Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3 *
  4 *   This program is free software; you can redistribute it and/or
  5 *   modify it under the terms of the GNU General Public License
  6 *   as published by the Free Software Foundation, version 2.
  7 *
  8 *   This program is distributed in the hope that it will be useful, but
  9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 11 *   NON INFRINGEMENT.  See the GNU General Public License for
 12 *   more details.
 13 *
 14 * TILE Huge TLB Page Support for Kernel.
 15 * Taken from i386 hugetlb implementation:
 16 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
 17 */
 18
 19#include <linux/init.h>
 20#include <linux/fs.h>
 21#include <linux/mm.h>
 22#include <linux/hugetlb.h>
 23#include <linux/pagemap.h>
 24#include <linux/slab.h>
 25#include <linux/err.h>
 26#include <linux/sysctl.h>
 27#include <linux/mman.h>
 28#include <asm/tlb.h>
 29#include <asm/tlbflush.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 30
 31pte_t *huge_pte_alloc(struct mm_struct *mm,
 32		      unsigned long addr, unsigned long sz)
 33{
 34	pgd_t *pgd;
 35	pud_t *pud;
 36	pte_t *pte = NULL;
 37
 38	/* We do not yet support multiple huge page sizes. */
 39	BUG_ON(sz != PMD_SIZE);
 40
 41	pgd = pgd_offset(mm, addr);
 42	pud = pud_alloc(mm, pgd, addr);
 43	if (pud)
 44		pte = (pte_t *) pmd_alloc(mm, pud, addr);
 45	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
 46
 47	return pte;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 48}
 49
 50pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
 51{
 52	pgd_t *pgd;
 53	pud_t *pud;
 54	pmd_t *pmd = NULL;
 55
 56	pgd = pgd_offset(mm, addr);
 57	if (pgd_present(*pgd)) {
 58		pud = pud_offset(pgd, addr);
 59		if (pud_present(*pud))
 60			pmd = pmd_offset(pud, addr);
 61	}
 62	return (pte_t *) pmd;
 
 63}
 64
 65#ifdef HUGETLB_TEST
 66struct page *follow_huge_addr(struct mm_struct *mm, unsigned long address,
 67			      int write)
 68{
 69	unsigned long start = address;
 70	int length = 1;
 71	int nr;
 72	struct page *page;
 73	struct vm_area_struct *vma;
 74
 75	vma = find_vma(mm, addr);
 76	if (!vma || !is_vm_hugetlb_page(vma))
 77		return ERR_PTR(-EINVAL);
 78
 79	pte = huge_pte_offset(mm, address);
 80
 81	/* hugetlb should be locked, and hence, prefaulted */
 82	WARN_ON(!pte || pte_none(*pte));
 83
 84	page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
 85
 86	WARN_ON(!PageHead(page));
 
 87
 88	return page;
 89}
 
 
 
 
 
 90
 91int pmd_huge(pmd_t pmd)
 92{
 93	return 0;
 94}
 
 
 
 
 
 
 
 
 95
 96int pud_huge(pud_t pud)
 97{
 98	return 0;
 99}
 
 
 
 
 
 
 
