Loading...
1/*
2 * linux/kernel/power/swap.c
3 *
4 * This file provides functions for reading the suspend image from
5 * and writing it to a swap partition.
6 *
7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * Copyright (C) 2010 Bojan Smojver <bojan@rexursive.com>
10 *
11 * This file is released under the GPLv2.
12 *
13 */
14
15#include <linux/module.h>
16#include <linux/file.h>
17#include <linux/delay.h>
18#include <linux/bitops.h>
19#include <linux/genhd.h>
20#include <linux/device.h>
21#include <linux/buffer_head.h>
22#include <linux/bio.h>
23#include <linux/blkdev.h>
24#include <linux/swap.h>
25#include <linux/swapops.h>
26#include <linux/pm.h>
27#include <linux/slab.h>
28#include <linux/lzo.h>
29#include <linux/vmalloc.h>
30
31#include "power.h"
32
33#define HIBERNATE_SIG "S1SUSPEND"
34
35/*
36 * The swap map is a data structure used for keeping track of each page
37 * written to a swap partition. It consists of many swap_map_page
38 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
39 * These structures are stored on the swap and linked together with the
40 * help of the .next_swap member.
41 *
42 * The swap map is created during suspend. The swap map pages are
43 * allocated and populated one at a time, so we only need one memory
44 * page to set up the entire structure.
45 *
46 * During resume we also only need to use one swap_map_page structure
47 * at a time.
48 */
49
50#define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
51
52struct swap_map_page {
53 sector_t entries[MAP_PAGE_ENTRIES];
54 sector_t next_swap;
55};
56
57/**
58 * The swap_map_handle structure is used for handling swap in
59 * a file-alike way
60 */
61
62struct swap_map_handle {
63 struct swap_map_page *cur;
64 sector_t cur_swap;
65 sector_t first_sector;
66 unsigned int k;
67};
68
69struct swsusp_header {
70 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int)];
71 sector_t image;
72 unsigned int flags; /* Flags to pass to the "boot" kernel */
73 char orig_sig[10];
74 char sig[10];
75} __attribute__((packed));
76
77static struct swsusp_header *swsusp_header;
78
79/**
80 * The following functions are used for tracing the allocated
81 * swap pages, so that they can be freed in case of an error.
82 */
83
84struct swsusp_extent {
85 struct rb_node node;
86 unsigned long start;
87 unsigned long end;
88};
89
90static struct rb_root swsusp_extents = RB_ROOT;
91
92static int swsusp_extents_insert(unsigned long swap_offset)
93{
94 struct rb_node **new = &(swsusp_extents.rb_node);
95 struct rb_node *parent = NULL;
96 struct swsusp_extent *ext;
97
98 /* Figure out where to put the new node */
99 while (*new) {
100 ext = container_of(*new, struct swsusp_extent, node);
101 parent = *new;
102 if (swap_offset < ext->start) {
103 /* Try to merge */
104 if (swap_offset == ext->start - 1) {
105 ext->start--;
106 return 0;
107 }
108 new = &((*new)->rb_left);
109 } else if (swap_offset > ext->end) {
110 /* Try to merge */
111 if (swap_offset == ext->end + 1) {
112 ext->end++;
113 return 0;
114 }
115 new = &((*new)->rb_right);
116 } else {
117 /* It already is in the tree */
118 return -EINVAL;
119 }
120 }
121 /* Add the new node and rebalance the tree. */
122 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
123 if (!ext)
124 return -ENOMEM;
125
126 ext->start = swap_offset;
127 ext->end = swap_offset;
128 rb_link_node(&ext->node, parent, new);
129 rb_insert_color(&ext->node, &swsusp_extents);
130 return 0;
131}
132
133/**
134 * alloc_swapdev_block - allocate a swap page and register that it has
135 * been allocated, so that it can be freed in case of an error.
136 */
137
138sector_t alloc_swapdev_block(int swap)
139{
140 unsigned long offset;
141
142 offset = swp_offset(get_swap_page_of_type(swap));
143 if (offset) {
144 if (swsusp_extents_insert(offset))
145 swap_free(swp_entry(swap, offset));
146 else
147 return swapdev_block(swap, offset);
148 }
149 return 0;
150}
151
152/**
153 * free_all_swap_pages - free swap pages allocated for saving image data.
154 * It also frees the extents used to register which swap entries had been
155 * allocated.
156 */
157
158void free_all_swap_pages(int swap)
159{
160 struct rb_node *node;
161
162 while ((node = swsusp_extents.rb_node)) {
163 struct swsusp_extent *ext;
164 unsigned long offset;
165
166 ext = container_of(node, struct swsusp_extent, node);
167 rb_erase(node, &swsusp_extents);
168 for (offset = ext->start; offset <= ext->end; offset++)
169 swap_free(swp_entry(swap, offset));
170
171 kfree(ext);
172 }
173}
174
175int swsusp_swap_in_use(void)
176{
177 return (swsusp_extents.rb_node != NULL);
178}
179
180/*
181 * General things
182 */
183
184static unsigned short root_swap = 0xffff;
185struct block_device *hib_resume_bdev;
186
187/*
188 * Saving part
189 */
190
191static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
192{
193 int error;
194
195 hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
196 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
197 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
198 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
199 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
200 swsusp_header->image = handle->first_sector;
201 swsusp_header->flags = flags;
202 error = hib_bio_write_page(swsusp_resume_block,
203 swsusp_header, NULL);
204 } else {
205 printk(KERN_ERR "PM: Swap header not found!\n");
206 error = -ENODEV;
207 }
208 return error;
209}
210
211/**
212 * swsusp_swap_check - check if the resume device is a swap device
213 * and get its index (if so)
214 *
215 * This is called before saving image
216 */
217static int swsusp_swap_check(void)
218{
219 int res;
220
221 res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
222 &hib_resume_bdev);
223 if (res < 0)
224 return res;
225
226 root_swap = res;
227 res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
228 if (res)
229 return res;
230
231 res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
232 if (res < 0)
233 blkdev_put(hib_resume_bdev, FMODE_WRITE);
234
235 return res;
236}
237
238/**
239 * write_page - Write one page to given swap location.
240 * @buf: Address we're writing.
241 * @offset: Offset of the swap page we're writing to.
242 * @bio_chain: Link the next write BIO here
243 */
244
245static int write_page(void *buf, sector_t offset, struct bio **bio_chain)
246{
247 void *src;
248
249 if (!offset)
250 return -ENOSPC;
251
252 if (bio_chain) {
253 src = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
254 if (src) {
255 copy_page(src, buf);
256 } else {
257 WARN_ON_ONCE(1);
258 bio_chain = NULL; /* Go synchronous */
259 src = buf;
260 }
261 } else {
262 src = buf;
263 }
264 return hib_bio_write_page(offset, src, bio_chain);
265}
266
267static void release_swap_writer(struct swap_map_handle *handle)
268{
269 if (handle->cur)
270 free_page((unsigned long)handle->cur);
271 handle->cur = NULL;
272}
273
274static int get_swap_writer(struct swap_map_handle *handle)
275{
276 int ret;
277
278 ret = swsusp_swap_check();
279 if (ret) {
280 if (ret != -ENOSPC)
281 printk(KERN_ERR "PM: Cannot find swap device, try "
282 "swapon -a.\n");
283 return ret;
284 }
285 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
286 if (!handle->cur) {
287 ret = -ENOMEM;
288 goto err_close;
289 }
290 handle->cur_swap = alloc_swapdev_block(root_swap);
291 if (!handle->cur_swap) {
292 ret = -ENOSPC;
293 goto err_rel;
294 }
295 handle->k = 0;
296 handle->first_sector = handle->cur_swap;
297 return 0;
298err_rel:
299 release_swap_writer(handle);
300err_close:
301 swsusp_close(FMODE_WRITE);
302 return ret;
303}
304
305static int swap_write_page(struct swap_map_handle *handle, void *buf,
306 struct bio **bio_chain)
307{
308 int error = 0;
309 sector_t offset;
310
311 if (!handle->cur)
312 return -EINVAL;
313 offset = alloc_swapdev_block(root_swap);
314 error = write_page(buf, offset, bio_chain);
315 if (error)
316 return error;
317 handle->cur->entries[handle->k++] = offset;
318 if (handle->k >= MAP_PAGE_ENTRIES) {
319 error = hib_wait_on_bio_chain(bio_chain);
320 if (error)
321 goto out;
322 offset = alloc_swapdev_block(root_swap);
323 if (!offset)
324 return -ENOSPC;
325 handle->cur->next_swap = offset;
326 error = write_page(handle->cur, handle->cur_swap, NULL);
327 if (error)
328 goto out;
329 clear_page(handle->cur);
330 handle->cur_swap = offset;
331 handle->k = 0;
332 }
333 out:
334 return error;
335}
336
337static int flush_swap_writer(struct swap_map_handle *handle)
338{
339 if (handle->cur && handle->cur_swap)
340 return write_page(handle->cur, handle->cur_swap, NULL);
341 else
342 return -EINVAL;
343}
344
345static int swap_writer_finish(struct swap_map_handle *handle,
346 unsigned int flags, int error)
347{
348 if (!error) {
349 flush_swap_writer(handle);
350 printk(KERN_INFO "PM: S");
351 error = mark_swapfiles(handle, flags);
352 printk("|\n");
353 }
354
355 if (error)
356 free_all_swap_pages(root_swap);
357 release_swap_writer(handle);
358 swsusp_close(FMODE_WRITE);
359
360 return error;
361}
362
363/* We need to remember how much compressed data we need to read. */
364#define LZO_HEADER sizeof(size_t)
365
366/* Number of pages/bytes we'll compress at one time. */
367#define LZO_UNC_PAGES 32
368#define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE)
369
370/* Number of pages/bytes we need for compressed data (worst case). */
371#define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
372 LZO_HEADER, PAGE_SIZE)
373#define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE)
374
375/**
376 * save_image - save the suspend image data
377 */
378
379static int save_image(struct swap_map_handle *handle,
380 struct snapshot_handle *snapshot,
381 unsigned int nr_to_write)
382{
383 unsigned int m;
384 int ret;
385 int nr_pages;
386 int err2;
387 struct bio *bio;
388 struct timeval start;
389 struct timeval stop;
390
391 printk(KERN_INFO "PM: Saving image data pages (%u pages) ... ",
392 nr_to_write);
393 m = nr_to_write / 100;
394 if (!m)
395 m = 1;
396 nr_pages = 0;
397 bio = NULL;
398 do_gettimeofday(&start);
399 while (1) {
400 ret = snapshot_read_next(snapshot);
401 if (ret <= 0)
402 break;
403 ret = swap_write_page(handle, data_of(*snapshot), &bio);
404 if (ret)
405 break;
406 if (!(nr_pages % m))
407 printk(KERN_CONT "\b\b\b\b%3d%%", nr_pages / m);
408 nr_pages++;
409 }
410 err2 = hib_wait_on_bio_chain(&bio);
411 do_gettimeofday(&stop);
412 if (!ret)
413 ret = err2;
414 if (!ret)
415 printk(KERN_CONT "\b\b\b\bdone\n");
416 else
417 printk(KERN_CONT "\n");
418 swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
419 return ret;
420}
421
422
423/**
424 * save_image_lzo - Save the suspend image data compressed with LZO.
