Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *    Disk Array driver for HP Smart Array SAS controllers
   3 *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
 
 
   4 *
   5 *    This program is free software; you can redistribute it and/or modify
   6 *    it under the terms of the GNU General Public License as published by
   7 *    the Free Software Foundation; version 2 of the License.
   8 *
   9 *    This program is distributed in the hope that it will be useful,
  10 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  12 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
  13 *
  14 *    You should have received a copy of the GNU General Public License
  15 *    along with this program; if not, write to the Free Software
  16 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17 *
  18 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
  19 *
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/interrupt.h>
  24#include <linux/types.h>
  25#include <linux/pci.h>
 
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/delay.h>
  29#include <linux/fs.h>
  30#include <linux/timer.h>
  31#include <linux/seq_file.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/compat.h>
  35#include <linux/blktrace_api.h>
  36#include <linux/uaccess.h>
  37#include <linux/io.h>
  38#include <linux/dma-mapping.h>
  39#include <linux/completion.h>
  40#include <linux/moduleparam.h>
  41#include <scsi/scsi.h>
  42#include <scsi/scsi_cmnd.h>
  43#include <scsi/scsi_device.h>
  44#include <scsi/scsi_host.h>
  45#include <scsi/scsi_tcq.h>
 
 
 
  46#include <linux/cciss_ioctl.h>
  47#include <linux/string.h>
  48#include <linux/bitmap.h>
  49#include <linux/atomic.h>
  50#include <linux/kthread.h>
 
 
 
 
  51#include "hpsa_cmd.h"
  52#include "hpsa.h"
  53
  54/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
  55#define HPSA_DRIVER_VERSION "2.0.2-1"
 
 
 
  56#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
 
  57
  58/* How long to wait (in milliseconds) for board to go into simple mode */
  59#define MAX_CONFIG_WAIT 30000
 
 
 
  60#define MAX_IOCTL_CONFIG_WAIT 1000
  61
  62/*define how many times we will try a command because of bus resets */
  63#define MAX_CMD_RETRIES 3
  64
  65/* Embedded module documentation macros - see modules.h */
  66MODULE_AUTHOR("Hewlett-Packard Company");
  67MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
  68	HPSA_DRIVER_VERSION);
  69MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
  70MODULE_VERSION(HPSA_DRIVER_VERSION);
  71MODULE_LICENSE("GPL");
 
  72
  73static int hpsa_allow_any;
  74module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
  75MODULE_PARM_DESC(hpsa_allow_any,
  76		"Allow hpsa driver to access unknown HP Smart Array hardware");
  77static int hpsa_simple_mode;
  78module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
  79MODULE_PARM_DESC(hpsa_simple_mode,
  80	"Use 'simple mode' rather than 'performant mode'");
  81
  82/* define the PCI info for the cards we can control */
  83static const struct pci_device_id hpsa_pci_device_id[] = {
  84	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
  85	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
  86	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
  87	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
  88	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
  89	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
  90	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
  91	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
  92	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
  93	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
  94	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
  95	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
  96	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
  97	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
  98	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  99	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
 100		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
 
 
 101	{0,}
 102};
 103
 104MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
 105
 106/*  board_id = Subsystem Device ID & Vendor ID
 107 *  product = Marketing Name for the board
 108 *  access = Address of the struct of function pointers
 109 */
 110static struct board_type products[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111	{0x3241103C, "Smart Array P212", &SA5_access},
 112	{0x3243103C, "Smart Array P410", &SA5_access},
 113	{0x3245103C, "Smart Array P410i", &SA5_access},
 114	{0x3247103C, "Smart Array P411", &SA5_access},
 115	{0x3249103C, "Smart Array P812", &SA5_access},
 116	{0x324a103C, "Smart Array P712m", &SA5_access},
 117	{0x324b103C, "Smart Array P711m", &SA5_access},
 118	{0x3350103C, "Smart Array", &SA5_access},
 119	{0x3351103C, "Smart Array", &SA5_access},
 120	{0x3352103C, "Smart Array", &SA5_access},
 121	{0x3353103C, "Smart Array", &SA5_access},
 122	{0x3354103C, "Smart Array", &SA5_access},
 123	{0x3355103C, "Smart Array", &SA5_access},
 124	{0x3356103C, "Smart Array", &SA5_access},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
 126};
 127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 128static int number_of_controllers;
 129
 130static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
 131static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
 132static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
 133static void start_io(struct ctlr_info *h);
 134
 135#ifdef CONFIG_COMPAT
 136static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
 
 137#endif
 138
 139static void cmd_free(struct ctlr_info *h, struct CommandList *c);
 140static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
 141static struct CommandList *cmd_alloc(struct ctlr_info *h);
 142static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
 143static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
 144	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
 
 
 145	int cmd_type);
 
 
 
 146
 147static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
 148static void hpsa_scan_start(struct Scsi_Host *);
 149static int hpsa_scan_finished(struct Scsi_Host *sh,
 150	unsigned long elapsed_time);
 151static int hpsa_change_queue_depth(struct scsi_device *sdev,
 152	int qdepth, int reason);
 153
 154static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
 155static int hpsa_slave_alloc(struct scsi_device *sdev);
 
 156static void hpsa_slave_destroy(struct scsi_device *sdev);
 157
 158static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
 159static int check_for_unit_attention(struct ctlr_info *h,
 160	struct CommandList *c);
 161static void check_ioctl_unit_attention(struct ctlr_info *h,
 162	struct CommandList *c);
 163/* performant mode helper functions */
 164static void calc_bucket_map(int *bucket, int num_buckets,
 165	int nsgs, int *bucket_map);
 166static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
 167static inline u32 next_command(struct ctlr_info *h);
 168static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
 169	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
 170	u64 *cfg_offset);
 171static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
 172	unsigned long *memory_bar);
 173static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
 174static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
 175	void __iomem *vaddr, int wait_for_ready);
 
 
 
 
 
 
 
 176#define BOARD_NOT_READY 0
 177#define BOARD_READY 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 178
 179static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
 180{
 181	unsigned long *priv = shost_priv(sdev->host);
 182	return (struct ctlr_info *) *priv;
 183}
 184
 185static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
 186{
 187	unsigned long *priv = shost_priv(sh);
 188	return (struct ctlr_info *) *priv;
 189}
 190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191static int check_for_unit_attention(struct ctlr_info *h,
 192	struct CommandList *c)
 193{
 194	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
 
 
 
 
 
 
 
 
 
 
 195		return 0;
 196
 197	switch (c->err_info->SenseInfo[12]) {
 198	case STATE_CHANGED:
 199		dev_warn(&h->pdev->dev, "hpsa%d: a state change "
 200			"detected, command retried\n", h->ctlr);
 
 201		break;
 202	case LUN_FAILED:
 203		dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
 204			"detected, action required\n", h->ctlr);
 205		break;
 206	case REPORT_LUNS_CHANGED:
 207		dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
 208			"changed, action required\n", h->ctlr);
 209	/*
 210	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
 
 211	 */
 212		break;
 213	case POWER_OR_RESET:
 214		dev_warn(&h->pdev->dev, "hpsa%d: a power on "
 215			"or device reset detected\n", h->ctlr);
 
 216		break;
 217	case UNIT_ATTENTION_CLEARED:
 218		dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
 219		    "cleared by another initiator\n", h->ctlr);
 
 220		break;
 221	default:
 222		dev_warn(&h->pdev->dev, "hpsa%d: unknown "
 223			"unit attention detected\n", h->ctlr);
 
 224		break;
 225	}
 226	return 1;
 227}
 228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 229static ssize_t host_store_rescan(struct device *dev,
 230				 struct device_attribute *attr,
 231				 const char *buf, size_t count)
 232{
 233	struct ctlr_info *h;
 234	struct Scsi_Host *shost = class_to_shost(dev);
 235	h = shost_to_hba(shost);
 236	hpsa_scan_start(h->scsi_host);
 237	return count;
 238}
 239
 240static ssize_t host_show_firmware_revision(struct device *dev,
 241	     struct device_attribute *attr, char *buf)
 242{
 243	struct ctlr_info *h;
 244	struct Scsi_Host *shost = class_to_shost(dev);
 245	unsigned char *fwrev;
 246
 247	h = shost_to_hba(shost);
 248	if (!h->hba_inquiry_data)
 249		return 0;
 250	fwrev = &h->hba_inquiry_data[32];
 251	return snprintf(buf, 20, "%c%c%c%c\n",
 252		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
 253}
 254
 255static ssize_t host_show_commands_outstanding(struct device *dev,
 256	     struct device_attribute *attr, char *buf)
 257{
 258	struct Scsi_Host *shost = class_to_shost(dev);
 259	struct ctlr_info *h = shost_to_hba(shost);
 260
 261	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
 
 262}
 263
 264static ssize_t host_show_transport_mode(struct device *dev,
 265	struct device_attribute *attr, char *buf)
 266{
 267	struct ctlr_info *h;
 268	struct Scsi_Host *shost = class_to_shost(dev);
 269
 270	h = shost_to_hba(shost);
 271	return snprintf(buf, 20, "%s\n",
 272		h->transMethod & CFGTBL_Trans_Performant ?
 273			"performant" : "simple");
 274}
 275
 
 
 
 
 
 
 
 
 
 
 
 276/* List of controllers which cannot be hard reset on kexec with reset_devices */
 277static u32 unresettable_controller[] = {
 278	0x324a103C, /* Smart Array P712m */
 279	0x324b103C, /* SmartArray P711m */
 280	0x3223103C, /* Smart Array P800 */
 281	0x3234103C, /* Smart Array P400 */
 282	0x3235103C, /* Smart Array P400i */
 283	0x3211103C, /* Smart Array E200i */
 284	0x3212103C, /* Smart Array E200 */
 285	0x3213103C, /* Smart Array E200i */
 286	0x3214103C, /* Smart Array E200i */
 287	0x3215103C, /* Smart Array E200i */
 288	0x3237103C, /* Smart Array E500 */
 289	0x323D103C, /* Smart Array P700m */
 
 290	0x409C0E11, /* Smart Array 6400 */
 291	0x409D0E11, /* Smart Array 6400 EM */
 
 
 
 
 
 
 292};
 293
 294/* List of controllers which cannot even be soft reset */
 295static u32 soft_unresettable_controller[] = {
 
 
 
 
 
 
 
 296	/* Exclude 640x boards.  These are two pci devices in one slot
 297	 * which share a battery backed cache module.  One controls the
 298	 * cache, the other accesses the cache through the one that controls
 299	 * it.  If we reset the one controlling the cache, the other will
 300	 * likely not be happy.  Just forbid resetting this conjoined mess.
 301	 * The 640x isn't really supported by hpsa anyway.
 302	 */
 303	0x409C0E11, /* Smart Array 6400 */
 304	0x409D0E11, /* Smart Array 6400 EM */
 305};
 306
 307static int ctlr_is_hard_resettable(u32 board_id)
 308{
 309	int i;
 310
 311	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
 312		if (unresettable_controller[i] == board_id)
 313			return 0;
 314	return 1;
 315}
 316
 317static int ctlr_is_soft_resettable(u32 board_id)
 318{
 319	int i;
 
 
 320
 321	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
 322		if (soft_unresettable_controller[i] == board_id)
 323			return 0;
 324	return 1;
 325}
 326
 327static int ctlr_is_resettable(u32 board_id)
 328{
 329	return ctlr_is_hard_resettable(board_id) ||
 330		ctlr_is_soft_resettable(board_id);
 331}
 332
 333static ssize_t host_show_resettable(struct device *dev,
 334	struct device_attribute *attr, char *buf)
 335{
 336	struct ctlr_info *h;
 337	struct Scsi_Host *shost = class_to_shost(dev);
 338
 339	h = shost_to_hba(shost);
 340	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
 341}
 342
 343static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
 344{
 345	return (scsi3addr[3] & 0xC0) == 0x40;
 346}
 347
 348static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
 349	"UNKNOWN"
 350};
 351#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 352
 353static ssize_t raid_level_show(struct device *dev,
 354	     struct device_attribute *attr, char *buf)
 355{
 356	ssize_t l = 0;
 357	unsigned char rlevel;
 358	struct ctlr_info *h;
 359	struct scsi_device *sdev;
 360	struct hpsa_scsi_dev_t *hdev;
 361	unsigned long flags;
 362
 363	sdev = to_scsi_device(dev);
 364	h = sdev_to_hba(sdev);
 365	spin_lock_irqsave(&h->lock, flags);
 366	hdev = sdev->hostdata;
 367	if (!hdev) {
 368		spin_unlock_irqrestore(&h->lock, flags);
 369		return -ENODEV;
 370	}
 371
 372	/* Is this even a logical drive? */
 373	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
 374		spin_unlock_irqrestore(&h->lock, flags);
 375		l = snprintf(buf, PAGE_SIZE, "N/A\n");
 376		return l;
 377	}
 378
 379	rlevel = hdev->raid_level;
 380	spin_unlock_irqrestore(&h->lock, flags);
 381	if (rlevel > RAID_UNKNOWN)
 382		rlevel = RAID_UNKNOWN;
 383	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
 384	return l;
 385}
 386
 387static ssize_t lunid_show(struct device *dev,
 388	     struct device_attribute *attr, char *buf)
 389{
 390	struct ctlr_info *h;
 391	struct scsi_device *sdev;
 392	struct hpsa_scsi_dev_t *hdev;
 393	unsigned long flags;
 394	unsigned char lunid[8];
 395
 396	sdev = to_scsi_device(dev);
 397	h = sdev_to_hba(sdev);
 398	spin_lock_irqsave(&h->lock, flags);
 399	hdev = sdev->hostdata;
 400	if (!hdev) {
 401		spin_unlock_irqrestore(&h->lock, flags);
 402		return -ENODEV;
 403	}
 404	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
 405	spin_unlock_irqrestore(&h->lock, flags);
 406	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
 407		lunid[0], lunid[1], lunid[2], lunid[3],
 408		lunid[4], lunid[5], lunid[6], lunid[7]);
 409}
 410
 411static ssize_t unique_id_show(struct device *dev,
 412	     struct device_attribute *attr, char *buf)
 413{
 414	struct ctlr_info *h;
 415	struct scsi_device *sdev;
 416	struct hpsa_scsi_dev_t *hdev;
 417	unsigned long flags;
 418	unsigned char sn[16];
 419
 420	sdev = to_scsi_device(dev);
 421	h = sdev_to_hba(sdev);
 422	spin_lock_irqsave(&h->lock, flags);
 423	hdev = sdev->hostdata;
 424	if (!hdev) {
 425		spin_unlock_irqrestore(&h->lock, flags);
 426		return -ENODEV;
 427	}
 428	memcpy(sn, hdev->device_id, sizeof(sn));
 429	spin_unlock_irqrestore(&h->lock, flags);
 430	return snprintf(buf, 16 * 2 + 2,
 431			"%02X%02X%02X%02X%02X%02X%02X%02X"
 432			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
 433			sn[0], sn[1], sn[2], sn[3],
 434			sn[4], sn[5], sn[6], sn[7],
 435			sn[8], sn[9], sn[10], sn[11],
 436			sn[12], sn[13], sn[14], sn[15]);
 437}
 438
 439static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
 440static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
 441static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 442static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
 
