Linux Audio

Check our new training course

Loading...
v3.1
  1/******************************************************************************
  2 * xen.h
  3 *
  4 * Guest OS interface to Xen.
  5 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 * Copyright (c) 2004, K A Fraser
  7 */
  8
  9#ifndef __XEN_PUBLIC_XEN_H__
 10#define __XEN_PUBLIC_XEN_H__
 11
 12#include <asm/xen/interface.h>
 13#include <asm/pvclock-abi.h>
 14
 15/*
 16 * XEN "SYSTEM CALLS" (a.k.a. HYPERCALLS).
 17 */
 18
 19/*
 20 * x86_32: EAX = vector; EBX, ECX, EDX, ESI, EDI = args 1, 2, 3, 4, 5.
 21 *         EAX = return value
 22 *         (argument registers may be clobbered on return)
 23 * x86_64: RAX = vector; RDI, RSI, RDX, R10, R8, R9 = args 1, 2, 3, 4, 5, 6.
 24 *         RAX = return value
 25 *         (argument registers not clobbered on return; RCX, R11 are)
 26 */
 27#define __HYPERVISOR_set_trap_table        0
 28#define __HYPERVISOR_mmu_update            1
 29#define __HYPERVISOR_set_gdt               2
 30#define __HYPERVISOR_stack_switch          3
 31#define __HYPERVISOR_set_callbacks         4
 32#define __HYPERVISOR_fpu_taskswitch        5
 33#define __HYPERVISOR_sched_op_compat       6
 34#define __HYPERVISOR_dom0_op               7
 35#define __HYPERVISOR_set_debugreg          8
 36#define __HYPERVISOR_get_debugreg          9
 37#define __HYPERVISOR_update_descriptor    10
 38#define __HYPERVISOR_memory_op            12
 39#define __HYPERVISOR_multicall            13
 40#define __HYPERVISOR_update_va_mapping    14
 41#define __HYPERVISOR_set_timer_op         15
 42#define __HYPERVISOR_event_channel_op_compat 16
 43#define __HYPERVISOR_xen_version          17
 44#define __HYPERVISOR_console_io           18
 45#define __HYPERVISOR_physdev_op_compat    19
 46#define __HYPERVISOR_grant_table_op       20
 47#define __HYPERVISOR_vm_assist            21
 48#define __HYPERVISOR_update_va_mapping_otherdomain 22
 49#define __HYPERVISOR_iret                 23 /* x86 only */
 50#define __HYPERVISOR_vcpu_op              24
 51#define __HYPERVISOR_set_segment_base     25 /* x86/64 only */
 52#define __HYPERVISOR_mmuext_op            26
 53#define __HYPERVISOR_acm_op               27
 54#define __HYPERVISOR_nmi_op               28
 55#define __HYPERVISOR_sched_op             29
 56#define __HYPERVISOR_callback_op          30
 57#define __HYPERVISOR_xenoprof_op          31
 58#define __HYPERVISOR_event_channel_op     32
 59#define __HYPERVISOR_physdev_op           33
 60#define __HYPERVISOR_hvm_op               34
 
 
 
 61#define __HYPERVISOR_tmem_op              38
 
 
 
 62
 63/* Architecture-specific hypercall definitions. */
 64#define __HYPERVISOR_arch_0               48
 65#define __HYPERVISOR_arch_1               49
 66#define __HYPERVISOR_arch_2               50
 67#define __HYPERVISOR_arch_3               51
 68#define __HYPERVISOR_arch_4               52
 69#define __HYPERVISOR_arch_5               53
 70#define __HYPERVISOR_arch_6               54
 71#define __HYPERVISOR_arch_7               55
 72
 73/*
 74 * VIRTUAL INTERRUPTS
 75 *
 76 * Virtual interrupts that a guest OS may receive from Xen.
 77 */
 78#define VIRQ_TIMER      0  /* Timebase update, and/or requested timeout.  */
 79#define VIRQ_DEBUG      1  /* Request guest to dump debug info.           */
 80#define VIRQ_CONSOLE    2  /* (DOM0) Bytes received on emergency console. */
 81#define VIRQ_DOM_EXC    3  /* (DOM0) Exceptional event for some domain.   */
 82#define VIRQ_DEBUGGER   6  /* (DOM0) A domain has paused for debugging.   */
 
 
 
 
 
 
 
 
 
 
 
 
 83
 84/* Architecture-specific VIRQ definitions. */
 85#define VIRQ_ARCH_0    16
 86#define VIRQ_ARCH_1    17
 87#define VIRQ_ARCH_2    18
 88#define VIRQ_ARCH_3    19
 89#define VIRQ_ARCH_4    20
 90#define VIRQ_ARCH_5    21
 91#define VIRQ_ARCH_6    22
 92#define VIRQ_ARCH_7    23
 93
 94#define NR_VIRQS       24
 
 95/*
 96 * MMU-UPDATE REQUESTS
 97 *
 98 * HYPERVISOR_mmu_update() accepts a list of (ptr, val) pairs.
 99 * A foreigndom (FD) can be specified (or DOMID_SELF for none).
100 * Where the FD has some effect, it is described below.
101 * ptr[1:0] specifies the appropriate MMU_* command.
 
 
 
 
 
 
 
102 *
 
 
103 * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
104 * Updates an entry in a page table. If updating an L1 table, and the new
105 * table entry is valid/present, the mapped frame must belong to the FD, if
106 * an FD has been specified. If attempting to map an I/O page then the
107 * caller assumes the privilege of the FD.
108 * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
109 * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
110 * ptr[:2]  -- Machine address of the page-table entry to modify.
111 * val      -- Value to write.
112 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113 * ptr[1:0] == MMU_MACHPHYS_UPDATE:
114 * Updates an entry in the machine->pseudo-physical mapping table.
115 * ptr[:2]  -- Machine address within the frame whose mapping to modify.
116 *             The frame must belong to the FD, if one is specified.
117 * val      -- Value to write into the mapping entry.
118 *
119 * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
120 * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
121 * with those in @val.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122 */
123#define MMU_NORMAL_PT_UPDATE      0 /* checked '*ptr = val'. ptr is MA.       */
124#define MMU_MACHPHYS_UPDATE       1 /* ptr = MA of frame to modify entry for  */
125#define MMU_PT_UPDATE_PRESERVE_AD 2 /* atomically: *ptr = val | (*ptr&(A|D)) */
126
127/*
128 * MMU EXTENDED OPERATIONS
129 *
130 * HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
 
 
 
 
 
131 * A foreigndom (FD) can be specified (or DOMID_SELF for none).
132 * Where the FD has some effect, it is described below.
133 *
134 * cmd: MMUEXT_(UN)PIN_*_TABLE
135 * mfn: Machine frame number to be (un)pinned as a p.t. page.
136 *      The frame must belong to the FD, if one is specified.
137 *
138 * cmd: MMUEXT_NEW_BASEPTR
139 * mfn: Machine frame number of new page-table base to install in MMU.
140 *
141 * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
142 * mfn: Machine frame number of new page-table base to install in MMU
143 *      when in user space.
144 *
145 * cmd: MMUEXT_TLB_FLUSH_LOCAL
146 * No additional arguments. Flushes local TLB.
147 *
148 * cmd: MMUEXT_INVLPG_LOCAL
149 * linear_addr: Linear address to be flushed from the local TLB.
150 *
151 * cmd: MMUEXT_TLB_FLUSH_MULTI
152 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
153 *
154 * cmd: MMUEXT_INVLPG_MULTI
155 * linear_addr: Linear address to be flushed.
156 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
157 *
158 * cmd: MMUEXT_TLB_FLUSH_ALL
159 * No additional arguments. Flushes all VCPUs' TLBs.
160 *
161 * cmd: MMUEXT_INVLPG_ALL
162 * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
163 *
164 * cmd: MMUEXT_FLUSH_CACHE
165 * No additional arguments. Writes back and flushes cache contents.
166 *
 
 
 
 
167 * cmd: MMUEXT_SET_LDT
168 * linear_addr: Linear address of LDT base (NB. must be page-aligned).
169 * nr_ents: Number of entries in LDT.
 
