Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * linux/kernel/power/swap.c
  3 *
  4 * This file provides functions for reading the suspend image from
  5 * and writing it to a swap partition.
  6 *
  7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
  8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  9 * Copyright (C) 2010 Bojan Smojver <bojan@rexursive.com>
 10 *
 11 * This file is released under the GPLv2.
 12 *
 13 */
 14
 
 
 15#include <linux/module.h>
 16#include <linux/file.h>
 17#include <linux/delay.h>
 18#include <linux/bitops.h>
 19#include <linux/genhd.h>
 20#include <linux/device.h>
 21#include <linux/buffer_head.h>
 22#include <linux/bio.h>
 23#include <linux/blkdev.h>
 24#include <linux/swap.h>
 25#include <linux/swapops.h>
 26#include <linux/pm.h>
 27#include <linux/slab.h>
 28#include <linux/lzo.h>
 29#include <linux/vmalloc.h>
 
 
 
 
 
 30
 31#include "power.h"
 32
 33#define HIBERNATE_SIG	"S1SUSPEND"
 34
 35/*
 
 
 
 
 
 
 
 
 36 *	The swap map is a data structure used for keeping track of each page
 37 *	written to a swap partition.  It consists of many swap_map_page
 38 *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
 39 *	These structures are stored on the swap and linked together with the
 40 *	help of the .next_swap member.
 41 *
 42 *	The swap map is created during suspend.  The swap map pages are
 43 *	allocated and populated one at a time, so we only need one memory
 44 *	page to set up the entire structure.
 45 *
 46 *	During resume we also only need to use one swap_map_page structure
 47 *	at a time.
 48 */
 49
 50#define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
 51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 52struct swap_map_page {
 53	sector_t entries[MAP_PAGE_ENTRIES];
 54	sector_t next_swap;
 55};
 56
 
 
 
 
 
 57/**
 58 *	The swap_map_handle structure is used for handling swap in
 59 *	a file-alike way
 60 */
 61
 62struct swap_map_handle {
 63	struct swap_map_page *cur;
 
 64	sector_t cur_swap;
 65	sector_t first_sector;
 66	unsigned int k;
 
 
 67};
 68
 69struct swsusp_header {
 70	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int)];
 
 
 71	sector_t image;
 72	unsigned int flags;	/* Flags to pass to the "boot" kernel */
 73	char	orig_sig[10];
 74	char	sig[10];
 75} __attribute__((packed));
 76
 77static struct swsusp_header *swsusp_header;
 78
 79/**
 80 *	The following functions are used for tracing the allocated
 81 *	swap pages, so that they can be freed in case of an error.
 82 */
 83
 84struct swsusp_extent {
 85	struct rb_node node;
 86	unsigned long start;
 87	unsigned long end;
 88};
 89
 90static struct rb_root swsusp_extents = RB_ROOT;
 91
 92static int swsusp_extents_insert(unsigned long swap_offset)
 93{
 94	struct rb_node **new = &(swsusp_extents.rb_node);
 95	struct rb_node *parent = NULL;
 96	struct swsusp_extent *ext;
 97
 98	/* Figure out where to put the new node */
 99	while (*new) {
100		ext = container_of(*new, struct swsusp_extent, node);
101		parent = *new;
102		if (swap_offset < ext->start) {
103			/* Try to merge */
104			if (swap_offset == ext->start - 1) {
105				ext->start--;
106				return 0;
107			}
108			new = &((*new)->rb_left);
109		} else if (swap_offset > ext->end) {
110			/* Try to merge */
111			if (swap_offset == ext->end + 1) {
112				ext->end++;
113				return 0;
114			}
115			new = &((*new)->rb_right);
116		} else {
117			/* It already is in the tree */
118			return -EINVAL;
119		}
120	}
121	/* Add the new node and rebalance the tree. */
122	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
123	if (!ext)
124		return -ENOMEM;
125
126	ext->start = swap_offset;
127	ext->end = swap_offset;
128	rb_link_node(&ext->node, parent, new);
129	rb_insert_color(&ext->node, &swsusp_extents);
130	return 0;
131}
132
133/**
134 *	alloc_swapdev_block - allocate a swap page and register that it has
135 *	been allocated, so that it can be freed in case of an error.
136 */
137
138sector_t alloc_swapdev_block(int swap)
139{
140	unsigned long offset;
141
142	offset = swp_offset(get_swap_page_of_type(swap));
143	if (offset) {
144		if (swsusp_extents_insert(offset))
145			swap_free(swp_entry(swap, offset));
146		else
147			return swapdev_block(swap, offset);
148	}
149	return 0;
150}
151
152/**
153 *	free_all_swap_pages - free swap pages allocated for saving image data.
154 *	It also frees the extents used to register which swap entries had been
155 *	allocated.
156 */
157
158void free_all_swap_pages(int swap)
159{
160	struct rb_node *node;
161
162	while ((node = swsusp_extents.rb_node)) {
163		struct swsusp_extent *ext;
164		unsigned long offset;
165
166		ext = container_of(node, struct swsusp_extent, node);
167		rb_erase(node, &swsusp_extents);
168		for (offset = ext->start; offset <= ext->end; offset++)
169			swap_free(swp_entry(swap, offset));
170
171		kfree(ext);
172	}
173}
174
175int swsusp_swap_in_use(void)
176{
177	return (swsusp_extents.rb_node != NULL);
178}
179
180/*
181 * General things
182 */
183
184static unsigned short root_swap = 0xffff;
185struct block_device *hib_resume_bdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186
187/*
188 * Saving part
189 */
190
191static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
192{
193	int error;
194
195	hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
 
196	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
197	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
198		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
199		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
200		swsusp_header->image = handle->first_sector;
201		swsusp_header->flags = flags;
202		error = hib_bio_write_page(swsusp_resume_block,
203					swsusp_header, NULL);
 
 
204	} else {
205		printk(KERN_ERR "PM: Swap header not found!\n");
206		error = -ENODEV;
207	}
208	return error;
209}
210
211/**
212 *	swsusp_swap_check - check if the resume device is a swap device
213 *	and get its index (if so)
214 *
215 *	This is called before saving image
216 */
217static int swsusp_swap_check(void)
218{
219	int res;
220
221	res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
222			&hib_resume_bdev);
223	if (res < 0)
224		return res;
225
226	root_swap = res;
227	res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
228	if (res)
229		return res;
230
231	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
232	if (res < 0)
233		blkdev_put(hib_resume_bdev, FMODE_WRITE);
234
 
 
 
 
 
 
235	return res;
236}
237
238/**
239 *	write_page - Write one page to given swap location.
240 *	@buf:		Address we're writing.
241 *	@offset:	Offset of the swap page we're writing to.
242 *	@bio_chain:	Link the next write BIO here
243 */
244
245static int write_page(void *buf, sector_t offset, struct bio **bio_chain)
246{
247	void *src;
 
248
249	if (!offset)
250		return -ENOSPC;
251
252	if (bio_chain) {
253		src = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
 
254		if (src) {
255			copy_page(src, buf);
256		} else {
257			WARN_ON_ONCE(1);
258			bio_chain = NULL;	/* Go synchronous */
259			src = buf;
 
 
 
 
 
 
 
 
 
 
260		}
261	} else {
262		src = buf;
263	}
264	return hib_bio_write_page(offset, src, bio_chain);
265}
266
267static void release_swap_writer(struct swap_map_handle *handle)
268{
269	if (handle->cur)
270		free_page((unsigned long)handle->cur);
271	handle->cur = NULL;
272}
273
274static int get_swap_writer(struct swap_map_handle *handle)
275{
276	int ret;
277
278	ret = swsusp_swap_check();
279	if (ret) {
280		if (ret != -ENOSPC)
281			printk(KERN_ERR "PM: Cannot find swap device, try "
282					"swapon -a.\n");
283		return ret;
284	}
285	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
286	if (!handle->cur) {
287		ret = -ENOMEM;
288		goto err_close;
289	}
290	handle->cur_swap = alloc_swapdev_block(root_swap);
291	if (!handle->cur_swap) {
292		ret = -ENOSPC;
293		goto err_rel;
294	}
295	handle->k = 0;
 
296	handle->first_sector = handle->cur_swap;
297	return 0;
298err_rel:
299	release_swap_writer(handle);
300err_close:
301	swsusp_close(FMODE_WRITE);
302	return ret;
303}
304
305static int swap_write_page(struct swap_map_handle *handle, void *buf,
306				struct bio **bio_chain)
307{
308	int error = 0;
309	sector_t offset;
310
311	if (!handle->cur)
312		return -EINVAL;
313	offset = alloc_swapdev_block(root_swap);
314	error = write_page(buf, offset, bio_chain);
315	if (error)
316		return error;
317	handle->cur->entries[handle->k++] = offset;
318	if (handle->k >= MAP_PAGE_ENTRIES) {
319		error = hib_wait_on_bio_chain(bio_chain);
320		if (error)
321			goto out;
322		offset = alloc_swapdev_block(root_swap);
323		if (!offset)
324			return -ENOSPC;
325		handle->cur->next_swap = offset;
326		error = write_page(handle->cur, handle->cur_swap, NULL);
327		if (error)
328			goto out;
329		clear_page(handle->cur);
330		handle->cur_swap = offset;
331		handle->k = 0;
 
 
 
 
 
 
 
 
 
 
 
332	}
333 out:
334	return error;
335}
336
337static int flush_swap_writer(struct swap_map_handle *handle)
338{
339	if (handle->cur && handle->cur_swap)
340		return write_page(handle->cur, handle->cur_swap, NULL);
341	else
342		return -EINVAL;
343}
344
345static int swap_writer_finish(struct swap_map_handle *handle,
346		unsigned int flags, int error)
347{
348	if (!error) {
349		flush_swap_writer(handle);
350		printk(KERN_INFO "PM: S");
351		error = mark_swapfiles(handle, flags);
352		printk("|\n");
353	}
354
355	if (error)
356		free_all_swap_pages(root_swap);
357	release_swap_writer(handle);
358	swsusp_close(FMODE_WRITE);
359
360	return error;
361}
362
363/* We need to remember how much compressed data we need to read. */
364#define LZO_HEADER	sizeof(size_t)
365
366/* Number of pages/bytes we'll compress at one time. */
367#define LZO_UNC_PAGES	32
368#define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
369
370/* Number of pages/bytes we need for compressed data (worst case). */
371#define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
372			             LZO_HEADER, PAGE_SIZE)
373#define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
374
 