 
100
101struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
102			     pmd_t *pmd, int write)
103{
104	return NULL;
105}
106
107#else
108
109struct page *follow_huge_addr(struct mm_struct *mm, unsigned long address,
110			      int write)
111{
112	return ERR_PTR(-EINVAL);
113}
114
115int pmd_huge(pmd_t pmd)
116{
117	return !!(pmd_val(pmd) & _PAGE_HUGE_PAGE);
118}
119
120int pud_huge(pud_t pud)
121{
122	return !!(pud_val(pud) & _PAGE_HUGE_PAGE);
123}
124
125struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
126			     pmd_t *pmd, int write)
127{
128	struct page *page;
129
130	page = pte_page(*(pte_t *)pmd);
131	if (page)
132		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
133	return page;
134}
135
136struct page *follow_huge_pud(struct mm_struct *mm, unsigned long address,
137			     pud_t *pud, int write)
138{
139	struct page *page;
140
141	page = pte_page(*(pte_t *)pud);
142	if (page)
143		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
144	return page;
145}
146
147int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
148{
149	return 0;
150}
151
152#endif
153
154#ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
155static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
156		unsigned long addr, unsigned long len,
157		unsigned long pgoff, unsigned long flags)
158{
159	struct hstate *h = hstate_file(file);
160	struct mm_struct *mm = current->mm;
161	struct vm_area_struct *vma;
162	unsigned long start_addr;
163
164	if (len > mm->cached_hole_size) {
165		start_addr = mm->free_area_cache;
166	} else {
167		start_addr = TASK_UNMAPPED_BASE;
168		mm->cached_hole_size = 0;
169	}
170
171full_search:
172	addr = ALIGN(start_addr, huge_page_size(h));
173
174	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
175		/* At this point:  (!vma || addr < vma->vm_end). */
176		if (TASK_SIZE - len < addr) {
177			/*
178			 * Start a new search - just in case we missed
179			 * some holes.
180			 */
181			if (start_addr != TASK_UNMAPPED_BASE) {
182				start_addr = TASK_UNMAPPED_BASE;
183				mm->cached_hole_size = 0;
184				goto full_search;
185			}
186			return -ENOMEM;
187		}
188		if (!vma || addr + len <= vma->vm_start) {
189			mm->free_area_cache = addr + len;
190			return addr;
191		}
192		if (addr + mm->cached_hole_size < vma->vm_start)
193			mm->cached_hole_size = vma->vm_start - addr;
194		addr = ALIGN(vma->vm_end, huge_page_size(h));
195	}
196}
197
198static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
199		unsigned long addr0, unsigned long len,
200		unsigned long pgoff, unsigned long flags)
201{
202	struct hstate *h = hstate_file(file);
203	struct mm_struct *mm = current->mm;
204	struct vm_area_struct *vma, *prev_vma;
205	unsigned long base = mm->mmap_base, addr = addr0;
206	unsigned long largest_hole = mm->cached_hole_size;
207	int first_time = 1;
208
209	/* don't allow allocations above current base */
210	if (mm->free_area_cache > base)
211		mm->free_area_cache = base;
212
213	if (len <= largest_hole) {
214		largest_hole = 0;
215		mm->free_area_cache  = base;
216	}
217try_again:
218	/* make sure it can fit in the remaining address space */
219	if (mm->free_area_cache < len)
220		goto fail;
221
222	/* either no address requested or can't fit in requested address hole */
223	addr = (mm->free_area_cache - len) & huge_page_mask(h);
224	do {
225		/*
226		 * Lookup failure means no vma is above this address,
227		 * i.e. return with success:
228		 */
229		vma = find_vma_prev(mm, addr, &prev_vma);
230		if (!vma) {
231			return addr;
232			break;
233		}
234
235		/*
236		 * new region fits between prev_vma->vm_end and
237		 * vma->vm_start, use it:
238		 */
239		if (addr + len <= vma->vm_start &&
240			    (!prev_vma || (addr >= prev_vma->vm_end))) {
241			/* remember the address as a hint for next time */
242			mm->cached_hole_size = largest_hole;
243			mm->free_area_cache = addr;
244			return addr;
245		} else {
246			/* pull free_area_cache down to the first hole */
247			if (mm->free_area_cache == vma->vm_end) {
248				mm->free_area_cache = vma->vm_start;
249				mm->cached_hole_size = largest_hole;
250			}
251		}
252
253		/* remember the largest hole we saw so far */
254		if (addr + largest_hole < vma->vm_start)
255			largest_hole = vma->vm_start - addr;
 
 
 
