Loading...
1/*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/module.h>
26#include <linux/version.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/completion.h>
30#include <linux/utsname.h>
31#include <linux/mm.h>
32#include <asm/io.h>
33#include <linux/device.h>
34#include <linux/dma-mapping.h>
35#include <linux/mutex.h>
36#include <asm/irq.h>
37#include <asm/byteorder.h>
38#include <asm/unaligned.h>
39#include <linux/platform_device.h>
40#include <linux/workqueue.h>
41
42#include <linux/usb.h>
43#include <linux/usb/hcd.h>
44
45#include "usb.h"
46
47
48/*-------------------------------------------------------------------------*/
49
50/*
51 * USB Host Controller Driver framework
52 *
53 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
54 * HCD-specific behaviors/bugs.
55 *
56 * This does error checks, tracks devices and urbs, and delegates to a
57 * "hc_driver" only for code (and data) that really needs to know about
58 * hardware differences. That includes root hub registers, i/o queues,
59 * and so on ... but as little else as possible.
60 *
61 * Shared code includes most of the "root hub" code (these are emulated,
62 * though each HC's hardware works differently) and PCI glue, plus request
63 * tracking overhead. The HCD code should only block on spinlocks or on
64 * hardware handshaking; blocking on software events (such as other kernel
65 * threads releasing resources, or completing actions) is all generic.
66 *
67 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
68 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
69 * only by the hub driver ... and that neither should be seen or used by
70 * usb client device drivers.
71 *
72 * Contributors of ideas or unattributed patches include: David Brownell,
73 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
74 *
75 * HISTORY:
76 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
77 * associated cleanup. "usb_hcd" still != "usb_bus".
78 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
79 */
80
81/*-------------------------------------------------------------------------*/
82
83/* Keep track of which host controller drivers are loaded */
84unsigned long usb_hcds_loaded;
85EXPORT_SYMBOL_GPL(usb_hcds_loaded);
86
87/* host controllers we manage */
88LIST_HEAD (usb_bus_list);
89EXPORT_SYMBOL_GPL (usb_bus_list);
90
91/* used when allocating bus numbers */
92#define USB_MAXBUS 64
93struct usb_busmap {
94 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
95};
96static struct usb_busmap busmap;
97
98/* used when updating list of hcds */
99DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
100EXPORT_SYMBOL_GPL (usb_bus_list_lock);
101
102/* used for controlling access to virtual root hubs */
103static DEFINE_SPINLOCK(hcd_root_hub_lock);
104
105/* used when updating an endpoint's URB list */
106static DEFINE_SPINLOCK(hcd_urb_list_lock);
107
108/* used to protect against unlinking URBs after the device is gone */
109static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
110
111/* wait queue for synchronous unlinks */
112DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
113
114static inline int is_root_hub(struct usb_device *udev)
115{
116 return (udev->parent == NULL);
117}
118
119/*-------------------------------------------------------------------------*/
120
121/*
122 * Sharable chunks of root hub code.
123 */
124
125/*-------------------------------------------------------------------------*/
126
127#define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
128#define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
129
130/* usb 3.0 root hub device descriptor */
131static const u8 usb3_rh_dev_descriptor[18] = {
132 0x12, /* __u8 bLength; */
133 0x01, /* __u8 bDescriptorType; Device */
134 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
135
136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
137 0x00, /* __u8 bDeviceSubClass; */
138 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
140
141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
144
145 0x03, /* __u8 iManufacturer; */
146 0x02, /* __u8 iProduct; */
147 0x01, /* __u8 iSerialNumber; */
148 0x01 /* __u8 bNumConfigurations; */
149};
150
151/* usb 2.0 root hub device descriptor */
152static const u8 usb2_rh_dev_descriptor [18] = {
153 0x12, /* __u8 bLength; */
154 0x01, /* __u8 bDescriptorType; Device */
155 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
156
157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
158 0x00, /* __u8 bDeviceSubClass; */
159 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
160 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
161
162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
163 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
165
166 0x03, /* __u8 iManufacturer; */
167 0x02, /* __u8 iProduct; */
168 0x01, /* __u8 iSerialNumber; */
169 0x01 /* __u8 bNumConfigurations; */
170};
171
172/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
173
174/* usb 1.1 root hub device descriptor */
175static const u8 usb11_rh_dev_descriptor [18] = {
176 0x12, /* __u8 bLength; */
177 0x01, /* __u8 bDescriptorType; Device */
178 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
179
180 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
181 0x00, /* __u8 bDeviceSubClass; */
182 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
183 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
184
185 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
186 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
187 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
188
189 0x03, /* __u8 iManufacturer; */
190 0x02, /* __u8 iProduct; */
191 0x01, /* __u8 iSerialNumber; */
192 0x01 /* __u8 bNumConfigurations; */
193};
194
195
196/*-------------------------------------------------------------------------*/
197
198/* Configuration descriptors for our root hubs */
199
200static const u8 fs_rh_config_descriptor [] = {
201
202 /* one configuration */
203 0x09, /* __u8 bLength; */
204 0x02, /* __u8 bDescriptorType; Configuration */
205 0x19, 0x00, /* __le16 wTotalLength; */
206 0x01, /* __u8 bNumInterfaces; (1) */
207 0x01, /* __u8 bConfigurationValue; */
208 0x00, /* __u8 iConfiguration; */
209 0xc0, /* __u8 bmAttributes;
210 Bit 7: must be set,
211 6: Self-powered,
212 5: Remote wakeup,
213 4..0: resvd */
214 0x00, /* __u8 MaxPower; */
215
216 /* USB 1.1:
217 * USB 2.0, single TT organization (mandatory):
218 * one interface, protocol 0
219 *
220 * USB 2.0, multiple TT organization (optional):
221 * two interfaces, protocols 1 (like single TT)
222 * and 2 (multiple TT mode) ... config is
223 * sometimes settable
224 * NOT IMPLEMENTED
225 */
226
227 /* one interface */
228 0x09, /* __u8 if_bLength; */
229 0x04, /* __u8 if_bDescriptorType; Interface */
230 0x00, /* __u8 if_bInterfaceNumber; */
231 0x00, /* __u8 if_bAlternateSetting; */
232 0x01, /* __u8 if_bNumEndpoints; */
233 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
234 0x00, /* __u8 if_bInterfaceSubClass; */
235 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
236 0x00, /* __u8 if_iInterface; */
237
238 /* one endpoint (status change endpoint) */
239 0x07, /* __u8 ep_bLength; */
240 0x05, /* __u8 ep_bDescriptorType; Endpoint */
241 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
242 0x03, /* __u8 ep_bmAttributes; Interrupt */
243 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
244 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
245};
246
247static const u8 hs_rh_config_descriptor [] = {
248
249 /* one configuration */
250 0x09, /* __u8 bLength; */
251 0x02, /* __u8 bDescriptorType; Configuration */
252 0x19, 0x00, /* __le16 wTotalLength; */
253 0x01, /* __u8 bNumInterfaces; (1) */
254 0x01, /* __u8 bConfigurationValue; */
255 0x00, /* __u8 iConfiguration; */
256 0xc0, /* __u8 bmAttributes;
257 Bit 7: must be set,
258 6: Self-powered,
259 5: Remote wakeup,
260 4..0: resvd */
261 0x00, /* __u8 MaxPower; */
262
263 /* USB 1.1:
264 * USB 2.0, single TT organization (mandatory):
265 * one interface, protocol 0
266 *
267 * USB 2.0, multiple TT organization (optional):
268 * two interfaces, protocols 1 (like single TT)
269 * and 2 (multiple TT mode) ... config is
270 * sometimes settable
271 * NOT IMPLEMENTED
272 */
273
274 /* one interface */
275 0x09, /* __u8 if_bLength; */
276 0x04, /* __u8 if_bDescriptorType; Interface */
277 0x00, /* __u8 if_bInterfaceNumber; */
278 0x00, /* __u8 if_bAlternateSetting; */
279 0x01, /* __u8 if_bNumEndpoints; */
280 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
281 0x00, /* __u8 if_bInterfaceSubClass; */
282 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
283 0x00, /* __u8 if_iInterface; */
284
285 /* one endpoint (status change endpoint) */
286 0x07, /* __u8 ep_bLength; */
287 0x05, /* __u8 ep_bDescriptorType; Endpoint */
288 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
289 0x03, /* __u8 ep_bmAttributes; Interrupt */
290 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
291 * see hub.c:hub_configure() for details. */
292 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
293 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
294};
295
296static const u8 ss_rh_config_descriptor[] = {
297 /* one configuration */
298 0x09, /* __u8 bLength; */
299 0x02, /* __u8 bDescriptorType; Configuration */
300 0x1f, 0x00, /* __le16 wTotalLength; */
301 0x01, /* __u8 bNumInterfaces; (1) */
302 0x01, /* __u8 bConfigurationValue; */
303 0x00, /* __u8 iConfiguration; */
304 0xc0, /* __u8 bmAttributes;
305 Bit 7: must be set,
306 6: Self-powered,
307 5: Remote wakeup,
308 4..0: resvd */
309 0x00, /* __u8 MaxPower; */
310
311 /* one interface */
312 0x09, /* __u8 if_bLength; */
313 0x04, /* __u8 if_bDescriptorType; Interface */
314 0x00, /* __u8 if_bInterfaceNumber; */
315 0x00, /* __u8 if_bAlternateSetting; */
316 0x01, /* __u8 if_bNumEndpoints; */
317 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
318 0x00, /* __u8 if_bInterfaceSubClass; */
319 0x00, /* __u8 if_bInterfaceProtocol; */
320 0x00, /* __u8 if_iInterface; */
321
322 /* one endpoint (status change endpoint) */
323 0x07, /* __u8 ep_bLength; */
324 0x05, /* __u8 ep_bDescriptorType; Endpoint */
325 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
326 0x03, /* __u8 ep_bmAttributes; Interrupt */
327 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
328 * see hub.c:hub_configure() for details. */
329 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
330 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
331
332 /* one SuperSpeed endpoint companion descriptor */
333 0x06, /* __u8 ss_bLength */
334 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
335 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
336 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
337 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
338};
339
340/* authorized_default behaviour:
341 * -1 is authorized for all devices except wireless (old behaviour)
342 * 0 is unauthorized for all devices
343 * 1 is authorized for all devices
344 */
345static int authorized_default = -1;
346module_param(authorized_default, int, S_IRUGO|S_IWUSR);
347MODULE_PARM_DESC(authorized_default,
348 "Default USB device authorization: 0 is not authorized, 1 is "
349 "authorized, -1 is authorized except for wireless USB (default, "
350 "old behaviour");
351/*-------------------------------------------------------------------------*/
352
353/**
354 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
355 * @s: Null-terminated ASCII (actually ISO-8859-1) string
356 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
357 * @len: Length (in bytes; may be odd) of descriptor buffer.
358 *
359 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
360 * buflen, whichever is less.
361 *
362 * USB String descriptors can contain at most 126 characters; input
363 * strings longer than that are truncated.
364 */
365static unsigned
366ascii2desc(char const *s, u8 *buf, unsigned len)
367{
368 unsigned n, t = 2 + 2*strlen(s);
369
370 if (t > 254)
371 t = 254; /* Longest possible UTF string descriptor */
372 if (len > t)
373 len = t;
374
375 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
376
377 n = len;
378 while (n--) {
379 *buf++ = t;
380 if (!n--)
381 break;
382 *buf++ = t >> 8;
383 t = (unsigned char)*s++;
384 }
385 return len;
386}
387
388/**
389 * rh_string() - provides string descriptors for root hub
390 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
391 * @hcd: the host controller for this root hub
392 * @data: buffer for output packet
393 * @len: length of the provided buffer
394 *
395 * Produces either a manufacturer, product or serial number string for the
396 * virtual root hub device.
397 * Returns the number of bytes filled in: the length of the descriptor or
398 * of the provided buffer, whichever is less.
399 */
400static unsigned
401rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
402{
403 char buf[100];
404 char const *s;
405 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
406
407 // language ids
408 switch (id) {
409 case 0:
410 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
411 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
412 if (len > 4)
413 len = 4;
414 memcpy(data, langids, len);
415 return len;
416 case 1:
417 /* Serial number */
418 s = hcd->self.bus_name;
419 break;
420 case 2:
421 /* Product name */
422 s = hcd->product_desc;
423 break;
424 case 3:
425 /* Manufacturer */
426 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
427 init_utsname()->release, hcd->driver->description);
428 s = buf;
429 break;
430 default:
431 /* Can't happen; caller guarantees it */
432 return 0;
433 }
434
435 return ascii2desc(s, data, len);
436}
437
438
439/* Root hub control transfers execute synchronously */
440static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
441{
442 struct usb_ctrlrequest *cmd;
443 u16 typeReq, wValue, wIndex, wLength;
444 u8 *ubuf = urb->transfer_buffer;
445 u8 tbuf [sizeof (struct usb_hub_descriptor)]
446 __attribute__((aligned(4)));
447 const u8 *bufp = tbuf;
448 unsigned len = 0;
449 int status;
450 u8 patch_wakeup = 0;
451 u8 patch_protocol = 0;
452
453 might_sleep();
454
455 spin_lock_irq(&hcd_root_hub_lock);
456 status = usb_hcd_link_urb_to_ep(hcd, urb);
457 spin_unlock_irq(&hcd_root_hub_lock);
458 if (status)
459 return status;
460 urb->hcpriv = hcd; /* Indicate it's queued */
461
462 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
463 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
464 wValue = le16_to_cpu (cmd->wValue);
465 wIndex = le16_to_cpu (cmd->wIndex);
466 wLength = le16_to_cpu (cmd->wLength);
467
468 if (wLength > urb->transfer_buffer_length)
469 goto error;
470
471 urb->actual_length = 0;
472 switch (typeReq) {
473
474 /* DEVICE REQUESTS */
475
476 /* The root hub's remote wakeup enable bit is implemented using
477 * driver model wakeup flags. If this system supports wakeup
478 * through USB, userspace may change the default "allow wakeup"
479 * policy through sysfs or these calls.
480 *
481 * Most root hubs support wakeup from downstream devices, for
482 * runtime power management (disabling USB clocks and reducing
483 * VBUS power usage). However, not all of them do so; silicon,
484 * board, and BIOS bugs here are not uncommon, so these can't
485 * be treated quite like external hubs.
486 *
487 * Likewise, not all root hubs will pass wakeup events upstream,
488 * to wake up the whole system. So don't assume root hub and
489 * controller capabilities are identical.
490 */
491
492 case DeviceRequest | USB_REQ_GET_STATUS:
493 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
494 << USB_DEVICE_REMOTE_WAKEUP)
495 | (1 << USB_DEVICE_SELF_POWERED);
496 tbuf [1] = 0;
497 len = 2;
498 break;
499 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
500 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
501 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
502 else
503 goto error;
504 break;
505 case DeviceOutRequest | USB_REQ_SET_FEATURE:
506 if (device_can_wakeup(&hcd->self.root_hub->dev)
507 && wValue == USB_DEVICE_REMOTE_WAKEUP)
508 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
509 else
510 goto error;
511 break;
512 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
513 tbuf [0] = 1;
514 len = 1;
515 /* FALLTHROUGH */
516 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
517 break;
518 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
519 switch (wValue & 0xff00) {
520 case USB_DT_DEVICE << 8:
521 switch (hcd->speed) {
522 case HCD_USB3:
523 bufp = usb3_rh_dev_descriptor;
524 break;
525 case HCD_USB2:
526 bufp = usb2_rh_dev_descriptor;
527 break;
528 case HCD_USB11:
529 bufp = usb11_rh_dev_descriptor;
530 break;
531 default:
532 goto error;
533 }
534 len = 18;
535 if (hcd->has_tt)
536 patch_protocol = 1;
537 break;
538 case USB_DT_CONFIG << 8:
539 switch (hcd->speed) {
540 case HCD_USB3:
541 bufp = ss_rh_config_descriptor;
542 len = sizeof ss_rh_config_descriptor;
543 break;
544 case HCD_USB2:
545 bufp = hs_rh_config_descriptor;
546 len = sizeof hs_rh_config_descriptor;
547 break;
548 case HCD_USB11:
549 bufp = fs_rh_config_descriptor;
550 len = sizeof fs_rh_config_descriptor;
551 break;
552 default:
553 goto error;
554 }
555 if (device_can_wakeup(&hcd->self.root_hub->dev))
556 patch_wakeup = 1;
557 break;
558 case USB_DT_STRING << 8:
559 if ((wValue & 0xff) < 4)
560 urb->actual_length = rh_string(wValue & 0xff,
561 hcd, ubuf, wLength);
562 else /* unsupported IDs --> "protocol stall" */
563 goto error;
564 break;
565 default:
566 goto error;
567 }
568 break;
569 case DeviceRequest | USB_REQ_GET_INTERFACE:
570 tbuf [0] = 0;
571 len = 1;
572 /* FALLTHROUGH */
573 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
574 break;
575 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
576 // wValue == urb->dev->devaddr
577 dev_dbg (hcd->self.controller, "root hub device address %d\n",
578 wValue);
579 break;
580
581 /* INTERFACE REQUESTS (no defined feature/status flags) */
582
583 /* ENDPOINT REQUESTS */
584
585 case EndpointRequest | USB_REQ_GET_STATUS:
586 // ENDPOINT_HALT flag
587 tbuf [0] = 0;
588 tbuf [1] = 0;
589 len = 2;
590 /* FALLTHROUGH */
591 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
592 case EndpointOutRequest | USB_REQ_SET_FEATURE:
593 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
594 break;
595
596 /* CLASS REQUESTS (and errors) */
597
598 default:
599 /* non-generic request */
600 switch (typeReq) {
601 case GetHubStatus:
602 case GetPortStatus:
603 len = 4;
604 break;
605 case GetHubDescriptor:
606 len = sizeof (struct usb_hub_descriptor);
607 break;
608 }
609 status = hcd->driver->hub_control (hcd,
610 typeReq, wValue, wIndex,
611 tbuf, wLength);
612 break;
613error:
614 /* "protocol stall" on error */
615 status = -EPIPE;
616 }
617
618 if (status) {
619 len = 0;
620 if (status != -EPIPE) {
621 dev_dbg (hcd->self.controller,
622 "CTRL: TypeReq=0x%x val=0x%x "
623 "idx=0x%x len=%d ==> %d\n",
624 typeReq, wValue, wIndex,
625 wLength, status);
626 }
627 }
628 if (len) {
629 if (urb->transfer_buffer_length < len)
630 len = urb->transfer_buffer_length;
631 urb->actual_length = len;
632 // always USB_DIR_IN, toward host
633 memcpy (ubuf, bufp, len);
634
635 /* report whether RH hardware supports remote wakeup */
636 if (patch_wakeup &&
637 len > offsetof (struct usb_config_descriptor,
638 bmAttributes))
639 ((struct usb_config_descriptor *)ubuf)->bmAttributes
640 |= USB_CONFIG_ATT_WAKEUP;
641
642 /* report whether RH hardware has an integrated TT */
643 if (patch_protocol &&
644 len > offsetof(struct usb_device_descriptor,
645 bDeviceProtocol))
646 ((struct usb_device_descriptor *) ubuf)->
647 bDeviceProtocol = 1;
648 }
649
650 /* any errors get returned through the urb completion */
651 spin_lock_irq(&hcd_root_hub_lock);
652 usb_hcd_unlink_urb_from_ep(hcd, urb);
653
654 /* This peculiar use of spinlocks echoes what real HC drivers do.
655 * Avoiding calls to local_irq_disable/enable makes the code
656 * RT-friendly.
657 */
658 spin_unlock(&hcd_root_hub_lock);
659 usb_hcd_giveback_urb(hcd, urb, status);
660 spin_lock(&hcd_root_hub_lock);
661
662 spin_unlock_irq(&hcd_root_hub_lock);
663 return 0;
664}
665
666/*-------------------------------------------------------------------------*/
667
668/*
669 * Root Hub interrupt transfers are polled using a timer if the
670 * driver requests it; otherwise the driver is responsible for
671 * calling usb_hcd_poll_rh_status() when an event occurs.
672 *
673 * Completions are called in_interrupt(), but they may or may not
674 * be in_irq().
675 */
676void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
677{
678 struct urb *urb;
679 int length;
680 unsigned long flags;
681 char buffer[6]; /* Any root hubs with > 31 ports? */
682
683 if (unlikely(!hcd->rh_pollable))
684 return;
685 if (!hcd->uses_new_polling && !hcd->status_urb)
686 return;
687
688 length = hcd->driver->hub_status_data(hcd, buffer);
689 if (length > 0) {
690
691 /* try to complete the status urb */
692 spin_lock_irqsave(&hcd_root_hub_lock, flags);
693 urb = hcd->status_urb;
694 if (urb) {
695 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
696 hcd->status_urb = NULL;
697 urb->actual_length = length;
698 memcpy(urb->transfer_buffer, buffer, length);
699
700 usb_hcd_unlink_urb_from_ep(hcd, urb);
701 spin_unlock(&hcd_root_hub_lock);
702 usb_hcd_giveback_urb(hcd, urb, 0);
703 spin_lock(&hcd_root_hub_lock);
704 } else {
705 length = 0;
706 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
707 }
708 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
709 }
710
711 /* The USB 2.0 spec says 256 ms. This is close enough and won't
712 * exceed that limit if HZ is 100. The math is more clunky than
713 * maybe expected, this is to make sure that all timers for USB devices
714 * fire at the same time to give the CPU a break in between */
715 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
716 (length == 0 && hcd->status_urb != NULL))
717 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
718}
719EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
720
721/* timer callback */
722static void rh_timer_func (unsigned long _hcd)
723{
724 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
725}
726
727/*-------------------------------------------------------------------------*/
728
729static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
730{
731 int retval;
732 unsigned long flags;
733 unsigned len = 1 + (urb->dev->maxchild / 8);
734
735 spin_lock_irqsave (&hcd_root_hub_lock, flags);
736 if (hcd->status_urb || urb->transfer_buffer_length < len) {
737 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
738 retval = -EINVAL;
739 goto done;
740 }
741
742 retval = usb_hcd_link_urb_to_ep(hcd, urb);
743 if (retval)
744 goto done;
745
746 hcd->status_urb = urb;
747 urb->hcpriv = hcd; /* indicate it's queued */
748 if (!hcd->uses_new_polling)
749 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
750
751 /* If a status change has already occurred, report it ASAP */
752 else if (HCD_POLL_PENDING(hcd))
753 mod_timer(&hcd->rh_timer, jiffies);
754 retval = 0;
755 done:
756 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
757 return retval;
758}
759
760static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
761{
762 if (usb_endpoint_xfer_int(&urb->ep->desc))
763 return rh_queue_status (hcd, urb);
764 if (usb_endpoint_xfer_control(&urb->ep->desc))
765 return rh_call_control (hcd, urb);
766 return -EINVAL;
767}
768
769/*-------------------------------------------------------------------------*/
770
771/* Unlinks of root-hub control URBs are legal, but they don't do anything
772 * since these URBs always execute synchronously.