 
 
 
 
 
 
 
 
 
170 */
171#define MMUEXT_PIN_L1_TABLE      0
172#define MMUEXT_PIN_L2_TABLE      1
173#define MMUEXT_PIN_L3_TABLE      2
174#define MMUEXT_PIN_L4_TABLE      3
175#define MMUEXT_UNPIN_TABLE       4
176#define MMUEXT_NEW_BASEPTR       5
177#define MMUEXT_TLB_FLUSH_LOCAL   6
178#define MMUEXT_INVLPG_LOCAL      7
179#define MMUEXT_TLB_FLUSH_MULTI   8
180#define MMUEXT_INVLPG_MULTI      9
181#define MMUEXT_TLB_FLUSH_ALL    10
182#define MMUEXT_INVLPG_ALL       11
183#define MMUEXT_FLUSH_CACHE      12
184#define MMUEXT_SET_LDT          13
185#define MMUEXT_NEW_USER_BASEPTR 15
 
 
 
 
 
186
187#ifndef __ASSEMBLY__
188struct mmuext_op {
189	unsigned int cmd;
190	union {
191		/* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR */
192		unsigned long mfn;
 
193		/* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
194		unsigned long linear_addr;
195	} arg1;
196	union {
197		/* SET_LDT */
198		unsigned int nr_ents;
199		/* TLB_FLUSH_MULTI, INVLPG_MULTI */
200		void *vcpumask;
 
 
201	} arg2;
202};
203DEFINE_GUEST_HANDLE_STRUCT(mmuext_op);
204#endif
205
206/* These are passed as 'flags' to update_va_mapping. They can be ORed. */
207/* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap.   */
208/* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer.         */
209#define UVMF_NONE               (0UL<<0) /* No flushing at all.   */
210#define UVMF_TLB_FLUSH          (1UL<<0) /* Flush entire TLB(s).  */
211#define UVMF_INVLPG             (2UL<<0) /* Flush only one entry. */
212#define UVMF_FLUSHTYPE_MASK     (3UL<<0)
213#define UVMF_MULTI              (0UL<<2) /* Flush subset of TLBs. */
214#define UVMF_LOCAL              (0UL<<2) /* Flush local TLB.      */
215#define UVMF_ALL                (1UL<<2) /* Flush all TLBs.       */
216
217/*
218 * Commands to HYPERVISOR_console_io().
219 */
220#define CONSOLEIO_write         0
221#define CONSOLEIO_read          1
222
223/*
224 * Commands to HYPERVISOR_vm_assist().
225 */
226#define VMASST_CMD_enable                0
227#define VMASST_CMD_disable               1
 
 
228#define VMASST_TYPE_4gb_segments         0
 
 
229#define VMASST_TYPE_4gb_segments_notify  1
 
 
 
 
 
 
230#define VMASST_TYPE_writable_pagetables  2
 
 
231#define VMASST_TYPE_pae_extended_cr3     3
232#define MAX_VMASST_TYPE 3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233
234#ifndef __ASSEMBLY__
235
236typedef uint16_t domid_t;
237
238/* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
239#define DOMID_FIRST_RESERVED (0x7FF0U)
240
241/* DOMID_SELF is used in certain contexts to refer to oneself. */
242#define DOMID_SELF (0x7FF0U)
243
244/*
245 * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
246 * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
247 * is useful to ensure that no mappings to the OS's own heap are accidentally
248 * installed. (e.g., in Linux this could cause havoc as reference counts
249 * aren't adjusted on the I/O-mapping code path).
250 * This only makes sense in MMUEXT_SET_FOREIGNDOM, but in that context can
251 * be specified by any calling domain.
252 */
253#define DOMID_IO   (0x7FF1U)
254
255/*
256 * DOMID_XEN is used to allow privileged domains to map restricted parts of
257 * Xen's heap space (e.g., the machine_to_phys table).
258 * This only makes sense in MMUEXT_SET_FOREIGNDOM, and is only permitted if
259 * the caller is privileged.
260 */
261#define DOMID_XEN  (0x7FF2U)
262
 
 
 
 
 
 
 
 
 
263/*
264 * Send an array of these to HYPERVISOR_mmu_update().
265 * NB. The fields are natural pointer/address size for this architecture.
266 */
267struct mmu_update {
268    uint64_t ptr;       /* Machine address of PTE. */
269    uint64_t val;       /* New contents of PTE.    */
270};
271DEFINE_GUEST_HANDLE_STRUCT(mmu_update);
272
273/*
274 * Send an array of these to HYPERVISOR_multicall().
275 * NB. The fields are natural register size for this architecture.
 