 
256
257		/* try just below the current vma->vm_start */
258		addr = (vma->vm_start - len) & huge_page_mask(h);
259
260	} while (len <= vma->vm_start);
261
262fail:
263	/*
264	 * if hint left us with no space for the requested
265	 * mapping then try again:
266	 */
267	if (first_time) {
268		mm->free_area_cache = base;
269		largest_hole = 0;
270		first_time = 0;
271		goto try_again;
272	}
273	/*
274	 * A failed mmap() very likely causes application failure,
275	 * so fall back to the bottom-up function here. This scenario
276	 * can happen with large stack limits and large mmap()
277	 * allocations.
278	 */
279	mm->free_area_cache = TASK_UNMAPPED_BASE;
280	mm->cached_hole_size = ~0UL;
281	addr = hugetlb_get_unmapped_area_bottomup(file, addr0,
282			len, pgoff, flags);
283
284	/*
285	 * Restore the topdown base:
286	 */
287	mm->free_area_cache = base;
288	mm->cached_hole_size = ~0UL;
289
290	return addr;
291}
292
293unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
294		unsigned long len, unsigned long pgoff, unsigned long flags)
295{
296	struct hstate *h = hstate_file(file);
297	struct mm_struct *mm = current->mm;
298	struct vm_area_struct *vma;
299
300	if (len & ~huge_page_mask(h))
301		return -EINVAL;
302	if (len > TASK_SIZE)
303		return -ENOMEM;
304
305	if (flags & MAP_FIXED) {
306		if (prepare_hugepage_range(file, addr, len))
307			return -EINVAL;
308		return addr;
309	}
310
311	if (addr) {
312		addr = ALIGN(addr, huge_page_size(h));
313		vma = find_vma(mm, addr);
314		if (TASK_SIZE - len >= addr &&
315		    (!vma || addr + len <= vma->vm_start))
316			return addr;
317	}
318	if (current->mm->get_unmapped_area == arch_get_unmapped_area)
319		return hugetlb_get_unmapped_area_bottomup(file, addr, len,
320				pgoff, flags);
321	else
322		return hugetlb_get_unmapped_area_topdown(file, addr, len,
323				pgoff, flags);
324}
 
325
326static __init int setup_hugepagesz(char *opt)
 
327{
328	unsigned long ps = memparse(opt, &opt);
329	if (ps == PMD_SIZE) {
330		hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
331	} else if (ps == PUD_SIZE) {
332		hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
333	} else {
334		pr_err("hugepagesz: Unsupported page size %lu M\n",
 
 
 
 
335			ps >> 20);
336		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337	}
338	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339}
340__setup("hugepagesz=", setup_hugepagesz);
341
342#endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v4.6
  1/*
  2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3 *
  4 *   This program is free software; you can redistribute it and/or
  5 *   modify it under the terms of the GNU General Public License
  6 *   as published by the Free Software Foundation, version 2.
  7 *
  8 *   This program is distributed in the hope that it will be useful, but
  9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 11 *   NON INFRINGEMENT.  See the GNU General Public License for
 12 *   more details.
 13 *
 14 * TILE Huge TLB Page Support for Kernel.
 15 * Taken from i386 hugetlb implementation:
 16 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
 17 */
 18
 19#include <linux/init.h>
 20#include <linux/fs.h>
 21#include <linux/mm.h>
 22#include <linux/hugetlb.h>
 23#include <linux/pagemap.h>
 24#include <linux/slab.h>
 25#include <linux/err.h>
 26#include <linux/sysctl.h>
 27#include <linux/mman.h>
 28#include <asm/tlb.h>
 29#include <asm/tlbflush.h>
 30#include <asm/setup.h>
 31
 32#ifdef CONFIG_HUGETLB_SUPER_PAGES
 33
 34/*
 35 * Provide an additional huge page size (in addition to the regular default
 36 * huge page size) if no "hugepagesz" arguments are specified.
 37 * Note that it must be smaller than the default huge page size so
 38 * that it's possible to allocate them on demand from the buddy allocator.
 39 * You can change this to 64K (on a 16K build), 256K, 1M, or 4M,
 40 * or not define it at all.
 41 */
 42#define ADDITIONAL_HUGE_SIZE (1024 * 1024UL)
 43
 44/* "Extra" page-size multipliers, one per level of the page table. */
 45int huge_shift[HUGE_SHIFT_ENTRIES] = {
 46#ifdef ADDITIONAL_HUGE_SIZE
 47#define ADDITIONAL_HUGE_SHIFT __builtin_ctzl(ADDITIONAL_HUGE_SIZE / PAGE_SIZE)
 48	[HUGE_SHIFT_PAGE] = ADDITIONAL_HUGE_SHIFT
 49#endif
 50};
 51
 52#endif
 53
 54pte_t *huge_pte_alloc(struct mm_struct *mm,
 55		      unsigned long addr, unsigned long sz)
 56{
 57	pgd_t *pgd;
 58	pud_t *pud;
 