425 * @handle: Swap mam handle to use for saving the image.
426 * @snapshot: Image to read data from.
427 * @nr_to_write: Number of pages to save.
428 */
429static int save_image_lzo(struct swap_map_handle *handle,
430 struct snapshot_handle *snapshot,
431 unsigned int nr_to_write)
432{
433 unsigned int m;
434 int ret = 0;
435 int nr_pages;
436 int err2;
437 struct bio *bio;
438 struct timeval start;
439 struct timeval stop;
440 size_t off, unc_len, cmp_len;
441 unsigned char *unc, *cmp, *wrk, *page;
442
443 page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
444 if (!page) {
445 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
446 return -ENOMEM;
447 }
448
449 wrk = vmalloc(LZO1X_1_MEM_COMPRESS);
450 if (!wrk) {
451 printk(KERN_ERR "PM: Failed to allocate LZO workspace\n");
452 free_page((unsigned long)page);
453 return -ENOMEM;
454 }
455
456 unc = vmalloc(LZO_UNC_SIZE);
457 if (!unc) {
458 printk(KERN_ERR "PM: Failed to allocate LZO uncompressed\n");
459 vfree(wrk);
460 free_page((unsigned long)page);
461 return -ENOMEM;
462 }
463
464 cmp = vmalloc(LZO_CMP_SIZE);
465 if (!cmp) {
466 printk(KERN_ERR "PM: Failed to allocate LZO compressed\n");
467 vfree(unc);
468 vfree(wrk);
469 free_page((unsigned long)page);
470 return -ENOMEM;
471 }
472
473 printk(KERN_INFO
474 "PM: Compressing and saving image data (%u pages) ... ",
475 nr_to_write);
476 m = nr_to_write / 100;
477 if (!m)
478 m = 1;
479 nr_pages = 0;
480 bio = NULL;
481 do_gettimeofday(&start);
482 for (;;) {
483 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
484 ret = snapshot_read_next(snapshot);
485 if (ret < 0)
486 goto out_finish;
487
488 if (!ret)
489 break;
490
491 memcpy(unc + off, data_of(*snapshot), PAGE_SIZE);
492
493 if (!(nr_pages % m))
494 printk(KERN_CONT "\b\b\b\b%3d%%", nr_pages / m);
495 nr_pages++;
496 }
497
498 if (!off)
499 break;
500
501 unc_len = off;
502 ret = lzo1x_1_compress(unc, unc_len,
503 cmp + LZO_HEADER, &cmp_len, wrk);
504 if (ret < 0) {
505 printk(KERN_ERR "PM: LZO compression failed\n");
506 break;
507 }
508
509 if (unlikely(!cmp_len ||
510 cmp_len > lzo1x_worst_compress(unc_len))) {
511 printk(KERN_ERR "PM: Invalid LZO compressed length\n");
512 ret = -1;
513 break;
514 }
515
516 *(size_t *)cmp = cmp_len;
517
518 /*
519 * Given we are writing one page at a time to disk, we copy
520 * that much from the buffer, although the last bit will likely
521 * be smaller than full page. This is OK - we saved the length
522 * of the compressed data, so any garbage at the end will be
523 * discarded when we read it.
524 */
525 for (off = 0; off < LZO_HEADER + cmp_len; off += PAGE_SIZE) {
526 memcpy(page, cmp + off, PAGE_SIZE);
527
528 ret = swap_write_page(handle, page, &bio);
529 if (ret)
530 goto out_finish;
531 }
532 }
533
534out_finish:
535 err2 = hib_wait_on_bio_chain(&bio);
536 do_gettimeofday(&stop);
537 if (!ret)
538 ret = err2;
539 if (!ret)
540 printk(KERN_CONT "\b\b\b\bdone\n");
541 else
542 printk(KERN_CONT "\n");
543 swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
544
545 vfree(cmp);
546 vfree(unc);
547 vfree(wrk);
548 free_page((unsigned long)page);
549
550 return ret;
551}
552
553/**
554 * enough_swap - Make sure we have enough swap to save the image.
555 *
556 * Returns TRUE or FALSE after checking the total amount of swap
557 * space avaiable from the resume partition.
558 */
559
560static int enough_swap(unsigned int nr_pages, unsigned int flags)
561{
562 unsigned int free_swap = count_swap_pages(root_swap, 1);
563 unsigned int required;
564
565 pr_debug("PM: Free swap pages: %u\n", free_swap);
566
567 required = PAGES_FOR_IO + ((flags & SF_NOCOMPRESS_MODE) ?
568 nr_pages : (nr_pages * LZO_CMP_PAGES) / LZO_UNC_PAGES + 1);
569 return free_swap > required;
570}
571
572/**
573 * swsusp_write - Write entire image and metadata.
574 * @flags: flags to pass to the "boot" kernel in the image header
575 *
576 * It is important _NOT_ to umount filesystems at this point. We want
577 * them synced (in case something goes wrong) but we DO not want to mark
578 * filesystem clean: it is not. (And it does not matter, if we resume
579 * correctly, we'll mark system clean, anyway.)
580 */
581
582int swsusp_write(unsigned int flags)
583{
584 struct swap_map_handle handle;
585 struct snapshot_handle snapshot;
586 struct swsusp_info *header;
587 unsigned long pages;
588 int error;
589
590 pages = snapshot_get_image_size();
591 error = get_swap_writer(&handle);
592 if (error) {
593 printk(KERN_ERR "PM: Cannot get swap writer\n");
594 return error;
595 }
596 if (!enough_swap(pages, flags)) {
597 printk(KERN_ERR "PM: Not enough free swap\n");
598 error = -ENOSPC;
599 goto out_finish;
600 }
601 memset(&snapshot, 0, sizeof(struct snapshot_handle));
602 error = snapshot_read_next(&snapshot);
603 if (error < PAGE_SIZE) {
604 if (error >= 0)
605 error = -EFAULT;
606
607 goto out_finish;
608 }
609 header = (struct swsusp_info *)data_of(snapshot);
610 error = swap_write_page(&handle, header, NULL);
611 if (!error) {
612 error = (flags & SF_NOCOMPRESS_MODE) ?