 
 
 
 
 
 
 
 
 443static DEVICE_ATTR(firmware_revision, S_IRUGO,
 444	host_show_firmware_revision, NULL);
 445static DEVICE_ATTR(commands_outstanding, S_IRUGO,
 446	host_show_commands_outstanding, NULL);
 447static DEVICE_ATTR(transport_mode, S_IRUGO,
 448	host_show_transport_mode, NULL);
 449static DEVICE_ATTR(resettable, S_IRUGO,
 450	host_show_resettable, NULL);
 
 
 
 
 
 
 451
 452static struct device_attribute *hpsa_sdev_attrs[] = {
 453	&dev_attr_raid_level,
 454	&dev_attr_lunid,
 455	&dev_attr_unique_id,
 
 
 
 456	NULL,
 457};
 458
 459static struct device_attribute *hpsa_shost_attrs[] = {
 460	&dev_attr_rescan,
 461	&dev_attr_firmware_revision,
 462	&dev_attr_commands_outstanding,
 463	&dev_attr_transport_mode,
 464	&dev_attr_resettable,
 
 
 
 
 
 465	NULL,
 466};
 467
 
 
 
 468static struct scsi_host_template hpsa_driver_template = {
 469	.module			= THIS_MODULE,
 470	.name			= "hpsa",
 471	.proc_name		= "hpsa",
 472	.queuecommand		= hpsa_scsi_queue_command,
 473	.scan_start		= hpsa_scan_start,
 474	.scan_finished		= hpsa_scan_finished,
 475	.change_queue_depth	= hpsa_change_queue_depth,
 476	.this_id		= -1,
 477	.use_clustering		= ENABLE_CLUSTERING,
 478	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
 479	.ioctl			= hpsa_ioctl,
 480	.slave_alloc		= hpsa_slave_alloc,
 
 481	.slave_destroy		= hpsa_slave_destroy,
 482#ifdef CONFIG_COMPAT
 483	.compat_ioctl		= hpsa_compat_ioctl,
 484#endif
 485	.sdev_attrs = hpsa_sdev_attrs,
 486	.shost_attrs = hpsa_shost_attrs,
 
 
 487};
 488
 489
 490/* Enqueuing and dequeuing functions for cmdlists. */
 491static inline void addQ(struct list_head *list, struct CommandList *c)
 492{
 493	list_add_tail(&c->list, list);
 494}
 495
 496static inline u32 next_command(struct ctlr_info *h)
 497{
 498	u32 a;
 
 
 
 
 499
 500	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
 501		return h->access.command_completed(h);
 502
 503	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
 504		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
 505		(h->reply_pool_head)++;
 506		h->commands_outstanding--;
 507	} else {
 508		a = FIFO_EMPTY;
 509	}
 510	/* Check for wraparound */
 511	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
 512		h->reply_pool_head = h->reply_pool;
 513		h->reply_pool_wraparound ^= 1;
 514	}
 515	return a;
 516}
 517
 518/* set_performant_mode: Modify the tag for cciss performant
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 519 * set bit 0 for pull model, bits 3-1 for block fetch
 520 * register number
 521 */
 522static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
 
 
 523{
 524	if (likely(h->transMethod & CFGTBL_Trans_Performant))
 525		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
 
 
 
 
 526}
 527
 528static void enqueue_cmd_and_start_io(struct ctlr_info *h,
 529	struct CommandList *c)
 
 530{
 531	unsigned long flags;
 532
 533	set_performant_mode(h, c);
 534	spin_lock_irqsave(&h->lock, flags);
 535	addQ(&h->reqQ, c);
 536	h->Qdepth++;
 537	start_io(h);
 538	spin_unlock_irqrestore(&h->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539}
 540
 541static inline void removeQ(struct CommandList *c)
 542{
 543	if (WARN_ON(list_empty(&c->list)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 544		return;
 545	list_del_init(&c->list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546}
 547
 548static inline int is_hba_lunid(unsigned char scsi3addr[])
 549{
 550	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
 551}
 552
 553static inline int is_scsi_rev_5(struct ctlr_info *h)
 554{
 555	if (!h->hba_inquiry_data)
 556		return 0;
 557	if ((h->hba_inquiry_data[2] & 0x07) == 5)
 558		return 1;
 559	return 0;
 560}
 561
 562static int hpsa_find_target_lun(struct ctlr_info *h,
 563	unsigned char scsi3addr[], int bus, int *target, int *lun)
 564{
 565	/* finds an unused bus, target, lun for a new physical device
 566	 * assumes h->devlock is held
 567	 */
 568	int i, found = 0;
 569	DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
 570
 571	memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
 572
 573	for (i = 0; i < h->ndevices; i++) {
 574		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
 575			set_bit(h->dev[i]->target, lun_taken);
 576	}
 577
 578	for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
 579		if (!test_bit(i, lun_taken)) {
 580			/* *bus = 1; */
 581			*target = i;
 582			*lun = 0;
 583			found = 1;
 584			break;
 585		}
 586	}
 587	return !found;
 588}
 589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 590/* Add an entry into h->dev[] array. */
 591static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
 592		struct hpsa_scsi_dev_t *device,
 593		struct hpsa_scsi_dev_t *added[], int *nadded)
 594{
 595	/* assumes h->devlock is held */
 596	int n = h->ndevices;
 597	int i;
 598	unsigned char addr1[8], addr2[8];
 599	struct hpsa_scsi_dev_t *sd;
 600
 601	if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
 602		dev_err(&h->pdev->dev, "too many devices, some will be "
 603			"inaccessible.\n");
 604		return -1;
 605	}
 606
 607	/* physical devices do not have lun or target assigned until now. */
 608	if (device->lun != -1)
 609		/* Logical device, lun is already assigned. */
 610		goto lun_assigned;
 611
 612	/* If this device a non-zero lun of a multi-lun device
 613	 * byte 4 of the 8-byte LUN addr will contain the logical
 614	 * unit no, zero otherise.
 615	 */
 616	if (device->scsi3addr[4] == 0) {
 617		/* This is not a non-zero lun of a multi-lun device */
 618		if (hpsa_find_target_lun(h, device->scsi3addr,
 619			device->bus, &device->target, &device->lun) != 0)
 620			return -1;
 621		goto lun_assigned;
 622	}
 623
 624	/* This is a non-zero lun of a multi-lun device.
 625	 * Search through our list and find the device which
 626	 * has the same 8 byte LUN address, excepting byte 4.
 627	 * Assign the same bus and target for this new LUN.
 628	 * Use the logical unit number from the firmware.
 629	 */
 630	memcpy(addr1, device->scsi3addr, 8);
 631	addr1[4] = 0;
 
 632	for (i = 0; i < n; i++) {
 633		sd = h->dev[i];
 634		memcpy(addr2, sd->scsi3addr, 8);
 635		addr2[4] = 0;
 636		/* differ only in byte 4? */
 
 637		if (memcmp(addr1, addr2, 8) == 0) {
 638			device->bus = sd->bus;
 639			device->target = sd->target;
 640			device->lun = device->scsi3addr[4];
 641			break;
 642		}
 643	}
 644	if (device->lun == -1) {
 645		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
 646			" suspect firmware bug or unsupported hardware "
 647			"configuration.\n");
 648			return -1;
 649	}
 650
 651lun_assigned:
 652
 653	h->dev[n] = device;
 654	h->ndevices++;
 655	added[*nadded] = device;
 656	(*nadded)++;
 657
 658	/* initially, (before registering with scsi layer) we don't
 659	 * know our hostno and we don't want to print anything first
 660	 * time anyway (the scsi layer's inquiries will show that info)
 661	 */
 662	/* if (hostno != -1) */
 663		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
 664			scsi_device_type(device->devtype), hostno,
 665			device->bus, device->target, device->lun);
 666	return 0;
 667}
 668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 669/* Replace an entry from h->dev[] array. */
 670static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
 671	int entry, struct hpsa_scsi_dev_t *new_entry,
 672	struct hpsa_scsi_dev_t *added[], int *nadded,
 673	struct hpsa_scsi_dev_t *removed[], int *nremoved)
 674{
 675	/* assumes h->devlock is held */
 676	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
 677	removed[*nremoved] = h->dev[entry];
 678	(*nremoved)++;
 679
 680	/*
 681	 * New physical devices won't have target/lun assigned yet
 682	 * so we need to preserve the values in the slot we are replacing.
 683	 */
 684	if (new_entry->target == -1) {
 685		new_entry->target = h->dev[entry]->target;
 686		new_entry->lun = h->dev[entry]->lun;
 687	}
 688
 689	h->dev[entry] = new_entry;
 690	added[*nadded] = new_entry;
 691	(*nadded)++;
 692	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
 693		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
 694			new_entry->target, new_entry->lun);
 695}
 696
 697/* Remove an entry from h->dev[] array. */
 698static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
 699	struct hpsa_scsi_dev_t *removed[], int *nremoved)
 700{
 701	/* assumes h->devlock is held */
 702	int i;
 703	struct hpsa_scsi_dev_t *sd;
 704
 705	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
 706
 707	sd = h->dev[entry];
 708	removed[*nremoved] = h->dev[entry];
 709	(*nremoved)++;
 710
 711	for (i = entry; i < h->ndevices-1; i++)
 712		h->dev[i] = h->dev[i+1];
 713	h->ndevices--;
 714	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
 715		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
 716		sd->lun);
 717}
 718
 719#define SCSI3ADDR_EQ(a, b) ( \
 720	(a)[7] == (b)[7] && \
 721	(a)[6] == (b)[6] && \
 722	(a)[5] == (b)[5] && \
 723	(a)[4] == (b)[4] && \
 724	(a)[3] == (b)[3] && \
 725	(a)[2] == (b)[2] && \
 726	(a)[1] == (b)[1] && \
 727	(a)[0] == (b)[0])
 728
 729static void fixup_botched_add(struct ctlr_info *h,
 730	struct hpsa_scsi_dev_t *added)
 731{
 732	/* called when scsi_add_device fails in order to re-adjust
 733	 * h->dev[] to match the mid layer's view.
 734	 */
 735	unsigned long flags;
 736	int i, j;
 737
 738	spin_lock_irqsave(&h->lock, flags);
 739	for (i = 0; i < h->ndevices; i++) {
 740		if (h->dev[i] == added) {
 741			for (j = i; j < h->ndevices-1; j++)
 742				h->dev[j] = h->dev[j+1];
 743			h->ndevices--;
 744			break;
 745		}
 746	}
 747	spin_unlock_irqrestore(&h->lock, flags);
 748	kfree(added);
 749}
 750
 751static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
 752	struct hpsa_scsi_dev_t *dev2)
 753{
 754	/* we compare everything except lun and target as these
 755	 * are not yet assigned.  Compare parts likely
 756	 * to differ first
 757	 */
 758	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
 759		sizeof(dev1->scsi3addr)) != 0)
 760		return 0;
 761	if (memcmp(dev1->device_id, dev2->device_id,
 762		sizeof(dev1->device_id)) != 0)
 763		return 0;
 764	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
 765		return 0;
 766	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
 767		return 0;
 768	if (dev1->devtype != dev2->devtype)
 769		return 0;
 770	if (dev1->bus != dev2->bus)
 771		return 0;
 772	return 1;
 773}
 774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 775/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
 776 * and return needle location in *index.  If scsi3addr matches, but not
 777 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
 778 * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
 
 
 
 779 */
 780static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
 781	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
 782	int *index)
 783{
 784	int i;
 785#define DEVICE_NOT_FOUND 0
 786#define DEVICE_CHANGED 1
 787#define DEVICE_SAME 2
 
 
 
 
 788	for (i = 0; i < haystack_size; i++) {
 789		if (haystack[i] == NULL) /* previously removed. */
 790			continue;
 791		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
 792			*index = i;
 793			if (device_is_the_same(needle, haystack[i]))
 
 
 794				return DEVICE_SAME;
 795			else
 
 
 
 796				return DEVICE_CHANGED;
 
 797		}
 798	}
 799	*index = -1;
 800	return DEVICE_NOT_FOUND;
 801}
 802
 803static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 804	struct hpsa_scsi_dev_t *sd[], int nsds)
 805{
 806	/* sd contains scsi3 addresses and devtypes, and inquiry
 807	 * data.  This function takes what's in sd to be the current
 808	 * reality and updates h->dev[] to reflect that reality.
 809	 */
 810	int i, entry, device_change, changes = 0;
 811	struct hpsa_scsi_dev_t *csd;
 812	unsigned long flags;
 813	struct hpsa_scsi_dev_t **added, **removed;
 814	int nadded, nremoved;
 815	struct Scsi_Host *sh = NULL;
 816
 817	added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
 818		GFP_KERNEL);
 819	removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
 820		GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 821
 822	if (!added || !removed) {
 823		dev_warn(&h->pdev->dev, "out of memory in "
 824			"adjust_hpsa_scsi_table\n");
 825		goto free_and_out;
 826	}
 827
 828	spin_lock_irqsave(&h->devlock, flags);
 829
 830	/* find any devices in h->dev[] that are not in
 831	 * sd[] and remove them from h->dev[], and for any
 832	 * devices which have changed, remove the old device
 833	 * info and add the new device info.
 