773 */
774static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
775{
776 unsigned long flags;
777 int rc;
778
779 spin_lock_irqsave(&hcd_root_hub_lock, flags);
780 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
781 if (rc)
782 goto done;
783
784 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
785 ; /* Do nothing */
786
787 } else { /* Status URB */
788 if (!hcd->uses_new_polling)
789 del_timer (&hcd->rh_timer);
790 if (urb == hcd->status_urb) {
791 hcd->status_urb = NULL;
792 usb_hcd_unlink_urb_from_ep(hcd, urb);
793
794 spin_unlock(&hcd_root_hub_lock);
795 usb_hcd_giveback_urb(hcd, urb, status);
796 spin_lock(&hcd_root_hub_lock);
797 }
798 }
799 done:
800 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
801 return rc;
802}
803
804
805
806/*
807 * Show & store the current value of authorized_default
808 */
809static ssize_t usb_host_authorized_default_show(struct device *dev,
810 struct device_attribute *attr,
811 char *buf)
812{
813 struct usb_device *rh_usb_dev = to_usb_device(dev);
814 struct usb_bus *usb_bus = rh_usb_dev->bus;
815 struct usb_hcd *usb_hcd;
816
817 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
818 return -ENODEV;
819 usb_hcd = bus_to_hcd(usb_bus);
820 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
821}
822
823static ssize_t usb_host_authorized_default_store(struct device *dev,
824 struct device_attribute *attr,
825 const char *buf, size_t size)
826{
827 ssize_t result;
828 unsigned val;
829 struct usb_device *rh_usb_dev = to_usb_device(dev);
830 struct usb_bus *usb_bus = rh_usb_dev->bus;
831 struct usb_hcd *usb_hcd;
832
833 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
834 return -ENODEV;
835 usb_hcd = bus_to_hcd(usb_bus);
836 result = sscanf(buf, "%u\n", &val);
837 if (result == 1) {
838 usb_hcd->authorized_default = val? 1 : 0;
839 result = size;
840 }
841 else
842 result = -EINVAL;
843 return result;
844}
845
846static DEVICE_ATTR(authorized_default, 0644,
847 usb_host_authorized_default_show,
848 usb_host_authorized_default_store);
849
850
851/* Group all the USB bus attributes */
852static struct attribute *usb_bus_attrs[] = {
853 &dev_attr_authorized_default.attr,
854 NULL,
855};
856
857static struct attribute_group usb_bus_attr_group = {
858 .name = NULL, /* we want them in the same directory */
859 .attrs = usb_bus_attrs,
860};
861
862
863
864/*-------------------------------------------------------------------------*/
865
866/**
867 * usb_bus_init - shared initialization code
868 * @bus: the bus structure being initialized
869 *
870 * This code is used to initialize a usb_bus structure, memory for which is
871 * separately managed.
872 */
873static void usb_bus_init (struct usb_bus *bus)
874{
875 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
876
877 bus->devnum_next = 1;
878
879 bus->root_hub = NULL;
880 bus->busnum = -1;
881 bus->bandwidth_allocated = 0;
882 bus->bandwidth_int_reqs = 0;
883 bus->bandwidth_isoc_reqs = 0;
884
885 INIT_LIST_HEAD (&bus->bus_list);
886}
887
888/*-------------------------------------------------------------------------*/
889
890/**
891 * usb_register_bus - registers the USB host controller with the usb core
892 * @bus: pointer to the bus to register
893 * Context: !in_interrupt()
894 *
895 * Assigns a bus number, and links the controller into usbcore data
896 * structures so that it can be seen by scanning the bus list.
897 */
898static int usb_register_bus(struct usb_bus *bus)
899{
900 int result = -E2BIG;
901 int busnum;
902
903 mutex_lock(&usb_bus_list_lock);
904 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
905 if (busnum >= USB_MAXBUS) {
906 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
907 goto error_find_busnum;
908 }
909 set_bit (busnum, busmap.busmap);
910 bus->busnum = busnum;
911
912 /* Add it to the local list of buses */
913 list_add (&bus->bus_list, &usb_bus_list);
914 mutex_unlock(&usb_bus_list_lock);
915
916 usb_notify_add_bus(bus);
917
918 dev_info (bus->controller, "new USB bus registered, assigned bus "
919 "number %d\n", bus->busnum);
920 return 0;
921
922error_find_busnum:
923 mutex_unlock(&usb_bus_list_lock);
924 return result;
925}
926
927/**
928 * usb_deregister_bus - deregisters the USB host controller
929 * @bus: pointer to the bus to deregister
930 * Context: !in_interrupt()
931 *
932 * Recycles the bus number, and unlinks the controller from usbcore data
933 * structures so that it won't be seen by scanning the bus list.
934 */
935static void usb_deregister_bus (struct usb_bus *bus)
936{
937 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
938
939 /*
940 * NOTE: make sure that all the devices are removed by the
941 * controller code, as well as having it call this when cleaning
942 * itself up
943 */
944 mutex_lock(&usb_bus_list_lock);
945 list_del (&bus->bus_list);
946 mutex_unlock(&usb_bus_list_lock);
947
948 usb_notify_remove_bus(bus);
949
950 clear_bit (bus->busnum, busmap.busmap);
951}
952
953/**
954 * register_root_hub - called by usb_add_hcd() to register a root hub
955 * @hcd: host controller for this root hub
956 *
957 * This function registers the root hub with the USB subsystem. It sets up
958 * the device properly in the device tree and then calls usb_new_device()
959 * to register the usb device. It also assigns the root hub's USB address
960 * (always 1).
961 */
962static int register_root_hub(struct usb_hcd *hcd)
963{
964 struct device *parent_dev = hcd->self.controller;
965 struct usb_device *usb_dev = hcd->self.root_hub;
966 const int devnum = 1;
967 int retval;
968
969 usb_dev->devnum = devnum;
970 usb_dev->bus->devnum_next = devnum + 1;
971 memset (&usb_dev->bus->devmap.devicemap, 0,
972 sizeof usb_dev->bus->devmap.devicemap);
973 set_bit (devnum, usb_dev->bus->devmap.devicemap);
974 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
975
976 mutex_lock(&usb_bus_list_lock);
977
978 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
979 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
980 if (retval != sizeof usb_dev->descriptor) {
981 mutex_unlock(&usb_bus_list_lock);
982 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
983 dev_name(&usb_dev->dev), retval);
984 return (retval < 0) ? retval : -EMSGSIZE;
985 }
986
987 retval = usb_new_device (usb_dev);
988 if (retval) {
989 dev_err (parent_dev, "can't register root hub for %s, %d\n",
990 dev_name(&usb_dev->dev), retval);
991 }
992 mutex_unlock(&usb_bus_list_lock);
993
994 if (retval == 0) {
995 spin_lock_irq (&hcd_root_hub_lock);
996 hcd->rh_registered = 1;
997 spin_unlock_irq (&hcd_root_hub_lock);
998
999 /* Did the HC die before the root hub was registered? */
1000 if (HCD_DEAD(hcd))
1001 usb_hc_died (hcd); /* This time clean up */
1002 }
1003
1004 return retval;
1005}
1006
1007
1008/*-------------------------------------------------------------------------*/
1009
1010/**
1011 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1012 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1013 * @is_input: true iff the transaction sends data to the host
1014 * @isoc: true for isochronous transactions, false for interrupt ones
1015 * @bytecount: how many bytes in the transaction.
1016 *
1017 * Returns approximate bus time in nanoseconds for a periodic transaction.
1018 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1019 * scheduled in software, this function is only used for such scheduling.
1020 */
1021long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1022{
1023 unsigned long tmp;
1024
1025 switch (speed) {
1026 case USB_SPEED_LOW: /* INTR only */
1027 if (is_input) {
1028 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1029 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1030 } else {
1031 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1032 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1033 }
1034 case USB_SPEED_FULL: /* ISOC or INTR */
1035 if (isoc) {
1036 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1037 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1038 } else {
1039 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1040 return (9107L + BW_HOST_DELAY + tmp);
1041 }
1042 case USB_SPEED_HIGH: /* ISOC or INTR */
1043 // FIXME adjust for input vs output
1044 if (isoc)
1045 tmp = HS_NSECS_ISO (bytecount);
1046 else
1047 tmp = HS_NSECS (bytecount);
1048 return tmp;
1049 default:
1050 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1051 return -1;
1052 }
1053}
1054EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1055
1056
1057/*-------------------------------------------------------------------------*/
1058
1059/*
1060 * Generic HC operations.
1061 */
1062
1063/*-------------------------------------------------------------------------*/
1064
1065/**
1066 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1067 * @hcd: host controller to which @urb was submitted
1068 * @urb: URB being submitted
1069 *
1070 * Host controller drivers should call this routine in their enqueue()
1071 * method. The HCD's private spinlock must be held and interrupts must
1072 * be disabled. The actions carried out here are required for URB
1073 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1074 *
1075 * Returns 0 for no error, otherwise a negative error code (in which case
1076 * the enqueue() method must fail). If no error occurs but enqueue() fails
1077 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1078 * the private spinlock and returning.
1079 */
1080int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1081{
1082 int rc = 0;
1083
1084 spin_lock(&hcd_urb_list_lock);
1085
1086 /* Check that the URB isn't being killed */
1087 if (unlikely(atomic_read(&urb->reject))) {
1088 rc = -EPERM;
1089 goto done;
1090 }
1091
1092 if (unlikely(!urb->ep->enabled)) {
1093 rc = -ENOENT;
1094 goto done;
1095 }
1096
1097 if (unlikely(!urb->dev->can_submit)) {
1098 rc = -EHOSTUNREACH;
1099 goto done;
1100 }
1101
1102 /*
1103 * Check the host controller's state and add the URB to the
1104 * endpoint's queue.
1105 */
1106 if (HCD_RH_RUNNING(hcd)) {
1107 urb->unlinked = 0;
1108 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1109 } else {
1110 rc = -ESHUTDOWN;
1111 goto done;
1112 }
1113 done:
1114 spin_unlock(&hcd_urb_list_lock);
1115 return rc;
1116}
1117EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1118
1119/**
1120 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1121 * @hcd: host controller to which @urb was submitted
1122 * @urb: URB being checked for unlinkability
1123 * @status: error code to store in @urb if the unlink succeeds
1124 *
1125 * Host controller drivers should call this routine in their dequeue()
1126 * method. The HCD's private spinlock must be held and interrupts must
1127 * be disabled. The actions carried out here are required for making
1128 * sure than an unlink is valid.
1129 *
1130 * Returns 0 for no error, otherwise a negative error code (in which case
1131 * the dequeue() method must fail). The possible error codes are:
1132 *
1133 * -EIDRM: @urb was not submitted or has already completed.
1134 * The completion function may not have been called yet.
1135 *
1136 * -EBUSY: @urb has already been unlinked.
1137 */
1138int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1139 int status)
1140{
1141 struct list_head *tmp;
1142
1143 /* insist the urb is still queued */
1144 list_for_each(tmp, &urb->ep->urb_list) {
1145 if (tmp == &urb->urb_list)
1146 break;
1147 }
1148 if (tmp != &urb->urb_list)
1149 return -EIDRM;
1150
1151 /* Any status except -EINPROGRESS means something already started to
1152 * unlink this URB from the hardware. So there's no more work to do.
1153 */
1154 if (urb->unlinked)
1155 return -EBUSY;
1156 urb->unlinked = status;
1157
1158 /* IRQ setup can easily be broken so that USB controllers
1159 * never get completion IRQs ... maybe even the ones we need to
1160 * finish unlinking the initial failed usb_set_address()
1161 * or device descriptor fetch.
1162 */
1163 if (!HCD_SAW_IRQ(hcd) && !is_root_hub(urb->dev)) {
1164 dev_warn(hcd->self.controller, "Unlink after no-IRQ? "
1165 "Controller is probably using the wrong IRQ.\n");
1166 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1167 if (hcd->shared_hcd)
1168 set_bit(HCD_FLAG_SAW_IRQ, &hcd->shared_hcd->flags);
1169 }
1170
1171 return 0;
1172}
1173EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1174
1175/**
1176 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1177 * @hcd: host controller to which @urb was submitted
1178 * @urb: URB being unlinked
1179 *
1180 * Host controller drivers should call this routine before calling
1181 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1182 * interrupts must be disabled. The actions carried out here are required
1183 * for URB completion.
1184 */
1185void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1186{
1187 /* clear all state linking urb to this dev (and hcd) */
1188 spin_lock(&hcd_urb_list_lock);
1189 list_del_init(&urb->urb_list);
1190 spin_unlock(&hcd_urb_list_lock);
1191}
1192EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1193
1194/*
1195 * Some usb host controllers can only perform dma using a small SRAM area.
1196 * The usb core itself is however optimized for host controllers that can dma
1197 * using regular system memory - like pci devices doing bus mastering.
1198 *
1199 * To support host controllers with limited dma capabilites we provide dma
1200 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1201 * For this to work properly the host controller code must first use the
1202 * function dma_declare_coherent_memory() to point out which memory area
1203 * that should be used for dma allocations.
1204 *
1205 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1206 * dma using dma_alloc_coherent() which in turn allocates from the memory
1207 * area pointed out with dma_declare_coherent_memory().
1208 *
1209 * So, to summarize...
1210 *
1211 * - We need "local" memory, canonical example being
1212 * a small SRAM on a discrete controller being the
1213 * only memory that the controller can read ...
1214 * (a) "normal" kernel memory is no good, and
1215 * (b) there's not enough to share
1216 *
1217 * - The only *portable* hook for such stuff in the
1218 * DMA framework is dma_declare_coherent_memory()
1219 *
1220 * - So we use that, even though the primary requirement
1221 * is that the memory be "local" (hence addressible
1222 * by that device), not "coherent".
1223 *
1224 */
1225
1226static int hcd_alloc_coherent(struct usb_bus *bus,
1227 gfp_t mem_flags, dma_addr_t *dma_handle,
1228 void **vaddr_handle, size_t size,
1229 enum dma_data_direction dir)
1230{
1231 unsigned char *vaddr;
1232
1233 if (*vaddr_handle == NULL) {
1234 WARN_ON_ONCE(1);
1235 return -EFAULT;
1236 }
1237
1238 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1239 mem_flags, dma_handle);
1240 if (!vaddr)
1241 return -ENOMEM;
1242
1243 /*
1244 * Store the virtual address of the buffer at the end
1245 * of the allocated dma buffer. The size of the buffer
1246 * may be uneven so use unaligned functions instead
1247 * of just rounding up. It makes sense to optimize for
1248 * memory footprint over access speed since the amount
1249 * of memory available for dma may be limited.
1250 */
1251 put_unaligned((unsigned long)*vaddr_handle,
1252 (unsigned long *)(vaddr + size));
1253
1254 if (dir == DMA_TO_DEVICE)
1255 memcpy(vaddr, *vaddr_handle, size);
1256
1257 *vaddr_handle = vaddr;
1258 return 0;
1259}
1260
1261static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1262 void **vaddr_handle, size_t size,
1263 enum dma_data_direction dir)
1264{
1265 unsigned char *vaddr = *vaddr_handle;
1266
1267 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1268
1269 if (dir == DMA_FROM_DEVICE)
1270 memcpy(vaddr, *vaddr_handle, size);
1271
1272 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1273
1274 *vaddr_handle = vaddr;
1275 *dma_handle = 0;
1276}
1277
1278void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1279{
1280 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1281 dma_unmap_single(hcd->self.controller,
1282 urb->setup_dma,
1283 sizeof(struct usb_ctrlrequest),
1284 DMA_TO_DEVICE);
1285 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1286 hcd_free_coherent(urb->dev->bus,
1287 &urb->setup_dma,
1288 (void **) &urb->setup_packet,
1289 sizeof(struct usb_ctrlrequest),
1290 DMA_TO_DEVICE);
1291
1292 /* Make it safe to call this routine more than once */
1293 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1294}
1295EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1296
1297static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1298{
1299 if (hcd->driver->unmap_urb_for_dma)
1300 hcd->driver->unmap_urb_for_dma(hcd, urb);
1301 else
1302 usb_hcd_unmap_urb_for_dma(hcd, urb);
1303}
1304
1305void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1306{
1307 enum dma_data_direction dir;
1308
1309 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1310
1311 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1312 if (urb->transfer_flags & URB_DMA_MAP_SG)
1313 dma_unmap_sg(hcd->self.controller,
1314 urb->sg,
1315 urb->num_sgs,
1316 dir);
1317 else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1318 dma_unmap_page(hcd->self.controller,
1319 urb->transfer_dma,
1320 urb->transfer_buffer_length,
1321 dir);
1322 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1323 dma_unmap_single(hcd->self.controller,
1324 urb->transfer_dma,
1325 urb->transfer_buffer_length,
1326 dir);
1327 else if (urb->transfer_flags & URB_MAP_LOCAL)
1328 hcd_free_coherent(urb->dev->bus,
1329 &urb->transfer_dma,
1330 &urb->transfer_buffer,
1331 urb->transfer_buffer_length,
1332 dir);
1333
1334 /* Make it safe to call this routine more than once */
1335 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1336 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1337}
1338EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1339
1340static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1341 gfp_t mem_flags)
1342{
1343 if (hcd->driver->map_urb_for_dma)
1344 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1345 else
1346 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1347}
1348
1349int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1350 gfp_t mem_flags)
1351{
1352 enum dma_data_direction dir;
1353 int ret = 0;
1354
1355 /* Map the URB's buffers for DMA access.
1356 * Lower level HCD code should use *_dma exclusively,
1357 * unless it uses pio or talks to another transport,
1358 * or uses the provided scatter gather list for bulk.
1359 */
1360
1361 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1362 if (hcd->self.uses_pio_for_control)
1363 return ret;
1364 if (hcd->self.uses_dma) {
1365 urb->setup_dma = dma_map_single(
1366 hcd->self.controller,
1367 urb->setup_packet,
1368 sizeof(struct usb_ctrlrequest),
1369 DMA_TO_DEVICE);
1370 if (dma_mapping_error(hcd->self.controller,
1371 urb->setup_dma))
1372 return -EAGAIN;
1373 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1374 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1375 ret = hcd_alloc_coherent(
1376 urb->dev->bus, mem_flags,
1377 &urb->setup_dma,
1378 (void **)&urb->setup_packet,
1379 sizeof(struct usb_ctrlrequest),
1380 DMA_TO_DEVICE);
1381 if (ret)
1382 return ret;
1383 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1384 }
1385 }
1386
1387 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1388 if (urb->transfer_buffer_length != 0
1389 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1390 if (hcd->self.uses_dma) {
1391 if (urb->num_sgs) {
1392 int n = dma_map_sg(
1393 hcd->self.controller,
1394 urb->sg,
1395 urb->num_sgs,
1396 dir);
1397 if (n <= 0)
1398 ret = -EAGAIN;
1399 else
1400 urb->transfer_flags |= URB_DMA_MAP_SG;
1401 if (n != urb->num_sgs) {
1402 urb->num_sgs = n;
1403 urb->transfer_flags |=
1404 URB_DMA_SG_COMBINED;
1405 }
1406 } else if (urb->sg) {
1407 struct scatterlist *sg = urb->sg;
1408 urb->transfer_dma = dma_map_page(
1409 hcd->self.controller,
1410 sg_page(sg),
1411 sg->offset,
1412 urb->transfer_buffer_length,
1413 dir);
1414 if (dma_mapping_error(hcd->self.controller,
1415 urb->transfer_dma))
1416 ret = -EAGAIN;
1417 else
1418 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1419 } else {
1420 urb->transfer_dma = dma_map_single(
1421 hcd->self.controller,
1422 urb->transfer_buffer,
1423 urb->transfer_buffer_length,
1424 dir);
1425 if (dma_mapping_error(hcd->self.controller,
1426 urb->transfer_dma))
1427 ret = -EAGAIN;
1428 else
1429 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1430 }
1431 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1432 ret = hcd_alloc_coherent(
1433 urb->dev->bus, mem_flags,
1434 &urb->transfer_dma,
1435 &urb->transfer_buffer,
1436 urb->transfer_buffer_length,
1437 dir);
1438 if (ret == 0)
1439 urb->transfer_flags |= URB_MAP_LOCAL;
1440 }
1441 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1442 URB_SETUP_MAP_LOCAL)))
1443 usb_hcd_unmap_urb_for_dma(hcd, urb);
1444 }
1445 return ret;
1446}
1447EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1448
1449/*-------------------------------------------------------------------------*/
1450
1451/* may be called in any context with a valid urb->dev usecount
1452 * caller surrenders "ownership" of urb
1453 * expects usb_submit_urb() to have sanity checked and conditioned all
1454 * inputs in the urb
1455 */
1456int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1457{
1458 int status;
1459 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1460
1461 /* increment urb's reference count as part of giving it to the HCD
1462 * (which will control it). HCD guarantees that it either returns
1463 * an error or calls giveback(), but not both.