 
 
 
 
 
 
 
375/**
376 *	save_image - save the suspend image data
377 */
378
379static int save_image(struct swap_map_handle *handle,
380                      struct snapshot_handle *snapshot,
381                      unsigned int nr_to_write)
382{
383	unsigned int m;
384	int ret;
385	int nr_pages;
386	int err2;
387	struct bio *bio;
388	struct timeval start;
389	struct timeval stop;
 
 
390
391	printk(KERN_INFO "PM: Saving image data pages (%u pages) ...     ",
392		nr_to_write);
393	m = nr_to_write / 100;
394	if (!m)
395		m = 1;
396	nr_pages = 0;
397	bio = NULL;
398	do_gettimeofday(&start);
399	while (1) {
400		ret = snapshot_read_next(snapshot);
401		if (ret <= 0)
402			break;
403		ret = swap_write_page(handle, data_of(*snapshot), &bio);
404		if (ret)
405			break;
406		if (!(nr_pages % m))
407			printk(KERN_CONT "\b\b\b\b%3d%%", nr_pages / m);
 
408		nr_pages++;
409	}
410	err2 = hib_wait_on_bio_chain(&bio);
411	do_gettimeofday(&stop);
412	if (!ret)
413		ret = err2;
414	if (!ret)
415		printk(KERN_CONT "\b\b\b\bdone\n");
416	else
417		printk(KERN_CONT "\n");
418	swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
419	return ret;
420}
421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
422
423/**
424 * save_image_lzo - Save the suspend image data compressed with LZO.
425 * @handle: Swap mam handle to use for saving the image.
426 * @snapshot: Image to read data from.
427 * @nr_to_write: Number of pages to save.
428 */
429static int save_image_lzo(struct swap_map_handle *handle,
430                          struct snapshot_handle *snapshot,
431                          unsigned int nr_to_write)
432{
433	unsigned int m;
434	int ret = 0;
435	int nr_pages;
436	int err2;
437	struct bio *bio;
438	struct timeval start;
439	struct timeval stop;
440	size_t off, unc_len, cmp_len;
441	unsigned char *unc, *cmp, *wrk, *page;
 
 
 
 
 
 
 
 
 
 
 
 
442
443	page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
444	if (!page) {
445		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
446		return -ENOMEM;
 
447	}
448
449	wrk = vmalloc(LZO1X_1_MEM_COMPRESS);
450	if (!wrk) {
451		printk(KERN_ERR "PM: Failed to allocate LZO workspace\n");
452		free_page((unsigned long)page);
453		return -ENOMEM;
454	}
 
 
455
456	unc = vmalloc(LZO_UNC_SIZE);
457	if (!unc) {
458		printk(KERN_ERR "PM: Failed to allocate LZO uncompressed\n");
459		vfree(wrk);
460		free_page((unsigned long)page);
461		return -ENOMEM;
462	}
 
463
464	cmp = vmalloc(LZO_CMP_SIZE);
465	if (!cmp) {
466		printk(KERN_ERR "PM: Failed to allocate LZO compressed\n");
467		vfree(unc);
468		vfree(wrk);
469		free_page((unsigned long)page);
470		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471	}
472
473	printk(KERN_INFO
474		"PM: Compressing and saving image data (%u pages) ...     ",
 
 
 
 
 
 
475		nr_to_write);
476	m = nr_to_write / 100;
477	if (!m)
478		m = 1;
479	nr_pages = 0;
480	bio = NULL;
481	do_gettimeofday(&start);
482	for (;;) {
483		for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
484			ret = snapshot_read_next(snapshot);
485			if (ret < 0)
486				goto out_finish;
487
488			if (!ret)
 
 
 
 
 
 
 
 
 
 
 
 
489				break;
490
491			memcpy(unc + off, data_of(*snapshot), PAGE_SIZE);
492
493			if (!(nr_pages % m))
494				printk(KERN_CONT "\b\b\b\b%3d%%", nr_pages / m);
495			nr_pages++;
496		}
497
498		if (!off)
499			break;
500
501		unc_len = off;
502		ret = lzo1x_1_compress(unc, unc_len,
503		                       cmp + LZO_HEADER, &cmp_len, wrk);
504		if (ret < 0) {
505			printk(KERN_ERR "PM: LZO compression failed\n");
506			break;
507		}
508
509		if (unlikely(!cmp_len ||
510		             cmp_len > lzo1x_worst_compress(unc_len))) {
511			printk(KERN_ERR "PM: Invalid LZO compressed length\n");
512			ret = -1;
513			break;
514		}
515
516		*(size_t *)cmp = cmp_len;
517
518		/*
519		 * Given we are writing one page at a time to disk, we copy
520		 * that much from the buffer, although the last bit will likely
521		 * be smaller than full page. This is OK - we saved the length
522		 * of the compressed data, so any garbage at the end will be
523		 * discarded when we read it.
524		 */
525		for (off = 0; off < LZO_HEADER + cmp_len; off += PAGE_SIZE) {
526			memcpy(page, cmp + off, PAGE_SIZE);
527
528			ret = swap_write_page(handle, page, &bio);
529			if (ret)
 
 
 
530				goto out_finish;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
531		}
 
 
 
532	}
533
534out_finish:
535	err2 = hib_wait_on_bio_chain(&bio);
536	do_gettimeofday(&stop);
537	if (!ret)
538		ret = err2;
539	if (!ret)
540		printk(KERN_CONT "\b\b\b\bdone\n");
541	else
542		printk(KERN_CONT "\n");
543	swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
544
545	vfree(cmp);
546	vfree(unc);
547	vfree(wrk);
548	free_page((unsigned long)page);
 
 
 
 
 
 
549
550	return ret;
551}
552
553/**
554 *	enough_swap - Make sure we have enough swap to save the image.
555 *
556 *	Returns TRUE or FALSE after checking the total amount of swap
557 *	space avaiable from the resume partition.
558 */
559
560static int enough_swap(unsigned int nr_pages, unsigned int flags)
561{
562	unsigned int free_swap = count_swap_pages(root_swap, 1);
563	unsigned int required;
564
565	pr_debug("PM: Free swap pages: %u\n", free_swap);
566
567	required = PAGES_FOR_IO + ((flags & SF_NOCOMPRESS_MODE) ?
568		nr_pages : (nr_pages * LZO_CMP_PAGES) / LZO_UNC_PAGES + 1);
569	return free_swap > required;
570}
571
572/**
573 *	swsusp_write - Write entire image and metadata.
574 *	@flags: flags to pass to the "boot" kernel in the image header
575 *
576 *	It is important _NOT_ to umount filesystems at this point. We want
577 *	them synced (in case something goes wrong) but we DO not want to mark
578 *	filesystem clean: it is not. (And it does not matter, if we resume
579 *	correctly, we'll mark system clean, anyway.)
580 */
581
582int swsusp_write(unsigned int flags)
583{
584	struct swap_map_handle handle;
585	struct snapshot_handle snapshot;
586	struct swsusp_info *header;
587	unsigned long pages;
588	int error;
589
590	pages = snapshot_get_image_size();
591	error = get_swap_writer(&handle);
592	if (error) {
593		printk(KERN_ERR "PM: Cannot get swap writer\n");
594		return error;
595	}
596	if (!enough_swap(pages, flags)) {
597		printk(KERN_ERR "PM: Not enough free swap\n");
598		error = -ENOSPC;
599		goto out_finish;
 
 
600	}
601	memset(&snapshot, 0, sizeof(struct snapshot_handle));
602	error = snapshot_read_next(&snapshot);
603	if (error < PAGE_SIZE) {
604		if (error >= 0)
605			error = -EFAULT;
606
607		goto out_finish;
608	}
609	header = (struct swsusp_info *)data_of(snapshot);
610	error = swap_write_page(&handle, header, NULL);
611	if (!error) {
612		error = (flags & SF_NOCOMPRESS_MODE) ?
613			save_image(&handle, &snapshot, pages - 1) :
614			save_image_lzo(&handle, &snapshot, pages - 1);
615	}
616out_finish:
617	error = swap_writer_finish(&handle, flags, error);
618	return error;
619}
620
621/**
622 *	The following functions allow us to read data using a swap map
623 *	in a file-alike way
624 */
625
626static void release_swap_reader(struct swap_map_handle *handle)
627{
628	if (handle->cur)
629		free_page((unsigned long)handle->cur);
 
 
 
 
 
 
 
630	handle->cur = NULL;
631}
632
633static int get_swap_reader(struct swap_map_handle *handle,
634		unsigned int *flags_p)
635{
636	int error;
 
 
637
638	*flags_p = swsusp_header->flags;
639
640	if (!swsusp_header->image) /* how can this happen? */
641		return -EINVAL;
642
643	handle->cur = (struct swap_map_page *)get_zeroed_page(__GFP_WAIT | __GFP_HIGH);
644	if (!handle->cur)
645		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
646
647	error = hib_bio_read_page(swsusp_header->image, handle->cur, NULL);
648	if (error) {
649		release_swap_reader(handle);
650		return error;
 
 
651	}
652	handle->k = 0;
 
653	return 0;
654}
655
656static int swap_read_page(struct swap_map_handle *handle, void *buf,
657				struct bio **bio_chain)
658{
659	sector_t offset;
660	int error;
 
661
662	if (!handle->cur)
663		return -EINVAL;
664	offset = handle->cur->entries[handle->k];
665	if (!offset)
666		return -EFAULT;
667	error = hib_bio_read_page(offset, buf, bio_chain);
668	if (error)
669		return error;
670	if (++handle->k >= MAP_PAGE_ENTRIES) {
671		error = hib_wait_on_bio_chain(bio_chain);
672		handle->k = 0;
673		offset = handle->cur->next_swap;
674		if (!offset)
 
