goal == 0)
2176			pcr_goal = he_dev->atm_dev->link_rate;
2177		if (pcr_goal < 0)	/* means round down, technically */
2178			pcr_goal = -pcr_goal;
2179
2180		HPRINTK("open tx cid 0x%x pcr_goal %d\n", cid, pcr_goal);
2181
2182		switch (vcc->qos.aal) {
2183			case ATM_AAL5:
2184				tsr0_aal = TSR0_AAL5;
2185				tsr4 = TSR4_AAL5;
2186				break;
2187			case ATM_AAL0:
2188				tsr0_aal = TSR0_AAL0_SDU;
2189				tsr4 = TSR4_AAL0_SDU;
2190				break;
2191			default:
2192				err = -EINVAL;
2193				goto open_failed;
2194		}
2195
2196		spin_lock_irqsave(&he_dev->global_lock, flags);
2197		tsr0 = he_readl_tsr0(he_dev, cid);
2198		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2199
2200		if (TSR0_CONN_STATE(tsr0) != 0) {
2201			hprintk("cid 0x%x not idle (tsr0 = 0x%x)\n", cid, tsr0);
2202			err = -EBUSY;
2203			goto open_failed;
2204		}
2205
2206		switch (vcc->qos.txtp.traffic_class) {
2207			case ATM_UBR:
2208				/* 2.3.3.1 open connection ubr */
2209
2210				tsr0 = TSR0_UBR | TSR0_GROUP(0) | tsr0_aal |
2211					TSR0_USE_WMIN | TSR0_UPDATE_GER;
2212				break;
2213
2214			case ATM_CBR:
2215				/* 2.3.3.2 open connection cbr */
2216
2217				/* 8.2.3 cbr scheduler wrap problem -- limit to 90% total link rate */
2218				if ((he_dev->total_bw + pcr_goal)
2219					> (he_dev->atm_dev->link_rate * 9 / 10))
2220				{
2221					err = -EBUSY;
2222					goto open_failed;
2223				}
2224
2225				spin_lock_irqsave(&he_dev->global_lock, flags);			/* also protects he_dev->cs_stper[] */
2226
2227				/* find an unused cs_stper register */
2228				for (reg = 0; reg < HE_NUM_CS_STPER; ++reg)
2229					if (he_dev->cs_stper[reg].inuse == 0 || 
2230					    he_dev->cs_stper[reg].pcr == pcr_goal)
2231							break;
2232
2233				if (reg == HE_NUM_CS_STPER) {
2234					err = -EBUSY;
2235					spin_unlock_irqrestore(&he_dev->global_lock, flags);
2236					goto open_failed;
2237				}
2238
2239				he_dev->total_bw += pcr_goal;
2240
2241				he_vcc->rc_index = reg;
2242				++he_dev->cs_stper[reg].inuse;
2243				he_dev->cs_stper[reg].pcr = pcr_goal;
2244
2245				clock = he_is622(he_dev) ? 66667000 : 50000000;
2246				period = clock / pcr_goal;
2247				
2248				HPRINTK("rc_index = %d period = %d\n",
2249								reg, period);
2250
2251				he_writel_mbox(he_dev, rate_to_atmf(period/2),
2252							CS_STPER0 + reg);
2253				spin_unlock_irqrestore(&he_dev->global_lock, flags);
2254
2255				tsr0 = TSR0_CBR | TSR0_GROUP(0) | tsr0_aal |
2256							TSR0_RC_INDEX(reg);
2257
2258				break;
2259			default:
2260				err = -EINVAL;
2261				goto open_failed;
2262		}
2263
2264		spin_lock_irqsave(&he_dev->global_lock, flags);
2265
2266		he_writel_tsr0(he_dev, tsr0, cid);
2267		he_writel_tsr4(he_dev, tsr4 | 1, cid);
2268		he_writel_tsr1(he_dev, TSR1_MCR(rate_to_atmf(0)) |
2269					TSR1_PCR(rate_to_atmf(pcr_goal)), cid);
2270		he_writel_tsr2(he_dev, TSR2_ACR(rate_to_atmf(pcr_goal)), cid);
2271		he_writel_tsr9(he_dev, TSR9_OPEN_CONN, cid);
2272
2273		he_writel_tsr3(he_dev, 0x0, cid);
2274		he_writel_tsr5(he_dev, 0x0, cid);
2275		he_writel_tsr6(he_dev, 0x0, cid);
2276		he_writel_tsr7(he_dev, 0x0, cid);
2277		he_writel_tsr8(he_dev, 0x0, cid);
2278		he_writel_tsr10(he_dev, 0x0, cid);
2279		he_writel_tsr11(he_dev, 0x0, cid);
2280		he_writel_tsr12(he_dev, 0x0, cid);
2281		he_writel_tsr13(he_dev, 0x0, cid);
2282		he_writel_tsr14(he_dev, 0x0, cid);
2283		(void) he_readl_tsr0(he_dev, cid);		/* flush posted writes */
2284		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2285	}
2286
2287	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2288		unsigned aal;
2289
2290		HPRINTK("open rx cid 0x%x (rx_waitq %p)\n", cid,
2291		 				&HE_VCC(vcc)->rx_waitq);
2292
2293		switch (vcc->qos.aal) {
2294			case ATM_AAL5:
2295				aal = RSR0_AAL5;
2296				break;
2297			case ATM_AAL0:
2298				aal = RSR0_RAWCELL;
2299				break;
2300			default:
2301				err = -EINVAL;
2302				goto open_failed;
2303		}
2304
2305		spin_lock_irqsave(&he_dev->global_lock, flags);
2306
2307		rsr0 = he_readl_rsr0(he_dev, cid);
2308		if (rsr0 & RSR0_OPEN_CONN) {
2309			spin_unlock_irqrestore(&he_dev->global_lock, flags);
2310
2311			hprintk("cid 0x%x not idle (rsr0 = 0x%x)\n", cid, rsr0);
2312			err = -EBUSY;
2313			goto open_failed;
2314		}
2315
2316		rsr1 = RSR1_GROUP(0) | RSR1_RBPL_ONLY;
2317		rsr4 = RSR4_GROUP(0) | RSR4_RBPL_ONLY;
2318		rsr0 = vcc->qos.rxtp.traffic_class == ATM_UBR ? 
2319				(RSR0_EPD_ENABLE|RSR0_PPD_ENABLE) : 0;
2320
2321#ifdef USE_CHECKSUM_HW
2322		if (vpi == 0 && vci >= ATM_NOT_RSV_VCI)
2323			rsr0 |= RSR0_TCP_CKSUM;
2324#endif
2325
2326		he_writel_rsr4(he_dev, rsr4, cid);
2327		he_writel_rsr1(he_dev, rsr1, cid);
2328		/* 5.1.11 last parameter initialized should be
2329			  the open/closed indication in rsr0 */
2330		he_writel_rsr0(he_dev,
2331			rsr0 | RSR0_START_PDU | RSR0_OPEN_CONN | aal, cid);
2332		(void) he_readl_rsr0(he_dev, cid);		/* flush posted writes */
2333
2334		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2335	}
2336
2337open_failed:
2338
2339	if (err) {
2340		kfree(he_vcc);
2341		clear_bit(ATM_VF_ADDR, &vcc->flags);
2342	}
2343	else
2344		set_bit(ATM_VF_READY, &vcc->flags);
2345
2346	return err;
2347}
2348
2349static void
2350he_close(struct atm_vcc *vcc)
2351{
2352	unsigned long flags;
2353	DECLARE_WAITQUEUE(wait, current);
2354	struct he_dev *he_dev = HE_DEV(vcc->dev);
2355	struct he_tpd *tpd;
2356	unsigned cid;
2357	struct he_vcc *he_vcc = HE_VCC(vcc);
2358#define MAX_RETRY 30
2359	int retry = 0, sleep = 1, tx_inuse;
2360
2361	HPRINTK("close vcc %p %d.%d\n", vcc, vcc->vpi, vcc->vci);
2362
2363	clear_bit(ATM_VF_READY, &vcc->flags);
2364	cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2365
2366	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2367		int timeout;
2368
2369		HPRINTK("close rx cid 0x%x\n", cid);
2370
2371		/* 2.7.2.2 close receive operation */
2372
2373		/* wait for previous close (if any) to finish */
2374
2375		spin_lock_irqsave(&he_dev->global_lock, flags);
2376		while (he_readl(he_dev, RCC_STAT) & RCC_BUSY) {
2377			HPRINTK("close cid 0x%x RCC_BUSY\n", cid);
2378			udelay(250);
2379		}
2380
2381		set_current_state(TASK_UNINTERRUPTIBLE);
2382		add_wait_queue(&he_vcc->rx_waitq, &wait);
2383
2384		he_writel_rsr0(he_dev, RSR0_CLOSE_CONN, cid);
2385		(void) he_readl_rsr0(he_dev, cid);		/* flush posted writes */
2386		he_writel_mbox(he_dev, cid, RXCON_CLOSE);
2387		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2388
2389		timeout = schedule_timeout(30*HZ);
2390
2391		remove_wait_queue(&he_vcc->rx_waitq, &wait);
2392		set_current_state(TASK_RUNNING);
2393
2394		if (timeout == 0)
2395			hprintk("close rx timeout cid 0x%x\n", cid);
2396
2397		HPRINTK("close rx cid 0x%x complete\n", cid);
2398
2399	}
2400
2401	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2402		volatile unsigned tsr4, tsr0;
2403		int timeout;
2404
2405		HPRINTK("close tx cid 0x%x\n", cid);
2406		
2407		/* 2.1.2
2408		 *
2409		 * ... the host must first stop queueing packets to the TPDRQ
2410		 * on the connection to be closed, then wait for all outstanding
2411		 * packets to be transmitted and their buffers returned to the
2412		 * TBRQ. When the last packet on the connection arrives in the
2413		 * TBRQ, the host issues the close command to the adapter.
2414		 */
2415
2416		while (((tx_inuse = atomic_read(&sk_atm(vcc)->sk_wmem_alloc)) > 1) &&
2417		       (retry < MAX_RETRY)) {
2418			msleep(sleep);
2419			if (sleep < 250)
2420				sleep = sleep * 2;
2421
2422			++retry;
2423		}
2424
2425		if (tx_inuse > 1)
2426			hprintk("close tx cid 0x%x tx_inuse = %d\n", cid, tx_inuse);
2427
2428		/* 2.3.1.1 generic close operations with flush */
2429
2430		spin_lock_irqsave(&he_dev->global_lock, flags);
2431		he_writel_tsr4_upper(he_dev, TSR4_FLUSH_CONN, cid);
2432					/* also clears TSR4_SESSION_ENDED */
2433
2434		switch (vcc->qos.txtp.traffic_class) {
2435			case ATM_UBR:
2436				he_writel_tsr1(he_dev, 
2437					TSR1_MCR(rate_to_atmf(200000))
2438					| TSR1_PCR(0), cid);
2439				break;
2440			case ATM_CBR:
2441				he_writel_tsr14_upper(he_dev, TSR14_DELETE, cid);
2442				break;
2443		}
2444		(void) he_readl_tsr4(he_dev, cid);		/* flush posted writes */
2445
2446		tpd = __alloc_tpd(he_dev);
2447		if (tpd == NULL) {
2448			hprintk("close tx he_alloc_tpd failed cid 0x%x\n", cid);
2449			goto close_tx_incomplete;
2450		}
2451		tpd->status |= TPD_EOS | TPD_INT;
2452		tpd->skb = NULL;
2453		tpd->vcc = vcc;
2454		wmb();
2455
2456		set_current_state(TASK_UNINTERRUPTIBLE);
2457		add_wait_queue(&he_vcc->tx_waitq, &wait);
2458		__enqueue_tpd(he_dev, tpd, cid);
2459		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2460
2461		timeout = schedule_timeout(30*HZ);
2462
2463		remove_wait_queue(&he_vcc->tx_waitq, &wait);
2464		set_current_state(TASK_RUNNING);
2465
2466		spin_lock_irqsave(&he_dev->global_lock, flags);
2467
2468		if (timeout == 0) {
2469			hprintk("close tx timeout cid 0x%x\n", cid);
2470			goto close_tx_incomplete;
2471		}
2472
2473		while (!((tsr4 = he_readl_tsr4(he_dev, cid)) & TSR4_SESSION_ENDED)) {
2474			HPRINTK("close tx cid 0x%x !TSR4_SESSION_ENDED (tsr4 = 0x%x)\n", cid, tsr4);
2475			udelay(250);
2476		}
2477
2478		while (TSR0_CONN_STATE(tsr0 = he_readl_tsr0(he_dev, cid)) != 0) {
2479			HPRINTK("close tx cid 0x%x TSR0_CONN_STATE != 0 (tsr0 = 0x%x)\n", cid, tsr0);
2480			udelay(250);
2481		}
2482
2483close_tx_incomplete:
2484
2485		if (vcc->qos.txtp.traffic_class == ATM_CBR) {
2486			int reg = he_vcc->rc_index;
2487
2488			HPRINTK("cs_stper reg = %d\n", reg);
2489
2490			if (he_dev->cs_stper[reg].inuse == 0)
2491				hprintk("cs_stper[%d].inuse = 0!\n", reg);
2492			else
2493				--he_dev->cs_stper[reg].inuse;
2494
2495			he_dev->total_bw -= he_dev->cs_stper[reg].pcr;
2496		}
2497		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2498
2499		HPRINTK("close tx cid 0x%x complete\n", cid);
2500	}
2501
2502	kfree(he_vcc);
2503
2504	clear_bit(ATM_VF_ADDR, &vcc->flags);
2505}
2506
2507static int
2508he_send(struct atm_vcc *vcc, struct sk_buff *skb)
2509{
2510	unsigned long flags;
2511	struct he_dev *he_dev = HE_DEV(vcc->dev);
2512	unsigned cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2513	struct he_tpd *tpd;
2514#ifdef USE_SCATTERGATHER
2515	int i, slot = 0;
2516#endif
2517
2518#define HE_TPD_BUFSIZE 0xffff
2519
2520	HPRINTK("send %d.%d\n", vcc->vpi, vcc->vci);
2521
2522	if ((skb->len > HE_TPD_BUFSIZE) ||
2523	    ((vcc->qos.aal == ATM_AAL0) && (skb->len != ATM_AAL0_SDU))) {
2524		hprintk("buffer too large (or small) -- %d bytes\n", skb->len );
2525		if (vcc->pop)
2526			vcc->pop(vcc, skb);
2527		else
2528			dev_kfree_skb_any(skb);
2529		atomic_inc(&vcc->stats->tx_err);
2530		return -EINVAL;
2531	}
2532
2533#ifndef USE_SCATTERGATHER
2534	if (skb_shinfo(skb)->nr_frags) {
2535		hprintk("no scatter/gather support\n");
2536		if (vcc->pop)
2537			vcc->pop(vcc, skb);
2538		else
2539			dev_kfree_skb_any(skb);
2540		atomic_inc(&vcc->stats->tx_err);
2541		return -EINVAL;
2542	}
2543#endif
2544	spin_lock_irqsave(&he_dev->global_lock, flags);
2545
2546	tpd = __alloc_tpd(he_dev);
2547	if (tpd == NULL) {
2548		if (vcc->pop)
2549			vcc->pop(vcc, skb);
2550		else
2551			dev_kfree_skb_any(skb);
2552		atomic_inc(&vcc->stats->tx_err);
2553		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2554		return -ENOMEM;
2555	}
2556
2557	if (vcc->qos.aal == ATM_AAL5)
2558		tpd->status |= TPD_CELLTYPE(TPD_USERCELL);
2559	else {
2560		char *pti_clp = (void *) (skb->data + 3);
2561		int clp, pti;
2562
2563		pti = (*pti_clp & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT; 
2564		clp = (*pti_clp & ATM_HDR_CLP);
2565		tpd->status |= TPD_CELLTYPE(pti);
2566		if (clp)
2567			tpd->status |= TPD_CLP;
2568
2569		skb_pull(skb, ATM_AAL0_SDU - ATM_CELL_PAYLOAD);
2570	}
2571
2572#ifdef USE_SCATTERGATHER
2573	tpd->iovec[slot].addr = pci_map_single(he_dev->pci_dev, skb->data,
2574				skb_headlen(skb), PCI_DMA_TODEVICE);
2575	tpd->iovec[slot].len = skb_headlen(skb);
2576	++slot;
2577
2578	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2579		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2580
2581		if (slot == TPD_MAXIOV) {	/* queue tpd; start new tpd */
2582			tpd->vcc = vcc;
2583			tpd->skb = NULL;	/* not the last fragment
2584						   so dont ->push() yet */
2585			wmb();
2586
2587			__enqueue_tpd(he_dev, tpd, cid);
2588			tpd = __alloc_tpd(he_dev);
2589			if (tpd == NULL) {
2590				if (vcc->pop)
2591					vcc->pop(vcc, skb);
2592				else
2593					dev_kfree_skb_any(skb);
2594				atomic_inc(&vcc->stats->tx_err);
2595				spin_unlock_irqrestore(&he_dev->global_lock, flags);
2596				return -ENOMEM;
2597			}
2598			tpd->status |= TPD_USERCELL;
2599			slot = 0;
2600		}
2601
2602		tpd->iovec[slot].addr = pci_map_single(he_dev->pci_dev,
2603			(void *) page_address(frag->page) + frag->page_offset,
2604				frag->size, PCI_DMA_TODEVICE);
2605		tpd->iovec[slot].len = frag->size;
2606		++slot;
2607
2608	}
2609
2610	tpd->iovec[slot - 1].len |= TPD_LST;
2611#else
2612	tpd->address0 = pci_map_single(he_dev->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
2613	tpd->length0 = skb->len | TPD_LST;
2614#endif
2615	tpd->status |= TPD_INT;
2616
2617	tpd->vcc = vcc;
2618	tpd->skb = skb;
2619	wmb();
2620	ATM_SKB(skb)->vcc = vcc;
2621
2622	__enqueue_tpd(he_dev, tpd, cid);
2623	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2624
2625	atomic_inc(&vcc->stats->tx);
2626
2627	return 0;
2628}
2629
2630static int
2631he_ioctl(struct atm_dev *atm_dev, unsigned int cmd, void __user *arg)
2632{
2633	unsigned long flags;
2634	struct he_dev *he_dev = HE_DEV(atm_dev);
2635	struct he_ioctl_reg reg;
2636	int err = 0;
2637
2638	switch (cmd) {
2639		case HE_GET_REG:
2640			if (!capable(CAP_NET_ADMIN))
2641				return -EPERM;
2642
2643			if (copy_from_user(&reg, arg,
2644					   sizeof(struct he_ioctl_reg)))
2645				return -EFAULT;
2646
2647			spin_lock_irqsave(&he_dev->global_lock, flags);
2648			switch (reg.type) {
2649				case HE_REGTYPE_PCI:
2650					if (reg.addr >= HE_REGMAP_SIZE) {
2651						err = -EINVAL;
2652						break;
2653					}
2654
2655					reg.val = he_readl(he_dev, reg.addr);
2656					break;
2657				case HE_REGTYPE_RCM:
2658					reg.val =
2659						he_readl_rcm(he_dev, reg.addr);
2660					break;
2661				case HE_REGTYPE_TCM:
2662					reg.val =
2663						he_readl_tcm(he_dev, reg.addr);
2664					break;
2665				case HE_REGTYPE_MBOX:
2666					reg.val =
2667						he_readl_mbox(he_dev, reg.addr);
2668					break;
2669				default:
2670					err = -EINVAL;
2671					break;
2672			}
2673			spin_unlock_irqrestore(&he_dev->global_lock, flags);
2674			if (err == 0)
2675				if (copy_to_user(arg, &reg,
2676							sizeof(struct he_ioctl_reg)))
2677					return -EFAULT;
2678			break;
2679		default:
2680#ifdef CONFIG_ATM_HE_USE_SUNI
2681			if (atm_dev->phy && atm_dev->phy->ioctl)
2682				err = atm_dev->phy->ioctl(atm_dev, cmd, arg);
2683#else /* CONFIG_ATM_HE_USE_SUNI */
2684			err = -EINVAL;
2685#endif /* CONFIG_ATM_HE_USE_SUNI */
2686			break;
2687	}
2688
2689	return err;
2690}
2691
2692static void
2693he_phy_put(struct atm_dev *atm_dev, unsigned char val, unsigned long addr)
2694{
2695	unsigned long flags;
2696	struct he_dev *he_dev = HE_DEV(atm_dev);
2697
2698	HPRINTK("phy_put(val 0x%x, addr 0x%lx)\n", val, addr);
2699
2700	spin_lock_irqsave(&he_dev->global_lock, flags);
2701	he_writel(he_dev, val, FRAMER + (addr*4));
2702	(void) he_readl(he_dev, FRAMER + (addr*4));		/* flush posted writes */
2703	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2704}
2705 
2706	
2707static unsigned char
2708he_phy_get(struct atm_dev *atm_dev, unsigned long addr)
2709{ 
2710	unsigned long flags;
2711	struct he_dev *he_dev = HE_DEV(atm_dev);
2712	unsigned reg;
2713
2714	spin_lock_irqsave(&he_dev->global_lock, flags);
2715	reg = he_readl(he_dev, FRAMER + (addr*4));
2716	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2717
2718	HPRINTK("phy_get(addr 0x%lx) =0x%x\n", addr, reg);
2719	return reg;
2720}
2721
2722static int
2723he_proc_read(struct atm_dev *dev, loff_t *pos, char *page)
2724{
2725	unsigned long flags;
2726	struct he_dev *he_dev = HE_DEV(dev);
2727	int left, i;
2728#ifdef notdef
2729	struct he_rbrq *rbrq_tail;
2730	struct he_tpdrq *tpdrq_head;
2731	int rbpl_head, rbpl_tail;
2732#endif
2733	static long mcc = 0, oec = 0, dcc = 0, cec = 0;
2734
2735
2736	left = *pos;
2737	if (!left--)
2738		return sprintf(page, "ATM he driver\n");
2739
2740	if (!left--)
2741		return sprintf(page, "%s%s\n\n",
2742			he_dev->prod_id, he_dev->media & 0x40 ? "SM" : "MM");
2743
2744	if (!left--)
2745		return sprintf(page, "Mismatched Cells  VPI/VCI Not Open  Dropped Cells  RCM Dropped Cells\n");
2746
2747	spin_lock_irqsave(&he_dev->global_lock, flags);
2748	mcc += he_readl(he_dev, MCC);
2749	oec += he_readl(he_dev, OEC);
2750	dcc += he_readl(he_dev, DCC);
2751	cec += he_readl(he_dev, CEC);
2752	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2753
2754	if (!left--)
2755		return sprintf(page, "%16ld  %16ld  %13ld  %17ld\n\n", 
2756							mcc, oec, dcc, cec);
2757
2758	if (!left--)
2759		return sprintf(page, "irq_size = %d  inuse = ?  peak = %d\n",
2760				CONFIG_IRQ_SIZE, he_dev->irq_peak);
2761
2762	if (!left--)
2763		return sprintf(page, "tpdrq_size = %d  inuse = ?\n",
2764						CONFIG_TPDRQ_SIZE);
2765
2766	if (!left--)
2767		return sprintf(page, "rbrq_size = %d  inuse = ?  peak = %d\n",
2768				CONFIG_RBRQ_SIZE, he_dev->rbrq_peak);
2769
2770	if (!left--)
2771		return sprintf(page, "tbrq_size = %d  peak = %d\n",
2772					CONFIG_TBRQ_SIZE, he_dev->tbrq_peak);
2773
2774
2775#ifdef notdef
2776	rbpl_head = RBPL_MASK(he_readl(he_dev, G0_RBPL_S));
2777	rbpl_tail = RBPL_MASK(he_readl(he_dev, G0_RBPL_T));
2778
2779	inuse = rbpl_head - rbpl_tail;
2780	if (inuse < 0)
2781		inuse += CONFIG_RBPL_SIZE * sizeof(struct he_rbp);
2782	inuse /= sizeof(struct he_rbp);
2783
2784	if (!left--)
2785		return sprintf(page, "rbpl_size = %d  inuse = %d\n\n",
2786						CONFIG_RBPL_SIZE, inuse);
2787#endif
2788
2789	if (!left--)
2790		return sprintf(page, "rate controller periods (cbr)\n                 pcr  #vc\n");
2791
2792	for (i = 0; i < HE_NUM_CS_STPER; ++i)
2793		if (!left--)
2794			return sprintf(page, "cs_stper%-2d  %8ld  %3d\n", i,
2795						he_dev->cs_stper[i].pcr,
2796						he_dev->cs_stper[i].inuse);
2797
2798	if (!left--)
2799		return sprintf(page, "total bw (cbr): %d  (limit %d)\n",
2800			he_dev->total_bw, he_dev->atm_dev->link_rate * 10 / 9);
2801
2802	return 0;
2803}
2804
2805/* eeprom routines  -- see 4.7 */
2806
2807static u8 read_prom_byte(struct he_dev *he_dev, int addr)
2808{
2809	u32 val = 0, tmp_read = 0;
2810	int i, j = 0;
2811	u8 byte_read = 0;
2812
2813	val = readl(he_dev->membase + HOST_CNTL);
2814	val &= 0xFFFFE0FF;
2815       
2816	/* Turn on write enable */
2817	val |= 0x800;
2818	he_writel(he_dev, val, HOST_CNTL);
2819       
2820	/* Send READ instruction */
2821	for (i = 0; i < ARRAY_SIZE(readtab); i++) {
2822		he_writel(he_dev, val | readtab[i], HOST_CNTL);
2823		udelay(EEPROM_DELAY);
2824	}
2825       
2826	/* Next, we need to send the byte address to read from */
2827	for (i = 7; i >= 0; i--) {
2828		he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2829		udelay(EEPROM_DELAY);
2830		he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2831		udelay(EEPROM_DELAY);
2832	}
2833       
2834	j = 0;
2835
2836	val &= 0xFFFFF7FF;      /* Turn off write enable */
2837	he_writel(he_dev, val, HOST_CNTL);
2838       
2839	/* Now, we can read data from the EEPROM by clocking it in */
2840	for (i = 7; i >= 0; i--) {
2841		he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2842		udelay(EEPROM_DELAY);
2843		tmp_read = he_readl(he_dev, HOST_CNTL);
2844		byte_read |= (unsigned char)
2845			   ((tmp_read & ID_DOUT) >> ID_DOFFSET << i);
2846		he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2847		udelay(EEPROM_DELAY);
2848	}
2849       
2850	he_writel(he_dev, val | ID_CS, HOST_CNTL);
2851	udelay(EEPROM_DELAY);
2852
2853	return byte_read;
2854}
2855
2856MODULE_LICENSE("GPL");
2857MODULE_AUTHOR("chas williams <chas@cmf.nrl.navy.mil>");
2858MODULE_DESCRIPTION("ForeRunnerHE ATM Adapter driver");
2859module_param(disable64, bool, 0);
2860MODULE_PARM_DESC(disable64, "disable 64-bit pci bus transfers");
2861module_param(nvpibits, short, 0);
2862MODULE_PARM_DESC(nvpibits, "numbers of bits for vpi (default 0)");
2863module_param(nvcibits, short, 0);
2864MODULE_PARM_DESC(nvcibits, "numbers of bits for vci (default 12)");
2865module_param(rx_skb_reserve, short, 0);
2866MODULE_PARM_DESC(rx_skb_reserve, "padding for receive skb (default 16)");
2867module_param(irq_coalesce, bool, 0);
2868MODULE_PARM_DESC(irq_coalesce, "use interrupt coalescing (default 1)");
2869module_param(sdh, bool, 0);
2870MODULE_PARM_DESC(sdh, "use SDH framing (default 0)");
2871
2872static struct pci_device_id he_pci_tbl[] = {
2873	{ PCI_VDEVICE(FORE, PCI_DEVICE_ID_FORE_HE), 0 },
2874	{ 0, }
2875};
2876
2877MODULE_DEVICE_TABLE(pci, he_pci_tbl);
2878
2879static struct pci_driver he_driver = {
2880	.name =		"he",
2881	.probe =	he_init_one,
2882	.remove =	__devexit_p(he_remove_one),
2883	.id_table =	he_pci_tbl,
2884};
2885
2886static int __init he_init(void)
2887{
2888	return pci_register_driver(&he_driver);
2889}
2890
2891static void __exit he_cleanup(void)
2892{
2893	pci_unregister_driver(&he_driver);
2894}
2895
2896module_init(he_init);
2897module_exit(he_cleanup);
v4.6
   1/*
   2
   3  he.c
   4
   5  ForeRunnerHE ATM Adapter driver for ATM on Linux
   6  Copyright (C) 1999-2001  Naval Research Laboratory
   7
   8  This library is free software; you can redistribute it and/or
   9  modify it under the terms of the GNU Lesser General Public
  10  License as published by the Free Software Foundation; either
  11  version 2.1 of the License, or (at your option) any later version.
  12
  13  This library is distributed in the hope that it will be useful,
  14  but WITHOUT ANY WARRANTY; without even the implied warranty of
  15  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16  Lesser General Public License for more details.
  17
  18  You should have received a copy of the GNU Lesser General Public
  19  License along with this library; if not, write to the Free Software
  20  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21
  22*/
  23
  24/*
  25
  26  he.c
  27
  28  ForeRunnerHE ATM Adapter driver for ATM on Linux
  29  Copyright (C) 1999-2001  Naval Research Laboratory
  30
  31  Permission to use, copy, modify and distribute this software and its
  32  documentation is hereby granted, provided that both the copyright
  33  notice and this permission notice appear in all copies of the software,
  34  derivative works or modified versions, and any portions thereof, and
  35  that both notices appear in supporting documentation.
  36
  37  NRL ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION AND
  38  DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
  39  RESULTING FROM THE USE OF THIS SOFTWARE.
  40
  41  This driver was written using the "Programmer's Reference Manual for
  42  ForeRunnerHE(tm)", MANU0361-01 - Rev. A, 08/21/98.
  43
  44  AUTHORS:
  45	chas williams <chas@cmf.nrl.navy.mil>
  46	eric kinzie <ekinzie@cmf.nrl.navy.mil>
  47
  48  NOTES:
  49	4096 supported 'connections'
  50	group 0 is used for all traffic
  51	interrupt queue 0 is used for all interrupts
  52	aal0 support (based on work from ulrich.u.muller@nokia.com)
  53
  54 */
  55
  56#include <linux/module.h>
  57#include <linux/kernel.h>
  58#include <linux/skbuff.h>
  59#include <linux/pci.h>
  60#include <linux/errno.h>
  61#include <linux/types.h>
  62#include <linux/string.h>
  63#include <linux/delay.h>
  64#include <linux/init.h>
  65#include <linux/mm.h>
  66#include <linux/sched.h>
  67#include <linux/timer.h>
  68#include <linux/interrupt.h>
  69#include <linux/dma-mapping.h>
  70#include <linux/bitmap.h>
  71#include <linux/slab.h>
  72#include <asm/io.h>
  73#include <asm/byteorder.h>
  74#include <asm/uaccess.h>
  75
  76#include <linux/atmdev.h>
  77#include <linux/atm.h>
  78#include <linux/sonet.h>
  79
  80#undef USE_SCATTERGATHER
  81#undef USE_CHECKSUM_HW			/* still confused about this */
  82/* #undef HE_DEBUG */
  83
  84#include "he.h"
  85#include "suni.h"
  86#include <linux/atm_he.h>
  87
  88#define hprintk(fmt,args...)	printk(KERN_ERR DEV_LABEL "%d: " fmt, he_dev->number , ##args)
  89
  90#ifdef HE_DEBUG
  91#define HPRINTK(fmt,args...)	printk(KERN_DEBUG DEV_LABEL "%d: " fmt, he_dev->number , ##args)
  92#else /* !HE_DEBUG */
  93#define HPRINTK(fmt,args...)	do { } while (0)
  94#endif /* HE_DEBUG */
  95
  96/* declarations */
  97
  98static int he_open(struct atm_vcc *vcc);
  99static void he_close(struct atm_vcc *vcc);
 100static int he_send(struct atm_vcc *vcc, struct sk_buff *skb);
 101static int he_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg);
 102static irqreturn_t he_irq_handler(int irq, void *dev_id);
 103static void he_tasklet(unsigned long data);
 104static int he_proc_read(struct atm_dev *dev,loff_t *pos,char *page);
 105static int he_start(struct atm_dev *dev);
 106static void he_stop(struct he_dev *dev);
 107static void he_phy_put(struct atm_dev *, unsigned char, unsigned long);
 108static unsigned char he_phy_get(struct atm_dev *, unsigned long);
 109
 110static u8 read_prom_byte(struct he_dev *he_dev, int addr);
 111
 112/* globals */
 113
 114static struct he_dev *he_devs;
 115static bool disable64;
 116static short nvpibits = -1;
 117static short nvcibits = -1;
 118static short rx_skb_reserve = 16;
 119static bool irq_coalesce = true;
 120static bool sdh;
 121
 122/* Read from EEPROM = 0000 0011b */
 123static unsigned int readtab[] = {
 124	CS_HIGH | CLK_HIGH,
 125	CS_LOW | CLK_LOW,
 126	CLK_HIGH,               /* 0 */
 127	CLK_LOW,
 128	CLK_HIGH,               /* 0 */
 129	CLK_LOW,
 130	CLK_HIGH,               /* 0 */
 131	CLK_LOW,
 132	CLK_HIGH,               /* 0 */
 133	CLK_LOW,
 134	CLK_HIGH,               /* 0 */
 135	CLK_LOW,
 136	CLK_HIGH,               /* 0 */
 137	CLK_LOW | SI_HIGH,
 138	CLK_HIGH | SI_HIGH,     /* 1 */
 139	CLK_LOW | SI_HIGH,
 140	CLK_HIGH | SI_HIGH      /* 1 */
 141};     
 142 
 143/* Clock to read from/write to the EEPROM */
 144static unsigned int clocktab[] = {
 145	CLK_LOW,
 146	CLK_HIGH,
 147	CLK_LOW,
 148	CLK_HIGH,
 149	CLK_LOW,
 150	CLK_HIGH,
 151	CLK_LOW,
 152	CLK_HIGH,
 153	CLK_LOW,
 154	CLK_HIGH,
 155	CLK_LOW,
 156	CLK_HIGH,
 157	CLK_LOW,
 158	CLK_HIGH,
 159	CLK_LOW,
 160	CLK_HIGH,
 161	CLK_LOW
 162};     
 163
 164static struct atmdev_ops he_ops =
 165{
 166	.open =		he_open,
 167	.close =	he_close,	
 168	.ioctl =	he_ioctl,	
 169	.send =		he_send,
 170	.phy_put =	he_phy_put,
 171	.phy_get =	he_phy_get,
 172	.proc_read =	he_proc_read,
 173	.owner =	THIS_MODULE
 174};
 175
 176#define he_writel(dev, val, reg)	do { writel(val, (dev)->membase + (reg)); wmb(); } while (0)
 177#define he_readl(dev, reg)		readl((dev)->membase + (reg))
 178
 179/* section 2.12 connection memory access */
 180
 181static __inline__ void
 182he_writel_internal(struct he_dev *he_dev, unsigned val, unsigned addr,
 183								unsigned flags)
 184{
 185	he_writel(he_dev, val, CON_DAT);
 186	(void) he_readl(he_dev, CON_DAT);		/* flush posted writes */
 187	he_writel(he_dev, flags | CON_CTL_WRITE | CON_CTL_ADDR(addr), CON_CTL);
 188	while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
 189}
 190
 191#define he_writel_rcm(dev, val, reg) 				\
 192			he_writel_internal(dev, val, reg, CON_CTL_RCM)
 193
 194#define he_writel_tcm(dev, val, reg) 				\
 195			he_writel_internal(dev, val, reg, CON_CTL_TCM)
 196
 197#define he_writel_mbox(dev, val, reg) 				\
 198			he_writel_internal(dev, val, reg, CON_CTL_MBOX)
 199
 200static unsigned
 201he_readl_internal(struct he_dev *he_dev, unsigned addr, unsigned flags)
 202{
 203	he_writel(he_dev, flags | CON_CTL_READ | CON_CTL_ADDR(addr), CON_CTL);
 204	while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
 205	return he_readl(he_dev, CON_DAT);
 206}
 207
 208#define he_readl_rcm(dev, reg) \
 209			he_readl_internal(dev, reg, CON_CTL_RCM)
 210
 211#define he_readl_tcm(dev, reg) \
 212			he_readl_internal(dev, reg, CON_CTL_TCM)
 213
 214#define he_readl_mbox(dev, reg) \
 215			he_readl_internal(dev, reg, CON_CTL_MBOX)
 216
 217
 218/* figure 2.2 connection id */
 219
 220#define he_mkcid(dev, vpi, vci)		(((vpi << (dev)->vcibits) | vci) & 0x1fff)
 221
 222/* 2.5.1 per connection transmit state registers */
 223
 224#define he_writel_tsr0(dev, val, cid) \
 225		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 0)
 226#define he_readl_tsr0(dev, cid) \
 227		he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 0)
 228
 229#define he_writel_tsr1(dev, val, cid) \
 230		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 1)
 231
 232#define he_writel_tsr2(dev, val, cid) \
 233		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 2)
 234
 235#define he_writel_tsr3(dev, val, cid) \
 236		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 3)
 237
 238#define he_writel_tsr4(dev, val, cid) \
 239		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 4)
 240
 241	/* from page 2-20
 242	 *
 243	 * NOTE While the transmit connection is active, bits 23 through 0
 244	 *      of this register must not be written by the host.  Byte
 245	 *      enables should be used during normal operation when writing
 246	 *      the most significant byte.
 247	 */
 248
 249#define he_writel_tsr4_upper(dev, val, cid) \
 250		he_writel_internal(dev, val, CONFIG_TSRA | (cid << 3) | 4, \
 251							CON_CTL_TCM \
 252							| CON_BYTE_DISABLE_2 \
 253							| CON_BYTE_DISABLE_1 \
 254							| CON_BYTE_DISABLE_0)
 255
 256#define he_readl_tsr4(dev, cid) \
 257		he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 4)
 258
 259#define he_writel_tsr5(dev, val, cid) \
 260		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 5)
 261
 262#define he_writel_tsr6(dev, val, cid) \
 263		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 6)
 264
 265#define he_writel_tsr7(dev, val, cid) \
 266		he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 7)
 267
 268
 269#define he_writel_tsr8(dev, val, cid) \
 270		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 0)
 271
 272#define he_writel_tsr9(dev, val, cid) \
 273		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 1)
 274
 275#define he_writel_tsr10(dev, val, cid) \
 276		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 2)
 277
 278#define he_writel_tsr11(dev, val, cid) \
 279		he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 3)
 280
 281
 282#define he_writel_tsr12(dev, val, cid) \
 283		he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 0)
 284
 285#define he_writel_tsr13(dev, val, cid) \
 286		he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 1)
 287
 288
 289#define he_writel_tsr14(dev, val, cid) \
 290		he_writel_tcm(dev, val, CONFIG_TSRD | cid)
 291
 292#define he_writel_tsr14_upper(dev, val, cid) \
 293		he_writel_internal(dev, val, CONFIG_TSRD | cid, \
 294							CON_CTL_TCM \
 295							| CON_BYTE_DISABLE_2 \
 296							| CON_BYTE_DISABLE_1 \
 297							| CON_BYTE_DISABLE_0)
 298
 299/* 2.7.1 per connection receive state registers */
 300
 301#define he_writel_rsr0(dev, val, cid) \
 302		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 0)
 303#define he_readl_rsr0(dev, cid) \
 304		he_readl_rcm(dev, 0x00000 | (cid << 3) | 0)
 305
 306#define he_writel_rsr1(dev, val, cid) \
 307		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 1)
 308
 309#define he_writel_rsr2(dev, val, cid) \
 310		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 2)
 311
 312#define he_writel_rsr3(dev, val, cid) \
 313		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 3)
 314
 315#define he_writel_rsr4(dev, val, cid) \
 316		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 4)
 317
 318#define he_writel_rsr5(dev, val, cid) \
 319		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 5)
 320
 321#define he_writel_rsr6(dev, val, cid) \
 322		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 6)
 323
 324#define he_writel_rsr7(dev, val, cid) \
 325		he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 7)
 326
 327static __inline__ struct atm_vcc*
 328__find_vcc(struct he_dev *he_dev, unsigned cid)
 329{
 330	struct hlist_head *head;
 331	struct atm_vcc *vcc;
 