613 save_image(&handle, &snapshot, pages - 1) :
614 save_image_lzo(&handle, &snapshot, pages - 1);
615 }
616out_finish:
617 error = swap_writer_finish(&handle, flags, error);
618 return error;
619}
620
621/**
622 * The following functions allow us to read data using a swap map
623 * in a file-alike way
624 */
625
626static void release_swap_reader(struct swap_map_handle *handle)
627{
628 if (handle->cur)
629 free_page((unsigned long)handle->cur);
630 handle->cur = NULL;
631}
632
633static int get_swap_reader(struct swap_map_handle *handle,
634 unsigned int *flags_p)
635{
636 int error;
637
638 *flags_p = swsusp_header->flags;
639
640 if (!swsusp_header->image) /* how can this happen? */
641 return -EINVAL;
642
643 handle->cur = (struct swap_map_page *)get_zeroed_page(__GFP_WAIT | __GFP_HIGH);
644 if (!handle->cur)
645 return -ENOMEM;
646
647 error = hib_bio_read_page(swsusp_header->image, handle->cur, NULL);
648 if (error) {
649 release_swap_reader(handle);
650 return error;
651 }
652 handle->k = 0;
653 return 0;
654}
655
656static int swap_read_page(struct swap_map_handle *handle, void *buf,
657 struct bio **bio_chain)
658{
659 sector_t offset;
660 int error;
661
662 if (!handle->cur)
663 return -EINVAL;
664 offset = handle->cur->entries[handle->k];
665 if (!offset)
666 return -EFAULT;
667 error = hib_bio_read_page(offset, buf, bio_chain);
668 if (error)
669 return error;
670 if (++handle->k >= MAP_PAGE_ENTRIES) {
671 error = hib_wait_on_bio_chain(bio_chain);
672 handle->k = 0;
673 offset = handle->cur->next_swap;
674 if (!offset)
675 release_swap_reader(handle);
676 else if (!error)
677 error = hib_bio_read_page(offset, handle->cur, NULL);
678 }
679 return error;
680}
681
682static int swap_reader_finish(struct swap_map_handle *handle)
683{
684 release_swap_reader(handle);
685
686 return 0;
687}
688
689/**
690 * load_image - load the image using the swap map handle
691 * @handle and the snapshot handle @snapshot
692 * (assume there are @nr_pages pages to load)
693 */
694
695static int load_image(struct swap_map_handle *handle,
696 struct snapshot_handle *snapshot,
697 unsigned int nr_to_read)
698{
699 unsigned int m;
700 int error = 0;
701 struct timeval start;
702 struct timeval stop;
703 struct bio *bio;
704 int err2;
705 unsigned nr_pages;
706
707 printk(KERN_INFO "PM: Loading image data pages (%u pages) ... ",
708 nr_to_read);
709 m = nr_to_read / 100;
710 if (!m)
711 m = 1;
712 nr_pages = 0;
713 bio = NULL;
714 do_gettimeofday(&start);
715 for ( ; ; ) {
716 error = snapshot_write_next(snapshot);
717 if (error <= 0)
718 break;
719 error = swap_read_page(handle, data_of(*snapshot), &bio);
720 if (error)
721 break;
722 if (snapshot->sync_read)
723 error = hib_wait_on_bio_chain(&bio);
724 if (error)
725 break;
726 if (!(nr_pages % m))
727 printk("\b\b\b\b%3d%%", nr_pages / m);
728 nr_pages++;
729 }
730 err2 = hib_wait_on_bio_chain(&bio);
731 do_gettimeofday(&stop);
732 if (!error)
733 error = err2;
734 if (!error) {
735 printk("\b\b\b\bdone\n");
736 snapshot_write_finalize(snapshot);
737 if (!snapshot_image_loaded(snapshot))
738 error = -ENODATA;
739 } else
740 printk("\n");
741 swsusp_show_speed(&start, &stop, nr_to_read, "Read");
742 return error;
743}
744
745/**
746 * load_image_lzo - Load compressed image data and decompress them with LZO.
747 * @handle: Swap map handle to use for loading data.
748 * @snapshot: Image to copy uncompressed data into.
749 * @nr_to_read: Number of pages to load.
750 */
751static int load_image_lzo(struct swap_map_handle *handle,
752 struct snapshot_handle *snapshot,
753 unsigned int nr_to_read)
754{
755 unsigned int m;
756 int error = 0;
757 struct bio *bio;
758 struct timeval start;
759 struct timeval stop;
760 unsigned nr_pages;
761 size_t i, off, unc_len, cmp_len;
762 unsigned char *unc, *cmp, *page[LZO_CMP_PAGES];
763
764 for (i = 0; i < LZO_CMP_PAGES; i++) {
765 page[i] = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
766 if (!page[i]) {
767 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
768
769 while (i)
770 free_page((unsigned long)page[--i]);
771
772 return -ENOMEM;
773 }
774 }
775
776 unc = vmalloc(LZO_UNC_SIZE);
777 if (!unc) {
778 printk(KERN_ERR "PM: Failed to allocate LZO uncompressed\n");
779
780 for (i = 0; i < LZO_CMP_PAGES; i++)
781 free_page((unsigned long)page[i]);
782
783 return -ENOMEM;
784 }
785
786 cmp = vmalloc(LZO_CMP_SIZE);
787 if (!cmp) {
788 printk(KERN_ERR "PM: Failed to allocate LZO compressed\n");
789
790 vfree(unc);
791 for (i = 0; i < LZO_CMP_PAGES; i++)
792 free_page((unsigned long)page[i]);
793
794 return -ENOMEM;
795 }
796
797 printk(KERN_INFO
798 "PM: Loading and decompressing image data (%u pages) ... ",
799 nr_to_read);
800 m = nr_to_read / 100;
801 if (!m)
802 m = 1;
803 nr_pages = 0;
804 bio = NULL;
805 do_gettimeofday(&start);
806
807 error = snapshot_write_next(snapshot);
808 if (error <= 0)
809 goto out_finish;
810
811 for (;;) {
812 error = swap_read_page(handle, page[0], NULL); /* sync */
813 if (error)
814 break;
815
816 cmp_len = *(size_t *)page[0];
817 if (unlikely(!cmp_len ||
818 cmp_len > lzo1x_worst_compress(LZO_UNC_SIZE))) {
819 printk(KERN_ERR "PM: Invalid LZO compressed length\n");
820 error = -1;
821 break;
822 }
823
824 for (off = PAGE_SIZE, i = 1;
825 off < LZO_HEADER + cmp_len; off += PAGE_SIZE, i++) {
826 error = swap_read_page(handle, page[i], &bio);
827 if (error)
828 goto out_finish;
829 }
830
831 error = hib_wait_on_bio_chain(&bio); /* need all data now */
832 if (error)
833 goto out_finish;
834
835 for (off = 0, i = 0;
836 off < LZO_HEADER + cmp_len; off += PAGE_SIZE, i++) {
837 memcpy(cmp + off, page[i], PAGE_SIZE);
838 }
839
840 unc_len = LZO_UNC_SIZE;
841 error = lzo1x_decompress_safe(cmp + LZO_HEADER, cmp_len,
842 unc, &unc_len);
843 if (error < 0) {
844 printk(KERN_ERR "PM: LZO decompression failed\n");
845 break;
846 }
847
848 if (unlikely(!unc_len ||
849 unc_len > LZO_UNC_SIZE ||
850 unc_len & (PAGE_SIZE - 1))) {
851 printk(KERN_ERR "PM: Invalid LZO uncompressed length\n");
852 error = -1;
853 break;
854 }
855
856 for (off = 0; off < unc_len; off += PAGE_SIZE) {
857 memcpy(data_of(*snapshot), unc + off, PAGE_SIZE);
858
859 if (!(nr_pages % m))
860 printk("\b\b\b\b%3d%%", nr_pages / m);
861 nr_pages++;
862
863 error = snapshot_write_next(snapshot);
864 if (error <= 0)
865 goto out_finish;
866 }
867 }
868
869out_finish:
870 do_gettimeofday(&stop);
871 if (!error) {
872 printk("\b\b\b\bdone\n");
873 snapshot_write_finalize(snapshot);
874 if (!snapshot_image_loaded(snapshot))
875 error = -ENODATA;
876 } else
877 printk("\n");
878 swsusp_show_speed(&start, &stop, nr_to_read, "Read");
879
880 vfree(cmp);
881 vfree(unc);
882 for (i = 0; i < LZO_CMP_PAGES; i++)
883 free_page((unsigned long)page[i]);
884
885 return error;
886}
887
888/**
889 * swsusp_read - read the hibernation image.
890 * @flags_p: flags passed by the "frozen" kernel in the image header should
891 * be written into this memory location
892 */
893
894int swsusp_read(unsigned int *flags_p)
895{
896 int error;
897 struct swap_map_handle handle;
898 struct snapshot_handle snapshot;
899 struct swsusp_info *header;
900
901 memset(&snapshot, 0, sizeof(struct snapshot_handle));
902 error = snapshot_write_next(&snapshot);
903 if (error < PAGE_SIZE)
904 return error < 0 ? error : -EFAULT;
905 header = (struct swsusp_info *)data_of(snapshot);
906 error = get_swap_reader(&handle, flags_p);
907 if (error)
908 goto end;
909 if (!error)
910 error = swap_read_page(&handle, header, NULL);
911 if (!error) {
912 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
913 load_image(&handle, &snapshot, header->pages - 1) :
914 load_image_lzo(&handle, &snapshot, header->pages - 1);
915 }
916 swap_reader_finish(&handle);
917end:
918 if (!error)
919 pr_debug("PM: Image successfully loaded\n");
920 else
921 pr_debug("PM: Error %d resuming\n", error);
922 return error;
923}
924
925/**
926 * swsusp_check - Check for swsusp signature in the resume device
927 */
928
929int swsusp_check(void)
930{
931 int error;
932
933 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
934 FMODE_READ, NULL);
935 if (!IS_ERR(hib_resume_bdev)) {
936 set_blocksize(hib_resume_bdev, PAGE_SIZE);
937 clear_page(swsusp_header);
938 error = hib_bio_read_page(swsusp_resume_block,
939 swsusp_header, NULL);
940 if (error)
941 goto put;
942
943 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
944 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
945 /* Reset swap signature now */
946 error = hib_bio_write_page(swsusp_resume_block,
947 swsusp_header, NULL);
948 } else {
949 error = -EINVAL;
950 }
951
952put:
953 if (error)
954 blkdev_put(hib_resume_bdev, FMODE_READ);
955 else
956 pr_debug("PM: Image signature found, resuming\n");
957 } else {
958 error = PTR_ERR(hib_resume_bdev);
959 }
960
961 if (error)
962 pr_debug("PM: Image not found (code %d)\n", error);
963
964 return error;
965}
966
967/**
968 * swsusp_close - close swap device.