 59
 60	addr &= -sz;   /* Mask off any low bits in the address. */
 
 61
 62	pgd = pgd_offset(mm, addr);
 63	pud = pud_alloc(mm, pgd, addr);
 
 
 
 64
 65#ifdef CONFIG_HUGETLB_SUPER_PAGES
 66	if (sz >= PGDIR_SIZE) {
 67		BUG_ON(sz != PGDIR_SIZE &&
 68		       sz != PGDIR_SIZE << huge_shift[HUGE_SHIFT_PGDIR]);
 69		return (pte_t *)pud;
 70	} else {
 71		pmd_t *pmd = pmd_alloc(mm, pud, addr);
 72		if (sz >= PMD_SIZE) {
 73			BUG_ON(sz != PMD_SIZE &&
 74			       sz != (PMD_SIZE << huge_shift[HUGE_SHIFT_PMD]));
 75			return (pte_t *)pmd;
 76		}
 77		else {
 78			if (sz != PAGE_SIZE << huge_shift[HUGE_SHIFT_PAGE])
 79				panic("Unexpected page size %#lx\n", sz);
 80			return pte_alloc_map(mm, pmd, addr);
 81		}
 82	}
 83#else
 84	BUG_ON(sz != PMD_SIZE);
 85	return (pte_t *) pmd_alloc(mm, pud, addr);
 86#endif
 87}
 88
 89static pte_t *get_pte(pte_t *base, int index, int level)
 90{
 91	pte_t *ptep = base + index;
 92#ifdef CONFIG_HUGETLB_SUPER_PAGES
 93	if (!pte_present(*ptep) && huge_shift[level] != 0) {
 94		unsigned long mask = -1UL << huge_shift[level];
 95		pte_t *super_ptep = base + (index & mask);
 96		pte_t pte = *super_ptep;
 97		if (pte_present(pte) && pte_super(pte))
 98			ptep = super_ptep;
 
 99	}
100#endif
101	return ptep;
102}
103
104pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
 
 
105{
106	pgd_t *pgd;
107	pud_t *pud;
108	pmd_t *pmd;
109#ifdef CONFIG_HUGETLB_SUPER_PAGES
110	pte_t *pte;
111#endif
 
 
 
 
 
 
 
 
 