 332	struct sock *s;
 333	short vpi;
 334	int vci;
 335
 336	vpi = cid >> he_dev->vcibits;
 337	vci = cid & ((1 << he_dev->vcibits) - 1);
 338	head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)];
 339
 340	sk_for_each(s, head) {
 341		vcc = atm_sk(s);
 342		if (vcc->dev == he_dev->atm_dev &&
 343		    vcc->vci == vci && vcc->vpi == vpi &&
 344		    vcc->qos.rxtp.traffic_class != ATM_NONE) {
 345				return vcc;
 346		}
 347	}
 348	return NULL;
 349}
 350
 351static int he_init_one(struct pci_dev *pci_dev,
 352		       const struct pci_device_id *pci_ent)
 353{
 354	struct atm_dev *atm_dev = NULL;
 355	struct he_dev *he_dev = NULL;
 356	int err = 0;
 357
 358	printk(KERN_INFO "ATM he driver\n");
 359
 360	if (pci_enable_device(pci_dev))
 361		return -EIO;
 362	if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32)) != 0) {
 363		printk(KERN_WARNING "he: no suitable dma available\n");
 364		err = -EIO;
 365		goto init_one_failure;
 366	}
 367
 368	atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &he_ops, -1, NULL);
 369	if (!atm_dev) {
 370		err = -ENODEV;
 371		goto init_one_failure;
 372	}
 373	pci_set_drvdata(pci_dev, atm_dev);
 374
 375	he_dev = kzalloc(sizeof(struct he_dev),
 376							GFP_KERNEL);
 377	if (!he_dev) {
 378		err = -ENOMEM;
 379		goto init_one_failure;
 380	}
 381	he_dev->pci_dev = pci_dev;
 382	he_dev->atm_dev = atm_dev;
 383	he_dev->atm_dev->dev_data = he_dev;
 384	atm_dev->dev_data = he_dev;
 385	he_dev->number = atm_dev->number;
 386	tasklet_init(&he_dev->tasklet, he_tasklet, (unsigned long) he_dev);
 387	spin_lock_init(&he_dev->global_lock);
 388
 389	if (he_start(atm_dev)) {
 390		he_stop(he_dev);
 391		err = -ENODEV;
 392		goto init_one_failure;
 393	}
 394	he_dev->next = NULL;
 395	if (he_devs)
 396		he_dev->next = he_devs;
 397	he_devs = he_dev;
 398	return 0;
 399
 400init_one_failure:
 401	if (atm_dev)
 402		atm_dev_deregister(atm_dev);
 403	kfree(he_dev);
 404	pci_disable_device(pci_dev);
 405	return err;
 406}
 407
 408static void he_remove_one(struct pci_dev *pci_dev)
 