 
 
675			release_swap_reader(handle);
676		else if (!error)
677			error = hib_bio_read_page(offset, handle->cur, NULL);
678	}
679	return error;
680}
681
682static int swap_reader_finish(struct swap_map_handle *handle)
683{
684	release_swap_reader(handle);
685
686	return 0;
687}
688
689/**
690 *	load_image - load the image using the swap map handle
691 *	@handle and the snapshot handle @snapshot
692 *	(assume there are @nr_pages pages to load)
693 */
694
695static int load_image(struct swap_map_handle *handle,
696                      struct snapshot_handle *snapshot,
697                      unsigned int nr_to_read)
698{
699	unsigned int m;
700	int error = 0;
701	struct timeval start;
702	struct timeval stop;
703	struct bio *bio;
704	int err2;
705	unsigned nr_pages;
706
707	printk(KERN_INFO "PM: Loading image data pages (%u pages) ...     ",
708		nr_to_read);
709	m = nr_to_read / 100;
 
 
710	if (!m)
711		m = 1;
712	nr_pages = 0;
713	bio = NULL;
714	do_gettimeofday(&start);
715	for ( ; ; ) {
716		error = snapshot_write_next(snapshot);
717		if (error <= 0)
718			break;
719		error = swap_read_page(handle, data_of(*snapshot), &bio);
720		if (error)
721			break;
722		if (snapshot->sync_read)
723			error = hib_wait_on_bio_chain(&bio);
724		if (error)
725			break;
726		if (!(nr_pages % m))
727			printk("\b\b\b\b%3d%%", nr_pages / m);
 
728		nr_pages++;
729	}
730	err2 = hib_wait_on_bio_chain(&bio);
731	do_gettimeofday(&stop);
732	if (!error)
733		error = err2;
734	if (!error) {
735		printk("\b\b\b\bdone\n");
736		snapshot_write_finalize(snapshot);
737		if (!snapshot_image_loaded(snapshot))
738			error = -ENODATA;
739	} else
740		printk("\n");
741	swsusp_show_speed(&start, &stop, nr_to_read, "Read");
742	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
743}
744
745/**
746 * load_image_lzo - Load compressed image data and decompress them with LZO.
747 * @handle: Swap map handle to use for loading data.
748 * @snapshot: Image to copy uncompressed data into.
749 * @nr_to_read: Number of pages to load.
750 */
751static int load_image_lzo(struct swap_map_handle *handle,
752                          struct snapshot_handle *snapshot,
753                          unsigned int nr_to_read)
754{
755	unsigned int m;
756	int error = 0;
757	struct bio *bio;
758	struct timeval start;
759	struct timeval stop;
 
760	unsigned nr_pages;
761	size_t i, off, unc_len, cmp_len;
762	unsigned char *unc, *cmp, *page[LZO_CMP_PAGES];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
763
764	for (i = 0; i < LZO_CMP_PAGES; i++) {
765		page[i] = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
766		if (!page[i]) {
767			printk(KERN_ERR "PM: Failed to allocate LZO page\n");
 
 
768
769			while (i)
770				free_page((unsigned long)page[--i]);
 
 
 
 
 
 
771
772			return -ENOMEM;
773		}
 
 
 
774	}
 
775
776	unc = vmalloc(LZO_UNC_SIZE);
777	if (!unc) {
778		printk(KERN_ERR "PM: Failed to allocate LZO uncompressed\n");
779
780		for (i = 0; i < LZO_CMP_PAGES; i++)
781			free_page((unsigned long)page[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
782
783		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784	}
785
786	cmp = vmalloc(LZO_CMP_SIZE);
787	if (!cmp) {
788		printk(KERN_ERR "PM: Failed to allocate LZO compressed\n");
789
790		vfree(unc);
791		for (i = 0; i < LZO_CMP_PAGES; i++)
792			free_page((unsigned long)page[i]);
 
 
 
 
 
 
 
 
 
793
794		return -ENOMEM;
 
 
 
 
 
 
 
 
 
795	}
 
796
797	printk(KERN_INFO
798		"PM: Loading and decompressing image data (%u pages) ...     ",
799		nr_to_read);
800	m = nr_to_read / 100;
801	if (!m)
802		m = 1;
803	nr_pages = 0;
804	bio = NULL;
805	do_gettimeofday(&start);
806
807	error = snapshot_write_next(snapshot);
808	if (error <= 0)
809		goto out_finish;
810
811	for (;;) {
812		error = swap_read_page(handle, page[0], NULL); /* sync */
813		if (error)
814			break;
815
816		cmp_len = *(size_t *)page[0];
817		if (unlikely(!cmp_len ||
818		             cmp_len > lzo1x_worst_compress(LZO_UNC_SIZE))) {
819			printk(KERN_ERR "PM: Invalid LZO compressed length\n");
820			error = -1;
821			break;
 
 
 
 
 
 
 
822		}
 
 
823
824		for (off = PAGE_SIZE, i = 1;
825		     off < LZO_HEADER + cmp_len; off += PAGE_SIZE, i++) {
826			error = swap_read_page(handle, page[i], &bio);
827			if (error)
 
 
 
 
 
828				goto out_finish;
 
 
 
 
829		}
830
831		error = hib_wait_on_bio_chain(&bio); /* need all data now */
832		if (error)
833			goto out_finish;
834
835		for (off = 0, i = 0;
836		     off < LZO_HEADER + cmp_len; off += PAGE_SIZE, i++) {
837			memcpy(cmp + off, page[i], PAGE_SIZE);
838		}
839
840		unc_len = LZO_UNC_SIZE;
841		error = lzo1x_decompress_safe(cmp + LZO_HEADER, cmp_len,
842		                              unc, &unc_len);
843		if (error < 0) {
844			printk(KERN_ERR "PM: LZO decompression failed\n");
845			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
846		}
847
848		if (unlikely(!unc_len ||
849		             unc_len > LZO_UNC_SIZE ||
850		             unc_len & (PAGE_SIZE - 1))) {
851			printk(KERN_ERR "PM: Invalid LZO uncompressed length\n");
852			error = -1;
853			break;
 
 
 
 
 
854		}
855
856		for (off = 0; off < unc_len; off += PAGE_SIZE) {
857			memcpy(data_of(*snapshot), unc + off, PAGE_SIZE);
 
 
 
 
858
859			if (!(nr_pages % m))
860				printk("\b\b\b\b%3d%%", nr_pages / m);
861			nr_pages++;
 
862
863			error = snapshot_write_next(snapshot);
864			if (error <= 0)
 
 
 
865				goto out_finish;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
866		}
 
 
 
 
867	}
868
869out_finish:
870	do_gettimeofday(&stop);
871	if (!error) {
872		printk("\b\b\b\bdone\n");
 
 
 
 
873		snapshot_write_finalize(snapshot);
874		if (!snapshot_image_loaded(snapshot))
875			error = -ENODATA;
876	} else
877		printk("\n");
878	swsusp_show_speed(&start, &stop, nr_to_read, "Read");
879
880	vfree(cmp);
881	vfree(unc);
882	for (i = 0; i < LZO_CMP_PAGES; i++)
 
 
 
 
 
883		free_page((unsigned long)page[i]);
 
 
 
 
 
 
 
 
 
 
 
 
884
885	return error;
886}
887
888/**
889 *	swsusp_read - read the hibernation image.
890 *	@flags_p: flags passed by the "frozen" kernel in the image header should
891 *		  be written into this memory location
892 */
893
894int swsusp_read(unsigned int *flags_p)
895{
896	int error;
897	struct swap_map_handle handle;
898	struct snapshot_handle snapshot;
899	struct swsusp_info *header;
900
901	memset(&snapshot, 0, sizeof(struct snapshot_handle));
902	error = snapshot_write_next(&snapshot);
903	if (error < PAGE_SIZE)
904		return error < 0 ? error : -EFAULT;
905	header = (struct swsusp_info *)data_of(snapshot);
906	error = get_swap_reader(&handle, flags_p);
907	if (error)
908		goto end;
909	if (!error)
910		error = swap_read_page(&handle, header, NULL);
911	if (!error) {
912		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
913			load_image(&handle, &snapshot, header->pages - 1) :
914			load_image_lzo(&handle, &snapshot, header->pages - 1);
915	}
916	swap_reader_finish(&handle);
917end:
918	if (!error)
919		pr_debug("PM: Image successfully loaded\n");
920	else
921		pr_debug("PM: Error %d resuming\n", error);
922	return error;
923}
924
925/**
926 *      swsusp_check - Check for swsusp signature in the resume device
927 */
928
929int swsusp_check(void)
930{
931	int error;
932
933	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
934					    FMODE_READ, NULL);
935	if (!IS_ERR(hib_resume_bdev)) {
936		set_blocksize(hib_resume_bdev, PAGE_SIZE);
937		clear_page(swsusp_header);
938		error = hib_bio_read_page(swsusp_resume_block,
 
939					swsusp_header, NULL);
940		if (error)
941			goto put;
942
943		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
944			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
945			/* Reset swap signature now */
946			error = hib_bio_write_page(swsusp_resume_block,
 