969 */
970
971void swsusp_close(fmode_t mode)
972{
973 if (IS_ERR(hib_resume_bdev)) {
974 pr_debug("PM: Image device not initialised\n");
975 return;
976 }
977
978 blkdev_put(hib_resume_bdev, mode);
979}
980
981static int swsusp_header_init(void)
982{
983 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
984 if (!swsusp_header)
985 panic("Could not allocate memory for swsusp_header\n");
986 return 0;
987}
988
989core_initcall(swsusp_header_init);
1/*
2 * linux/kernel/power/swap.c
3 *
4 * This file provides functions for reading the suspend image from
5 * and writing it to a swap partition.
6 *
7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
10 *
11 * This file is released under the GPLv2.
12 *
13 */
14
15#define pr_fmt(fmt) "PM: " fmt
16
17#include <linux/module.h>
18#include <linux/file.h>
19#include <linux/delay.h>
20#include <linux/bitops.h>
21#include <linux/genhd.h>
22#include <linux/device.h>
23#include <linux/bio.h>
24#include <linux/blkdev.h>
25#include <linux/swap.h>
26#include <linux/swapops.h>
27#include <linux/pm.h>
28#include <linux/slab.h>
29#include <linux/lzo.h>
30#include <linux/vmalloc.h>
31#include <linux/cpumask.h>
32#include <linux/atomic.h>
33#include <linux/kthread.h>
34#include <linux/crc32.h>
35#include <linux/ktime.h>
36
37#include "power.h"
38
39#define HIBERNATE_SIG "S1SUSPEND"
40
41/*
42 * When reading an {un,}compressed image, we may restore pages in place,
43 * in which case some architectures need these pages cleaning before they
44 * can be executed. We don't know which pages these may be, so clean the lot.
45 */
46static bool clean_pages_on_read;
47static bool clean_pages_on_decompress;
48
49/*
50 * The swap map is a data structure used for keeping track of each page
51 * written to a swap partition. It consists of many swap_map_page
52 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
53 * These structures are stored on the swap and linked together with the
54 * help of the .next_swap member.
55 *
56 * The swap map is created during suspend. The swap map pages are
57 * allocated and populated one at a time, so we only need one memory
58 * page to set up the entire structure.
59 *
60 * During resume we pick up all swap_map_page structures into a list.
61 */
62
63#define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
64
65/*
66 * Number of free pages that are not high.
67 */
68static inline unsigned long low_free_pages(void)
69{
70 return nr_free_pages() - nr_free_highpages();
71}
72
73/*
74 * Number of pages required to be kept free while writing the image. Always
75 * half of all available low pages before the writing starts.
76 */
77static inline unsigned long reqd_free_pages(void)
78{
79 return low_free_pages() / 2;
80}
81
82struct swap_map_page {
83 sector_t entries[MAP_PAGE_ENTRIES];
84 sector_t next_swap;
85};
86
87struct swap_map_page_list {
88 struct swap_map_page *map;
89 struct swap_map_page_list *next;
90};
91
92/**
93 * The swap_map_handle structure is used for handling swap in
94 * a file-alike way
95 */
96
97struct swap_map_handle {
98 struct swap_map_page *cur;
99 struct swap_map_page_list *maps;
100 sector_t cur_swap;
101 sector_t first_sector;
102 unsigned int k;
103 unsigned long reqd_free_pages;
104 u32 crc32;
105};
106
107struct swsusp_header {
108 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
109 sizeof(u32)];
110 u32 crc32;
111 sector_t image;
112 unsigned int flags; /* Flags to pass to the "boot" kernel */
113 char orig_sig[10];
114 char sig[10];
115} __packed;
116
117static struct swsusp_header *swsusp_header;
118
119/**
120 * The following functions are used for tracing the allocated
121 * swap pages, so that they can be freed in case of an error.
122 */
123
124struct swsusp_extent {
125 struct rb_node node;
126 unsigned long start;
127 unsigned long end;
128};
129
130static struct rb_root swsusp_extents = RB_ROOT;
131
132static int swsusp_extents_insert(unsigned long swap_offset)
133{
134 struct rb_node **new = &(swsusp_extents.rb_node);
135 struct rb_node *parent = NULL;
136 struct swsusp_extent *ext;
137
138 /* Figure out where to put the new node */
139 while (*new) {
140 ext = rb_entry(*new, struct swsusp_extent, node);
141 parent = *new;
142 if (swap_offset < ext->start) {
143 /* Try to merge */
144 if (swap_offset == ext->start - 1) {
145 ext->start--;
146 return 0;
147 }
148 new = &((*new)->rb_left);
149 } else if (swap_offset > ext->end) {
150 /* Try to merge */
151 if (swap_offset == ext->end + 1) {
152 ext->end++;
153 return 0;
154 }
155 new = &((*new)->rb_right);
156 } else {
157 /* It already is in the tree */
158 return -EINVAL;
159 }
160 }
161 /* Add the new node and rebalance the tree. */
162 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
163 if (!ext)
164 return -ENOMEM;
165
166 ext->start = swap_offset;
167 ext->end = swap_offset;
168 rb_link_node(&ext->node, parent, new);
169 rb_insert_color(&ext->node, &swsusp_extents);
170 return 0;
171}
172
173/**
174 * alloc_swapdev_block - allocate a swap page and register that it has
175 * been allocated, so that it can be freed in case of an error.
176 */
177
178sector_t alloc_swapdev_block(int swap)
179{
180 unsigned long offset;
181
182 offset = swp_offset(get_swap_page_of_type(swap));
183 if (offset) {
184 if (swsusp_extents_insert(offset))
185 swap_free(swp_entry(swap, offset));
186 else
187 return swapdev_block(swap, offset);
188 }
189 return 0;
190}
191
192/**
193 * free_all_swap_pages - free swap pages allocated for saving image data.
194 * It also frees the extents used to register which swap entries had been
195 * allocated.
196 */
197
198void free_all_swap_pages(int swap)
199{
200 struct rb_node *node;
201
202 while ((node = swsusp_extents.rb_node)) {
203 struct swsusp_extent *ext;
204 unsigned long offset;
205
206 ext = rb_entry(node, struct swsusp_extent, node);
207 rb_erase(node, &swsusp_extents);
208 for (offset = ext->start; offset <= ext->end; offset++)
209 swap_free(swp_entry(swap, offset));
210
211 kfree(ext);
212 }
213}
214
215int swsusp_swap_in_use(void)
216{
217 return (swsusp_extents.rb_node != NULL);
218}
219
220/*
221 * General things
222 */
223
224static unsigned short root_swap = 0xffff;
225static struct block_device *hib_resume_bdev;
226
227struct hib_bio_batch {
228 atomic_t count;
229 wait_queue_head_t wait;
230 blk_status_t error;
231};
232
233static void hib_init_batch(struct hib_bio_batch *hb)
234{
235 atomic_set(&hb->count, 0);
236 init_waitqueue_head(&hb->wait);
237 hb->error = BLK_STS_OK;
238}
239
240static void hib_end_io(struct bio *bio)
241{
242 struct hib_bio_batch *hb = bio->bi_private;
243 struct page *page = bio_first_page_all(bio);
244
245 if (bio->bi_status) {
246 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
247 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
248 (unsigned long long)bio->bi_iter.bi_sector);
249 }
250
251 if (bio_data_dir(bio) == WRITE)
252 put_page(page);
253 else if (clean_pages_on_read)
254 flush_icache_range((unsigned long)page_address(page),
255 (unsigned long)page_address(page) + PAGE_SIZE);
256
257 if (bio->bi_status && !hb->error)
258 hb->error = bio->bi_status;
259 if (atomic_dec_and_test(&hb->count))
260 wake_up(&hb->wait);
261
262 bio_put(bio);
263}
264
265static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
266 struct hib_bio_batch *hb)
267{
268 struct page *page = virt_to_page(addr);
269 struct bio *bio;
270 int error = 0;
271
272 bio = bio_alloc(__GFP_RECLAIM | __GFP_HIGH, 1);
273 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
274 bio_set_dev(bio, hib_resume_bdev);
275 bio_set_op_attrs(bio, op, op_flags);
276
277 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
278 pr_err("Adding page to bio failed at %llu\n",
279 (unsigned long long)bio->bi_iter.bi_sector);
280 bio_put(bio);
281 return -EFAULT;
282 }
283
284 if (hb) {
285 bio->bi_end_io = hib_end_io;
286 bio->bi_private = hb;
287 atomic_inc(&hb->count);
288 submit_bio(bio);
289 } else {
290 error = submit_bio_wait(bio);
291 bio_put(bio);
292 }
293
294 return error;
295}
296
297static blk_status_t hib_wait_io(struct hib_bio_batch *hb)
298{
299 wait_event(hb->wait, atomic_read(&hb->count) == 0);
300 return blk_status_to_errno(hb->error);
301}
302
303/*
304 * Saving part
305 */
306
307static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
308{
309 int error;
310
311 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
312 swsusp_header, NULL);
313 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
314 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
315 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
316 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
317 swsusp_header->image = handle->first_sector;
318 swsusp_header->flags = flags;
319 if (flags & SF_CRC32_MODE)
320 swsusp_header->crc32 = handle->crc32;
321 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
322 swsusp_resume_block, swsusp_header, NULL);
323 } else {
324 pr_err("Swap header not found!\n");
325 error = -ENODEV;
326 }
327 return error;
328}
329
330/**
331 * swsusp_swap_check - check if the resume device is a swap device
332 * and get its index (if so)
333 *
334 * This is called before saving image
335 */
336static int swsusp_swap_check(void)
337{
338 int res;
339
340 res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
341 &hib_resume_bdev);
342 if (res < 0)
343 return res;
344
345 root_swap = res;
346 res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
347 if (res)
348 return res;
349
350 res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
351 if (res < 0)
352 blkdev_put(hib_resume_bdev, FMODE_WRITE);
353
354 /*
355 * Update the resume device to the one actually used,
356 * so the test_resume mode can use it in case it is
357 * invoked from hibernate() to test the snapshot.