1464 */
1465 usb_get_urb(urb);
1466 atomic_inc(&urb->use_count);
1467 atomic_inc(&urb->dev->urbnum);
1468 usbmon_urb_submit(&hcd->self, urb);
1469
1470 /* NOTE requirements on root-hub callers (usbfs and the hub
1471 * driver, for now): URBs' urb->transfer_buffer must be
1472 * valid and usb_buffer_{sync,unmap}() not be needed, since
1473 * they could clobber root hub response data. Also, control
1474 * URBs must be submitted in process context with interrupts
1475 * enabled.
1476 */
1477
1478 if (is_root_hub(urb->dev)) {
1479 status = rh_urb_enqueue(hcd, urb);
1480 } else {
1481 status = map_urb_for_dma(hcd, urb, mem_flags);
1482 if (likely(status == 0)) {
1483 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1484 if (unlikely(status))
1485 unmap_urb_for_dma(hcd, urb);
1486 }
1487 }
1488
1489 if (unlikely(status)) {
1490 usbmon_urb_submit_error(&hcd->self, urb, status);
1491 urb->hcpriv = NULL;
1492 INIT_LIST_HEAD(&urb->urb_list);
1493 atomic_dec(&urb->use_count);
1494 atomic_dec(&urb->dev->urbnum);
1495 if (atomic_read(&urb->reject))
1496 wake_up(&usb_kill_urb_queue);
1497 usb_put_urb(urb);
1498 }
1499 return status;
1500}
1501
1502/*-------------------------------------------------------------------------*/
1503
1504/* this makes the hcd giveback() the urb more quickly, by kicking it
1505 * off hardware queues (which may take a while) and returning it as
1506 * soon as practical. we've already set up the urb's return status,
1507 * but we can't know if the callback completed already.
1508 */
1509static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1510{
1511 int value;
1512
1513 if (is_root_hub(urb->dev))
1514 value = usb_rh_urb_dequeue(hcd, urb, status);
1515 else {
1516
1517 /* The only reason an HCD might fail this call is if
1518 * it has not yet fully queued the urb to begin with.
1519 * Such failures should be harmless. */
1520 value = hcd->driver->urb_dequeue(hcd, urb, status);
1521 }
1522 return value;
1523}
1524
1525/*
1526 * called in any context
1527 *
1528 * caller guarantees urb won't be recycled till both unlink()
1529 * and the urb's completion function return
1530 */
1531int usb_hcd_unlink_urb (struct urb *urb, int status)
1532{
1533 struct usb_hcd *hcd;
1534 int retval = -EIDRM;
1535 unsigned long flags;
1536
1537 /* Prevent the device and bus from going away while
1538 * the unlink is carried out. If they are already gone
1539 * then urb->use_count must be 0, since disconnected
1540 * devices can't have any active URBs.
1541 */
1542 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1543 if (atomic_read(&urb->use_count) > 0) {
1544 retval = 0;
1545 usb_get_dev(urb->dev);
1546 }
1547 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1548 if (retval == 0) {
1549 hcd = bus_to_hcd(urb->dev->bus);
1550 retval = unlink1(hcd, urb, status);
1551 usb_put_dev(urb->dev);
1552 }
1553
1554 if (retval == 0)
1555 retval = -EINPROGRESS;
1556 else if (retval != -EIDRM && retval != -EBUSY)
1557 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1558 urb, retval);
1559 return retval;
1560}
1561
1562/*-------------------------------------------------------------------------*/
1563
1564/**
1565 * usb_hcd_giveback_urb - return URB from HCD to device driver
1566 * @hcd: host controller returning the URB
1567 * @urb: urb being returned to the USB device driver.
1568 * @status: completion status code for the URB.
1569 * Context: in_interrupt()
1570 *
1571 * This hands the URB from HCD to its USB device driver, using its
1572 * completion function. The HCD has freed all per-urb resources
1573 * (and is done using urb->hcpriv). It also released all HCD locks;
1574 * the device driver won't cause problems if it frees, modifies,
1575 * or resubmits this URB.
1576 *
1577 * If @urb was unlinked, the value of @status will be overridden by
1578 * @urb->unlinked. Erroneous short transfers are detected in case
1579 * the HCD hasn't checked for them.
1580 */
1581void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1582{
1583 urb->hcpriv = NULL;
1584 if (unlikely(urb->unlinked))
1585 status = urb->unlinked;
1586 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1587 urb->actual_length < urb->transfer_buffer_length &&
1588 !status))
1589 status = -EREMOTEIO;
1590
1591 unmap_urb_for_dma(hcd, urb);
1592 usbmon_urb_complete(&hcd->self, urb, status);
1593 usb_unanchor_urb(urb);
1594
1595 /* pass ownership to the completion handler */
1596 urb->status = status;
1597 urb->complete (urb);
1598 atomic_dec (&urb->use_count);
1599 if (unlikely(atomic_read(&urb->reject)))
1600 wake_up (&usb_kill_urb_queue);
1601 usb_put_urb (urb);
1602}
1603EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1604
1605/*-------------------------------------------------------------------------*/
1606
1607/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1608 * queue to drain completely. The caller must first insure that no more
1609 * URBs can be submitted for this endpoint.
1610 */
1611void usb_hcd_flush_endpoint(struct usb_device *udev,
1612 struct usb_host_endpoint *ep)
1613{
1614 struct usb_hcd *hcd;
1615 struct urb *urb;
1616
1617 if (!ep)
1618 return;
1619 might_sleep();
1620 hcd = bus_to_hcd(udev->bus);
1621
1622 /* No more submits can occur */
1623 spin_lock_irq(&hcd_urb_list_lock);
1624rescan:
1625 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1626 int is_in;
1627
1628 if (urb->unlinked)
1629 continue;
1630 usb_get_urb (urb);
1631 is_in = usb_urb_dir_in(urb);
1632 spin_unlock(&hcd_urb_list_lock);
1633
1634 /* kick hcd */
1635 unlink1(hcd, urb, -ESHUTDOWN);
1636 dev_dbg (hcd->self.controller,
1637 "shutdown urb %p ep%d%s%s\n",
1638 urb, usb_endpoint_num(&ep->desc),
1639 is_in ? "in" : "out",
1640 ({ char *s;
1641
1642 switch (usb_endpoint_type(&ep->desc)) {
1643 case USB_ENDPOINT_XFER_CONTROL:
1644 s = ""; break;
1645 case USB_ENDPOINT_XFER_BULK:
1646 s = "-bulk"; break;
1647 case USB_ENDPOINT_XFER_INT:
1648 s = "-intr"; break;
1649 default:
1650 s = "-iso"; break;
1651 };
1652 s;
1653 }));
1654 usb_put_urb (urb);
1655
1656 /* list contents may have changed */
1657 spin_lock(&hcd_urb_list_lock);
1658 goto rescan;
1659 }
1660 spin_unlock_irq(&hcd_urb_list_lock);
1661
1662 /* Wait until the endpoint queue is completely empty */
1663 while (!list_empty (&ep->urb_list)) {
1664 spin_lock_irq(&hcd_urb_list_lock);
1665
1666 /* The list may have changed while we acquired the spinlock */
1667 urb = NULL;
1668 if (!list_empty (&ep->urb_list)) {
1669 urb = list_entry (ep->urb_list.prev, struct urb,
1670 urb_list);
1671 usb_get_urb (urb);
1672 }
1673 spin_unlock_irq(&hcd_urb_list_lock);
1674
1675 if (urb) {
1676 usb_kill_urb (urb);
1677 usb_put_urb (urb);
1678 }
1679 }
1680}
1681
1682/**
1683 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1684 * the bus bandwidth
1685 * @udev: target &usb_device
1686 * @new_config: new configuration to install
1687 * @cur_alt: the current alternate interface setting
1688 * @new_alt: alternate interface setting that is being installed
1689 *
1690 * To change configurations, pass in the new configuration in new_config,
1691 * and pass NULL for cur_alt and new_alt.
1692 *
1693 * To reset a device's configuration (put the device in the ADDRESSED state),
1694 * pass in NULL for new_config, cur_alt, and new_alt.
1695 *
1696 * To change alternate interface settings, pass in NULL for new_config,
1697 * pass in the current alternate interface setting in cur_alt,
1698 * and pass in the new alternate interface setting in new_alt.
1699 *
1700 * Returns an error if the requested bandwidth change exceeds the
1701 * bus bandwidth or host controller internal resources.
1702 */
1703int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1704 struct usb_host_config *new_config,
1705 struct usb_host_interface *cur_alt,
1706 struct usb_host_interface *new_alt)
1707{
1708 int num_intfs, i, j;
1709 struct usb_host_interface *alt = NULL;
1710 int ret = 0;
1711 struct usb_hcd *hcd;
1712 struct usb_host_endpoint *ep;
1713
1714 hcd = bus_to_hcd(udev->bus);
1715 if (!hcd->driver->check_bandwidth)
1716 return 0;
1717
1718 /* Configuration is being removed - set configuration 0 */
1719 if (!new_config && !cur_alt) {
1720 for (i = 1; i < 16; ++i) {
1721 ep = udev->ep_out[i];
1722 if (ep)
1723 hcd->driver->drop_endpoint(hcd, udev, ep);
1724 ep = udev->ep_in[i];
1725 if (ep)
1726 hcd->driver->drop_endpoint(hcd, udev, ep);
1727 }
1728 hcd->driver->check_bandwidth(hcd, udev);
1729 return 0;
1730 }
1731 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1732 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1733 * of the bus. There will always be bandwidth for endpoint 0, so it's
1734 * ok to exclude it.
1735 */
1736 if (new_config) {
1737 num_intfs = new_config->desc.bNumInterfaces;
1738 /* Remove endpoints (except endpoint 0, which is always on the
1739 * schedule) from the old config from the schedule
1740 */
1741 for (i = 1; i < 16; ++i) {
1742 ep = udev->ep_out[i];
1743 if (ep) {
1744 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1745 if (ret < 0)
1746 goto reset;
1747 }
1748 ep = udev->ep_in[i];
1749 if (ep) {
1750 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1751 if (ret < 0)
1752 goto reset;
1753 }
1754 }
1755 for (i = 0; i < num_intfs; ++i) {
1756 struct usb_host_interface *first_alt;
1757 int iface_num;
1758
1759 first_alt = &new_config->intf_cache[i]->altsetting[0];
1760 iface_num = first_alt->desc.bInterfaceNumber;
1761 /* Set up endpoints for alternate interface setting 0 */
1762 alt = usb_find_alt_setting(new_config, iface_num, 0);
1763 if (!alt)
1764 /* No alt setting 0? Pick the first setting. */
1765 alt = first_alt;
1766
1767 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1768 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1769 if (ret < 0)
1770 goto reset;
1771 }
1772 }
1773 }
1774 if (cur_alt && new_alt) {
1775 struct usb_interface *iface = usb_ifnum_to_if(udev,
1776 cur_alt->desc.bInterfaceNumber);
1777
1778 if (!iface)
1779 return -EINVAL;
1780 if (iface->resetting_device) {
1781 /*
1782 * The USB core just reset the device, so the xHCI host
1783 * and the device will think alt setting 0 is installed.
1784 * However, the USB core will pass in the alternate
1785 * setting installed before the reset as cur_alt. Dig
1786 * out the alternate setting 0 structure, or the first
1787 * alternate setting if a broken device doesn't have alt
1788 * setting 0.
1789 */
1790 cur_alt = usb_altnum_to_altsetting(iface, 0);
1791 if (!cur_alt)
1792 cur_alt = &iface->altsetting[0];
1793 }
1794
1795 /* Drop all the endpoints in the current alt setting */
1796 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1797 ret = hcd->driver->drop_endpoint(hcd, udev,
1798 &cur_alt->endpoint[i]);
1799 if (ret < 0)
1800 goto reset;
1801 }
1802 /* Add all the endpoints in the new alt setting */
1803 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1804 ret = hcd->driver->add_endpoint(hcd, udev,
1805 &new_alt->endpoint[i]);
1806 if (ret < 0)
1807 goto reset;
1808 }
1809 }
1810 ret = hcd->driver->check_bandwidth(hcd, udev);
1811reset:
1812 if (ret < 0)
1813 hcd->driver->reset_bandwidth(hcd, udev);
1814 return ret;
1815}
1816
1817/* Disables the endpoint: synchronizes with the hcd to make sure all
1818 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1819 * have been called previously. Use for set_configuration, set_interface,
1820 * driver removal, physical disconnect.
1821 *
1822 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1823 * type, maxpacket size, toggle, halt status, and scheduling.
1824 */
1825void usb_hcd_disable_endpoint(struct usb_device *udev,
1826 struct usb_host_endpoint *ep)
1827{
1828 struct usb_hcd *hcd;
1829
1830 might_sleep();
1831 hcd = bus_to_hcd(udev->bus);
1832 if (hcd->driver->endpoint_disable)
1833 hcd->driver->endpoint_disable(hcd, ep);
1834}
1835
1836/**
1837 * usb_hcd_reset_endpoint - reset host endpoint state
1838 * @udev: USB device.
1839 * @ep: the endpoint to reset.
1840 *
1841 * Resets any host endpoint state such as the toggle bit, sequence
1842 * number and current window.
1843 */
1844void usb_hcd_reset_endpoint(struct usb_device *udev,
1845 struct usb_host_endpoint *ep)
1846{
1847 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1848
1849 if (hcd->driver->endpoint_reset)
1850 hcd->driver->endpoint_reset(hcd, ep);
1851 else {
1852 int epnum = usb_endpoint_num(&ep->desc);
1853 int is_out = usb_endpoint_dir_out(&ep->desc);
1854 int is_control = usb_endpoint_xfer_control(&ep->desc);
1855
1856 usb_settoggle(udev, epnum, is_out, 0);
1857 if (is_control)
1858 usb_settoggle(udev, epnum, !is_out, 0);
1859 }
1860}
1861
1862/**
1863 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1864 * @interface: alternate setting that includes all endpoints.
1865 * @eps: array of endpoints that need streams.
1866 * @num_eps: number of endpoints in the array.
1867 * @num_streams: number of streams to allocate.
1868 * @mem_flags: flags hcd should use to allocate memory.
1869 *
1870 * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1871 * Drivers may queue multiple transfers to different stream IDs, which may
1872 * complete in a different order than they were queued.
1873 */
1874int usb_alloc_streams(struct usb_interface *interface,
1875 struct usb_host_endpoint **eps, unsigned int num_eps,
1876 unsigned int num_streams, gfp_t mem_flags)
1877{
1878 struct usb_hcd *hcd;
1879 struct usb_device *dev;
1880 int i;
1881
1882 dev = interface_to_usbdev(interface);
1883 hcd = bus_to_hcd(dev->bus);
1884 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1885 return -EINVAL;
1886 if (dev->speed != USB_SPEED_SUPER)
1887 return -EINVAL;
1888
1889 /* Streams only apply to bulk endpoints. */
1890 for (i = 0; i < num_eps; i++)
1891 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1892 return -EINVAL;
1893
1894 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1895 num_streams, mem_flags);
1896}
1897EXPORT_SYMBOL_GPL(usb_alloc_streams);
1898
1899/**
1900 * usb_free_streams - free bulk endpoint stream IDs.
1901 * @interface: alternate setting that includes all endpoints.
1902 * @eps: array of endpoints to remove streams from.
1903 * @num_eps: number of endpoints in the array.
1904 * @mem_flags: flags hcd should use to allocate memory.
1905 *
1906 * Reverts a group of bulk endpoints back to not using stream IDs.
1907 * Can fail if we are given bad arguments, or HCD is broken.
1908 */
1909void usb_free_streams(struct usb_interface *interface,
1910 struct usb_host_endpoint **eps, unsigned int num_eps,
1911 gfp_t mem_flags)
1912{
1913 struct usb_hcd *hcd;
1914 struct usb_device *dev;
1915 int i;
1916
1917 dev = interface_to_usbdev(interface);
1918 hcd = bus_to_hcd(dev->bus);
1919 if (dev->speed != USB_SPEED_SUPER)
1920 return;
1921
1922 /* Streams only apply to bulk endpoints. */
1923 for (i = 0; i < num_eps; i++)
1924 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1925 return;
1926
1927 hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1928}
1929EXPORT_SYMBOL_GPL(usb_free_streams);
1930
1931/* Protect against drivers that try to unlink URBs after the device
1932 * is gone, by waiting until all unlinks for @udev are finished.
1933 * Since we don't currently track URBs by device, simply wait until
1934 * nothing is running in the locked region of usb_hcd_unlink_urb().
1935 */
1936void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1937{
1938 spin_lock_irq(&hcd_urb_unlink_lock);
1939 spin_unlock_irq(&hcd_urb_unlink_lock);
1940}
1941
1942/*-------------------------------------------------------------------------*/
1943
1944/* called in any context */
1945int usb_hcd_get_frame_number (struct usb_device *udev)
1946{
1947 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1948
1949 if (!HCD_RH_RUNNING(hcd))
1950 return -ESHUTDOWN;
1951 return hcd->driver->get_frame_number (hcd);
1952}
1953
1954/*-------------------------------------------------------------------------*/
1955
1956#ifdef CONFIG_PM
1957
1958int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1959{
1960 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1961 int status;
1962 int old_state = hcd->state;
1963
1964 dev_dbg(&rhdev->dev, "bus %s%s\n",
1965 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1966 if (HCD_DEAD(hcd)) {
1967 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
1968 return 0;
1969 }
1970
1971 if (!hcd->driver->bus_suspend) {
1972 status = -ENOENT;
1973 } else {
1974 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1975 hcd->state = HC_STATE_QUIESCING;
1976 status = hcd->driver->bus_suspend(hcd);
1977 }
1978 if (status == 0) {
1979 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1980 hcd->state = HC_STATE_SUSPENDED;
1981 } else {
1982 spin_lock_irq(&hcd_root_hub_lock);
1983 if (!HCD_DEAD(hcd)) {
1984 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1985 hcd->state = old_state;
1986 }
1987 spin_unlock_irq(&hcd_root_hub_lock);
1988 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1989 "suspend", status);
1990 }
1991 return status;
1992}
1993
1994int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1995{
1996 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1997 int status;
1998 int old_state = hcd->state;
1999
2000 dev_dbg(&rhdev->dev, "usb %s%s\n",
2001 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
2002 if (HCD_DEAD(hcd)) {
2003 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2004 return 0;
2005 }
2006 if (!hcd->driver->bus_resume)
2007 return -ENOENT;
2008 if (HCD_RH_RUNNING(hcd))
2009 return 0;
2010
2011 hcd->state = HC_STATE_RESUMING;
2012 status = hcd->driver->bus_resume(hcd);
2013 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2014 if (status == 0) {
2015 /* TRSMRCY = 10 msec */
2016 msleep(10);
2017 spin_lock_irq(&hcd_root_hub_lock);
2018 if (!HCD_DEAD(hcd)) {
2019 usb_set_device_state(rhdev, rhdev->actconfig
2020 ? USB_STATE_CONFIGURED
2021 : USB_STATE_ADDRESS);
2022 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2023 hcd->state = HC_STATE_RUNNING;
2024 }
2025 spin_unlock_irq(&hcd_root_hub_lock);
2026 } else {
2027 hcd->state = old_state;
2028 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2029 "resume", status);
2030 if (status != -ESHUTDOWN)
2031 usb_hc_died(hcd);
2032 }
2033 return status;
2034}
2035
2036#endif /* CONFIG_PM */
2037
2038#ifdef CONFIG_USB_SUSPEND
2039
2040/* Workqueue routine for root-hub remote wakeup */
2041static void hcd_resume_work(struct work_struct *work)
2042{
2043 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2044 struct usb_device *udev = hcd->self.root_hub;
2045
2046 usb_lock_device(udev);
2047 usb_remote_wakeup(udev);
2048 usb_unlock_device(udev);
2049}
2050
2051/**
2052 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2053 * @hcd: host controller for this root hub
2054 *
2055 * The USB host controller calls this function when its root hub is
2056 * suspended (with the remote wakeup feature enabled) and a remote
2057 * wakeup request is received. The routine submits a workqueue request
2058 * to resume the root hub (that is, manage its downstream ports again).
2059 */
2060void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2061{
2062 unsigned long flags;
2063
2064 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2065 if (hcd->rh_registered) {
2066 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2067 queue_work(pm_wq, &hcd->wakeup_work);
2068 }
2069 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2070}
2071EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2072
2073#endif /* CONFIG_USB_SUSPEND */
2074
2075/*-------------------------------------------------------------------------*/
2076
2077#ifdef CONFIG_USB_OTG
2078
2079/**
2080 * usb_bus_start_enum - start immediate enumeration (for OTG)
2081 * @bus: the bus (must use hcd framework)
2082 * @port_num: 1-based number of port; usually bus->otg_port
2083 * Context: in_interrupt()
2084 *
2085 * Starts enumeration, with an immediate reset followed later by
2086 * khubd identifying and possibly configuring the device.
2087 * This is needed by OTG controller drivers, where it helps meet
2088 * HNP protocol timing requirements for starting a port reset.
2089 */
2090int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2091{
2092 struct usb_hcd *hcd;
2093 int status = -EOPNOTSUPP;
2094
2095 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2096 * boards with root hubs hooked up to internal devices (instead of
2097 * just the OTG port) may need more attention to resetting...
2098 */
2099 hcd = container_of (bus, struct usb_hcd, self);
2100 if (port_num && hcd->driver->start_port_reset)
2101 status = hcd->driver->start_port_reset(hcd, port_num);
2102
2103 /* run khubd shortly after (first) root port reset finishes;
2104 * it may issue others, until at least 50 msecs have passed.
2105 */
2106 if (status == 0)
2107 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2108 return status;
2109}
2110EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2111
2112#endif
2113
2114/*-------------------------------------------------------------------------*/
2115
2116/**
2117 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2118 * @irq: the IRQ being raised
2119 * @__hcd: pointer to the HCD whose IRQ is being signaled
2120 *
2121 * If the controller isn't HALTed, calls the driver's irq handler.
2122 * Checks whether the controller is now dead.
2123 */
2124irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2125{
2126 struct usb_hcd *hcd = __hcd;
2127 unsigned long flags;
2128 irqreturn_t rc;
2129
2130 /* IRQF_DISABLED doesn't work correctly with shared IRQs
2131 * when the first handler doesn't use it. So let's just
2132 * assume it's never used.