 
276 */
277struct multicall_entry {
278    unsigned long op;
279    long result;
280    unsigned long args[6];
281};
282DEFINE_GUEST_HANDLE_STRUCT(multicall_entry);
283
284/*
285 * Event channel endpoints per domain:
286 *  1024 if a long is 32 bits; 4096 if a long is 64 bits.
287 */
288#define NR_EVENT_CHANNELS (sizeof(unsigned long) * sizeof(unsigned long) * 64)
289
290struct vcpu_time_info {
291	/*
292	 * Updates to the following values are preceded and followed
293	 * by an increment of 'version'. The guest can therefore
294	 * detect updates by looking for changes to 'version'. If the
295	 * least-significant bit of the version number is set then an
296	 * update is in progress and the guest must wait to read a
297	 * consistent set of values.  The correct way to interact with
298	 * the version number is similar to Linux's seqlock: see the
299	 * implementations of read_seqbegin/read_seqretry.
300	 */
301	uint32_t version;
302	uint32_t pad0;
303	uint64_t tsc_timestamp;   /* TSC at last update of time vals.  */
304	uint64_t system_time;     /* Time, in nanosecs, since boot.    */
305	/*
306	 * Current system time:
307	 *   system_time + ((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul
308	 * CPU frequency (Hz):
309	 *   ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
310	 */
311	uint32_t tsc_to_system_mul;
312	int8_t   tsc_shift;
313	int8_t   pad1[3];
314}; /* 32 bytes */
315
316struct vcpu_info {
317	/*
318	 * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
319	 * a pending notification for a particular VCPU. It is then cleared
320	 * by the guest OS /before/ checking for pending work, thus avoiding
321	 * a set-and-check race. Note that the mask is only accessed by Xen
322	 * on the CPU that is currently hosting the VCPU. This means that the
323	 * pending and mask flags can be updated by the guest without special
324	 * synchronisation (i.e., no need for the x86 LOCK prefix).
325	 * This may seem suboptimal because if the pending flag is set by
326	 * a different CPU then an IPI may be scheduled even when the mask
327	 * is set. However, note:
328	 *  1. The task of 'interrupt holdoff' is covered by the per-event-
329	 *     channel mask bits. A 'noisy' event that is continually being
330	 *     triggered can be masked at source at this very precise
331	 *     granularity.
332	 *  2. The main purpose of the per-VCPU mask is therefore to restrict
333	 *     reentrant execution: whether for concurrency control, or to
334	 *     prevent unbounded stack usage. Whatever the purpose, we expect
335	 *     that the mask will be asserted only for short periods at a time,
336	 *     and so the likelihood of a 'spurious' IPI is suitably small.
337	 * The mask is read before making an event upcall to the guest: a
338	 * non-zero mask therefore guarantees that the VCPU will not receive
339	 * an upcall activation. The mask is cleared when the VCPU requests
340	 * to block: this avoids wakeup-waiting races.
341	 */
342	uint8_t evtchn_upcall_pending;
343	uint8_t evtchn_upcall_mask;
344	unsigned long evtchn_pending_sel;
345	struct arch_vcpu_info arch;
346	struct pvclock_vcpu_time_info time;
347}; /* 64 bytes (x86) */
348
349/*
350 * Xen/kernel shared data -- pointer provided in start_info.
351 * NB. We expect that this struct is smaller than a page.
352 */
353struct shared_info {
354	struct vcpu_info vcpu_info[MAX_VIRT_CPUS];
355
356	/*
357	 * A domain can create "event channels" on which it can send and receive
358	 * asynchronous event notifications. There are three classes of event that
359	 * are delivered by this mechanism:
360	 *  1. Bi-directional inter- and intra-domain connections. Domains must
361	 *     arrange out-of-band to set up a connection (usually by allocating
362	 *     an unbound 'listener' port and avertising that via a storage service
363	 *     such as xenstore).
364	 *  2. Physical interrupts. A domain with suitable hardware-access
365	 *     privileges can bind an event-channel port to a physical interrupt
366	 *     source.
367	 *  3. Virtual interrupts ('events'). A domain can bind an event-channel
368	 *     port to a virtual interrupt source, such as the virtual-timer
369	 *     device or the emergency console.
370	 *
371	 * Event channels are addressed by a "port index". Each channel is
372	 * associated with two bits of information:
373	 *  1. PENDING -- notifies the domain that there is a pending notification
374	 *     to be processed. This bit is cleared by the guest.
375	 *  2. MASK -- if this bit is clear then a 0->1 transition of PENDING
376	 *     will cause an asynchronous upcall to be scheduled. This bit is only
377	 *     updated by the guest. It is read-only within Xen. If a channel
378	 *     becomes pending while the channel is masked then the 'edge' is lost
379	 *     (i.e., when the channel is unmasked, the guest must manually handle
380	 *     pending notifications as no upcall will be scheduled by Xen).
381	 *
382	 * To expedite scanning of pending notifications, any 0->1 pending
383	 * transition on an unmasked channel causes a corresponding bit in a
384	 * per-vcpu selector word to be set. Each bit in the selector covers a
385	 * 'C long' in the PENDING bitfield array.
386	 */
387	unsigned long evtchn_pending[sizeof(unsigned long) * 8];
388	unsigned long evtchn_mask[sizeof(unsigned long) * 8];
389
390	/*
391	 * Wallclock time: updated only by control software. Guests should base
392	 * their gettimeofday() syscall on this wallclock-base value.
393	 */
394	struct pvclock_wall_clock wc;
395
396	struct arch_shared_info arch;
397
398};
399
400/*
401 * Start-of-day memory layout for the initial domain (DOM0):
 
402 *  1. The domain is started within contiguous virtual-memory region.
403 *  2. The contiguous region begins and ends on an aligned 4MB boundary.
404 *  3. The region start corresponds to the load address of the OS image.
405 *     If the load address is not 4MB aligned then the address is rounded down.
406 *  4. This the order of bootstrap elements in the initial virtual region:
407 *      a. relocated kernel image
408 *      b. initial ram disk              [mod_start, mod_len]
 
409 *      c. list of allocated page frames [mfn_list, nr_pages]
 
410 *      d. start_info_t structure        [register ESI (x86)]
411 *      e. bootstrap page tables         [pt_base, CR3 (x86)]
412 *      f. bootstrap stack               [register ESP (x86)]
413 *  5. Bootstrap elements are packed together, but each is 4kB-aligned.
414 *  6. The initial ram disk may be omitted.
415 *  7. The list of page frames forms a contiguous 'pseudo-physical' memory
 
 
416 *     layout for the domain. In particular, the bootstrap virtual-memory
417 *     region is a 1:1 mapping to the first section of the pseudo-physical map.
418 *  8. All bootstrap elements are mapped read-writable for the guest OS. The
419 *     only exception is the bootstrap page table, which is mapped read-only.
420 *  9. There is guaranteed to be at least 512kB padding after the final
421 *     bootstrap element. If necessary, the bootstrap virtual region is
422 *     extended by an extra 4MB to ensure this.
423 */
424
425#define MAX_GUEST_CMDLINE 1024
426struct start_info {
427	/* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME.    */
428	char magic[32];             /* "xen-<version>-<platform>".            */
429	unsigned long nr_pages;     /* Total pages allocated to this domain.  */
430	unsigned long shared_info;  /* MACHINE address of shared info struct. */
431	uint32_t flags;             /* SIF_xxx flags.                         */
432	unsigned long store_mfn;    /* MACHINE page number of shared page.    */
433	uint32_t store_evtchn;      /* Event channel for store communication. */
434	union {
435		struct {
436			unsigned long mfn;  /* MACHINE page number of console page.   */
437			uint32_t  evtchn;   /* Event channel for console page.        */
438		} domU;
439		struct {
440			uint32_t info_off;  /* Offset of console_info struct.         */
441			uint32_t info_size; /* Size of console_info struct from start.*/
442		} dom0;
443	} console;
444	/* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME).     */
445	unsigned long pt_base;      /* VIRTUAL address of page directory.     */
446	unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames.       */
447	unsigned long mfn_list;     /* VIRTUAL address of page-frame list.    */
448	unsigned long mod_start;    /* VIRTUAL address of pre-loaded module.  */
449	unsigned long mod_len;      /* Size (bytes) of pre-loaded module.     */
450	int8_t cmd_line[MAX_GUEST_CMDLINE];
 
 
 
451};
452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
453struct dom0_vga_console_info {
454	uint8_t video_type;
455#define XEN_VGATYPE_TEXT_MODE_3 0x03
456#define XEN_VGATYPE_VESA_LFB    0x23
 
457
458	union {
459		struct {
460			/* Font height, in pixels. */
461			uint16_t font_height;
462			/* Cursor location (column, row). */
463			uint16_t cursor_x, cursor_y;
464			/* Number of rows and columns (dimensions in characters). */
465			uint16_t rows, columns;
466		} text_mode_3;
467
468		struct {
469			/* Width and height, in pixels. */
470			uint16_t width, height;
471			/* Bytes per scan line. */
472			uint16_t bytes_per_line;
473			/* Bits per pixel. */
474			uint16_t bits_per_pixel;
475			/* LFB physical address, and size (in units of 64kB). */
476			uint32_t lfb_base;
477			uint32_t lfb_size;
478			/* RGB mask offsets and sizes, as defined by VBE 1.2+ */
479			uint8_t  red_pos, red_size;
480			uint8_t  green_pos, green_size;
481			uint8_t  blue_pos, blue_size;
482			uint8_t  rsvd_pos, rsvd_size;
483
484			/* VESA capabilities (offset 0xa, VESA command 0x4f00). */
485			uint32_t gbl_caps;
486			/* Mode attributes (offset 0x0, VESA command 0x4f01). */
487			uint16_t mode_attrs;
488		} vesa_lfb;
489	} u;
490};
491
492/* These flags are passed in the 'flags' field of start_info_t. */
493#define SIF_PRIVILEGED    (1<<0)  /* Is the domain privileged? */
494#define SIF_INITDOMAIN    (1<<1)  /* Is this the initial control domain? */
495
496typedef uint64_t cpumap_t;
497
498typedef uint8_t xen_domain_handle_t[16];
499
500/* Turn a plain number into a C unsigned long constant. */
501#define __mk_unsigned_long(x) x ## UL
502#define mk_unsigned_long(x) __mk_unsigned_long(x)
503
504#define TMEM_SPEC_VERSION 1
505
506struct tmem_op {
507	uint32_t cmd;
508	int32_t pool_id;
509	union {
510		struct {  /* for cmd == TMEM_NEW_POOL */
511			uint64_t uuid[2];
512			uint32_t flags;
513		} new;
514		struct {
515			uint64_t oid[3];
516			uint32_t index;
517			uint32_t tmem_offset;
518			uint32_t pfn_offset;
519			uint32_t len;
520			GUEST_HANDLE(void) gmfn; /* guest machine page frame */
521		} gen;
522	} u;
523};
 
