Loading...
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/errno.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/highmem.h>
21#include <linux/slab.h>
22#include <linux/pagemap.h>
23#include <linux/spinlock.h>
24#include <linux/cpumask.h>
25#include <linux/module.h>
26#include <linux/io.h>
27#include <linux/vmalloc.h>
28#include <linux/smp.h>
29
30#include <asm/system.h>
31#include <asm/pgtable.h>
32#include <asm/pgalloc.h>
33#include <asm/fixmap.h>
34#include <asm/tlb.h>
35#include <asm/tlbflush.h>
36#include <asm/homecache.h>
37
38#define K(x) ((x) << (PAGE_SHIFT-10))
39
40/*
41 * The normal show_free_areas() is too verbose on Tile, with dozens
42 * of processors and often four NUMA zones each with high and lowmem.
43 */
44void show_mem(unsigned int filter)
45{
46 struct zone *zone;
47
48 pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu"
49 " free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu"
50 " pagecache:%lu swap:%lu\n",
51 (global_page_state(NR_ACTIVE_ANON) +
52 global_page_state(NR_ACTIVE_FILE)),
53 (global_page_state(NR_INACTIVE_ANON) +
54 global_page_state(NR_INACTIVE_FILE)),
55 global_page_state(NR_FILE_DIRTY),
56 global_page_state(NR_WRITEBACK),
57 global_page_state(NR_UNSTABLE_NFS),
58 global_page_state(NR_FREE_PAGES),
59 (global_page_state(NR_SLAB_RECLAIMABLE) +
60 global_page_state(NR_SLAB_UNRECLAIMABLE)),
61 global_page_state(NR_FILE_MAPPED),
62 global_page_state(NR_PAGETABLE),
63 global_page_state(NR_BOUNCE),
64 global_page_state(NR_FILE_PAGES),
65 nr_swap_pages);
66
67 for_each_zone(zone) {
68 unsigned long flags, order, total = 0, largest_order = -1;
69
70 if (!populated_zone(zone))
71 continue;
72
73 spin_lock_irqsave(&zone->lock, flags);
74 for (order = 0; order < MAX_ORDER; order++) {
75 int nr = zone->free_area[order].nr_free;
76 total += nr << order;
77 if (nr)
78 largest_order = order;
79 }
80 spin_unlock_irqrestore(&zone->lock, flags);
81 pr_err("Node %d %7s: %lukB (largest %luKb)\n",
82 zone_to_nid(zone), zone->name,
83 K(total), largest_order ? K(1UL) << largest_order : 0);
84 }
85}
86
87/*
88 * Associate a virtual page frame with a given physical page frame
89 * and protection flags for that frame.
90 */
91static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
92{
93 pgd_t *pgd;
94 pud_t *pud;
95 pmd_t *pmd;
96 pte_t *pte;
97
98 pgd = swapper_pg_dir + pgd_index(vaddr);
99 if (pgd_none(*pgd)) {
100 BUG();
101 return;
102 }
103 pud = pud_offset(pgd, vaddr);
104 if (pud_none(*pud)) {
105 BUG();
106 return;
107 }
108 pmd = pmd_offset(pud, vaddr);
109 if (pmd_none(*pmd)) {
110 BUG();
111 return;
112 }
113 pte = pte_offset_kernel(pmd, vaddr);
114 /* <pfn,flags> stored as-is, to permit clearing entries */
115 set_pte(pte, pfn_pte(pfn, flags));
116
117 /*
118 * It's enough to flush this one mapping.
119 * This appears conservative since it is only called
120 * from __set_fixmap.
121 */
122 local_flush_tlb_page(NULL, vaddr, PAGE_SIZE);
123}
124
125void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
126{
127 unsigned long address = __fix_to_virt(idx);
128
129 if (idx >= __end_of_fixed_addresses) {
130 BUG();
131 return;
132 }
133 set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
134}
135
136#if defined(CONFIG_HIGHPTE)
137pte_t *_pte_offset_map(pmd_t *dir, unsigned long address)
138{
139 pte_t *pte = kmap_atomic(pmd_page(*dir)) +
140 (pmd_ptfn(*dir) << HV_LOG2_PAGE_TABLE_ALIGN) & ~PAGE_MASK;
141 return &pte[pte_index(address)];
142}
143#endif
144
145/**
146 * shatter_huge_page() - ensure a given address is mapped by a small page.
147 *
148 * This function converts a huge PTE mapping kernel LOWMEM into a bunch
149 * of small PTEs with the same caching. No cache flush required, but we
150 * must do a global TLB flush.
151 *
152 * Any caller that wishes to modify a kernel mapping that might
153 * have been made with a huge page should call this function,
154 * since doing so properly avoids race conditions with installing the
155 * newly-shattered page and then flushing all the TLB entries.
156 *
157 * @addr: Address at which to shatter any existing huge page.