358 */
359 swsusp_resume_device = hib_resume_bdev->bd_dev;
360 return res;
361}
362
363/**
364 * write_page - Write one page to given swap location.
365 * @buf: Address we're writing.
366 * @offset: Offset of the swap page we're writing to.
367 * @hb: bio completion batch
368 */
369
370static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
371{
372 void *src;
373 int ret;
374
375 if (!offset)
376 return -ENOSPC;
377
378 if (hb) {
379 src = (void *)__get_free_page(__GFP_RECLAIM | __GFP_NOWARN |
380 __GFP_NORETRY);
381 if (src) {
382 copy_page(src, buf);
383 } else {
384 ret = hib_wait_io(hb); /* Free pages */
385 if (ret)
386 return ret;
387 src = (void *)__get_free_page(__GFP_RECLAIM |
388 __GFP_NOWARN |
389 __GFP_NORETRY);
390 if (src) {
391 copy_page(src, buf);
392 } else {
393 WARN_ON_ONCE(1);
394 hb = NULL; /* Go synchronous */
395 src = buf;
396 }
397 }
398 } else {
399 src = buf;
400 }
401 return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb);
402}
403
404static void release_swap_writer(struct swap_map_handle *handle)
405{
406 if (handle->cur)
407 free_page((unsigned long)handle->cur);
408 handle->cur = NULL;
409}
410
411static int get_swap_writer(struct swap_map_handle *handle)
412{
413 int ret;
414
415 ret = swsusp_swap_check();
416 if (ret) {
417 if (ret != -ENOSPC)
418 pr_err("Cannot find swap device, try swapon -a\n");
419 return ret;
420 }
421 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
422 if (!handle->cur) {
423 ret = -ENOMEM;
424 goto err_close;
425 }
426 handle->cur_swap = alloc_swapdev_block(root_swap);
427 if (!handle->cur_swap) {
428 ret = -ENOSPC;
429 goto err_rel;
430 }
431 handle->k = 0;
432 handle->reqd_free_pages = reqd_free_pages();
433 handle->first_sector = handle->cur_swap;
434 return 0;
435err_rel:
436 release_swap_writer(handle);
437err_close:
438 swsusp_close(FMODE_WRITE);
439 return ret;
440}
441
442static int swap_write_page(struct swap_map_handle *handle, void *buf,
443 struct hib_bio_batch *hb)
444{
445 int error = 0;
446 sector_t offset;
447
448 if (!handle->cur)
449 return -EINVAL;
450 offset = alloc_swapdev_block(root_swap);
451 error = write_page(buf, offset, hb);
452 if (error)
453 return error;
454 handle->cur->entries[handle->k++] = offset;
455 if (handle->k >= MAP_PAGE_ENTRIES) {
456 offset = alloc_swapdev_block(root_swap);
457 if (!offset)
458 return -ENOSPC;
459 handle->cur->next_swap = offset;
460 error = write_page(handle->cur, handle->cur_swap, hb);
461 if (error)
462 goto out;
463 clear_page(handle->cur);
464 handle->cur_swap = offset;
465 handle->k = 0;
466
467 if (hb && low_free_pages() <= handle->reqd_free_pages) {
468 error = hib_wait_io(hb);
469 if (error)
470 goto out;
471 /*
472 * Recalculate the number of required free pages, to
473 * make sure we never take more than half.
474 */
475 handle->reqd_free_pages = reqd_free_pages();
476 }
477 }
478 out:
479 return error;
480}
481
482static int flush_swap_writer(struct swap_map_handle *handle)
483{
484 if (handle->cur && handle->cur_swap)
485 return write_page(handle->cur, handle->cur_swap, NULL);
486 else
487 return -EINVAL;
488}
489
490static int swap_writer_finish(struct swap_map_handle *handle,
491 unsigned int flags, int error)
492{
493 if (!error) {
494 flush_swap_writer(handle);
495 pr_info("S");
496 error = mark_swapfiles(handle, flags);
497 pr_cont("|\n");
498 }
499
500 if (error)
501 free_all_swap_pages(root_swap);
502 release_swap_writer(handle);
503 swsusp_close(FMODE_WRITE);
504
505 return error;
506}
507
508/* We need to remember how much compressed data we need to read. */
509#define LZO_HEADER sizeof(size_t)
510
511/* Number of pages/bytes we'll compress at one time. */
512#define LZO_UNC_PAGES 32
513#define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE)
514
515/* Number of pages/bytes we need for compressed data (worst case). */
516#define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
517 LZO_HEADER, PAGE_SIZE)
518#define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE)
519
520/* Maximum number of threads for compression/decompression. */
521#define LZO_THREADS 3
522
523/* Minimum/maximum number of pages for read buffering. */
524#define LZO_MIN_RD_PAGES 1024
525#define LZO_MAX_RD_PAGES 8192
526
527
528/**
529 * save_image - save the suspend image data
530 */
531
532static int save_image(struct swap_map_handle *handle,
533 struct snapshot_handle *snapshot,
534 unsigned int nr_to_write)
535{
536 unsigned int m;
537 int ret;
538 int nr_pages;
539 int err2;
540 struct hib_bio_batch hb;
541 ktime_t start;
542 ktime_t stop;
543
544 hib_init_batch(&hb);
545
546 pr_info("Saving image data pages (%u pages)...\n",
547 nr_to_write);
548 m = nr_to_write / 10;
549 if (!m)
550 m = 1;
551 nr_pages = 0;
552 start = ktime_get();
553 while (1) {
554 ret = snapshot_read_next(snapshot);
555 if (ret <= 0)
556 break;
557 ret = swap_write_page(handle, data_of(*snapshot), &hb);
558 if (ret)
559 break;
560 if (!(nr_pages % m))
561 pr_info("Image saving progress: %3d%%\n",
562 nr_pages / m * 10);
563 nr_pages++;
564 }
565 err2 = hib_wait_io(&hb);
566 stop = ktime_get();
567 if (!ret)
568 ret = err2;
569 if (!ret)
570 pr_info("Image saving done\n");
571 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
572 return ret;
573}
574
575/**
576 * Structure used for CRC32.
577 */
578struct crc_data {
579 struct task_struct *thr; /* thread */
580 atomic_t ready; /* ready to start flag */
581 atomic_t stop; /* ready to stop flag */
582 unsigned run_threads; /* nr current threads */
583 wait_queue_head_t go; /* start crc update */
584 wait_queue_head_t done; /* crc update done */
585 u32 *crc32; /* points to handle's crc32 */
586 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */
587 unsigned char *unc[LZO_THREADS]; /* uncompressed data */
588};
589
590/**
591 * CRC32 update function that runs in its own thread.
592 */
593static int crc32_threadfn(void *data)
594{
595 struct crc_data *d = data;
596 unsigned i;
597
598 while (1) {
599 wait_event(d->go, atomic_read(&d->ready) ||
600 kthread_should_stop());
601 if (kthread_should_stop()) {
602 d->thr = NULL;
603 atomic_set(&d->stop, 1);
604 wake_up(&d->done);
605 break;
606 }
607 atomic_set(&d->ready, 0);
608
609 for (i = 0; i < d->run_threads; i++)
610 *d->crc32 = crc32_le(*d->crc32,
611 d->unc[i], *d->unc_len[i]);
612 atomic_set(&d->stop, 1);
613 wake_up(&d->done);
614 }
615 return 0;
616}
617/**
618 * Structure used for LZO data compression.
619 */
620struct cmp_data {
621 struct task_struct *thr; /* thread */
622 atomic_t ready; /* ready to start flag */
623 atomic_t stop; /* ready to stop flag */
624 int ret; /* return code */
625 wait_queue_head_t go; /* start compression */
626 wait_queue_head_t done; /* compression done */
627 size_t unc_len; /* uncompressed length */
628 size_t cmp_len; /* compressed length */
629 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
630 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
631 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */
632};
633
634/**
635 * Compression function that runs in its own thread.
636 */
637static int lzo_compress_threadfn(void *data)
638{
639 struct cmp_data *d = data;
640
641 while (1) {
642 wait_event(d->go, atomic_read(&d->ready) ||
643 kthread_should_stop());
644 if (kthread_should_stop()) {
645 d->thr = NULL;
646 d->ret = -1;
647 atomic_set(&d->stop, 1);
648 wake_up(&d->done);
649 break;
650 }
651 atomic_set(&d->ready, 0);
652
653 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
654 d->cmp + LZO_HEADER, &d->cmp_len,
655 d->wrk);
656 atomic_set(&d->stop, 1);
657 wake_up(&d->done);
658 }
659 return 0;
660}
661
662/**
663 * save_image_lzo - Save the suspend image data compressed with LZO.
664 * @handle: Swap map handle to use for saving the image.
665 * @snapshot: Image to read data from.
666 * @nr_to_write: Number of pages to save.
667 */
668static int save_image_lzo(struct swap_map_handle *handle,
669 struct snapshot_handle *snapshot,
670 unsigned int nr_to_write)
671{
672 unsigned int m;
673 int ret = 0;
674 int nr_pages;
675 int err2;
676 struct hib_bio_batch hb;
677 ktime_t start;
678 ktime_t stop;
679 size_t off;
680 unsigned thr, run_threads, nr_threads;
681 unsigned char *page = NULL;
682 struct cmp_data *data = NULL;
683 struct crc_data *crc = NULL;
684
685 hib_init_batch(&hb);
686
687 /*
688 * We'll limit the number of threads for compression to limit memory
689 * footprint.
690 */
691 nr_threads = num_online_cpus() - 1;
692 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
693
694 page = (void *)__get_free_page(__GFP_RECLAIM | __GFP_HIGH);
695 if (!page) {
696 pr_err("Failed to allocate LZO page\n");
697 ret = -ENOMEM;
698 goto out_clean;
699 }
700
701 data = vmalloc(sizeof(*data) * nr_threads);
702 if (!data) {
703 pr_err("Failed to allocate LZO data\n");
704 ret = -ENOMEM;
705 goto out_clean;
706 }
707 for (thr = 0; thr < nr_threads; thr++)
708 memset(&data[thr], 0, offsetof(struct cmp_data, go));
709
710 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
711 if (!crc) {
712 pr_err("Failed to allocate crc\n");
713 ret = -ENOMEM;
714 goto out_clean;
715 }
716 memset(crc, 0, offsetof(struct crc_data, go));
717
718 /*
719 * Start the compression threads.
720 */
721 for (thr = 0; thr < nr_threads; thr++) {
722 init_waitqueue_head(&data[thr].go);
723 init_waitqueue_head(&data[thr].done);
724
725 data[thr].thr = kthread_run(lzo_compress_threadfn,
726 &data[thr],
727 "image_compress/%u", thr);
728 if (IS_ERR(data[thr].thr)) {
729 data[thr].thr = NULL;
730 pr_err("Cannot start compression threads\n");
731 ret = -ENOMEM;
732 goto out_clean;
733 }
734 }
735
736 /*
737 * Start the CRC32 thread.
738 */
739 init_waitqueue_head(&crc->go);
740 init_waitqueue_head(&crc->done);
741
742 handle->crc32 = 0;
743 crc->crc32 = &handle->crc32;
744 for (thr = 0; thr < nr_threads; thr++) {
745 crc->unc[thr] = data[thr].unc;
746 crc->unc_len[thr] = &data[thr].unc_len;
747 }
748
749 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
750 if (IS_ERR(crc->thr)) {
751 crc->thr = NULL;
752 pr_err("Cannot start CRC32 thread\n");
753 ret = -ENOMEM;
754 goto out_clean;
755 }
756
757 /*
758 * Adjust the number of required free pages after all allocations have
759 * been done. We don't want to run out of pages when writing.
760 */
761 handle->reqd_free_pages = reqd_free_pages();
762
763 pr_info("Using %u thread(s) for compression\n", nr_threads);
764 pr_info("Compressing and saving image data (%u pages)...\n",
765 nr_to_write);
766 m = nr_to_write / 10;
767 if (!m)
768 m = 1;
769 nr_pages = 0;
770 start = ktime_get();
771 for (;;) {
772 for (thr = 0; thr < nr_threads; thr++) {
773 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
774 ret = snapshot_read_next(snapshot);
775 if (ret < 0)
776 goto out_finish;
777
778 if (!ret)
779 break;
780
781 memcpy(data[thr].unc + off,
782 data_of(*snapshot), PAGE_SIZE);
783
784 if (!(nr_pages % m))
785 pr_info("Image saving progress: %3d%%\n",
786 nr_pages / m * 10);
787 nr_pages++;
788 }
789 if (!off)
790 break;
791
792 data[thr].unc_len = off;
793
794 atomic_set(&data[thr].ready, 1);
795 wake_up(&data[thr].go);
796 }
797
798 if (!thr)
799 break;
800
801 crc->run_threads = thr;
802 atomic_set(&crc->ready, 1);
803 wake_up(&crc->go);
804
805 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
806 wait_event(data[thr].done,
807 atomic_read(&data[thr].stop));
808 atomic_set(&data[thr].stop, 0);
809
810 ret = data[thr].ret;
811
812 if (ret < 0) {
813 pr_err("LZO compression failed\n");
814 goto out_finish;
815 }
816
817 if (unlikely(!data[thr].cmp_len ||
818 data[thr].cmp_len >
819 lzo1x_worst_compress(data[thr].unc_len))) {
820 pr_err("Invalid LZO compressed length\n");
821 ret = -1;
822 goto out_finish;
823 }
824
825 *(size_t *)data[thr].cmp = data[thr].cmp_len;
826
827 /*
828 * Given we are writing one page at a time to disk, we
829 * copy that much from the buffer, although the last
830 * bit will likely be smaller than full page. This is
831 * OK - we saved the length of the compressed data, so
832 * any garbage at the end will be discarded when we
833 * read it.
834 */
835 for (off = 0;
836 off < LZO_HEADER + data[thr].cmp_len;
837 off += PAGE_SIZE) {
838 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
839
840 ret = swap_write_page(handle, page, &hb);
841 if (ret)
842 goto out_finish;
843 }
844 }
845
846 wait_event(crc->done, atomic_read(&crc->stop));
847 atomic_set(&crc->stop, 0);
848 }
849
850out_finish:
851 err2 = hib_wait_io(&hb);
852 stop = ktime_get();
853 if (!ret)
854 ret = err2;
855 if (!ret)
856 pr_info("Image saving done\n");
857 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
858out_clean:
859 if (crc) {
860 if (crc->thr)
861 kthread_stop(crc->thr);
862 kfree(crc);
863 }
864 if (data) {
865 for (thr = 0; thr < nr_threads; thr++)
866 if (data[thr].thr)
867 kthread_stop(data[thr].thr);
868 vfree(data);
869 }
870 if (page) free_page((unsigned long)page);
871
872 return ret;
873}
874
875/**
876 * enough_swap - Make sure we have enough swap to save the image.
877 *
878 * Returns TRUE or FALSE after checking the total amount of swap
879 * space avaiable from the resume partition.
880 */
881
882static int enough_swap(unsigned int nr_pages)
883{
884 unsigned int free_swap = count_swap_pages(root_swap, 1);
885 unsigned int required;
886
887 pr_debug("Free swap pages: %u\n", free_swap);
888
889 required = PAGES_FOR_IO + nr_pages;
890 return free_swap > required;
891}
892
893/**
894 * swsusp_write - Write entire image and metadata.
895 * @flags: flags to pass to the "boot" kernel in the image header
896 *
897 * It is important _NOT_ to umount filesystems at this point. We want
898 * them synced (in case something goes wrong) but we DO not want to mark
899 * filesystem clean: it is not. (And it does not matter, if we resume
900 * correctly, we'll mark system clean, anyway.)
901 */
902
903int swsusp_write(unsigned int flags)
904{
905 struct swap_map_handle handle;
906 struct snapshot_handle snapshot;
907 struct swsusp_info *header;
908 unsigned long pages;
909 int error;
910
911 pages = snapshot_get_image_size();
912 error = get_swap_writer(&handle);
913 if (error) {
914 pr_err("Cannot get swap writer\n");
915 return error;
916 }
917 if (flags & SF_NOCOMPRESS_MODE) {
918 if (!enough_swap(pages)) {
919 pr_err("Not enough free swap\n");
920 error = -ENOSPC;
921 goto out_finish;
922 }
923 }
924 memset(&snapshot, 0, sizeof(struct snapshot_handle));
925 error = snapshot_read_next(&snapshot);
926 if (error < PAGE_SIZE) {
927 if (error >= 0)
928 error = -EFAULT;
929
930 goto out_finish;
931 }
932 header = (struct swsusp_info *)data_of(snapshot);
933 error = swap_write_page(&handle, header, NULL);
934 if (!error) {
935 error = (flags & SF_NOCOMPRESS_MODE) ?