947						swsusp_header, NULL);
948		} else {
949			error = -EINVAL;
950		}
951
952put:
953		if (error)
954			blkdev_put(hib_resume_bdev, FMODE_READ);
955		else
956			pr_debug("PM: Image signature found, resuming\n");
957	} else {
958		error = PTR_ERR(hib_resume_bdev);
959	}
960
961	if (error)
962		pr_debug("PM: Image not found (code %d)\n", error);
963
964	return error;
965}
966
967/**
968 *	swsusp_close - close swap device.
969 */
970
971void swsusp_close(fmode_t mode)
972{
973	if (IS_ERR(hib_resume_bdev)) {
974		pr_debug("PM: Image device not initialised\n");
975		return;
976	}
977
978	blkdev_put(hib_resume_bdev, mode);
979}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
980
981static int swsusp_header_init(void)
982{
983	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
984	if (!swsusp_header)
985		panic("Could not allocate memory for swsusp_header\n");
986	return 0;
987}
988
989core_initcall(swsusp_header_init);
v4.17
   1/*
   2 * linux/kernel/power/swap.c
   3 *
   4 * This file provides functions for reading the suspend image from
   5 * and writing it to a swap partition.
   6 *
   7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
   8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   9 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
  10 *
  11 * This file is released under the GPLv2.
  12 *
  13 */
  14
  15#define pr_fmt(fmt) "PM: " fmt
  16
  17#include <linux/module.h>
  18#include <linux/file.h>
  19#include <linux/delay.h>
  20#include <linux/bitops.h>
  21#include <linux/genhd.h>
  22#include <linux/device.h>
 
  23#include <linux/bio.h>
  24#include <linux/blkdev.h>
  25#include <linux/swap.h>
  26#include <linux/swapops.h>
  27#include <linux/pm.h>
  28#include <linux/slab.h>
  29#include <linux/lzo.h>
  30#include <linux/vmalloc.h>
  31#include <linux/cpumask.h>
  32#include <linux/atomic.h>
  33#include <linux/kthread.h>
  34#include <linux/crc32.h>
  35#include <linux/ktime.h>
  36
  37#include "power.h"
  38
  39#define HIBERNATE_SIG	"S1SUSPEND"
  40
  41/*
  42 * When reading an {un,}compressed image, we may restore pages in place,
  43 * in which case some architectures need these pages cleaning before they
  44 * can be executed. We don't know which pages these may be, so clean the lot.
  45 */
  46static bool clean_pages_on_read;
  47static bool clean_pages_on_decompress;
  48
  49/*
  50 *	The swap map is a data structure used for keeping track of each page
  51 *	written to a swap partition.  It consists of many swap_map_page
  52 *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
  53 *	These structures are stored on the swap and linked together with the
  54 *	help of the .next_swap member.
  55 *
  56 *	The swap map is created during suspend.  The swap map pages are
  57 *	allocated and populated one at a time, so we only need one memory
  58 *	page to set up the entire structure.
  59 *
  60 *	During resume we pick up all swap_map_page structures into a list.
 
  61 */
  62
  63#define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
  64
  65/*
  66 * Number of free pages that are not high.
  67 */
  68static inline unsigned long low_free_pages(void)
  69{
  70	return nr_free_pages() - nr_free_highpages();
  71}
  72
  73/*
  74 * Number of pages required to be kept free while writing the image. Always
  75 * half of all available low pages before the writing starts.
  76 */
  77static inline unsigned long reqd_free_pages(void)
  78{
  79	return low_free_pages() / 2;
  80}
  81
  82struct swap_map_page {
  83	sector_t entries[MAP_PAGE_ENTRIES];
  84	sector_t next_swap;
  85};
  86
  87struct swap_map_page_list {
  88	struct swap_map_page *map;
  89	struct swap_map_page_list *next;
  90};
  91
  92/**
  93 *	The swap_map_handle structure is used for handling swap in
  94 *	a file-alike way
  95 */
  96
  97struct swap_map_handle {
  98	struct swap_map_page *cur;
  99	struct swap_map_page_list *maps;
 100	sector_t cur_swap;
 101	sector_t first_sector;
 102	unsigned int k;
 103	unsigned long reqd_free_pages;
 104	u32 crc32;
 105};
 106
 107struct swsusp_header {
 108	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
 109	              sizeof(u32)];
 110	u32	crc32;
 111	sector_t image;
 112	unsigned int flags;	/* Flags to pass to the "boot" kernel */
 113	char	orig_sig[10];
 114	char	sig[10];
 115} __packed;
 116
 117static struct swsusp_header *swsusp_header;
 118
 119/**
 120 *	The following functions are used for tracing the allocated
 121 *	swap pages, so that they can be freed in case of an error.
 122 */
 123
 124struct swsusp_extent {
 125	struct rb_node node;
 126	unsigned long start;
 127	unsigned long end;
 128};
 129
 130static struct rb_root swsusp_extents = RB_ROOT;
 131
 132static int swsusp_extents_insert(unsigned long swap_offset)
 133{
 134	struct rb_node **new = &(swsusp_extents.rb_node);
 135	struct rb_node *parent = NULL;
 136	struct swsusp_extent *ext;
 137
 138	/* Figure out where to put the new node */
 139	while (*new) {
 140		ext = rb_entry(*new, struct swsusp_extent, node);
 141		parent = *new;
 142		if (swap_offset < ext->start) {
 143			/* Try to merge */
 144			if (swap_offset == ext->start - 1) {
 145				ext->start--;
 146				return 0;
 147			}
 148			new = &((*new)->rb_left);
 149		} else if (swap_offset > ext->end) {
 150			/* Try to merge */
 151			if (swap_offset == ext->end + 1) {
 152				ext->end++;
 153				return 0;
 154			}
 155			new = &((*new)->rb_right);
 156		} else {
 157			/* It already is in the tree */
 158			return -EINVAL;
 159		}
 160	}
 161	/* Add the new node and rebalance the tree. */
 162	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
 163	if (!ext)
 164		return -ENOMEM;
 165
 166	ext->start = swap_offset;
 167	ext->end = swap_offset;
 168	rb_link_node(&ext->node, parent, new);
 169	rb_insert_color(&ext->node, &swsusp_extents);
 170	return 0;
 171}
 172
 173/**
 174 *	alloc_swapdev_block - allocate a swap page and register that it has
 175 *	been allocated, so that it can be freed in case of an error.
 176 */
 177
 178sector_t alloc_swapdev_block(int swap)
 179{
 180	unsigned long offset;
 181
 182	offset = swp_offset(get_swap_page_of_type(swap));
 183	if (offset) {
 184		if (swsusp_extents_insert(offset))
 185			swap_free(swp_entry(swap, offset));
 186		else
 187			return swapdev_block(swap, offset);
 188	}
 189	return 0;
 190}
 191
 192/**
 193 *	free_all_swap_pages - free swap pages allocated for saving image data.
 194 *	It also frees the extents used to register which swap entries had been
 195 *	allocated.
 196 */
 197
 198void free_all_swap_pages(int swap)
 199{
 200	struct rb_node *node;
 201
 202	while ((node = swsusp_extents.rb_node)) {
 203		struct swsusp_extent *ext;
 204		unsigned long offset;
 205
 206		ext = rb_entry(node, struct swsusp_extent, node);
 207		rb_erase(node, &swsusp_extents);
 208		for (offset = ext->start; offset <= ext->end; offset++)
 209			swap_free(swp_entry(swap, offset));
 210
 211		kfree(ext);
 212	}
 213}
 214
 215int swsusp_swap_in_use(void)
 216{
 217	return (swsusp_extents.rb_node != NULL);
 218}
 219
 220/*
 221 * General things
 222 */
 223
 224static unsigned short root_swap = 0xffff;
 225static struct block_device *hib_resume_bdev;
 226
 227struct hib_bio_batch {
 228	atomic_t		count;
 229	wait_queue_head_t	wait;
 230	blk_status_t		error;
 231};
 232
 233static void hib_init_batch(struct hib_bio_batch *hb)
 234{
 235	atomic_set(&hb->count, 0);
 236	init_waitqueue_head(&hb->wait);
 237	hb->error = BLK_STS_OK;
 238}
 239
 240static void hib_end_io(struct bio *bio)
 241{
 242	struct hib_bio_batch *hb = bio->bi_private;
 243	struct page *page = bio_first_page_all(bio);
 244
 245	if (bio->bi_status) {
 246		pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
 247			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 248			 (unsigned long long)bio->bi_iter.bi_sector);
 249	}
 250
 251	if (bio_data_dir(bio) == WRITE)
 252		put_page(page);
 253	else if (clean_pages_on_read)
 254		flush_icache_range((unsigned long)page_address(page),
 255				   (unsigned long)page_address(page) + PAGE_SIZE);
 256
 257	if (bio->bi_status && !hb->error)
 258		hb->error = bio->bi_status;
 259	if (atomic_dec_and_test(&hb->count))
 260		wake_up(&hb->wait);
 261
 262	bio_put(bio);
 263}
 264
 265static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
 266		struct hib_bio_batch *hb)
 267{
 268	struct page *page = virt_to_page(addr);
 269	struct bio *bio;
 270	int error = 0;
 271
 272	bio = bio_alloc(__GFP_RECLAIM | __GFP_HIGH, 1);
 273	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
 274	bio_set_dev(bio, hib_resume_bdev);
 275	bio_set_op_attrs(bio, op, op_flags);
 276
 277	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 278		pr_err("Adding page to bio failed at %llu\n",
 279		       (unsigned long long)bio->bi_iter.bi_sector);
 280		bio_put(bio);
 281		return -EFAULT;
 282	}
 283
 284	if (hb) {
 285		bio->bi_end_io = hib_end_io;
 286		bio->bi_private = hb;
 287		atomic_inc(&hb->count);
 288		submit_bio(bio);
 289	} else {
 290		error = submit_bio_wait(bio);
 291		bio_put(bio);
 292	}
 293
 294	return error;
 295}
 296
 297static blk_status_t hib_wait_io(struct hib_bio_batch *hb)
 298{
 299	wait_event(hb->wait, atomic_read(&hb->count) == 0);
 300	return blk_status_to_errno(hb->error);
 301}
 302
 303/*
 304 * Saving part
 305 */
 306
 307static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
 308{
 309	int error;
 310
 311	hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
 312		      swsusp_header, NULL);
 313	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
 314	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
 315		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
 316		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
 317		swsusp_header->image = handle->first_sector;
 318		swsusp_header->flags = flags;
 319		if (flags & SF_CRC32_MODE)
 320			swsusp_header->crc32 = handle->crc32;
 321		error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
 322				      swsusp_resume_block, swsusp_header, NULL);
 323	} else {
 324		pr_err("Swap header not found!\n");
 325		error = -ENODEV;
 326	}
 327	return error;
 328}
 329
 330/**
 331 *	swsusp_swap_check - check if the resume device is a swap device
 332 *	and get its index (if so)
 333 *
 334 *	This is called before saving image
 335 */
 336static int swsusp_swap_check(void)
 337{
 338	int res;
 339
 340	res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
 341			&hib_resume_bdev);
 342	if (res < 0)
 343		return res;
 344
 345	root_swap = res;
 346	res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
 347	if (res)
 348		return res;
 349
 350	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
 351	if (res < 0)
 352		blkdev_put(hib_resume_bdev, FMODE_WRITE);
 353
 354	/*
 355	 * Update the resume device to the one actually used,
 356	 * so the test_resume mode can use it in case it is
 357	 * invoked from hibernate() to test the snapshot.
 358	 */
 359	swsusp_resume_device = hib_resume_bdev->bd_dev;
 360	return res;
 361}
 362
 363/**
 364 *	write_page - Write one page to given swap location.
 365 *	@buf:		Address we're writing.
 366 *	@offset:	Offset of the swap page we're writing to.
 367 *	@hb:		bio completion batch
 368 */
 369
 370static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
 371{
 372	void *src;
 373	int ret;
 374
 375	if (!offset)
 376		return -ENOSPC;
 377
 378	if (hb) {
 379		src = (void *)__get_free_page(__GFP_RECLAIM | __GFP_NOWARN |
 380		                              __GFP_NORETRY);
 381		if (src) {
 382			copy_page(src, buf);
 383		} else {
 384			ret = hib_wait_io(hb); /* Free pages */
 385			if (ret)
 386				return ret;
 387			src = (void *)__get_free_page(__GFP_RECLAIM |
 388			                              __GFP_NOWARN |
 389			                              __GFP_NORETRY);
 390			if (src) {
 391				copy_page(src, buf);
 392			} else {
 393				WARN_ON_ONCE(1);
 394				hb = NULL;	/* Go synchronous */
 395				src = buf;
 396			}
 397		}
 398	} else {
 399		src = buf;
 400	}
 401	return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb);
 402}
 403
 404static void release_swap_writer(struct swap_map_handle *handle)
 405{
 406	if (handle->cur)
 407		free_page((unsigned long)handle->cur);
 408	handle->cur = NULL;
 409}
 410
 411static int get_swap_writer(struct swap_map_handle *handle)
 412{
 413	int ret;
 414
 415	ret = swsusp_swap_check();
 416	if (ret) {
 417		if (ret != -ENOSPC)
 418			pr_err("Cannot find swap device, try swapon -a\n");
 