158 */
159void shatter_huge_page(unsigned long addr)
160{
161 pgd_t *pgd;
162 pud_t *pud;
163 pmd_t *pmd;
164 unsigned long flags = 0; /* happy compiler */
165#ifdef __PAGETABLE_PMD_FOLDED
166 struct list_head *pos;
167#endif
168
169 /* Get a pointer to the pmd entry that we need to change. */
170 addr &= HPAGE_MASK;
171 BUG_ON(pgd_addr_invalid(addr));
172 BUG_ON(addr < PAGE_OFFSET); /* only for kernel LOWMEM */
173 pgd = swapper_pg_dir + pgd_index(addr);
174 pud = pud_offset(pgd, addr);
175 BUG_ON(!pud_present(*pud));
176 pmd = pmd_offset(pud, addr);
177 BUG_ON(!pmd_present(*pmd));
178 if (!pmd_huge_page(*pmd))
179 return;
180
181 /*
182 * Grab the pgd_lock, since we may need it to walk the pgd_list,
183 * and since we need some kind of lock here to avoid races.
184 */
185 spin_lock_irqsave(&pgd_lock, flags);
186 if (!pmd_huge_page(*pmd)) {
187 /* Lost the race to convert the huge page. */
188 spin_unlock_irqrestore(&pgd_lock, flags);
189 return;
190 }
191
192 /* Shatter the huge page into the preallocated L2 page table. */
193 pmd_populate_kernel(&init_mm, pmd,
194 get_prealloc_pte(pte_pfn(*(pte_t *)pmd)));
195
196#ifdef __PAGETABLE_PMD_FOLDED
197 /* Walk every pgd on the system and update the pmd there. */
198 list_for_each(pos, &pgd_list) {
199 pmd_t *copy_pmd;
200 pgd = list_to_pgd(pos) + pgd_index(addr);
201 pud = pud_offset(pgd, addr);
202 copy_pmd = pmd_offset(pud, addr);
203 __set_pmd(copy_pmd, *pmd);
204 }
205#endif
206
207 /* Tell every cpu to notice the change. */
208 flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE,
209 cpu_possible_mask, NULL, 0);
210
211 /* Hold the lock until the TLB flush is finished to avoid races. */
212 spin_unlock_irqrestore(&pgd_lock, flags);
213}
214
215/*
216 * List of all pgd's needed so it can invalidate entries in both cached
217 * and uncached pgd's. This is essentially codepath-based locking
218 * against pageattr.c; it is the unique case in which a valid change
219 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
220 * vmalloc faults work because attached pagetables are never freed.
221 * The locking scheme was chosen on the basis of manfred's
222 * recommendations and having no core impact whatsoever.
223 * -- wli
224 */
225DEFINE_SPINLOCK(pgd_lock);
226LIST_HEAD(pgd_list);
227
228static inline void pgd_list_add(pgd_t *pgd)
229{
230 list_add(pgd_to_list(pgd), &pgd_list);
231}
232
233static inline void pgd_list_del(pgd_t *pgd)
234{
235 list_del(pgd_to_list(pgd));
236}
237
238#define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET)
239#define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START)
240
241static void pgd_ctor(pgd_t *pgd)
242{
243 unsigned long flags;
244
245 memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t));
246 spin_lock_irqsave(&pgd_lock, flags);
247
248#ifndef __tilegx__
249 /*
250 * Check that the user interrupt vector has no L2.
251 * It never should for the swapper, and new page tables
252 * should always start with an empty user interrupt vector.
253 */
254 BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0);
255#endif
256
257 memcpy(pgd + KERNEL_PGD_INDEX_START,
258 swapper_pg_dir + KERNEL_PGD_INDEX_START,
259 KERNEL_PGD_PTRS * sizeof(pgd_t));
260
261 pgd_list_add(pgd);
262 spin_unlock_irqrestore(&pgd_lock, flags);
263}
264
265static void pgd_dtor(pgd_t *pgd)
266{
267 unsigned long flags; /* can be called from interrupt context */
268
269 spin_lock_irqsave(&pgd_lock, flags);
270 pgd_list_del(pgd);
271 spin_unlock_irqrestore(&pgd_lock, flags);
272}
273
274pgd_t *pgd_alloc(struct mm_struct *mm)
275{
276 pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL);
277 if (pgd)
278 pgd_ctor(pgd);
279 return pgd;
280}
281
282void pgd_free(struct mm_struct *mm, pgd_t *pgd)
283{
284 pgd_dtor(pgd);
285 kmem_cache_free(pgd_cache, pgd);
286}
287
288
289#define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER)
290
291struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
292{
293 gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO;
294 struct page *p;
295#if L2_USER_PGTABLE_ORDER > 0
296 int i;
297#endif
298
299#ifdef CONFIG_HIGHPTE
300 flags |= __GFP_HIGHMEM;
301#endif
302
303 p = alloc_pages(flags, L2_USER_PGTABLE_ORDER);
304 if (p == NULL)
305 return NULL;
306
307#if L2_USER_PGTABLE_ORDER > 0
308 /*
309 * Make every page have a page_count() of one, not just the first.