2133 */
2134 local_irq_save(flags);
2135
2136 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) {
2137 rc = IRQ_NONE;
2138 } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
2139 rc = IRQ_NONE;
2140 } else {
2141 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2142 if (hcd->shared_hcd)
2143 set_bit(HCD_FLAG_SAW_IRQ, &hcd->shared_hcd->flags);
2144 rc = IRQ_HANDLED;
2145 }
2146
2147 local_irq_restore(flags);
2148 return rc;
2149}
2150EXPORT_SYMBOL_GPL(usb_hcd_irq);
2151
2152/*-------------------------------------------------------------------------*/
2153
2154/**
2155 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2156 * @hcd: pointer to the HCD representing the controller
2157 *
2158 * This is called by bus glue to report a USB host controller that died
2159 * while operations may still have been pending. It's called automatically
2160 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2161 *
2162 * Only call this function with the primary HCD.
2163 */
2164void usb_hc_died (struct usb_hcd *hcd)
2165{
2166 unsigned long flags;
2167
2168 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2169
2170 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2171 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2172 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2173 if (hcd->rh_registered) {
2174 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2175
2176 /* make khubd clean up old urbs and devices */
2177 usb_set_device_state (hcd->self.root_hub,
2178 USB_STATE_NOTATTACHED);
2179 usb_kick_khubd (hcd->self.root_hub);
2180 }
2181 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2182 hcd = hcd->shared_hcd;
2183 if (hcd->rh_registered) {
2184 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2185
2186 /* make khubd clean up old urbs and devices */
2187 usb_set_device_state(hcd->self.root_hub,
2188 USB_STATE_NOTATTACHED);
2189 usb_kick_khubd(hcd->self.root_hub);
2190 }
2191 }
2192 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2193 /* Make sure that the other roothub is also deallocated. */
2194}
2195EXPORT_SYMBOL_GPL (usb_hc_died);
2196
2197/*-------------------------------------------------------------------------*/
2198
2199/**
2200 * usb_create_shared_hcd - create and initialize an HCD structure
2201 * @driver: HC driver that will use this hcd
2202 * @dev: device for this HC, stored in hcd->self.controller
2203 * @bus_name: value to store in hcd->self.bus_name
2204 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2205 * PCI device. Only allocate certain resources for the primary HCD
2206 * Context: !in_interrupt()
2207 *
2208 * Allocate a struct usb_hcd, with extra space at the end for the
2209 * HC driver's private data. Initialize the generic members of the
2210 * hcd structure.
2211 *
2212 * If memory is unavailable, returns NULL.
2213 */
2214struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2215 struct device *dev, const char *bus_name,
2216 struct usb_hcd *primary_hcd)
2217{
2218 struct usb_hcd *hcd;
2219
2220 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2221 if (!hcd) {
2222 dev_dbg (dev, "hcd alloc failed\n");
2223 return NULL;
2224 }
2225 if (primary_hcd == NULL) {
2226 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2227 GFP_KERNEL);
2228 if (!hcd->bandwidth_mutex) {
2229 kfree(hcd);
2230 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2231 return NULL;
2232 }
2233 mutex_init(hcd->bandwidth_mutex);
2234 dev_set_drvdata(dev, hcd);
2235 } else {
2236 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2237 hcd->primary_hcd = primary_hcd;
2238 primary_hcd->primary_hcd = primary_hcd;
2239 hcd->shared_hcd = primary_hcd;
2240 primary_hcd->shared_hcd = hcd;
2241 }
2242
2243 kref_init(&hcd->kref);
2244
2245 usb_bus_init(&hcd->self);
2246 hcd->self.controller = dev;
2247 hcd->self.bus_name = bus_name;
2248 hcd->self.uses_dma = (dev->dma_mask != NULL);
2249
2250 init_timer(&hcd->rh_timer);
2251 hcd->rh_timer.function = rh_timer_func;
2252 hcd->rh_timer.data = (unsigned long) hcd;
2253#ifdef CONFIG_USB_SUSPEND
2254 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2255#endif
2256
2257 hcd->driver = driver;
2258 hcd->speed = driver->flags & HCD_MASK;
2259 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2260 "USB Host Controller";
2261 return hcd;
2262}
2263EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2264
2265/**
2266 * usb_create_hcd - create and initialize an HCD structure
2267 * @driver: HC driver that will use this hcd
2268 * @dev: device for this HC, stored in hcd->self.controller
2269 * @bus_name: value to store in hcd->self.bus_name
2270 * Context: !in_interrupt()
2271 *
2272 * Allocate a struct usb_hcd, with extra space at the end for the
2273 * HC driver's private data. Initialize the generic members of the
2274 * hcd structure.
2275 *
2276 * If memory is unavailable, returns NULL.
2277 */
2278struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2279 struct device *dev, const char *bus_name)
2280{
2281 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2282}
2283EXPORT_SYMBOL_GPL(usb_create_hcd);
2284
2285/*
2286 * Roothubs that share one PCI device must also share the bandwidth mutex.
2287 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2288 * deallocated.
2289 *
2290 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2291 * freed. When hcd_release() is called for the non-primary HCD, set the
2292 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2293 * freed shortly).
2294 */
2295static void hcd_release (struct kref *kref)
2296{
2297 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2298
2299 if (usb_hcd_is_primary_hcd(hcd))
2300 kfree(hcd->bandwidth_mutex);
2301 else
2302 hcd->shared_hcd->shared_hcd = NULL;
2303 kfree(hcd);
2304}
2305
2306struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2307{
2308 if (hcd)
2309 kref_get (&hcd->kref);
2310 return hcd;
2311}
2312EXPORT_SYMBOL_GPL(usb_get_hcd);
2313
2314void usb_put_hcd (struct usb_hcd *hcd)
2315{
2316 if (hcd)
2317 kref_put (&hcd->kref, hcd_release);
2318}
2319EXPORT_SYMBOL_GPL(usb_put_hcd);
2320
2321int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2322{
2323 if (!hcd->primary_hcd)
2324 return 1;
2325 return hcd == hcd->primary_hcd;
2326}
2327EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2328
2329static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2330 unsigned int irqnum, unsigned long irqflags)
2331{
2332 int retval;
2333
2334 if (hcd->driver->irq) {
2335
2336 /* IRQF_DISABLED doesn't work as advertised when used together
2337 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2338 * interrupts we can remove it here.
2339 */
2340 if (irqflags & IRQF_SHARED)
2341 irqflags &= ~IRQF_DISABLED;
2342
2343 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2344 hcd->driver->description, hcd->self.busnum);
2345 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2346 hcd->irq_descr, hcd);
2347 if (retval != 0) {
2348 dev_err(hcd->self.controller,
2349 "request interrupt %d failed\n",
2350 irqnum);
2351 return retval;
2352 }
2353 hcd->irq = irqnum;
2354 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2355 (hcd->driver->flags & HCD_MEMORY) ?
2356 "io mem" : "io base",
2357 (unsigned long long)hcd->rsrc_start);
2358 } else {
2359 hcd->irq = -1;
2360 if (hcd->rsrc_start)
2361 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2362 (hcd->driver->flags & HCD_MEMORY) ?
2363 "io mem" : "io base",
2364 (unsigned long long)hcd->rsrc_start);
2365 }
2366 return 0;
2367}
2368
2369/**
2370 * usb_add_hcd - finish generic HCD structure initialization and register
2371 * @hcd: the usb_hcd structure to initialize
2372 * @irqnum: Interrupt line to allocate
2373 * @irqflags: Interrupt type flags
2374 *
2375 * Finish the remaining parts of generic HCD initialization: allocate the
2376 * buffers of consistent memory, register the bus, request the IRQ line,
2377 * and call the driver's reset() and start() routines.
2378 */
2379int usb_add_hcd(struct usb_hcd *hcd,
2380 unsigned int irqnum, unsigned long irqflags)
2381{
2382 int retval;
2383 struct usb_device *rhdev;
2384
2385 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2386
2387 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2388 if (authorized_default < 0 || authorized_default > 1)
2389 hcd->authorized_default = hcd->wireless? 0 : 1;
2390 else
2391 hcd->authorized_default = authorized_default;
2392 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2393
2394 /* HC is in reset state, but accessible. Now do the one-time init,
2395 * bottom up so that hcds can customize the root hubs before khubd
2396 * starts talking to them. (Note, bus id is assigned early too.)
2397 */
2398 if ((retval = hcd_buffer_create(hcd)) != 0) {
2399 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2400 return retval;
2401 }
2402
2403 if ((retval = usb_register_bus(&hcd->self)) < 0)
2404 goto err_register_bus;
2405
2406 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2407 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2408 retval = -ENOMEM;
2409 goto err_allocate_root_hub;
2410 }
2411 hcd->self.root_hub = rhdev;
2412
2413 switch (hcd->speed) {
2414 case HCD_USB11:
2415 rhdev->speed = USB_SPEED_FULL;
2416 break;
2417 case HCD_USB2:
2418 rhdev->speed = USB_SPEED_HIGH;
2419 break;
2420 case HCD_USB3:
2421 rhdev->speed = USB_SPEED_SUPER;
2422 break;
2423 default:
2424 retval = -EINVAL;
2425 goto err_set_rh_speed;
2426 }
2427
2428 /* wakeup flag init defaults to "everything works" for root hubs,
2429 * but drivers can override it in reset() if needed, along with
2430 * recording the overall controller's system wakeup capability.
2431 */
2432 device_init_wakeup(&rhdev->dev, 1);
2433
2434 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2435 * registered. But since the controller can die at any time,
2436 * let's initialize the flag before touching the hardware.
2437 */
2438 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2439
2440 /* "reset" is misnamed; its role is now one-time init. the controller
2441 * should already have been reset (and boot firmware kicked off etc).
2442 */
2443 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2444 dev_err(hcd->self.controller, "can't setup\n");
2445 goto err_hcd_driver_setup;
2446 }
2447 hcd->rh_pollable = 1;
2448
2449 /* NOTE: root hub and controller capabilities may not be the same */
2450 if (device_can_wakeup(hcd->self.controller)
2451 && device_can_wakeup(&hcd->self.root_hub->dev))
2452 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2453
2454 /* enable irqs just before we start the controller */
2455 if (usb_hcd_is_primary_hcd(hcd)) {
2456 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2457 if (retval)
2458 goto err_request_irq;
2459 }
2460
2461 hcd->state = HC_STATE_RUNNING;
2462 retval = hcd->driver->start(hcd);
2463 if (retval < 0) {
2464 dev_err(hcd->self.controller, "startup error %d\n", retval);
2465 goto err_hcd_driver_start;
2466 }
2467
2468 /* starting here, usbcore will pay attention to this root hub */
2469 rhdev->bus_mA = min(500u, hcd->power_budget);
2470 if ((retval = register_root_hub(hcd)) != 0)
2471 goto err_register_root_hub;
2472
2473 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2474 if (retval < 0) {
2475 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2476 retval);
2477 goto error_create_attr_group;
2478 }
2479 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2480 usb_hcd_poll_rh_status(hcd);
2481 return retval;
2482
2483error_create_attr_group:
2484 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2485 if (HC_IS_RUNNING(hcd->state))
2486 hcd->state = HC_STATE_QUIESCING;
2487 spin_lock_irq(&hcd_root_hub_lock);
2488 hcd->rh_registered = 0;
2489 spin_unlock_irq(&hcd_root_hub_lock);
2490
2491#ifdef CONFIG_USB_SUSPEND
2492 cancel_work_sync(&hcd->wakeup_work);
2493#endif
2494 mutex_lock(&usb_bus_list_lock);
2495 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2496 mutex_unlock(&usb_bus_list_lock);
2497err_register_root_hub:
2498 hcd->rh_pollable = 0;
2499 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2500 del_timer_sync(&hcd->rh_timer);
2501 hcd->driver->stop(hcd);
2502 hcd->state = HC_STATE_HALT;
2503 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2504 del_timer_sync(&hcd->rh_timer);
2505err_hcd_driver_start:
2506 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq >= 0)
2507 free_irq(irqnum, hcd);
2508err_request_irq:
2509err_hcd_driver_setup:
2510err_set_rh_speed:
2511 usb_put_dev(hcd->self.root_hub);
2512err_allocate_root_hub:
2513 usb_deregister_bus(&hcd->self);
2514err_register_bus:
2515 hcd_buffer_destroy(hcd);
2516 return retval;
2517}
2518EXPORT_SYMBOL_GPL(usb_add_hcd);
2519
2520/**
2521 * usb_remove_hcd - shutdown processing for generic HCDs
2522 * @hcd: the usb_hcd structure to remove
2523 * Context: !in_interrupt()
2524 *
2525 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2526 * invoking the HCD's stop() method.
2527 */
2528void usb_remove_hcd(struct usb_hcd *hcd)
2529{
2530 struct usb_device *rhdev = hcd->self.root_hub;
2531
2532 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2533
2534 usb_get_dev(rhdev);
2535 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2536
2537 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2538 if (HC_IS_RUNNING (hcd->state))
2539 hcd->state = HC_STATE_QUIESCING;
2540
2541 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2542 spin_lock_irq (&hcd_root_hub_lock);
2543 hcd->rh_registered = 0;
2544 spin_unlock_irq (&hcd_root_hub_lock);
2545
2546#ifdef CONFIG_USB_SUSPEND
2547 cancel_work_sync(&hcd->wakeup_work);
2548#endif
2549
2550 mutex_lock(&usb_bus_list_lock);
2551 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2552 mutex_unlock(&usb_bus_list_lock);
2553
2554 /* Prevent any more root-hub status calls from the timer.
2555 * The HCD might still restart the timer (if a port status change
2556 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2557 * the hub_status_data() callback.
2558 */
2559 hcd->rh_pollable = 0;
2560 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2561 del_timer_sync(&hcd->rh_timer);
2562
2563 hcd->driver->stop(hcd);
2564 hcd->state = HC_STATE_HALT;
2565
2566 /* In case the HCD restarted the timer, stop it again. */
2567 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2568 del_timer_sync(&hcd->rh_timer);
2569
2570 if (usb_hcd_is_primary_hcd(hcd)) {
2571 if (hcd->irq >= 0)
2572 free_irq(hcd->irq, hcd);
2573 }
2574
2575 usb_put_dev(hcd->self.root_hub);
2576 usb_deregister_bus(&hcd->self);
2577 hcd_buffer_destroy(hcd);
2578}
2579EXPORT_SYMBOL_GPL(usb_remove_hcd);
2580
2581void
2582usb_hcd_platform_shutdown(struct platform_device* dev)
2583{
2584 struct usb_hcd *hcd = platform_get_drvdata(dev);
2585
2586 if (hcd->driver->shutdown)
2587 hcd->driver->shutdown(hcd);
2588}
2589EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2590
2591/*-------------------------------------------------------------------------*/
2592
2593#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2594
2595struct usb_mon_operations *mon_ops;
2596
2597/*
2598 * The registration is unlocked.
2599 * We do it this way because we do not want to lock in hot paths.
2600 *
2601 * Notice that the code is minimally error-proof. Because usbmon needs
2602 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2603 */
2604
2605int usb_mon_register (struct usb_mon_operations *ops)
2606{
2607
2608 if (mon_ops)
2609 return -EBUSY;
2610
2611 mon_ops = ops;
2612 mb();
2613 return 0;
2614}
2615EXPORT_SYMBOL_GPL (usb_mon_register);
2616
2617void usb_mon_deregister (void)
2618{
2619
2620 if (mon_ops == NULL) {
2621 printk(KERN_ERR "USB: monitor was not registered\n");
2622 return;
2623 }
2624 mon_ops = NULL;
2625 mb();
2626}
2627EXPORT_SYMBOL_GPL (usb_mon_deregister);
2628
2629#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12#include <linux/bcd.h>
13#include <linux/module.h>
14#include <linux/version.h>
15#include <linux/kernel.h>
16#include <linux/sched/task_stack.h>
17#include <linux/slab.h>
18#include <linux/completion.h>
19#include <linux/utsname.h>
20#include <linux/mm.h>
21#include <asm/io.h>
22#include <linux/device.h>
23#include <linux/dma-mapping.h>
24#include <linux/mutex.h>
25#include <asm/irq.h>
26#include <asm/byteorder.h>
27#include <asm/unaligned.h>
28#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/pm_runtime.h>
31#include <linux/types.h>
32
33#include <linux/phy/phy.h>
34#include <linux/usb.h>
35#include <linux/usb/hcd.h>
36#include <linux/usb/phy.h>
37#include <linux/usb/otg.h>
38
39#include "usb.h"
40#include "phy.h"
41
42
43/*-------------------------------------------------------------------------*/
44
45/*
46 * USB Host Controller Driver framework
47 *
48 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
49 * HCD-specific behaviors/bugs.
50 *
51 * This does error checks, tracks devices and urbs, and delegates to a
52 * "hc_driver" only for code (and data) that really needs to know about
53 * hardware differences. That includes root hub registers, i/o queues,
54 * and so on ... but as little else as possible.
55 *
56 * Shared code includes most of the "root hub" code (these are emulated,
57 * though each HC's hardware works differently) and PCI glue, plus request
58 * tracking overhead. The HCD code should only block on spinlocks or on
59 * hardware handshaking; blocking on software events (such as other kernel
60 * threads releasing resources, or completing actions) is all generic.
61 *
62 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
63 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
64 * only by the hub driver ... and that neither should be seen or used by
65 * usb client device drivers.
66 *
67 * Contributors of ideas or unattributed patches include: David Brownell,
68 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
69 *
70 * HISTORY:
71 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
72 * associated cleanup. "usb_hcd" still != "usb_bus".
73 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
74 */
75
76/*-------------------------------------------------------------------------*/
77
78/* Keep track of which host controller drivers are loaded */
79unsigned long usb_hcds_loaded;
80EXPORT_SYMBOL_GPL(usb_hcds_loaded);
81
82/* host controllers we manage */
83DEFINE_IDR (usb_bus_idr);
84EXPORT_SYMBOL_GPL (usb_bus_idr);
85
86/* used when allocating bus numbers */
87#define USB_MAXBUS 64
88
89/* used when updating list of hcds */
90DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
91EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
92
93/* used for controlling access to virtual root hubs */
94static DEFINE_SPINLOCK(hcd_root_hub_lock);
95
96/* used when updating an endpoint's URB list */
97static DEFINE_SPINLOCK(hcd_urb_list_lock);
98
99/* used to protect against unlinking URBs after the device is gone */
100static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
101
102/* wait queue for synchronous unlinks */
103DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
104
105static inline int is_root_hub(struct usb_device *udev)
106{
107 return (udev->parent == NULL);
108}
109
110/*-------------------------------------------------------------------------*/
111
112/*
113 * Sharable chunks of root hub code.