 409{
 410	struct atm_dev *atm_dev;
 411	struct he_dev *he_dev;
 412
 413	atm_dev = pci_get_drvdata(pci_dev);
 414	he_dev = HE_DEV(atm_dev);
 415
 416	/* need to remove from he_devs */
 417
 418	he_stop(he_dev);
 419	atm_dev_deregister(atm_dev);
 420	kfree(he_dev);
 421
 
 422	pci_disable_device(pci_dev);
 423}
 424
 425
 426static unsigned
 427rate_to_atmf(unsigned rate)		/* cps to atm forum format */
 428{
 429#define NONZERO (1 << 14)
 430
 431	unsigned exp = 0;
 432
 433	if (rate == 0)
 434		return 0;
 435
 436	rate <<= 9;
 437	while (rate > 0x3ff) {
 438		++exp;
 439		rate >>= 1;
 440	}
 441
 442	return (NONZERO | (exp << 9) | (rate & 0x1ff));
 443}
 444
 445static void he_init_rx_lbfp0(struct he_dev *he_dev)
 
 446{
 447	unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
 448	unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
 449	unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
 450	unsigned row_offset = he_dev->r0_startrow * he_dev->bytes_per_row;
 451	
 452	lbufd_index = 0;
 453	lbm_offset = he_readl(he_dev, RCMLBM_BA);
 454
 455	he_writel(he_dev, lbufd_index, RLBF0_H);
 456
 457	for (i = 0, lbuf_count = 0; i < he_dev->r0_numbuffs; ++i) {
 458		lbufd_index += 2;
 459		lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
 460
 461		he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
 462		he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
 463
 464		if (++lbuf_count == lbufs_per_row) {
 465			lbuf_count = 0;
 466			row_offset += he_dev->bytes_per_row;
 467		}
 468		lbm_offset += 4;
 469	}
 470		
 471	he_writel(he_dev, lbufd_index - 2, RLBF0_T);
 472	he_writel(he_dev, he_dev->r0_numbuffs, RLBF0_C);
 473}
 474
 475static void he_init_rx_lbfp1(struct he_dev *he_dev)
 
 476{
 477	unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
 478	unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
 479	unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
 480	unsigned row_offset = he_dev->r1_startrow * he_dev->bytes_per_row;
 481	
 482	lbufd_index = 1;
 483	lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
 484
 485	he_writel(he_dev, lbufd_index, RLBF1_H);
 486
 487	for (i = 0, lbuf_count = 0; i < he_dev->r1_numbuffs; ++i) {
 488		lbufd_index += 2;
 489		lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
 490
 491		he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
 492		he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
 493
 494		if (++lbuf_count == lbufs_per_row) {
 495			lbuf_count = 0;
 496			row_offset += he_dev->bytes_per_row;
 497		}
 498		lbm_offset += 4;
 499	}
 500		
 501	he_writel(he_dev, lbufd_index - 2, RLBF1_T);
 502	he_writel(he_dev, he_dev->r1_numbuffs, RLBF1_C);
 503}
 504
 505static void he_init_tx_lbfp(struct he_dev *he_dev)
 
 506{
 507	unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
 508	unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
 509	unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
 510	unsigned row_offset = he_dev->tx_startrow * he_dev->bytes_per_row;
 511	
 512	lbufd_index = he_dev->r0_numbuffs + he_dev->r1_numbuffs;
 513	lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
 514
 515	he_writel(he_dev, lbufd_index, TLBF_H);
 516
 517	for (i = 0, lbuf_count = 0; i < he_dev->tx_numbuffs; ++i) {
 518		lbufd_index += 1;
 519		lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
 520
 521		he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
 522		he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
 523
 524		if (++lbuf_count == lbufs_per_row) {
 525			lbuf_count = 0;
 526			row_offset += he_dev->bytes_per_row;
 527		}
 528		lbm_offset += 2;
 529	}
 530		
 531	he_writel(he_dev, lbufd_index - 1, TLBF_T);
 532}
 533
 534static int he_init_tpdrq(struct he_dev *he_dev)
 
 535{
 536	he_dev->tpdrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
 537						 CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq),
 538						 &he_dev->tpdrq_phys, GFP_KERNEL);
 539	if (he_dev->tpdrq_base == NULL) {
 540		hprintk("failed to alloc tpdrq\n");
 541		return -ENOMEM;
 542	}
 
 
 543
 544	he_dev->tpdrq_tail = he_dev->tpdrq_base;
 545	he_dev->tpdrq_head = he_dev->tpdrq_base;
 546
 547	he_writel(he_dev, he_dev->tpdrq_phys, TPDRQ_B_H);
 548	he_writel(he_dev, 0, TPDRQ_T);	
 549	he_writel(he_dev, CONFIG_TPDRQ_SIZE - 1, TPDRQ_S);
 550
 551	return 0;
 552}
 553
 554static void he_init_cs_block(struct he_dev *he_dev)
 
 555{
 556	unsigned clock, rate, delta;
 557	int reg;
 558
 559	/* 5.1.7 cs block initialization */
 560
 561	for (reg = 0; reg < 0x20; ++reg)
 562		he_writel_mbox(he_dev, 0x0, CS_STTIM0 + reg);
 563
 564	/* rate grid timer reload values */
 565
 566	clock = he_is622(he_dev) ? 66667000 : 50000000;
 567	rate = he_dev->atm_dev->link_rate;
 568	delta = rate / 16 / 2;
 569
 570	for (reg = 0; reg < 0x10; ++reg) {
 571		/* 2.4 internal transmit function
 572		 *
 573	 	 * we initialize the first row in the rate grid.
 574		 * values are period (in clock cycles) of timer
 575		 */
 576		unsigned period = clock / rate;
 577
 578		he_writel_mbox(he_dev, period, CS_TGRLD0 + reg);
 579		rate -= delta;
 580	}
 581
 582	if (he_is622(he_dev)) {
 583		/* table 5.2 (4 cells per lbuf) */
 584		he_writel_mbox(he_dev, 0x000800fa, CS_ERTHR0);
 585		he_writel_mbox(he_dev, 0x000c33cb, CS_ERTHR1);
 586		he_writel_mbox(he_dev, 0x0010101b, CS_ERTHR2);
 587		he_writel_mbox(he_dev, 0x00181dac, CS_ERTHR3);
 588		he_writel_mbox(he_dev, 0x00280600, CS_ERTHR4);
 589
 590		/* table 5.3, 5.4, 5.5, 5.6, 5.7 */
 591		he_writel_mbox(he_dev, 0x023de8b3, CS_ERCTL0);
 592		he_writel_mbox(he_dev, 0x1801, CS_ERCTL1);
 593		he_writel_mbox(he_dev, 0x68b3, CS_ERCTL2);
 594		he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
 595		he_writel_mbox(he_dev, 0x68b3, CS_ERSTAT1);
 596		he_writel_mbox(he_dev, 0x14585, CS_RTFWR);
 597
 598		he_writel_mbox(he_dev, 0x4680, CS_RTATR);
 599
 600		/* table 5.8 */
 601		he_writel_mbox(he_dev, 0x00159ece, CS_TFBSET);
 602		he_writel_mbox(he_dev, 0x68b3, CS_WCRMAX);
 603		he_writel_mbox(he_dev, 0x5eb3, CS_WCRMIN);
 604		he_writel_mbox(he_dev, 0xe8b3, CS_WCRINC);
 605		he_writel_mbox(he_dev, 0xdeb3, CS_WCRDEC);
 606		he_writel_mbox(he_dev, 0x68b3, CS_WCRCEIL);
 607
 608		/* table 5.9 */
 609		he_writel_mbox(he_dev, 0x5, CS_OTPPER);
 610		he_writel_mbox(he_dev, 0x14, CS_OTWPER);
 611	} else {
 612		/* table 5.1 (4 cells per lbuf) */
 613		he_writel_mbox(he_dev, 0x000400ea, CS_ERTHR0);
 614		he_writel_mbox(he_dev, 0x00063388, CS_ERTHR1);
 615		he_writel_mbox(he_dev, 0x00081018, CS_ERTHR2);
 616		he_writel_mbox(he_dev, 0x000c1dac, CS_ERTHR3);
 617		he_writel_mbox(he_dev, 0x0014051a, CS_ERTHR4);
 618
 619		/* table 5.3, 5.4, 5.5, 5.6, 5.7 */
 620		he_writel_mbox(he_dev, 0x0235e4b1, CS_ERCTL0);
 621		he_writel_mbox(he_dev, 0x4701, CS_ERCTL1);
 622		he_writel_mbox(he_dev, 0x64b1, CS_ERCTL2);
 623		he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
 624		he_writel_mbox(he_dev, 0x64b1, CS_ERSTAT1);
 625		he_writel_mbox(he_dev, 0xf424, CS_RTFWR);
 626
 627		he_writel_mbox(he_dev, 0x4680, CS_RTATR);
 628
 629		/* table 5.8 */
 630		he_writel_mbox(he_dev, 0x000563b7, CS_TFBSET);
 631		he_writel_mbox(he_dev, 0x64b1, CS_WCRMAX);
 632		he_writel_mbox(he_dev, 0x5ab1, CS_WCRMIN);
 633		he_writel_mbox(he_dev, 0xe4b1, CS_WCRINC);
 634		he_writel_mbox(he_dev, 0xdab1, CS_WCRDEC);
 635		he_writel_mbox(he_dev, 0x64b1, CS_WCRCEIL);
 636
 637		/* table 5.9 */
 638		he_writel_mbox(he_dev, 0x6, CS_OTPPER);
 639		he_writel_mbox(he_dev, 0x1e, CS_OTWPER);
 640	}
 641
 642	he_writel_mbox(he_dev, 0x8, CS_OTTLIM);
 643
 644	for (reg = 0; reg < 0x8; ++reg)
 645		he_writel_mbox(he_dev, 0x0, CS_HGRRT0 + reg);
 646
 647}
 648
 649static int he_init_cs_block_rcm(struct he_dev *he_dev)
 