310 * We don't use __GFP_COMP since it doesn't look like it works
311 * correctly with tlb_remove_page().
312 */
313 for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) {
314 init_page_count(p+i);
315 inc_zone_page_state(p+i, NR_PAGETABLE);
316 }
317#endif
318
319 pgtable_page_ctor(p);
320 return p;
321}
322
323/*
324 * Free page immediately (used in __pte_alloc if we raced with another
325 * process). We have to correct whatever pte_alloc_one() did before
326 * returning the pages to the allocator.
327 */
328void pte_free(struct mm_struct *mm, struct page *p)
329{
330 int i;
331
332 pgtable_page_dtor(p);
333 __free_page(p);
334
335 for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) {
336 __free_page(p+i);
337 dec_zone_page_state(p+i, NR_PAGETABLE);
338 }
339}
340
341void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte,
342 unsigned long address)
343{
344 int i;
345
346 pgtable_page_dtor(pte);
347 tlb_remove_page(tlb, pte);
348
349 for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) {
350 tlb_remove_page(tlb, pte + i);
351 dec_zone_page_state(pte + i, NR_PAGETABLE);
352 }
353}
354
355#ifndef __tilegx__
356
357/*
358 * FIXME: needs to be atomic vs hypervisor writes. For now we make the
359 * window of vulnerability a bit smaller by doing an unlocked 8-bit update.
360 */
361int ptep_test_and_clear_young(struct vm_area_struct *vma,
362 unsigned long addr, pte_t *ptep)
363{
364#if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16
365# error Code assumes HV_PTE "accessed" bit in second byte
366#endif
367 u8 *tmp = (u8 *)ptep;
368 u8 second_byte = tmp[1];
369 if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8))))
370 return 0;
371 tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8));
372 return 1;
373}
374
375/*
376 * This implementation is atomic vs hypervisor writes, since the hypervisor
377 * always writes the low word (where "accessed" and "dirty" are) and this
378 * routine only writes the high word.
379 */
380void ptep_set_wrprotect(struct mm_struct *mm,
381 unsigned long addr, pte_t *ptep)
382{
383#if HV_PTE_INDEX_WRITABLE < 32
384# error Code assumes HV_PTE "writable" bit in high word
385#endif
386 u32 *tmp = (u32 *)ptep;
387 tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32));
388}
389
390#endif
391
392pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr)
393{
394 pgd_t *pgd;
395 pud_t *pud;
396 pmd_t *pmd;
397
398 if (pgd_addr_invalid(addr))
399 return NULL;
400
401 pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr);
402 pud = pud_offset(pgd, addr);
403 if (!pud_present(*pud))
404 return NULL;
405 pmd = pmd_offset(pud, addr);
406 if (pmd_huge_page(*pmd))
407 return (pte_t *)pmd;
408 if (!pmd_present(*pmd))
409 return NULL;
410 return pte_offset_kernel(pmd, addr);
411}
412
413pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu)
414{
415 unsigned int width = smp_width;
416 int x = cpu % width;
417 int y = cpu / width;
418 BUG_ON(y >= smp_height);
419 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
420 BUG_ON(cpu < 0 || cpu >= NR_CPUS);
421 BUG_ON(!cpu_is_valid_lotar(cpu));
422 return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y));
423}
424
425int get_remote_cache_cpu(pgprot_t prot)
426{
427 HV_LOTAR lotar = hv_pte_get_lotar(prot);
428 int x = HV_LOTAR_X(lotar);
429 int y = HV_LOTAR_Y(lotar);
430 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
431 return x + y * smp_width;
432}
433
434/*
435 * Convert a kernel VA to a PA and homing information.
436 */
437int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte)
438{
439 struct page *page = virt_to_page(va);
440 pte_t null_pte = { 0 };
441
442 *cpa = __pa(va);
443
444 /* Note that this is not writing a page table, just returning a pte. */
445 *pte = pte_set_home(null_pte, page_home(page));
446
447 return 0; /* return non-zero if not hfh? */
448}
449EXPORT_SYMBOL(va_to_cpa_and_pte);
450
451void __set_pte(pte_t *ptep, pte_t pte)
452{
453#ifdef __tilegx__
454 *ptep = pte;
455#else
456# if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32
457# error Must write the present and migrating bits last
458# endif
459 if (pte_present(pte)) {
460 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
461 barrier();
462 ((u32 *)ptep)[0] = (u32)(pte_val(pte));
463 } else {
464 ((u32 *)ptep)[0] = (u32)(pte_val(pte));
465 barrier();
466 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
467 }
468#endif /* __tilegx__ */
469}
470
471void set_pte(pte_t *ptep, pte_t pte)
472{
473 struct page *page = pfn_to_page(pte_pfn(pte));
474
475 /* Update the home of a PTE if necessary */
476 pte = pte_set_home(pte, page_home(page));
477
478 __set_pte(ptep, pte);
479}
480
481/* Can this mm load a PTE with cached_priority set? */
482static inline int mm_is_priority_cached(struct mm_struct *mm)
483{
484 return mm->context.priority_cached;
485}
486
487/*
488 * Add a priority mapping to an mm_context and
489 * notify the hypervisor if this is the first one.