936 save_image(&handle, &snapshot, pages - 1) :
937 save_image_lzo(&handle, &snapshot, pages - 1);
938 }
939out_finish:
940 error = swap_writer_finish(&handle, flags, error);
941 return error;
942}
943
944/**
945 * The following functions allow us to read data using a swap map
946 * in a file-alike way
947 */
948
949static void release_swap_reader(struct swap_map_handle *handle)
950{
951 struct swap_map_page_list *tmp;
952
953 while (handle->maps) {
954 if (handle->maps->map)
955 free_page((unsigned long)handle->maps->map);
956 tmp = handle->maps;
957 handle->maps = handle->maps->next;
958 kfree(tmp);
959 }
960 handle->cur = NULL;
961}
962
963static int get_swap_reader(struct swap_map_handle *handle,
964 unsigned int *flags_p)
965{
966 int error;
967 struct swap_map_page_list *tmp, *last;
968 sector_t offset;
969
970 *flags_p = swsusp_header->flags;
971
972 if (!swsusp_header->image) /* how can this happen? */
973 return -EINVAL;
974
975 handle->cur = NULL;
976 last = handle->maps = NULL;
977 offset = swsusp_header->image;
978 while (offset) {
979 tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
980 if (!tmp) {
981 release_swap_reader(handle);
982 return -ENOMEM;
983 }
984 memset(tmp, 0, sizeof(*tmp));
985 if (!handle->maps)
986 handle->maps = tmp;
987 if (last)
988 last->next = tmp;
989 last = tmp;
990
991 tmp->map = (struct swap_map_page *)
992 __get_free_page(__GFP_RECLAIM | __GFP_HIGH);
993 if (!tmp->map) {
994 release_swap_reader(handle);
995 return -ENOMEM;
996 }
997
998 error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL);
999 if (error) {
1000 release_swap_reader(handle);
1001 return error;
1002 }
1003 offset = tmp->map->next_swap;
1004 }
1005 handle->k = 0;
1006 handle->cur = handle->maps->map;
1007 return 0;
1008}
1009
1010static int swap_read_page(struct swap_map_handle *handle, void *buf,
1011 struct hib_bio_batch *hb)
1012{
1013 sector_t offset;
1014 int error;
1015 struct swap_map_page_list *tmp;
1016
1017 if (!handle->cur)
1018 return -EINVAL;
1019 offset = handle->cur->entries[handle->k];
1020 if (!offset)
1021 return -EFAULT;
1022 error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb);
1023 if (error)
1024 return error;
1025 if (++handle->k >= MAP_PAGE_ENTRIES) {
1026 handle->k = 0;
1027 free_page((unsigned long)handle->maps->map);
1028 tmp = handle->maps;
1029 handle->maps = handle->maps->next;
1030 kfree(tmp);
1031 if (!handle->maps)
1032 release_swap_reader(handle);
1033 else
1034 handle->cur = handle->maps->map;
1035 }
1036 return error;
1037}
1038
1039static int swap_reader_finish(struct swap_map_handle *handle)
1040{
1041 release_swap_reader(handle);
1042
1043 return 0;
1044}
1045
1046/**
1047 * load_image - load the image using the swap map handle
1048 * @handle and the snapshot handle @snapshot
1049 * (assume there are @nr_pages pages to load)
1050 */
1051
1052static int load_image(struct swap_map_handle *handle,
1053 struct snapshot_handle *snapshot,
1054 unsigned int nr_to_read)
1055{
1056 unsigned int m;
1057 int ret = 0;
1058 ktime_t start;
1059 ktime_t stop;
1060 struct hib_bio_batch hb;
1061 int err2;
1062 unsigned nr_pages;
1063
1064 hib_init_batch(&hb);
1065
1066 clean_pages_on_read = true;
1067 pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1068 m = nr_to_read / 10;
1069 if (!m)
1070 m = 1;
1071 nr_pages = 0;
1072 start = ktime_get();
1073 for ( ; ; ) {
1074 ret = snapshot_write_next(snapshot);
1075 if (ret <= 0)
1076 break;
1077 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1078 if (ret)
1079 break;
1080 if (snapshot->sync_read)
1081 ret = hib_wait_io(&hb);
1082 if (ret)
1083 break;
1084 if (!(nr_pages % m))
1085 pr_info("Image loading progress: %3d%%\n",
1086 nr_pages / m * 10);
1087 nr_pages++;
1088 }
1089 err2 = hib_wait_io(&hb);
1090 stop = ktime_get();
1091 if (!ret)
1092 ret = err2;
1093 if (!ret) {
1094 pr_info("Image loading done\n");
1095 snapshot_write_finalize(snapshot);
1096 if (!snapshot_image_loaded(snapshot))
1097 ret = -ENODATA;
1098 }
1099 swsusp_show_speed(start, stop, nr_to_read, "Read");
1100 return ret;
1101}
1102
1103/**
1104 * Structure used for LZO data decompression.
1105 */
1106struct dec_data {
1107 struct task_struct *thr; /* thread */
1108 atomic_t ready; /* ready to start flag */
1109 atomic_t stop; /* ready to stop flag */
1110 int ret; /* return code */
1111 wait_queue_head_t go; /* start decompression */
1112 wait_queue_head_t done; /* decompression done */
1113 size_t unc_len; /* uncompressed length */
1114 size_t cmp_len; /* compressed length */
1115 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
1116 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
1117};
1118
1119/**
1120 * Deompression function that runs in its own thread.
1121 */
1122static int lzo_decompress_threadfn(void *data)
1123{
1124 struct dec_data *d = data;
1125
1126 while (1) {
1127 wait_event(d->go, atomic_read(&d->ready) ||
1128 kthread_should_stop());
1129 if (kthread_should_stop()) {
1130 d->thr = NULL;
1131 d->ret = -1;
1132 atomic_set(&d->stop, 1);
1133 wake_up(&d->done);
1134 break;
1135 }
1136 atomic_set(&d->ready, 0);
1137
1138 d->unc_len = LZO_UNC_SIZE;
1139 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1140 d->unc, &d->unc_len);
1141 if (clean_pages_on_decompress)
1142 flush_icache_range((unsigned long)d->unc,
1143 (unsigned long)d->unc + d->unc_len);
1144
1145 atomic_set(&d->stop, 1);
1146 wake_up(&d->done);
1147 }
1148 return 0;
1149}
1150
1151/**
1152 * load_image_lzo - Load compressed image data and decompress them with LZO.
1153 * @handle: Swap map handle to use for loading data.
1154 * @snapshot: Image to copy uncompressed data into.
1155 * @nr_to_read: Number of pages to load.
1156 */
1157static int load_image_lzo(struct swap_map_handle *handle,
1158 struct snapshot_handle *snapshot,
1159 unsigned int nr_to_read)
1160{
1161 unsigned int m;
1162 int ret = 0;
1163 int eof = 0;
1164 struct hib_bio_batch hb;
1165 ktime_t start;
1166 ktime_t stop;
1167 unsigned nr_pages;
1168 size_t off;
1169 unsigned i, thr, run_threads, nr_threads;
1170 unsigned ring = 0, pg = 0, ring_size = 0,
1171 have = 0, want, need, asked = 0;
1172 unsigned long read_pages = 0;
1173 unsigned char **page = NULL;
1174 struct dec_data *data = NULL;
1175 struct crc_data *crc = NULL;
1176
1177 hib_init_batch(&hb);
1178
1179 /*
1180 * We'll limit the number of threads for decompression to limit memory
1181 * footprint.
1182 */
1183 nr_threads = num_online_cpus() - 1;
1184 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1185
1186 page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1187 if (!page) {
1188 pr_err("Failed to allocate LZO page\n");
1189 ret = -ENOMEM;
1190 goto out_clean;
1191 }
1192
1193 data = vmalloc(sizeof(*data) * nr_threads);
1194 if (!data) {
1195 pr_err("Failed to allocate LZO data\n");
1196 ret = -ENOMEM;
1197 goto out_clean;
1198 }
1199 for (thr = 0; thr < nr_threads; thr++)
1200 memset(&data[thr], 0, offsetof(struct dec_data, go));
1201
1202 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1203 if (!crc) {
1204 pr_err("Failed to allocate crc\n");
1205 ret = -ENOMEM;
1206 goto out_clean;
1207 }
1208 memset(crc, 0, offsetof(struct crc_data, go));
1209
1210 clean_pages_on_decompress = true;
1211
1212 /*
1213 * Start the decompression threads.
1214 */
1215 for (thr = 0; thr < nr_threads; thr++) {
1216 init_waitqueue_head(&data[thr].go);
1217 init_waitqueue_head(&data[thr].done);
1218
1219 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1220 &data[thr],
1221 "image_decompress/%u", thr);
1222 if (IS_ERR(data[thr].thr)) {
1223 data[thr].thr = NULL;
1224 pr_err("Cannot start decompression threads\n");
1225 ret = -ENOMEM;
1226 goto out_clean;
1227 }
1228 }
1229
1230 /*
1231 * Start the CRC32 thread.
1232 */
1233 init_waitqueue_head(&crc->go);
1234 init_waitqueue_head(&crc->done);
1235
1236 handle->crc32 = 0;
1237 crc->crc32 = &handle->crc32;
1238 for (thr = 0; thr < nr_threads; thr++) {
1239 crc->unc[thr] = data[thr].unc;
1240 crc->unc_len[thr] = &data[thr].unc_len;
1241 }
1242
1243 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1244 if (IS_ERR(crc->thr)) {
1245 crc->thr = NULL;
1246 pr_err("Cannot start CRC32 thread\n");
1247 ret = -ENOMEM;
1248 goto out_clean;
1249 }
1250
1251 /*
1252 * Set the number of pages for read buffering.
1253 * This is complete guesswork, because we'll only know the real
1254 * picture once prepare_image() is called, which is much later on
1255 * during the image load phase. We'll assume the worst case and
1256 * say that none of the image pages are from high memory.
1257 */
1258 if (low_free_pages() > snapshot_get_image_size())
1259 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1260 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1261
1262 for (i = 0; i < read_pages; i++) {
1263 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1264 __GFP_RECLAIM | __GFP_HIGH :
1265 __GFP_RECLAIM | __GFP_NOWARN |
1266 __GFP_NORETRY);
1267
1268 if (!page[i]) {
1269 if (i < LZO_CMP_PAGES) {
1270 ring_size = i;
1271 pr_err("Failed to allocate LZO pages\n");
1272 ret = -ENOMEM;
1273 goto out_clean;
1274 } else {
1275 break;
1276 }
1277 }
1278 }
1279 want = ring_size = i;
1280
1281 pr_info("Using %u thread(s) for decompression\n", nr_threads);
1282 pr_info("Loading and decompressing image data (%u pages)...\n",
1283 nr_to_read);
1284 m = nr_to_read / 10;
1285 if (!m)
1286 m = 1;
1287 nr_pages = 0;
1288 start = ktime_get();
1289
1290 ret = snapshot_write_next(snapshot);
1291 if (ret <= 0)
1292 goto out_finish;
1293
1294 for(;;) {
1295 for (i = 0; !eof && i < want; i++) {
1296 ret = swap_read_page(handle, page[ring], &hb);
1297 if (ret) {
1298 /*
1299 * On real read error, finish. On end of data,
1300 * set EOF flag and just exit the read loop.
1301 */
1302 if (handle->cur &&
1303 handle->cur->entries[handle->k]) {
1304 goto out_finish;
1305 } else {
1306 eof = 1;
1307 break;
1308 }
1309 }
1310 if (++ring >= ring_size)
1311 ring = 0;
1312 }
1313 asked += i;
1314 want -= i;
1315
1316 /*
1317 * We are out of data, wait for some more.
1318 */
1319 if (!have) {
1320 if (!asked)
1321 break;
1322
1323 ret = hib_wait_io(&hb);
1324 if (ret)
1325 goto out_finish;
1326 have += asked;
1327 asked = 0;
1328 if (eof)
1329 eof = 2;
1330 }
1331
1332 if (crc->run_threads) {
1333 wait_event(crc->done, atomic_read(&crc->stop));
1334 atomic_set(&crc->stop, 0);
1335 crc->run_threads = 0;
1336 }
1337
1338 for (thr = 0; have && thr < nr_threads; thr++) {
1339 data[thr].cmp_len = *(size_t *)page[pg];
1340 if (unlikely(!data[thr].cmp_len ||
1341 data[thr].cmp_len >
1342 lzo1x_worst_compress(LZO_UNC_SIZE))) {
1343 pr_err("Invalid LZO compressed length\n");
1344 ret = -1;
1345 goto out_finish;
1346 }
1347
1348 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1349 PAGE_SIZE);
1350 if (need > have) {
1351 if (eof > 1) {
1352 ret = -1;
1353 goto out_finish;
1354 }
1355 break;
1356 }
1357
1358 for (off = 0;
1359 off < LZO_HEADER + data[thr].cmp_len;
1360 off += PAGE_SIZE) {
1361 memcpy(data[thr].cmp + off,
1362 page[pg], PAGE_SIZE);
1363 have--;
1364 want++;
1365 if (++pg >= ring_size)
1366 pg = 0;
1367 }
1368
1369 atomic_set(&data[thr].ready, 1);
1370 wake_up(&data[thr].go);
1371 }
1372
1373 /*
1374 * Wait for more data while we are decompressing.
1375 */
1376 if (have < LZO_CMP_PAGES && asked) {
1377 ret = hib_wait_io(&hb);
1378 if (ret)
1379 goto out_finish;
1380 have += asked;
1381 asked = 0;
1382 if (eof)
1383 eof = 2;
1384 }
1385
1386 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1387 wait_event(data[thr].done,
1388 atomic_read(&data[thr].stop));
1389 atomic_set(&data[thr].stop, 0);
1390
1391 ret = data[thr].ret;
1392
1393 if (ret < 0) {
1394 pr_err("LZO decompression failed\n");
1395 goto out_finish;
1396 }
1397
1398 if (unlikely(!data[thr].unc_len ||
1399 data[thr].unc_len > LZO_UNC_SIZE ||
1400 data[thr].unc_len & (PAGE_SIZE - 1))) {
1401 pr_err("Invalid LZO uncompressed length\n");
1402 ret = -1;
1403 goto out_finish;
1404 }
1405
1406 for (off = 0;
1407 off < data[thr].unc_len; off += PAGE_SIZE) {
1408 memcpy(data_of(*snapshot),
1409 data[thr].unc + off, PAGE_SIZE);
1410
1411 if (!(nr_pages % m))
1412 pr_info("Image loading progress: %3d%%\n",
1413 nr_pages / m * 10);
1414 nr_pages++;
1415
1416 ret = snapshot_write_next(snapshot);
1417 if (ret <= 0) {
1418 crc->run_threads = thr + 1;
1419 atomic_set(&crc->ready, 1);
1420 wake_up(&crc->go);
1421 goto out_finish;
1422 }
1423 }
1424 }
1425
1426 crc->run_threads = thr;
1427 atomic_set(&crc->ready, 1);
1428 wake_up(&crc->go);
1429 }
1430
1431out_finish:
1432 if (crc->run_threads) {
1433 wait_event(crc->done, atomic_read(&crc->stop));
1434 atomic_set(&crc->stop, 0);
1435 }
1436 stop = ktime_get();
1437 if (!ret) {
1438 pr_info("Image loading done\n");
1439 snapshot_write_finalize(snapshot);
1440 if (!snapshot_image_loaded(snapshot))
1441 ret = -ENODATA;
1442 if (!ret) {
1443 if (swsusp_header->flags & SF_CRC32_MODE) {
1444 if(handle->crc32 != swsusp_header->crc32) {
1445 pr_err("Invalid image CRC32!\n");
1446 ret = -ENODATA;
1447 }
1448 }
1449 }
1450 }
1451 swsusp_show_speed(start, stop, nr_to_read, "Read");
1452out_clean:
1453 for (i = 0; i < ring_size; i++)
1454 free_page((unsigned long)page[i]);
1455 if (crc) {
1456 if (crc->thr)
1457 kthread_stop(crc->thr);
1458 kfree(crc);
1459 }
1460 if (data) {
1461 for (thr = 0; thr < nr_threads; thr++)
1462 if (data[thr].thr)
1463 kthread_stop(data[thr].thr);
1464 vfree(data);
1465 }
1466 vfree(page);
1467
1468 return ret;
1469}
1470
1471/**
1472 * swsusp_read - read the hibernation image.
1473 * @flags_p: flags passed by the "frozen" kernel in the image header should
1474 * be written into this memory location
1475 */
1476
1477int swsusp_read(unsigned int *flags_p)
1478{
1479 int error;
1480 struct swap_map_handle handle;
1481 struct snapshot_handle snapshot;
1482 struct swsusp_info *header;
1483
1484 memset(&snapshot, 0, sizeof(struct snapshot_handle));
1485 error = snapshot_write_next(&snapshot);
1486 if (error < PAGE_SIZE)
1487 return error < 0 ? error : -EFAULT;
1488 header = (struct swsusp_info *)data_of(snapshot);
1489 error = get_swap_reader(&handle, flags_p);
1490 if (error)
1491 goto end;
1492 if (!error)
1493 error = swap_read_page(&handle, header, NULL);
1494 if (!error) {
1495 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1496 load_image(&handle, &snapshot, header->pages - 1) :
1497 load_image_lzo(&handle, &snapshot, header->pages - 1);
1498 }
1499 swap_reader_finish(&handle);
1500end:
1501 if (!error)
1502 pr_debug("Image successfully loaded\n");
1503 else
1504 pr_debug("Error %d resuming\n", error);
1505 return error;
1506}
1507
1508/**
1509 * swsusp_check - Check for swsusp signature in the resume device
1510 */
1511
1512int swsusp_check(void)
1513{
1514 int error;
1515
1516 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1517 FMODE_READ, NULL);
1518 if (!IS_ERR(hib_resume_bdev)) {
1519 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1520 clear_page(swsusp_header);
1521 error = hib_submit_io(REQ_OP_READ, 0,
1522 swsusp_resume_block,
1523 swsusp_header, NULL);
1524 if (error)
1525 goto put;
1526
1527 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1528 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1529 /* Reset swap signature now */
1530 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1531 swsusp_resume_block,
1532 swsusp_header, NULL);
1533 } else {
1534 error = -EINVAL;
1535 }
1536
1537put:
1538 if (error)
1539 blkdev_put(hib_resume_bdev, FMODE_READ);
1540 else
1541 pr_debug("Image signature found, resuming\n");
1542 } else {
1543 error = PTR_ERR(hib_resume_bdev);
1544 }
1545
1546 if (error)
1547 pr_debug("Image not found (code %d)\n", error);
1548
1549 return error;
1550}
1551
1552/**
1553 * swsusp_close - close swap device.
1554 */
1555
1556void swsusp_close(fmode_t mode)
1557{
1558 if (IS_ERR(hib_resume_bdev)) {
1559 pr_debug("Image device not initialised\n");
1560 return;
1561 }
1562
1563 blkdev_put(hib_resume_bdev, mode);
1564}
1565
1566/**
1567 * swsusp_unmark - Unmark swsusp signature in the resume device
1568 */
1569
1570#ifdef CONFIG_SUSPEND
1571int swsusp_unmark(void)
1572{
1573 int error;
1574
1575 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
1576 swsusp_header, NULL);
1577 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1578 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1579 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1580 swsusp_resume_block,
1581 swsusp_header, NULL);
1582 } else {
1583 pr_err("Cannot find swsusp signature!\n");
1584 error = -ENODEV;
1585 }
1586
1587 /*
1588 * We just returned from suspend, we don't need the image any more.
1589 */
1590 free_all_swap_pages(root_swap);
1591
1592 return error;
1593}
1594#endif
1595
1596static int swsusp_header_init(void)
1597{
1598 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1599 if (!swsusp_header)
1600 panic("Could not allocate memory for swsusp_header\n");
1601 return 0;
1602}
1603
1604core_initcall(swsusp_header_init);