 650{
 651	unsigned (*rategrid)[16][16];
 652	unsigned rate, delta;
 653	int i, j, reg;
 654
 655	unsigned rate_atmf, exp, man;
 656	unsigned long long rate_cps;
 657	int mult, buf, buf_limit = 4;
 658
 659	rategrid = kmalloc( sizeof(unsigned) * 16 * 16, GFP_KERNEL);
 660	if (!rategrid)
 661		return -ENOMEM;
 662
 663	/* initialize rate grid group table */
 664
 665	for (reg = 0x0; reg < 0xff; ++reg)
 666		he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
 667
 668	/* initialize rate controller groups */
 669
 670	for (reg = 0x100; reg < 0x1ff; ++reg)
 671		he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
 672	
 673	/* initialize tNrm lookup table */
 674
 675	/* the manual makes reference to a routine in a sample driver
 676	   for proper configuration; fortunately, we only need this
 677	   in order to support abr connection */
 678	
 679	/* initialize rate to group table */
 680
 681	rate = he_dev->atm_dev->link_rate;
 682	delta = rate / 32;
 683
 684	/*
 685	 * 2.4 transmit internal functions
 686	 * 
 687	 * we construct a copy of the rate grid used by the scheduler
 688	 * in order to construct the rate to group table below
 689	 */
 690
 691	for (j = 0; j < 16; j++) {
 692		(*rategrid)[0][j] = rate;
 693		rate -= delta;
 694	}
 695
 696	for (i = 1; i < 16; i++)
 697		for (j = 0; j < 16; j++)
 698			if (i > 14)
 699				(*rategrid)[i][j] = (*rategrid)[i - 1][j] / 4;
 700			else
 701				(*rategrid)[i][j] = (*rategrid)[i - 1][j] / 2;
 702
 703	/*
 704	 * 2.4 transmit internal function
 705	 *
 706	 * this table maps the upper 5 bits of exponent and mantissa
 707	 * of the atm forum representation of the rate into an index
 708	 * on rate grid  
 709	 */
 710
 711	rate_atmf = 0;
 712	while (rate_atmf < 0x400) {
 713		man = (rate_atmf & 0x1f) << 4;
 714		exp = rate_atmf >> 5;
 715
 716		/* 
 717			instead of '/ 512', use '>> 9' to prevent a call
 718			to divdu3 on x86 platforms
 719		*/
 720		rate_cps = (unsigned long long) (1 << exp) * (man + 512) >> 9;
 721
 722		if (rate_cps < 10)
 723			rate_cps = 10;	/* 2.2.1 minimum payload rate is 10 cps */
 724
 725		for (i = 255; i > 0; i--)
 726			if ((*rategrid)[i/16][i%16] >= rate_cps)
 727				break;	 /* pick nearest rate instead? */
 728
 729		/*
 730		 * each table entry is 16 bits: (rate grid index (8 bits)
 731		 * and a buffer limit (8 bits)
 732		 * there are two table entries in each 32-bit register
 733		 */
 734
 735#ifdef notdef
 736		buf = rate_cps * he_dev->tx_numbuffs /
 737				(he_dev->atm_dev->link_rate * 2);
 738#else
 739		/* this is pretty, but avoids _divdu3 and is mostly correct */
 740		mult = he_dev->atm_dev->link_rate / ATM_OC3_PCR;
 741		if (rate_cps > (272 * mult))
 742			buf = 4;
 743		else if (rate_cps > (204 * mult))
 744			buf = 3;
 745		else if (rate_cps > (136 * mult))
 746			buf = 2;
 747		else if (rate_cps > (68 * mult))
 748			buf = 1;
 749		else
 750			buf = 0;
 751#endif
 752		if (buf > buf_limit)
 753			buf = buf_limit;
 754		reg = (reg << 16) | ((i << 8) | buf);
 755
 756#define RTGTBL_OFFSET 0x400
 757	  
 758		if (rate_atmf & 0x1)
 759			he_writel_rcm(he_dev, reg,
 760				CONFIG_RCMABR + RTGTBL_OFFSET + (rate_atmf >> 1));
 761
 762		++rate_atmf;
 763	}
 764
 765	kfree(rategrid);
 766	return 0;
 767}
 768
 769static int he_init_group(struct he_dev *he_dev, int group)
 
 770{
 771	struct he_buff *heb, *next;
 772	dma_addr_t mapping;
 773	int i;
 774
 775	he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
 776	he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
 777	he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
 778	he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
 779		  G0_RBPS_BS + (group * 32));
 780
 781	/* bitmap table */
 782	he_dev->rbpl_table = kmalloc(BITS_TO_LONGS(RBPL_TABLE_SIZE)
 783				     * sizeof(unsigned long), GFP_KERNEL);
 784	if (!he_dev->rbpl_table) {
 785		hprintk("unable to allocate rbpl bitmap table\n");
 786		return -ENOMEM;
 787	}
 788	bitmap_zero(he_dev->rbpl_table, RBPL_TABLE_SIZE);
 789
 790	/* rbpl_virt 64-bit pointers */
 791	he_dev->rbpl_virt = kmalloc(RBPL_TABLE_SIZE
 792				    * sizeof(struct he_buff *), GFP_KERNEL);
 793	if (!he_dev->rbpl_virt) {
 794		hprintk("unable to allocate rbpl virt table\n");
 795		goto out_free_rbpl_table;
 796	}
 797
 798	/* large buffer pool */
 799	he_dev->rbpl_pool = dma_pool_create("rbpl", &he_dev->pci_dev->dev,
 800					    CONFIG_RBPL_BUFSIZE, 64, 0);
 801	if (he_dev->rbpl_pool == NULL) {
 802		hprintk("unable to create rbpl pool\n");
 803		goto out_free_rbpl_virt;
 804	}
 805
 806	he_dev->rbpl_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
 807						CONFIG_RBPL_SIZE * sizeof(struct he_rbp),
 808						&he_dev->rbpl_phys, GFP_KERNEL);
 809	if (he_dev->rbpl_base == NULL) {
 810		hprintk("failed to alloc rbpl_base\n");
 811		goto out_destroy_rbpl_pool;
 812	}
 
 813
 814	INIT_LIST_HEAD(&he_dev->rbpl_outstanding);
 815
 816	for (i = 0; i < CONFIG_RBPL_SIZE; ++i) {
 817
 818		heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_KERNEL, &mapping);
 819		if (!heb)
 820			goto out_free_rbpl;
 821		heb->mapping = mapping;
 822		list_add(&heb->entry, &he_dev->rbpl_outstanding);
 823
 824		set_bit(i, he_dev->rbpl_table);
 825		he_dev->rbpl_virt[i] = heb;
 826		he_dev->rbpl_hint = i + 1;
 827		he_dev->rbpl_base[i].idx =  i << RBP_IDX_OFFSET;
 828		he_dev->rbpl_base[i].phys = mapping + offsetof(struct he_buff, data);
 829	}
 830	he_dev->rbpl_tail = &he_dev->rbpl_base[CONFIG_RBPL_SIZE - 1];
 831
 832	he_writel(he_dev, he_dev->rbpl_phys, G0_RBPL_S + (group * 32));
 833	he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail),
 834						G0_RBPL_T + (group * 32));
 835	he_writel(he_dev, (CONFIG_RBPL_BUFSIZE - sizeof(struct he_buff))/4,
 836						G0_RBPL_BS + (group * 32));
 837	he_writel(he_dev,
 838			RBP_THRESH(CONFIG_RBPL_THRESH) |
 839			RBP_QSIZE(CONFIG_RBPL_SIZE - 1) |
 840			RBP_INT_ENB,
 841						G0_RBPL_QI + (group * 32));
 842
 843	/* rx buffer ready queue */
 844
 845	he_dev->rbrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
 846						CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
 847						&he_dev->rbrq_phys, GFP_KERNEL);
 848	if (he_dev->rbrq_base == NULL) {
 849		hprintk("failed to allocate rbrq\n");
 850		goto out_free_rbpl;
 851	}
 
 852
 853	he_dev->rbrq_head = he_dev->rbrq_base;
 854	he_writel(he_dev, he_dev->rbrq_phys, G0_RBRQ_ST + (group * 16));
 855	he_writel(he_dev, 0, G0_RBRQ_H + (group * 16));
 856	he_writel(he_dev,
 857		RBRQ_THRESH(CONFIG_RBRQ_THRESH) | RBRQ_SIZE(CONFIG_RBRQ_SIZE - 1),
 858						G0_RBRQ_Q + (group * 16));
 859	if (irq_coalesce) {
 860		hprintk("coalescing interrupts\n");
 861		he_writel(he_dev, RBRQ_TIME(768) | RBRQ_COUNT(7),
 862						G0_RBRQ_I + (group * 16));
 863	} else
 864		he_writel(he_dev, RBRQ_TIME(0) | RBRQ_COUNT(1),
 865						G0_RBRQ_I + (group * 16));
 866
 867	/* tx buffer ready queue */
 868
 869	he_dev->tbrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
 870						CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
 871						&he_dev->tbrq_phys, GFP_KERNEL);
 872	if (he_dev->tbrq_base == NULL) {
 873		hprintk("failed to allocate tbrq\n");
 874		goto out_free_rbpq_base;
 875	}
 
 876
 877	he_dev->tbrq_head = he_dev->tbrq_base;
 878
 879	he_writel(he_dev, he_dev->tbrq_phys, G0_TBRQ_B_T + (group * 16));
 880	he_writel(he_dev, 0, G0_TBRQ_H + (group * 16));
 881	he_writel(he_dev, CONFIG_TBRQ_SIZE - 1, G0_TBRQ_S + (group * 16));
 882	he_writel(he_dev, CONFIG_TBRQ_THRESH, G0_TBRQ_THRESH + (group * 16));
 883
 884	return 0;
 885
 886out_free_rbpq_base:
 887	dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE *
 888			  sizeof(struct he_rbrq), he_dev->rbrq_base,
 889			  he_dev->rbrq_phys);
 890out_free_rbpl:
 891	list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
 892		dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
 893
 894	dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE *
 895			  sizeof(struct he_rbp), he_dev->rbpl_base,
 896			  he_dev->rbpl_phys);
 897out_destroy_rbpl_pool:
 898	dma_pool_destroy(he_dev->rbpl_pool);
 899out_free_rbpl_virt:
 900	kfree(he_dev->rbpl_virt);
 901out_free_rbpl_table:
 902	kfree(he_dev->rbpl_table);
 903
 904	return -ENOMEM;
 905}
 906
 907static int he_init_irq(struct he_dev *he_dev)
 
 908{
 909	int i;
 910
 911	/* 2.9.3.5  tail offset for each interrupt queue is located after the
 912		    end of the interrupt queue */
 913
 914	he_dev->irq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
 915					       (CONFIG_IRQ_SIZE + 1)
 916					       * sizeof(struct he_irq),
 917					       &he_dev->irq_phys,
 918					       GFP_KERNEL);
 919	if (he_dev->irq_base == NULL) {
 920		hprintk("failed to allocate irq\n");
 921		return -ENOMEM;
 922	}
 923	he_dev->irq_tailoffset = (unsigned *)
 924					&he_dev->irq_base[CONFIG_IRQ_SIZE];
 925	*he_dev->irq_tailoffset = 0;
 926	he_dev->irq_head = he_dev->irq_base;
 927	he_dev->irq_tail = he_dev->irq_base;
 928
 929	for (i = 0; i < CONFIG_IRQ_SIZE; ++i)
 930		he_dev->irq_base[i].isw = ITYPE_INVALID;
 931
 932	he_writel(he_dev, he_dev->irq_phys, IRQ0_BASE);
 933	he_writel(he_dev,
 934		IRQ_SIZE(CONFIG_IRQ_SIZE) | IRQ_THRESH(CONFIG_IRQ_THRESH),
 935								IRQ0_HEAD);
 936	he_writel(he_dev, IRQ_INT_A | IRQ_TYPE_LINE, IRQ0_CNTL);
 937	he_writel(he_dev, 0x0, IRQ0_DATA);
 938
 939	he_writel(he_dev, 0x0, IRQ1_BASE);
 940	he_writel(he_dev, 0x0, IRQ1_HEAD);
 941	he_writel(he_dev, 0x0, IRQ1_CNTL);
 942	he_writel(he_dev, 0x0, IRQ1_DATA);
 943
 944	he_writel(he_dev, 0x0, IRQ2_BASE);
 945	he_writel(he_dev, 0x0, IRQ2_HEAD);
 946	he_writel(he_dev, 0x0, IRQ2_CNTL);
 947	he_writel(he_dev, 0x0, IRQ2_DATA);
 948
 949	he_writel(he_dev, 0x0, IRQ3_BASE);
 950	he_writel(he_dev, 0x0, IRQ3_HEAD);
 951	he_writel(he_dev, 0x0, IRQ3_CNTL);
 952	he_writel(he_dev, 0x0, IRQ3_DATA);
 953
 954	/* 2.9.3.2 interrupt queue mapping registers */
 955
 956	he_writel(he_dev, 0x0, GRP_10_MAP);
 957	he_writel(he_dev, 0x0, GRP_32_MAP);
 958	he_writel(he_dev, 0x0, GRP_54_MAP);
 959	he_writel(he_dev, 0x0, GRP_76_MAP);
 960
 961	if (request_irq(he_dev->pci_dev->irq,
 962			he_irq_handler, IRQF_SHARED, DEV_LABEL, he_dev)) {
 963		hprintk("irq %d already in use\n", he_dev->pci_dev->irq);
 964		return -EINVAL;
 965	}   
 966
 967	he_dev->irq = he_dev->pci_dev->irq;
 968
 969	return 0;
 970}
 971
 972static int he_start(struct atm_dev *dev)
 
 973{
 974	struct he_dev *he_dev;
 975	struct pci_dev *pci_dev;
 976	unsigned long membase;
 977
 978	u16 command;
 979	u32 gen_cntl_0, host_cntl, lb_swap;
 980	u8 cache_size, timer;
 981	
 982	unsigned err;
 983	unsigned int status, reg;
 984	int i, group;
 985
 986	he_dev = HE_DEV(dev);
 987	pci_dev = he_dev->pci_dev;
 988
 989	membase = pci_resource_start(pci_dev, 0);
 990	HPRINTK("membase = 0x%lx  irq = %d.\n", membase, pci_dev->irq);
 991
 992	/*
 993	 * pci bus controller initialization 
 994	 */
 995
 996	/* 4.3 pci bus controller-specific initialization */
 997	if (pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0) != 0) {
 998		hprintk("can't read GEN_CNTL_0\n");
 999		return -EINVAL;
1000	}
1001	gen_cntl_0 |= (MRL_ENB | MRM_ENB | IGNORE_TIMEOUT);
1002	if (pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0) != 0) {
1003		hprintk("can't write GEN_CNTL_0.\n");
1004		return -EINVAL;
1005	}
1006
1007	if (pci_read_config_word(pci_dev, PCI_COMMAND, &command) != 0) {
1008		hprintk("can't read PCI_COMMAND.\n");
1009		return -EINVAL;
1010	}
1011
1012	command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE);
1013	if (pci_write_config_word(pci_dev, PCI_COMMAND, command) != 0) {
1014		hprintk("can't enable memory.\n");
1015		return -EINVAL;
1016	}
1017
1018	if (pci_read_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, &cache_size)) {
1019		hprintk("can't read cache line size?\n");
1020		return -EINVAL;
1021	}
1022
1023	if (cache_size < 16) {
1024		cache_size = 16;
1025		if (pci_write_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, cache_size))
1026			hprintk("can't set cache line size to %d\n", cache_size);
1027	}
1028
1029	if (pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &timer)) {
1030		hprintk("can't read latency timer?\n");
1031		return -EINVAL;
1032	}
1033
1034	/* from table 3.9
1035	 *
1036	 * LAT_TIMER = 1 + AVG_LAT + BURST_SIZE/BUS_SIZE
1037	 * 
1038	 * AVG_LAT: The average first data read/write latency [maximum 16 clock cycles]
1039	 * BURST_SIZE: 1536 bytes (read) for 622, 768 bytes (read) for 155 [192 clock cycles]
1040	 *
1041	 */ 
1042#define LAT_TIMER 209
1043	if (timer < LAT_TIMER) {
1044		HPRINTK("latency timer was %d, setting to %d\n", timer, LAT_TIMER);
1045		timer = LAT_TIMER;
1046		if (pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, timer))
1047			hprintk("can't set latency timer to %d\n", timer);
1048	}
1049
1050	if (!(he_dev->membase = ioremap(membase, HE_REGMAP_SIZE))) {
1051		hprintk("can't set up page mapping\n");
1052		return -EINVAL;
1053	}
1054
1055	/* 4.4 card reset */
1056	he_writel(he_dev, 0x0, RESET_CNTL);
1057	he_writel(he_dev, 0xff, RESET_CNTL);
1058
1059	msleep(16);	/* 16 ms */
1060	status = he_readl(he_dev, RESET_CNTL);
1061	if ((status & BOARD_RST_STATUS) == 0) {
1062		hprintk("reset failed\n");
1063		return -EINVAL;
1064	}
1065
1066	/* 4.5 set bus width */
1067	host_cntl = he_readl(he_dev, HOST_CNTL);
1068	if (host_cntl & PCI_BUS_SIZE64)
1069		gen_cntl_0 |= ENBL_64;
1070	else
1071		gen_cntl_0 &= ~ENBL_64;
1072
1073	if (disable64 == 1) {
1074		hprintk("disabling 64-bit pci bus transfers\n");
1075		gen_cntl_0 &= ~ENBL_64;
1076	}
1077
1078	if (gen_cntl_0 & ENBL_64)
1079		hprintk("64-bit transfers enabled\n");
1080
1081	pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1082
1083	/* 4.7 read prom contents */
1084	for (i = 0; i < PROD_ID_LEN; ++i)
1085		he_dev->prod_id[i] = read_prom_byte(he_dev, PROD_ID + i);
1086
1087	he_dev->media = read_prom_byte(he_dev, MEDIA);
1088
1089	for (i = 0; i < 6; ++i)
1090		dev->esi[i] = read_prom_byte(he_dev, MAC_ADDR + i);
1091
1092	hprintk("%s%s, %pM\n", he_dev->prod_id,
1093		he_dev->media & 0x40 ? "SM" : "MM", dev->esi);
 
 
 
 
 
 
 