490 */
491void start_mm_caching(struct mm_struct *mm)
492{
493 if (!mm_is_priority_cached(mm)) {
494 mm->context.priority_cached = -1U;
495 hv_set_caching(-1U);
496 }
497}
498
499/*
500 * Validate and return the priority_cached flag. We know if it's zero
501 * that we don't need to scan, since we immediately set it non-zero
502 * when we first consider a MAP_CACHE_PRIORITY mapping.
503 *
504 * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it,
505 * since we're in an interrupt context (servicing switch_mm) we don't
506 * worry about it and don't unset the "priority_cached" field.
507 * Presumably we'll come back later and have more luck and clear
508 * the value then; for now we'll just keep the cache marked for priority.
509 */
510static unsigned int update_priority_cached(struct mm_struct *mm)
511{
512 if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) {
513 struct vm_area_struct *vm;
514 for (vm = mm->mmap; vm; vm = vm->vm_next) {
515 if (hv_pte_get_cached_priority(vm->vm_page_prot))
516 break;
517 }
518 if (vm == NULL)
519 mm->context.priority_cached = 0;
520 up_write(&mm->mmap_sem);
521 }
522 return mm->context.priority_cached;
523}
524
525/* Set caching correctly for an mm that we are switching to. */
526void check_mm_caching(struct mm_struct *prev, struct mm_struct *next)
527{
528 if (!mm_is_priority_cached(next)) {
529 /*
530 * If the new mm doesn't use priority caching, just see if we
531 * need the hv_set_caching(), or can assume it's already zero.
532 */
533 if (mm_is_priority_cached(prev))
534 hv_set_caching(0);
535 } else {
536 hv_set_caching(update_priority_cached(next));
537 }
538}
539
540#if CHIP_HAS_MMIO()
541
542/* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */
543void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
544 pgprot_t home)
545{
546 void *addr;
547 struct vm_struct *area;
548 unsigned long offset, last_addr;
549 pgprot_t pgprot;
550
551 /* Don't allow wraparound or zero size */
552 last_addr = phys_addr + size - 1;
553 if (!size || last_addr < phys_addr)
554 return NULL;
555
556 /* Create a read/write, MMIO VA mapping homed at the requested shim. */
557 pgprot = PAGE_KERNEL;
558 pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO);
559 pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home));
560
561 /*
562 * Mappings have to be page-aligned
563 */
564 offset = phys_addr & ~PAGE_MASK;
565 phys_addr &= PAGE_MASK;
566 size = PAGE_ALIGN(last_addr+1) - phys_addr;
567
568 /*
569 * Ok, go for it..
570 */
571 area = get_vm_area(size, VM_IOREMAP /* | other flags? */);
572 if (!area)
573 return NULL;
574 area->phys_addr = phys_addr;
575 addr = area->addr;
576 if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size,
577 phys_addr, pgprot)) {
578 remove_vm_area((void *)(PAGE_MASK & (unsigned long) addr));
579 return NULL;
580 }
581 return (__force void __iomem *) (offset + (char *)addr);
582}
583EXPORT_SYMBOL(ioremap_prot);
584
585/* Map a PCI MMIO bus address into VA space. */
586void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
587{
588 panic("ioremap for PCI MMIO is not supported");
589}
590EXPORT_SYMBOL(ioremap);
591
592/* Unmap an MMIO VA mapping. */
593void iounmap(volatile void __iomem *addr_in)
594{
595 volatile void __iomem *addr = (volatile void __iomem *)
596 (PAGE_MASK & (unsigned long __force)addr_in);
597#if 1
598 vunmap((void * __force)addr);
599#else
600 /* x86 uses this complicated flow instead of vunmap(). Is
601 * there any particular reason we should do the same? */
602 struct vm_struct *p, *o;
603
604 /* Use the vm area unlocked, assuming the caller
605 ensures there isn't another iounmap for the same address
606 in parallel. Reuse of the virtual address is prevented by
607 leaving it in the global lists until we're done with it.