 
112
113	/* Get the top-level page table entry. */
114	pgd = (pgd_t *)get_pte((pte_t *)mm->pgd, pgd_index(addr), 0);
115
116	/* We don't have four levels. */
117	pud = pud_offset(pgd, addr);
118#ifndef __PAGETABLE_PUD_FOLDED
119# error support fourth page table level
120#endif
121	if (!pud_present(*pud))
122		return NULL;
123
124	/* Check for an L0 huge PTE, if we have three levels. */
125#ifndef __PAGETABLE_PMD_FOLDED
126	if (pud_huge(*pud))
127		return (pte_t *)pud;
128
129	pmd = (pmd_t *)get_pte((pte_t *)pud_page_vaddr(*pud),
130			       pmd_index(addr), 1);
131	if (!pmd_present(*pmd))
132		return NULL;
133#else
134	pmd = pmd_offset(pud, addr);
135#endif
136
137	/* Check for an L1 huge PTE. */
138	if (pmd_huge(*pmd))
139		return (pte_t *)pmd;
140
141#ifdef CONFIG_HUGETLB_SUPER_PAGES
142	/* Check for an L2 huge PTE. */
143	pte = get_pte((pte_t *)pmd_page_vaddr(*pmd), pte_index(addr), 2);
144	if (!pte_present(*pte))
145		return NULL;
146	if (pte_super(*pte))
147		return pte;
148#endif
149
 
 
 
150	return NULL;
151}
152
 
 
 
 
 
 
 
 
153int pmd_huge(pmd_t pmd)
154{
155	return !!(pmd_val(pmd) & _PAGE_HUGE_PAGE);
156}
157
158int pud_huge(pud_t pud)
159{
160	return !!(pud_val(pud) & _PAGE_HUGE_PAGE);
161}
162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163#ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
164static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
165		unsigned long addr, unsigned long len,
166		unsigned long pgoff, unsigned long flags)
167{
168	struct hstate *h = hstate_file(file);
169	struct vm_unmapped_area_info info;
 
 
 
 
 
 
 
 
 
 
 
 
170
171	info.flags = 0;
172	info.length = len;
173	info.low_limit = TASK_UNMAPPED_BASE;
174	info.high_limit = TASK_SIZE;
175	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
176	info.align_offset = 0;
177	return vm_unmapped_area(&info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178}
179
180static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
181		unsigned long addr0, unsigned long len,
182		unsigned long pgoff, unsigned long flags)
183{
184	struct hstate *h = hstate_file(file);
185	struct vm_unmapped_area_info info;
186	unsigned long addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187
188	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
189	info.length = len;
190	info.low_limit = PAGE_SIZE;
191	info.high_limit = current->mm->mmap_base;
192	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
193	info.align_offset = 0;
194	addr = vm_unmapped_area(&info);
195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196	/*
197	 * A failed mmap() very likely causes application failure,
198	 * so fall back to the bottom-up function here. This scenario
199	 * can happen with large stack limits and large mmap()
200	 * allocations.
201	 */
202	if (addr & ~PAGE_MASK) {
203		VM_BUG_ON(addr != -ENOMEM);
204		info.flags = 0;
205		info.low_limit = TASK_UNMAPPED_BASE;
206		info.high_limit = TASK_SIZE;
207		addr = vm_unmapped_area(&info);
208	}
 
 
 