114 */
115
116/*-------------------------------------------------------------------------*/
117#define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
118#define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
119
120/* usb 3.1 root hub device descriptor */
121static const u8 usb31_rh_dev_descriptor[18] = {
122 0x12, /* __u8 bLength; */
123 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
124 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
125
126 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
127 0x00, /* __u8 bDeviceSubClass; */
128 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
129 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
130
131 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
132 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
133 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
134
135 0x03, /* __u8 iManufacturer; */
136 0x02, /* __u8 iProduct; */
137 0x01, /* __u8 iSerialNumber; */
138 0x01 /* __u8 bNumConfigurations; */
139};
140
141/* usb 3.0 root hub device descriptor */
142static const u8 usb3_rh_dev_descriptor[18] = {
143 0x12, /* __u8 bLength; */
144 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
145 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
146
147 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
148 0x00, /* __u8 bDeviceSubClass; */
149 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
150 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
151
152 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
153 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
154 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
155
156 0x03, /* __u8 iManufacturer; */
157 0x02, /* __u8 iProduct; */
158 0x01, /* __u8 iSerialNumber; */
159 0x01 /* __u8 bNumConfigurations; */
160};
161
162/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
163static const u8 usb25_rh_dev_descriptor[18] = {
164 0x12, /* __u8 bLength; */
165 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
166 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
167
168 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
169 0x00, /* __u8 bDeviceSubClass; */
170 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
171 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
172
173 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
174 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
175 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
176
177 0x03, /* __u8 iManufacturer; */
178 0x02, /* __u8 iProduct; */
179 0x01, /* __u8 iSerialNumber; */
180 0x01 /* __u8 bNumConfigurations; */
181};
182
183/* usb 2.0 root hub device descriptor */
184static const u8 usb2_rh_dev_descriptor[18] = {
185 0x12, /* __u8 bLength; */
186 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
187 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
188
189 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
190 0x00, /* __u8 bDeviceSubClass; */
191 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
192 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
193
194 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
195 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
196 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
197
198 0x03, /* __u8 iManufacturer; */
199 0x02, /* __u8 iProduct; */
200 0x01, /* __u8 iSerialNumber; */
201 0x01 /* __u8 bNumConfigurations; */
202};
203
204/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
205
206/* usb 1.1 root hub device descriptor */
207static const u8 usb11_rh_dev_descriptor[18] = {
208 0x12, /* __u8 bLength; */
209 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
210 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
211
212 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
213 0x00, /* __u8 bDeviceSubClass; */
214 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
215 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
216
217 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
218 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
219 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
220
221 0x03, /* __u8 iManufacturer; */
222 0x02, /* __u8 iProduct; */
223 0x01, /* __u8 iSerialNumber; */
224 0x01 /* __u8 bNumConfigurations; */
225};
226
227
228/*-------------------------------------------------------------------------*/
229
230/* Configuration descriptors for our root hubs */
231
232static const u8 fs_rh_config_descriptor[] = {
233
234 /* one configuration */
235 0x09, /* __u8 bLength; */
236 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
237 0x19, 0x00, /* __le16 wTotalLength; */
238 0x01, /* __u8 bNumInterfaces; (1) */
239 0x01, /* __u8 bConfigurationValue; */
240 0x00, /* __u8 iConfiguration; */
241 0xc0, /* __u8 bmAttributes;
242 Bit 7: must be set,
243 6: Self-powered,
244 5: Remote wakeup,
245 4..0: resvd */
246 0x00, /* __u8 MaxPower; */
247
248 /* USB 1.1:
249 * USB 2.0, single TT organization (mandatory):
250 * one interface, protocol 0
251 *
252 * USB 2.0, multiple TT organization (optional):
253 * two interfaces, protocols 1 (like single TT)
254 * and 2 (multiple TT mode) ... config is
255 * sometimes settable
256 * NOT IMPLEMENTED
257 */
258
259 /* one interface */
260 0x09, /* __u8 if_bLength; */
261 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
262 0x00, /* __u8 if_bInterfaceNumber; */
263 0x00, /* __u8 if_bAlternateSetting; */
264 0x01, /* __u8 if_bNumEndpoints; */
265 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
266 0x00, /* __u8 if_bInterfaceSubClass; */
267 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
268 0x00, /* __u8 if_iInterface; */
269
270 /* one endpoint (status change endpoint) */
271 0x07, /* __u8 ep_bLength; */
272 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
273 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
274 0x03, /* __u8 ep_bmAttributes; Interrupt */
275 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
276 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
277};
278
279static const u8 hs_rh_config_descriptor[] = {
280
281 /* one configuration */
282 0x09, /* __u8 bLength; */
283 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
284 0x19, 0x00, /* __le16 wTotalLength; */
285 0x01, /* __u8 bNumInterfaces; (1) */
286 0x01, /* __u8 bConfigurationValue; */
287 0x00, /* __u8 iConfiguration; */
288 0xc0, /* __u8 bmAttributes;
289 Bit 7: must be set,
290 6: Self-powered,
291 5: Remote wakeup,
292 4..0: resvd */
293 0x00, /* __u8 MaxPower; */
294
295 /* USB 1.1:
296 * USB 2.0, single TT organization (mandatory):
297 * one interface, protocol 0
298 *
299 * USB 2.0, multiple TT organization (optional):
300 * two interfaces, protocols 1 (like single TT)
301 * and 2 (multiple TT mode) ... config is
302 * sometimes settable
303 * NOT IMPLEMENTED
304 */
305
306 /* one interface */
307 0x09, /* __u8 if_bLength; */
308 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
309 0x00, /* __u8 if_bInterfaceNumber; */
310 0x00, /* __u8 if_bAlternateSetting; */
311 0x01, /* __u8 if_bNumEndpoints; */
312 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
313 0x00, /* __u8 if_bInterfaceSubClass; */
314 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
315 0x00, /* __u8 if_iInterface; */
316
317 /* one endpoint (status change endpoint) */
318 0x07, /* __u8 ep_bLength; */
319 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
320 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
321 0x03, /* __u8 ep_bmAttributes; Interrupt */
322 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
323 * see hub.c:hub_configure() for details. */
324 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
325 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
326};
327
328static const u8 ss_rh_config_descriptor[] = {
329 /* one configuration */
330 0x09, /* __u8 bLength; */
331 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
332 0x1f, 0x00, /* __le16 wTotalLength; */
333 0x01, /* __u8 bNumInterfaces; (1) */
334 0x01, /* __u8 bConfigurationValue; */
335 0x00, /* __u8 iConfiguration; */
336 0xc0, /* __u8 bmAttributes;
337 Bit 7: must be set,
338 6: Self-powered,
339 5: Remote wakeup,
340 4..0: resvd */
341 0x00, /* __u8 MaxPower; */
342
343 /* one interface */
344 0x09, /* __u8 if_bLength; */
345 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
346 0x00, /* __u8 if_bInterfaceNumber; */
347 0x00, /* __u8 if_bAlternateSetting; */
348 0x01, /* __u8 if_bNumEndpoints; */
349 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
350 0x00, /* __u8 if_bInterfaceSubClass; */
351 0x00, /* __u8 if_bInterfaceProtocol; */
352 0x00, /* __u8 if_iInterface; */
353
354 /* one endpoint (status change endpoint) */
355 0x07, /* __u8 ep_bLength; */
356 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
357 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
358 0x03, /* __u8 ep_bmAttributes; Interrupt */
359 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
360 * see hub.c:hub_configure() for details. */
361 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
362 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
363
364 /* one SuperSpeed endpoint companion descriptor */
365 0x06, /* __u8 ss_bLength */
366 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
367 /* Companion */
368 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
369 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
370 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
371};
372
373/* authorized_default behaviour:
374 * -1 is authorized for all devices except wireless (old behaviour)
375 * 0 is unauthorized for all devices
376 * 1 is authorized for all devices
377 */
378static int authorized_default = -1;
379module_param(authorized_default, int, S_IRUGO|S_IWUSR);
380MODULE_PARM_DESC(authorized_default,
381 "Default USB device authorization: 0 is not authorized, 1 is "
382 "authorized, -1 is authorized except for wireless USB (default, "
383 "old behaviour");
384/*-------------------------------------------------------------------------*/
385
386/**
387 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
388 * @s: Null-terminated ASCII (actually ISO-8859-1) string
389 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
390 * @len: Length (in bytes; may be odd) of descriptor buffer.
391 *
392 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
393 * whichever is less.
394 *
395 * Note:
396 * USB String descriptors can contain at most 126 characters; input
397 * strings longer than that are truncated.
398 */
399static unsigned
400ascii2desc(char const *s, u8 *buf, unsigned len)
401{
402 unsigned n, t = 2 + 2*strlen(s);
403
404 if (t > 254)
405 t = 254; /* Longest possible UTF string descriptor */
406 if (len > t)
407 len = t;
408
409 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
410
411 n = len;
412 while (n--) {
413 *buf++ = t;
414 if (!n--)
415 break;
416 *buf++ = t >> 8;
417 t = (unsigned char)*s++;
418 }
419 return len;
420}
421
422/**
423 * rh_string() - provides string descriptors for root hub
424 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
425 * @hcd: the host controller for this root hub
426 * @data: buffer for output packet
427 * @len: length of the provided buffer
428 *
429 * Produces either a manufacturer, product or serial number string for the
430 * virtual root hub device.
431 *
432 * Return: The number of bytes filled in: the length of the descriptor or
433 * of the provided buffer, whichever is less.
434 */
435static unsigned
436rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
437{
438 char buf[100];
439 char const *s;
440 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
441
442 /* language ids */
443 switch (id) {
444 case 0:
445 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
446 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
447 if (len > 4)
448 len = 4;
449 memcpy(data, langids, len);
450 return len;
451 case 1:
452 /* Serial number */
453 s = hcd->self.bus_name;
454 break;
455 case 2:
456 /* Product name */
457 s = hcd->product_desc;
458 break;
459 case 3:
460 /* Manufacturer */
461 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
462 init_utsname()->release, hcd->driver->description);
463 s = buf;
464 break;
465 default:
466 /* Can't happen; caller guarantees it */
467 return 0;
468 }
469
470 return ascii2desc(s, data, len);
471}
472
473
474/* Root hub control transfers execute synchronously */
475static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
476{
477 struct usb_ctrlrequest *cmd;
478 u16 typeReq, wValue, wIndex, wLength;
479 u8 *ubuf = urb->transfer_buffer;
480 unsigned len = 0;
481 int status;
482 u8 patch_wakeup = 0;
483 u8 patch_protocol = 0;
484 u16 tbuf_size;
485 u8 *tbuf = NULL;
486 const u8 *bufp;
487
488 might_sleep();
489
490 spin_lock_irq(&hcd_root_hub_lock);
491 status = usb_hcd_link_urb_to_ep(hcd, urb);
492 spin_unlock_irq(&hcd_root_hub_lock);
493 if (status)
494 return status;
495 urb->hcpriv = hcd; /* Indicate it's queued */
496
497 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
498 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
499 wValue = le16_to_cpu (cmd->wValue);
500 wIndex = le16_to_cpu (cmd->wIndex);
501 wLength = le16_to_cpu (cmd->wLength);
502
503 if (wLength > urb->transfer_buffer_length)
504 goto error;
505
506 /*
507 * tbuf should be at least as big as the
508 * USB hub descriptor.
509 */
510 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
511 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
512 if (!tbuf) {
513 status = -ENOMEM;
514 goto err_alloc;
515 }
516
517 bufp = tbuf;
518
519
520 urb->actual_length = 0;
521 switch (typeReq) {
522
523 /* DEVICE REQUESTS */
524
525 /* The root hub's remote wakeup enable bit is implemented using
526 * driver model wakeup flags. If this system supports wakeup
527 * through USB, userspace may change the default "allow wakeup"
528 * policy through sysfs or these calls.
529 *
530 * Most root hubs support wakeup from downstream devices, for
531 * runtime power management (disabling USB clocks and reducing
532 * VBUS power usage). However, not all of them do so; silicon,
533 * board, and BIOS bugs here are not uncommon, so these can't
534 * be treated quite like external hubs.
535 *
536 * Likewise, not all root hubs will pass wakeup events upstream,
537 * to wake up the whole system. So don't assume root hub and
538 * controller capabilities are identical.
539 */
540
541 case DeviceRequest | USB_REQ_GET_STATUS:
542 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
543 << USB_DEVICE_REMOTE_WAKEUP)
544 | (1 << USB_DEVICE_SELF_POWERED);
545 tbuf[1] = 0;
546 len = 2;
547 break;
548 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
549 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
550 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
551 else
552 goto error;
553 break;
554 case DeviceOutRequest | USB_REQ_SET_FEATURE:
555 if (device_can_wakeup(&hcd->self.root_hub->dev)
556 && wValue == USB_DEVICE_REMOTE_WAKEUP)
557 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
558 else
559 goto error;
560 break;
561 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
562 tbuf[0] = 1;
563 len = 1;
564 /* FALLTHROUGH */
565 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
566 break;
567 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
568 switch (wValue & 0xff00) {
569 case USB_DT_DEVICE << 8:
570 switch (hcd->speed) {
571 case HCD_USB31:
572 bufp = usb31_rh_dev_descriptor;
573 break;
574 case HCD_USB3:
575 bufp = usb3_rh_dev_descriptor;
576 break;
577 case HCD_USB25:
578 bufp = usb25_rh_dev_descriptor;
579 break;
580 case HCD_USB2:
581 bufp = usb2_rh_dev_descriptor;
582 break;
583 case HCD_USB11:
584 bufp = usb11_rh_dev_descriptor;
585 break;
586 default:
587 goto error;
588 }
589 len = 18;
590 if (hcd->has_tt)
591 patch_protocol = 1;
592 break;
593 case USB_DT_CONFIG << 8:
594 switch (hcd->speed) {
595 case HCD_USB31:
596 case HCD_USB3:
597 bufp = ss_rh_config_descriptor;
598 len = sizeof ss_rh_config_descriptor;
599 break;
600 case HCD_USB25:
601 case HCD_USB2:
602 bufp = hs_rh_config_descriptor;
603 len = sizeof hs_rh_config_descriptor;
604 break;
605 case HCD_USB11:
606 bufp = fs_rh_config_descriptor;
607 len = sizeof fs_rh_config_descriptor;
608 break;
609 default:
610 goto error;
611 }
612 if (device_can_wakeup(&hcd->self.root_hub->dev))
613 patch_wakeup = 1;
614 break;
615 case USB_DT_STRING << 8:
616 if ((wValue & 0xff) < 4)
617 urb->actual_length = rh_string(wValue & 0xff,
618 hcd, ubuf, wLength);
619 else /* unsupported IDs --> "protocol stall" */
620 goto error;
621 break;
622 case USB_DT_BOS << 8:
623 goto nongeneric;
624 default:
625 goto error;
626 }
627 break;
628 case DeviceRequest | USB_REQ_GET_INTERFACE:
629 tbuf[0] = 0;
630 len = 1;
631 /* FALLTHROUGH */
632 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
633 break;
634 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
635 /* wValue == urb->dev->devaddr */
636 dev_dbg (hcd->self.controller, "root hub device address %d\n",
637 wValue);
638 break;
639
640 /* INTERFACE REQUESTS (no defined feature/status flags) */
641
642 /* ENDPOINT REQUESTS */
643
644 case EndpointRequest | USB_REQ_GET_STATUS:
645 /* ENDPOINT_HALT flag */
646 tbuf[0] = 0;
647 tbuf[1] = 0;
648 len = 2;
649 /* FALLTHROUGH */
650 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
651 case EndpointOutRequest | USB_REQ_SET_FEATURE:
652 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
653 break;
654
655 /* CLASS REQUESTS (and errors) */
656
657 default:
658nongeneric:
659 /* non-generic request */
660 switch (typeReq) {
661 case GetHubStatus:
662 len = 4;
663 break;
664 case GetPortStatus:
665 if (wValue == HUB_PORT_STATUS)
666 len = 4;
667 else
668 /* other port status types return 8 bytes */
669 len = 8;
670 break;
671 case GetHubDescriptor:
672 len = sizeof (struct usb_hub_descriptor);
673 break;
674 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
675 /* len is returned by hub_control */
676 break;
677 }
678 status = hcd->driver->hub_control (hcd,
679 typeReq, wValue, wIndex,
680 tbuf, wLength);
681
682 if (typeReq == GetHubDescriptor)
683 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
684 (struct usb_hub_descriptor *)tbuf);
685 break;
686error:
687 /* "protocol stall" on error */
688 status = -EPIPE;
689 }
690
691 if (status < 0) {
692 len = 0;
693 if (status != -EPIPE) {
694 dev_dbg (hcd->self.controller,
695 "CTRL: TypeReq=0x%x val=0x%x "
696 "idx=0x%x len=%d ==> %d\n",
697 typeReq, wValue, wIndex,
698 wLength, status);
699 }
700 } else if (status > 0) {
701 /* hub_control may return the length of data copied. */
702 len = status;
703 status = 0;
704 }
705 if (len) {
706 if (urb->transfer_buffer_length < len)
707 len = urb->transfer_buffer_length;
708 urb->actual_length = len;
709 /* always USB_DIR_IN, toward host */
710 memcpy (ubuf, bufp, len);
711
712 /* report whether RH hardware supports remote wakeup */
713 if (patch_wakeup &&
714 len > offsetof (struct usb_config_descriptor,
715 bmAttributes))
716 ((struct usb_config_descriptor *)ubuf)->bmAttributes
717 |= USB_CONFIG_ATT_WAKEUP;
718
719 /* report whether RH hardware has an integrated TT */
720 if (patch_protocol &&
721 len > offsetof(struct usb_device_descriptor,
722 bDeviceProtocol))
723 ((struct usb_device_descriptor *) ubuf)->
724 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
725 }
726
727 kfree(tbuf);
728 err_alloc:
729
730 /* any errors get returned through the urb completion */
731 spin_lock_irq(&hcd_root_hub_lock);
732 usb_hcd_unlink_urb_from_ep(hcd, urb);
733 usb_hcd_giveback_urb(hcd, urb, status);
734 spin_unlock_irq(&hcd_root_hub_lock);
735 return 0;
736}
737
738/*-------------------------------------------------------------------------*/
739
740/*
741 * Root Hub interrupt transfers are polled using a timer if the
742 * driver requests it; otherwise the driver is responsible for
743 * calling usb_hcd_poll_rh_status() when an event occurs.
744 *
745 * Completions are called in_interrupt(), but they may or may not
746 * be in_irq().
747 */
748void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
749{
750 struct urb *urb;
751 int length;
752 unsigned long flags;
753 char buffer[6]; /* Any root hubs with > 31 ports? */
754
755 if (unlikely(!hcd->rh_pollable))
756 return;
757 if (!hcd->uses_new_polling && !hcd->status_urb)
758 return;
759
760 length = hcd->driver->hub_status_data(hcd, buffer);
761 if (length > 0) {
762
763 /* try to complete the status urb */
764 spin_lock_irqsave(&hcd_root_hub_lock, flags);
765 urb = hcd->status_urb;
766 if (urb) {
767 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
768 hcd->status_urb = NULL;
769 urb->actual_length = length;
770 memcpy(urb->transfer_buffer, buffer, length);
771
772 usb_hcd_unlink_urb_from_ep(hcd, urb);
773 usb_hcd_giveback_urb(hcd, urb, 0);
774 } else {
775 length = 0;
776 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
777 }
778 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
779 }
780
781 /* The USB 2.0 spec says 256 ms. This is close enough and won't
782 * exceed that limit if HZ is 100. The math is more clunky than
783 * maybe expected, this is to make sure that all timers for USB devices
784 * fire at the same time to give the CPU a break in between */
785 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
786 (length == 0 && hcd->status_urb != NULL))
787 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
788}
789EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
790
791/* timer callback */
792static void rh_timer_func (struct timer_list *t)
793{
794 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
795
796 usb_hcd_poll_rh_status(_hcd);
797}
798
799/*-------------------------------------------------------------------------*/
800
801static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
802{
803 int retval;
804 unsigned long flags;
805 unsigned len = 1 + (urb->dev->maxchild / 8);
806
807 spin_lock_irqsave (&hcd_root_hub_lock, flags);
808 if (hcd->status_urb || urb->transfer_buffer_length < len) {
809 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
810 retval = -EINVAL;
811 goto done;
812 }
813
814 retval = usb_hcd_link_urb_to_ep(hcd, urb);
815 if (retval)
816 goto done;
817
818 hcd->status_urb = urb;
819 urb->hcpriv = hcd; /* indicate it's queued */
820 if (!hcd->uses_new_polling)
821 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
822
823 /* If a status change has already occurred, report it ASAP */
824 else if (HCD_POLL_PENDING(hcd))
825 mod_timer(&hcd->rh_timer, jiffies);
826 retval = 0;
827 done:
828 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
829 return retval;
830}
831
832static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
833{
834 if (usb_endpoint_xfer_int(&urb->ep->desc))
835 return rh_queue_status (hcd, urb);
836 if (usb_endpoint_xfer_control(&urb->ep->desc))
837 return rh_call_control (hcd, urb);
838 return -EINVAL;
839}
840
841/*-------------------------------------------------------------------------*/
842
843/* Unlinks of root-hub control URBs are legal, but they don't do anything
844 * since these URBs always execute synchronously.
845 */
846static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
847{
848 unsigned long flags;
849 int rc;
850
851 spin_lock_irqsave(&hcd_root_hub_lock, flags);
852 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
853 if (rc)
854 goto done;
855
856 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
857 ; /* Do nothing */
858
859 } else { /* Status URB */
860 if (!hcd->uses_new_polling)
861 del_timer (&hcd->rh_timer);
862 if (urb == hcd->status_urb) {
863 hcd->status_urb = NULL;
864 usb_hcd_unlink_urb_from_ep(hcd, urb);
865 usb_hcd_giveback_urb(hcd, urb, status);
866 }
867 }
868 done:
869 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
870 return rc;
871}
872
873
874
875/*
876 * Show & store the current value of authorized_default
877 */
878static ssize_t authorized_default_show(struct device *dev,
879 struct device_attribute *attr, char *buf)
880{
881 struct usb_device *rh_usb_dev = to_usb_device(dev);
882 struct usb_bus *usb_bus = rh_usb_dev->bus;
883 struct usb_hcd *hcd;
884
885 hcd = bus_to_hcd(usb_bus);
886 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
887}
888
889static ssize_t authorized_default_store(struct device *dev,
890 struct device_attribute *attr,
891 const char *buf, size_t size)
892{
893 ssize_t result;
894 unsigned val;
895 struct usb_device *rh_usb_dev = to_usb_device(dev);
896 struct usb_bus *usb_bus = rh_usb_dev->bus;
897 struct usb_hcd *hcd;
898
899 hcd = bus_to_hcd(usb_bus);
900 result = sscanf(buf, "%u\n", &val);
901 if (result == 1) {
902 if (val)
903 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
904 else
905 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
906
907 result = size;
908 } else {
909 result = -EINVAL;
910 }
911 return result;
912}
913static DEVICE_ATTR_RW(authorized_default);
914
915/*
916 * interface_authorized_default_show - show default authorization status
917 * for USB interfaces
918 *
919 * note: interface_authorized_default is the default value
920 * for initializing the authorized attribute of interfaces
921 */
922static ssize_t interface_authorized_default_show(struct device *dev,
923 struct device_attribute *attr, char *buf)
924{
925 struct usb_device *usb_dev = to_usb_device(dev);
926 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
927
928 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
929}
930
931/*
932 * interface_authorized_default_store - store default authorization status
933 * for USB interfaces
934 *
935 * note: interface_authorized_default is the default value
936 * for initializing the authorized attribute of interfaces
937 */
938static ssize_t interface_authorized_default_store(struct device *dev,
939 struct device_attribute *attr, const char *buf, size_t count)
940{
941 struct usb_device *usb_dev = to_usb_device(dev);
942 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
943 int rc = count;
944 bool val;
945
946 if (strtobool(buf, &val) != 0)
947 return -EINVAL;
948
949 if (val)
950 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
951 else
952 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
953
954 return rc;
955}
956static DEVICE_ATTR_RW(interface_authorized_default);
957
958/* Group all the USB bus attributes */
959static struct attribute *usb_bus_attrs[] = {
960 &dev_attr_authorized_default.attr,
961 &dev_attr_interface_authorized_default.attr,
962 NULL,
963};
964
965static const struct attribute_group usb_bus_attr_group = {
966 .name = NULL, /* we want them in the same directory */
967 .attrs = usb_bus_attrs,
968};
969
970
971
972/*-------------------------------------------------------------------------*/
973
974/**
975 * usb_bus_init - shared initialization code
976 * @bus: the bus structure being initialized
977 *
978 * This code is used to initialize a usb_bus structure, memory for which is
979 * separately managed.
980 */
981static void usb_bus_init (struct usb_bus *bus)
982{
983 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
984
985 bus->devnum_next = 1;
986
987 bus->root_hub = NULL;
988 bus->busnum = -1;
989 bus->bandwidth_allocated = 0;
990 bus->bandwidth_int_reqs = 0;
991 bus->bandwidth_isoc_reqs = 0;
992 mutex_init(&bus->devnum_next_mutex);
993}
994
995/*-------------------------------------------------------------------------*/
996
997/**
998 * usb_register_bus - registers the USB host controller with the usb core
999 * @bus: pointer to the bus to register
1000 * Context: !in_interrupt()
1001 *
1002 * Assigns a bus number, and links the controller into usbcore data
1003 * structures so that it can be seen by scanning the bus list.