608 cpa takes care of the direct mappings. */
609 read_lock(&vmlist_lock);
610 for (p = vmlist; p; p = p->next) {
611 if (p->addr == addr)
612 break;
613 }
614 read_unlock(&vmlist_lock);
615
616 if (!p) {
617 pr_err("iounmap: bad address %p\n", addr);
618 dump_stack();
619 return;
620 }
621
622 /* Finally remove it */
623 o = remove_vm_area((void *)addr);
624 BUG_ON(p != o || o == NULL);
625 kfree(p);
626#endif
627}
628EXPORT_SYMBOL(iounmap);
629
630#endif /* CHIP_HAS_MMIO() */
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/errno.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/highmem.h>
21#include <linux/slab.h>
22#include <linux/pagemap.h>
23#include <linux/spinlock.h>
24#include <linux/cpumask.h>
25#include <linux/module.h>
26#include <linux/io.h>
27#include <linux/vmalloc.h>
28#include <linux/smp.h>
29
30#include <asm/pgtable.h>
31#include <asm/pgalloc.h>
32#include <asm/fixmap.h>
33#include <asm/tlb.h>
34#include <asm/tlbflush.h>
35#include <asm/homecache.h>
36
37#define K(x) ((x) << (PAGE_SHIFT-10))
38
39/*
40 * The normal show_free_areas() is too verbose on Tile, with dozens
41 * of processors and often four NUMA zones each with high and lowmem.
42 */
43void show_mem(unsigned int filter)
44{
45 struct zone *zone;
46
47 pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu pagecache:%lu swap:%lu\n",
48 (global_page_state(NR_ACTIVE_ANON) +
49 global_page_state(NR_ACTIVE_FILE)),
50 (global_page_state(NR_INACTIVE_ANON) +
51 global_page_state(NR_INACTIVE_FILE)),
52 global_page_state(NR_FILE_DIRTY),
53 global_page_state(NR_WRITEBACK),
54 global_page_state(NR_UNSTABLE_NFS),
55 global_page_state(NR_FREE_PAGES),
56 (global_page_state(NR_SLAB_RECLAIMABLE) +
57 global_page_state(NR_SLAB_UNRECLAIMABLE)),
58 global_page_state(NR_FILE_MAPPED),
59 global_page_state(NR_PAGETABLE),
60 global_page_state(NR_BOUNCE),
61 global_page_state(NR_FILE_PAGES),
62 get_nr_swap_pages());
63
64 for_each_zone(zone) {
65 unsigned long flags, order, total = 0, largest_order = -1;
66
67 if (!populated_zone(zone))
68 continue;
69
70 spin_lock_irqsave(&zone->lock, flags);
71 for (order = 0; order < MAX_ORDER; order++) {
72 int nr = zone->free_area[order].nr_free;
73 total += nr << order;
74 if (nr)
75 largest_order = order;
76 }
77 spin_unlock_irqrestore(&zone->lock, flags);
78 pr_err("Node %d %7s: %lukB (largest %luKb)\n",
79 zone_to_nid(zone), zone->name,
80 K(total), largest_order ? K(1UL) << largest_order : 0);
81 }
82}
83
84/**
85 * shatter_huge_page() - ensure a given address is mapped by a small page.
86 *
87 * This function converts a huge PTE mapping kernel LOWMEM into a bunch
88 * of small PTEs with the same caching. No cache flush required, but we
89 * must do a global TLB flush.
90 *
91 * Any caller that wishes to modify a kernel mapping that might
92 * have been made with a huge page should call this function,
93 * since doing so properly avoids race conditions with installing the
94 * newly-shattered page and then flushing all the TLB entries.
95 *
96 * @addr: Address at which to shatter any existing huge page.
97 */
98void shatter_huge_page(unsigned long addr)
99{
100 pgd_t *pgd;
101 pud_t *pud;
102 pmd_t *pmd;
103 unsigned long flags = 0; /* happy compiler */
104#ifdef __PAGETABLE_PMD_FOLDED
105 struct list_head *pos;
106#endif
107
108 /* Get a pointer to the pmd entry that we need to change. */
109 addr &= HPAGE_MASK;
110 BUG_ON(pgd_addr_invalid(addr));
111 BUG_ON(addr < PAGE_OFFSET); /* only for kernel LOWMEM */
112 pgd = swapper_pg_dir + pgd_index(addr);
113 pud = pud_offset(pgd, addr);
114 BUG_ON(!pud_present(*pud));
115 pmd = pmd_offset(pud, addr);
116 BUG_ON(!pmd_present(*pmd));
117 if (!pmd_huge_page(*pmd))
118 return;
119
120 spin_lock_irqsave(&init_mm.page_table_lock, flags);
121 if (!pmd_huge_page(*pmd)) {
122 /* Lost the race to convert the huge page. */
123 spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
124 return;
125 }
126
127 /* Shatter the huge page into the preallocated L2 page table. */
128 pmd_populate_kernel(&init_mm, pmd, get_prealloc_pte(pmd_pfn(*pmd)));
129
130#ifdef __PAGETABLE_PMD_FOLDED
131 /* Walk every pgd on the system and update the pmd there. */
132 spin_lock(&pgd_lock);
133 list_for_each(pos, &pgd_list) {
134 pmd_t *copy_pmd;
135 pgd = list_to_pgd(pos) + pgd_index(addr);
136 pud = pud_offset(pgd, addr);
137 copy_pmd = pmd_offset(pud, addr);
138 __set_pmd(copy_pmd, *pmd);
139 }
140 spin_unlock(&pgd_lock);
141#endif
142
143 /* Tell every cpu to notice the change. */
144 flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE,
145 cpu_possible_mask, NULL, 0);
146
147 /* Hold the lock until the TLB flush is finished to avoid races. */
148 spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
149}
150
151/*
152 * List of all pgd's needed so it can invalidate entries in both cached
153 * and uncached pgd's. This is essentially codepath-based locking
154 * against pageattr.c; it is the unique case in which a valid change
155 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
156 * vmalloc faults work because attached pagetables are never freed.