209
210	return addr;
211}
212
213unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
214		unsigned long len, unsigned long pgoff, unsigned long flags)
215{
216	struct hstate *h = hstate_file(file);
217	struct mm_struct *mm = current->mm;
218	struct vm_area_struct *vma;
219
220	if (len & ~huge_page_mask(h))
221		return -EINVAL;
222	if (len > TASK_SIZE)
223		return -ENOMEM;
224
225	if (flags & MAP_FIXED) {
226		if (prepare_hugepage_range(file, addr, len))
227			return -EINVAL;
228		return addr;
229	}
230
231	if (addr) {
232		addr = ALIGN(addr, huge_page_size(h));
233		vma = find_vma(mm, addr);
234		if (TASK_SIZE - len >= addr &&
235		    (!vma || addr + len <= vma->vm_start))
236			return addr;
237	}
238	if (current->mm->get_unmapped_area == arch_get_unmapped_area)
239		return hugetlb_get_unmapped_area_bottomup(file, addr, len,
240				pgoff, flags);
241	else
242		return hugetlb_get_unmapped_area_topdown(file, addr, len,
243				pgoff, flags);
244}
245#endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
246
247#ifdef CONFIG_HUGETLB_SUPER_PAGES
248static __init int __setup_hugepagesz(unsigned long ps)
249{
250	int log_ps = __builtin_ctzl(ps);
251	int level, base_shift;
252
253	if ((1UL << log_ps) != ps || (log_ps & 1) != 0) {
254		pr_warn("Not enabling %ld byte huge pages; must be a power of four\n",
255			ps);
256		return -EINVAL;
257	}
258
259	if (ps > 64*1024*1024*1024UL) {
260		pr_warn("Not enabling %ld MB huge pages; largest legal value is 64 GB\n",
261			ps >> 20);
262		return -EINVAL;
263	} else if (ps >= PUD_SIZE) {
264		static long hv_jpage_size;
265		if (hv_jpage_size == 0)
266			hv_jpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_JUMBO);
267		if (hv_jpage_size != PUD_SIZE) {
268			pr_warn("Not enabling >= %ld MB huge pages: hypervisor reports size %ld\n",
269				PUD_SIZE >> 20, hv_jpage_size);
270			return -EINVAL;
271		}
272		level = 0;
273		base_shift = PUD_SHIFT;
274	} else if (ps >= PMD_SIZE) {
275		level = 1;
276		base_shift = PMD_SHIFT;
277	} else if (ps > PAGE_SIZE) {
278		level = 2;
279		base_shift = PAGE_SHIFT;
280	} else {
281		pr_err("hugepagesz: huge page size %ld too small\n", ps);
282		return -EINVAL;
283	}
284
285	if (log_ps != base_shift) {
286		int shift_val = log_ps - base_shift;
287		if (huge_shift[level] != 0) {
288			int old_shift = base_shift + huge_shift[level];
289			pr_warn("Not enabling %ld MB huge pages; already have size %ld MB\n",
290				ps >> 20, (1UL << old_shift) >> 20);
291			return -EINVAL;
292		}
293		if (hv_set_pte_super_shift(level, shift_val) != 0) {
294			pr_warn("Not enabling %ld MB huge pages; no hypervisor support\n",
295				ps >> 20);
296			return -EINVAL;
297		}
298		printk(KERN_DEBUG "Enabled %ld MB huge pages\n", ps >> 20);
299		huge_shift[level] = shift_val;
300	}
301
302	hugetlb_add_hstate(log_ps - PAGE_SHIFT);
303
304	return 0;
305}
306
307static bool saw_hugepagesz;
308
309static __init int setup_hugepagesz(char *opt)
310{
311	if (!saw_hugepagesz) {
312		saw_hugepagesz = true;
313		memset(huge_shift, 0, sizeof(huge_shift));
314	}
315	return __setup_hugepagesz(memparse(opt, NULL));
316}
317__setup("hugepagesz=", setup_hugepagesz);
318
319#ifdef ADDITIONAL_HUGE_SIZE
320/*
321 * Provide an additional huge page size if no "hugepagesz" args are given.
322 * In that case, all the cores have properly set up their hv super_shift
323 * already, but we need to notify the hugetlb code to enable the
324 * new huge page size from the Linux point of view.
325 */
326static __init int add_default_hugepagesz(void)
327{
328	if (!saw_hugepagesz) {
329		BUILD_BUG_ON(ADDITIONAL_HUGE_SIZE >= PMD_SIZE ||
330			     ADDITIONAL_HUGE_SIZE <= PAGE_SIZE);
331		BUILD_BUG_ON((PAGE_SIZE << ADDITIONAL_HUGE_SHIFT) !=
332			     ADDITIONAL_HUGE_SIZE);
333		BUILD_BUG_ON(ADDITIONAL_HUGE_SHIFT & 1);
334		hugetlb_add_hstate(ADDITIONAL_HUGE_SHIFT);
335	}
336	return 0;
337}
338arch_initcall(add_default_hugepagesz);
339#endif
340
341#endif /* CONFIG_HUGETLB_SUPER_PAGES */