Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Interrupt request handling routines. On the
  3 * Sparc the IRQs are basically 'cast in stone'
  4 * and you are supposed to probe the prom's device
  5 * node trees to find out who's got which IRQ.
  6 *
  7 *  Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  8 *  Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
  9 *  Copyright (C) 1995,2002 Pete A. Zaitcev (zaitcev@yahoo.com)
 10 *  Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk)
 11 *  Copyright (C) 1998-2000 Anton Blanchard (anton@samba.org)
 12 */
 13
 14#include <linux/kernel_stat.h>
 15#include <linux/seq_file.h>
 
 16
 17#include <asm/cacheflush.h>
 18#include <asm/cpudata.h>
 
 19#include <asm/pcic.h>
 20#include <asm/leon.h>
 21
 22#include "kernel.h"
 23#include "irq.h"
 24
 25#ifdef CONFIG_SMP
 26#define SMP_NOP2 "nop; nop;\n\t"
 27#define SMP_NOP3 "nop; nop; nop;\n\t"
 28#else
 29#define SMP_NOP2
 30#define SMP_NOP3
 31#endif /* SMP */
 32
 33/* platform specific irq setup */
 34struct sparc_irq_config sparc_irq_config;
 35
 36unsigned long arch_local_irq_save(void)
 37{
 38	unsigned long retval;
 39	unsigned long tmp;
 40
 41	__asm__ __volatile__(
 42		"rd	%%psr, %0\n\t"
 43		SMP_NOP3	/* Sun4m + Cypress + SMP bug */
 44		"or	%0, %2, %1\n\t"
 45		"wr	%1, 0, %%psr\n\t"
 46		"nop; nop; nop\n"
 47		: "=&r" (retval), "=r" (tmp)
 48		: "i" (PSR_PIL)
 49		: "memory");
 50
 51	return retval;
 52}
 53EXPORT_SYMBOL(arch_local_irq_save);
 54
 55void arch_local_irq_enable(void)
 56{
 57	unsigned long tmp;
 58
 59	__asm__ __volatile__(
 60		"rd	%%psr, %0\n\t"
 61		SMP_NOP3	/* Sun4m + Cypress + SMP bug */
 62		"andn	%0, %1, %0\n\t"
 63		"wr	%0, 0, %%psr\n\t"
 64		"nop; nop; nop\n"
 65		: "=&r" (tmp)
 66		: "i" (PSR_PIL)
 67		: "memory");
 68}
 69EXPORT_SYMBOL(arch_local_irq_enable);
 70
 71void arch_local_irq_restore(unsigned long old_psr)
 72{
 73	unsigned long tmp;
 74
 75	__asm__ __volatile__(
 76		"rd	%%psr, %0\n\t"
 77		"and	%2, %1, %2\n\t"
 78		SMP_NOP2	/* Sun4m + Cypress + SMP bug */
 79		"andn	%0, %1, %0\n\t"
 80		"wr	%0, %2, %%psr\n\t"
 81		"nop; nop; nop\n"
 82		: "=&r" (tmp)
 83		: "i" (PSR_PIL), "r" (old_psr)
 84		: "memory");
 85}
 86EXPORT_SYMBOL(arch_local_irq_restore);
 87
 88/*
 89 * Dave Redman (djhr@tadpole.co.uk)
 90 *
 91 * IRQ numbers.. These are no longer restricted to 15..
 92 *
 93 * this is done to enable SBUS cards and onboard IO to be masked
 94 * correctly. using the interrupt level isn't good enough.
 95 *
 96 * For example:
 97 *   A device interrupting at sbus level6 and the Floppy both come in
 98 *   at IRQ11, but enabling and disabling them requires writing to
 99 *   different bits in the SLAVIO/SEC.
100 *
101 * As a result of these changes sun4m machines could now support
102 * directed CPU interrupts using the existing enable/disable irq code
103 * with tweaks.
104 *
105 * Sun4d complicates things even further.  IRQ numbers are arbitrary
106 * 32-bit values in that case.  Since this is similar to sparc64,
107 * we adopt a virtual IRQ numbering scheme as is done there.
108 * Virutal interrupt numbers are allocated by build_irq().  So NR_IRQS
109 * just becomes a limit of how many interrupt sources we can handle in
110 * a single system.  Even fully loaded SS2000 machines top off at
111 * about 32 interrupt sources or so, therefore a NR_IRQS value of 64
112 * is more than enough.
113  *
114 * We keep a map of per-PIL enable interrupts.  These get wired
115 * up via the irq_chip->startup() method which gets invoked by
116 * the generic IRQ layer during request_irq().
117 */
118
119
120/* Table of allocated irqs. Unused entries has irq == 0 */
121static struct irq_bucket irq_table[NR_IRQS];
122/* Protect access to irq_table */
123static DEFINE_SPINLOCK(irq_table_lock);
124
125/* Map between the irq identifier used in hw to the irq_bucket. */
126struct irq_bucket *irq_map[SUN4D_MAX_IRQ];
127/* Protect access to irq_map */
128static DEFINE_SPINLOCK(irq_map_lock);
129
130/* Allocate a new irq from the irq_table */
131unsigned int irq_alloc(unsigned int real_irq, unsigned int pil)
132{
133	unsigned long flags;
134	unsigned int i;
135
136	spin_lock_irqsave(&irq_table_lock, flags);
137	for (i = 1; i < NR_IRQS; i++) {
138		if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil)
139			goto found;
140	}
141
142	for (i = 1; i < NR_IRQS; i++) {
143		if (!irq_table[i].irq)
144			break;
145	}
146
147	if (i < NR_IRQS) {
148		irq_table[i].real_irq = real_irq;
149		irq_table[i].irq = i;
150		irq_table[i].pil = pil;
151	} else {
152		printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
153		i = 0;
154	}
155found:
156	spin_unlock_irqrestore(&irq_table_lock, flags);
157
158	return i;
159}
160
161/* Based on a single pil handler_irq may need to call several
162 * interrupt handlers. Use irq_map as entry to irq_table,
163 * and let each entry in irq_table point to the next entry.
164 */
165void irq_link(unsigned int irq)
166{
167	struct irq_bucket *p;
168	unsigned long flags;
169	unsigned int pil;
170
171	BUG_ON(irq >= NR_IRQS);
172
173	spin_lock_irqsave(&irq_map_lock, flags);
174
175	p = &irq_table[irq];
176	pil = p->pil;
177	BUG_ON(pil > SUN4D_MAX_IRQ);
178	p->next = irq_map[pil];
179	irq_map[pil] = p;
180
181	spin_unlock_irqrestore(&irq_map_lock, flags);
182}
183
184void irq_unlink(unsigned int irq)
185{
186	struct irq_bucket *p, **pnext;
187	unsigned long flags;
188
189	BUG_ON(irq >= NR_IRQS);
190
191	spin_lock_irqsave(&irq_map_lock, flags);
192
193	p = &irq_table[irq];
194	BUG_ON(p->pil > SUN4D_MAX_IRQ);
195	pnext = &irq_map[p->pil];
196	while (*pnext != p)
197		pnext = &(*pnext)->next;
198	*pnext = p->next;
199
200	spin_unlock_irqrestore(&irq_map_lock, flags);
201}
202
203
204/* /proc/interrupts printing */
205int arch_show_interrupts(struct seq_file *p, int prec)
206{
207	int j;
208
209#ifdef CONFIG_SMP
210	seq_printf(p, "RES: ");
211	for_each_online_cpu(j)
212		seq_printf(p, "%10u ", cpu_data(j).irq_resched_count);
213	seq_printf(p, "     IPI rescheduling interrupts\n");
214	seq_printf(p, "CAL: ");
215	for_each_online_cpu(j)
216		seq_printf(p, "%10u ", cpu_data(j).irq_call_count);
217	seq_printf(p, "     IPI function call interrupts\n");
218#endif
219	seq_printf(p, "NMI: ");
220	for_each_online_cpu(j)
221		seq_printf(p, "%10u ", cpu_data(j).counter);
222	seq_printf(p, "     Non-maskable interrupts\n");
223	return 0;
224}
225
226void handler_irq(unsigned int pil, struct pt_regs *regs)
227{
228	struct pt_regs *old_regs;
229	struct irq_bucket *p;
230
231	BUG_ON(pil > 15);
232	old_regs = set_irq_regs(regs);
233	irq_enter();
234
235	p = irq_map[pil];
236	while (p) {
237		struct irq_bucket *next = p->next;
238
239		generic_handle_irq(p->irq);
240		p = next;
241	}
242	irq_exit();
243	set_irq_regs(old_regs);
244}
245
246#if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE)
247static unsigned int floppy_irq;
248
249int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler)
250{
251	unsigned int cpu_irq;
252	int err;
253
254#if defined CONFIG_SMP && !defined CONFIG_SPARC_LEON
255	struct tt_entry *trap_table;
256#endif
257
258	err = request_irq(irq, irq_handler, 0, "floppy", NULL);
259	if (err)
260		return -1;
261
262	/* Save for later use in floppy interrupt handler */
263	floppy_irq = irq;
264
265	cpu_irq = (irq & (NR_IRQS - 1));
266
267	/* Dork with trap table if we get this far. */
268#define INSTANTIATE(table) \
269	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \
270	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \
271		SPARC_BRANCH((unsigned long) floppy_hardint, \
272			     (unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\
273	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \
274	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP;
275
276	INSTANTIATE(sparc_ttable)
277#if defined CONFIG_SMP && !defined CONFIG_SPARC_LEON
278	trap_table = &trapbase_cpu1;
279	INSTANTIATE(trap_table)
280	trap_table = &trapbase_cpu2;
281	INSTANTIATE(trap_table)
282	trap_table = &trapbase_cpu3;
283	INSTANTIATE(trap_table)
 
 
 
 
 
284#endif
285#undef INSTANTIATE
286	/*
287	 * XXX Correct thing whould be to flush only I- and D-cache lines
288	 * which contain the handler in question. But as of time of the
289	 * writing we have no CPU-neutral interface to fine-grained flushes.
290	 */
291	flush_cache_all();
292	return 0;
293}
294EXPORT_SYMBOL(sparc_floppy_request_irq);
295
296/*
297 * These variables are used to access state from the assembler
298 * interrupt handler, floppy_hardint, so we cannot put these in
299 * the floppy driver image because that would not work in the
300 * modular case.
301 */
302volatile unsigned char *fdc_status;
303EXPORT_SYMBOL(fdc_status);
304
305char *pdma_vaddr;
306EXPORT_SYMBOL(pdma_vaddr);
307
308unsigned long pdma_size;
309EXPORT_SYMBOL(pdma_size);
310
311volatile int doing_pdma;
312EXPORT_SYMBOL(doing_pdma);
313
314char *pdma_base;
315EXPORT_SYMBOL(pdma_base);
316
317unsigned long pdma_areasize;
318EXPORT_SYMBOL(pdma_areasize);
319
320/* Use the generic irq support to call floppy_interrupt
321 * which was setup using request_irq() in sparc_floppy_request_irq().
322 * We only have one floppy interrupt so we do not need to check
323 * for additional handlers being wired up by irq_link()
324 */
325void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs)
326{
327	struct pt_regs *old_regs;
328
329	old_regs = set_irq_regs(regs);
330	irq_enter();
331	generic_handle_irq(floppy_irq);
332	irq_exit();
333	set_irq_regs(old_regs);
334}
335#endif
336
337/* djhr
338 * This could probably be made indirect too and assigned in the CPU
339 * bits of the code. That would be much nicer I think and would also
340 * fit in with the idea of being able to tune your kernel for your machine
341 * by removing unrequired machine and device support.
342 *
343 */
344
345void __init init_IRQ(void)
346{
347	switch (sparc_cpu_model) {
348	case sun4c:
349	case sun4:
350		sun4c_init_IRQ();
351		break;
352
353	case sun4m:
354		pcic_probe();
355		if (pcic_present())
356			sun4m_pci_init_IRQ();
357		else
358			sun4m_init_IRQ();
359		break;
360
361	case sun4d:
362		sun4d_init_IRQ();
363		break;
364
365	case sparc_leon:
366		leon_init_IRQ();
367		break;
368
369	default:
370		prom_printf("Cannot initialize IRQs on this Sun machine...");
371		break;
372	}
373	btfixup();
374}
375
v4.6
  1/*
  2 * Interrupt request handling routines. On the
  3 * Sparc the IRQs are basically 'cast in stone'
  4 * and you are supposed to probe the prom's device
  5 * node trees to find out who's got which IRQ.
  6 *
  7 *  Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  8 *  Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
  9 *  Copyright (C) 1995,2002 Pete A. Zaitcev (zaitcev@yahoo.com)
 10 *  Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk)
 11 *  Copyright (C) 1998-2000 Anton Blanchard (anton@samba.org)
 12 */
 13
 14#include <linux/kernel_stat.h>
 15#include <linux/seq_file.h>
 16#include <linux/export.h>
 17
 18#include <asm/cacheflush.h>
 19#include <asm/cpudata.h>
 20#include <asm/setup.h>
 21#include <asm/pcic.h>
 22#include <asm/leon.h>
 23
 24#include "kernel.h"
 25#include "irq.h"
 26
 
 
 
 
 
 
 
 
 27/* platform specific irq setup */
 28struct sparc_config sparc_config;
 29
 30unsigned long arch_local_irq_save(void)
 31{
 32	unsigned long retval;
 33	unsigned long tmp;
 34
 35	__asm__ __volatile__(
 36		"rd	%%psr, %0\n\t"
 
 37		"or	%0, %2, %1\n\t"
 38		"wr	%1, 0, %%psr\n\t"
 39		"nop; nop; nop\n"
 40		: "=&r" (retval), "=r" (tmp)
 41		: "i" (PSR_PIL)
 42		: "memory");
 43
 44	return retval;
 45}
 46EXPORT_SYMBOL(arch_local_irq_save);
 47
 48void arch_local_irq_enable(void)
 49{
 50	unsigned long tmp;
 51
 52	__asm__ __volatile__(
 53		"rd	%%psr, %0\n\t"
 
 54		"andn	%0, %1, %0\n\t"
 55		"wr	%0, 0, %%psr\n\t"
 56		"nop; nop; nop\n"
 57		: "=&r" (tmp)
 58		: "i" (PSR_PIL)
 59		: "memory");
 60}
 61EXPORT_SYMBOL(arch_local_irq_enable);
 62
 63void arch_local_irq_restore(unsigned long old_psr)
 64{
 65	unsigned long tmp;
 66
 67	__asm__ __volatile__(
 68		"rd	%%psr, %0\n\t"
 69		"and	%2, %1, %2\n\t"
 
 70		"andn	%0, %1, %0\n\t"
 71		"wr	%0, %2, %%psr\n\t"
 72		"nop; nop; nop\n"
 73		: "=&r" (tmp)
 74		: "i" (PSR_PIL), "r" (old_psr)
 75		: "memory");
 76}
 77EXPORT_SYMBOL(arch_local_irq_restore);
 78
 79/*
 80 * Dave Redman (djhr@tadpole.co.uk)
 81 *
 82 * IRQ numbers.. These are no longer restricted to 15..
 83 *
 84 * this is done to enable SBUS cards and onboard IO to be masked
 85 * correctly. using the interrupt level isn't good enough.
 86 *
 87 * For example:
 88 *   A device interrupting at sbus level6 and the Floppy both come in
 89 *   at IRQ11, but enabling and disabling them requires writing to
 90 *   different bits in the SLAVIO/SEC.
 91 *
 92 * As a result of these changes sun4m machines could now support
 93 * directed CPU interrupts using the existing enable/disable irq code
 94 * with tweaks.
 95 *
 96 * Sun4d complicates things even further.  IRQ numbers are arbitrary
 97 * 32-bit values in that case.  Since this is similar to sparc64,
 98 * we adopt a virtual IRQ numbering scheme as is done there.
 99 * Virutal interrupt numbers are allocated by build_irq().  So NR_IRQS
100 * just becomes a limit of how many interrupt sources we can handle in
101 * a single system.  Even fully loaded SS2000 machines top off at
102 * about 32 interrupt sources or so, therefore a NR_IRQS value of 64
103 * is more than enough.
104  *
105 * We keep a map of per-PIL enable interrupts.  These get wired
106 * up via the irq_chip->startup() method which gets invoked by
107 * the generic IRQ layer during request_irq().
108 */
109
110
111/* Table of allocated irqs. Unused entries has irq == 0 */
112static struct irq_bucket irq_table[NR_IRQS];
113/* Protect access to irq_table */
114static DEFINE_SPINLOCK(irq_table_lock);
115
116/* Map between the irq identifier used in hw to the irq_bucket. */
117struct irq_bucket *irq_map[SUN4D_MAX_IRQ];
118/* Protect access to irq_map */
119static DEFINE_SPINLOCK(irq_map_lock);
120
121/* Allocate a new irq from the irq_table */
122unsigned int irq_alloc(unsigned int real_irq, unsigned int pil)
123{
124	unsigned long flags;
125	unsigned int i;
126
127	spin_lock_irqsave(&irq_table_lock, flags);
128	for (i = 1; i < NR_IRQS; i++) {
129		if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil)
130			goto found;
131	}
132
133	for (i = 1; i < NR_IRQS; i++) {
134		if (!irq_table[i].irq)
135			break;
136	}
137
138	if (i < NR_IRQS) {
139		irq_table[i].real_irq = real_irq;
140		irq_table[i].irq = i;
141		irq_table[i].pil = pil;
142	} else {
143		printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
144		i = 0;
145	}
146found:
147	spin_unlock_irqrestore(&irq_table_lock, flags);
148
149	return i;
150}
151
152/* Based on a single pil handler_irq may need to call several
153 * interrupt handlers. Use irq_map as entry to irq_table,
154 * and let each entry in irq_table point to the next entry.
155 */
156void irq_link(unsigned int irq)
157{
158	struct irq_bucket *p;
159	unsigned long flags;
160	unsigned int pil;
161
162	BUG_ON(irq >= NR_IRQS);
163
164	spin_lock_irqsave(&irq_map_lock, flags);
165
166	p = &irq_table[irq];
167	pil = p->pil;
168	BUG_ON(pil > SUN4D_MAX_IRQ);
169	p->next = irq_map[pil];
170	irq_map[pil] = p;
171
172	spin_unlock_irqrestore(&irq_map_lock, flags);
173}
174
175void irq_unlink(unsigned int irq)
176{
177	struct irq_bucket *p, **pnext;
178	unsigned long flags;
179
180	BUG_ON(irq >= NR_IRQS);
181
182	spin_lock_irqsave(&irq_map_lock, flags);
183
184	p = &irq_table[irq];
185	BUG_ON(p->pil > SUN4D_MAX_IRQ);
186	pnext = &irq_map[p->pil];
187	while (*pnext != p)
188		pnext = &(*pnext)->next;
189	*pnext = p->next;
190
191	spin_unlock_irqrestore(&irq_map_lock, flags);
192}
193
194
195/* /proc/interrupts printing */
196int arch_show_interrupts(struct seq_file *p, int prec)
197{
198	int j;
199
200#ifdef CONFIG_SMP
201	seq_printf(p, "RES: ");
202	for_each_online_cpu(j)
203		seq_printf(p, "%10u ", cpu_data(j).irq_resched_count);
204	seq_printf(p, "     IPI rescheduling interrupts\n");
205	seq_printf(p, "CAL: ");
206	for_each_online_cpu(j)
207		seq_printf(p, "%10u ", cpu_data(j).irq_call_count);
208	seq_printf(p, "     IPI function call interrupts\n");
209#endif
210	seq_printf(p, "NMI: ");
211	for_each_online_cpu(j)
212		seq_printf(p, "%10u ", cpu_data(j).counter);
213	seq_printf(p, "     Non-maskable interrupts\n");
214	return 0;
215}
216
217void handler_irq(unsigned int pil, struct pt_regs *regs)
218{
219	struct pt_regs *old_regs;
220	struct irq_bucket *p;
221
222	BUG_ON(pil > 15);
223	old_regs = set_irq_regs(regs);
224	irq_enter();
225
226	p = irq_map[pil];
227	while (p) {
228		struct irq_bucket *next = p->next;
229
230		generic_handle_irq(p->irq);
231		p = next;
232	}
233	irq_exit();
234	set_irq_regs(old_regs);
235}
236
237#if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE)
238static unsigned int floppy_irq;
239
240int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler)
241{
242	unsigned int cpu_irq;
243	int err;
244
 
 
 
245
246	err = request_irq(irq, irq_handler, 0, "floppy", NULL);
247	if (err)
248		return -1;
249
250	/* Save for later use in floppy interrupt handler */
251	floppy_irq = irq;
252
253	cpu_irq = (irq & (NR_IRQS - 1));
254
255	/* Dork with trap table if we get this far. */
256#define INSTANTIATE(table) \
257	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \
258	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \
259		SPARC_BRANCH((unsigned long) floppy_hardint, \
260			     (unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\
261	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \
262	table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP;
263
264	INSTANTIATE(sparc_ttable)
265
266#if defined CONFIG_SMP
267	if (sparc_cpu_model != sparc_leon) {
268		struct tt_entry *trap_table;
269
270		trap_table = &trapbase_cpu1;
271		INSTANTIATE(trap_table)
272		trap_table = &trapbase_cpu2;
273		INSTANTIATE(trap_table)
274		trap_table = &trapbase_cpu3;
275		INSTANTIATE(trap_table)
276	}
277#endif
278#undef INSTANTIATE
279	/*
280	 * XXX Correct thing whould be to flush only I- and D-cache lines
281	 * which contain the handler in question. But as of time of the
282	 * writing we have no CPU-neutral interface to fine-grained flushes.
283	 */
284	flush_cache_all();
285	return 0;
286}
287EXPORT_SYMBOL(sparc_floppy_request_irq);
288
289/*
290 * These variables are used to access state from the assembler
291 * interrupt handler, floppy_hardint, so we cannot put these in
292 * the floppy driver image because that would not work in the
293 * modular case.
294 */
295volatile unsigned char *fdc_status;
296EXPORT_SYMBOL(fdc_status);
297
298char *pdma_vaddr;
299EXPORT_SYMBOL(pdma_vaddr);
300
301unsigned long pdma_size;
302EXPORT_SYMBOL(pdma_size);
303
304volatile int doing_pdma;
305EXPORT_SYMBOL(doing_pdma);
306
307char *pdma_base;
308EXPORT_SYMBOL(pdma_base);
309
310unsigned long pdma_areasize;
311EXPORT_SYMBOL(pdma_areasize);
312
313/* Use the generic irq support to call floppy_interrupt
314 * which was setup using request_irq() in sparc_floppy_request_irq().
315 * We only have one floppy interrupt so we do not need to check
316 * for additional handlers being wired up by irq_link()
317 */
318void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs)
319{
320	struct pt_regs *old_regs;
321
322	old_regs = set_irq_regs(regs);
323	irq_enter();
324	generic_handle_irq(floppy_irq);
325	irq_exit();
326	set_irq_regs(old_regs);
327}
328#endif
329
330/* djhr
331 * This could probably be made indirect too and assigned in the CPU
332 * bits of the code. That would be much nicer I think and would also
333 * fit in with the idea of being able to tune your kernel for your machine
334 * by removing unrequired machine and device support.
335 *
336 */
337
338void __init init_IRQ(void)
339{
340	switch (sparc_cpu_model) {
 
 
 
 
 
341	case sun4m:
342		pcic_probe();
343		if (pcic_present())
344			sun4m_pci_init_IRQ();
345		else
346			sun4m_init_IRQ();
347		break;
348
349	case sun4d:
350		sun4d_init_IRQ();
351		break;
352
353	case sparc_leon:
354		leon_init_IRQ();
355		break;
356
357	default:
358		prom_printf("Cannot initialize IRQs on this Sun machine...");
359		break;
360	}
 
361}
362