157 *
158 * The lock is always taken with interrupts disabled, unlike on x86
159 * and other platforms, because we need to take the lock in
160 * shatter_huge_page(), which may be called from an interrupt context.
161 * We are not at risk from the tlbflush IPI deadlock that was seen on
162 * x86, since we use the flush_remote() API to have the hypervisor do
163 * the TLB flushes regardless of irq disabling.
164 */
165DEFINE_SPINLOCK(pgd_lock);
166LIST_HEAD(pgd_list);
167
168static inline void pgd_list_add(pgd_t *pgd)
169{
170 list_add(pgd_to_list(pgd), &pgd_list);
171}
172
173static inline void pgd_list_del(pgd_t *pgd)
174{
175 list_del(pgd_to_list(pgd));
176}
177
178#define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET)
179#define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START)
180
181static void pgd_ctor(pgd_t *pgd)
182{
183 unsigned long flags;
184
185 memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t));
186 spin_lock_irqsave(&pgd_lock, flags);
187
188#ifndef __tilegx__
189 /*
190 * Check that the user interrupt vector has no L2.
191 * It never should for the swapper, and new page tables
192 * should always start with an empty user interrupt vector.
193 */
194 BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0);
195#endif
196
197 memcpy(pgd + KERNEL_PGD_INDEX_START,
198 swapper_pg_dir + KERNEL_PGD_INDEX_START,
199 KERNEL_PGD_PTRS * sizeof(pgd_t));
200
201 pgd_list_add(pgd);
202 spin_unlock_irqrestore(&pgd_lock, flags);
203}
204
205static void pgd_dtor(pgd_t *pgd)
206{
207 unsigned long flags; /* can be called from interrupt context */
208
209 spin_lock_irqsave(&pgd_lock, flags);
210 pgd_list_del(pgd);
211 spin_unlock_irqrestore(&pgd_lock, flags);
212}
213
214pgd_t *pgd_alloc(struct mm_struct *mm)
215{
216 pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL);
217 if (pgd)
218 pgd_ctor(pgd);
219 return pgd;
220}
221
222void pgd_free(struct mm_struct *mm, pgd_t *pgd)
223{
224 pgd_dtor(pgd);
225 kmem_cache_free(pgd_cache, pgd);
226}
227
228
229#define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER)
230
231struct page *pgtable_alloc_one(struct mm_struct *mm, unsigned long address,
232 int order)
233{
234 gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO;
235 struct page *p;
236 int i;
237
238 p = alloc_pages(flags, L2_USER_PGTABLE_ORDER);
239 if (p == NULL)
240 return NULL;
241
242 if (!pgtable_page_ctor(p)) {
243 __free_pages(p, L2_USER_PGTABLE_ORDER);
244 return NULL;
245 }
246
247 /*
248 * Make every page have a page_count() of one, not just the first.
249 * We don't use __GFP_COMP since it doesn't look like it works
250 * correctly with tlb_remove_page().
251 */
252 for (i = 1; i < order; ++i) {
253 init_page_count(p+i);
254 inc_zone_page_state(p+i, NR_PAGETABLE);
255 }
256
257 return p;
258}
259
260/*
261 * Free page immediately (used in __pte_alloc if we raced with another
262 * process). We have to correct whatever pte_alloc_one() did before
263 * returning the pages to the allocator.
264 */
265void pgtable_free(struct mm_struct *mm, struct page *p, int order)
266{
267 int i;
268
269 pgtable_page_dtor(p);
270 __free_page(p);
271
272 for (i = 1; i < order; ++i) {
273 __free_page(p+i);
274 dec_zone_page_state(p+i, NR_PAGETABLE);
275 }
276}
277
278void __pgtable_free_tlb(struct mmu_gather *tlb, struct page *pte,
279 unsigned long address, int order)
280{
281 int i;
282
283 pgtable_page_dtor(pte);
284 tlb_remove_page(tlb, pte);
285
286 for (i = 1; i < order; ++i) {
287 tlb_remove_page(tlb, pte + i);
288 dec_zone_page_state(pte + i, NR_PAGETABLE);
289 }
290}
291
292#ifndef __tilegx__
293
294/*
295 * FIXME: needs to be atomic vs hypervisor writes. For now we make the
296 * window of vulnerability a bit smaller by doing an unlocked 8-bit update.