 
524
525#else /* __ASSEMBLY__ */
526
527/* In assembly code we cannot use C numeric constant suffixes. */
528#define mk_unsigned_long(x) x
529
530#endif /* !__ASSEMBLY__ */
531
532#endif /* __XEN_PUBLIC_XEN_H__ */
v4.17
  1/******************************************************************************
  2 * xen.h
  3 *
  4 * Guest OS interface to Xen.
  5 *
  6 * Permission is hereby granted, free of charge, to any person obtaining a copy
  7 * of this software and associated documentation files (the "Software"), to
  8 * deal in the Software without restriction, including without limitation the
  9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 10 * sell copies of the Software, and to permit persons to whom the Software is
 11 * furnished to do so, subject to the following conditions:
 12 *
 13 * The above copyright notice and this permission notice shall be included in
 14 * all copies or substantial portions of the Software.
 15 *
 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 22 * DEALINGS IN THE SOFTWARE.
 23 *
 24 * Copyright (c) 2004, K A Fraser
 25 */
 26
 27#ifndef __XEN_PUBLIC_XEN_H__
 28#define __XEN_PUBLIC_XEN_H__
 29
 30#include <asm/xen/interface.h>
 
 31
 32/*
 33 * XEN "SYSTEM CALLS" (a.k.a. HYPERCALLS).
 34 */
 35
 36/*
 37 * x86_32: EAX = vector; EBX, ECX, EDX, ESI, EDI = args 1, 2, 3, 4, 5.
 38 *         EAX = return value
 39 *         (argument registers may be clobbered on return)
 40 * x86_64: RAX = vector; RDI, RSI, RDX, R10, R8, R9 = args 1, 2, 3, 4, 5, 6.
 41 *         RAX = return value
 42 *         (argument registers not clobbered on return; RCX, R11 are)
 43 */
 44#define __HYPERVISOR_set_trap_table        0
 45#define __HYPERVISOR_mmu_update            1
 46#define __HYPERVISOR_set_gdt               2
 47#define __HYPERVISOR_stack_switch          3
 48#define __HYPERVISOR_set_callbacks         4
 49#define __HYPERVISOR_fpu_taskswitch        5
 50#define __HYPERVISOR_sched_op_compat       6
 51#define __HYPERVISOR_platform_op           7
 52#define __HYPERVISOR_set_debugreg          8
 53#define __HYPERVISOR_get_debugreg          9
 54#define __HYPERVISOR_update_descriptor    10
 55#define __HYPERVISOR_memory_op            12
 56#define __HYPERVISOR_multicall            13
 57#define __HYPERVISOR_update_va_mapping    14
 58#define __HYPERVISOR_set_timer_op         15
 59#define __HYPERVISOR_event_channel_op_compat 16
 60#define __HYPERVISOR_xen_version          17
 61#define __HYPERVISOR_console_io           18
 62#define __HYPERVISOR_physdev_op_compat    19
 63#define __HYPERVISOR_grant_table_op       20
 64#define __HYPERVISOR_vm_assist            21
 65#define __HYPERVISOR_update_va_mapping_otherdomain 22
 66#define __HYPERVISOR_iret                 23 /* x86 only */
 67#define __HYPERVISOR_vcpu_op              24
 68#define __HYPERVISOR_set_segment_base     25 /* x86/64 only */
 69#define __HYPERVISOR_mmuext_op            26
 70#define __HYPERVISOR_xsm_op               27
 71#define __HYPERVISOR_nmi_op               28
 72#define __HYPERVISOR_sched_op             29
 73#define __HYPERVISOR_callback_op          30
 74#define __HYPERVISOR_xenoprof_op          31
 75#define __HYPERVISOR_event_channel_op     32
 76#define __HYPERVISOR_physdev_op           33
 77#define __HYPERVISOR_hvm_op               34
 78#define __HYPERVISOR_sysctl               35
 79#define __HYPERVISOR_domctl               36
 80#define __HYPERVISOR_kexec_op             37
 81#define __HYPERVISOR_tmem_op              38
 82#define __HYPERVISOR_xc_reserved_op       39 /* reserved for XenClient */
 83#define __HYPERVISOR_xenpmu_op            40
 84#define __HYPERVISOR_dm_op                41
 85
 86/* Architecture-specific hypercall definitions. */
 87#define __HYPERVISOR_arch_0               48
 88#define __HYPERVISOR_arch_1               49
 89#define __HYPERVISOR_arch_2               50
 90#define __HYPERVISOR_arch_3               51
 91#define __HYPERVISOR_arch_4               52
 92#define __HYPERVISOR_arch_5               53
 93#define __HYPERVISOR_arch_6               54
 94#define __HYPERVISOR_arch_7               55
 95
 96/*
 97 * VIRTUAL INTERRUPTS
 98 *
 99 * Virtual interrupts that a guest OS may receive from Xen.
100 * In the side comments, 'V.' denotes a per-VCPU VIRQ while 'G.' denotes a
101 * global VIRQ. The former can be bound once per VCPU and cannot be re-bound.
102 * The latter can be allocated only once per guest: they must initially be
103 * allocated to VCPU0 but can subsequently be re-bound.
104 */
105#define VIRQ_TIMER      0  /* V. Timebase update, and/or requested timeout.  */
106#define VIRQ_DEBUG      1  /* V. Request guest to dump debug info.           */
107#define VIRQ_CONSOLE    2  /* G. (DOM0) Bytes received on emergency console. */
108#define VIRQ_DOM_EXC    3  /* G. (DOM0) Exceptional event for some domain.   */
109#define VIRQ_TBUF       4  /* G. (DOM0) Trace buffer has records available.  */
110#define VIRQ_DEBUGGER   6  /* G. (DOM0) A domain has paused for debugging.   */
111#define VIRQ_XENOPROF   7  /* V. XenOprofile interrupt: new sample available */
112#define VIRQ_CON_RING   8  /* G. (DOM0) Bytes received on console            */
113#define VIRQ_PCPU_STATE 9  /* G. (DOM0) PCPU state changed                   */
114#define VIRQ_MEM_EVENT  10 /* G. (DOM0) A memory event has occured           */
115#define VIRQ_XC_RESERVED 11 /* G. Reserved for XenClient                     */
116#define VIRQ_ENOMEM     12 /* G. (DOM0) Low on heap memory       */
117#define VIRQ_XENPMU     13  /* PMC interrupt                                 */
118
119/* Architecture-specific VIRQ definitions. */
120#define VIRQ_ARCH_0    16
121#define VIRQ_ARCH_1    17
122#define VIRQ_ARCH_2    18
123#define VIRQ_ARCH_3    19
124#define VIRQ_ARCH_4    20
125#define VIRQ_ARCH_5    21
126#define VIRQ_ARCH_6    22
127#define VIRQ_ARCH_7    23
128
129#define NR_VIRQS       24
130
131/*
132 * enum neg_errnoval HYPERVISOR_mmu_update(const struct mmu_update reqs[],
133 *                                         unsigned count, unsigned *done_out,
134 *                                         unsigned foreigndom)
135 * @reqs is an array of mmu_update_t structures ((ptr, val) pairs).
136 * @count is the length of the above array.
137 * @pdone is an output parameter indicating number of completed operations
138 * @foreigndom[15:0]: FD, the expected owner of data pages referenced in this
139 *                    hypercall invocation. Can be DOMID_SELF.
140 * @foreigndom[31:16]: PFD, the expected owner of pagetable pages referenced
141 *                     in this hypercall invocation. The value of this field
142 *                     (x) encodes the PFD as follows:
143 *                     x == 0 => PFD == DOMID_SELF
144 *                     x != 0 => PFD == x - 1
145 *
146 * Sub-commands: ptr[1:0] specifies the appropriate MMU_* command.
147 * -------------
148 * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
149 * Updates an entry in a page table belonging to PFD. If updating an L1 table,
150 * and the new table entry is valid/present, the mapped frame must belong to
151 * FD. If attempting to map an I/O page then the caller assumes the privilege
152 * of the FD.
153 * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
154 * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
155 * ptr[:2]  -- Machine address of the page-table entry to modify.
156 * val      -- Value to write.
157 *
158 * There also certain implicit requirements when using this hypercall. The
159 * pages that make up a pagetable must be mapped read-only in the guest.
160 * This prevents uncontrolled guest updates to the pagetable. Xen strictly
161 * enforces this, and will disallow any pagetable update which will end up
162 * mapping pagetable page RW, and will disallow using any writable page as a
163 * pagetable. In practice it means that when constructing a page table for a
164 * process, thread, etc, we MUST be very dilligient in following these rules:
165 *  1). Start with top-level page (PGD or in Xen language: L4). Fill out
166 *      the entries.
167 *  2). Keep on going, filling out the upper (PUD or L3), and middle (PMD
168 *      or L2).
169 *  3). Start filling out the PTE table (L1) with the PTE entries. Once
170 *      done, make sure to set each of those entries to RO (so writeable bit
171 *      is unset). Once that has been completed, set the PMD (L2) for this
172 *      PTE table as RO.
173 *  4). When completed with all of the PMD (L2) entries, and all of them have
174 *      been set to RO, make sure to set RO the PUD (L3). Do the same
175 *      operation on PGD (L4) pagetable entries that have a PUD (L3) entry.
176 *  5). Now before you can use those pages (so setting the cr3), you MUST also
177 *      pin them so that the hypervisor can verify the entries. This is done
178 *      via the HYPERVISOR_mmuext_op(MMUEXT_PIN_L4_TABLE, guest physical frame
179 *      number of the PGD (L4)). And this point the HYPERVISOR_mmuext_op(
180 *      MMUEXT_NEW_BASEPTR, guest physical frame number of the PGD (L4)) can be
181 *      issued.
182 * For 32-bit guests, the L4 is not used (as there is less pagetables), so
183 * instead use L3.
184 * At this point the pagetables can be modified using the MMU_NORMAL_PT_UPDATE
185 * hypercall. Also if so desired the OS can also try to write to the PTE
186 * and be trapped by the hypervisor (as the PTE entry is RO).
187 *
188 * To deallocate the pages, the operations are the reverse of the steps
189 * mentioned above. The argument is MMUEXT_UNPIN_TABLE for all levels and the
190 * pagetable MUST not be in use (meaning that the cr3 is not set to it).
191 *
192 * ptr[1:0] == MMU_MACHPHYS_UPDATE:
193 * Updates an entry in the machine->pseudo-physical mapping table.
194 * ptr[:2]  -- Machine address within the frame whose mapping to modify.
195 *             The frame must belong to the FD, if one is specified.
196 * val      -- Value to write into the mapping entry.
197 *
198 * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
199 * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
200 * with those in @val.
201 *
202 * @val is usually the machine frame number along with some attributes.
203 * The attributes by default follow the architecture defined bits. Meaning that
204 * if this is a X86_64 machine and four page table layout is used, the layout
205 * of val is:
206 *  - 63 if set means No execute (NX)
207 *  - 46-13 the machine frame number
208 *  - 12 available for guest
209 *  - 11 available for guest
210 *  - 10 available for guest
211 *  - 9 available for guest
212 *  - 8 global
213 *  - 7 PAT (PSE is disabled, must use hypercall to make 4MB or 2MB pages)
214 *  - 6 dirty
215 *  - 5 accessed
216 *  - 4 page cached disabled
217 *  - 3 page write through
218 *  - 2 userspace accessible
219 *  - 1 writeable
220 *  - 0 present
221 *
222 *  The one bits that does not fit with the default layout is the PAGE_PSE
223 *  also called PAGE_PAT). The MMUEXT_[UN]MARK_SUPER arguments to the
224 *  HYPERVISOR_mmuext_op serve as mechanism to set a pagetable to be 4MB
225 *  (or 2MB) instead of using the PAGE_PSE bit.
226 *
227 *  The reason that the PAGE_PSE (bit 7) is not being utilized is due to Xen
228 *  using it as the Page Attribute Table (PAT) bit - for details on it please
229 *  refer to Intel SDM 10.12. The PAT allows to set the caching attributes of
230 *  pages instead of using MTRRs.
231 *
232 *  The PAT MSR is as follows (it is a 64-bit value, each entry is 8 bits):
233 *                    PAT4                 PAT0
234 *  +-----+-----+----+----+----+-----+----+----+
235 *  | UC  | UC- | WC | WB | UC | UC- | WC | WB |  <= Linux
236 *  +-----+-----+----+----+----+-----+----+----+
237 *  | UC  | UC- | WT | WB | UC | UC- | WT | WB |  <= BIOS (default when machine boots)
238 *  +-----+-----+----+----+----+-----+----+----+
239 *  | rsv | rsv | WP | WC | UC | UC- | WT | WB |  <= Xen
240 *  +-----+-----+----+----+----+-----+----+----+
241 *
242 *  The lookup of this index table translates to looking up
243 *  Bit 7, Bit 4, and Bit 3 of val entry:
244 *
245 *  PAT/PSE (bit 7) ... PCD (bit 4) .. PWT (bit 3).
246 *
247 *  If all bits are off, then we are using PAT0. If bit 3 turned on,
248 *  then we are using PAT1, if bit 3 and bit 4, then PAT2..
249 *
250 *  As you can see, the Linux PAT1 translates to PAT4 under Xen. Which means
251 *  that if a guest that follows Linux's PAT setup and would like to set Write
252 *  Combined on pages it MUST use PAT4 entry. Meaning that Bit 7 (PAGE_PAT) is
253 *  set. For example, under Linux it only uses PAT0, PAT1, and PAT2 for the
254 *  caching as:
255 *
256 *   WB = none (so PAT0)
257 *   WC = PWT (bit 3 on)
258 *   UC = PWT | PCD (bit 3 and 4 are on).
259 *
260 * To make it work with Xen, it needs to translate the WC bit as so:
261 *
262 *  PWT (so bit 3 on) --> PAT (so bit 7 is on) and clear bit 3
263 *
264 * And to translate back it would:
265 *
266 * PAT (bit 7 on) --> PWT (bit 3 on) and clear bit 7.
267 */
268#define MMU_NORMAL_PT_UPDATE      0 /* checked '*ptr = val'. ptr is MA.       */
269#define MMU_MACHPHYS_UPDATE       1 /* ptr = MA of frame to modify entry for  */
270#define MMU_PT_UPDATE_PRESERVE_AD 2 /* atomically: *ptr = val | (*ptr&(A|D)) */
271
272/*
273 * MMU EXTENDED OPERATIONS
274 *
275 * enum neg_errnoval HYPERVISOR_mmuext_op(mmuext_op_t uops[],
276 *                                        unsigned int count,
277 *                                        unsigned int *pdone,
278 *                                        unsigned int foreigndom)
279 */
280/* HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
281 * A foreigndom (FD) can be specified (or DOMID_SELF for none).
282 * Where the FD has some effect, it is described below.
283 *
284 * cmd: MMUEXT_(UN)PIN_*_TABLE
285 * mfn: Machine frame number to be (un)pinned as a p.t. page.
286 *      The frame must belong to the FD, if one is specified.
287 *
288 * cmd: MMUEXT_NEW_BASEPTR
289 * mfn: Machine frame number of new page-table base to install in MMU.
290 *
291 * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
292 * mfn: Machine frame number of new page-table base to install in MMU
293 *      when in user space.
294 *
295 * cmd: MMUEXT_TLB_FLUSH_LOCAL
296 * No additional arguments. Flushes local TLB.
297 *
298 * cmd: MMUEXT_INVLPG_LOCAL
299 * linear_addr: Linear address to be flushed from the local TLB.
300 *
301 * cmd: MMUEXT_TLB_FLUSH_MULTI
302 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
303 *
304 * cmd: MMUEXT_INVLPG_MULTI
305 * linear_addr: Linear address to be flushed.
306 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
307 *
308 * cmd: MMUEXT_TLB_FLUSH_ALL
309 * No additional arguments. Flushes all VCPUs' TLBs.
310 *
311 * cmd: MMUEXT_INVLPG_ALL
312 * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
313 *
314 * cmd: MMUEXT_FLUSH_CACHE
315 * No additional arguments. Writes back and flushes cache contents.
316 *
317 * cmd: MMUEXT_FLUSH_CACHE_GLOBAL
318 * No additional arguments. Writes back and flushes cache contents
319 * on all CPUs in the system.
320 *
321 * cmd: MMUEXT_SET_LDT
322 * linear_addr: Linear address of LDT base (NB. must be page-aligned).
323 * nr_ents: Number of entries in LDT.
324 *
325 * cmd: MMUEXT_CLEAR_PAGE
326 * mfn: Machine frame number to be cleared.
327 *
328 * cmd: MMUEXT_COPY_PAGE
329 * mfn: Machine frame number of the destination page.
330 * src_mfn: Machine frame number of the source page.
331 *
332 * cmd: MMUEXT_[UN]MARK_SUPER
333 * mfn: Machine frame number of head of superpage to be [un]marked.
334 */
335#define MMUEXT_PIN_L1_TABLE      0
336#define MMUEXT_PIN_L2_TABLE      1
337#define MMUEXT_PIN_L3_TABLE      2
338#define MMUEXT_PIN_L4_TABLE      3
339#define MMUEXT_UNPIN_TABLE       4
340#define MMUEXT_NEW_BASEPTR       5
341#define MMUEXT_TLB_FLUSH_LOCAL   6
342#define MMUEXT_INVLPG_LOCAL      7
343#define MMUEXT_TLB_FLUSH_MULTI   8
344#define MMUEXT_INVLPG_MULTI      9
345#define MMUEXT_TLB_FLUSH_ALL    10
346#define MMUEXT_INVLPG_ALL       11
347#define MMUEXT_FLUSH_CACHE      12
348#define MMUEXT_SET_LDT          13
349#define MMUEXT_NEW_USER_BASEPTR 15
350#define MMUEXT_CLEAR_PAGE       16
351#define MMUEXT_COPY_PAGE        17
352#define MMUEXT_FLUSH_CACHE_GLOBAL 18
353#define MMUEXT_MARK_SUPER       19
354#define MMUEXT_UNMARK_SUPER     20
355
356#ifndef __ASSEMBLY__
357struct mmuext_op {
358	unsigned int cmd;
359	union {
360		/* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR
361		 * CLEAR_PAGE, COPY_PAGE, [UN]MARK_SUPER */
362		xen_pfn_t mfn;
363		/* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
364		unsigned long linear_addr;
365	} arg1;
366	union {
367		/* SET_LDT */
368		unsigned int nr_ents;
369		/* TLB_FLUSH_MULTI, INVLPG_MULTI */
370		void *vcpumask;
371		/* COPY_PAGE */
372		xen_pfn_t src_mfn;
373	} arg2;
374};
375DEFINE_GUEST_HANDLE_STRUCT(mmuext_op);
376#endif
377
378/* These are passed as 'flags' to update_va_mapping. They can be ORed. */
379/* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap.   */
380/* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer.         */
381#define UVMF_NONE               (0UL<<0) /* No flushing at all.   */
382#define UVMF_TLB_FLUSH          (1UL<<0) /* Flush entire TLB(s).  */
383#define UVMF_INVLPG             (2UL<<0) /* Flush only one entry. */
384#define UVMF_FLUSHTYPE_MASK     (3UL<<0)
385#define UVMF_MULTI              (0UL<<2) /* Flush subset of TLBs. */
386#define UVMF_LOCAL              (0UL<<2) /* Flush local TLB.      */
387#define UVMF_ALL                (1UL<<2) /* Flush all TLBs.       */
388
389/*
390 * Commands to HYPERVISOR_console_io().
391 */
392#define CONSOLEIO_write         0
393#define CONSOLEIO_read          1
394
395/*
396 * Commands to HYPERVISOR_vm_assist().
397 */
398#define VMASST_CMD_enable                0
399#define VMASST_CMD_disable               1
400
401/* x86/32 guests: simulate full 4GB segment limits. */
402#define VMASST_TYPE_4gb_segments         0
403
404/* x86/32 guests: trap (vector 15) whenever above vmassist is used. */
405#define VMASST_TYPE_4gb_segments_notify  1
406
407/*
408 * x86 guests: support writes to bottom-level PTEs.
409 * NB1. Page-directory entries cannot be written.
410 * NB2. Guest must continue to remove all writable mappings of PTEs.
411 */
412#define VMASST_TYPE_writable_pagetables  2
413
414/* x86/PAE guests: support PDPTs above 4GB. */
415#define VMASST_TYPE_pae_extended_cr3     3
416
417/*
418 * x86 guests: Sane behaviour for virtual iopl
419 *  - virtual iopl updated from do_iret() hypercalls.
420 *  - virtual iopl reported in bounce frames.
421 *  - guest kernels assumed to be level 0 for the purpose of iopl checks.
422 */
423#define VMASST_TYPE_architectural_iopl   4
424
425/*
426 * All guests: activate update indicator in vcpu_runstate_info
427 * Enable setting the XEN_RUNSTATE_UPDATE flag in guest memory mapped
428 * vcpu_runstate_info during updates of the runstate information.
429 */
430#define VMASST_TYPE_runstate_update_flag 5
431
432#define MAX_VMASST_TYPE 5
433
434#ifndef __ASSEMBLY__
435
436typedef uint16_t domid_t;
437
438/* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
439#define DOMID_FIRST_RESERVED (0x7FF0U)
440
441/* DOMID_SELF is used in certain contexts to refer to oneself. */
442#define DOMID_SELF (0x7FF0U)
443
444/*
445 * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
446 * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
447 * is useful to ensure that no mappings to the OS's own heap are accidentally
448 * installed. (e.g., in Linux this could cause havoc as reference counts
449 * aren't adjusted on the I/O-mapping code path).
450 * This only makes sense in MMUEXT_SET_FOREIGNDOM, but in that context can
451 * be specified by any calling domain.
452 */
453#define DOMID_IO   (0x7FF1U)
454
455/*
456 * DOMID_XEN is used to allow privileged domains to map restricted parts of
457 * Xen's heap space (e.g., the machine_to_phys table).
458 * This only makes sense in MMUEXT_SET_FOREIGNDOM, and is only permitted if
459 * the caller is privileged.
460 */
461#define DOMID_XEN  (0x7FF2U)
462
463/* DOMID_COW is used as the owner of sharable pages */
464#define DOMID_COW  (0x7FF3U)
465
466/* DOMID_INVALID is used to identify pages with unknown owner. */
467#define DOMID_INVALID (0x7FF4U)
468
469/* Idle domain. */
470#define DOMID_IDLE (0x7FFFU)
471
472/*
473 * Send an array of these to HYPERVISOR_mmu_update().
474 * NB. The fields are natural pointer/address size for this architecture.
475 */
476struct mmu_update {
477    uint64_t ptr;       /* Machine address of PTE. */
478    uint64_t val;       /* New contents of PTE.    */
479};
480DEFINE_GUEST_HANDLE_STRUCT(mmu_update);
481
482/*
483 * Send an array of these to HYPERVISOR_multicall().
484 * NB. The fields are logically the natural register size for this
485 * architecture. In cases where xen_ulong_t is larger than this then
486 * any unused bits in the upper portion must be zero.
487 */
488struct multicall_entry {
489    xen_ulong_t op;
490    xen_long_t result;
491    xen_ulong_t args[6];
492};
493DEFINE_GUEST_HANDLE_STRUCT(multicall_entry);
494
 