1004 *
1005 * Return: 0 if successful. A negative error code otherwise.
1006 */
1007static int usb_register_bus(struct usb_bus *bus)
1008{
1009 int result = -E2BIG;
1010 int busnum;
1011
1012 mutex_lock(&usb_bus_idr_lock);
1013 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1014 if (busnum < 0) {
1015 pr_err("%s: failed to get bus number\n", usbcore_name);
1016 goto error_find_busnum;
1017 }
1018 bus->busnum = busnum;
1019 mutex_unlock(&usb_bus_idr_lock);
1020
1021 usb_notify_add_bus(bus);
1022
1023 dev_info (bus->controller, "new USB bus registered, assigned bus "
1024 "number %d\n", bus->busnum);
1025 return 0;
1026
1027error_find_busnum:
1028 mutex_unlock(&usb_bus_idr_lock);
1029 return result;
1030}
1031
1032/**
1033 * usb_deregister_bus - deregisters the USB host controller
1034 * @bus: pointer to the bus to deregister
1035 * Context: !in_interrupt()
1036 *
1037 * Recycles the bus number, and unlinks the controller from usbcore data
1038 * structures so that it won't be seen by scanning the bus list.
1039 */
1040static void usb_deregister_bus (struct usb_bus *bus)
1041{
1042 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1043
1044 /*
1045 * NOTE: make sure that all the devices are removed by the
1046 * controller code, as well as having it call this when cleaning
1047 * itself up
1048 */
1049 mutex_lock(&usb_bus_idr_lock);
1050 idr_remove(&usb_bus_idr, bus->busnum);
1051 mutex_unlock(&usb_bus_idr_lock);
1052
1053 usb_notify_remove_bus(bus);
1054}
1055
1056/**
1057 * register_root_hub - called by usb_add_hcd() to register a root hub
1058 * @hcd: host controller for this root hub
1059 *
1060 * This function registers the root hub with the USB subsystem. It sets up
1061 * the device properly in the device tree and then calls usb_new_device()
1062 * to register the usb device. It also assigns the root hub's USB address
1063 * (always 1).
1064 *
1065 * Return: 0 if successful. A negative error code otherwise.
1066 */
1067static int register_root_hub(struct usb_hcd *hcd)
1068{
1069 struct device *parent_dev = hcd->self.controller;
1070 struct usb_device *usb_dev = hcd->self.root_hub;
1071 const int devnum = 1;
1072 int retval;
1073
1074 usb_dev->devnum = devnum;
1075 usb_dev->bus->devnum_next = devnum + 1;
1076 memset (&usb_dev->bus->devmap.devicemap, 0,
1077 sizeof usb_dev->bus->devmap.devicemap);
1078 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1079 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1080
1081 mutex_lock(&usb_bus_idr_lock);
1082
1083 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1084 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1085 if (retval != sizeof usb_dev->descriptor) {
1086 mutex_unlock(&usb_bus_idr_lock);
1087 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1088 dev_name(&usb_dev->dev), retval);
1089 return (retval < 0) ? retval : -EMSGSIZE;
1090 }
1091
1092 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1093 retval = usb_get_bos_descriptor(usb_dev);
1094 if (!retval) {
1095 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1096 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1097 mutex_unlock(&usb_bus_idr_lock);
1098 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1099 dev_name(&usb_dev->dev), retval);
1100 return retval;
1101 }
1102 }
1103
1104 retval = usb_new_device (usb_dev);
1105 if (retval) {
1106 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1107 dev_name(&usb_dev->dev), retval);
1108 } else {
1109 spin_lock_irq (&hcd_root_hub_lock);
1110 hcd->rh_registered = 1;
1111 spin_unlock_irq (&hcd_root_hub_lock);
1112
1113 /* Did the HC die before the root hub was registered? */
1114 if (HCD_DEAD(hcd))
1115 usb_hc_died (hcd); /* This time clean up */
1116 }
1117 mutex_unlock(&usb_bus_idr_lock);
1118
1119 return retval;
1120}
1121
1122/*
1123 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1124 * @bus: the bus which the root hub belongs to
1125 * @portnum: the port which is being resumed
1126 *
1127 * HCDs should call this function when they know that a resume signal is
1128 * being sent to a root-hub port. The root hub will be prevented from
1129 * going into autosuspend until usb_hcd_end_port_resume() is called.
1130 *
1131 * The bus's private lock must be held by the caller.
1132 */
1133void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1134{
1135 unsigned bit = 1 << portnum;
1136
1137 if (!(bus->resuming_ports & bit)) {
1138 bus->resuming_ports |= bit;
1139 pm_runtime_get_noresume(&bus->root_hub->dev);
1140 }
1141}
1142EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1143
1144/*
1145 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1146 * @bus: the bus which the root hub belongs to
1147 * @portnum: the port which is being resumed
1148 *
1149 * HCDs should call this function when they know that a resume signal has
1150 * stopped being sent to a root-hub port. The root hub will be allowed to
1151 * autosuspend again.
1152 *
1153 * The bus's private lock must be held by the caller.
1154 */
1155void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1156{
1157 unsigned bit = 1 << portnum;
1158
1159 if (bus->resuming_ports & bit) {
1160 bus->resuming_ports &= ~bit;
1161 pm_runtime_put_noidle(&bus->root_hub->dev);
1162 }
1163}
1164EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1165
1166/*-------------------------------------------------------------------------*/
1167
1168/**
1169 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1170 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1171 * @is_input: true iff the transaction sends data to the host
1172 * @isoc: true for isochronous transactions, false for interrupt ones
1173 * @bytecount: how many bytes in the transaction.
1174 *
1175 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1176 *
1177 * Note:
1178 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1179 * scheduled in software, this function is only used for such scheduling.
1180 */
1181long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1182{
1183 unsigned long tmp;
1184
1185 switch (speed) {
1186 case USB_SPEED_LOW: /* INTR only */
1187 if (is_input) {
1188 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1189 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1190 } else {
1191 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1192 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1193 }
1194 case USB_SPEED_FULL: /* ISOC or INTR */
1195 if (isoc) {
1196 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1197 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1198 } else {
1199 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1200 return 9107L + BW_HOST_DELAY + tmp;
1201 }
1202 case USB_SPEED_HIGH: /* ISOC or INTR */
1203 /* FIXME adjust for input vs output */
1204 if (isoc)
1205 tmp = HS_NSECS_ISO (bytecount);
1206 else
1207 tmp = HS_NSECS (bytecount);
1208 return tmp;
1209 default:
1210 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1211 return -1;
1212 }
1213}
1214EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1215
1216
1217/*-------------------------------------------------------------------------*/
1218
1219/*
1220 * Generic HC operations.
1221 */
1222
1223/*-------------------------------------------------------------------------*/
1224
1225/**
1226 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1227 * @hcd: host controller to which @urb was submitted
1228 * @urb: URB being submitted
1229 *
1230 * Host controller drivers should call this routine in their enqueue()
1231 * method. The HCD's private spinlock must be held and interrupts must
1232 * be disabled. The actions carried out here are required for URB
1233 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1234 *
1235 * Return: 0 for no error, otherwise a negative error code (in which case
1236 * the enqueue() method must fail). If no error occurs but enqueue() fails
1237 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1238 * the private spinlock and returning.
1239 */
1240int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1241{
1242 int rc = 0;
1243
1244 spin_lock(&hcd_urb_list_lock);
1245
1246 /* Check that the URB isn't being killed */
1247 if (unlikely(atomic_read(&urb->reject))) {
1248 rc = -EPERM;
1249 goto done;
1250 }
1251
1252 if (unlikely(!urb->ep->enabled)) {
1253 rc = -ENOENT;
1254 goto done;
1255 }
1256
1257 if (unlikely(!urb->dev->can_submit)) {
1258 rc = -EHOSTUNREACH;
1259 goto done;
1260 }
1261
1262 /*
1263 * Check the host controller's state and add the URB to the
1264 * endpoint's queue.
1265 */
1266 if (HCD_RH_RUNNING(hcd)) {
1267 urb->unlinked = 0;
1268 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1269 } else {
1270 rc = -ESHUTDOWN;
1271 goto done;
1272 }
1273 done:
1274 spin_unlock(&hcd_urb_list_lock);
1275 return rc;
1276}
1277EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1278
1279/**
1280 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1281 * @hcd: host controller to which @urb was submitted
1282 * @urb: URB being checked for unlinkability
1283 * @status: error code to store in @urb if the unlink succeeds
1284 *
1285 * Host controller drivers should call this routine in their dequeue()
1286 * method. The HCD's private spinlock must be held and interrupts must
1287 * be disabled. The actions carried out here are required for making
1288 * sure than an unlink is valid.
1289 *
1290 * Return: 0 for no error, otherwise a negative error code (in which case
1291 * the dequeue() method must fail). The possible error codes are:
1292 *
1293 * -EIDRM: @urb was not submitted or has already completed.
1294 * The completion function may not have been called yet.
1295 *
1296 * -EBUSY: @urb has already been unlinked.
1297 */
1298int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1299 int status)
1300{
1301 struct list_head *tmp;
1302
1303 /* insist the urb is still queued */
1304 list_for_each(tmp, &urb->ep->urb_list) {
1305 if (tmp == &urb->urb_list)
1306 break;
1307 }
1308 if (tmp != &urb->urb_list)
1309 return -EIDRM;
1310
1311 /* Any status except -EINPROGRESS means something already started to
1312 * unlink this URB from the hardware. So there's no more work to do.
1313 */
1314 if (urb->unlinked)
1315 return -EBUSY;
1316 urb->unlinked = status;
1317 return 0;
1318}
1319EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1320
1321/**
1322 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1323 * @hcd: host controller to which @urb was submitted
1324 * @urb: URB being unlinked
1325 *
1326 * Host controller drivers should call this routine before calling
1327 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1328 * interrupts must be disabled. The actions carried out here are required
1329 * for URB completion.
1330 */
1331void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1332{
1333 /* clear all state linking urb to this dev (and hcd) */
1334 spin_lock(&hcd_urb_list_lock);
1335 list_del_init(&urb->urb_list);
1336 spin_unlock(&hcd_urb_list_lock);
1337}
1338EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1339
1340/*
1341 * Some usb host controllers can only perform dma using a small SRAM area.
1342 * The usb core itself is however optimized for host controllers that can dma
1343 * using regular system memory - like pci devices doing bus mastering.
1344 *
1345 * To support host controllers with limited dma capabilities we provide dma
1346 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1347 * For this to work properly the host controller code must first use the
1348 * function dma_declare_coherent_memory() to point out which memory area
1349 * that should be used for dma allocations.
1350 *
1351 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1352 * dma using dma_alloc_coherent() which in turn allocates from the memory
1353 * area pointed out with dma_declare_coherent_memory().
1354 *
1355 * So, to summarize...
1356 *
1357 * - We need "local" memory, canonical example being
1358 * a small SRAM on a discrete controller being the
1359 * only memory that the controller can read ...
1360 * (a) "normal" kernel memory is no good, and
1361 * (b) there's not enough to share
1362 *
1363 * - The only *portable* hook for such stuff in the
1364 * DMA framework is dma_declare_coherent_memory()
1365 *
1366 * - So we use that, even though the primary requirement
1367 * is that the memory be "local" (hence addressable
1368 * by that device), not "coherent".
1369 *
1370 */
1371
1372static int hcd_alloc_coherent(struct usb_bus *bus,
1373 gfp_t mem_flags, dma_addr_t *dma_handle,
1374 void **vaddr_handle, size_t size,
1375 enum dma_data_direction dir)
1376{
1377 unsigned char *vaddr;
1378
1379 if (*vaddr_handle == NULL) {
1380 WARN_ON_ONCE(1);
1381 return -EFAULT;
1382 }
1383
1384 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1385 mem_flags, dma_handle);
1386 if (!vaddr)
1387 return -ENOMEM;
1388
1389 /*
1390 * Store the virtual address of the buffer at the end
1391 * of the allocated dma buffer. The size of the buffer
1392 * may be uneven so use unaligned functions instead
1393 * of just rounding up. It makes sense to optimize for
1394 * memory footprint over access speed since the amount
1395 * of memory available for dma may be limited.
1396 */
1397 put_unaligned((unsigned long)*vaddr_handle,
1398 (unsigned long *)(vaddr + size));
1399
1400 if (dir == DMA_TO_DEVICE)
1401 memcpy(vaddr, *vaddr_handle, size);
1402
1403 *vaddr_handle = vaddr;
1404 return 0;
1405}
1406
1407static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1408 void **vaddr_handle, size_t size,
1409 enum dma_data_direction dir)
1410{
1411 unsigned char *vaddr = *vaddr_handle;
1412
1413 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1414
1415 if (dir == DMA_FROM_DEVICE)
1416 memcpy(vaddr, *vaddr_handle, size);
1417
1418 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1419
1420 *vaddr_handle = vaddr;
1421 *dma_handle = 0;
1422}
1423
1424void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1425{
1426 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1427 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1428 dma_unmap_single(hcd->self.sysdev,
1429 urb->setup_dma,
1430 sizeof(struct usb_ctrlrequest),
1431 DMA_TO_DEVICE);
1432 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1433 hcd_free_coherent(urb->dev->bus,
1434 &urb->setup_dma,
1435 (void **) &urb->setup_packet,
1436 sizeof(struct usb_ctrlrequest),
1437 DMA_TO_DEVICE);
1438
1439 /* Make it safe to call this routine more than once */
1440 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1441}
1442EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1443
1444static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1445{
1446 if (hcd->driver->unmap_urb_for_dma)
1447 hcd->driver->unmap_urb_for_dma(hcd, urb);
1448 else
1449 usb_hcd_unmap_urb_for_dma(hcd, urb);
1450}
1451
1452void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1453{
1454 enum dma_data_direction dir;
1455
1456 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1457
1458 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1459 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1460 (urb->transfer_flags & URB_DMA_MAP_SG))
1461 dma_unmap_sg(hcd->self.sysdev,
1462 urb->sg,
1463 urb->num_sgs,
1464 dir);
1465 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1466 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1467 dma_unmap_page(hcd->self.sysdev,
1468 urb->transfer_dma,
1469 urb->transfer_buffer_length,
1470 dir);
1471 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1472 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1473 dma_unmap_single(hcd->self.sysdev,
1474 urb->transfer_dma,
1475 urb->transfer_buffer_length,
1476 dir);
1477 else if (urb->transfer_flags & URB_MAP_LOCAL)
1478 hcd_free_coherent(urb->dev->bus,
1479 &urb->transfer_dma,
1480 &urb->transfer_buffer,
1481 urb->transfer_buffer_length,
1482 dir);
1483
1484 /* Make it safe to call this routine more than once */
1485 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1486 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1487}
1488EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1489
1490static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1491 gfp_t mem_flags)
1492{
1493 if (hcd->driver->map_urb_for_dma)
1494 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1495 else
1496 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1497}
1498
1499int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1500 gfp_t mem_flags)
1501{
1502 enum dma_data_direction dir;
1503 int ret = 0;
1504
1505 /* Map the URB's buffers for DMA access.
1506 * Lower level HCD code should use *_dma exclusively,
1507 * unless it uses pio or talks to another transport,
1508 * or uses the provided scatter gather list for bulk.
1509 */
1510
1511 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1512 if (hcd->self.uses_pio_for_control)
1513 return ret;
1514 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1515 if (is_vmalloc_addr(urb->setup_packet)) {
1516 WARN_ONCE(1, "setup packet is not dma capable\n");
1517 return -EAGAIN;
1518 } else if (object_is_on_stack(urb->setup_packet)) {
1519 WARN_ONCE(1, "setup packet is on stack\n");
1520 return -EAGAIN;
1521 }
1522
1523 urb->setup_dma = dma_map_single(
1524 hcd->self.sysdev,
1525 urb->setup_packet,
1526 sizeof(struct usb_ctrlrequest),
1527 DMA_TO_DEVICE);
1528 if (dma_mapping_error(hcd->self.sysdev,
1529 urb->setup_dma))
1530 return -EAGAIN;
1531 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1532 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1533 ret = hcd_alloc_coherent(
1534 urb->dev->bus, mem_flags,
1535 &urb->setup_dma,
1536 (void **)&urb->setup_packet,
1537 sizeof(struct usb_ctrlrequest),
1538 DMA_TO_DEVICE);
1539 if (ret)
1540 return ret;
1541 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1542 }
1543 }
1544
1545 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1546 if (urb->transfer_buffer_length != 0
1547 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1548 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1549 if (urb->num_sgs) {
1550 int n;
1551
1552 /* We don't support sg for isoc transfers ! */
1553 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1554 WARN_ON(1);
1555 return -EINVAL;
1556 }
1557
1558 n = dma_map_sg(
1559 hcd->self.sysdev,
1560 urb->sg,
1561 urb->num_sgs,
1562 dir);
1563 if (n <= 0)
1564 ret = -EAGAIN;
1565 else
1566 urb->transfer_flags |= URB_DMA_MAP_SG;
1567 urb->num_mapped_sgs = n;
1568 if (n != urb->num_sgs)
1569 urb->transfer_flags |=
1570 URB_DMA_SG_COMBINED;
1571 } else if (urb->sg) {
1572 struct scatterlist *sg = urb->sg;
1573 urb->transfer_dma = dma_map_page(
1574 hcd->self.sysdev,
1575 sg_page(sg),
1576 sg->offset,
1577 urb->transfer_buffer_length,
1578 dir);
1579 if (dma_mapping_error(hcd->self.sysdev,
1580 urb->transfer_dma))
1581 ret = -EAGAIN;
1582 else
1583 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1584 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1585 WARN_ONCE(1, "transfer buffer not dma capable\n");
1586 ret = -EAGAIN;
1587 } else if (object_is_on_stack(urb->transfer_buffer)) {
1588 WARN_ONCE(1, "transfer buffer is on stack\n");
1589 ret = -EAGAIN;
1590 } else {
1591 urb->transfer_dma = dma_map_single(
1592 hcd->self.sysdev,
1593 urb->transfer_buffer,
1594 urb->transfer_buffer_length,
1595 dir);
1596 if (dma_mapping_error(hcd->self.sysdev,
1597 urb->transfer_dma))
1598 ret = -EAGAIN;
1599 else
1600 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1601 }
1602 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1603 ret = hcd_alloc_coherent(
1604 urb->dev->bus, mem_flags,
1605 &urb->transfer_dma,
1606 &urb->transfer_buffer,
1607 urb->transfer_buffer_length,
1608 dir);
1609 if (ret == 0)
1610 urb->transfer_flags |= URB_MAP_LOCAL;
1611 }
1612 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1613 URB_SETUP_MAP_LOCAL)))
1614 usb_hcd_unmap_urb_for_dma(hcd, urb);
1615 }
1616 return ret;
1617}
1618EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1619
1620/*-------------------------------------------------------------------------*/
1621
1622/* may be called in any context with a valid urb->dev usecount
1623 * caller surrenders "ownership" of urb
1624 * expects usb_submit_urb() to have sanity checked and conditioned all
1625 * inputs in the urb
1626 */
1627int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1628{
1629 int status;
1630 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1631
1632 /* increment urb's reference count as part of giving it to the HCD
1633 * (which will control it). HCD guarantees that it either returns
1634 * an error or calls giveback(), but not both.
1635 */
1636 usb_get_urb(urb);
1637 atomic_inc(&urb->use_count);
1638 atomic_inc(&urb->dev->urbnum);
1639 usbmon_urb_submit(&hcd->self, urb);
1640
1641 /* NOTE requirements on root-hub callers (usbfs and the hub
1642 * driver, for now): URBs' urb->transfer_buffer must be
1643 * valid and usb_buffer_{sync,unmap}() not be needed, since
1644 * they could clobber root hub response data. Also, control
1645 * URBs must be submitted in process context with interrupts
1646 * enabled.
1647 */
1648
1649 if (is_root_hub(urb->dev)) {
1650 status = rh_urb_enqueue(hcd, urb);
1651 } else {
1652 status = map_urb_for_dma(hcd, urb, mem_flags);
1653 if (likely(status == 0)) {
1654 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1655 if (unlikely(status))
1656 unmap_urb_for_dma(hcd, urb);
1657 }
1658 }
1659
1660 if (unlikely(status)) {
1661 usbmon_urb_submit_error(&hcd->self, urb, status);
1662 urb->hcpriv = NULL;
1663 INIT_LIST_HEAD(&urb->urb_list);
1664 atomic_dec(&urb->use_count);
1665 atomic_dec(&urb->dev->urbnum);
1666 if (atomic_read(&urb->reject))
1667 wake_up(&usb_kill_urb_queue);
1668 usb_put_urb(urb);
1669 }
1670 return status;
1671}
1672
1673/*-------------------------------------------------------------------------*/
1674
1675/* this makes the hcd giveback() the urb more quickly, by kicking it
1676 * off hardware queues (which may take a while) and returning it as
1677 * soon as practical. we've already set up the urb's return status,
1678 * but we can't know if the callback completed already.
1679 */
1680static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1681{
1682 int value;
1683
1684 if (is_root_hub(urb->dev))
1685 value = usb_rh_urb_dequeue(hcd, urb, status);
1686 else {
1687
1688 /* The only reason an HCD might fail this call is if
1689 * it has not yet fully queued the urb to begin with.
1690 * Such failures should be harmless. */
1691 value = hcd->driver->urb_dequeue(hcd, urb, status);
1692 }
1693 return value;
1694}
1695
1696/*
1697 * called in any context
1698 *
1699 * caller guarantees urb won't be recycled till both unlink()
1700 * and the urb's completion function return
1701 */
1702int usb_hcd_unlink_urb (struct urb *urb, int status)
1703{
1704 struct usb_hcd *hcd;
1705 struct usb_device *udev = urb->dev;
1706 int retval = -EIDRM;
1707 unsigned long flags;
1708
1709 /* Prevent the device and bus from going away while
1710 * the unlink is carried out. If they are already gone
1711 * then urb->use_count must be 0, since disconnected
1712 * devices can't have any active URBs.