297 */
298int ptep_test_and_clear_young(struct vm_area_struct *vma,
299 unsigned long addr, pte_t *ptep)
300{
301#if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16
302# error Code assumes HV_PTE "accessed" bit in second byte
303#endif
304 u8 *tmp = (u8 *)ptep;
305 u8 second_byte = tmp[1];
306 if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8))))
307 return 0;
308 tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8));
309 return 1;
310}
311
312/*
313 * This implementation is atomic vs hypervisor writes, since the hypervisor
314 * always writes the low word (where "accessed" and "dirty" are) and this
315 * routine only writes the high word.
316 */
317void ptep_set_wrprotect(struct mm_struct *mm,
318 unsigned long addr, pte_t *ptep)
319{
320#if HV_PTE_INDEX_WRITABLE < 32
321# error Code assumes HV_PTE "writable" bit in high word
322#endif
323 u32 *tmp = (u32 *)ptep;
324 tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32));
325}
326
327#endif
328
329/*
330 * Return a pointer to the PTE that corresponds to the given
331 * address in the given page table. A NULL page table just uses
332 * the standard kernel page table; the preferred API in this case
333 * is virt_to_kpte().
334 *
335 * The returned pointer can point to a huge page in other levels
336 * of the page table than the bottom, if the huge page is present
337 * in the page table. For bottom-level PTEs, the returned pointer
338 * can point to a PTE that is either present or not.
339 */
340pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr)
341{
342 pgd_t *pgd;
343 pud_t *pud;
344 pmd_t *pmd;
345
346 if (pgd_addr_invalid(addr))
347 return NULL;
348
349 pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr);
350 pud = pud_offset(pgd, addr);
351 if (!pud_present(*pud))
352 return NULL;
353 if (pud_huge_page(*pud))
354 return (pte_t *)pud;
355 pmd = pmd_offset(pud, addr);
356 if (!pmd_present(*pmd))
357 return NULL;
358 if (pmd_huge_page(*pmd))
359 return (pte_t *)pmd;
360 return pte_offset_kernel(pmd, addr);
361}
362EXPORT_SYMBOL(virt_to_pte);
363
364pte_t *virt_to_kpte(unsigned long kaddr)
365{
366 BUG_ON(kaddr < PAGE_OFFSET);
367 return virt_to_pte(NULL, kaddr);
368}
369EXPORT_SYMBOL(virt_to_kpte);
370
371pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu)
372{
373 unsigned int width = smp_width;
374 int x = cpu % width;
375 int y = cpu / width;
376 BUG_ON(y >= smp_height);
377 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
378 BUG_ON(cpu < 0 || cpu >= NR_CPUS);
379 BUG_ON(!cpu_is_valid_lotar(cpu));
380 return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y));
381}
382
383int get_remote_cache_cpu(pgprot_t prot)
384{
385 HV_LOTAR lotar = hv_pte_get_lotar(prot);
386 int x = HV_LOTAR_X(lotar);
387 int y = HV_LOTAR_Y(lotar);
388 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
389 return x + y * smp_width;
390}
391
392/*
393 * Convert a kernel VA to a PA and homing information.
394 */
395int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte)
396{
397 struct page *page = virt_to_page(va);
398 pte_t null_pte = { 0 };
399
400 *cpa = __pa(va);
401
402 /* Note that this is not writing a page table, just returning a pte. */
403 *pte = pte_set_home(null_pte, page_home(page));
404
405 return 0; /* return non-zero if not hfh? */
406}
407EXPORT_SYMBOL(va_to_cpa_and_pte);
408
409void __set_pte(pte_t *ptep, pte_t pte)
410{
411#ifdef __tilegx__
412 *ptep = pte;
413#else
414# if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32
415# error Must write the present and migrating bits last
416# endif
417 if (pte_present(pte)) {
418 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
419 barrier();
420 ((u32 *)ptep)[0] = (u32)(pte_val(pte));
421 } else {
422 ((u32 *)ptep)[0] = (u32)(pte_val(pte));
423 barrier();
424 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
425 }
426#endif /* __tilegx__ */
427}
428
429void set_pte(pte_t *ptep, pte_t pte)
430{
431 if (pte_present(pte) &&
432 (!CHIP_HAS_MMIO() || hv_pte_get_mode(pte) != HV_PTE_MODE_MMIO)) {
433 /* The PTE actually references physical memory. */
434 unsigned long pfn = pte_pfn(pte);
435 if (pfn_valid(pfn)) {
436 /* Update the home of the PTE from the struct page. */
437 pte = pte_set_home(pte, page_home(pfn_to_page(pfn)));
438 } else if (hv_pte_get_mode(pte) == 0) {
439 /* remap_pfn_range(), etc, must supply PTE mode. */
440 panic("set_pte(): out-of-range PFN and mode 0\n");
441 }
442 }
443
444 __set_pte(ptep, pte);
445}
446
447/* Can this mm load a PTE with cached_priority set? */
448static inline int mm_is_priority_cached(struct mm_struct *mm)
449{
450 return mm->context.priority_cached != 0;
451}
452
453/*
454 * Add a priority mapping to an mm_context and
455 * notify the hypervisor if this is the first one.