 419		return ret;
 420	}
 421	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
 422	if (!handle->cur) {
 423		ret = -ENOMEM;
 424		goto err_close;
 425	}
 426	handle->cur_swap = alloc_swapdev_block(root_swap);
 427	if (!handle->cur_swap) {
 428		ret = -ENOSPC;
 429		goto err_rel;
 430	}
 431	handle->k = 0;
 432	handle->reqd_free_pages = reqd_free_pages();
 433	handle->first_sector = handle->cur_swap;
 434	return 0;
 435err_rel:
 436	release_swap_writer(handle);
 437err_close:
 438	swsusp_close(FMODE_WRITE);
 439	return ret;
 440}
 441
 442static int swap_write_page(struct swap_map_handle *handle, void *buf,
 443		struct hib_bio_batch *hb)
 444{
 445	int error = 0;
 446	sector_t offset;
 447
 448	if (!handle->cur)
 449		return -EINVAL;
 450	offset = alloc_swapdev_block(root_swap);
 451	error = write_page(buf, offset, hb);
 452	if (error)
 453		return error;
 454	handle->cur->entries[handle->k++] = offset;
 455	if (handle->k >= MAP_PAGE_ENTRIES) {
 
 
 
 456		offset = alloc_swapdev_block(root_swap);
 457		if (!offset)
 458			return -ENOSPC;
 459		handle->cur->next_swap = offset;
 460		error = write_page(handle->cur, handle->cur_swap, hb);
 461		if (error)
 462			goto out;
 463		clear_page(handle->cur);
 464		handle->cur_swap = offset;
 465		handle->k = 0;
 466
 467		if (hb && low_free_pages() <= handle->reqd_free_pages) {
 468			error = hib_wait_io(hb);
 469			if (error)
 470				goto out;
 471			/*
 472			 * Recalculate the number of required free pages, to
 473			 * make sure we never take more than half.
 474			 */
 475			handle->reqd_free_pages = reqd_free_pages();
 476		}
 477	}
 478 out:
 479	return error;
 480}
 481
 482static int flush_swap_writer(struct swap_map_handle *handle)
 483{
 484	if (handle->cur && handle->cur_swap)
 485		return write_page(handle->cur, handle->cur_swap, NULL);
 486	else
 487		return -EINVAL;
 488}
 489
 490static int swap_writer_finish(struct swap_map_handle *handle,
 491		unsigned int flags, int error)
 492{
 493	if (!error) {
 494		flush_swap_writer(handle);
 495		pr_info("S");
 496		error = mark_swapfiles(handle, flags);
 497		pr_cont("|\n");
 498	}
 499
 500	if (error)
 501		free_all_swap_pages(root_swap);
 502	release_swap_writer(handle);
 503	swsusp_close(FMODE_WRITE);
 504
 505	return error;
 506}
 507
 508/* We need to remember how much compressed data we need to read. */
 509#define LZO_HEADER	sizeof(size_t)
 510
 511/* Number of pages/bytes we'll compress at one time. */
 512#define LZO_UNC_PAGES	32
 513#define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
 514
 515/* Number of pages/bytes we need for compressed data (worst case). */
 516#define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
 517			             LZO_HEADER, PAGE_SIZE)
 518#define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
 519
 520/* Maximum number of threads for compression/decompression. */
 521#define LZO_THREADS	3
 522
 523/* Minimum/maximum number of pages for read buffering. */
 524#define LZO_MIN_RD_PAGES	1024
 525#define LZO_MAX_RD_PAGES	8192
 526
 527
 528/**
 529 *	save_image - save the suspend image data
 530 */
 531
 532static int save_image(struct swap_map_handle *handle,
 533                      struct snapshot_handle *snapshot,
 534                      unsigned int nr_to_write)
 535{
 536	unsigned int m;
 537	int ret;
 538	int nr_pages;
 539	int err2;
 540	struct hib_bio_batch hb;
 541	ktime_t start;
 542	ktime_t stop;
 543
 544	hib_init_batch(&hb);
 545
 546	pr_info("Saving image data pages (%u pages)...\n",
 547		nr_to_write);
 548	m = nr_to_write / 10;
 549	if (!m)
 550		m = 1;
 551	nr_pages = 0;
 552	start = ktime_get();
 
 553	while (1) {
 554		ret = snapshot_read_next(snapshot);
 555		if (ret <= 0)
 556			break;
 557		ret = swap_write_page(handle, data_of(*snapshot), &hb);
 558		if (ret)
 559			break;
 560		if (!(nr_pages % m))
 561			pr_info("Image saving progress: %3d%%\n",
 562				nr_pages / m * 10);
 563		nr_pages++;
 564	}
 565	err2 = hib_wait_io(&hb);
 566	stop = ktime_get();
 567	if (!ret)
 568		ret = err2;
 569	if (!ret)
 570		pr_info("Image saving done\n");
 571	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 
 
 572	return ret;
 573}
 574
 575/**
 576 * Structure used for CRC32.
 577 */
 578struct crc_data {
 579	struct task_struct *thr;                  /* thread */
 580	atomic_t ready;                           /* ready to start flag */
 581	atomic_t stop;                            /* ready to stop flag */
 582	unsigned run_threads;                     /* nr current threads */
 583	wait_queue_head_t go;                     /* start crc update */
 584	wait_queue_head_t done;                   /* crc update done */
 585	u32 *crc32;                               /* points to handle's crc32 */
 586	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
 587	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
 588};
 589
 590/**
 591 * CRC32 update function that runs in its own thread.
 592 */
 593static int crc32_threadfn(void *data)
 594{
 595	struct crc_data *d = data;
 596	unsigned i;
 597
 598	while (1) {
 599		wait_event(d->go, atomic_read(&d->ready) ||
 600		                  kthread_should_stop());
 601		if (kthread_should_stop()) {
 602			d->thr = NULL;
 603			atomic_set(&d->stop, 1);
 604			wake_up(&d->done);
 605			break;
 606		}
 607		atomic_set(&d->ready, 0);
 608
 609		for (i = 0; i < d->run_threads; i++)
 610			*d->crc32 = crc32_le(*d->crc32,
 611			                     d->unc[i], *d->unc_len[i]);
 612		atomic_set(&d->stop, 1);
 613		wake_up(&d->done);
 614	}
 615	return 0;
 616}
 617/**
 618 * Structure used for LZO data compression.
 619 */
 620struct cmp_data {
 621	struct task_struct *thr;                  /* thread */
 622	atomic_t ready;                           /* ready to start flag */
 623	atomic_t stop;                            /* ready to stop flag */
 624	int ret;                                  /* return code */
 625	wait_queue_head_t go;                     /* start compression */
 626	wait_queue_head_t done;                   /* compression done */
 627	size_t unc_len;                           /* uncompressed length */
 628	size_t cmp_len;                           /* compressed length */
 629	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
 630	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
 631	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
 632};
 633
 634/**
 635 * Compression function that runs in its own thread.
 636 */
 637static int lzo_compress_threadfn(void *data)
 638{
 639	struct cmp_data *d = data;
 640
 641	while (1) {
 642		wait_event(d->go, atomic_read(&d->ready) ||
 643		                  kthread_should_stop());
 644		if (kthread_should_stop()) {
 645			d->thr = NULL;
 646			d->ret = -1;
 647			atomic_set(&d->stop, 1);
 648			wake_up(&d->done);
 649			break;
 650		}
 651		atomic_set(&d->ready, 0);
 652
 653		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
 654		                          d->cmp + LZO_HEADER, &d->cmp_len,
 655		                          d->wrk);
 656		atomic_set(&d->stop, 1);
 657		wake_up(&d->done);
 658	}
 659	return 0;
 660}
 661
 662/**
 663 * save_image_lzo - Save the suspend image data compressed with LZO.
 664 * @handle: Swap map handle to use for saving the image.
 665 * @snapshot: Image to read data from.
 666 * @nr_to_write: Number of pages to save.
 667 */
 668static int save_image_lzo(struct swap_map_handle *handle,
 669                          struct snapshot_handle *snapshot,
 670                          unsigned int nr_to_write)
 671{
 672	unsigned int m;
 673	int ret = 0;
 674	int nr_pages;
 675	int err2;
 676	struct hib_bio_batch hb;
 677	ktime_t start;
 678	ktime_t stop;
 679	size_t off;
 680	unsigned thr, run_threads, nr_threads;
 681	unsigned char *page = NULL;
 682	struct cmp_data *data = NULL;
 683	struct crc_data *crc = NULL;
 684
 685	hib_init_batch(&hb);
 686
 687	/*
 688	 * We'll limit the number of threads for compression to limit memory
 689	 * footprint.
 690	 */
 691	nr_threads = num_online_cpus() - 1;
 692	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
 693
 694	page = (void *)__get_free_page(__GFP_RECLAIM | __GFP_HIGH);
 695	if (!page) {
 696		pr_err("Failed to allocate LZO page\n");
 697		ret = -ENOMEM;
 698		goto out_clean;
 699	}
 700
 701	data = vmalloc(sizeof(*data) * nr_threads);
 702	if (!data) {
 703		pr_err("Failed to allocate LZO data\n");
 704		ret = -ENOMEM;
 705		goto out_clean;
 706	}
 707	for (thr = 0; thr < nr_threads; thr++)
 708		memset(&data[thr], 0, offsetof(struct cmp_data, go));
 709
 710	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
 711	if (!crc) {
 712		pr_err("Failed to allocate crc\n");
 713		ret = -ENOMEM;
 714		goto out_clean;
 