1713 */
1714 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1715 if (atomic_read(&urb->use_count) > 0) {
1716 retval = 0;
1717 usb_get_dev(udev);
1718 }
1719 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1720 if (retval == 0) {
1721 hcd = bus_to_hcd(urb->dev->bus);
1722 retval = unlink1(hcd, urb, status);
1723 if (retval == 0)
1724 retval = -EINPROGRESS;
1725 else if (retval != -EIDRM && retval != -EBUSY)
1726 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1727 urb, retval);
1728 usb_put_dev(udev);
1729 }
1730 return retval;
1731}
1732
1733/*-------------------------------------------------------------------------*/
1734
1735static void __usb_hcd_giveback_urb(struct urb *urb)
1736{
1737 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1738 struct usb_anchor *anchor = urb->anchor;
1739 int status = urb->unlinked;
1740 unsigned long flags;
1741
1742 urb->hcpriv = NULL;
1743 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1744 urb->actual_length < urb->transfer_buffer_length &&
1745 !status))
1746 status = -EREMOTEIO;
1747
1748 unmap_urb_for_dma(hcd, urb);
1749 usbmon_urb_complete(&hcd->self, urb, status);
1750 usb_anchor_suspend_wakeups(anchor);
1751 usb_unanchor_urb(urb);
1752 if (likely(status == 0))
1753 usb_led_activity(USB_LED_EVENT_HOST);
1754
1755 /* pass ownership to the completion handler */
1756 urb->status = status;
1757
1758 /*
1759 * We disable local IRQs here avoid possible deadlock because
1760 * drivers may call spin_lock() to hold lock which might be
1761 * acquired in one hard interrupt handler.
1762 *
1763 * The local_irq_save()/local_irq_restore() around complete()
1764 * will be removed if current USB drivers have been cleaned up
1765 * and no one may trigger the above deadlock situation when
1766 * running complete() in tasklet.
1767 */
1768 local_irq_save(flags);
1769 urb->complete(urb);
1770 local_irq_restore(flags);
1771
1772 usb_anchor_resume_wakeups(anchor);
1773 atomic_dec(&urb->use_count);
1774 if (unlikely(atomic_read(&urb->reject)))
1775 wake_up(&usb_kill_urb_queue);
1776 usb_put_urb(urb);
1777}
1778
1779static void usb_giveback_urb_bh(unsigned long param)
1780{
1781 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1782 struct list_head local_list;
1783
1784 spin_lock_irq(&bh->lock);
1785 bh->running = true;
1786 restart:
1787 list_replace_init(&bh->head, &local_list);
1788 spin_unlock_irq(&bh->lock);
1789
1790 while (!list_empty(&local_list)) {
1791 struct urb *urb;
1792
1793 urb = list_entry(local_list.next, struct urb, urb_list);
1794 list_del_init(&urb->urb_list);
1795 bh->completing_ep = urb->ep;
1796 __usb_hcd_giveback_urb(urb);
1797 bh->completing_ep = NULL;
1798 }
1799
1800 /* check if there are new URBs to giveback */
1801 spin_lock_irq(&bh->lock);
1802 if (!list_empty(&bh->head))
1803 goto restart;
1804 bh->running = false;
1805 spin_unlock_irq(&bh->lock);
1806}
1807
1808/**
1809 * usb_hcd_giveback_urb - return URB from HCD to device driver
1810 * @hcd: host controller returning the URB
1811 * @urb: urb being returned to the USB device driver.
1812 * @status: completion status code for the URB.
1813 * Context: in_interrupt()
1814 *
1815 * This hands the URB from HCD to its USB device driver, using its
1816 * completion function. The HCD has freed all per-urb resources
1817 * (and is done using urb->hcpriv). It also released all HCD locks;
1818 * the device driver won't cause problems if it frees, modifies,
1819 * or resubmits this URB.
1820 *
1821 * If @urb was unlinked, the value of @status will be overridden by
1822 * @urb->unlinked. Erroneous short transfers are detected in case
1823 * the HCD hasn't checked for them.
1824 */
1825void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1826{
1827 struct giveback_urb_bh *bh;
1828 bool running, high_prio_bh;
1829
1830 /* pass status to tasklet via unlinked */
1831 if (likely(!urb->unlinked))
1832 urb->unlinked = status;
1833
1834 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1835 __usb_hcd_giveback_urb(urb);
1836 return;
1837 }
1838
1839 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1840 bh = &hcd->high_prio_bh;
1841 high_prio_bh = true;
1842 } else {
1843 bh = &hcd->low_prio_bh;
1844 high_prio_bh = false;
1845 }
1846
1847 spin_lock(&bh->lock);
1848 list_add_tail(&urb->urb_list, &bh->head);
1849 running = bh->running;
1850 spin_unlock(&bh->lock);
1851
1852 if (running)
1853 ;
1854 else if (high_prio_bh)
1855 tasklet_hi_schedule(&bh->bh);
1856 else
1857 tasklet_schedule(&bh->bh);
1858}
1859EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1860
1861/*-------------------------------------------------------------------------*/
1862
1863/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1864 * queue to drain completely. The caller must first insure that no more
1865 * URBs can be submitted for this endpoint.
1866 */
1867void usb_hcd_flush_endpoint(struct usb_device *udev,
1868 struct usb_host_endpoint *ep)
1869{
1870 struct usb_hcd *hcd;
1871 struct urb *urb;
1872
1873 if (!ep)
1874 return;
1875 might_sleep();
1876 hcd = bus_to_hcd(udev->bus);
1877
1878 /* No more submits can occur */
1879 spin_lock_irq(&hcd_urb_list_lock);
1880rescan:
1881 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1882 int is_in;
1883
1884 if (urb->unlinked)
1885 continue;
1886 usb_get_urb (urb);
1887 is_in = usb_urb_dir_in(urb);
1888 spin_unlock(&hcd_urb_list_lock);
1889
1890 /* kick hcd */
1891 unlink1(hcd, urb, -ESHUTDOWN);
1892 dev_dbg (hcd->self.controller,
1893 "shutdown urb %pK ep%d%s%s\n",
1894 urb, usb_endpoint_num(&ep->desc),
1895 is_in ? "in" : "out",
1896 ({ char *s;
1897
1898 switch (usb_endpoint_type(&ep->desc)) {
1899 case USB_ENDPOINT_XFER_CONTROL:
1900 s = ""; break;
1901 case USB_ENDPOINT_XFER_BULK:
1902 s = "-bulk"; break;
1903 case USB_ENDPOINT_XFER_INT:
1904 s = "-intr"; break;
1905 default:
1906 s = "-iso"; break;
1907 };
1908 s;
1909 }));
1910 usb_put_urb (urb);
1911
1912 /* list contents may have changed */
1913 spin_lock(&hcd_urb_list_lock);
1914 goto rescan;
1915 }
1916 spin_unlock_irq(&hcd_urb_list_lock);
1917
1918 /* Wait until the endpoint queue is completely empty */
1919 while (!list_empty (&ep->urb_list)) {
1920 spin_lock_irq(&hcd_urb_list_lock);
1921
1922 /* The list may have changed while we acquired the spinlock */
1923 urb = NULL;
1924 if (!list_empty (&ep->urb_list)) {
1925 urb = list_entry (ep->urb_list.prev, struct urb,
1926 urb_list);
1927 usb_get_urb (urb);
1928 }
1929 spin_unlock_irq(&hcd_urb_list_lock);
1930
1931 if (urb) {
1932 usb_kill_urb (urb);
1933 usb_put_urb (urb);
1934 }
1935 }
1936}
1937
1938/**
1939 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1940 * the bus bandwidth
1941 * @udev: target &usb_device
1942 * @new_config: new configuration to install
1943 * @cur_alt: the current alternate interface setting
1944 * @new_alt: alternate interface setting that is being installed
1945 *
1946 * To change configurations, pass in the new configuration in new_config,
1947 * and pass NULL for cur_alt and new_alt.
1948 *
1949 * To reset a device's configuration (put the device in the ADDRESSED state),
1950 * pass in NULL for new_config, cur_alt, and new_alt.
1951 *
1952 * To change alternate interface settings, pass in NULL for new_config,
1953 * pass in the current alternate interface setting in cur_alt,
1954 * and pass in the new alternate interface setting in new_alt.
1955 *
1956 * Return: An error if the requested bandwidth change exceeds the
1957 * bus bandwidth or host controller internal resources.
1958 */
1959int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1960 struct usb_host_config *new_config,
1961 struct usb_host_interface *cur_alt,
1962 struct usb_host_interface *new_alt)
1963{
1964 int num_intfs, i, j;
1965 struct usb_host_interface *alt = NULL;
1966 int ret = 0;
1967 struct usb_hcd *hcd;
1968 struct usb_host_endpoint *ep;
1969
1970 hcd = bus_to_hcd(udev->bus);
1971 if (!hcd->driver->check_bandwidth)
1972 return 0;
1973
1974 /* Configuration is being removed - set configuration 0 */
1975 if (!new_config && !cur_alt) {
1976 for (i = 1; i < 16; ++i) {
1977 ep = udev->ep_out[i];
1978 if (ep)
1979 hcd->driver->drop_endpoint(hcd, udev, ep);
1980 ep = udev->ep_in[i];
1981 if (ep)
1982 hcd->driver->drop_endpoint(hcd, udev, ep);
1983 }
1984 hcd->driver->check_bandwidth(hcd, udev);
1985 return 0;
1986 }
1987 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1988 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1989 * of the bus. There will always be bandwidth for endpoint 0, so it's
1990 * ok to exclude it.
1991 */
1992 if (new_config) {
1993 num_intfs = new_config->desc.bNumInterfaces;
1994 /* Remove endpoints (except endpoint 0, which is always on the
1995 * schedule) from the old config from the schedule
1996 */
1997 for (i = 1; i < 16; ++i) {
1998 ep = udev->ep_out[i];
1999 if (ep) {
2000 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2001 if (ret < 0)
2002 goto reset;
2003 }
2004 ep = udev->ep_in[i];
2005 if (ep) {
2006 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2007 if (ret < 0)
2008 goto reset;
2009 }
2010 }
2011 for (i = 0; i < num_intfs; ++i) {
2012 struct usb_host_interface *first_alt;
2013 int iface_num;
2014
2015 first_alt = &new_config->intf_cache[i]->altsetting[0];
2016 iface_num = first_alt->desc.bInterfaceNumber;
2017 /* Set up endpoints for alternate interface setting 0 */
2018 alt = usb_find_alt_setting(new_config, iface_num, 0);
2019 if (!alt)
2020 /* No alt setting 0? Pick the first setting. */
2021 alt = first_alt;
2022
2023 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2024 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2025 if (ret < 0)
2026 goto reset;
2027 }
2028 }
2029 }
2030 if (cur_alt && new_alt) {
2031 struct usb_interface *iface = usb_ifnum_to_if(udev,
2032 cur_alt->desc.bInterfaceNumber);
2033
2034 if (!iface)
2035 return -EINVAL;
2036 if (iface->resetting_device) {
2037 /*
2038 * The USB core just reset the device, so the xHCI host
2039 * and the device will think alt setting 0 is installed.
2040 * However, the USB core will pass in the alternate
2041 * setting installed before the reset as cur_alt. Dig
2042 * out the alternate setting 0 structure, or the first
2043 * alternate setting if a broken device doesn't have alt
2044 * setting 0.
2045 */
2046 cur_alt = usb_altnum_to_altsetting(iface, 0);
2047 if (!cur_alt)
2048 cur_alt = &iface->altsetting[0];
2049 }
2050
2051 /* Drop all the endpoints in the current alt setting */
2052 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2053 ret = hcd->driver->drop_endpoint(hcd, udev,
2054 &cur_alt->endpoint[i]);
2055 if (ret < 0)
2056 goto reset;
2057 }
2058 /* Add all the endpoints in the new alt setting */
2059 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2060 ret = hcd->driver->add_endpoint(hcd, udev,
2061 &new_alt->endpoint[i]);
2062 if (ret < 0)
2063 goto reset;
2064 }
2065 }
2066 ret = hcd->driver->check_bandwidth(hcd, udev);
2067reset:
2068 if (ret < 0)
2069 hcd->driver->reset_bandwidth(hcd, udev);
2070 return ret;
2071}
2072
2073/* Disables the endpoint: synchronizes with the hcd to make sure all
2074 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2075 * have been called previously. Use for set_configuration, set_interface,
2076 * driver removal, physical disconnect.
2077 *
2078 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2079 * type, maxpacket size, toggle, halt status, and scheduling.
2080 */
2081void usb_hcd_disable_endpoint(struct usb_device *udev,
2082 struct usb_host_endpoint *ep)
2083{
2084 struct usb_hcd *hcd;
2085
2086 might_sleep();
2087 hcd = bus_to_hcd(udev->bus);
2088 if (hcd->driver->endpoint_disable)
2089 hcd->driver->endpoint_disable(hcd, ep);
2090}
2091
2092/**
2093 * usb_hcd_reset_endpoint - reset host endpoint state
2094 * @udev: USB device.
2095 * @ep: the endpoint to reset.
2096 *
2097 * Resets any host endpoint state such as the toggle bit, sequence
2098 * number and current window.
2099 */
2100void usb_hcd_reset_endpoint(struct usb_device *udev,
2101 struct usb_host_endpoint *ep)
2102{
2103 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2104
2105 if (hcd->driver->endpoint_reset)
2106 hcd->driver->endpoint_reset(hcd, ep);
2107 else {
2108 int epnum = usb_endpoint_num(&ep->desc);
2109 int is_out = usb_endpoint_dir_out(&ep->desc);
2110 int is_control = usb_endpoint_xfer_control(&ep->desc);
2111
2112 usb_settoggle(udev, epnum, is_out, 0);
2113 if (is_control)
2114 usb_settoggle(udev, epnum, !is_out, 0);
2115 }
2116}
2117
2118/**
2119 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2120 * @interface: alternate setting that includes all endpoints.
2121 * @eps: array of endpoints that need streams.
2122 * @num_eps: number of endpoints in the array.
2123 * @num_streams: number of streams to allocate.
2124 * @mem_flags: flags hcd should use to allocate memory.
2125 *
2126 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2127 * Drivers may queue multiple transfers to different stream IDs, which may
2128 * complete in a different order than they were queued.
2129 *
2130 * Return: On success, the number of allocated streams. On failure, a negative
2131 * error code.
2132 */
2133int usb_alloc_streams(struct usb_interface *interface,
2134 struct usb_host_endpoint **eps, unsigned int num_eps,
2135 unsigned int num_streams, gfp_t mem_flags)
2136{
2137 struct usb_hcd *hcd;
2138 struct usb_device *dev;
2139 int i, ret;
2140
2141 dev = interface_to_usbdev(interface);
2142 hcd = bus_to_hcd(dev->bus);
2143 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2144 return -EINVAL;
2145 if (dev->speed < USB_SPEED_SUPER)
2146 return -EINVAL;
2147 if (dev->state < USB_STATE_CONFIGURED)
2148 return -ENODEV;
2149
2150 for (i = 0; i < num_eps; i++) {
2151 /* Streams only apply to bulk endpoints. */
2152 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2153 return -EINVAL;
2154 /* Re-alloc is not allowed */
2155 if (eps[i]->streams)
2156 return -EINVAL;
2157 }
2158
2159 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2160 num_streams, mem_flags);
2161 if (ret < 0)
2162 return ret;
2163
2164 for (i = 0; i < num_eps; i++)
2165 eps[i]->streams = ret;
2166
2167 return ret;
2168}
2169EXPORT_SYMBOL_GPL(usb_alloc_streams);
2170
2171/**
2172 * usb_free_streams - free bulk endpoint stream IDs.
2173 * @interface: alternate setting that includes all endpoints.
2174 * @eps: array of endpoints to remove streams from.
2175 * @num_eps: number of endpoints in the array.
2176 * @mem_flags: flags hcd should use to allocate memory.
2177 *
2178 * Reverts a group of bulk endpoints back to not using stream IDs.
2179 * Can fail if we are given bad arguments, or HCD is broken.
2180 *
2181 * Return: 0 on success. On failure, a negative error code.
2182 */
2183int usb_free_streams(struct usb_interface *interface,
2184 struct usb_host_endpoint **eps, unsigned int num_eps,
2185 gfp_t mem_flags)
2186{
2187 struct usb_hcd *hcd;
2188 struct usb_device *dev;
2189 int i, ret;
2190
2191 dev = interface_to_usbdev(interface);
2192 hcd = bus_to_hcd(dev->bus);
2193 if (dev->speed < USB_SPEED_SUPER)
2194 return -EINVAL;
2195
2196 /* Double-free is not allowed */
2197 for (i = 0; i < num_eps; i++)
2198 if (!eps[i] || !eps[i]->streams)
2199 return -EINVAL;
2200
2201 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2202 if (ret < 0)
2203 return ret;
2204
2205 for (i = 0; i < num_eps; i++)
2206 eps[i]->streams = 0;
2207
2208 return ret;
2209}
2210EXPORT_SYMBOL_GPL(usb_free_streams);
2211
2212/* Protect against drivers that try to unlink URBs after the device
2213 * is gone, by waiting until all unlinks for @udev are finished.
2214 * Since we don't currently track URBs by device, simply wait until
2215 * nothing is running in the locked region of usb_hcd_unlink_urb().
2216 */
2217void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2218{
2219 spin_lock_irq(&hcd_urb_unlink_lock);
2220 spin_unlock_irq(&hcd_urb_unlink_lock);
2221}
2222
2223/*-------------------------------------------------------------------------*/
2224
2225/* called in any context */
2226int usb_hcd_get_frame_number (struct usb_device *udev)
2227{
2228 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2229
2230 if (!HCD_RH_RUNNING(hcd))
2231 return -ESHUTDOWN;
2232 return hcd->driver->get_frame_number (hcd);
2233}
2234
2235/*-------------------------------------------------------------------------*/
2236
2237#ifdef CONFIG_PM
2238
2239int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2240{
2241 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2242 int status;
2243 int old_state = hcd->state;
2244
2245 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2246 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2247 rhdev->do_remote_wakeup);
2248 if (HCD_DEAD(hcd)) {
2249 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2250 return 0;
2251 }
2252
2253 if (!hcd->driver->bus_suspend) {
2254 status = -ENOENT;
2255 } else {
2256 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2257 hcd->state = HC_STATE_QUIESCING;
2258 status = hcd->driver->bus_suspend(hcd);
2259 }
2260 if (status == 0) {
2261 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2262 hcd->state = HC_STATE_SUSPENDED;
2263
2264 if (!PMSG_IS_AUTO(msg))
2265 usb_phy_roothub_suspend(hcd->self.sysdev,
2266 hcd->phy_roothub);
2267
2268 /* Did we race with a root-hub wakeup event? */
2269 if (rhdev->do_remote_wakeup) {
2270 char buffer[6];
2271
2272 status = hcd->driver->hub_status_data(hcd, buffer);
2273 if (status != 0) {
2274 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2275 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2276 status = -EBUSY;
2277 }
2278 }
2279 } else {
2280 spin_lock_irq(&hcd_root_hub_lock);
2281 if (!HCD_DEAD(hcd)) {
2282 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2283 hcd->state = old_state;
2284 }
2285 spin_unlock_irq(&hcd_root_hub_lock);
2286 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2287 "suspend", status);
2288 }
2289 return status;
2290}
2291
2292int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2293{
2294 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2295 int status;
2296 int old_state = hcd->state;
2297
2298 dev_dbg(&rhdev->dev, "usb %sresume\n",
2299 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2300 if (HCD_DEAD(hcd)) {
2301 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2302 return 0;
2303 }
2304
2305 if (!PMSG_IS_AUTO(msg)) {
2306 status = usb_phy_roothub_resume(hcd->self.sysdev,
2307 hcd->phy_roothub);
2308 if (status)
2309 return status;
2310 }
2311
2312 if (!hcd->driver->bus_resume)
2313 return -ENOENT;
2314 if (HCD_RH_RUNNING(hcd))
2315 return 0;
2316
2317 hcd->state = HC_STATE_RESUMING;
2318 status = hcd->driver->bus_resume(hcd);
2319 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2320 if (status == 0) {
2321 struct usb_device *udev;
2322 int port1;
2323
2324 spin_lock_irq(&hcd_root_hub_lock);
2325 if (!HCD_DEAD(hcd)) {
2326 usb_set_device_state(rhdev, rhdev->actconfig
2327 ? USB_STATE_CONFIGURED
2328 : USB_STATE_ADDRESS);
2329 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2330 hcd->state = HC_STATE_RUNNING;
2331 }
2332 spin_unlock_irq(&hcd_root_hub_lock);
2333
2334 /*
2335 * Check whether any of the enabled ports on the root hub are
2336 * unsuspended. If they are then a TRSMRCY delay is needed
2337 * (this is what the USB-2 spec calls a "global resume").
2338 * Otherwise we can skip the delay.
2339 */
2340 usb_hub_for_each_child(rhdev, port1, udev) {
2341 if (udev->state != USB_STATE_NOTATTACHED &&
2342 !udev->port_is_suspended) {
2343 usleep_range(10000, 11000); /* TRSMRCY */
2344 break;
2345 }
2346 }
2347 } else {
2348 hcd->state = old_state;
2349 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2350 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2351 "resume", status);
2352 if (status != -ESHUTDOWN)
2353 usb_hc_died(hcd);
2354 }
2355 return status;
2356}
2357
2358/* Workqueue routine for root-hub remote wakeup */
2359static void hcd_resume_work(struct work_struct *work)
2360{
2361 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2362 struct usb_device *udev = hcd->self.root_hub;
2363
2364 usb_remote_wakeup(udev);
2365}
2366
2367/**
2368 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2369 * @hcd: host controller for this root hub
2370 *
2371 * The USB host controller calls this function when its root hub is
2372 * suspended (with the remote wakeup feature enabled) and a remote
2373 * wakeup request is received. The routine submits a workqueue request
2374 * to resume the root hub (that is, manage its downstream ports again).