456 */
457void start_mm_caching(struct mm_struct *mm)
458{
459 if (!mm_is_priority_cached(mm)) {
460 mm->context.priority_cached = -1UL;
461 hv_set_caching(-1UL);
462 }
463}
464
465/*
466 * Validate and return the priority_cached flag. We know if it's zero
467 * that we don't need to scan, since we immediately set it non-zero
468 * when we first consider a MAP_CACHE_PRIORITY mapping.
469 *
470 * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it,
471 * since we're in an interrupt context (servicing switch_mm) we don't
472 * worry about it and don't unset the "priority_cached" field.
473 * Presumably we'll come back later and have more luck and clear
474 * the value then; for now we'll just keep the cache marked for priority.
475 */
476static unsigned long update_priority_cached(struct mm_struct *mm)
477{
478 if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) {
479 struct vm_area_struct *vm;
480 for (vm = mm->mmap; vm; vm = vm->vm_next) {
481 if (hv_pte_get_cached_priority(vm->vm_page_prot))
482 break;
483 }
484 if (vm == NULL)
485 mm->context.priority_cached = 0;
486 up_write(&mm->mmap_sem);
487 }
488 return mm->context.priority_cached;
489}
490
491/* Set caching correctly for an mm that we are switching to. */
492void check_mm_caching(struct mm_struct *prev, struct mm_struct *next)
493{
494 if (!mm_is_priority_cached(next)) {
495 /*
496 * If the new mm doesn't use priority caching, just see if we
497 * need the hv_set_caching(), or can assume it's already zero.
498 */
499 if (mm_is_priority_cached(prev))
500 hv_set_caching(0);
501 } else {
502 hv_set_caching(update_priority_cached(next));
503 }
504}
505
506#if CHIP_HAS_MMIO()
507
508/* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */
509void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
510 pgprot_t home)
511{
512 void *addr;
513 struct vm_struct *area;
514 unsigned long offset, last_addr;
515 pgprot_t pgprot;
516
517 /* Don't allow wraparound or zero size */
518 last_addr = phys_addr + size - 1;
519 if (!size || last_addr < phys_addr)
520 return NULL;
521
522 /* Create a read/write, MMIO VA mapping homed at the requested shim. */
523 pgprot = PAGE_KERNEL;
524 pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO);
525 pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home));
526
527 /*
528 * Mappings have to be page-aligned
529 */
530 offset = phys_addr & ~PAGE_MASK;
531 phys_addr &= PAGE_MASK;
532 size = PAGE_ALIGN(last_addr+1) - phys_addr;
533
534 /*
535 * Ok, go for it..
536 */
537 area = get_vm_area(size, VM_IOREMAP /* | other flags? */);
538 if (!area)
539 return NULL;
540 area->phys_addr = phys_addr;
541 addr = area->addr;
542 if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size,
543 phys_addr, pgprot)) {
544 free_vm_area(area);
545 return NULL;
546 }
547 return (__force void __iomem *) (offset + (char *)addr);
548}
549EXPORT_SYMBOL(ioremap_prot);
550
551/* Unmap an MMIO VA mapping. */
552void iounmap(volatile void __iomem *addr_in)
553{
554 volatile void __iomem *addr = (volatile void __iomem *)
555 (PAGE_MASK & (unsigned long __force)addr_in);
556#if 1
557 vunmap((void * __force)addr);
558#else
559 /* x86 uses this complicated flow instead of vunmap(). Is
560 * there any particular reason we should do the same? */
561 struct vm_struct *p, *o;
562
563 /* Use the vm area unlocked, assuming the caller
564 ensures there isn't another iounmap for the same address
565 in parallel. Reuse of the virtual address is prevented by
566 leaving it in the global lists until we're done with it.
567 cpa takes care of the direct mappings. */
568 p = find_vm_area((void *)addr);
569
570 if (!p) {
571 pr_err("iounmap: bad address %p\n", addr);
572 dump_stack();
573 return;
574 }
575
576 /* Finally remove it */
577 o = remove_vm_area((void *)addr);
578 BUG_ON(p != o || o == NULL);
579 kfree(p);
580#endif
581}
582EXPORT_SYMBOL(iounmap);
583
584#endif /* CHIP_HAS_MMIO() */