1094	he_dev->atm_dev->link_rate = he_is622(he_dev) ?
1095						ATM_OC12_PCR : ATM_OC3_PCR;
1096
1097	/* 4.6 set host endianess */
1098	lb_swap = he_readl(he_dev, LB_SWAP);
1099	if (he_is622(he_dev))
1100		lb_swap &= ~XFER_SIZE;		/* 4 cells */
1101	else
1102		lb_swap |= XFER_SIZE;		/* 8 cells */
1103#ifdef __BIG_ENDIAN
1104	lb_swap |= DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST;
1105#else
1106	lb_swap &= ~(DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST |
1107			DATA_WR_SWAP | DATA_RD_SWAP | DESC_RD_SWAP);
1108#endif /* __BIG_ENDIAN */
1109	he_writel(he_dev, lb_swap, LB_SWAP);
1110
1111	/* 4.8 sdram controller initialization */
1112	he_writel(he_dev, he_is622(he_dev) ? LB_64_ENB : 0x0, SDRAM_CTL);
1113
1114	/* 4.9 initialize rnum value */
1115	lb_swap |= SWAP_RNUM_MAX(0xf);
1116	he_writel(he_dev, lb_swap, LB_SWAP);
1117
1118	/* 4.10 initialize the interrupt queues */
1119	if ((err = he_init_irq(he_dev)) != 0)
1120		return err;
1121
1122	/* 4.11 enable pci bus controller state machines */
1123	host_cntl |= (OUTFF_ENB | CMDFF_ENB |
1124				QUICK_RD_RETRY | QUICK_WR_RETRY | PERR_INT_ENB);
1125	he_writel(he_dev, host_cntl, HOST_CNTL);
1126
1127	gen_cntl_0 |= INT_PROC_ENBL|INIT_ENB;
1128	pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1129
1130	/*
1131	 * atm network controller initialization
1132	 */
1133
1134	/* 5.1.1 generic configuration state */
1135
1136	/*
1137	 *		local (cell) buffer memory map
1138	 *                    
1139	 *             HE155                          HE622
1140	 *                                                      
1141	 *        0 ____________1023 bytes  0 _______________________2047 bytes
1142	 *         |            |            |                   |   |
1143	 *         |  utility   |            |        rx0        |   |
1144	 *        5|____________|         255|___________________| u |
1145	 *        6|            |         256|                   | t |
1146	 *         |            |            |                   | i |
1147	 *         |    rx0     |     row    |        tx         | l |
1148	 *         |            |            |                   | i |
1149	 *         |            |         767|___________________| t |
1150	 *      517|____________|         768|                   | y |
1151	 * row  518|            |            |        rx1        |   |
1152	 *         |            |        1023|___________________|___|
1153	 *         |            |
1154	 *         |    tx      |
1155	 *         |            |
1156	 *         |            |
1157	 *     1535|____________|
1158	 *     1536|            |
1159	 *         |    rx1     |
1160	 *     2047|____________|
1161	 *
1162	 */
1163
1164	/* total 4096 connections */
1165	he_dev->vcibits = CONFIG_DEFAULT_VCIBITS;
1166	he_dev->vpibits = CONFIG_DEFAULT_VPIBITS;
1167
1168	if (nvpibits != -1 && nvcibits != -1 && nvpibits+nvcibits != HE_MAXCIDBITS) {
1169		hprintk("nvpibits + nvcibits != %d\n", HE_MAXCIDBITS);
1170		return -ENODEV;
1171	}
1172
1173	if (nvpibits != -1) {
1174		he_dev->vpibits = nvpibits;
1175		he_dev->vcibits = HE_MAXCIDBITS - nvpibits;
1176	}
1177
1178	if (nvcibits != -1) {
1179		he_dev->vcibits = nvcibits;
1180		he_dev->vpibits = HE_MAXCIDBITS - nvcibits;
1181	}
1182
1183
1184	if (he_is622(he_dev)) {
1185		he_dev->cells_per_row = 40;
1186		he_dev->bytes_per_row = 2048;
1187		he_dev->r0_numrows = 256;
1188		he_dev->tx_numrows = 512;
1189		he_dev->r1_numrows = 256;
1190		he_dev->r0_startrow = 0;
1191		he_dev->tx_startrow = 256;
1192		he_dev->r1_startrow = 768;
1193	} else {
1194		he_dev->cells_per_row = 20;
1195		he_dev->bytes_per_row = 1024;
1196		he_dev->r0_numrows = 512;
1197		he_dev->tx_numrows = 1018;
1198		he_dev->r1_numrows = 512;
1199		he_dev->r0_startrow = 6;
1200		he_dev->tx_startrow = 518;
1201		he_dev->r1_startrow = 1536;
1202	}
1203
1204	he_dev->cells_per_lbuf = 4;
1205	he_dev->buffer_limit = 4;
1206	he_dev->r0_numbuffs = he_dev->r0_numrows *
1207				he_dev->cells_per_row / he_dev->cells_per_lbuf;
1208	if (he_dev->r0_numbuffs > 2560)
1209		he_dev->r0_numbuffs = 2560;
1210
1211	he_dev->r1_numbuffs = he_dev->r1_numrows *
1212				he_dev->cells_per_row / he_dev->cells_per_lbuf;
1213	if (he_dev->r1_numbuffs > 2560)
1214		he_dev->r1_numbuffs = 2560;
1215
1216	he_dev->tx_numbuffs = he_dev->tx_numrows *
1217				he_dev->cells_per_row / he_dev->cells_per_lbuf;
1218	if (he_dev->tx_numbuffs > 5120)
1219		he_dev->tx_numbuffs = 5120;
1220
1221	/* 5.1.2 configure hardware dependent registers */
1222
1223	he_writel(he_dev, 
1224		SLICE_X(0x2) | ARB_RNUM_MAX(0xf) | TH_PRTY(0x3) |
1225		RH_PRTY(0x3) | TL_PRTY(0x2) | RL_PRTY(0x1) |
1226		(he_is622(he_dev) ? BUS_MULTI(0x28) : BUS_MULTI(0x46)) |
1227		(he_is622(he_dev) ? NET_PREF(0x50) : NET_PREF(0x8c)),
1228								LBARB);
1229
1230	he_writel(he_dev, BANK_ON |
1231		(he_is622(he_dev) ? (REF_RATE(0x384) | WIDE_DATA) : REF_RATE(0x150)),
1232								SDRAMCON);
1233
1234	he_writel(he_dev,
1235		(he_is622(he_dev) ? RM_BANK_WAIT(1) : RM_BANK_WAIT(0)) |
1236						RM_RW_WAIT(1), RCMCONFIG);
1237	he_writel(he_dev,
1238		(he_is622(he_dev) ? TM_BANK_WAIT(2) : TM_BANK_WAIT(1)) |
1239						TM_RW_WAIT(1), TCMCONFIG);
1240
1241	he_writel(he_dev, he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD, LB_CONFIG);
1242
1243	he_writel(he_dev, 
1244		(he_is622(he_dev) ? UT_RD_DELAY(8) : UT_RD_DELAY(0)) |
1245		(he_is622(he_dev) ? RC_UT_MODE(0) : RC_UT_MODE(1)) |
1246		RX_VALVP(he_dev->vpibits) |
1247		RX_VALVC(he_dev->vcibits),			 RC_CONFIG);
1248
1249	he_writel(he_dev, DRF_THRESH(0x20) |
1250		(he_is622(he_dev) ? TX_UT_MODE(0) : TX_UT_MODE(1)) |
1251		TX_VCI_MASK(he_dev->vcibits) |
1252		LBFREE_CNT(he_dev->tx_numbuffs), 		TX_CONFIG);
1253
1254	he_writel(he_dev, 0x0, TXAAL5_PROTO);
1255
1256	he_writel(he_dev, PHY_INT_ENB |
1257		(he_is622(he_dev) ? PTMR_PRE(67 - 1) : PTMR_PRE(50 - 1)),
1258								RH_CONFIG);
1259
1260	/* 5.1.3 initialize connection memory */
1261
1262	for (i = 0; i < TCM_MEM_SIZE; ++i)
1263		he_writel_tcm(he_dev, 0, i);
1264
1265	for (i = 0; i < RCM_MEM_SIZE; ++i)
1266		he_writel_rcm(he_dev, 0, i);
1267
1268	/*
1269	 *	transmit connection memory map
1270	 *
1271	 *                  tx memory
1272	 *          0x0 ___________________
1273	 *             |                   |
1274	 *             |                   |
1275	 *             |       TSRa        |
1276	 *             |                   |
1277	 *             |                   |
1278	 *       0x8000|___________________|
1279	 *             |                   |
1280	 *             |       TSRb        |
1281	 *       0xc000|___________________|
1282	 *             |                   |
1283	 *             |       TSRc        |
1284	 *       0xe000|___________________|
1285	 *             |       TSRd        |
1286	 *       0xf000|___________________|
1287	 *             |       tmABR       |
1288	 *      0x10000|___________________|
1289	 *             |                   |
1290	 *             |       tmTPD       |
1291	 *             |___________________|
1292	 *             |                   |
1293	 *                      ....
1294	 *      0x1ffff|___________________|
1295	 *
1296	 *
1297	 */
1298
1299	he_writel(he_dev, CONFIG_TSRB, TSRB_BA);
1300	he_writel(he_dev, CONFIG_TSRC, TSRC_BA);
1301	he_writel(he_dev, CONFIG_TSRD, TSRD_BA);
1302	he_writel(he_dev, CONFIG_TMABR, TMABR_BA);
1303	he_writel(he_dev, CONFIG_TPDBA, TPD_BA);
1304
1305
1306	/*
1307	 *	receive connection memory map
1308	 *
1309	 *          0x0 ___________________
1310	 *             |                   |
1311	 *             |                   |
1312	 *             |       RSRa        |
1313	 *             |                   |
1314	 *             |                   |
1315	 *       0x8000|___________________|
1316	 *             |                   |
1317	 *             |             rx0/1 |
1318	 *             |       LBM         |   link lists of local
1319	 *             |             tx    |   buffer memory 
1320	 *             |                   |
1321	 *       0xd000|___________________|
1322	 *             |                   |
1323	 *             |      rmABR        |
1324	 *       0xe000|___________________|
1325	 *             |                   |
1326	 *             |       RSRb        |
1327	 *             |___________________|
1328	 *             |                   |
1329	 *                      ....
1330	 *       0xffff|___________________|
1331	 */
1332
1333	he_writel(he_dev, 0x08000, RCMLBM_BA);
1334	he_writel(he_dev, 0x0e000, RCMRSRB_BA);
1335	he_writel(he_dev, 0x0d800, RCMABR_BA);
1336
1337	/* 5.1.4 initialize local buffer free pools linked lists */
1338
1339	he_init_rx_lbfp0(he_dev);
1340	he_init_rx_lbfp1(he_dev);
1341
1342	he_writel(he_dev, 0x0, RLBC_H);
1343	he_writel(he_dev, 0x0, RLBC_T);
1344	he_writel(he_dev, 0x0, RLBC_H2);
1345
1346	he_writel(he_dev, 512, RXTHRSH);	/* 10% of r0+r1 buffers */
1347	he_writel(he_dev, 256, LITHRSH); 	/* 5% of r0+r1 buffers */
1348
1349	he_init_tx_lbfp(he_dev);
1350
1351	he_writel(he_dev, he_is622(he_dev) ? 0x104780 : 0x800, UBUFF_BA);
1352
1353	/* 5.1.5 initialize intermediate receive queues */
1354
1355	if (he_is622(he_dev)) {
1356		he_writel(he_dev, 0x000f, G0_INMQ_S);
1357		he_writel(he_dev, 0x200f, G0_INMQ_L);
1358
1359		he_writel(he_dev, 0x001f, G1_INMQ_S);
1360		he_writel(he_dev, 0x201f, G1_INMQ_L);
1361
1362		he_writel(he_dev, 0x002f, G2_INMQ_S);
1363		he_writel(he_dev, 0x202f, G2_INMQ_L);
1364
1365		he_writel(he_dev, 0x003f, G3_INMQ_S);
1366		he_writel(he_dev, 0x203f, G3_INMQ_L);
1367
1368		he_writel(he_dev, 0x004f, G4_INMQ_S);
1369		he_writel(he_dev, 0x204f, G4_INMQ_L);
1370
1371		he_writel(he_dev, 0x005f, G5_INMQ_S);
1372		he_writel(he_dev, 0x205f, G5_INMQ_L);
1373
1374		he_writel(he_dev, 0x006f, G6_INMQ_S);
1375		he_writel(he_dev, 0x206f, G6_INMQ_L);
1376
1377		he_writel(he_dev, 0x007f, G7_INMQ_S);
1378		he_writel(he_dev, 0x207f, G7_INMQ_L);
1379	} else {
1380		he_writel(he_dev, 0x0000, G0_INMQ_S);
1381		he_writel(he_dev, 0x0008, G0_INMQ_L);
1382
1383		he_writel(he_dev, 0x0001, G1_INMQ_S);
1384		he_writel(he_dev, 0x0009, G1_INMQ_L);
1385
1386		he_writel(he_dev, 0x0002, G2_INMQ_S);
1387		he_writel(he_dev, 0x000a, G2_INMQ_L);
1388
1389		he_writel(he_dev, 0x0003, G3_INMQ_S);
1390		he_writel(he_dev, 0x000b, G3_INMQ_L);
1391
1392		he_writel(he_dev, 0x0004, G4_INMQ_S);
1393		he_writel(he_dev, 0x000c, G4_INMQ_L);
1394
1395		he_writel(he_dev, 0x0005, G5_INMQ_S);
1396		he_writel(he_dev, 0x000d, G5_INMQ_L);
1397
1398		he_writel(he_dev, 0x0006, G6_INMQ_S);
1399		he_writel(he_dev, 0x000e, G6_INMQ_L);
1400
1401		he_writel(he_dev, 0x0007, G7_INMQ_S);
1402		he_writel(he_dev, 0x000f, G7_INMQ_L);
1403	}
1404
1405	/* 5.1.6 application tunable parameters */
1406
1407	he_writel(he_dev, 0x0, MCC);
1408	he_writel(he_dev, 0x0, OEC);
1409	he_writel(he_dev, 0x0, DCC);
1410	he_writel(he_dev, 0x0, CEC);
1411	
1412	/* 5.1.7 cs block initialization */
1413
1414	he_init_cs_block(he_dev);
1415
1416	/* 5.1.8 cs block connection memory initialization */
1417	
1418	if (he_init_cs_block_rcm(he_dev) < 0)
1419		return -ENOMEM;
1420
1421	/* 5.1.10 initialize host structures */
1422
1423	he_init_tpdrq(he_dev);
1424
1425	he_dev->tpd_pool = dma_pool_create("tpd", &he_dev->pci_dev->dev,
1426					   sizeof(struct he_tpd), TPD_ALIGNMENT, 0);
1427	if (he_dev->tpd_pool == NULL) {
1428		hprintk("unable to create tpd dma_pool\n");
1429		return -ENOMEM;         
1430	}
1431
1432	INIT_LIST_HEAD(&he_dev->outstanding_tpds);
1433
1434	if (he_init_group(he_dev, 0) != 0)
1435		return -ENOMEM;
1436
1437	for (group = 1; group < HE_NUM_GROUPS; ++group) {
1438		he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
1439		he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
1440		he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
1441		he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1442						G0_RBPS_BS + (group * 32));
1443
1444		he_writel(he_dev, 0x0, G0_RBPL_S + (group * 32));
1445		he_writel(he_dev, 0x0, G0_RBPL_T + (group * 32));
1446		he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1447						G0_RBPL_QI + (group * 32));
1448		he_writel(he_dev, 0x0, G0_RBPL_BS + (group * 32));
1449
1450		he_writel(he_dev, 0x0, G0_RBRQ_ST + (group * 16));
1451		he_writel(he_dev, 0x0, G0_RBRQ_H + (group * 16));
1452		he_writel(he_dev, RBRQ_THRESH(0x1) | RBRQ_SIZE(0x0),
1453						G0_RBRQ_Q + (group * 16));
1454		he_writel(he_dev, 0x0, G0_RBRQ_I + (group * 16));
1455
1456		he_writel(he_dev, 0x0, G0_TBRQ_B_T + (group * 16));
1457		he_writel(he_dev, 0x0, G0_TBRQ_H + (group * 16));
1458		he_writel(he_dev, TBRQ_THRESH(0x1),
1459						G0_TBRQ_THRESH + (group * 16));
1460		he_writel(he_dev, 0x0, G0_TBRQ_S + (group * 16));
1461	}
1462
1463	/* host status page */
1464
1465	he_dev->hsp = dma_zalloc_coherent(&he_dev->pci_dev->dev,
1466					  sizeof(struct he_hsp),
1467					  &he_dev->hsp_phys, GFP_KERNEL);
1468	if (he_dev->hsp == NULL) {
1469		hprintk("failed to allocate host status page\n");
1470		return -ENOMEM;
1471	}
 
1472	he_writel(he_dev, he_dev->hsp_phys, HSP_BA);
1473
1474	/* initialize framer */
1475
1476#ifdef CONFIG_ATM_HE_USE_SUNI
1477	if (he_isMM(he_dev))
1478		suni_init(he_dev->atm_dev);
1479	if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->start)
1480		he_dev->atm_dev->phy->start(he_dev->atm_dev);
1481#endif /* CONFIG_ATM_HE_USE_SUNI */
1482
1483	if (sdh) {
1484		/* this really should be in suni.c but for now... */
1485		int val;
1486
1487		val = he_phy_get(he_dev->atm_dev, SUNI_TPOP_APM);
1488		val = (val & ~SUNI_TPOP_APM_S) | (SUNI_TPOP_S_SDH << SUNI_TPOP_APM_S_SHIFT);
1489		he_phy_put(he_dev->atm_dev, val, SUNI_TPOP_APM);
1490		he_phy_put(he_dev->atm_dev, SUNI_TACP_IUCHP_CLP, SUNI_TACP_IUCHP);
1491	}
1492
1493	/* 5.1.12 enable transmit and receive */
1494
1495	reg = he_readl_mbox(he_dev, CS_ERCTL0);
1496	reg |= TX_ENABLE|ER_ENABLE;
1497	he_writel_mbox(he_dev, reg, CS_ERCTL0);
1498
1499	reg = he_readl(he_dev, RC_CONFIG);
1500	reg |= RX_ENABLE;
1501	he_writel(he_dev, reg, RC_CONFIG);
1502
1503	for (i = 0; i < HE_NUM_CS_STPER; ++i) {
1504		he_dev->cs_stper[i].inuse = 0;
1505		he_dev->cs_stper[i].pcr = -1;
1506	}
1507	he_dev->total_bw = 0;
1508
1509
1510	/* atm linux initialization */
1511
1512	he_dev->atm_dev->ci_range.vpi_bits = he_dev->vpibits;
1513	he_dev->atm_dev->ci_range.vci_bits = he_dev->vcibits;
1514
1515	he_dev->irq_peak = 0;
1516	he_dev->rbrq_peak = 0;
1517	he_dev->rbpl_peak = 0;
1518	he_dev->tbrq_peak = 0;
1519
1520	HPRINTK("hell bent for leather!\n");
1521
1522	return 0;
1523}
1524
1525static void
1526he_stop(struct he_dev *he_dev)
1527{
1528	struct he_buff *heb, *next;
1529	struct pci_dev *pci_dev;
1530	u32 gen_cntl_0, reg;
1531	u16 command;
1532
1533	pci_dev = he_dev->pci_dev;
1534
1535	/* disable interrupts */
1536
1537	if (he_dev->membase) {
1538		pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0);
1539		gen_cntl_0 &= ~(INT_PROC_ENBL | INIT_ENB);
1540		pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1541
1542		tasklet_disable(&he_dev->tasklet);
1543
1544		/* disable recv and transmit */
1545
1546		reg = he_readl_mbox(he_dev, CS_ERCTL0);
1547		reg &= ~(TX_ENABLE|ER_ENABLE);
1548		he_writel_mbox(he_dev, reg, CS_ERCTL0);
1549
1550		reg = he_readl(he_dev, RC_CONFIG);
1551		reg &= ~(RX_ENABLE);
1552		he_writel(he_dev, reg, RC_CONFIG);
1553	}
1554
1555#ifdef CONFIG_ATM_HE_USE_SUNI
1556	if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->stop)
1557		he_dev->atm_dev->phy->stop(he_dev->atm_dev);
1558#endif /* CONFIG_ATM_HE_USE_SUNI */
1559
1560	if (he_dev->irq)
1561		free_irq(he_dev->irq, he_dev);
1562
1563	if (he_dev->irq_base)
1564		dma_free_coherent(&he_dev->pci_dev->dev, (CONFIG_IRQ_SIZE + 1)
1565				  * sizeof(struct he_irq), he_dev->irq_base, he_dev->irq_phys);
1566
1567	if (he_dev->hsp)
1568		dma_free_coherent(&he_dev->pci_dev->dev, sizeof(struct he_hsp),
1569				  he_dev->hsp, he_dev->hsp_phys);
1570
1571	if (he_dev->rbpl_base) {
1572		list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
1573			dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1574
1575		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE
1576				  * sizeof(struct he_rbp), he_dev->rbpl_base, he_dev->rbpl_phys);
1577	}
1578
1579	kfree(he_dev->rbpl_virt);
1580	kfree(he_dev->rbpl_table);
1581	dma_pool_destroy(he_dev->rbpl_pool);
 
 
1582
1583	if (he_dev->rbrq_base)
1584		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
1585				  he_dev->rbrq_base, he_dev->rbrq_phys);
1586
1587	if (he_dev->tbrq_base)
1588		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1589				  he_dev->tbrq_base, he_dev->tbrq_phys);
1590
1591	if (he_dev->tpdrq_base)
1592		dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1593				  he_dev->tpdrq_base, he_dev->tpdrq_phys);
1594
1595	dma_pool_destroy(he_dev->tpd_pool);
 
1596
1597	if (he_dev->pci_dev) {
1598		pci_read_config_word(he_dev->pci_dev, PCI_COMMAND, &command);
1599		command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
1600		pci_write_config_word(he_dev->pci_dev, PCI_COMMAND, command);
1601	}
1602	
1603	if (he_dev->membase)
1604		iounmap(he_dev->membase);
1605}
1606
1607static struct he_tpd *
1608__alloc_tpd(struct he_dev *he_dev)
1609{
1610	struct he_tpd *tpd;
1611	dma_addr_t mapping;
1612
1613	tpd = dma_pool_alloc(he_dev->tpd_pool, GFP_ATOMIC, &mapping);
1614	if (tpd == NULL)
1615		return NULL;
1616			
1617	tpd->status = TPD_ADDR(mapping);
1618	tpd->reserved = 0; 
1619	tpd->iovec[0].addr = 0; tpd->iovec[0].len = 0;
1620	tpd->iovec[1].addr = 0; tpd->iovec[1].len = 0;
1621	tpd->iovec[2].addr = 0; tpd->iovec[2].len = 0;
1622
1623	return tpd;
1624}
1625
1626#define AAL5_LEN(buf,len) 						\
1627			((((unsigned char *)(buf))[(len)-6] << 8) |	\
1628				(((unsigned char *)(buf))[(len)-5]))
1629
1630/* 2.10.1.2 receive
1631 *
1632 * aal5 packets can optionally return the tcp checksum in the lower
1633 * 16 bits of the crc (RSR0_TCP_CKSUM)
1634 */
1635
1636#define TCP_CKSUM(buf,len) 						\
1637			((((unsigned char *)(buf))[(len)-2] << 8) |	\
1638				(((unsigned char *)(buf))[(len-1)]))
1639
1640static int
1641he_service_rbrq(struct he_dev *he_dev, int group)
1642{
1643	struct he_rbrq *rbrq_tail = (struct he_rbrq *)
1644				((unsigned long)he_dev->rbrq_base |
1645					he_dev->hsp->group[group].rbrq_tail);
1646	unsigned cid, lastcid = -1;
1647	struct sk_buff *skb;
1648	struct atm_vcc *vcc = NULL;
1649	struct he_vcc *he_vcc;
1650	struct he_buff *heb, *next;
1651	int i;
1652	int pdus_assembled = 0;
1653	int updated = 0;
1654
1655	read_lock(&vcc_sklist_lock);
1656	while (he_dev->rbrq_head != rbrq_tail) {
1657		++updated;
1658
1659		HPRINTK("%p rbrq%d 0x%x len=%d cid=0x%x %s%s%s%s%s%s\n",
1660			he_dev->rbrq_head, group,
1661			RBRQ_ADDR(he_dev->rbrq_head),
1662			RBRQ_BUFLEN(he_dev->rbrq_head),
1663			RBRQ_CID(he_dev->rbrq_head),
1664			RBRQ_CRC_ERR(he_dev->rbrq_head) ? " CRC_ERR" : "",
1665			RBRQ_LEN_ERR(he_dev->rbrq_head) ? " LEN_ERR" : "",
1666			RBRQ_END_PDU(he_dev->rbrq_head) ? " END_PDU" : "",
1667			RBRQ_AAL5_PROT(he_dev->rbrq_head) ? " AAL5_PROT" : "",
1668			RBRQ_CON_CLOSED(he_dev->rbrq_head) ? " CON_CLOSED" : "",
1669			RBRQ_HBUF_ERR(he_dev->rbrq_head) ? " HBUF_ERR" : "");
1670
1671		i = RBRQ_ADDR(he_dev->rbrq_head) >> RBP_IDX_OFFSET;
1672		heb = he_dev->rbpl_virt[i];
1673
1674		cid = RBRQ_CID(he_dev->rbrq_head);
1675		if (cid != lastcid)
1676			vcc = __find_vcc(he_dev, cid);
1677		lastcid = cid;
1678
1679		if (vcc == NULL || (he_vcc = HE_VCC(vcc)) == NULL) {
1680			hprintk("vcc/he_vcc == NULL  (cid 0x%x)\n", cid);
1681			if (!RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1682				clear_bit(i, he_dev->rbpl_table);
1683				list_del(&heb->entry);
1684				dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1685			}
1686					
1687			goto next_rbrq_entry;
1688		}
1689
1690		if (RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1691			hprintk("HBUF_ERR!  (cid 0x%x)\n", cid);
1692				atomic_inc(&vcc->stats->rx_drop);
1693			goto return_host_buffers;
1694		}
1695
1696		heb->len = RBRQ_BUFLEN(he_dev->rbrq_head) * 4;
1697		clear_bit(i, he_dev->rbpl_table);
1698		list_move_tail(&heb->entry, &he_vcc->buffers);
1699		he_vcc->pdu_len += heb->len;
1700
1701		if (RBRQ_CON_CLOSED(he_dev->rbrq_head)) {
1702			lastcid = -1;
1703			HPRINTK("wake_up rx_waitq  (cid 0x%x)\n", cid);
1704			wake_up(&he_vcc->rx_waitq);
1705			goto return_host_buffers;
1706		}
1707
1708		if (!RBRQ_END_PDU(he_dev->rbrq_head))
1709			goto next_rbrq_entry;
1710
1711		if (RBRQ_LEN_ERR(he_dev->rbrq_head)
1712				|| RBRQ_CRC_ERR(he_dev->rbrq_head)) {
1713			HPRINTK("%s%s (%d.%d)\n",
1714				RBRQ_CRC_ERR(he_dev->rbrq_head)
1715							? "CRC_ERR " : "",
1716				RBRQ_LEN_ERR(he_dev->rbrq_head)
1717							? "LEN_ERR" : "",
1718							vcc->vpi, vcc->vci);
1719			atomic_inc(&vcc->stats->rx_err);
1720			goto return_host_buffers;
1721		}
1722
1723		skb = atm_alloc_charge(vcc, he_vcc->pdu_len + rx_skb_reserve,
1724							GFP_ATOMIC);
1725		if (!skb) {
1726			HPRINTK("charge failed (%d.%d)\n", vcc->vpi, vcc->vci);
1727			goto return_host_buffers;
1728		}
1729
1730		if (rx_skb_reserve > 0)
1731			skb_reserve(skb, rx_skb_reserve);
1732
1733		__net_timestamp(skb);
1734
1735		list_for_each_entry(heb, &he_vcc->buffers, entry)
1736			memcpy(skb_put(skb, heb->len), &heb->data, heb->len);
1737
1738		switch (vcc->qos.aal) {
1739			case ATM_AAL0:
1740				/* 2.10.1.5 raw cell receive */
1741				skb->len = ATM_AAL0_SDU;
1742				skb_set_tail_pointer(skb, skb->len);
1743				break;
1744			case ATM_AAL5:
1745				/* 2.10.1.2 aal5 receive */
1746
1747				skb->len = AAL5_LEN(skb->data, he_vcc->pdu_len);
1748				skb_set_tail_pointer(skb, skb->len);
1749#ifdef USE_CHECKSUM_HW
1750				if (vcc->vpi == 0 && vcc->vci >= ATM_NOT_RSV_VCI) {
1751					skb->ip_summed = CHECKSUM_COMPLETE;
1752					skb->csum = TCP_CKSUM(skb->data,
1753							he_vcc->pdu_len);
1754				}
1755#endif
1756				break;
1757		}
1758
1759#ifdef should_never_happen
1760		if (skb->len > vcc->qos.rxtp.max_sdu)
1761			hprintk("pdu_len (%d) > vcc->qos.rxtp.max_sdu (%d)!  cid 0x%x\n", skb->len, vcc->qos.rxtp.max_sdu, cid);
1762#endif
1763
1764#ifdef notdef
1765		ATM_SKB(skb)->vcc = vcc;
1766#endif
1767		spin_unlock(&he_dev->global_lock);
1768		vcc->push(vcc, skb);
1769		spin_lock(&he_dev->global_lock);
1770
1771		atomic_inc(&vcc->stats->rx);
1772
1773return_host_buffers:
1774		++pdus_assembled;
1775
1776		list_for_each_entry_safe(heb, next, &he_vcc->buffers, entry)
1777			dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1778		INIT_LIST_HEAD(&he_vcc->buffers);
1779		he_vcc->pdu_len = 0;
1780
1781next_rbrq_entry:
1782		he_dev->rbrq_head = (struct he_rbrq *)
1783				((unsigned long) he_dev->rbrq_base |
1784					RBRQ_MASK(he_dev->rbrq_head + 1));
1785
1786	}
1787	read_unlock(&vcc_sklist_lock);
1788
1789	if (updated) {
1790		if (updated > he_dev->rbrq_peak)
1791			he_dev->rbrq_peak = updated;
1792
1793		he_writel(he_dev, RBRQ_MASK(he_dev->rbrq_head),
1794						G0_RBRQ_H + (group * 16));
1795	}
1796
1797	return pdus_assembled;
1798}
1799
1800static void
1801he_service_tbrq(struct he_dev *he_dev, int group)
1802{
1803	struct he_tbrq *tbrq_tail = (struct he_tbrq *)
1804				((unsigned long)he_dev->tbrq_base |
1805					he_dev->hsp->group[group].tbrq_tail);
1806	struct he_tpd *tpd;
1807	int slot, updated = 0;
1808	struct he_tpd *__tpd;
1809
1810	/* 2.1.6 transmit buffer return queue */
1811
1812	while (he_dev->tbrq_head != tbrq_tail) {
1813		++updated;
1814
1815		HPRINTK("tbrq%d 0x%x%s%s\n",
1816			group,
1817			TBRQ_TPD(he_dev->tbrq_head), 
1818			TBRQ_EOS(he_dev->tbrq_head) ? " EOS" : "",
1819			TBRQ_MULTIPLE(he_dev->tbrq_head) ? " MULTIPLE" : "");
1820		tpd = NULL;
1821		list_for_each_entry(__tpd, &he_dev->outstanding_tpds, entry) {
1822			if (TPD_ADDR(__tpd->status) == TBRQ_TPD(he_dev->tbrq_head)) {
1823				tpd = __tpd;
1824				list_del(&__tpd->entry);
1825				break;
1826			}
1827		}
1828
1829		if (tpd == NULL) {
1830			hprintk("unable to locate tpd for dma buffer %x\n",
1831						TBRQ_TPD(he_dev->tbrq_head));
1832			goto next_tbrq_entry;
1833		}
1834
1835		if (TBRQ_EOS(he_dev->tbrq_head)) {
1836			HPRINTK("wake_up(tx_waitq) cid 0x%x\n",
1837				he_mkcid(he_dev, tpd->vcc->vpi, tpd->vcc->vci));
1838			if (tpd->vcc)
1839				wake_up(&HE_VCC(tpd->vcc)->tx_waitq);
1840
1841			goto next_tbrq_entry;
1842		}
1843
1844		for (slot = 0; slot < TPD_MAXIOV; ++slot) {
1845			if (tpd->iovec[slot].addr)
1846				dma_unmap_single(&he_dev->pci_dev->dev,
1847					tpd->iovec[slot].addr,
1848					tpd->iovec[slot].len & TPD_LEN_MASK,
1849							DMA_TO_DEVICE);
1850			if (tpd->iovec[slot].len & TPD_LST)
1851				break;
1852				
1853		}
1854
1855		if (tpd->skb) {	/* && !TBRQ_MULTIPLE(he_dev->tbrq_head) */
1856			if (tpd->vcc && tpd->vcc->pop)
1857				tpd->vcc->pop(tpd->vcc, tpd->skb);
1858			else
1859				dev_kfree_skb_any(tpd->skb);
1860		}
1861
1862next_tbrq_entry:
1863		if (tpd)
1864			dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
1865		he_dev->tbrq_head = (struct he_tbrq *)
1866				((unsigned long) he_dev->tbrq_base |
1867					TBRQ_MASK(he_dev->tbrq_head + 1));
1868	}
1869
1870	if (updated) {
1871		if (updated > he_dev->tbrq_peak)
1872			he_dev->tbrq_peak = updated;
1873
1874		he_writel(he_dev, TBRQ_MASK(he_dev->tbrq_head),
1875						G0_TBRQ_H + (group * 16));
1876	}
1877}
1878
1879static void
1880he_service_rbpl(struct he_dev *he_dev, int group)
1881{
1882	struct he_rbp *new_tail;
1883	struct he_rbp *rbpl_head;
1884	struct he_buff *heb;
1885	dma_addr_t mapping;
1886	int i;
1887	int moved = 0;
1888
1889	rbpl_head = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1890					RBPL_MASK(he_readl(he_dev, G0_RBPL_S)));
1891
1892	for (;;) {
1893		new_tail = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1894						RBPL_MASK(he_dev->rbpl_tail+1));
1895
1896		/* table 3.42 -- rbpl_tail should never be set to rbpl_head */
1897		if (new_tail == rbpl_head)
1898			break;
1899
1900		i = find_next_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE, he_dev->rbpl_hint);
1901		if (i > (RBPL_TABLE_SIZE - 1)) {
1902			i = find_first_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE);
1903			if (i > (RBPL_TABLE_SIZE - 1))
1904				break;
1905		}
1906		he_dev->rbpl_hint = i + 1;
1907
1908		heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_ATOMIC, &mapping);
1909		if (!heb)
1910			break;
1911		heb->mapping = mapping;
1912		list_add(&heb->entry, &he_dev->rbpl_outstanding);
1913		he_dev->rbpl_virt[i] = heb;
1914		set_bit(i, he_dev->rbpl_table);
1915		new_tail->idx = i << RBP_IDX_OFFSET;
1916		new_tail->phys = mapping + offsetof(struct he_buff, data);
1917
1918		he_dev->rbpl_tail = new_tail;
1919		++moved;
1920	} 
1921
1922	if (moved)
1923		he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail), G0_RBPL_T);
1924}
1925
1926static void
1927he_tasklet(unsigned long data)
1928{
1929	unsigned long flags;
1930	struct he_dev *he_dev = (struct he_dev *) data;
1931	int group, type;
1932	int updated = 0;
1933
1934	HPRINTK("tasklet (0x%lx)\n", data);
1935	spin_lock_irqsave(&he_dev->global_lock, flags);
1936
1937	while (he_dev->irq_head != he_dev->irq_tail) {
1938		++updated;
1939
1940		type = ITYPE_TYPE(he_dev->irq_head->isw);
1941		group = ITYPE_GROUP(he_dev->irq_head->isw);
1942
1943		switch (type) {
1944			case ITYPE_RBRQ_THRESH:
1945				HPRINTK("rbrq%d threshold\n", group);
1946				/* fall through */
1947			case ITYPE_RBRQ_TIMER:
1948				if (he_service_rbrq(he_dev, group))
1949					he_service_rbpl(he_dev, group);
1950				break;
1951			case ITYPE_TBRQ_THRESH:
1952				HPRINTK("tbrq%d threshold\n", group);
1953				/* fall through */
1954			case ITYPE_TPD_COMPLETE:
1955				he_service_tbrq(he_dev, group);
1956				break;
1957			case ITYPE_RBPL_THRESH:
1958				he_service_rbpl(he_dev, group);
1959				break;
1960			case ITYPE_RBPS_THRESH:
1961				/* shouldn't happen unless small buffers enabled */
1962				break;
1963			case ITYPE_PHY:
1964				HPRINTK("phy interrupt\n");
1965#ifdef CONFIG_ATM_HE_USE_SUNI
1966				spin_unlock_irqrestore(&he_dev->global_lock, flags);
1967				if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->interrupt)
1968					he_dev->atm_dev->phy->interrupt(he_dev->atm_dev);
1969				spin_lock_irqsave(&he_dev->global_lock, flags);
1970#endif
1971				break;
1972			case ITYPE_OTHER:
1973				switch (type|group) {
1974					case ITYPE_PARITY:
1975						hprintk("parity error\n");
1976						break;
1977					case ITYPE_ABORT:
1978						hprintk("abort 0x%x\n", he_readl(he_dev, ABORT_ADDR));
1979						break;
1980				}
1981				break;
1982			case ITYPE_TYPE(ITYPE_INVALID):
1983				/* see 8.1.1 -- check all queues */
1984
1985				HPRINTK("isw not updated 0x%x\n", he_dev->irq_head->isw);
1986
1987				he_service_rbrq(he_dev, 0);
1988				he_service_rbpl(he_dev, 0);
1989				he_service_tbrq(he_dev, 0);
1990				break;
1991			default:
1992				hprintk("bad isw 0x%x?\n", he_dev->irq_head->isw);
1993		}
1994
1995		he_dev->irq_head->isw = ITYPE_INVALID;
1996
1997		he_dev->irq_head = (struct he_irq *) NEXT_ENTRY(he_dev->irq_base, he_dev->irq_head, IRQ_MASK);
1998	}
1999
2000	if (updated) {
2001		if (updated > he_dev->irq_peak)
2002			he_dev->irq_peak = updated;
2003
2004		he_writel(he_dev,
2005			IRQ_SIZE(CONFIG_IRQ_SIZE) |
2006			IRQ_THRESH(CONFIG_IRQ_THRESH) |
2007			IRQ_TAIL(he_dev->irq_tail), IRQ0_HEAD);
2008		(void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata; flush posted writes */
2009	}
2010	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2011}
2012
2013static irqreturn_t
2014he_irq_handler(int irq, void *dev_id)
2015{
2016	unsigned long flags;
2017	struct he_dev *he_dev = (struct he_dev * )dev_id;
2018	int handled = 0;
2019
2020	if (he_dev == NULL)
2021		return IRQ_NONE;
2022
2023	spin_lock_irqsave(&he_dev->global_lock, flags);
2024
2025	he_dev->irq_tail = (struct he_irq *) (((unsigned long)he_dev->irq_base) |
2026						(*he_dev->irq_tailoffset << 2));
2027
2028	if (he_dev->irq_tail == he_dev->irq_head) {
2029		HPRINTK("tailoffset not updated?\n");
2030		he_dev->irq_tail = (struct he_irq *) ((unsigned long)he_dev->irq_base |
2031			((he_readl(he_dev, IRQ0_BASE) & IRQ_MASK) << 2));
2032		(void) he_readl(he_dev, INT_FIFO);	/* 8.1.2 controller errata */
2033	}
2034
2035#ifdef DEBUG
2036	if (he_dev->irq_head == he_dev->irq_tail /* && !IRQ_PENDING */)
2037		hprintk("spurious (or shared) interrupt?\n");
2038#endif
2039
2040	if (he_dev->irq_head != he_dev->irq_tail) {
2041		handled = 1;
2042		tasklet_schedule(&he_dev->tasklet);
2043		he_writel(he_dev, INT_CLEAR_A, INT_FIFO);	/* clear interrupt */
2044		(void) he_readl(he_dev, INT_FIFO);		/* flush posted writes */
2045	}
2046	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2047	return IRQ_RETVAL(handled);
2048
2049}
2050
2051static __inline__ void
2052__enqueue_tpd(struct he_dev *he_dev, struct he_tpd *tpd, unsigned cid)
2053{
2054	struct he_tpdrq *new_tail;
2055
2056	HPRINTK("tpdrq %p cid 0x%x -> tpdrq_tail %p\n",
2057					tpd, cid, he_dev->tpdrq_tail);
2058
2059	/* new_tail = he_dev->tpdrq_tail; */
2060	new_tail = (struct he_tpdrq *) ((unsigned long) he_dev->tpdrq_base |
2061					TPDRQ_MASK(he_dev->tpdrq_tail+1));
2062
2063	/*
2064	 * check to see if we are about to set the tail == head
2065	 * if true, update the head pointer from the adapter
2066	 * to see if this is really the case (reading the queue
2067	 * head for every enqueue would be unnecessarily slow)
2068	 */
2069
2070	if (new_tail == he_dev->tpdrq_head) {
2071		he_dev->tpdrq_head = (struct he_tpdrq *)
2072			(((unsigned long)he_dev->tpdrq_base) |
2073				TPDRQ_MASK(he_readl(he_dev, TPDRQ_B_H)));
2074
2075		if (new_tail == he_dev->tpdrq_head) {
2076			int slot;
2077
2078			hprintk("tpdrq full (cid 0x%x)\n", cid);
2079			/*
2080			 * FIXME
2081			 * push tpd onto a transmit backlog queue
2082			 * after service_tbrq, service the backlog
2083			 * for now, we just drop the pdu
2084			 */
2085			for (slot = 0; slot < TPD_MAXIOV; ++slot) {
2086				if (tpd->iovec[slot].addr)
2087					dma_unmap_single(&he_dev->pci_dev->dev,
2088						tpd->iovec[slot].addr,
2089						tpd->iovec[slot].len & TPD_LEN_MASK,
2090								DMA_TO_DEVICE);
2091			}
2092			if (tpd->skb) {
2093				if (tpd->vcc->pop)
2094					tpd->vcc->pop(tpd->vcc, tpd->skb);
2095				else
2096					dev_kfree_skb_any(tpd->skb);
2097				atomic_inc(&tpd->vcc->stats->tx_err);
2098			}
2099			dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
2100			return;
2101		}
2102	}
2103
2104	/* 2.1.5 transmit packet descriptor ready queue */
2105	list_add_tail(&tpd->entry, &he_dev->outstanding_tpds);
2106	he_dev->tpdrq_tail->tpd = TPD_ADDR(tpd->status);
2107	he_dev->tpdrq_tail->cid = cid;
2108	wmb();
2109
2110	he_dev->tpdrq_tail = new_tail;
2111
2112	he_writel(he_dev, TPDRQ_MASK(he_dev->tpdrq_tail), TPDRQ_T);
2113	(void) he_readl(he_dev, TPDRQ_T);		/* flush posted writes */
2114}
2115
2116static int
2117he_open(struct atm_vcc *vcc)
2118{
2119	unsigned long flags;
2120	struct he_dev *he_dev = HE_DEV(vcc->dev);
2121	struct he_vcc *he_vcc;
2122	int err = 0;
2123	unsigned cid, rsr0, rsr1, rsr4, tsr0, tsr0_aal, tsr4, period, reg, clock;
2124	short vpi = vcc->vpi;
2125	int vci = vcc->vci;
2126
2127	if (vci == ATM_VCI_UNSPEC || vpi == ATM_VPI_UNSPEC)
2128		return 0;
2129
2130	HPRINTK("open vcc %p %d.%d\n", vcc, vpi, vci);
2131
2132	set_bit(ATM_VF_ADDR, &vcc->flags);
2133
2134	cid = he_mkcid(he_dev, vpi, vci);
2135
2136	he_vcc = kmalloc(sizeof(struct he_vcc), GFP_ATOMIC);
2137	if (he_vcc == NULL) {
2138		hprintk("unable to allocate he_vcc during open\n");
2139		return -ENOMEM;
2140	}
2141
2142	INIT_LIST_HEAD(&he_vcc->buffers);
2143	he_vcc->pdu_len = 0;
2144	he_vcc->rc_index = -1;
2145
2146	init_waitqueue_head(&he_vcc->rx_waitq);
2147	init_waitqueue_head(&he_vcc->tx_waitq);
2148
2149	vcc->dev_data = he_vcc;
2150
2151	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2152		int pcr_goal;
2153
2154		pcr_goal = atm_pcr_goal(&vcc->qos.txtp);
2155		if (pcr_goal == 0)
2156			pcr_goal = he_dev->atm_dev->link_rate;
2157		if (pcr_goal < 0)	/* means round down, technically */
2158			pcr_goal = -pcr_goal;
2159
2160		HPRINTK("open tx cid 0x%x pcr_goal %d\n", cid, pcr_goal);
2161
2162		switch (vcc->qos.aal) {
2163			case ATM_AAL5:
2164				tsr0_aal = TSR0_AAL5;
2165				tsr4 = TSR4_AAL5;
2166				break;
2167			case ATM_AAL0:
2168				tsr0_aal = TSR0_AAL0_SDU;
2169				tsr4 = TSR4_AAL0_SDU;
2170				break;
2171			default:
2172				err = -EINVAL;
2173				goto open_failed;
2174		}
2175
2176		spin_lock_irqsave(&he_dev->global_lock, flags);
2177		tsr0 = he_readl_tsr0(he_dev, cid);
2178		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2179
2180		if (TSR0_CONN_STATE(tsr0) != 0) {
2181			hprintk("cid 0x%x not idle (tsr0 = 0x%x)\n", cid, tsr0);
2182			err = -EBUSY;
2183			goto open_failed;
2184		}
2185
2186		switch (vcc->qos.txtp.traffic_class) {
2187			case ATM_UBR:
2188				/* 2.3.3.1 open connection ubr */
2189
2190				tsr0 = TSR0_UBR | TSR0_GROUP(0) | tsr0_aal |
2191					TSR0_USE_WMIN | TSR0_UPDATE_GER;
2192				break;
2193
2194			case ATM_CBR:
2195				/* 2.3.3.2 open connection cbr */
2196
2197				/* 8.2.3 cbr scheduler wrap problem -- limit to 90% total link rate */
2198				if ((he_dev->total_bw + pcr_goal)
2199					> (he_dev->atm_dev->link_rate * 9 / 10))
2200				{
2201					err = -EBUSY;
2202					goto open_failed;
2203				}
2204
2205				spin_lock_irqsave(&he_dev->global_lock, flags);			/* also protects he_dev->cs_stper[] */
2206
2207				/* find an unused cs_stper register */
2208				for (reg = 0; reg < HE_NUM_CS_STPER; ++reg)
2209					if (he_dev->cs_stper[reg].inuse == 0 || 
2210					    he_dev->cs_stper[reg].pcr == pcr_goal)
2211							break;
2212
2213				if (reg == HE_NUM_CS_STPER) {
2214					err = -EBUSY;
2215					spin_unlock_irqrestore(&he_dev->global_lock, flags);
2216					goto open_failed;
2217				}
2218
2219				he_dev->total_bw += pcr_goal;
2220
2221				he_vcc->rc_index = reg;
2222				++he_dev->cs_stper[reg].inuse;
2223				he_dev->cs_stper[reg].pcr = pcr_goal;
2224
2225				clock = he_is622(he_dev) ? 66667000 : 50000000;
2226				period = clock / pcr_goal;
2227				
2228				HPRINTK("rc_index = %d period = %d\n",
2229								reg, period);
2230
2231				he_writel_mbox(he_dev, rate_to_atmf(period/2),
2232							CS_STPER0 + reg);
2233				spin_unlock_irqrestore(&he_dev->global_lock, flags);
2234
2235				tsr0 = TSR0_CBR | TSR0_GROUP(0) | tsr0_aal |
2236							TSR0_RC_INDEX(reg);
2237
2238				break;
2239			default:
2240				err = -EINVAL;
2241				goto open_failed;
2242		}
2243
2244		spin_lock_irqsave(&he_dev->global_lock, flags);
2245
2246		he_writel_tsr0(he_dev, tsr0, cid);
2247		he_writel_tsr4(he_dev, tsr4 | 1, cid);
2248		he_writel_tsr1(he_dev, TSR1_MCR(rate_to_atmf(0)) |
2249					TSR1_PCR(rate_to_atmf(pcr_goal)), cid);
2250		he_writel_tsr2(he_dev, TSR2_ACR(rate_to_atmf(pcr_goal)), cid);
2251		he_writel_tsr9(he_dev, TSR9_OPEN_CONN, cid);
2252
2253		he_writel_tsr3(he_dev, 0x0, cid);
2254		he_writel_tsr5(he_dev, 0x0, cid);
2255		he_writel_tsr6(he_dev, 0x0, cid);
2256		he_writel_tsr7(he_dev, 0x0, cid);
2257		he_writel_tsr8(he_dev, 0x0, cid);
2258		he_writel_tsr10(he_dev, 0x0, cid);
2259		he_writel_tsr11(he_dev, 0x0, cid);
2260		he_writel_tsr12(he_dev, 0x0, cid);
2261		he_writel_tsr13(he_dev, 0x0, cid);
2262		he_writel_tsr14(he_dev, 0x0, cid);
2263		(void) he_readl_tsr0(he_dev, cid);		/* flush posted writes */
2264		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2265	}
2266
2267	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2268		unsigned aal;
2269
2270		HPRINTK("open rx cid 0x%x (rx_waitq %p)\n", cid,
2271		 				&HE_VCC(vcc)->rx_waitq);
2272
2273		switch (vcc->qos.aal) {
2274			case ATM_AAL5:
2275				aal = RSR0_AAL5;
2276				break;
2277			case ATM_AAL0:
2278				aal = RSR0_RAWCELL;
2279				break;
2280			default:
2281				err = -EINVAL;
2282				goto open_failed;
2283		}
2284
2285		spin_lock_irqsave(&he_dev->global_lock, flags);
2286
2287		rsr0 = he_readl_rsr0(he_dev, cid);
2288		if (rsr0 & RSR0_OPEN_CONN) {
2289			spin_unlock_irqrestore(&he_dev->global_lock, flags);
2290
2291			hprintk("cid 0x%x not idle (rsr0 = 0x%x)\n", cid, rsr0);
2292			err = -EBUSY;
2293			goto open_failed;
2294		}
2295
2296		rsr1 = RSR1_GROUP(0) | RSR1_RBPL_ONLY;
2297		rsr4 = RSR4_GROUP(0) | RSR4_RBPL_ONLY;
2298		rsr0 = vcc->qos.rxtp.traffic_class == ATM_UBR ? 
2299				(RSR0_EPD_ENABLE|RSR0_PPD_ENABLE) : 0;
2300
2301#ifdef USE_CHECKSUM_HW
2302		if (vpi == 0 && vci >= ATM_NOT_RSV_VCI)
2303			rsr0 |= RSR0_TCP_CKSUM;
2304#endif
2305
2306		he_writel_rsr4(he_dev, rsr4, cid);
2307		he_writel_rsr1(he_dev, rsr1, cid);
2308		/* 5.1.11 last parameter initialized should be
2309			  the open/closed indication in rsr0 */
2310		he_writel_rsr0(he_dev,
2311			rsr0 | RSR0_START_PDU | RSR0_OPEN_CONN | aal, cid);
2312		(void) he_readl_rsr0(he_dev, cid);		/* flush posted writes */
2313
2314		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2315	}
2316
2317open_failed:
2318
2319	if (err) {
2320		kfree(he_vcc);
2321		clear_bit(ATM_VF_ADDR, &vcc->flags);
2322	}
2323	else
2324		set_bit(ATM_VF_READY, &vcc->flags);
2325
2326	return err;
2327}
2328
2329static void
2330he_close(struct atm_vcc *vcc)
2331{
2332	unsigned long flags;
2333	DECLARE_WAITQUEUE(wait, current);
2334	struct he_dev *he_dev = HE_DEV(vcc->dev);
2335	struct he_tpd *tpd;
2336	unsigned cid;
2337	struct he_vcc *he_vcc = HE_VCC(vcc);
2338#define MAX_RETRY 30
2339	int retry = 0, sleep = 1, tx_inuse;
2340
2341	HPRINTK("close vcc %p %d.%d\n", vcc, vcc->vpi, vcc->vci);
2342
2343	clear_bit(ATM_VF_READY, &vcc->flags);
2344	cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2345
2346	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2347		int timeout;
2348
2349		HPRINTK("close rx cid 0x%x\n", cid);
2350
2351		/* 2.7.2.2 close receive operation */
2352
2353		/* wait for previous close (if any) to finish */
2354
2355		spin_lock_irqsave(&he_dev->global_lock, flags);
2356		while (he_readl(he_dev, RCC_STAT) & RCC_BUSY) {
2357			HPRINTK("close cid 0x%x RCC_BUSY\n", cid);
2358			udelay(250);
2359		}
2360
2361		set_current_state(TASK_UNINTERRUPTIBLE);
2362		add_wait_queue(&he_vcc->rx_waitq, &wait);
2363
2364		he_writel_rsr0(he_dev, RSR0_CLOSE_CONN, cid);
2365		(void) he_readl_rsr0(he_dev, cid);		/* flush posted writes */
2366		he_writel_mbox(he_dev, cid, RXCON_CLOSE);
2367		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2368
2369		timeout = schedule_timeout(30*HZ);
2370
2371		remove_wait_queue(&he_vcc->rx_waitq, &wait);
2372		set_current_state(TASK_RUNNING);
2373
2374		if (timeout == 0)
2375			hprintk("close rx timeout cid 0x%x\n", cid);
2376
2377		HPRINTK("close rx cid 0x%x complete\n", cid);
2378
2379	}
2380
2381	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2382		volatile unsigned tsr4, tsr0;
2383		int timeout;
2384
2385		HPRINTK("close tx cid 0x%x\n", cid);
2386		
2387		/* 2.1.2
2388		 *
2389		 * ... the host must first stop queueing packets to the TPDRQ
2390		 * on the connection to be closed, then wait for all outstanding
2391		 * packets to be transmitted and their buffers returned to the
2392		 * TBRQ. When the last packet on the connection arrives in the
2393		 * TBRQ, the host issues the close command to the adapter.
2394		 */
2395
2396		while (((tx_inuse = atomic_read(&sk_atm(vcc)->sk_wmem_alloc)) > 1) &&
2397		       (retry < MAX_RETRY)) {
2398			msleep(sleep);
2399			if (sleep < 250)
2400				sleep = sleep * 2;
2401
2402			++retry;
2403		}
2404
2405		if (tx_inuse > 1)
2406			hprintk("close tx cid 0x%x tx_inuse = %d\n", cid, tx_inuse);
2407
2408		/* 2.3.1.1 generic close operations with flush */
2409
2410		spin_lock_irqsave(&he_dev->global_lock, flags);
2411		he_writel_tsr4_upper(he_dev, TSR4_FLUSH_CONN, cid);
2412					/* also clears TSR4_SESSION_ENDED */
2413
2414		switch (vcc->qos.txtp.traffic_class) {
2415			case ATM_UBR:
2416				he_writel_tsr1(he_dev, 
2417					TSR1_MCR(rate_to_atmf(200000))
2418					| TSR1_PCR(0), cid);
2419				break;
2420			case ATM_CBR:
2421				he_writel_tsr14_upper(he_dev, TSR14_DELETE, cid);
2422				break;
2423		}
2424		(void) he_readl_tsr4(he_dev, cid);		/* flush posted writes */
2425
2426		tpd = __alloc_tpd(he_dev);
2427		if (tpd == NULL) {
2428			hprintk("close tx he_alloc_tpd failed cid 0x%x\n", cid);
2429			goto close_tx_incomplete;
2430		}
2431		tpd->status |= TPD_EOS | TPD_INT;
2432		tpd->skb = NULL;
2433		tpd->vcc = vcc;
2434		wmb();
2435
2436		set_current_state(TASK_UNINTERRUPTIBLE);
2437		add_wait_queue(&he_vcc->tx_waitq, &wait);
2438		__enqueue_tpd(he_dev, tpd, cid);
2439		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2440
2441		timeout = schedule_timeout(30*HZ);
2442
2443		remove_wait_queue(&he_vcc->tx_waitq, &wait);
2444		set_current_state(TASK_RUNNING);
2445
2446		spin_lock_irqsave(&he_dev->global_lock, flags);
2447
2448		if (timeout == 0) {
2449			hprintk("close tx timeout cid 0x%x\n", cid);
2450			goto close_tx_incomplete;
2451		}
2452
2453		while (!((tsr4 = he_readl_tsr4(he_dev, cid)) & TSR4_SESSION_ENDED)) {
2454			HPRINTK("close tx cid 0x%x !TSR4_SESSION_ENDED (tsr4 = 0x%x)\n", cid, tsr4);
2455			udelay(250);
2456		}
2457
2458		while (TSR0_CONN_STATE(tsr0 = he_readl_tsr0(he_dev, cid)) != 0) {
2459			HPRINTK("close tx cid 0x%x TSR0_CONN_STATE != 0 (tsr0 = 0x%x)\n", cid, tsr0);
2460			udelay(250);
2461		}
2462
2463close_tx_incomplete:
2464
2465		if (vcc->qos.txtp.traffic_class == ATM_CBR) {
2466			int reg = he_vcc->rc_index;
2467
2468			HPRINTK("cs_stper reg = %d\n", reg);
2469
2470			if (he_dev->cs_stper[reg].inuse == 0)
2471				hprintk("cs_stper[%d].inuse = 0!\n", reg);
2472			else
2473				--he_dev->cs_stper[reg].inuse;
2474
2475			he_dev->total_bw -= he_dev->cs_stper[reg].pcr;
2476		}
2477		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2478
2479		HPRINTK("close tx cid 0x%x complete\n", cid);
2480	}
2481
2482	kfree(he_vcc);
2483
2484	clear_bit(ATM_VF_ADDR, &vcc->flags);
2485}
2486
2487static int
2488he_send(struct atm_vcc *vcc, struct sk_buff *skb)
2489{
2490	unsigned long flags;
2491	struct he_dev *he_dev = HE_DEV(vcc->dev);
2492	unsigned cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2493	struct he_tpd *tpd;
2494#ifdef USE_SCATTERGATHER
2495	int i, slot = 0;
2496#endif
2497
2498#define HE_TPD_BUFSIZE 0xffff
2499
2500	HPRINTK("send %d.%d\n", vcc->vpi, vcc->vci);
2501
2502	if ((skb->len > HE_TPD_BUFSIZE) ||
2503	    ((vcc->qos.aal == ATM_AAL0) && (skb->len != ATM_AAL0_SDU))) {
2504		hprintk("buffer too large (or small) -- %d bytes\n", skb->len );
2505		if (vcc->pop)
2506			vcc->pop(vcc, skb);
2507		else
2508			dev_kfree_skb_any(skb);
2509		atomic_inc(&vcc->stats->tx_err);
2510		return -EINVAL;
2511	}
2512
2513#ifndef USE_SCATTERGATHER
2514	if (skb_shinfo(skb)->nr_frags) {
2515		hprintk("no scatter/gather support\n");
2516		if (vcc->pop)
2517			vcc->pop(vcc, skb);
2518		else
2519			dev_kfree_skb_any(skb);
2520		atomic_inc(&vcc->stats->tx_err);
2521		return -EINVAL;
2522	}
2523#endif
2524	spin_lock_irqsave(&he_dev->global_lock, flags);
2525
2526	tpd = __alloc_tpd(he_dev);
2527	if (tpd == NULL) {
2528		if (vcc->pop)
2529			vcc->pop(vcc, skb);
2530		else
2531			dev_kfree_skb_any(skb);
2532		atomic_inc(&vcc->stats->tx_err);
2533		spin_unlock_irqrestore(&he_dev->global_lock, flags);
2534		return -ENOMEM;
2535	}
2536
2537	if (vcc->qos.aal == ATM_AAL5)
2538		tpd->status |= TPD_CELLTYPE(TPD_USERCELL);
2539	else {
2540		char *pti_clp = (void *) (skb->data + 3);
2541		int clp, pti;
2542
2543		pti = (*pti_clp & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT; 
2544		clp = (*pti_clp & ATM_HDR_CLP);
2545		tpd->status |= TPD_CELLTYPE(pti);
2546		if (clp)
2547			tpd->status |= TPD_CLP;
2548
2549		skb_pull(skb, ATM_AAL0_SDU - ATM_CELL_PAYLOAD);
2550	}
2551
2552#ifdef USE_SCATTERGATHER
2553	tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev, skb->data,
2554				skb_headlen(skb), DMA_TO_DEVICE);
2555	tpd->iovec[slot].len = skb_headlen(skb);
2556	++slot;
2557
2558	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2559		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2560
2561		if (slot == TPD_MAXIOV) {	/* queue tpd; start new tpd */
2562			tpd->vcc = vcc;
2563			tpd->skb = NULL;	/* not the last fragment
2564						   so dont ->push() yet */
2565			wmb();
2566
2567			__enqueue_tpd(he_dev, tpd, cid);
2568			tpd = __alloc_tpd(he_dev);
2569			if (tpd == NULL) {
2570				if (vcc->pop)
2571					vcc->pop(vcc, skb);
2572				else
2573					dev_kfree_skb_any(skb);
2574				atomic_inc(&vcc->stats->tx_err);
2575				spin_unlock_irqrestore(&he_dev->global_lock, flags);
2576				return -ENOMEM;
2577			}
2578			tpd->status |= TPD_USERCELL;
2579			slot = 0;
2580		}
2581
2582		tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev,
2583			(void *) page_address(frag->page) + frag->page_offset,
2584				frag->size, DMA_TO_DEVICE);
2585		tpd->iovec[slot].len = frag->size;
2586		++slot;
2587
2588	}
2589
2590	tpd->iovec[slot - 1].len |= TPD_LST;
2591#else
2592	tpd->address0 = dma_map_single(&he_dev->pci_dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
2593	tpd->length0 = skb->len | TPD_LST;
2594#endif
2595	tpd->status |= TPD_INT;
2596
2597	tpd->vcc = vcc;
2598	tpd->skb = skb;
2599	wmb();
2600	ATM_SKB(skb)->vcc = vcc;
2601
2602	__enqueue_tpd(he_dev, tpd, cid);
2603	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2604
2605	atomic_inc(&vcc->stats->tx);
2606
2607	return 0;
2608}
2609
2610static int
2611he_ioctl(struct atm_dev *atm_dev, unsigned int cmd, void __user *arg)
2612{
2613	unsigned long flags;
2614	struct he_dev *he_dev = HE_DEV(atm_dev);
2615	struct he_ioctl_reg reg;
2616	int err = 0;
2617
2618	switch (cmd) {
2619		case HE_GET_REG:
2620			if (!capable(CAP_NET_ADMIN))
2621				return -EPERM;
2622
2623			if (copy_from_user(&reg, arg,
2624					   sizeof(struct he_ioctl_reg)))
2625				return -EFAULT;
2626
2627			spin_lock_irqsave(&he_dev->global_lock, flags);
2628			switch (reg.type) {
2629				case HE_REGTYPE_PCI:
2630					if (reg.addr >= HE_REGMAP_SIZE) {
2631						err = -EINVAL;
2632						break;
2633					}
2634
2635					reg.val = he_readl(he_dev, reg.addr);
2636					break;
2637				case HE_REGTYPE_RCM:
2638					reg.val =
2639						he_readl_rcm(he_dev, reg.addr);
2640					break;
2641				case HE_REGTYPE_TCM:
2642					reg.val =
2643						he_readl_tcm(he_dev, reg.addr);
2644					break;
2645				case HE_REGTYPE_MBOX:
2646					reg.val =
2647						he_readl_mbox(he_dev, reg.addr);
2648					break;
2649				default:
2650					err = -EINVAL;
2651					break;
2652			}
2653			spin_unlock_irqrestore(&he_dev->global_lock, flags);
2654			if (err == 0)
2655				if (copy_to_user(arg, &reg,
2656							sizeof(struct he_ioctl_reg)))
2657					return -EFAULT;
2658			break;
2659		default:
2660#ifdef CONFIG_ATM_HE_USE_SUNI
2661			if (atm_dev->phy && atm_dev->phy->ioctl)
2662				err = atm_dev->phy->ioctl(atm_dev, cmd, arg);
2663#else /* CONFIG_ATM_HE_USE_SUNI */
2664			err = -EINVAL;
2665#endif /* CONFIG_ATM_HE_USE_SUNI */
2666			break;
2667	}
2668
2669	return err;
2670}
2671
2672static void
2673he_phy_put(struct atm_dev *atm_dev, unsigned char val, unsigned long addr)
2674{
2675	unsigned long flags;
2676	struct he_dev *he_dev = HE_DEV(atm_dev);
2677
2678	HPRINTK("phy_put(val 0x%x, addr 0x%lx)\n", val, addr);
2679
2680	spin_lock_irqsave(&he_dev->global_lock, flags);
2681	he_writel(he_dev, val, FRAMER + (addr*4));
2682	(void) he_readl(he_dev, FRAMER + (addr*4));		/* flush posted writes */
2683	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2684}
2685 
2686	
2687static unsigned char
2688he_phy_get(struct atm_dev *atm_dev, unsigned long addr)
2689{ 
2690	unsigned long flags;
2691	struct he_dev *he_dev = HE_DEV(atm_dev);
2692	unsigned reg;
2693
2694	spin_lock_irqsave(&he_dev->global_lock, flags);
2695	reg = he_readl(he_dev, FRAMER + (addr*4));
2696	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2697
2698	HPRINTK("phy_get(addr 0x%lx) =0x%x\n", addr, reg);
2699	return reg;
2700}
2701
2702static int
2703he_proc_read(struct atm_dev *dev, loff_t *pos, char *page)
2704{
2705	unsigned long flags;
2706	struct he_dev *he_dev = HE_DEV(dev);
2707	int left, i;
2708#ifdef notdef
2709	struct he_rbrq *rbrq_tail;
2710	struct he_tpdrq *tpdrq_head;
2711	int rbpl_head, rbpl_tail;
2712#endif
2713	static long mcc = 0, oec = 0, dcc = 0, cec = 0;
2714
2715
2716	left = *pos;
2717	if (!left--)
2718		return sprintf(page, "ATM he driver\n");
2719
2720	if (!left--)
2721		return sprintf(page, "%s%s\n\n",
2722			he_dev->prod_id, he_dev->media & 0x40 ? "SM" : "MM");
2723
2724	if (!left--)
2725		return sprintf(page, "Mismatched Cells  VPI/VCI Not Open  Dropped Cells  RCM Dropped Cells\n");
2726
2727	spin_lock_irqsave(&he_dev->global_lock, flags);
2728	mcc += he_readl(he_dev, MCC);
2729	oec += he_readl(he_dev, OEC);
2730	dcc += he_readl(he_dev, DCC);
2731	cec += he_readl(he_dev, CEC);
2732	spin_unlock_irqrestore(&he_dev->global_lock, flags);
2733
2734	if (!left--)
2735		return sprintf(page, "%16ld  %16ld  %13ld  %17ld\n\n", 
2736							mcc, oec, dcc, cec);
2737
2738	if (!left--)
2739		return sprintf(page, "irq_size = %d  inuse = ?  peak = %d\n",
2740				CONFIG_IRQ_SIZE, he_dev->irq_peak);
2741
2742	if (!left--)
2743		return sprintf(page, "tpdrq_size = %d  inuse = ?\n",
2744						CONFIG_TPDRQ_SIZE);
2745
2746	if (!left--)
2747		return sprintf(page, "rbrq_size = %d  inuse = ?  peak = %d\n",
2748				CONFIG_RBRQ_SIZE, he_dev->rbrq_peak);
2749
2750	if (!left--)
2751		return sprintf(page, "tbrq_size = %d  peak = %d\n",
2752					CONFIG_TBRQ_SIZE, he_dev->tbrq_peak);
2753
2754
2755#ifdef notdef
2756	rbpl_head = RBPL_MASK(he_readl(he_dev, G0_RBPL_S));
2757	rbpl_tail = RBPL_MASK(he_readl(he_dev, G0_RBPL_T));
2758
2759	inuse = rbpl_head - rbpl_tail;
2760	if (inuse < 0)
2761		inuse += CONFIG_RBPL_SIZE * sizeof(struct he_rbp);
2762	inuse /= sizeof(struct he_rbp);
2763
2764	if (!left--)
2765		return sprintf(page, "rbpl_size = %d  inuse = %d\n\n",
2766						CONFIG_RBPL_SIZE, inuse);
2767#endif
2768
2769	if (!left--)
2770		return sprintf(page, "rate controller periods (cbr)\n                 pcr  #vc\n");
2771
2772	for (i = 0; i < HE_NUM_CS_STPER; ++i)
2773		if (!left--)
2774			return sprintf(page, "cs_stper%-2d  %8ld  %3d\n", i,
2775						he_dev->cs_stper[i].pcr,
2776						he_dev->cs_stper[i].inuse);
2777
2778	if (!left--)
2779		return sprintf(page, "total bw (cbr): %d  (limit %d)\n",
2780			he_dev->total_bw, he_dev->atm_dev->link_rate * 10 / 9);
2781
2782	return 0;
2783}
2784
2785/* eeprom routines  -- see 4.7 */
2786
2787static u8 read_prom_byte(struct he_dev *he_dev, int addr)
2788{
2789	u32 val = 0, tmp_read = 0;
2790	int i, j = 0;
2791	u8 byte_read = 0;
2792
2793	val = readl(he_dev->membase + HOST_CNTL);
2794	val &= 0xFFFFE0FF;
2795       
2796	/* Turn on write enable */
2797	val |= 0x800;
2798	he_writel(he_dev, val, HOST_CNTL);
2799       
2800	/* Send READ instruction */
2801	for (i = 0; i < ARRAY_SIZE(readtab); i++) {
2802		he_writel(he_dev, val | readtab[i], HOST_CNTL);
2803		udelay(EEPROM_DELAY);
2804	}
2805       
2806	/* Next, we need to send the byte address to read from */
2807	for (i = 7; i >= 0; i--) {
2808		he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2809		udelay(EEPROM_DELAY);
2810		he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2811		udelay(EEPROM_DELAY);
2812	}
2813       
2814	j = 0;
2815
2816	val &= 0xFFFFF7FF;      /* Turn off write enable */
2817	he_writel(he_dev, val, HOST_CNTL);
2818       
2819	/* Now, we can read data from the EEPROM by clocking it in */
2820	for (i = 7; i >= 0; i--) {
2821		he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2822		udelay(EEPROM_DELAY);
2823		tmp_read = he_readl(he_dev, HOST_CNTL);
2824		byte_read |= (unsigned char)
2825			   ((tmp_read & ID_DOUT) >> ID_DOFFSET << i);
2826		he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2827		udelay(EEPROM_DELAY);
2828	}
2829       
2830	he_writel(he_dev, val | ID_CS, HOST_CNTL);
2831	udelay(EEPROM_DELAY);
2832
2833	return byte_read;
2834}
2835
2836MODULE_LICENSE("GPL");
2837MODULE_AUTHOR("chas williams <chas@cmf.nrl.navy.mil>");
2838MODULE_DESCRIPTION("ForeRunnerHE ATM Adapter driver");
2839module_param(disable64, bool, 0);
2840MODULE_PARM_DESC(disable64, "disable 64-bit pci bus transfers");
2841module_param(nvpibits, short, 0);
2842MODULE_PARM_DESC(nvpibits, "numbers of bits for vpi (default 0)");
2843module_param(nvcibits, short, 0);
2844MODULE_PARM_DESC(nvcibits, "numbers of bits for vci (default 12)");
2845module_param(rx_skb_reserve, short, 0);
2846MODULE_PARM_DESC(rx_skb_reserve, "padding for receive skb (default 16)");
2847module_param(irq_coalesce, bool, 0);
2848MODULE_PARM_DESC(irq_coalesce, "use interrupt coalescing (default 1)");
2849module_param(sdh, bool, 0);
2850MODULE_PARM_DESC(sdh, "use SDH framing (default 0)");
2851
2852static struct pci_device_id he_pci_tbl[] = {
2853	{ PCI_VDEVICE(FORE, PCI_DEVICE_ID_FORE_HE), 0 },
2854	{ 0, }
2855};
2856
2857MODULE_DEVICE_TABLE(pci, he_pci_tbl);
2858
2859static struct pci_driver he_driver = {
2860	.name =		"he",
2861	.probe =	he_init_one,
2862	.remove =	he_remove_one,
2863	.id_table =	he_pci_tbl,
2864};
2865
2866module_pci_driver(he_driver);