2375 */
2376void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2377{
2378 unsigned long flags;
2379
2380 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2381 if (hcd->rh_registered) {
2382 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2383 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2384 queue_work(pm_wq, &hcd->wakeup_work);
2385 }
2386 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2387}
2388EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2389
2390#endif /* CONFIG_PM */
2391
2392/*-------------------------------------------------------------------------*/
2393
2394#ifdef CONFIG_USB_OTG
2395
2396/**
2397 * usb_bus_start_enum - start immediate enumeration (for OTG)
2398 * @bus: the bus (must use hcd framework)
2399 * @port_num: 1-based number of port; usually bus->otg_port
2400 * Context: in_interrupt()
2401 *
2402 * Starts enumeration, with an immediate reset followed later by
2403 * hub_wq identifying and possibly configuring the device.
2404 * This is needed by OTG controller drivers, where it helps meet
2405 * HNP protocol timing requirements for starting a port reset.
2406 *
2407 * Return: 0 if successful.
2408 */
2409int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2410{
2411 struct usb_hcd *hcd;
2412 int status = -EOPNOTSUPP;
2413
2414 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2415 * boards with root hubs hooked up to internal devices (instead of
2416 * just the OTG port) may need more attention to resetting...
2417 */
2418 hcd = bus_to_hcd(bus);
2419 if (port_num && hcd->driver->start_port_reset)
2420 status = hcd->driver->start_port_reset(hcd, port_num);
2421
2422 /* allocate hub_wq shortly after (first) root port reset finishes;
2423 * it may issue others, until at least 50 msecs have passed.
2424 */
2425 if (status == 0)
2426 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2427 return status;
2428}
2429EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2430
2431#endif
2432
2433/*-------------------------------------------------------------------------*/
2434
2435/**
2436 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2437 * @irq: the IRQ being raised
2438 * @__hcd: pointer to the HCD whose IRQ is being signaled
2439 *
2440 * If the controller isn't HALTed, calls the driver's irq handler.
2441 * Checks whether the controller is now dead.
2442 *
2443 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2444 */
2445irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2446{
2447 struct usb_hcd *hcd = __hcd;
2448 irqreturn_t rc;
2449
2450 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2451 rc = IRQ_NONE;
2452 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2453 rc = IRQ_NONE;
2454 else
2455 rc = IRQ_HANDLED;
2456
2457 return rc;
2458}
2459EXPORT_SYMBOL_GPL(usb_hcd_irq);
2460
2461/*-------------------------------------------------------------------------*/
2462
2463/**
2464 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2465 * @hcd: pointer to the HCD representing the controller
2466 *
2467 * This is called by bus glue to report a USB host controller that died
2468 * while operations may still have been pending. It's called automatically
2469 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2470 *
2471 * Only call this function with the primary HCD.
2472 */
2473void usb_hc_died (struct usb_hcd *hcd)
2474{
2475 unsigned long flags;
2476
2477 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2478
2479 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2480 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2481 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2482 if (hcd->rh_registered) {
2483 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2484
2485 /* make hub_wq clean up old urbs and devices */
2486 usb_set_device_state (hcd->self.root_hub,
2487 USB_STATE_NOTATTACHED);
2488 usb_kick_hub_wq(hcd->self.root_hub);
2489 }
2490 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2491 hcd = hcd->shared_hcd;
2492 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2493 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2494 if (hcd->rh_registered) {
2495 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2496
2497 /* make hub_wq clean up old urbs and devices */
2498 usb_set_device_state(hcd->self.root_hub,
2499 USB_STATE_NOTATTACHED);
2500 usb_kick_hub_wq(hcd->self.root_hub);
2501 }
2502 }
2503 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2504 /* Make sure that the other roothub is also deallocated. */
2505}
2506EXPORT_SYMBOL_GPL (usb_hc_died);
2507
2508/*-------------------------------------------------------------------------*/
2509
2510static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2511{
2512
2513 spin_lock_init(&bh->lock);
2514 INIT_LIST_HEAD(&bh->head);
2515 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2516}
2517
2518struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2519 struct device *sysdev, struct device *dev, const char *bus_name,
2520 struct usb_hcd *primary_hcd)
2521{
2522 struct usb_hcd *hcd;
2523
2524 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2525 if (!hcd)
2526 return NULL;
2527 if (primary_hcd == NULL) {
2528 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2529 GFP_KERNEL);
2530 if (!hcd->address0_mutex) {
2531 kfree(hcd);
2532 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2533 return NULL;
2534 }
2535 mutex_init(hcd->address0_mutex);
2536 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2537 GFP_KERNEL);
2538 if (!hcd->bandwidth_mutex) {
2539 kfree(hcd->address0_mutex);
2540 kfree(hcd);
2541 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2542 return NULL;
2543 }
2544 mutex_init(hcd->bandwidth_mutex);
2545 dev_set_drvdata(dev, hcd);
2546 } else {
2547 mutex_lock(&usb_port_peer_mutex);
2548 hcd->address0_mutex = primary_hcd->address0_mutex;
2549 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2550 hcd->primary_hcd = primary_hcd;
2551 primary_hcd->primary_hcd = primary_hcd;
2552 hcd->shared_hcd = primary_hcd;
2553 primary_hcd->shared_hcd = hcd;
2554 mutex_unlock(&usb_port_peer_mutex);
2555 }
2556
2557 kref_init(&hcd->kref);
2558
2559 usb_bus_init(&hcd->self);
2560 hcd->self.controller = dev;
2561 hcd->self.sysdev = sysdev;
2562 hcd->self.bus_name = bus_name;
2563 hcd->self.uses_dma = (sysdev->dma_mask != NULL);
2564
2565 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2566#ifdef CONFIG_PM
2567 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2568#endif
2569
2570 hcd->driver = driver;
2571 hcd->speed = driver->flags & HCD_MASK;
2572 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2573 "USB Host Controller";
2574 return hcd;
2575}
2576EXPORT_SYMBOL_GPL(__usb_create_hcd);
2577
2578/**
2579 * usb_create_shared_hcd - create and initialize an HCD structure
2580 * @driver: HC driver that will use this hcd
2581 * @dev: device for this HC, stored in hcd->self.controller
2582 * @bus_name: value to store in hcd->self.bus_name
2583 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2584 * PCI device. Only allocate certain resources for the primary HCD
2585 * Context: !in_interrupt()
2586 *
2587 * Allocate a struct usb_hcd, with extra space at the end for the
2588 * HC driver's private data. Initialize the generic members of the
2589 * hcd structure.
2590 *
2591 * Return: On success, a pointer to the created and initialized HCD structure.
2592 * On failure (e.g. if memory is unavailable), %NULL.
2593 */
2594struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2595 struct device *dev, const char *bus_name,
2596 struct usb_hcd *primary_hcd)
2597{
2598 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2599}
2600EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2601
2602/**
2603 * usb_create_hcd - create and initialize an HCD structure
2604 * @driver: HC driver that will use this hcd
2605 * @dev: device for this HC, stored in hcd->self.controller
2606 * @bus_name: value to store in hcd->self.bus_name
2607 * Context: !in_interrupt()
2608 *
2609 * Allocate a struct usb_hcd, with extra space at the end for the
2610 * HC driver's private data. Initialize the generic members of the
2611 * hcd structure.
2612 *
2613 * Return: On success, a pointer to the created and initialized HCD
2614 * structure. On failure (e.g. if memory is unavailable), %NULL.
2615 */
2616struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2617 struct device *dev, const char *bus_name)
2618{
2619 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2620}
2621EXPORT_SYMBOL_GPL(usb_create_hcd);
2622
2623/*
2624 * Roothubs that share one PCI device must also share the bandwidth mutex.
2625 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2626 * deallocated.
2627 *
2628 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2629 * freed. When hcd_release() is called for either hcd in a peer set,
2630 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2631 */
2632static void hcd_release(struct kref *kref)
2633{
2634 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2635
2636 mutex_lock(&usb_port_peer_mutex);
2637 if (hcd->shared_hcd) {
2638 struct usb_hcd *peer = hcd->shared_hcd;
2639
2640 peer->shared_hcd = NULL;
2641 peer->primary_hcd = NULL;
2642 } else {
2643 kfree(hcd->address0_mutex);
2644 kfree(hcd->bandwidth_mutex);
2645 }
2646 mutex_unlock(&usb_port_peer_mutex);
2647 kfree(hcd);
2648}
2649
2650struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2651{
2652 if (hcd)
2653 kref_get (&hcd->kref);
2654 return hcd;
2655}
2656EXPORT_SYMBOL_GPL(usb_get_hcd);
2657
2658void usb_put_hcd (struct usb_hcd *hcd)
2659{
2660 if (hcd)
2661 kref_put (&hcd->kref, hcd_release);
2662}
2663EXPORT_SYMBOL_GPL(usb_put_hcd);
2664
2665int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2666{
2667 if (!hcd->primary_hcd)
2668 return 1;
2669 return hcd == hcd->primary_hcd;
2670}
2671EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2672
2673int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2674{
2675 if (!hcd->driver->find_raw_port_number)
2676 return port1;
2677
2678 return hcd->driver->find_raw_port_number(hcd, port1);
2679}
2680
2681static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2682 unsigned int irqnum, unsigned long irqflags)
2683{
2684 int retval;
2685
2686 if (hcd->driver->irq) {
2687
2688 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2689 hcd->driver->description, hcd->self.busnum);
2690 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2691 hcd->irq_descr, hcd);
2692 if (retval != 0) {
2693 dev_err(hcd->self.controller,
2694 "request interrupt %d failed\n",
2695 irqnum);
2696 return retval;
2697 }
2698 hcd->irq = irqnum;
2699 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2700 (hcd->driver->flags & HCD_MEMORY) ?
2701 "io mem" : "io base",
2702 (unsigned long long)hcd->rsrc_start);
2703 } else {
2704 hcd->irq = 0;
2705 if (hcd->rsrc_start)
2706 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2707 (hcd->driver->flags & HCD_MEMORY) ?
2708 "io mem" : "io base",
2709 (unsigned long long)hcd->rsrc_start);
2710 }
2711 return 0;
2712}
2713
2714/*
2715 * Before we free this root hub, flush in-flight peering attempts
2716 * and disable peer lookups
2717 */
2718static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2719{
2720 struct usb_device *rhdev;
2721
2722 mutex_lock(&usb_port_peer_mutex);
2723 rhdev = hcd->self.root_hub;
2724 hcd->self.root_hub = NULL;
2725 mutex_unlock(&usb_port_peer_mutex);
2726 usb_put_dev(rhdev);
2727}
2728
2729/**
2730 * usb_add_hcd - finish generic HCD structure initialization and register
2731 * @hcd: the usb_hcd structure to initialize
2732 * @irqnum: Interrupt line to allocate
2733 * @irqflags: Interrupt type flags
2734 *
2735 * Finish the remaining parts of generic HCD initialization: allocate the
2736 * buffers of consistent memory, register the bus, request the IRQ line,
2737 * and call the driver's reset() and start() routines.
2738 */
2739int usb_add_hcd(struct usb_hcd *hcd,
2740 unsigned int irqnum, unsigned long irqflags)
2741{
2742 int retval;
2743 struct usb_device *rhdev;
2744
2745 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->skip_phy_initialization) {
2746 struct usb_phy *phy = usb_get_phy_dev(hcd->self.sysdev, 0);
2747
2748 if (IS_ERR(phy)) {
2749 retval = PTR_ERR(phy);
2750 if (retval == -EPROBE_DEFER)
2751 return retval;
2752 } else {
2753 retval = usb_phy_init(phy);
2754 if (retval) {
2755 usb_put_phy(phy);
2756 return retval;
2757 }
2758 hcd->usb_phy = phy;
2759 hcd->remove_phy = 1;
2760 }
2761 }
2762
2763 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2764 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2765 if (IS_ERR(hcd->phy_roothub)) {
2766 retval = PTR_ERR(hcd->phy_roothub);
2767 goto err_phy_roothub_alloc;
2768 }
2769
2770 retval = usb_phy_roothub_init(hcd->phy_roothub);
2771 if (retval)
2772 goto err_phy_roothub_alloc;
2773
2774 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2775 if (retval)
2776 goto err_usb_phy_roothub_power_on;
2777 }
2778
2779 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2780
2781 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2782 if (authorized_default < 0 || authorized_default > 1) {
2783 if (hcd->wireless)
2784 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2785 else
2786 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2787 } else {
2788 if (authorized_default)
2789 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2790 else
2791 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2792 }
2793 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2794
2795 /* per default all interfaces are authorized */
2796 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2797
2798 /* HC is in reset state, but accessible. Now do the one-time init,
2799 * bottom up so that hcds can customize the root hubs before hub_wq
2800 * starts talking to them. (Note, bus id is assigned early too.)
2801 */
2802 retval = hcd_buffer_create(hcd);
2803 if (retval != 0) {
2804 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2805 goto err_create_buf;
2806 }
2807
2808 retval = usb_register_bus(&hcd->self);
2809 if (retval < 0)
2810 goto err_register_bus;
2811
2812 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2813 if (rhdev == NULL) {
2814 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2815 retval = -ENOMEM;
2816 goto err_allocate_root_hub;
2817 }
2818 mutex_lock(&usb_port_peer_mutex);
2819 hcd->self.root_hub = rhdev;
2820 mutex_unlock(&usb_port_peer_mutex);
2821
2822 switch (hcd->speed) {
2823 case HCD_USB11:
2824 rhdev->speed = USB_SPEED_FULL;
2825 break;
2826 case HCD_USB2:
2827 rhdev->speed = USB_SPEED_HIGH;
2828 break;
2829 case HCD_USB25:
2830 rhdev->speed = USB_SPEED_WIRELESS;
2831 break;
2832 case HCD_USB3:
2833 rhdev->speed = USB_SPEED_SUPER;
2834 break;
2835 case HCD_USB31:
2836 rhdev->speed = USB_SPEED_SUPER_PLUS;
2837 break;
2838 default:
2839 retval = -EINVAL;
2840 goto err_set_rh_speed;
2841 }
2842
2843 /* wakeup flag init defaults to "everything works" for root hubs,
2844 * but drivers can override it in reset() if needed, along with
2845 * recording the overall controller's system wakeup capability.
2846 */
2847 device_set_wakeup_capable(&rhdev->dev, 1);
2848
2849 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2850 * registered. But since the controller can die at any time,
2851 * let's initialize the flag before touching the hardware.
2852 */
2853 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2854
2855 /* "reset" is misnamed; its role is now one-time init. the controller
2856 * should already have been reset (and boot firmware kicked off etc).
2857 */
2858 if (hcd->driver->reset) {
2859 retval = hcd->driver->reset(hcd);
2860 if (retval < 0) {
2861 dev_err(hcd->self.controller, "can't setup: %d\n",
2862 retval);
2863 goto err_hcd_driver_setup;
2864 }
2865 }
2866 hcd->rh_pollable = 1;
2867
2868 /* NOTE: root hub and controller capabilities may not be the same */
2869 if (device_can_wakeup(hcd->self.controller)
2870 && device_can_wakeup(&hcd->self.root_hub->dev))
2871 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2872
2873 /* initialize tasklets */
2874 init_giveback_urb_bh(&hcd->high_prio_bh);
2875 init_giveback_urb_bh(&hcd->low_prio_bh);
2876
2877 /* enable irqs just before we start the controller,
2878 * if the BIOS provides legacy PCI irqs.
2879 */
2880 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2881 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2882 if (retval)
2883 goto err_request_irq;
2884 }
2885
2886 hcd->state = HC_STATE_RUNNING;
2887 retval = hcd->driver->start(hcd);
2888 if (retval < 0) {
2889 dev_err(hcd->self.controller, "startup error %d\n", retval);
2890 goto err_hcd_driver_start;
2891 }
2892
2893 /* starting here, usbcore will pay attention to this root hub */
2894 retval = register_root_hub(hcd);
2895 if (retval != 0)
2896 goto err_register_root_hub;
2897
2898 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2899 if (retval < 0) {
2900 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2901 retval);
2902 goto error_create_attr_group;
2903 }
2904 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2905 usb_hcd_poll_rh_status(hcd);
2906
2907 return retval;
2908
2909error_create_attr_group:
2910 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2911 if (HC_IS_RUNNING(hcd->state))
2912 hcd->state = HC_STATE_QUIESCING;
2913 spin_lock_irq(&hcd_root_hub_lock);
2914 hcd->rh_registered = 0;
2915 spin_unlock_irq(&hcd_root_hub_lock);
2916
2917#ifdef CONFIG_PM
2918 cancel_work_sync(&hcd->wakeup_work);
2919#endif
2920 mutex_lock(&usb_bus_idr_lock);
2921 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2922 mutex_unlock(&usb_bus_idr_lock);
2923err_register_root_hub:
2924 hcd->rh_pollable = 0;
2925 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2926 del_timer_sync(&hcd->rh_timer);
2927 hcd->driver->stop(hcd);
2928 hcd->state = HC_STATE_HALT;
2929 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2930 del_timer_sync(&hcd->rh_timer);
2931err_hcd_driver_start:
2932 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2933 free_irq(irqnum, hcd);
2934err_request_irq:
2935err_hcd_driver_setup:
2936err_set_rh_speed:
2937 usb_put_invalidate_rhdev(hcd);
2938err_allocate_root_hub:
2939 usb_deregister_bus(&hcd->self);
2940err_register_bus:
2941 hcd_buffer_destroy(hcd);
2942err_create_buf:
2943 usb_phy_roothub_power_off(hcd->phy_roothub);
2944err_usb_phy_roothub_power_on:
2945 usb_phy_roothub_exit(hcd->phy_roothub);
2946err_phy_roothub_alloc:
2947 if (hcd->remove_phy && hcd->usb_phy) {
2948 usb_phy_shutdown(hcd->usb_phy);
2949 usb_put_phy(hcd->usb_phy);
2950 hcd->usb_phy = NULL;
2951 }
2952 return retval;
2953}
2954EXPORT_SYMBOL_GPL(usb_add_hcd);
2955
2956/**
2957 * usb_remove_hcd - shutdown processing for generic HCDs
2958 * @hcd: the usb_hcd structure to remove
2959 * Context: !in_interrupt()
2960 *
2961 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2962 * invoking the HCD's stop() method.
2963 */
2964void usb_remove_hcd(struct usb_hcd *hcd)
2965{
2966 struct usb_device *rhdev = hcd->self.root_hub;
2967
2968 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2969
2970 usb_get_dev(rhdev);
2971 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2972
2973 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2974 if (HC_IS_RUNNING (hcd->state))
2975 hcd->state = HC_STATE_QUIESCING;
2976
2977 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2978 spin_lock_irq (&hcd_root_hub_lock);
2979 hcd->rh_registered = 0;
2980 spin_unlock_irq (&hcd_root_hub_lock);
2981
2982#ifdef CONFIG_PM
2983 cancel_work_sync(&hcd->wakeup_work);
2984#endif
2985
2986 mutex_lock(&usb_bus_idr_lock);
2987 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2988 mutex_unlock(&usb_bus_idr_lock);
2989
2990 /*
2991 * tasklet_kill() isn't needed here because:
2992 * - driver's disconnect() called from usb_disconnect() should
2993 * make sure its URBs are completed during the disconnect()
2994 * callback
2995 *
2996 * - it is too late to run complete() here since driver may have
2997 * been removed already now
2998 */
2999
3000 /* Prevent any more root-hub status calls from the timer.
3001 * The HCD might still restart the timer (if a port status change
3002 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3003 * the hub_status_data() callback.
3004 */
3005 hcd->rh_pollable = 0;
3006 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3007 del_timer_sync(&hcd->rh_timer);
3008
3009 hcd->driver->stop(hcd);
3010 hcd->state = HC_STATE_HALT;
3011
3012 /* In case the HCD restarted the timer, stop it again. */
3013 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3014 del_timer_sync(&hcd->rh_timer);
3015
3016 if (usb_hcd_is_primary_hcd(hcd)) {
3017 if (hcd->irq > 0)
3018 free_irq(hcd->irq, hcd);
3019 }
3020
3021 usb_deregister_bus(&hcd->self);
3022 hcd_buffer_destroy(hcd);
3023
3024 usb_phy_roothub_power_off(hcd->phy_roothub);
3025 usb_phy_roothub_exit(hcd->phy_roothub);
3026
3027 if (hcd->remove_phy && hcd->usb_phy) {
3028 usb_phy_shutdown(hcd->usb_phy);
3029 usb_put_phy(hcd->usb_phy);
3030 hcd->usb_phy = NULL;
3031 }
3032
3033 usb_put_invalidate_rhdev(hcd);
3034 hcd->flags = 0;
3035}
3036EXPORT_SYMBOL_GPL(usb_remove_hcd);
3037
3038void
3039usb_hcd_platform_shutdown(struct platform_device *dev)
3040{
3041 struct usb_hcd *hcd = platform_get_drvdata(dev);
3042
3043 if (hcd->driver->shutdown)
3044 hcd->driver->shutdown(hcd);
3045}
3046EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3047
3048/*-------------------------------------------------------------------------*/
3049
3050#if IS_ENABLED(CONFIG_USB_MON)
3051
3052const struct usb_mon_operations *mon_ops;
3053
3054/*
3055 * The registration is unlocked.
3056 * We do it this way because we do not want to lock in hot paths.
3057 *
3058 * Notice that the code is minimally error-proof. Because usbmon needs
3059 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3060 */
3061
3062int usb_mon_register(const struct usb_mon_operations *ops)
3063{
3064
3065 if (mon_ops)
3066 return -EBUSY;
3067
3068 mon_ops = ops;
3069 mb();
3070 return 0;
3071}
3072EXPORT_SYMBOL_GPL (usb_mon_register);
3073
3074void usb_mon_deregister (void)
3075{
3076
3077 if (mon_ops == NULL) {
3078 printk(KERN_ERR "USB: monitor was not registered\n");
3079 return;
3080 }
3081 mon_ops = NULL;
3082 mb();
3083}
3084EXPORT_SYMBOL_GPL (usb_mon_deregister);
3085
3086#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */