Linux Audio

Check our new training course

Loading...
v3.1
  1/* IEEE754 floating point arithmetic
  2 * double precision square root
  3 */
  4/*
  5 * MIPS floating point support
  6 * Copyright (C) 1994-2000 Algorithmics Ltd.
  7 *
  8 * ########################################################################
  9 *
 10 *  This program is free software; you can distribute it and/or modify it
 11 *  under the terms of the GNU General Public License (Version 2) as
 12 *  published by the Free Software Foundation.
 13 *
 14 *  This program is distributed in the hope it will be useful, but WITHOUT
 15 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 16 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 17 *  for more details.
 18 *
 19 *  You should have received a copy of the GNU General Public License along
 20 *  with this program; if not, write to the Free Software Foundation, Inc.,
 21 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
 22 *
 23 * ########################################################################
 24 */
 25
 26
 27#include "ieee754dp.h"
 28
 29static const unsigned table[] = {
 30	0, 1204, 3062, 5746, 9193, 13348, 18162, 23592,
 31	29598, 36145, 43202, 50740, 58733, 67158, 75992,
 32	85215, 83599, 71378, 60428, 50647, 41945, 34246,
 33	27478, 21581, 16499, 12183, 8588, 5674, 3403,
 34	1742, 661, 130
 35};
 36
 37ieee754dp ieee754dp_sqrt(ieee754dp x)
 38{
 39	struct _ieee754_csr oldcsr;
 40	ieee754dp y, z, t;
 41	unsigned scalx, yh;
 42	COMPXDP;
 43
 44	EXPLODEXDP;
 45	CLEARCX;
 46	FLUSHXDP;
 47
 48	/* x == INF or NAN? */
 49	switch (xc) {
 
 
 
 50	case IEEE754_CLASS_QNAN:
 51		/* sqrt(Nan) = Nan */
 52		return ieee754dp_nanxcpt(x, "sqrt");
 53	case IEEE754_CLASS_SNAN:
 54		SETCX(IEEE754_INVALID_OPERATION);
 55		return ieee754dp_nanxcpt(ieee754dp_indef(), "sqrt");
 56	case IEEE754_CLASS_ZERO:
 57		/* sqrt(0) = 0 */
 58		return x;
 
 59	case IEEE754_CLASS_INF:
 60		if (xs) {
 61			/* sqrt(-Inf) = Nan */
 62			SETCX(IEEE754_INVALID_OPERATION);
 63			return ieee754dp_nanxcpt(ieee754dp_indef(), "sqrt");
 64		}
 65		/* sqrt(+Inf) = Inf */
 66		return x;
 
 67	case IEEE754_CLASS_DNORM:
 68		DPDNORMX;
 69		/* fall through */
 
 70	case IEEE754_CLASS_NORM:
 71		if (xs) {
 72			/* sqrt(-x) = Nan */
 73			SETCX(IEEE754_INVALID_OPERATION);
 74			return ieee754dp_nanxcpt(ieee754dp_indef(), "sqrt");
 75		}
 76		break;
 77	}
 78
 79	/* save old csr; switch off INX enable & flag; set RN rounding */
 80	oldcsr = ieee754_csr;
 81	ieee754_csr.mx &= ~IEEE754_INEXACT;
 82	ieee754_csr.sx &= ~IEEE754_INEXACT;
 83	ieee754_csr.rm = IEEE754_RN;
 84
 85	/* adjust exponent to prevent overflow */
 86	scalx = 0;
 87	if (xe > 512) {		/* x > 2**-512? */
 88		xe -= 512;	/* x = x / 2**512 */
 89		scalx += 256;
 90	} else if (xe < -512) {	/* x < 2**-512? */
 91		xe += 512;	/* x = x * 2**512 */
 92		scalx -= 256;
 93	}
 94
 95	y = x = builddp(0, xe + DP_EBIAS, xm & ~DP_HIDDEN_BIT);
 96
 97	/* magic initial approximation to almost 8 sig. bits */
 98	yh = y.bits >> 32;
 99	yh = (yh >> 1) + 0x1ff80000;
100	yh = yh - table[(yh >> 15) & 31];
101	y.bits = ((u64) yh << 32) | (y.bits & 0xffffffff);
102
103	/* Heron's rule once with correction to improve to ~18 sig. bits */
104	/* t=x/y; y=y+t; py[n0]=py[n0]-0x00100006; py[n1]=0; */
105	t = ieee754dp_div(x, y);
106	y = ieee754dp_add(y, t);
107	y.bits -= 0x0010000600000000LL;
108	y.bits &= 0xffffffff00000000LL;
109
110	/* triple to almost 56 sig. bits: y ~= sqrt(x) to within 1 ulp */
111	/* t=y*y; z=t;  pt[n0]+=0x00100000; t+=z; z=(x-z)*y; */
112	z = t = ieee754dp_mul(y, y);
113	t.parts.bexp += 0x001;
114	t = ieee754dp_add(t, z);
115	z = ieee754dp_mul(ieee754dp_sub(x, z), y);
116
117	/* t=z/(t+x) ;  pt[n0]+=0x00100000; y+=t; */
118	t = ieee754dp_div(z, ieee754dp_add(t, x));
119	t.parts.bexp += 0x001;
120	y = ieee754dp_add(y, t);
121
122	/* twiddle last bit to force y correctly rounded */
123
124	/* set RZ, clear INEX flag */
125	ieee754_csr.rm = IEEE754_RZ;
126	ieee754_csr.sx &= ~IEEE754_INEXACT;
127
128	/* t=x/y; ...chopped quotient, possibly inexact */
129	t = ieee754dp_div(x, y);
130
131	if (ieee754_csr.sx & IEEE754_INEXACT || t.bits != y.bits) {
132
133		if (!(ieee754_csr.sx & IEEE754_INEXACT))
134			/* t = t-ulp */
135			t.bits -= 1;
136
137		/* add inexact to result status */
138		oldcsr.cx |= IEEE754_INEXACT;
139		oldcsr.sx |= IEEE754_INEXACT;
140
141		switch (oldcsr.rm) {
142		case IEEE754_RP:
143			y.bits += 1;
144			/* drop through */
145		case IEEE754_RN:
146			t.bits += 1;
147			break;
148		}
149
150		/* y=y+t; ...chopped sum */
151		y = ieee754dp_add(y, t);
152
153		/* adjust scalx for correctly rounded sqrt(x) */
154		scalx -= 1;
155	}
156
157	/* py[n0]=py[n0]+scalx; ...scale back y */
158	y.parts.bexp += scalx;
159
160	/* restore rounding mode, possibly set inexact */
161	ieee754_csr = oldcsr;
162
163	return y;
164}
v4.6
  1/* IEEE754 floating point arithmetic
  2 * double precision square root
  3 */
  4/*
  5 * MIPS floating point support
  6 * Copyright (C) 1994-2000 Algorithmics Ltd.
  7 *
 
 
  8 *  This program is free software; you can distribute it and/or modify it
  9 *  under the terms of the GNU General Public License (Version 2) as
 10 *  published by the Free Software Foundation.
 11 *
 12 *  This program is distributed in the hope it will be useful, but WITHOUT
 13 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 14 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 15 *  for more details.
 16 *
 17 *  You should have received a copy of the GNU General Public License along
 18 *  with this program; if not, write to the Free Software Foundation, Inc.,
 19 *  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA.
 
 
 20 */
 21
 
 22#include "ieee754dp.h"
 23
 24static const unsigned table[] = {
 25	0, 1204, 3062, 5746, 9193, 13348, 18162, 23592,
 26	29598, 36145, 43202, 50740, 58733, 67158, 75992,
 27	85215, 83599, 71378, 60428, 50647, 41945, 34246,
 28	27478, 21581, 16499, 12183, 8588, 5674, 3403,
 29	1742, 661, 130
 30};
 31
 32union ieee754dp ieee754dp_sqrt(union ieee754dp x)
 33{
 34	struct _ieee754_csr oldcsr;
 35	union ieee754dp y, z, t;
 36	unsigned scalx, yh;
 37	COMPXDP;
 38
 39	EXPLODEXDP;
 40	ieee754_clearcx();
 41	FLUSHXDP;
 42
 43	/* x == INF or NAN? */
 44	switch (xc) {
 45	case IEEE754_CLASS_SNAN:
 46		return ieee754dp_nanxcpt(x);
 47
 48	case IEEE754_CLASS_QNAN:
 49		/* sqrt(Nan) = Nan */
 50		return x;
 51
 