 715	}
 716	memset(crc, 0, offsetof(struct crc_data, go));
 717
 718	/*
 719	 * Start the compression threads.
 720	 */
 721	for (thr = 0; thr < nr_threads; thr++) {
 722		init_waitqueue_head(&data[thr].go);
 723		init_waitqueue_head(&data[thr].done);
 724
 725		data[thr].thr = kthread_run(lzo_compress_threadfn,
 726		                            &data[thr],
 727		                            "image_compress/%u", thr);
 728		if (IS_ERR(data[thr].thr)) {
 729			data[thr].thr = NULL;
 730			pr_err("Cannot start compression threads\n");
 731			ret = -ENOMEM;
 732			goto out_clean;
 733		}
 734	}
 735
 736	/*
 737	 * Start the CRC32 thread.
 738	 */
 739	init_waitqueue_head(&crc->go);
 740	init_waitqueue_head(&crc->done);
 741
 742	handle->crc32 = 0;
 743	crc->crc32 = &handle->crc32;
 744	for (thr = 0; thr < nr_threads; thr++) {
 745		crc->unc[thr] = data[thr].unc;
 746		crc->unc_len[thr] = &data[thr].unc_len;
 747	}
 748
 749	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
 750	if (IS_ERR(crc->thr)) {
 751		crc->thr = NULL;
 752		pr_err("Cannot start CRC32 thread\n");
 753		ret = -ENOMEM;
 754		goto out_clean;
 755	}
 756
 757	/*
 758	 * Adjust the number of required free pages after all allocations have
 759	 * been done. We don't want to run out of pages when writing.
 760	 */
 761	handle->reqd_free_pages = reqd_free_pages();
 762
 763	pr_info("Using %u thread(s) for compression\n", nr_threads);
 764	pr_info("Compressing and saving image data (%u pages)...\n",
 765		nr_to_write);
 766	m = nr_to_write / 10;
 767	if (!m)
 768		m = 1;
 769	nr_pages = 0;
 770	start = ktime_get();
 
 771	for (;;) {
 772		for (thr = 0; thr < nr_threads; thr++) {
 773			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
 774				ret = snapshot_read_next(snapshot);
 775				if (ret < 0)
 776					goto out_finish;
 777
 778				if (!ret)
 779					break;
 780
 781				memcpy(data[thr].unc + off,
 782				       data_of(*snapshot), PAGE_SIZE);
 783
 784				if (!(nr_pages % m))
 785					pr_info("Image saving progress: %3d%%\n",
 786						nr_pages / m * 10);
 787				nr_pages++;
 788			}
 789			if (!off)
 790				break;
 791
 792			data[thr].unc_len = off;
 793
 794			atomic_set(&data[thr].ready, 1);
 795			wake_up(&data[thr].go);
 
 796		}
 797
 798		if (!thr)
 799			break;
 800
 801		crc->run_threads = thr;
 802		atomic_set(&crc->ready, 1);
 803		wake_up(&crc->go);
 804
 805		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
 806			wait_event(data[thr].done,
 807			           atomic_read(&data[thr].stop));
 808			atomic_set(&data[thr].stop, 0);
 
 
 
 
 
 
 809
 810			ret = data[thr].ret;
 811
 812			if (ret < 0) {
 813				pr_err("LZO compression failed\n");
 814				goto out_finish;
 815			}
 
 
 
 
 
 816
 817			if (unlikely(!data[thr].cmp_len ||
 818			             data[thr].cmp_len >
 819			             lzo1x_worst_compress(data[thr].unc_len))) {
 820				pr_err("Invalid LZO compressed length\n");
 821				ret = -1;
 822				goto out_finish;
 823			}
 824
 825			*(size_t *)data[thr].cmp = data[thr].cmp_len;
 826
 827			/*
 828			 * Given we are writing one page at a time to disk, we
 829			 * copy that much from the buffer, although the last
 830			 * bit will likely be smaller than full page. This is
 831			 * OK - we saved the length of the compressed data, so
 832			 * any garbage at the end will be discarded when we
 833			 * read it.
 834			 */
 835			for (off = 0;
 836			     off < LZO_HEADER + data[thr].cmp_len;
 837			     off += PAGE_SIZE) {
 838				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
 839
 840				ret = swap_write_page(handle, page, &hb);
 841				if (ret)
 842					goto out_finish;
 843			}
 844		}
 845
 846		wait_event(crc->done, atomic_read(&crc->stop));
 847		atomic_set(&crc->stop, 0);
 848	}
 849
 850out_finish:
 851	err2 = hib_wait_io(&hb);
 852	stop = ktime_get();
 853	if (!ret)
 854		ret = err2;
 855	if (!ret)
 856		pr_info("Image saving done\n");
 857	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 858out_clean:
 859	if (crc) {
 860		if (crc->thr)
 861			kthread_stop(crc->thr);
 862		kfree(crc);
 863	}
 864	if (data) {
 865		for (thr = 0; thr < nr_threads; thr++)
 866			if (data[thr].thr)
 867				kthread_stop(data[thr].thr);
 868		vfree(data);
 869	}
 870	if (page) free_page((unsigned long)page);
 871
 872	return ret;
 873}
 874
 875/**
 876 *	enough_swap - Make sure we have enough swap to save the image.
 877 *
 878 *	Returns TRUE or FALSE after checking the total amount of swap
 879 *	space avaiable from the resume partition.
 880 */
 881
 882static int enough_swap(unsigned int nr_pages)
 883{
 884	unsigned int free_swap = count_swap_pages(root_swap, 1);
 885	unsigned int required;
 886
 887	pr_debug("Free swap pages: %u\n", free_swap);
 888
 889	required = PAGES_FOR_IO + nr_pages;
 
 890	return free_swap > required;
 891}
 892
 893/**
 894 *	swsusp_write - Write entire image and metadata.
 895 *	@flags: flags to pass to the "boot" kernel in the image header
 896 *
 897 *	It is important _NOT_ to umount filesystems at this point. We want
 898 *	them synced (in case something goes wrong) but we DO not want to mark
 899 *	filesystem clean: it is not. (And it does not matter, if we resume
 900 *	correctly, we'll mark system clean, anyway.)
 901 */
 902
 903int swsusp_write(unsigned int flags)
 904{
 905	struct swap_map_handle handle;
 906	struct snapshot_handle snapshot;
 907	struct swsusp_info *header;
 908	unsigned long pages;
 909	int error;
 910
 911	pages = snapshot_get_image_size();
 912	error = get_swap_writer(&handle);
 913	if (error) {
 914		pr_err("Cannot get swap writer\n");
 915		return error;
 916	}
 917	if (flags & SF_NOCOMPRESS_MODE) {
 918		if (!enough_swap(pages)) {
 919			pr_err("Not enough free swap\n");
 920			error = -ENOSPC;
 921			goto out_finish;
 922		}
 923	}
 924	memset(&snapshot, 0, sizeof(struct snapshot_handle));
 925	error = snapshot_read_next(&snapshot);
 926	if (error < PAGE_SIZE) {
 927		if (error >= 0)
 928			error = -EFAULT;
 929
 930		goto out_finish;
 931	}
 932	header = (struct swsusp_info *)data_of(snapshot);
 933	error = swap_write_page(&handle, header, NULL);
 934	if (!error) {
 935		error = (flags & SF_NOCOMPRESS_MODE) ?
 936			save_image(&handle, &snapshot, pages - 1) :
 937			save_image_lzo(&handle, &snapshot, pages - 1);
 938	}
 939out_finish:
 940	error = swap_writer_finish(&handle, flags, error);
 941	return error;
 942}
 943
 944/**
 945 *	The following functions allow us to read data using a swap map
 946 *	in a file-alike way
 947 */
 948
 949static void release_swap_reader(struct swap_map_handle *handle)
 950{
 951	struct swap_map_page_list *tmp;
 952
 953	while (handle->maps) {
 954		if (handle->maps->map)
 955			free_page((unsigned long)handle->maps->map);
 956		tmp = handle->maps;
 957		handle->maps = handle->maps->next;
 958		kfree(tmp);
 959	}
 960	handle->cur = NULL;
 961}
 962
 963static int get_swap_reader(struct swap_map_handle *handle,
 964		unsigned int *flags_p)
 965{
 966	int error;
 967	struct swap_map_page_list *tmp, *last;
 968	sector_t offset;
 969
 970	*flags_p = swsusp_header->flags;
 971
 972	if (!swsusp_header->image) /* how can this happen? */
 973		return -EINVAL;
 974
 975	handle->cur = NULL;
 976	last = handle->maps = NULL;
 977	offset = swsusp_header->image;
 978	while (offset) {
 979		tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
 980		if (!tmp) {
 981			release_swap_reader(handle);
 982			return -ENOMEM;
 983		}
 984		memset(tmp, 0, sizeof(*tmp));
 985		if (!handle->maps)
 986			handle->maps = tmp;
 987		if (last)
 988			last->next = tmp;
 989		last = tmp;
 990
 991		tmp->map = (struct swap_map_page *)
 992			   __get_free_page(__GFP_RECLAIM | __GFP_HIGH);
 993		if (!tmp->map) {
 994			release_swap_reader(handle);
 995			return -ENOMEM;
 996		}
 997
 998		error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL);
 999		if (error) {
1000			release_swap_reader(handle);
1001			return error;
1002		}
1003		offset = tmp->map->next_swap;
1004	}
1005	handle->k = 0;
1006	handle->cur = handle->maps->map;
1007	return 0;
1008}
1009
1010static int swap_read_page(struct swap_map_handle *handle, void *buf,
1011		struct hib_bio_batch *hb)
1012{
1013	sector_t offset;
1014	int error;
1015	struct swap_map_page_list *tmp;
1016
1017	if (!handle->cur)
1018		return -EINVAL;
1019	offset = handle->cur->entries[handle->k];
1020	if (!offset)
1021		return -EFAULT;
1022	error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb);
1023	if (error)
1024		return error;
1025	if (++handle->k >= MAP_PAGE_ENTRIES) {
 
1026		handle->k = 0;
1027		free_page((unsigned long)handle->maps->map);
1028		tmp = handle->maps;
1029		handle->maps = handle->maps->next;
1030		kfree(tmp);
1031		if (!handle->maps)
1032			release_swap_reader(handle);
1033		else
1034			handle->cur = handle->maps->map;
1035	}
1036	return error;
1037}
1038
1039static int swap_reader_finish(struct swap_map_handle *handle)
1040{
1041	release_swap_reader(handle);
1042
1043	return 0;
1044}
1045
1046/**
1047 *	load_image - load the image using the swap map handle
1048 *	@handle and the snapshot handle @snapshot
1049 *	(assume there are @nr_pages pages to load)
1050 */
1051
1052static int load_image(struct swap_map_handle *handle,
1053                      struct snapshot_handle *snapshot,
1054                      unsigned int nr_to_read)
1055{
1056	unsigned int m;
1057	int ret = 0;
1058	ktime_t start;
1059	ktime_t stop;
1060	struct hib_bio_batch hb;
1061	int err2;
1062	unsigned nr_pages;
1063
1064	hib_init_batch(&hb);
1065
1066	clean_pages_on_read = true;
1067	pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1068	m = nr_to_read / 10;
1069	if (!m)
1070		m = 1;
1071	nr_pages = 0;
1072	start = ktime_get();
 
1073	for ( ; ; ) {
1074		ret = snapshot_write_next(snapshot);
1075		if (ret <= 0)
1076			break;
1077		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1078		if (ret)
1079			break;
1080		if (snapshot->sync_read)
1081			ret = hib_wait_io(&hb);
1082		if (ret)
1083			break;
1084		if (!(nr_pages % m))
1085			pr_info("Image loading progress: %3d%%\n",
1086				nr_pages / m * 10);
1087		nr_pages++;
1088	}
1089	err2 = hib_wait_io(&hb);
1090	stop = ktime_get();
1091	if (!ret)
1092		ret = err2;
1093	if (!ret) {
1094		pr_info("Image loading done\n");
1095		snapshot_write_finalize(snapshot);
1096		if (!snapshot_image_loaded(snapshot))
1097			ret = -ENODATA;
1098	}
1099	swsusp_show_speed(start, stop, nr_to_read, "Read");
1100	return ret;
1101}
1102
1103/**
1104 * Structure used for LZO data decompression.
1105 */
1106struct dec_data {
1107	struct task_struct *thr;                  /* thread */
1108	atomic_t ready;                           /* ready to start flag */
1109	atomic_t stop;                            /* ready to stop flag */
1110	int ret;                                  /* return code */
1111	wait_queue_head_t go;                     /* start decompression */
1112	wait_queue_head_t done;                   /* decompression done */
1113	size_t unc_len;                           /* uncompressed length */
1114	size_t cmp_len;                           /* compressed length */
1115	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1116	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1117};
1118
1119/**
1120 * Deompression function that runs in its own thread.
1121 */
1122static int lzo_decompress_threadfn(void *data)
1123{
1124	struct dec_data *d = data;
1125
1126	while (1) {
1127		wait_event(d->go, atomic_read(&d->ready) ||
1128		                  kthread_should_stop());
1129		if (kthread_should_stop()) {
1130			d->thr = NULL;
1131			d->ret = -1;
1132			atomic_set(&d->stop, 1);
1133			wake_up(&d->done);
1134			break;
1135		}
1136		atomic_set(&d->ready, 0);
1137
1138		d->unc_len = LZO_UNC_SIZE;
1139		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1140		                               d->unc, &d->unc_len);
1141		if (clean_pages_on_decompress)
1142			flush_icache_range((unsigned long)d->unc,
1143					   (unsigned long)d->unc + d->unc_len);
1144
1145		atomic_set(&d->stop, 1);
1146		wake_up(&d->done);
1147	}
1148	return 0;
1149}
1150
1151/**
1152 * load_image_lzo - Load compressed image data and decompress them with LZO.
1153 * @handle: Swap map handle to use for loading data.
1154 * @snapshot: Image to copy uncompressed data into.
1155 * @nr_to_read: Number of pages to load.
1156 */
1157static int load_image_lzo(struct swap_map_handle *handle,
1158                          struct snapshot_handle *snapshot,
1159                          unsigned int nr_to_read)
1160{
1161	unsigned int m;
1162	int ret = 0;
1163	int eof = 0;
1164	struct hib_bio_batch hb;
1165	ktime_t start;
1166	ktime_t stop;
1167	unsigned nr_pages;
1168	size_t off;
1169	unsigned i, thr, run_threads, nr_threads;
1170	unsigned ring = 0, pg = 0, ring_size = 0,
1171	         have = 0, want, need, asked = 0;
1172	unsigned long read_pages = 0;
1173	unsigned char **page = NULL;
1174	struct dec_data *data = NULL;
1175	struct crc_data *crc = NULL;
1176
1177	hib_init_batch(&hb);
1178
1179	/*
1180	 * We'll limit the number of threads for decompression to limit memory
1181	 * footprint.
1182	 */
1183	nr_threads = num_online_cpus() - 1;
1184	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1185
1186	page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1187	if (!page) {
1188		pr_err("Failed to allocate LZO page\n");
1189		ret = -ENOMEM;
1190		goto out_clean;
1191	}
1192
1193	data = vmalloc(sizeof(*data) * nr_threads);
1194	if (!data) {
1195		pr_err("Failed to allocate LZO data\n");
1196		ret = -ENOMEM;
1197		goto out_clean;
1198	}
1199	for (thr = 0; thr < nr_threads; thr++)
1200		memset(&data[thr], 0, offsetof(struct dec_data, go));
1201
1202	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1203	if (!crc) {
1204		pr_err("Failed to allocate crc\n");
1205		ret = -ENOMEM;
1206		goto out_clean;
1207	}
1208	memset(crc, 0, offsetof(struct crc_data, go));
1209
1210	clean_pages_on_decompress = true;
 
 
1211
1212	/*
1213	 * Start the decompression threads.
1214	 */
1215	for (thr = 0; thr < nr_threads; thr++) {
1216		init_waitqueue_head(&data[thr].go);
1217		init_waitqueue_head(&data[thr].done);
1218
1219		data[thr].thr = kthread_run(lzo_decompress_threadfn,
1220		                            &data[thr],
1221		                            "image_decompress/%u", thr);
1222		if (IS_ERR(data[thr].thr)) {
1223			data[thr].thr = NULL;
1224			pr_err("Cannot start decompression threads\n");
1225			ret = -ENOMEM;
1226			goto out_clean;
1227		}
1228	}
1229
1230	/*
1231	 * Start the CRC32 thread.
1232	 */
1233	init_waitqueue_head(&crc->go);
1234	init_waitqueue_head(&crc->done);
1235
1236	handle->crc32 = 0;
1237	crc->crc32 = &handle->crc32;
1238	for (thr = 0; thr < nr_threads; thr++) {
1239		crc->unc[thr] = data[thr].unc;
1240		crc->unc_len[thr] = &data[thr].unc_len;
1241	}
1242
1243	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1244	if (IS_ERR(crc->thr)) {
1245		crc->thr = NULL;
1246		pr_err("Cannot start CRC32 thread\n");
1247		ret = -ENOMEM;
1248		goto out_clean;
1249	}
1250
1251	/*
1252	 * Set the number of pages for read buffering.
1253	 * This is complete guesswork, because we'll only know the real
1254	 * picture once prepare_image() is called, which is much later on
1255	 * during the image load phase. We'll assume the worst case and
1256	 * say that none of the image pages are from high memory.
1257	 */
1258	if (low_free_pages() > snapshot_get_image_size())
1259		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1260	read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1261
1262	for (i = 0; i < read_pages; i++) {
1263		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1264						  __GFP_RECLAIM | __GFP_HIGH :
1265						  __GFP_RECLAIM | __GFP_NOWARN |
1266						  __GFP_NORETRY);
1267
1268		if (!page[i]) {
1269			if (i < LZO_CMP_PAGES) {
1270				ring_size = i;
1271				pr_err("Failed to allocate LZO pages\n");
1272				ret = -ENOMEM;
1273				goto out_clean;
1274			} else {
1275				break;
1276			}
1277		}
1278	}
1279	want = ring_size = i;
1280
1281	pr_info("Using %u thread(s) for decompression\n", nr_threads);
1282	pr_info("Loading and decompressing image data (%u pages)...\n",
1283		nr_to_read);
1284	m = nr_to_read / 10;
1285	if (!m)
1286		m = 1;
1287	nr_pages = 0;
1288	start = ktime_get();
 
1289
1290	ret = snapshot_write_next(snapshot);
1291	if (ret <= 0)
1292		goto out_finish;
1293
1294	for(;;) {
1295		for (i = 0; !eof && i < want; i++) {
1296			ret = swap_read_page(handle, page[ring], &hb);
1297			if (ret) {
1298				/*
1299				 * On real read error, finish. On end of data,
1300				 * set EOF flag and just exit the read loop.
1301				 */
1302				if (handle->cur &&
1303				    handle->cur->entries[handle->k]) {
1304					goto out_finish;
1305				} else {
1306					eof = 1;
1307					break;
1308				}
1309			}
1310			if (++ring >= ring_size)
1311				ring = 0;
1312		}
1313		asked += i;
1314		want -= i;
1315
1316		/*
1317		 * We are out of data, wait for some more.
1318		 */
1319		if (!have) {
1320			if (!asked)
1321				break;
1322
1323			ret = hib_wait_io(&hb);
1324			if (ret)
1325				goto out_finish;
1326			have += asked;
1327			asked = 0;
1328			if (eof)
1329				eof = 2;
1330		}
1331
1332		if (crc->run_threads) {
1333			wait_event(crc->done, atomic_read(&crc->stop));
1334			atomic_set(&crc->stop, 0);
1335			crc->run_threads = 0;
 
 
 
1336		}
1337
1338		for (thr = 0; have && thr < nr_threads; thr++) {
1339			data[thr].cmp_len = *(size_t *)page[pg];
1340			if (unlikely(!data[thr].cmp_len ||
1341			             data[thr].cmp_len >
1342			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1343				pr_err("Invalid LZO compressed length\n");
1344				ret = -1;
1345				goto out_finish;
1346			}
1347
1348			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1349			                    PAGE_SIZE);
1350			if (need > have) {
1351				if (eof > 1) {
1352					ret = -1;
1353					goto out_finish;
1354				}
1355				break;
1356			}
1357
1358			for (off = 0;
1359			     off < LZO_HEADER + data[thr].cmp_len;
1360			     off += PAGE_SIZE) {
1361				memcpy(data[thr].cmp + off,
1362				       page[pg], PAGE_SIZE);
1363				have--;
1364				want++;
1365				if (++pg >= ring_size)
1366					pg = 0;
1367			}
1368
1369			atomic_set(&data[thr].ready, 1);
1370			wake_up(&data[thr].go);
1371		}
1372
1373		/*
1374		 * Wait for more data while we are decompressing.
1375		 */
1376		if (have < LZO_CMP_PAGES && asked) {
1377			ret = hib_wait_io(&hb);
1378			if (ret)
1379				goto out_finish;
1380			have += asked;
1381			asked = 0;
1382			if (eof)
1383				eof = 2;
1384		}
1385
1386		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1387			wait_event(data[thr].done,
1388			           atomic_read(&data[thr].stop));
1389			atomic_set(&data[thr].stop, 0);
1390
1391			ret = data[thr].ret;
1392
1393			if (ret < 0) {
1394				pr_err("LZO decompression failed\n");
1395				goto out_finish;
1396			}
1397
1398			if (unlikely(!data[thr].unc_len ||
1399			             data[thr].unc_len > LZO_UNC_SIZE ||
1400			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1401				pr_err("Invalid LZO uncompressed length\n");
1402				ret = -1;
1403				goto out_finish;
1404			}
1405
1406			for (off = 0;
1407			     off < data[thr].unc_len; off += PAGE_SIZE) {
1408				memcpy(data_of(*snapshot),
1409				       data[thr].unc + off, PAGE_SIZE);
1410
1411				if (!(nr_pages % m))
1412					pr_info("Image loading progress: %3d%%\n",
1413						nr_pages / m * 10);
1414				nr_pages++;
1415
1416				ret = snapshot_write_next(snapshot);
1417				if (ret <= 0) {
1418					crc->run_threads = thr + 1;
1419					atomic_set(&crc->ready, 1);
1420					wake_up(&crc->go);
1421					goto out_finish;
1422				}
1423			}
1424		}
1425
1426		crc->run_threads = thr;
1427		atomic_set(&crc->ready, 1);
1428		wake_up(&crc->go);
1429	}
1430
1431out_finish:
1432	if (crc->run_threads) {
1433		wait_event(crc->done, atomic_read(&crc->stop));
1434		atomic_set(&crc->stop, 0);
1435	}
1436	stop = ktime_get();
1437	if (!ret) {
1438		pr_info("Image loading done\n");
1439		snapshot_write_finalize(snapshot);
1440		if (!snapshot_image_loaded(snapshot))
1441			ret = -ENODATA;
1442		if (!ret) {
1443			if (swsusp_header->flags & SF_CRC32_MODE) {
1444				if(handle->crc32 != swsusp_header->crc32) {
1445					pr_err("Invalid image CRC32!\n");
1446					ret = -ENODATA;
1447				}
1448			}
1449		}
1450	}
1451	swsusp_show_speed(start, stop, nr_to_read, "Read");
1452out_clean:
1453	for (i = 0; i < ring_size; i++)
1454		free_page((unsigned long)page[i]);
1455	if (crc) {
1456		if (crc->thr)
1457			kthread_stop(crc->thr);
1458		kfree(crc);
1459	}
1460	if (data) {
1461		for (thr = 0; thr < nr_threads; thr++)
1462			if (data[thr].thr)
1463				kthread_stop(data[thr].thr);
1464		vfree(data);
1465	}
1466	vfree(page);
1467
1468	return ret;
1469}
1470
1471/**
1472 *	swsusp_read - read the hibernation image.
1473 *	@flags_p: flags passed by the "frozen" kernel in the image header should
1474 *		  be written into this memory location
1475 */
1476
1477int swsusp_read(unsigned int *flags_p)
1478{
1479	int error;
1480	struct swap_map_handle handle;
1481	struct snapshot_handle snapshot;
1482	struct swsusp_info *header;
1483
1484	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1485	error = snapshot_write_next(&snapshot);
1486	if (error < PAGE_SIZE)
1487		return error < 0 ? error : -EFAULT;
1488	header = (struct swsusp_info *)data_of(snapshot);
1489	error = get_swap_reader(&handle, flags_p);
1490	if (error)
1491		goto end;
1492	if (!error)
1493		error = swap_read_page(&handle, header, NULL);
1494	if (!error) {
1495		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1496			load_image(&handle, &snapshot, header->pages - 1) :
1497			load_image_lzo(&handle, &snapshot, header->pages - 1);
1498	}
1499	swap_reader_finish(&handle);
1500end:
1501	if (!error)
1502		pr_debug("Image successfully loaded\n");
1503	else
1504		pr_debug("Error %d resuming\n", error);
1505	return error;
1506}
1507
1508/**
1509 *      swsusp_check - Check for swsusp signature in the resume device
1510 */
1511
1512int swsusp_check(void)
1513{
1514	int error;
1515
1516	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1517					    FMODE_READ, NULL);
1518	if (!IS_ERR(hib_resume_bdev)) {
1519		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1520		clear_page(swsusp_header);
1521		error = hib_submit_io(REQ_OP_READ, 0,
1522					swsusp_resume_block,
1523					swsusp_header, NULL);
1524		if (error)
1525			goto put;
1526
1527		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1528			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1529			/* Reset swap signature now */
1530			error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1531						swsusp_resume_block,
1532						swsusp_header, NULL);
1533		} else {
1534			error = -EINVAL;
1535		}
1536
1537put:
1538		if (error)
1539			blkdev_put(hib_resume_bdev, FMODE_READ);
1540		else
1541			pr_debug("Image signature found, resuming\n");
1542	} else {
1543		error = PTR_ERR(hib_resume_bdev);
1544	}
1545
1546	if (error)
1547		pr_debug("Image not found (code %d)\n", error);
1548
1549	return error;
1550}
1551
1552/**
1553 *	swsusp_close - close swap device.
1554 */
1555
1556void swsusp_close(fmode_t mode)
1557{
1558	if (IS_ERR(hib_resume_bdev)) {
1559		pr_debug("Image device not initialised\n");
1560		return;
1561	}
1562
1563	blkdev_put(hib_resume_bdev, mode);
1564}
1565
1566/**
1567 *      swsusp_unmark - Unmark swsusp signature in the resume device
1568 */
1569
1570#ifdef CONFIG_SUSPEND
1571int swsusp_unmark(void)
1572{
1573	int error;
1574
1575	hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
1576		      swsusp_header, NULL);
1577	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1578		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1579		error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1580					swsusp_resume_block,
1581					swsusp_header, NULL);
1582	} else {
1583		pr_err("Cannot find swsusp signature!\n");
1584		error = -ENODEV;
1585	}
1586
1587	/*
1588	 * We just returned from suspend, we don't need the image any more.
1589	 */
1590	free_all_swap_pages(root_swap);
1591
1592	return error;
1593}
1594#endif
1595
1596static int swsusp_header_init(void)
1597{
1598	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1599	if (!swsusp_header)
1600		panic("Could not allocate memory for swsusp_header\n");
1601	return 0;
1602}
1603
1604core_initcall(swsusp_header_init);