 
 
 
 
 
495struct vcpu_time_info {
496	/*
497	 * Updates to the following values are preceded and followed
498	 * by an increment of 'version'. The guest can therefore
499	 * detect updates by looking for changes to 'version'. If the
500	 * least-significant bit of the version number is set then an
501	 * update is in progress and the guest must wait to read a
502	 * consistent set of values.  The correct way to interact with
503	 * the version number is similar to Linux's seqlock: see the
504	 * implementations of read_seqbegin/read_seqretry.
505	 */
506	uint32_t version;
507	uint32_t pad0;
508	uint64_t tsc_timestamp;   /* TSC at last update of time vals.  */
509	uint64_t system_time;     /* Time, in nanosecs, since boot.    */
510	/*
511	 * Current system time:
512	 *   system_time + ((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul
513	 * CPU frequency (Hz):
514	 *   ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
515	 */
516	uint32_t tsc_to_system_mul;
517	int8_t   tsc_shift;
518	int8_t   pad1[3];
519}; /* 32 bytes */
520
521struct vcpu_info {
522	/*
523	 * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
524	 * a pending notification for a particular VCPU. It is then cleared
525	 * by the guest OS /before/ checking for pending work, thus avoiding
526	 * a set-and-check race. Note that the mask is only accessed by Xen
527	 * on the CPU that is currently hosting the VCPU. This means that the
528	 * pending and mask flags can be updated by the guest without special
529	 * synchronisation (i.e., no need for the x86 LOCK prefix).
530	 * This may seem suboptimal because if the pending flag is set by
531	 * a different CPU then an IPI may be scheduled even when the mask
532	 * is set. However, note:
533	 *  1. The task of 'interrupt holdoff' is covered by the per-event-
534	 *     channel mask bits. A 'noisy' event that is continually being
535	 *     triggered can be masked at source at this very precise
536	 *     granularity.
537	 *  2. The main purpose of the per-VCPU mask is therefore to restrict
538	 *     reentrant execution: whether for concurrency control, or to
539	 *     prevent unbounded stack usage. Whatever the purpose, we expect
540	 *     that the mask will be asserted only for short periods at a time,
541	 *     and so the likelihood of a 'spurious' IPI is suitably small.
542	 * The mask is read before making an event upcall to the guest: a
543	 * non-zero mask therefore guarantees that the VCPU will not receive
544	 * an upcall activation. The mask is cleared when the VCPU requests
545	 * to block: this avoids wakeup-waiting races.
546	 */
547	uint8_t evtchn_upcall_pending;
548	uint8_t evtchn_upcall_mask;
549	xen_ulong_t evtchn_pending_sel;
550	struct arch_vcpu_info arch;
551	struct pvclock_vcpu_time_info time;
552}; /* 64 bytes (x86) */
553
554/*
555 * Xen/kernel shared data -- pointer provided in start_info.
556 * NB. We expect that this struct is smaller than a page.
557 */
558struct shared_info {
559	struct vcpu_info vcpu_info[MAX_VIRT_CPUS];
560
561	/*
562	 * A domain can create "event channels" on which it can send and receive
563	 * asynchronous event notifications. There are three classes of event that
564	 * are delivered by this mechanism:
565	 *  1. Bi-directional inter- and intra-domain connections. Domains must
566	 *     arrange out-of-band to set up a connection (usually by allocating
567	 *     an unbound 'listener' port and avertising that via a storage service
568	 *     such as xenstore).
569	 *  2. Physical interrupts. A domain with suitable hardware-access
570	 *     privileges can bind an event-channel port to a physical interrupt
571	 *     source.
572	 *  3. Virtual interrupts ('events'). A domain can bind an event-channel
573	 *     port to a virtual interrupt source, such as the virtual-timer
574	 *     device or the emergency console.
575	 *
576	 * Event channels are addressed by a "port index". Each channel is
577	 * associated with two bits of information:
578	 *  1. PENDING -- notifies the domain that there is a pending notification
579	 *     to be processed. This bit is cleared by the guest.
580	 *  2. MASK -- if this bit is clear then a 0->1 transition of PENDING
581	 *     will cause an asynchronous upcall to be scheduled. This bit is only
582	 *     updated by the guest. It is read-only within Xen. If a channel
583	 *     becomes pending while the channel is masked then the 'edge' is lost
584	 *     (i.e., when the channel is unmasked, the guest must manually handle
585	 *     pending notifications as no upcall will be scheduled by Xen).
586	 *
587	 * To expedite scanning of pending notifications, any 0->1 pending
588	 * transition on an unmasked channel causes a corresponding bit in a
589	 * per-vcpu selector word to be set. Each bit in the selector covers a
590	 * 'C long' in the PENDING bitfield array.
591	 */
592	xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8];
593	xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8];
594
595	/*
596	 * Wallclock time: updated only by control software. Guests should base
597	 * their gettimeofday() syscall on this wallclock-base value.
598	 */
599	struct pvclock_wall_clock wc;
600
601	struct arch_shared_info arch;
602
603};
604
605/*
606 * Start-of-day memory layout
607 *
608 *  1. The domain is started within contiguous virtual-memory region.
609 *  2. The contiguous region begins and ends on an aligned 4MB boundary.
610 *  3. This the order of bootstrap elements in the initial virtual region:
 
 
611 *      a. relocated kernel image
612 *      b. initial ram disk              [mod_start, mod_len]
613 *         (may be omitted)
614 *      c. list of allocated page frames [mfn_list, nr_pages]
615 *         (unless relocated due to XEN_ELFNOTE_INIT_P2M)
616 *      d. start_info_t structure        [register ESI (x86)]
617 *         in case of dom0 this page contains the console info, too
618 *      e. unless dom0: xenstore ring page
619 *      f. unless dom0: console ring page
620 *      g. bootstrap page tables         [pt_base, CR3 (x86)]
621 *      h. bootstrap stack               [register ESP (x86)]
622 *  4. Bootstrap elements are packed together, but each is 4kB-aligned.
623 *  5. The list of page frames forms a contiguous 'pseudo-physical' memory
624 *     layout for the domain. In particular, the bootstrap virtual-memory
625 *     region is a 1:1 mapping to the first section of the pseudo-physical map.
626 *  6. All bootstrap elements are mapped read-writable for the guest OS. The
627 *     only exception is the bootstrap page table, which is mapped read-only.
628 *  7. There is guaranteed to be at least 512kB padding after the final
629 *     bootstrap element. If necessary, the bootstrap virtual region is
630 *     extended by an extra 4MB to ensure this.
631 */
632
633#define MAX_GUEST_CMDLINE 1024
634struct start_info {
635	/* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME.    */
636	char magic[32];             /* "xen-<version>-<platform>".            */
637	unsigned long nr_pages;     /* Total pages allocated to this domain.  */
638	unsigned long shared_info;  /* MACHINE address of shared info struct. */
639	uint32_t flags;             /* SIF_xxx flags.                         */
640	xen_pfn_t store_mfn;        /* MACHINE page number of shared page.    */
641	uint32_t store_evtchn;      /* Event channel for store communication. */
642	union {
643		struct {
644			xen_pfn_t mfn;      /* MACHINE page number of console page.   */
645			uint32_t  evtchn;   /* Event channel for console page.        */
646		} domU;
647		struct {
648			uint32_t info_off;  /* Offset of console_info struct.         */
649			uint32_t info_size; /* Size of console_info struct from start.*/
650		} dom0;
651	} console;
652	/* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME).     */
653	unsigned long pt_base;      /* VIRTUAL address of page directory.     */
654	unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames.       */
655	unsigned long mfn_list;     /* VIRTUAL address of page-frame list.    */
656	unsigned long mod_start;    /* VIRTUAL address of pre-loaded module.  */
657	unsigned long mod_len;      /* Size (bytes) of pre-loaded module.     */
658	int8_t cmd_line[MAX_GUEST_CMDLINE];
659	/* The pfn range here covers both page table and p->m table frames.   */
660	unsigned long first_p2m_pfn;/* 1st pfn forming initial P->M table.    */
661	unsigned long nr_p2m_frames;/* # of pfns forming initial P->M table.  */
662};
663
664/* These flags are passed in the 'flags' field of start_info_t. */
665#define SIF_PRIVILEGED      (1<<0)  /* Is the domain privileged? */
666#define SIF_INITDOMAIN      (1<<1)  /* Is this the initial control domain? */
667#define SIF_MULTIBOOT_MOD   (1<<2)  /* Is mod_start a multiboot module? */
668#define SIF_MOD_START_PFN   (1<<3)  /* Is mod_start a PFN? */
669#define SIF_VIRT_P2M_4TOOLS (1<<4)  /* Do Xen tools understand a virt. mapped */
670				    /* P->M making the 3 level tree obsolete? */
671#define SIF_PM_MASK       (0xFF<<8) /* reserve 1 byte for xen-pm options */
672
673/*
674 * A multiboot module is a package containing modules very similar to a
675 * multiboot module array. The only differences are:
676 * - the array of module descriptors is by convention simply at the beginning
677 *   of the multiboot module,
678 * - addresses in the module descriptors are based on the beginning of the
679 *   multiboot module,
680 * - the number of modules is determined by a termination descriptor that has
681 *   mod_start == 0.
682 *
683 * This permits to both build it statically and reference it in a configuration
684 * file, and let the PV guest easily rebase the addresses to virtual addresses
685 * and at the same time count the number of modules.
686 */
687struct xen_multiboot_mod_list {
688	/* Address of first byte of the module */
689	uint32_t mod_start;
690	/* Address of last byte of the module (inclusive) */
691	uint32_t mod_end;
692	/* Address of zero-terminated command line */
693	uint32_t cmdline;
694	/* Unused, must be zero */
695	uint32_t pad;
696};
697/*
698 * The console structure in start_info.console.dom0
699 *
700 * This structure includes a variety of information required to
701 * have a working VGA/VESA console.
702 */
703struct dom0_vga_console_info {
704	uint8_t video_type;
705#define XEN_VGATYPE_TEXT_MODE_3 0x03
706#define XEN_VGATYPE_VESA_LFB    0x23
707#define XEN_VGATYPE_EFI_LFB     0x70
708
709	union {
710		struct {
711			/* Font height, in pixels. */
712			uint16_t font_height;
713			/* Cursor location (column, row). */
714			uint16_t cursor_x, cursor_y;
715			/* Number of rows and columns (dimensions in characters). */
716			uint16_t rows, columns;
717		} text_mode_3;
718
719		struct {
720			/* Width and height, in pixels. */
721			uint16_t width, height;
722			/* Bytes per scan line. */
723			uint16_t bytes_per_line;
724			/* Bits per pixel. */
725			uint16_t bits_per_pixel;
726			/* LFB physical address, and size (in units of 64kB). */
727			uint32_t lfb_base;
728			uint32_t lfb_size;
729			/* RGB mask offsets and sizes, as defined by VBE 1.2+ */
730			uint8_t  red_pos, red_size;
731			uint8_t  green_pos, green_size;
732			uint8_t  blue_pos, blue_size;
733			uint8_t  rsvd_pos, rsvd_size;
734
735			/* VESA capabilities (offset 0xa, VESA command 0x4f00). */
736			uint32_t gbl_caps;
737			/* Mode attributes (offset 0x0, VESA command 0x4f01). */
738			uint16_t mode_attrs;
739		} vesa_lfb;
740	} u;
741};
742
 
 
 
 
743typedef uint64_t cpumap_t;
744
745typedef uint8_t xen_domain_handle_t[16];
746
747/* Turn a plain number into a C unsigned long constant. */
748#define __mk_unsigned_long(x) x ## UL
749#define mk_unsigned_long(x) __mk_unsigned_long(x)
750
751#define TMEM_SPEC_VERSION 1
752
753struct tmem_op {
754	uint32_t cmd;
755	int32_t pool_id;
756	union {
757		struct {  /* for cmd == TMEM_NEW_POOL */
758			uint64_t uuid[2];
759			uint32_t flags;
760		} new;
761		struct {
762			uint64_t oid[3];
763			uint32_t index;
764			uint32_t tmem_offset;
765			uint32_t pfn_offset;
766			uint32_t len;
767			GUEST_HANDLE(void) gmfn; /* guest machine page frame */
768		} gen;
769	} u;
770};
771
772DEFINE_GUEST_HANDLE(u64);
773
774#else /* __ASSEMBLY__ */
775
776/* In assembly code we cannot use C numeric constant suffixes. */
777#define mk_unsigned_long(x) x
778
779#endif /* !__ASSEMBLY__ */
780
781#endif /* __XEN_PUBLIC_XEN_H__ */