 
 52	case IEEE754_CLASS_ZERO:
 53		/* sqrt(0) = 0 */
 54		return x;
 55
 56	case IEEE754_CLASS_INF:
 57		if (xs) {
 58			/* sqrt(-Inf) = Nan */
 59			ieee754_setcx(IEEE754_INVALID_OPERATION);
 60			return ieee754dp_indef();
 61		}
 62		/* sqrt(+Inf) = Inf */
 63		return x;
 64
 65	case IEEE754_CLASS_DNORM:
 66		DPDNORMX;
 67		/* fall through */
 68
 69	case IEEE754_CLASS_NORM:
 70		if (xs) {
 71			/* sqrt(-x) = Nan */
 72			ieee754_setcx(IEEE754_INVALID_OPERATION);
 73			return ieee754dp_indef();
 74		}
 75		break;
 76	}
 77
 78	/* save old csr; switch off INX enable & flag; set RN rounding */
 79	oldcsr = ieee754_csr;
 80	ieee754_csr.mx &= ~IEEE754_INEXACT;
 81	ieee754_csr.sx &= ~IEEE754_INEXACT;
 82	ieee754_csr.rm = FPU_CSR_RN;
 83
 84	/* adjust exponent to prevent overflow */
 85	scalx = 0;
 86	if (xe > 512) {		/* x > 2**-512? */
 87		xe -= 512;	/* x = x / 2**512 */
 88		scalx += 256;
 89	} else if (xe < -512) { /* x < 2**-512? */
 90		xe += 512;	/* x = x * 2**512 */
 91		scalx -= 256;
 92	}
 93
 94	y = x = builddp(0, xe + DP_EBIAS, xm & ~DP_HIDDEN_BIT);
 95
 96	/* magic initial approximation to almost 8 sig. bits */
 97	yh = y.bits >> 32;
 98	yh = (yh >> 1) + 0x1ff80000;
 99	yh = yh - table[(yh >> 15) & 31];
100	y.bits = ((u64) yh << 32) | (y.bits & 0xffffffff);
101
102	/* Heron's rule once with correction to improve to ~18 sig. bits */
103	/* t=x/y; y=y+t; py[n0]=py[n0]-0x00100006; py[n1]=0; */
104	t = ieee754dp_div(x, y);
105	y = ieee754dp_add(y, t);
106	y.bits -= 0x0010000600000000LL;
107	y.bits &= 0xffffffff00000000LL;
108
109	/* triple to almost 56 sig. bits: y ~= sqrt(x) to within 1 ulp */
110	/* t=y*y; z=t;	pt[n0]+=0x00100000; t+=z; z=(x-z)*y; */
111	z = t = ieee754dp_mul(y, y);
112	t.bexp += 0x001;
113	t = ieee754dp_add(t, z);
114	z = ieee754dp_mul(ieee754dp_sub(x, z), y);
115
116	/* t=z/(t+x) ;	pt[n0]+=0x00100000; y+=t; */
117	t = ieee754dp_div(z, ieee754dp_add(t, x));
118	t.bexp += 0x001;
119	y = ieee754dp_add(y, t);
120
121	/* twiddle last bit to force y correctly rounded */
122
123	/* set RZ, clear INEX flag */
124	ieee754_csr.rm = FPU_CSR_RZ;
125	ieee754_csr.sx &= ~IEEE754_INEXACT;
126
127	/* t=x/y; ...chopped quotient, possibly inexact */
128	t = ieee754dp_div(x, y);
129
130	if (ieee754_csr.sx & IEEE754_INEXACT || t.bits != y.bits) {
131
132		if (!(ieee754_csr.sx & IEEE754_INEXACT))
133			/* t = t-ulp */
134			t.bits -= 1;
135
136		/* add inexact to result status */
137		oldcsr.cx |= IEEE754_INEXACT;
138		oldcsr.sx |= IEEE754_INEXACT;
139
140		switch (oldcsr.rm) {
141		case FPU_CSR_RU:
142			y.bits += 1;
143			/* drop through */
144		case FPU_CSR_RN:
145			t.bits += 1;
146			break;
147		}
148
149		/* y=y+t; ...chopped sum */
150		y = ieee754dp_add(y, t);
151
152		/* adjust scalx for correctly rounded sqrt(x) */
153		scalx -= 1;
154	}
155
156	/* py[n0]=py[n0]+scalx; ...scale back y */
157	y.bexp += scalx;
158
159	/* restore rounding mode, possibly set inexact */
160	ieee754_csr = oldcsr;
161
162	return y;
163}