 
 834	 */
 835	i = 0;
 836	nremoved = 0;
 837	nadded = 0;
 838	while (i < h->ndevices) {
 839		csd = h->dev[i];
 840		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
 841		if (device_change == DEVICE_NOT_FOUND) {
 842			changes++;
 843			hpsa_scsi_remove_entry(h, hostno, i,
 844				removed, &nremoved);
 845			continue; /* remove ^^^, hence i not incremented */
 846		} else if (device_change == DEVICE_CHANGED) {
 847			changes++;
 848			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
 849				added, &nadded, removed, &nremoved);
 850			/* Set it to NULL to prevent it from being freed
 851			 * at the bottom of hpsa_update_scsi_devices()
 852			 */
 853			sd[entry] = NULL;
 
 
 854		}
 855		i++;
 856	}
 857
 858	/* Now, make sure every device listed in sd[] is also
 859	 * listed in h->dev[], adding them if they aren't found
 860	 */
 861
 862	for (i = 0; i < nsds; i++) {
 863		if (!sd[i]) /* if already added above. */
 864			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 865		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
 866					h->ndevices, &entry);
 867		if (device_change == DEVICE_NOT_FOUND) {
 868			changes++;
 869			if (hpsa_scsi_add_entry(h, hostno, sd[i],
 870				added, &nadded) != 0)
 871				break;
 872			sd[i] = NULL; /* prevent from being freed later. */
 873		} else if (device_change == DEVICE_CHANGED) {
 874			/* should never happen... */
 875			changes++;
 876			dev_warn(&h->pdev->dev,
 877				"device unexpectedly changed.\n");
 878			/* but if it does happen, we just ignore that device */
 879		}
 880	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 881	spin_unlock_irqrestore(&h->devlock, flags);
 882
 
 
 
 
 
 
 
 
 
 
 
 883	/* Don't notify scsi mid layer of any changes the first time through
 884	 * (or if there are no changes) scsi_scan_host will do it later the
 885	 * first time through.
 886	 */
 887	if (hostno == -1 || !changes)
 888		goto free_and_out;
 889
 890	sh = h->scsi_host;
 891	/* Notify scsi mid layer of any removed devices */
 892	for (i = 0; i < nremoved; i++) {
 893		struct scsi_device *sdev =
 894			scsi_device_lookup(sh, removed[i]->bus,
 895				removed[i]->target, removed[i]->lun);
 896		if (sdev != NULL) {
 897			scsi_remove_device(sdev);
 898			scsi_device_put(sdev);
 899		} else {
 900			/* We don't expect to get here.
 901			 * future cmds to this device will get selection
 902			 * timeout as if the device was gone.
 903			 */
 904			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
 905				" for removal.", hostno, removed[i]->bus,
 906				removed[i]->target, removed[i]->lun);
 907		}
 908		kfree(removed[i]);
 909		removed[i] = NULL;
 910	}
 911
 912	/* Notify scsi mid layer of any added devices */
 913	for (i = 0; i < nadded; i++) {
 914		if (scsi_add_device(sh, added[i]->bus,
 915			added[i]->target, added[i]->lun) == 0)
 
 
 
 916			continue;
 917		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
 918			"device not added.\n", hostno, added[i]->bus,
 919			added[i]->target, added[i]->lun);
 
 
 920		/* now we have to remove it from h->dev,
 921		 * since it didn't get added to scsi mid layer
 922		 */
 923		fixup_botched_add(h, added[i]);
 
 924	}
 925
 926free_and_out:
 927	kfree(added);
 928	kfree(removed);
 929}
 930
 931/*
 932 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
 933 * Assume's h->devlock is held.
 934 */
 935static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
 936	int bus, int target, int lun)
 937{
 938	int i;
 939	struct hpsa_scsi_dev_t *sd;
 940
 941	for (i = 0; i < h->ndevices; i++) {
 942		sd = h->dev[i];
 943		if (sd->bus == bus && sd->target == target && sd->lun == lun)
 944			return sd;
 945	}
 946	return NULL;
 947}
 948
 949/* link sdev->hostdata to our per-device structure. */
 950static int hpsa_slave_alloc(struct scsi_device *sdev)
 951{
 952	struct hpsa_scsi_dev_t *sd;
 953	unsigned long flags;
 954	struct ctlr_info *h;
 955
 956	h = sdev_to_hba(sdev);
 957	spin_lock_irqsave(&h->devlock, flags);
 958	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
 959		sdev_id(sdev), sdev->lun);
 960	if (sd != NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 961		sdev->hostdata = sd;
 
 
 962	spin_unlock_irqrestore(&h->devlock, flags);
 963	return 0;
 964}
 965
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 966static void hpsa_slave_destroy(struct scsi_device *sdev)
 967{
 968	/* nothing to do. */
 969}
 970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 971static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
 972{
 973	int i;
 974
 975	if (!h->cmd_sg_list)
 976		return;
 977	for (i = 0; i < h->nr_cmds; i++) {
 978		kfree(h->cmd_sg_list[i]);
 979		h->cmd_sg_list[i] = NULL;
 980	}
 981	kfree(h->cmd_sg_list);
 982	h->cmd_sg_list = NULL;
 983}
 984
 985static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
 986{
 987	int i;
 988
 989	if (h->chainsize <= 0)
 990		return 0;
 991
 992	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
 993				GFP_KERNEL);
 994	if (!h->cmd_sg_list)
 995		return -ENOMEM;
 
 996	for (i = 0; i < h->nr_cmds; i++) {
 997		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
 998						h->chainsize, GFP_KERNEL);
 999		if (!h->cmd_sg_list[i])
1000			goto clean;
 
1001	}
1002	return 0;
1003
1004clean:
1005	hpsa_free_sg_chain_blocks(h);
1006	return -ENOMEM;
1007}
1008
1009static void hpsa_map_sg_chain_block(struct ctlr_info *h,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1010	struct CommandList *c)
1011{
1012	struct SGDescriptor *chain_sg, *chain_block;
1013	u64 temp64;
 
1014
1015	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1016	chain_block = h->cmd_sg_list[c->cmdindex];
1017	chain_sg->Ext = HPSA_SG_CHAIN;
1018	chain_sg->Len = sizeof(*chain_sg) *
1019		(c->Header.SGTotal - h->max_cmd_sg_entries);
1020	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
 
1021				PCI_DMA_TODEVICE);
1022	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1023	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
 
 
 
 
 
1024}
1025
1026static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1027	struct CommandList *c)
1028{
1029	struct SGDescriptor *chain_sg;
1030	union u64bit temp64;
1031
1032	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1033		return;
1034
1035	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1036	temp64.val32.lower = chain_sg->Addr.lower;
1037	temp64.val32.upper = chain_sg->Addr.upper;
1038	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039}
1040
1041static void complete_scsi_command(struct CommandList *cp)
1042{
1043	struct scsi_cmnd *cmd;
1044	struct ctlr_info *h;
1045	struct ErrorInfo *ei;
 
 
1046
1047	unsigned char sense_key;
1048	unsigned char asc;      /* additional sense code */
1049	unsigned char ascq;     /* additional sense code qualifier */
1050	unsigned long sense_data_size;
1051
1052	ei = cp->err_info;
1053	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1054	h = cp->h;
1055
 
 
 
 
 
 
 
 
 
 
 
 
1056	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1057	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
 
1058		hpsa_unmap_sg_chain_block(h, cp);
1059
 
 
 
 
1060	cmd->result = (DID_OK << 16); 		/* host byte */
1061	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1062	cmd->result |= ei->ScsiStatus;
1063
1064	/* copy the sense data whether we need to or not. */
1065	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1066		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1067	else
1068		sense_data_size = sizeof(ei->SenseInfo);
1069	if (ei->SenseLen < sense_data_size)
1070		sense_data_size = ei->SenseLen;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071
1072	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1073	scsi_set_resid(cmd, ei->ResidualCnt);
 
 
1074
1075	if (ei->CommandStatus == 0) {
1076		cmd->scsi_done(cmd);
1077		cmd_free(h, cp);
1078		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1079	}
1080
1081	/* an error has occurred */
1082	switch (ei->CommandStatus) {
1083
1084	case CMD_TARGET_STATUS:
1085		if (ei->ScsiStatus) {
1086			/* Get sense key */
1087			sense_key = 0xf & ei->SenseInfo[2];
1088			/* Get additional sense code */
1089			asc = ei->SenseInfo[12];
1090			/* Get addition sense code qualifier */
1091			ascq = ei->SenseInfo[13];
1092		}
1093
 
 
 
1094		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1095			if (check_for_unit_attention(h, cp)) {
1096				cmd->result = DID_SOFT_ERROR << 16;
1097				break;
1098			}
1099			if (sense_key == ILLEGAL_REQUEST) {
1100				/*
1101				 * SCSI REPORT_LUNS is commonly unsupported on
1102				 * Smart Array.  Suppress noisy complaint.
1103				 */
1104				if (cp->Request.CDB[0] == REPORT_LUNS)
1105					break;
1106
1107				/* If ASC/ASCQ indicate Logical Unit
1108				 * Not Supported condition,
1109				 */
1110				if ((asc == 0x25) && (ascq == 0x0)) {
1111					dev_warn(&h->pdev->dev, "cp %p "
1112						"has check condition\n", cp);
1113					break;
1114				}
1115			}
1116
1117			if (sense_key == NOT_READY) {
1118				/* If Sense is Not Ready, Logical Unit
1119				 * Not ready, Manual Intervention
1120				 * required
1121				 */
1122				if ((asc == 0x04) && (ascq == 0x03)) {
1123					dev_warn(&h->pdev->dev, "cp %p "
1124						"has check condition: unit "
1125						"not ready, manual "
1126						"intervention required\n", cp);
1127					break;
1128				}
1129			}
1130			if (sense_key == ABORTED_COMMAND) {
1131				/* Aborted command is retryable */
1132				dev_warn(&h->pdev->dev, "cp %p "
1133					"has check condition: aborted command: "
1134					"ASC: 0x%x, ASCQ: 0x%x\n",
1135					cp, asc, ascq);
1136				cmd->result = DID_SOFT_ERROR << 16;
1137				break;
1138			}
1139			/* Must be some other type of check condition */
1140			dev_warn(&h->pdev->dev, "cp %p has check condition: "
1141					"unknown type: "
1142					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1143					"Returning result: 0x%x, "
1144					"cmd=[%02x %02x %02x %02x %02x "
1145					"%02x %02x %02x %02x %02x %02x "
1146					"%02x %02x %02x %02x %02x]\n",
1147					cp, sense_key, asc, ascq,
1148					cmd->result,
1149					cmd->cmnd[0], cmd->cmnd[1],
1150					cmd->cmnd[2], cmd->cmnd[3],
1151					cmd->cmnd[4], cmd->cmnd[5],
1152					cmd->cmnd[6], cmd->cmnd[7],
1153					cmd->cmnd[8], cmd->cmnd[9],
1154					cmd->cmnd[10], cmd->cmnd[11],
1155					cmd->cmnd[12], cmd->cmnd[13],
1156					cmd->cmnd[14], cmd->cmnd[15]);
1157			break;
1158		}
1159
1160
1161		/* Problem was not a check condition
1162		 * Pass it up to the upper layers...
1163		 */
1164		if (ei->ScsiStatus) {
1165			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1166				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1167				"Returning result: 0x%x\n",
1168				cp, ei->ScsiStatus,
1169				sense_key, asc, ascq,
1170				cmd->result);
1171		} else {  /* scsi status is zero??? How??? */
1172			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1173				"Returning no connection.\n", cp),
1174
1175			/* Ordinarily, this case should never happen,
1176			 * but there is a bug in some released firmware
1177			 * revisions that allows it to happen if, for
1178			 * example, a 4100 backplane loses power and
1179			 * the tape drive is in it.  We assume that
1180			 * it's a fatal error of some kind because we
1181			 * can't show that it wasn't. We will make it
1182			 * look like selection timeout since that is
1183			 * the most common reason for this to occur,
1184			 * and it's severe enough.
1185			 */
1186
1187			cmd->result = DID_NO_CONNECT << 16;
1188		}
1189		break;
1190
1191	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1192		break;
1193	case CMD_DATA_OVERRUN:
1194		dev_warn(&h->pdev->dev, "cp %p has"
1195			" completed with data overrun "
1196			"reported\n", cp);
1197		break;
1198	case CMD_INVALID: {
1199		/* print_bytes(cp, sizeof(*cp), 1, 0);
1200		print_cmd(cp); */
1201		/* We get CMD_INVALID if you address a non-existent device
1202		 * instead of a selection timeout (no response).  You will
1203		 * see this if you yank out a drive, then try to access it.
1204		 * This is kind of a shame because it means that any other
1205		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1206		 * missing target. */
1207		cmd->result = DID_NO_CONNECT << 16;
1208	}
1209		break;
1210	case CMD_PROTOCOL_ERR:
1211		dev_warn(&h->pdev->dev, "cp %p has "
1212			"protocol error \n", cp);
 
1213		break;
1214	case CMD_HARDWARE_ERR:
1215		cmd->result = DID_ERROR << 16;
1216		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
 
1217		break;
1218	case CMD_CONNECTION_LOST:
1219		cmd->result = DID_ERROR << 16;
1220		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
 
1221		break;
1222	case CMD_ABORTED:
1223		cmd->result = DID_ABORT << 16;
1224		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1225				cp, ei->ScsiStatus);
1226		break;
1227	case CMD_ABORT_FAILED:
1228		cmd->result = DID_ERROR << 16;
1229		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
 
1230		break;
1231	case CMD_UNSOLICITED_ABORT:
1232		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1233		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1234			"abort\n", cp);
1235		break;
1236	case CMD_TIMEOUT:
1237		cmd->result = DID_TIME_OUT << 16;
1238		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
 
1239		break;
1240	case CMD_UNABORTABLE:
1241		cmd->result = DID_ERROR << 16;
1242		dev_warn(&h->pdev->dev, "Command unabortable\n");
1243		break;
 
 
 
 
 
 
 
 
 
 
 
 
1244	default:
1245		cmd->result = DID_ERROR << 16;
1246		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1247				cp, ei->CommandStatus);
1248	}
1249	cmd->scsi_done(cmd);
1250	cmd_free(h, cp);
1251}
1252
1253static int hpsa_scsi_detect(struct ctlr_info *h)
1254{
1255	struct Scsi_Host *sh;
1256	int error;
1257
1258	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1259	if (sh == NULL)
1260		goto fail;
1261
1262	sh->io_port = 0;
1263	sh->n_io_port = 0;
1264	sh->this_id = -1;
1265	sh->max_channel = 3;
1266	sh->max_cmd_len = MAX_COMMAND_SIZE;
1267	sh->max_lun = HPSA_MAX_LUN;
1268	sh->max_id = HPSA_MAX_LUN;
1269	sh->can_queue = h->nr_cmds;
1270	sh->cmd_per_lun = h->nr_cmds;
1271	sh->sg_tablesize = h->maxsgentries;
1272	h->scsi_host = sh;
1273	sh->hostdata[0] = (unsigned long) h;
1274	sh->irq = h->intr[h->intr_mode];
1275	sh->unique_id = sh->irq;
1276	error = scsi_add_host(sh, &h->pdev->dev);
1277	if (error)
1278		goto fail_host_put;
1279	scsi_scan_host(sh);
1280	return 0;
1281
1282 fail_host_put:
1283	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1284		" failed for controller %d\n", h->ctlr);
1285	scsi_host_put(sh);
1286	return error;
1287 fail:
1288	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1289		" failed for controller %d\n", h->ctlr);
1290	return -ENOMEM;
1291}
1292
1293static void hpsa_pci_unmap(struct pci_dev *pdev,
1294	struct CommandList *c, int sg_used, int data_direction)
1295{
1296	int i;
1297	union u64bit addr64;
1298
1299	for (i = 0; i < sg_used; i++) {
1300		addr64.val32.lower = c->SG[i].Addr.lower;
1301		addr64.val32.upper = c->SG[i].Addr.upper;
1302		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1303			data_direction);
1304	}
1305}
1306
1307static void hpsa_map_one(struct pci_dev *pdev,
1308		struct CommandList *cp,
1309		unsigned char *buf,
1310		size_t buflen,
1311		int data_direction)
1312{
1313	u64 addr64;
1314
1315	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1316		cp->Header.SGList = 0;
1317		cp->Header.SGTotal = 0;
1318		return;
1319	}
1320
1321	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1322	cp->SG[0].Addr.lower =
1323	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1324	cp->SG[0].Addr.upper =
1325	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1326	cp->SG[0].Len = buflen;
1327	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1328	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
 
 
 
 
 
1329}
1330
1331static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1332	struct CommandList *c)
 
 
1333{
1334	DECLARE_COMPLETION_ONSTACK(wait);
1335
1336	c->waiting = &wait;
1337	enqueue_cmd_and_start_io(h, c);
1338	wait_for_completion(&wait);
 
 
 
 
 
 
 
 
 
 
1339}
1340
1341static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1342	struct CommandList *c, int data_direction)
1343{
1344	int retry_count = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1345
1346	do {
1347		memset(c->err_info, 0, sizeof(*c->err_info));
1348		hpsa_scsi_do_simple_cmd_core(h, c);
 
 
 
1349		retry_count++;
1350	} while (check_for_unit_attention(h, c) && retry_count <= 3);
 
 
 
 
 
 
 
1351	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
 
 
 
1352}
1353
1354static void hpsa_scsi_interpret_error(struct CommandList *cp)
 
1355{
1356	struct ErrorInfo *ei;
 
 
 
 
 
 
 
 
 
 
1357	struct device *d = &cp->h->pdev->dev;
 
 
1358
1359	ei = cp->err_info;
1360	switch (ei->CommandStatus) {
1361	case CMD_TARGET_STATUS:
1362		dev_warn(d, "cmd %p has completed with errors\n", cp);
1363		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1364				ei->ScsiStatus);
 
 
 
 
 
 
 
 
 
1365		if (ei->ScsiStatus == 0)
1366			dev_warn(d, "SCSI status is abnormally zero.  "
1367			"(probably indicates selection timeout "
1368			"reported incorrectly due to a known "
1369			"firmware bug, circa July, 2001.)\n");
1370		break;
1371	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1372			dev_info(d, "UNDERRUN\n");
1373		break;
1374	case CMD_DATA_OVERRUN:
1375		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1376		break;
1377	case CMD_INVALID: {
1378		/* controller unfortunately reports SCSI passthru's
1379		 * to non-existent targets as invalid commands.
1380		 */
1381		dev_warn(d, "cp %p is reported invalid (probably means "
1382			"target device no longer present)\n", cp);
1383		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1384		print_cmd(cp);  */
1385		}
1386		break;
1387	case CMD_PROTOCOL_ERR:
1388		dev_warn(d, "cp %p has protocol error \n", cp);
1389		break;
1390	case CMD_HARDWARE_ERR:
1391		/* cmd->result = DID_ERROR << 16; */
1392		dev_warn(d, "cp %p had hardware error\n", cp);
1393		break;
1394	case CMD_CONNECTION_LOST:
1395		dev_warn(d, "cp %p had connection lost\n", cp);
1396		break;
1397	case CMD_ABORTED:
1398		dev_warn(d, "cp %p was aborted\n", cp);
1399		break;
1400	case CMD_ABORT_FAILED:
1401		dev_warn(d, "cp %p reports abort failed\n", cp);
1402		break;
1403	case CMD_UNSOLICITED_ABORT:
1404		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1405		break;
1406	case CMD_TIMEOUT:
1407		dev_warn(d, "cp %p timed out\n", cp);
1408		break;
1409	case CMD_UNABORTABLE:
1410		dev_warn(d, "Command unabortable\n");
 
 
 
1411		break;
1412	default:
1413		dev_warn(d, "cp %p returned unknown status %x\n", cp,
 
1414				ei->CommandStatus);
1415	}
1416}
1417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1418static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1419			unsigned char page, unsigned char *buf,
1420			unsigned char bufsize)
1421{
1422	int rc = IO_OK;
1423	struct CommandList *c;
1424	struct ErrorInfo *ei;
1425
1426	c = cmd_special_alloc(h);
1427
1428	if (c == NULL) {			/* trouble... */
1429		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1430		return -ENOMEM;
 
1431	}
1432
1433	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1434	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
 
1435	ei = c->err_info;
1436	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1437		hpsa_scsi_interpret_error(c);
1438		rc = -1;
1439	}
1440	cmd_special_free(h, c);
 
1441	return rc;
1442}
1443
1444static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
 
1445{
1446	int rc = IO_OK;
1447	struct CommandList *c;
1448	struct ErrorInfo *ei;
1449
1450	c = cmd_special_alloc(h);
1451
1452	if (c == NULL) {			/* trouble... */
1453		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1454		return -ENOMEM;
1455	}
1456
1457	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1458	hpsa_scsi_do_simple_cmd_core(h, c);
 
 
 
 
 
 
1459	/* no unmap needed here because no data xfer. */
1460
1461	ei = c->err_info;
1462	if (ei->CommandStatus != 0) {
1463		hpsa_scsi_interpret_error(c);
1464		rc = -1;
1465	}
1466	cmd_special_free(h, c);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1467	return rc;
1468}
1469
1470static void hpsa_get_raid_level(struct ctlr_info *h,
1471	unsigned char *scsi3addr, unsigned char *raid_level)
1472{
1473	int rc;
1474	unsigned char *buf;
1475
1476	*raid_level = RAID_UNKNOWN;
1477	buf = kzalloc(64, GFP_KERNEL);
1478	if (!buf)
1479		return;
1480	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
 
 
 
 
 
 
 
1481	if (rc == 0)
1482		*raid_level = buf[8];
1483	if (*raid_level > RAID_UNKNOWN)
1484		*raid_level = RAID_UNKNOWN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1485	kfree(buf);
1486	return;
1487}
1488
1489/* Get the device id from inquiry page 0x83 */
1490static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1491	unsigned char *device_id, int buflen)
1492{
1493	int rc;
1494	unsigned char *buf;
1495
1496	if (buflen > 16)
1497		buflen = 16;
 
 
1498	buf = kzalloc(64, GFP_KERNEL);
1499	if (!buf)
1500		return -1;
1501	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1502	if (rc == 0)
 
 
 
 
1503		memcpy(device_id, &buf[8], buflen);
 
 
1504	kfree(buf);
1505	return rc != 0;
 
1506}
1507
1508static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1509		struct ReportLUNdata *buf, int bufsize,
1510		int extended_response)
1511{
1512	int rc = IO_OK;
1513	struct CommandList *c;
1514	unsigned char scsi3addr[8];
1515	struct ErrorInfo *ei;
1516
1517	c = cmd_special_alloc(h);
1518	if (c == NULL) {			/* trouble... */
1519		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1520		return -1;
1521	}
1522	/* address the controller */
1523	memset(scsi3addr, 0, sizeof(scsi3addr));
1524	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1525		buf, bufsize, 0, scsi3addr, TYPE_CMD);
 
 
 
1526	if (extended_response)
1527		c->Request.CDB[1] = extended_response;
1528	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
 
 
 
1529	ei = c->err_info;
1530	if (ei->CommandStatus != 0 &&
1531	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1532		hpsa_scsi_interpret_error(c);
1533		rc = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
1534	}
1535	cmd_special_free(h, c);
 
1536	return rc;
1537}
1538
1539static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1540		struct ReportLUNdata *buf,
1541		int bufsize, int extended_response)
1542{
1543	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544}
1545
1546static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1547		struct ReportLUNdata *buf, int bufsize)
1548{
1549	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1550}
1551
1552static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1553	int bus, int target, int lun)
1554{
1555	device->bus = bus;
1556	device->target = target;
1557	device->lun = lun;
1558}
1559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1560static int hpsa_update_device_info(struct ctlr_info *h,
1561	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1562	unsigned char *is_OBDR_device)
1563{
1564
1565#define OBDR_SIG_OFFSET 43
1566#define OBDR_TAPE_SIG "$DR-10"
1567#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1568#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1569
1570	unsigned char *inq_buff;
1571	unsigned char *obdr_sig;
 
1572
1573	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1574	if (!inq_buff)
 
1575		goto bail_out;
 
1576
1577	/* Do an inquiry to the device to see what it is. */
1578	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1579		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1580		/* Inquiry failed (msg printed already) */
1581		dev_err(&h->pdev->dev,
1582			"hpsa_update_device_info: inquiry failed\n");
 
 
1583		goto bail_out;
1584	}
1585
 
 
 
1586	this_device->devtype = (inq_buff[0] & 0x1f);
1587	memcpy(this_device->scsi3addr, scsi3addr, 8);
1588	memcpy(this_device->vendor, &inq_buff[8],
1589		sizeof(this_device->vendor));
1590	memcpy(this_device->model, &inq_buff[16],
1591		sizeof(this_device->model));
 
1592	memset(this_device->device_id, 0,
1593		sizeof(this_device->device_id));
1594	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1595		sizeof(this_device->device_id));
 
 
 
 
 
 
 
 
 
 
 
 
1596
1597	if (this_device->devtype == TYPE_DISK &&
1598		is_logical_dev_addr_mode(scsi3addr))
1599		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1600	else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1601		this_device->raid_level = RAID_UNKNOWN;
 
 
 
 
 
 
 
 
 
 
1602
1603	if (is_OBDR_device) {
1604		/* See if this is a One-Button-Disaster-Recovery device
1605		 * by looking for "$DR-10" at offset 43 in inquiry data.
1606		 */
1607		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1608		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1609					strncmp(obdr_sig, OBDR_TAPE_SIG,
1610						OBDR_SIG_LEN) == 0);
1611	}
1612
1613	kfree(inq_buff);
1614	return 0;
1615
1616bail_out:
1617	kfree(inq_buff);
1618	return 1;
1619}
1620
1621static unsigned char *msa2xxx_model[] = {
1622	"MSA2012",
1623	"MSA2024",
1624	"MSA2312",
1625	"MSA2324",
1626	"P2000 G3 SAS",
1627	NULL,
1628};
1629
1630static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1631{
1632	int i;
1633
1634	for (i = 0; msa2xxx_model[i]; i++)
1635		if (strncmp(device->model, msa2xxx_model[i],
1636			strlen(msa2xxx_model[i])) == 0)
1637			return 1;
1638	return 0;
1639}
1640
1641/* Helper function to assign bus, target, lun mapping of devices.
1642 * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1643 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1644 * Logical drive target and lun are assigned at this time, but
1645 * physical device lun and target assignment are deferred (assigned
1646 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1647 */
1648static void figure_bus_target_lun(struct ctlr_info *h,
1649	u8 *lunaddrbytes, int *bus, int *target, int *lun,
1650	struct hpsa_scsi_dev_t *device)
1651{
1652	u32 lunid;
1653
1654	if (is_logical_dev_addr_mode(lunaddrbytes)) {
1655		/* logical device */
1656		if (unlikely(is_scsi_rev_5(h))) {
1657			/* p1210m, logical drives lun assignments
1658			 * match SCSI REPORT LUNS data.
1659			 */
1660			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1661			*bus = 0;
1662			*target = 0;
1663			*lun = (lunid & 0x3fff) + 1;
1664		} else {
1665			/* not p1210m... */
1666			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1667			if (is_msa2xxx(h, device)) {
1668				/* msa2xxx way, put logicals on bus 1
1669				 * and match target/lun numbers box
1670				 * reports.
1671				 */
1672				*bus = 1;
1673				*target = (lunid >> 16) & 0x3fff;
1674				*lun = lunid & 0x00ff;
1675			} else {
1676				/* Traditional smart array way. */
1677				*bus = 0;
1678				*lun = 0;
1679				*target = lunid & 0x3fff;
1680			}
1681		}
1682	} else {
1683		/* physical device */
1684		if (is_hba_lunid(lunaddrbytes))
1685			if (unlikely(is_scsi_rev_5(h))) {
1686				*bus = 0; /* put p1210m ctlr at 0,0,0 */
1687				*target = 0;
1688				*lun = 0;
1689				return;
1690			} else
1691				*bus = 3; /* traditional smartarray */
1692		else
1693			*bus = 2; /* physical disk */
1694		*target = -1;
1695		*lun = -1; /* we will fill these in later. */
1696	}
 
 
1697}
1698
1699/*
1700 * If there is no lun 0 on a target, linux won't find any devices.
1701 * For the MSA2xxx boxes, we have to manually detect the enclosure
1702 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1703 * it for some reason.  *tmpdevice is the target we're adding,
1704 * this_device is a pointer into the current element of currentsd[]
1705 * that we're building up in update_scsi_devices(), below.
1706 * lunzerobits is a bitmap that tracks which targets already have a
1707 * lun 0 assigned.
1708 * Returns 1 if an enclosure was added, 0 if not.
1709 */
1710static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1711	struct hpsa_scsi_dev_t *tmpdevice,
1712	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1713	int bus, int target, int lun, unsigned long lunzerobits[],
1714	int *nmsa2xxx_enclosures)
1715{
1716	unsigned char scsi3addr[8];
1717
1718	if (test_bit(target, lunzerobits))
1719		return 0; /* There is already a lun 0 on this target. */
1720
1721	if (!is_logical_dev_addr_mode(lunaddrbytes))
1722		return 0; /* It's the logical targets that may lack lun 0. */
1723
1724	if (!is_msa2xxx(h, tmpdevice))
1725		return 0; /* It's only the MSA2xxx that have this problem. */
1726
1727	if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1728		return 0;
1729
1730	memset(scsi3addr, 0, 8);
1731	scsi3addr[3] = target;
1732	if (is_hba_lunid(scsi3addr))
1733		return 0; /* Don't add the RAID controller here. */
1734
1735	if (is_scsi_rev_5(h))
1736		return 0; /* p1210m doesn't need to do this. */
1737
1738#define MAX_MSA2XXX_ENCLOSURES 32
1739	if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1740		dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1741			"enclosures exceeded.  Check your hardware "
1742			"configuration.");
1743		return 0;
1744	}
1745
1746	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
 
1747		return 0;
1748	(*nmsa2xxx_enclosures)++;
1749	hpsa_set_bus_target_lun(this_device, bus, target, 0);
1750	set_bit(target, lunzerobits);
1751	return 1;
1752}
1753
1754/*
1755 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1756 * logdev.  The number of luns in physdev and logdev are returned in
1757 * *nphysicals and *nlogicals, respectively.
1758 * Returns 0 on success, -1 otherwise.
1759 */
1760static int hpsa_gather_lun_info(struct ctlr_info *h,
1761	int reportlunsize,
1762	struct ReportLUNdata *physdev, u32 *nphysicals,
1763	struct ReportLUNdata *logdev, u32 *nlogicals)
1764{
1765	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1766		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1767		return -1;
1768	}
1769	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1770	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1771		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1772			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1773			*nphysicals - HPSA_MAX_PHYS_LUN);
1774		*nphysicals = HPSA_MAX_PHYS_LUN;
1775	}
1776	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1777		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1778		return -1;
1779	}
1780	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1781	/* Reject Logicals in excess of our max capability. */
1782	if (*nlogicals > HPSA_MAX_LUN) {
1783		dev_warn(&h->pdev->dev,
1784			"maximum logical LUNs (%d) exceeded.  "
1785			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1786			*nlogicals - HPSA_MAX_LUN);
1787			*nlogicals = HPSA_MAX_LUN;
1788	}
1789	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1790		dev_warn(&h->pdev->dev,
1791			"maximum logical + physical LUNs (%d) exceeded. "
1792			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1793			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1794		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1795	}
1796	return 0;
1797}
1798
1799u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1800	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
 
1801	struct ReportLUNdata *logdev_list)
1802{
1803	/* Helper function, figure out where the LUN ID info is coming from
1804	 * given index i, lists of physical and logical devices, where in
1805	 * the list the raid controller is supposed to appear (first or last)
1806	 */
1807
1808	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1809	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1810
1811	if (i == raid_ctlr_position)
1812		return RAID_CTLR_LUNID;
1813
1814	if (i < logicals_start)
1815		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
 
1816
1817	if (i < last_device)
1818		return &logdev_list->LUN[i - nphysicals -
1819			(raid_ctlr_position == 0)][0];
1820	BUG();
1821	return NULL;
1822}
1823
1824static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1825{
1826	/* the idea here is we could get notified
1827	 * that some devices have changed, so we do a report
1828	 * physical luns and report logical luns cmd, and adjust
1829	 * our list of devices accordingly.
1830	 *
1831	 * The scsi3addr's of devices won't change so long as the
1832	 * adapter is not reset.  That means we can rescan and
1833	 * tell which devices we already know about, vs. new
1834	 * devices, vs.  disappearing devices.
1835	 */
1836	struct ReportLUNdata *physdev_list = NULL;
1837	struct ReportLUNdata *logdev_list = NULL;
 
 
1838	u32 nphysicals = 0;
1839	u32 nlogicals = 0;
 
1840	u32 ndev_allocated = 0;
1841	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1842	int ncurrent = 0;
1843	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1844	int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1845	int bus, target, lun;
1846	int raid_ctlr_position;
1847	DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
 
1848
1849	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1850		GFP_KERNEL);
1851	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1852	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1853	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
 
 
1854
1855	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
 
1856		dev_err(&h->pdev->dev, "out of memory\n");
1857		goto out;
1858	}
1859	memset(lunzerobits, 0, sizeof(lunzerobits));
1860
1861	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1862			logdev_list, &nlogicals))
 
 
 
1863		goto out;
 
 
 
 
 
 
 
 
1864
1865	/* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1866	 * but each of them 4 times through different paths.  The plus 1
1867	 * is for the RAID controller.
1868	 */
1869	ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
 
 
1870
1871	/* Allocate the per device structures */
1872	for (i = 0; i < ndevs_to_allocate; i++) {
 
 
 
 
 
 
 
1873		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1874		if (!currentsd[i]) {
1875			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1876				__FILE__, __LINE__);
1877			goto out;
1878		}
1879		ndev_allocated++;
1880	}
1881
1882	if (unlikely(is_scsi_rev_5(h)))
1883		raid_ctlr_position = 0;
1884	else
1885		raid_ctlr_position = nphysicals + nlogicals;
1886
1887	/* adjust our table of devices */
1888	nmsa2xxx_enclosures = 0;
1889	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1890		u8 *lunaddrbytes, is_OBDR = 0;
 
 
 
 
 
 
 
1891
1892		/* Figure out where the LUN ID info is coming from */
1893		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1894			i, nphysicals, nlogicals, physdev_list, logdev_list);
1895		/* skip masked physical devices. */
1896		if (lunaddrbytes[3] & 0xC0 &&
1897			i < nphysicals + (raid_ctlr_position == 0))
1898			continue;
1899
1900		/* Get device type, vendor, model, device id */
1901		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1902							&is_OBDR))
1903			continue; /* skip it if we can't talk to it. */
1904		figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1905			tmpdevice);
1906		this_device = currentsd[ncurrent];
1907
1908		/*
1909		 * For the msa2xxx boxes, we have to insert a LUN 0 which
1910		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1911		 * is nonetheless an enclosure device there.  We have to
1912		 * present that otherwise linux won't find anything if
1913		 * there is no lun 0.
1914		 */
1915		if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1916				lunaddrbytes, bus, target, lun, lunzerobits,
1917				&nmsa2xxx_enclosures)) {
1918			ncurrent++;
1919			this_device = currentsd[ncurrent];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1920		}
1921
 
 
 
1922		*this_device = *tmpdevice;
1923		hpsa_set_bus_target_lun(this_device, bus, target, lun);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1924
1925		switch (this_device->devtype) {
1926		case TYPE_ROM:
1927			/* We don't *really* support actual CD-ROM devices,
1928			 * just "One Button Disaster Recovery" tape drive
1929			 * which temporarily pretends to be a CD-ROM drive.
1930			 * So we check that the device is really an OBDR tape
1931			 * device by checking for "$DR-10" in bytes 43-48 of
1932			 * the inquiry data.
1933			 */
1934			if (is_OBDR)
1935				ncurrent++;
1936			break;
1937		case TYPE_DISK:
1938			if (i < nphysicals)
1939				break;
 
 
 
 
 
 
 
 
1940			ncurrent++;
1941			break;
1942		case TYPE_TAPE:
1943		case TYPE_MEDIUM_CHANGER:
1944			ncurrent++;
1945			break;
 
 
 
 
 
 
 
1946		case TYPE_RAID:
1947			/* Only present the Smartarray HBA as a RAID controller.
1948			 * If it's a RAID controller other than the HBA itself
1949			 * (an external RAID controller, MSA500 or similar)
1950			 * don't present it.
1951			 */
1952			if (!is_hba_lunid(lunaddrbytes))
1953				break;
1954			ncurrent++;
1955			break;
1956		default:
1957			break;
1958		}
1959		if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1960			break;
1961	}
1962	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
 
 
 
 
 
 
 
 
 
 
 
 
1963out:
1964	kfree(tmpdevice);
1965	for (i = 0; i < ndev_allocated; i++)
1966		kfree(currentsd[i]);
1967	kfree(currentsd);
1968	kfree(physdev_list);
1969	kfree(logdev_list);
 
 
1970}
1971
1972/* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
 
 
 
 
 
 
 
 
 
 
 
 
1973 * dma mapping  and fills in the scatter gather entries of the
1974 * hpsa command, cp.
1975 */
1976static int hpsa_scatter_gather(struct ctlr_info *h,
1977		struct CommandList *cp,
1978		struct scsi_cmnd *cmd)
1979{
1980	unsigned int len;
1981	struct scatterlist *sg;
1982	u64 addr64;
1983	int use_sg, i, sg_index, chained;
1984	struct SGDescriptor *curr_sg;
1985
1986	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1987
1988	use_sg = scsi_dma_map(cmd);
1989	if (use_sg < 0)
1990		return use_sg;
1991
1992	if (!use_sg)
1993		goto sglist_finished;
1994
 
 
 
 
 
 
 
1995	curr_sg = cp->SG;
1996	chained = 0;
1997	sg_index = 0;
1998	scsi_for_each_sg(cmd, sg, use_sg, i) {
1999		if (i == h->max_cmd_sg_entries - 1 &&
2000			use_sg > h->max_cmd_sg_entries) {
2001			chained = 1;
2002			curr_sg = h->cmd_sg_list[cp->cmdindex];
2003			sg_index = 0;
2004		}
2005		addr64 = (u64) sg_dma_address(sg);
2006		len  = sg_dma_len(sg);
2007		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2008		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2009		curr_sg->Len = len;
2010		curr_sg->Ext = 0;  /* we are not chaining */
2011		curr_sg++;
2012	}
2013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014	if (use_sg + chained > h->maxSG)
2015		h->maxSG = use_sg + chained;
2016
2017	if (chained) {
2018		cp->Header.SGList = h->max_cmd_sg_entries;
2019		cp->Header.SGTotal = (u16) (use_sg + 1);
2020		hpsa_map_sg_chain_block(h, cp);
 
 
 
2021		return 0;
2022	}
2023
2024sglist_finished:
2025
2026	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2027	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2028	return 0;
2029}
2030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2031
2032static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2033	void (*done)(struct scsi_cmnd *))
2034{
2035	struct ctlr_info *h;
2036	struct hpsa_scsi_dev_t *dev;
2037	unsigned char scsi3addr[8];
2038	struct CommandList *c;
2039	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2040
2041	/* Get the ptr to our adapter structure out of cmd->host. */
2042	h = sdev_to_hba(cmd->device);
2043	dev = cmd->device->hostdata;
2044	if (!dev) {
2045		cmd->result = DID_NO_CONNECT << 16;
2046		done(cmd);
2047		return 0;
 
 
 
 
 
2048	}
2049	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
 
2050
2051	/* Need a lock as this is being allocated from the pool */
2052	spin_lock_irqsave(&h->lock, flags);
2053	c = cmd_alloc(h);
2054	spin_unlock_irqrestore(&h->lock, flags);
2055	if (c == NULL) {			/* trouble... */
2056		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2057		return SCSI_MLQUEUE_HOST_BUSY;
 
 
 
 
 
 
 
 
 
 
 
2058	}
2059
2060	/* Fill in the command list header */
2061
2062	cmd->scsi_done = done;    /* save this for use by completion code */
 
 
 
 
2063
2064	/* save c in case we have to abort it  */
2065	cmd->host_scribble = (unsigned char *) c;
 
 
2066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2067	c->cmd_type = CMD_SCSI;
2068	c->scsi_cmd = cmd;
2069	c->Header.ReplyQueue = 0;  /* unused in simple mode */
2070	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2071	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2072	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2073
2074	/* Fill in the request block... */
2075
2076	c->Request.Timeout = 0;
2077	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2078	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2079	c->Request.CDBLen = cmd->cmd_len;
2080	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2081	c->Request.Type.Type = TYPE_CMD;
2082	c->Request.Type.Attribute = ATTR_SIMPLE;
2083	switch (cmd->sc_data_direction) {
2084	case DMA_TO_DEVICE:
2085		c->Request.Type.Direction = XFER_WRITE;
 
2086		break;
2087	case DMA_FROM_DEVICE:
2088		c->Request.Type.Direction = XFER_READ;
 
2089		break;
2090	case DMA_NONE:
2091		c->Request.Type.Direction = XFER_NONE;
 
2092		break;
2093	case DMA_BIDIRECTIONAL:
2094		/* This can happen if a buggy application does a scsi passthru
2095		 * and sets both inlen and outlen to non-zero. ( see
2096		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2097		 */
2098
2099		c->Request.Type.Direction = XFER_RSVD;
 
2100		/* This is technically wrong, and hpsa controllers should
2101		 * reject it with CMD_INVALID, which is the most correct
2102		 * response, but non-fibre backends appear to let it
2103		 * slide by, and give the same results as if this field
2104		 * were set correctly.  Either way is acceptable for
2105		 * our purposes here.
2106		 */
2107
2108		break;
2109
2110	default:
2111		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2112			cmd->sc_data_direction);
2113		BUG();
2114		break;
2115	}
2116
2117	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2118		cmd_free(h, c);
2119		return SCSI_MLQUEUE_HOST_BUSY;
2120	}
2121	enqueue_cmd_and_start_io(h, c);
2122	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2123	return 0;
2124}
2125
2126static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2127
2128static void hpsa_scan_start(struct Scsi_Host *sh)
2129{
2130	struct ctlr_info *h = shost_to_hba(sh);
2131	unsigned long flags;
2132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133	/* wait until any scan already in progress is finished. */
2134	while (1) {
2135		spin_lock_irqsave(&h->scan_lock, flags);
2136		if (h->scan_finished)
2137			break;
 
2138		spin_unlock_irqrestore(&h->scan_lock, flags);
2139		wait_event(h->scan_wait_queue, h->scan_finished);
2140		/* Note: We don't need to worry about a race between this
2141		 * thread and driver unload because the midlayer will
2142		 * have incremented the reference count, so unload won't
2143		 * happen if we're in here.
2144		 */
2145	}
2146	h->scan_finished = 0; /* mark scan as in progress */
 
2147	spin_unlock_irqrestore(&h->scan_lock, flags);
2148
2149	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
 
2150
2151	spin_lock_irqsave(&h->scan_lock, flags);
2152	h->scan_finished = 1; /* mark scan as finished. */
2153	wake_up_all(&h->scan_wait_queue);
2154	spin_unlock_irqrestore(&h->scan_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2155}
2156
2157static int hpsa_scan_finished(struct Scsi_Host *sh,
2158	unsigned long elapsed_time)
2159{
2160	struct ctlr_info *h = shost_to_hba(sh);
2161	unsigned long flags;
2162	int finished;
2163
2164	spin_lock_irqsave(&h->scan_lock, flags);
2165	finished = h->scan_finished;
2166	spin_unlock_irqrestore(&h->scan_lock, flags);
2167	return finished;
2168}
2169
2170static int hpsa_change_queue_depth(struct scsi_device *sdev,
2171	int qdepth, int reason)
2172{
2173	struct ctlr_info *h = sdev_to_hba(sdev);
2174
2175	if (reason != SCSI_QDEPTH_DEFAULT)
2176		return -ENOTSUPP;
 
 
 
2177
2178	if (qdepth < 1)
2179		qdepth = 1;
2180	else
2181		if (qdepth > h->nr_cmds)
2182			qdepth = h->nr_cmds;
2183	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2184	return sdev->queue_depth;
 
 
 
 
 
 
 
 
 
 
2185}
2186
2187static void hpsa_unregister_scsi(struct ctlr_info *h)
2188{
2189	/* we are being forcibly unloaded, and may not refuse. */
2190	scsi_remove_host(h->scsi_host);
2191	scsi_host_put(h->scsi_host);
2192	h->scsi_host = NULL;
 
 
 
 
 
2193}
2194
2195static int hpsa_register_scsi(struct ctlr_info *h)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2196{
2197	int rc;
2198
2199	rc = hpsa_scsi_detect(h);
2200	if (rc != 0)
2201		dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2202			" hpsa_scsi_detect(), rc is %d\n", rc);
2203	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2204}
2205
2206static int wait_for_device_to_become_ready(struct ctlr_info *h,
2207	unsigned char lunaddr[])
 
 
 
 
 
2208{
2209	int rc = 0;
2210	int count = 0;
2211	int waittime = 1; /* seconds */
2212	struct CommandList *c;
2213
2214	c = cmd_special_alloc(h);
2215	if (!c) {
2216		dev_warn(&h->pdev->dev, "out of memory in "
2217			"wait_for_device_to_become_ready.\n");
2218		return IO_ERROR;
2219	}
2220
2221	/* Send test unit ready until device ready, or give up. */
2222	while (count < HPSA_TUR_RETRY_LIMIT) {
2223
2224		/* Wait for a bit.  do this first, because if we send
 
2225		 * the TUR right away, the reset will just abort it.
2226		 */
2227		msleep(1000 * waittime);
2228		count++;
 
 
 
2229
2230		/* Increase wait time with each try, up to a point. */
2231		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2232			waittime = waittime * 2;
2233
2234		/* Send the Test Unit Ready */
2235		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2236		hpsa_scsi_do_simple_cmd_core(h, c);
2237		/* no unmap needed here because no data xfer. */
2238
2239		if (c->err_info->CommandStatus == CMD_SUCCESS)
2240			break;
2241
2242		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2243			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2244			(c->err_info->SenseInfo[2] == NO_SENSE ||
2245			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2246			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2247
2248		dev_warn(&h->pdev->dev, "waiting %d secs "
2249			"for device to become ready.\n", waittime);
2250		rc = 1; /* device not ready. */
 
2251	}
2252
2253	if (rc)
2254		dev_warn(&h->pdev->dev, "giving up on device.\n");
2255	else
2256		dev_warn(&h->pdev->dev, "device is ready.\n");
2257
2258	cmd_special_free(h, c);
2259	return rc;
2260}
2261
2262/* Need at least one of these error handlers to keep ../scsi/hosts.c from
2263 * complaining.  Doing a host- or bus-reset can't do anything good here.
2264 */
2265static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2266{
2267	int rc;
2268	struct ctlr_info *h;
2269	struct hpsa_scsi_dev_t *dev;
 
 
 
2270
2271	/* find the controller to which the command to be aborted was sent */
2272	h = sdev_to_hba(scsicmd->device);
2273	if (h == NULL) /* paranoia */
2274		return FAILED;
 
 
 
 
 
 
 
 
 
 
2275	dev = scsicmd->device->hostdata;
2276	if (!dev) {
2277		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2278			"device lookup failed.\n");
2279		return FAILED;
 
 
 
 
 
2280	}
2281	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2282		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2283	/* send a reset to the SCSI LUN which the command was sent to */
2284	rc = hpsa_send_reset(h, dev->scsi3addr);
2285	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2286		return SUCCESS;
 
 
 
2287
2288	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2289	return FAILED;
 
 
 
 
 
 
 
 
2290}
2291
2292/*
2293 * For operations that cannot sleep, a command block is allocated at init,
2294 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2295 * which ones are free or in use.  Lock must be held when calling this.
2296 * cmd_free() is the complement.
2297 */
2298static struct CommandList *cmd_alloc(struct ctlr_info *h)
 
2299{
2300	struct CommandList *c;
2301	int i;
2302	union u64bit temp64;
2303	dma_addr_t cmd_dma_handle, err_dma_handle;
2304
2305	do {
2306		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2307		if (i == h->nr_cmds)
2308			return NULL;
2309	} while (test_and_set_bit
2310		 (i & (BITS_PER_LONG - 1),
2311		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2312	c = h->cmd_pool + i;
2313	memset(c, 0, sizeof(*c));
2314	cmd_dma_handle = h->cmd_pool_dhandle
2315	    + i * sizeof(*c);
2316	c->err_info = h->errinfo_pool + i;
2317	memset(c->err_info, 0, sizeof(*c->err_info));
2318	err_dma_handle = h->errinfo_pool_dhandle
2319	    + i * sizeof(*c->err_info);
2320	h->nr_allocs++;
2321
2322	c->cmdindex = i;
2323
2324	INIT_LIST_HEAD(&c->list);
2325	c->busaddr = (u32) cmd_dma_handle;
2326	temp64.val = (u64) err_dma_handle;
2327	c->ErrDesc.Addr.lower = temp64.val32.lower;
2328	c->ErrDesc.Addr.upper = temp64.val32.upper;
2329	c->ErrDesc.Len = sizeof(*c->err_info);
 
 
 
 
 
 
 
 
 
2330
2331	c->h = h;
2332	return c;
2333}
2334
2335/* For operations that can wait for kmalloc to possibly sleep,
2336 * this routine can be called. Lock need not be held to call
2337 * cmd_special_alloc. cmd_special_free() is the complement.
2338 */
2339static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2340{
2341	struct CommandList *c;
2342	union u64bit temp64;
2343	dma_addr_t cmd_dma_handle, err_dma_handle;
 
 
 
2344
2345	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2346	if (c == NULL)
2347		return NULL;
2348	memset(c, 0, sizeof(*c));
 
 
 
 
2349
2350	c->cmdindex = -1;
 
 
 
 
2351
2352	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2353		    &err_dma_handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2354
2355	if (c->err_info == NULL) {
2356		pci_free_consistent(h->pdev,
2357			sizeof(*c), c, cmd_dma_handle);
2358		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2359	}
2360	memset(c->err_info, 0, sizeof(*c->err_info));
2361
2362	INIT_LIST_HEAD(&c->list);
2363	c->busaddr = (u32) cmd_dma_handle;
2364	temp64.val = (u64) err_dma_handle;
2365	c->ErrDesc.Addr.lower = temp64.val32.lower;
2366	c->ErrDesc.Addr.upper = temp64.val32.upper;
2367	c->ErrDesc.Len = sizeof(*c->err_info);
2368
2369	c->h = h;
2370	return c;
2371}
2372
 
 
 
 
 
 
2373static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2374{
2375	int i;
 
2376
2377	i = c - h->cmd_pool;
2378	clear_bit(i & (BITS_PER_LONG - 1),
2379		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2380	h->nr_frees++;
2381}
2382
2383static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2384{
2385	union u64bit temp64;
2386
2387	temp64.val32.lower = c->ErrDesc.Addr.lower;
2388	temp64.val32.upper = c->ErrDesc.Addr.upper;
2389	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2390			    c->err_info, (dma_addr_t) temp64.val);
2391	pci_free_consistent(h->pdev, sizeof(*c),
2392			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2393}
2394
2395#ifdef CONFIG_COMPAT
2396
2397static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
 
2398{
2399	IOCTL32_Command_struct __user *arg32 =
2400	    (IOCTL32_Command_struct __user *) arg;
2401	IOCTL_Command_struct arg64;
2402	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2403	int err;
2404	u32 cp;
2405
2406	memset(&arg64, 0, sizeof(arg64));
2407	err = 0;
2408	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2409			   sizeof(arg64.LUN_info));
2410	err |= copy_from_user(&arg64.Request, &arg32->Request,
2411			   sizeof(arg64.Request));
2412	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2413			   sizeof(arg64.error_info));
2414	err |= get_user(arg64.buf_size, &arg32->buf_size);
2415	err |= get_user(cp, &arg32->buf);
2416	arg64.buf = compat_ptr(cp);
2417	err |= copy_to_user(p, &arg64, sizeof(arg64));
2418
2419	if (err)
2420		return -EFAULT;
2421
2422	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2423	if (err)
2424		return err;
2425	err |= copy_in_user(&arg32->error_info, &p->error_info,
2426			 sizeof(arg32->error_info));
2427	if (err)
2428		return -EFAULT;
2429	return err;
2430}
2431
2432static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2433	int cmd, void *arg)
2434{
2435	BIG_IOCTL32_Command_struct __user *arg32 =
2436	    (BIG_IOCTL32_Command_struct __user *) arg;
2437	BIG_IOCTL_Command_struct arg64;
2438	BIG_IOCTL_Command_struct __user *p =
2439	    compat_alloc_user_space(sizeof(arg64));
2440	int err;
2441	u32 cp;
2442
2443	memset(&arg64, 0, sizeof(arg64));
2444	err = 0;
2445	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2446			   sizeof(arg64.LUN_info));
2447	err |= copy_from_user(&arg64.Request, &arg32->Request,
2448			   sizeof(arg64.Request));
2449	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2450			   sizeof(arg64.error_info));
2451	err |= get_user(arg64.buf_size, &arg32->buf_size);
2452	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2453	err |= get_user(cp, &arg32->buf);
2454	arg64.buf = compat_ptr(cp);
2455	err |= copy_to_user(p, &arg64, sizeof(arg64));
2456
2457	if (err)
2458		return -EFAULT;
2459
2460	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2461	if (err)
2462		return err;
2463	err |= copy_in_user(&arg32->error_info, &p->error_info,
2464			 sizeof(arg32->error_info));
2465	if (err)
2466		return -EFAULT;
2467	return err;
2468}
2469
2470static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2471{
2472	switch (cmd) {
2473	case CCISS_GETPCIINFO:
2474	case CCISS_GETINTINFO:
2475	case CCISS_SETINTINFO:
2476	case CCISS_GETNODENAME:
2477	case CCISS_SETNODENAME:
2478	case CCISS_GETHEARTBEAT:
2479	case CCISS_GETBUSTYPES:
2480	case CCISS_GETFIRMVER:
2481	case CCISS_GETDRIVVER:
2482	case CCISS_REVALIDVOLS:
2483	case CCISS_DEREGDISK:
2484	case CCISS_REGNEWDISK:
2485	case CCISS_REGNEWD:
2486	case CCISS_RESCANDISK:
2487	case CCISS_GETLUNINFO:
2488		return hpsa_ioctl(dev, cmd, arg);
2489
2490	case CCISS_PASSTHRU32:
2491		return hpsa_ioctl32_passthru(dev, cmd, arg);
2492	case CCISS_BIG_PASSTHRU32:
2493		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2494
2495	default:
2496		return -ENOIOCTLCMD;
2497	}
2498}
2499#endif
2500
2501static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2502{
2503	struct hpsa_pci_info pciinfo;
2504
2505	if (!argp)
2506		return -EINVAL;
2507	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2508	pciinfo.bus = h->pdev->bus->number;
2509	pciinfo.dev_fn = h->pdev->devfn;
2510	pciinfo.board_id = h->board_id;
2511	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2512		return -EFAULT;
2513	return 0;
2514}
2515
2516static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2517{
2518	DriverVer_type DriverVer;
2519	unsigned char vmaj, vmin, vsubmin;
2520	int rc;
2521
2522	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2523		&vmaj, &vmin, &vsubmin);
2524	if (rc != 3) {
2525		dev_info(&h->pdev->dev, "driver version string '%s' "
2526			"unrecognized.", HPSA_DRIVER_VERSION);
2527		vmaj = 0;
2528		vmin = 0;
2529		vsubmin = 0;
2530	}
2531	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2532	if (!argp)
2533		return -EINVAL;
2534	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2535		return -EFAULT;
2536	return 0;
2537}
2538
2539static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2540{
2541	IOCTL_Command_struct iocommand;
2542	struct CommandList *c;
2543	char *buff = NULL;
2544	union u64bit temp64;
 
2545
2546	if (!argp)
2547		return -EINVAL;
2548	if (!capable(CAP_SYS_RAWIO))
2549		return -EPERM;
2550	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2551		return -EFAULT;
2552	if ((iocommand.buf_size < 1) &&
2553	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2554		return -EINVAL;
2555	}
2556	if (iocommand.buf_size > 0) {
2557		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2558		if (buff == NULL)
2559			return -EFAULT;
2560		if (iocommand.Request.Type.Direction == XFER_WRITE) {
2561			/* Copy the data into the buffer we created */
2562			if (copy_from_user(buff, iocommand.buf,
2563				iocommand.buf_size)) {
2564				kfree(buff);
2565				return -EFAULT;
2566			}
2567		} else {
2568			memset(buff, 0, iocommand.buf_size);
2569		}
2570	}
2571	c = cmd_special_alloc(h);
2572	if (c == NULL) {
2573		kfree(buff);
2574		return -ENOMEM;
2575	}
2576	/* Fill in the command type */
2577	c->cmd_type = CMD_IOCTL_PEND;
 
2578	/* Fill in Command Header */
2579	c->Header.ReplyQueue = 0; /* unused in simple mode */
2580	if (iocommand.buf_size > 0) {	/* buffer to fill */
2581		c->Header.SGList = 1;
2582		c->Header.SGTotal = 1;
2583	} else	{ /* no buffers to fill */
2584		c->Header.SGList = 0;
2585		c->Header.SGTotal = 0;
2586	}
2587	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2588	/* use the kernel address the cmd block for tag */
2589	c->Header.Tag.lower = c->busaddr;
2590
2591	/* Fill in Request block */
2592	memcpy(&c->Request, &iocommand.Request,
2593		sizeof(c->Request));
2594
2595	/* Fill in the scatter gather information */
2596	if (iocommand.buf_size > 0) {
2597		temp64.val = pci_map_single(h->pdev, buff,
2598			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2599		c->SG[0].Addr.lower = temp64.val32.lower;
2600		c->SG[0].Addr.upper = temp64.val32.upper;
2601		c->SG[0].Len = iocommand.buf_size;
2602		c->SG[0].Ext = 0; /* we are not chaining*/
 
 
 
 
 
2603	}
2604	hpsa_scsi_do_simple_cmd_core(h, c);
 
2605	if (iocommand.buf_size > 0)
2606		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2607	check_ioctl_unit_attention(h, c);
 
 
 
 
2608
2609	/* Copy the error information out */
2610	memcpy(&iocommand.error_info, c->err_info,
2611		sizeof(iocommand.error_info));
2612	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2613		kfree(buff);
2614		cmd_special_free(h, c);
2615		return -EFAULT;
2616	}
2617	if (iocommand.Request.Type.Direction == XFER_READ &&
2618		iocommand.buf_size > 0) {
2619		/* Copy the data out of the buffer we created */
2620		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2621			kfree(buff);
2622			cmd_special_free(h, c);
2623			return -EFAULT;
2624		}
2625	}
 
 
 
2626	kfree(buff);
2627	cmd_special_free(h, c);
2628	return 0;
2629}
2630
2631static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2632{
2633	BIG_IOCTL_Command_struct *ioc;
2634	struct CommandList *c;
2635	unsigned char **buff = NULL;
2636	int *buff_size = NULL;
2637	union u64bit temp64;
2638	BYTE sg_used = 0;
2639	int status = 0;
2640	int i;
2641	u32 left;
2642	u32 sz;
2643	BYTE __user *data_ptr;
2644
2645	if (!argp)
2646		return -EINVAL;
2647	if (!capable(CAP_SYS_RAWIO))
2648		return -EPERM;
2649	ioc = (BIG_IOCTL_Command_struct *)
2650	    kmalloc(sizeof(*ioc), GFP_KERNEL);
2651	if (!ioc) {
2652		status = -ENOMEM;
2653		goto cleanup1;
2654	}
2655	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2656		status = -EFAULT;
2657		goto cleanup1;
2658	}
2659	if ((ioc->buf_size < 1) &&
2660	    (ioc->Request.Type.Direction != XFER_NONE)) {
2661		status = -EINVAL;
2662		goto cleanup1;
2663	}
2664	/* Check kmalloc limits  using all SGs */
2665	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2666		status = -EINVAL;
2667		goto cleanup1;
2668	}
2669	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2670		status = -EINVAL;
2671		goto cleanup1;
2672	}
2673	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2674	if (!buff) {
2675		status = -ENOMEM;
2676		goto cleanup1;
2677	}
2678	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2679	if (!buff_size) {
2680		status = -ENOMEM;
2681		goto cleanup1;
2682	}
2683	left = ioc->buf_size;
2684	data_ptr = ioc->buf;
2685	while (left) {
2686		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2687		buff_size[sg_used] = sz;
2688		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2689		if (buff[sg_used] == NULL) {
2690			status = -ENOMEM;
2691			goto cleanup1;
2692		}
2693		if (ioc->Request.Type.Direction == XFER_WRITE) {
2694			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2695				status = -ENOMEM;
2696				goto cleanup1;
2697			}
2698		} else
2699			memset(buff[sg_used], 0, sz);
2700		left -= sz;
2701		data_ptr += sz;
2702		sg_used++;
2703	}
2704	c = cmd_special_alloc(h);
2705	if (c == NULL) {
2706		status = -ENOMEM;
2707		goto cleanup1;
2708	}
2709	c->cmd_type = CMD_IOCTL_PEND;
 
2710	c->Header.ReplyQueue = 0;
2711	c->Header.SGList = c->Header.SGTotal = sg_used;
 
2712	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2713	c->Header.Tag.lower = c->busaddr;
2714	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2715	if (ioc->buf_size > 0) {
2716		int i;
2717		for (i = 0; i < sg_used; i++) {
2718			temp64.val = pci_map_single(h->pdev, buff[i],
2719				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
2720			c->SG[i].Addr.lower = temp64.val32.lower;
2721			c->SG[i].Addr.upper = temp64.val32.upper;
2722			c->SG[i].Len = buff_size[i];
2723			/* we are not chaining */
2724			c->SG[i].Ext = 0;
 
 
 
 
 
 
 
2725		}
 
2726	}
2727	hpsa_scsi_do_simple_cmd_core(h, c);
 
2728	if (sg_used)
2729		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2730	check_ioctl_unit_attention(h, c);
 
 
 
 
 
2731	/* Copy the error information out */
2732	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2733	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2734		cmd_special_free(h, c);
2735		status = -EFAULT;
2736		goto cleanup1;
2737	}
2738	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
 
 
2739		/* Copy the data out of the buffer we created */
2740		BYTE __user *ptr = ioc->buf;
2741		for (i = 0; i < sg_used; i++) {
2742			if (copy_to_user(ptr, buff[i], buff_size[i])) {
2743				cmd_special_free(h, c);
2744				status = -EFAULT;
2745				goto cleanup1;
2746			}
2747			ptr += buff_size[i];
2748		}
2749	}
2750	cmd_special_free(h, c);
2751	status = 0;
 
 
2752cleanup1:
2753	if (buff) {
 
 
2754		for (i = 0; i < sg_used; i++)
2755			kfree(buff[i]);
2756		kfree(buff);
2757	}
2758	kfree(buff_size);
2759	kfree(ioc);
2760	return status;
2761}
2762
2763static void check_ioctl_unit_attention(struct ctlr_info *h,
2764	struct CommandList *c)
2765{
2766	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2767			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2768		(void) check_for_unit_attention(h, c);
2769}
 
2770/*
2771 * ioctl
2772 */
2773static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2774{
2775	struct ctlr_info *h;
2776	void __user *argp = (void __user *)arg;
 
2777
2778	h = sdev_to_hba(dev);
2779
2780	switch (cmd) {
2781	case CCISS_DEREGDISK:
2782	case CCISS_REGNEWDISK:
2783	case CCISS_REGNEWD:
2784		hpsa_scan_start(h->scsi_host);
2785		return 0;
2786	case CCISS_GETPCIINFO:
2787		return hpsa_getpciinfo_ioctl(h, argp);
2788	case CCISS_GETDRIVVER:
2789		return hpsa_getdrivver_ioctl(h, argp);
2790	case CCISS_PASSTHRU:
2791		return hpsa_passthru_ioctl(h, argp);
 
 
 
 
2792	case CCISS_BIG_PASSTHRU:
2793		return hpsa_big_passthru_ioctl(h, argp);
 
 
 
 
2794	default:
2795		return -ENOTTY;
2796	}
2797}
2798
2799static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2800	unsigned char *scsi3addr, u8 reset_type)
2801{
2802	struct CommandList *c;
2803
2804	c = cmd_alloc(h);
2805	if (!c)
2806		return -ENOMEM;
2807	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2808		RAID_CTLR_LUNID, TYPE_MSG);
2809	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2810	c->waiting = NULL;
2811	enqueue_cmd_and_start_io(h, c);
2812	/* Don't wait for completion, the reset won't complete.  Don't free
2813	 * the command either.  This is the last command we will send before
2814	 * re-initializing everything, so it doesn't matter and won't leak.
2815	 */
2816	return 0;
2817}
2818
2819static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2820	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2821	int cmd_type)
2822{
2823	int pci_dir = XFER_NONE;
2824
2825	c->cmd_type = CMD_IOCTL_PEND;
 
2826	c->Header.ReplyQueue = 0;
2827	if (buff != NULL && size > 0) {
2828		c->Header.SGList = 1;
2829		c->Header.SGTotal = 1;
2830	} else {
2831		c->Header.SGList = 0;
2832		c->Header.SGTotal = 0;
2833	}
2834	c->Header.Tag.lower = c->busaddr;
2835	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2836
2837	c->Request.Type.Type = cmd_type;
2838	if (cmd_type == TYPE_CMD) {
2839		switch (cmd) {
2840		case HPSA_INQUIRY:
2841			/* are we trying to read a vital product page */
2842			if (page_code != 0) {
2843				c->Request.CDB[1] = 0x01;
2844				c->Request.CDB[2] = page_code;
2845			}
2846			c->Request.CDBLen = 6;
2847			c->Request.Type.Attribute = ATTR_SIMPLE;
2848			c->Request.Type.Direction = XFER_READ;
2849			c->Request.Timeout = 0;
2850			c->Request.CDB[0] = HPSA_INQUIRY;
2851			c->Request.CDB[4] = size & 0xFF;
2852			break;
 
 
 
 
 
 
 
 
 
 
 
2853		case HPSA_REPORT_LOG:
2854		case HPSA_REPORT_PHYS:
2855			/* Talking to controller so It's a physical command
2856			   mode = 00 target = 0.  Nothing to write.
2857			 */
2858			c->Request.CDBLen = 12;
2859			c->Request.Type.Attribute = ATTR_SIMPLE;
2860			c->Request.Type.Direction = XFER_READ;
2861			c->Request.Timeout = 0;
2862			c->Request.CDB[0] = cmd;
2863			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2864			c->Request.CDB[7] = (size >> 16) & 0xFF;
2865			c->Request.CDB[8] = (size >> 8) & 0xFF;
2866			c->Request.CDB[9] = size & 0xFF;
2867			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2868		case HPSA_CACHE_FLUSH:
2869			c->Request.CDBLen = 12;
2870			c->Request.Type.Attribute = ATTR_SIMPLE;
2871			c->Request.Type.Direction = XFER_WRITE;
 
2872			c->Request.Timeout = 0;
2873			c->Request.CDB[0] = BMIC_WRITE;
2874			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
 
 
2875			break;
2876		case TEST_UNIT_READY:
2877			c->Request.CDBLen = 6;
2878			c->Request.Type.Attribute = ATTR_SIMPLE;
2879			c->Request.Type.Direction = XFER_NONE;
2880			c->Request.Timeout = 0;
2881			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2882		default:
2883			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2884			BUG();
2885			return;
2886		}
2887	} else if (cmd_type == TYPE_MSG) {
2888		switch (cmd) {
2889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2890		case  HPSA_DEVICE_RESET_MSG:
2891			c->Request.CDBLen = 16;
2892			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2893			c->Request.Type.Attribute = ATTR_SIMPLE;
2894			c->Request.Type.Direction = XFER_NONE;
2895			c->Request.Timeout = 0; /* Don't time out */
2896			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2897			c->Request.CDB[0] =  cmd;
2898			c->Request.CDB[1] = 0x03;  /* Reset target above */
2899			/* If bytes 4-7 are zero, it means reset the */
2900			/* LunID device */
2901			c->Request.CDB[4] = 0x00;
2902			c->Request.CDB[5] = 0x00;
2903			c->Request.CDB[6] = 0x00;
2904			c->Request.CDB[7] = 0x00;
2905		break;
2906
2907		default:
2908			dev_warn(&h->pdev->dev, "unknown message type %d\n",
2909				cmd);
2910			BUG();
2911		}
2912	} else {
2913		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2914		BUG();
2915	}
2916
2917	switch (c->Request.Type.Direction) {
2918	case XFER_READ:
2919		pci_dir = PCI_DMA_FROMDEVICE;
2920		break;
2921	case XFER_WRITE:
2922		pci_dir = PCI_DMA_TODEVICE;
2923		break;
2924	case XFER_NONE:
2925		pci_dir = PCI_DMA_NONE;
2926		break;
2927	default:
2928		pci_dir = PCI_DMA_BIDIRECTIONAL;
2929	}
2930
2931	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2932
2933	return;
2934}
2935
2936/*
2937 * Map (physical) PCI mem into (virtual) kernel space
2938 */
2939static void __iomem *remap_pci_mem(ulong base, ulong size)
2940{
2941	ulong page_base = ((ulong) base) & PAGE_MASK;
2942	ulong page_offs = ((ulong) base) - page_base;
2943	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
 
2944
2945	return page_remapped ? (page_remapped + page_offs) : NULL;
2946}
2947
2948/* Takes cmds off the submission queue and sends them to the hardware,
2949 * then puts them on the queue of cmds waiting for completion.
2950 */
2951static void start_io(struct ctlr_info *h)
2952{
2953	struct CommandList *c;
2954
2955	while (!list_empty(&h->reqQ)) {
2956		c = list_entry(h->reqQ.next, struct CommandList, list);
2957		/* can't do anything if fifo is full */
2958		if ((h->access.fifo_full(h))) {
2959			dev_warn(&h->pdev->dev, "fifo full\n");
2960			break;
2961		}
2962
2963		/* Get the first entry from the Request Q */
2964		removeQ(c);
2965		h->Qdepth--;
2966
2967		/* Tell the controller execute command */
2968		h->access.submit_command(h, c);
2969
2970		/* Put job onto the completed Q */
2971		addQ(&h->cmpQ, c);
2972	}
2973}
2974
2975static inline unsigned long get_next_completion(struct ctlr_info *h)
2976{
2977	return h->access.command_completed(h);
2978}
2979
2980static inline bool interrupt_pending(struct ctlr_info *h)
2981{
2982	return h->access.intr_pending(h);
2983}
2984
2985static inline long interrupt_not_for_us(struct ctlr_info *h)
2986{
2987	return (h->access.intr_pending(h) == 0) ||
2988		(h->interrupts_enabled == 0);
2989}
2990
2991static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2992	u32 raw_tag)
2993{
2994	if (unlikely(tag_index >= h->nr_cmds)) {
2995		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2996		return 1;
2997	}
2998	return 0;
2999}
3000
3001static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
3002{
3003	removeQ(c);
3004	if (likely(c->cmd_type == CMD_SCSI))
 
3005		complete_scsi_command(c);
3006	else if (c->cmd_type == CMD_IOCTL_PEND)
3007		complete(c->waiting);
3008}
3009
3010static inline u32 hpsa_tag_contains_index(u32 tag)
3011{
3012	return tag & DIRECT_LOOKUP_BIT;
3013}
3014
3015static inline u32 hpsa_tag_to_index(u32 tag)
3016{
3017	return tag >> DIRECT_LOOKUP_SHIFT;
3018}
3019
3020
3021static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3022{
3023#define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3024#define HPSA_SIMPLE_ERROR_BITS 0x03
3025	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3026		return tag & ~HPSA_SIMPLE_ERROR_BITS;
3027	return tag & ~HPSA_PERF_ERROR_BITS;
3028}
3029
3030/* process completion of an indexed ("direct lookup") command */
3031static inline u32 process_indexed_cmd(struct ctlr_info *h,
3032	u32 raw_tag)
3033{
3034	u32 tag_index;
3035	struct CommandList *c;
3036
3037	tag_index = hpsa_tag_to_index(raw_tag);
3038	if (bad_tag(h, tag_index, raw_tag))
3039		return next_command(h);
3040	c = h->cmd_pool + tag_index;
3041	finish_cmd(c, raw_tag);
3042	return next_command(h);
3043}
3044
3045/* process completion of a non-indexed command */
3046static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3047	u32 raw_tag)
3048{
3049	u32 tag;
3050	struct CommandList *c = NULL;
3051
3052	tag = hpsa_tag_discard_error_bits(h, raw_tag);
3053	list_for_each_entry(c, &h->cmpQ, list) {
3054		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3055			finish_cmd(c, raw_tag);
3056			return next_command(h);
3057		}
3058	}
3059	bad_tag(h, h->nr_cmds + 1, raw_tag);
3060	return next_command(h);
3061}
3062
3063/* Some controllers, like p400, will give us one interrupt
3064 * after a soft reset, even if we turned interrupts off.
3065 * Only need to check for this in the hpsa_xxx_discard_completions
3066 * functions.
3067 */
3068static int ignore_bogus_interrupt(struct ctlr_info *h)
3069{
3070	if (likely(!reset_devices))
3071		return 0;
3072
3073	if (likely(h->interrupts_enabled))
3074		return 0;
3075
3076	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3077		"(known firmware bug.)  Ignoring.\n");
3078
3079	return 1;
3080}
3081
3082static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
 
 
 
 
 
3083{
3084	struct ctlr_info *h = dev_id;
3085	unsigned long flags;
 
 
 
 
 
3086	u32 raw_tag;
3087
3088	if (ignore_bogus_interrupt(h))
3089		return IRQ_NONE;
3090
3091	if (interrupt_not_for_us(h))
3092		return IRQ_NONE;
3093	spin_lock_irqsave(&h->lock, flags);
3094	while (interrupt_pending(h)) {
3095		raw_tag = get_next_completion(h);
3096		while (raw_tag != FIFO_EMPTY)
3097			raw_tag = next_command(h);
3098	}
3099	spin_unlock_irqrestore(&h->lock, flags);
3100	return IRQ_HANDLED;
3101}
3102
3103static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3104{
3105	struct ctlr_info *h = dev_id;
3106	unsigned long flags;
3107	u32 raw_tag;
 
3108
3109	if (ignore_bogus_interrupt(h))
3110		return IRQ_NONE;
3111
3112	spin_lock_irqsave(&h->lock, flags);
3113	raw_tag = get_next_completion(h);
3114	while (raw_tag != FIFO_EMPTY)
3115		raw_tag = next_command(h);
3116	spin_unlock_irqrestore(&h->lock, flags);
3117	return IRQ_HANDLED;
3118}
3119
3120static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3121{
3122	struct ctlr_info *h = dev_id;
3123	unsigned long flags;
3124	u32 raw_tag;
 
3125
3126	if (interrupt_not_for_us(h))
3127		return IRQ_NONE;
3128	spin_lock_irqsave(&h->lock, flags);
3129	while (interrupt_pending(h)) {
3130		raw_tag = get_next_completion(h);
3131		while (raw_tag != FIFO_EMPTY) {
3132			if (hpsa_tag_contains_index(raw_tag))
3133				raw_tag = process_indexed_cmd(h, raw_tag);
3134			else
3135				raw_tag = process_nonindexed_cmd(h, raw_tag);
3136		}
3137	}
3138	spin_unlock_irqrestore(&h->lock, flags);
3139	return IRQ_HANDLED;
3140}
3141
3142static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3143{
3144	struct ctlr_info *h = dev_id;
3145	unsigned long flags;
3146	u32 raw_tag;
 
3147
3148	spin_lock_irqsave(&h->lock, flags);
3149	raw_tag = get_next_completion(h);
3150	while (raw_tag != FIFO_EMPTY) {
3151		if (hpsa_tag_contains_index(raw_tag))
3152			raw_tag = process_indexed_cmd(h, raw_tag);
3153		else
3154			raw_tag = process_nonindexed_cmd(h, raw_tag);
3155	}
3156	spin_unlock_irqrestore(&h->lock, flags);
3157	return IRQ_HANDLED;
3158}
3159
3160/* Send a message CDB to the firmware. Careful, this only works
3161 * in simple mode, not performant mode due to the tag lookup.
3162 * We only ever use this immediately after a controller reset.
3163 */
3164static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3165						unsigned char type)
3166{
3167	struct Command {
3168		struct CommandListHeader CommandHeader;
3169		struct RequestBlock Request;
3170		struct ErrDescriptor ErrorDescriptor;
3171	};
3172	struct Command *cmd;
3173	static const size_t cmd_sz = sizeof(*cmd) +
3174					sizeof(cmd->ErrorDescriptor);
3175	dma_addr_t paddr64;
3176	uint32_t paddr32, tag;
 
3177	void __iomem *vaddr;
3178	int i, err;
3179
3180	vaddr = pci_ioremap_bar(pdev, 0);
3181	if (vaddr == NULL)
3182		return -ENOMEM;
3183
3184	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
3185	 * CCISS commands, so they must be allocated from the lower 4GiB of
3186	 * memory.
3187	 */
3188	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3189	if (err) {
3190		iounmap(vaddr);
3191		return -ENOMEM;
3192	}
3193
3194	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3195	if (cmd == NULL) {
3196		iounmap(vaddr);
3197		return -ENOMEM;
3198	}
3199
3200	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3201	 * although there's no guarantee, we assume that the address is at
3202	 * least 4-byte aligned (most likely, it's page-aligned).
3203	 */
3204	paddr32 = paddr64;
3205
3206	cmd->CommandHeader.ReplyQueue = 0;
3207	cmd->CommandHeader.SGList = 0;
3208	cmd->CommandHeader.SGTotal = 0;
3209	cmd->CommandHeader.Tag.lower = paddr32;
3210	cmd->CommandHeader.Tag.upper = 0;
3211	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3212
3213	cmd->Request.CDBLen = 16;
3214	cmd->Request.Type.Type = TYPE_MSG;
3215	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3216	cmd->Request.Type.Direction = XFER_NONE;
3217	cmd->Request.Timeout = 0; /* Don't time out */
3218	cmd->Request.CDB[0] = opcode;
3219	cmd->Request.CDB[1] = type;
3220	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3221	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3222	cmd->ErrorDescriptor.Addr.upper = 0;
3223	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3224
3225	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3226
3227	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3228		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3229		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3230			break;
3231		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3232	}
3233
3234	iounmap(vaddr);
3235
3236	/* we leak the DMA buffer here ... no choice since the controller could
3237	 *  still complete the command.
3238	 */
3239	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3240		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3241			opcode, type);
3242		return -ETIMEDOUT;
3243	}
3244
3245	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3246
3247	if (tag & HPSA_ERROR_BIT) {
3248		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3249			opcode, type);
3250		return -EIO;
3251	}
3252
3253	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3254		opcode, type);
3255	return 0;
3256}
3257
3258#define hpsa_noop(p) hpsa_message(p, 3, 0)
3259
3260static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3261	void * __iomem vaddr, u32 use_doorbell)
3262{
3263	u16 pmcsr;
3264	int pos;
3265
3266	if (use_doorbell) {
3267		/* For everything after the P600, the PCI power state method
3268		 * of resetting the controller doesn't work, so we have this
3269		 * other way using the doorbell register.
3270		 */
3271		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3272		writel(use_doorbell, vaddr + SA5_DOORBELL);
 
 
 
 
 
 
 
3273	} else { /* Try to do it the PCI power state way */
3274
3275		/* Quoting from the Open CISS Specification: "The Power
3276		 * Management Control/Status Register (CSR) controls the power
3277		 * state of the device.  The normal operating state is D0,
3278		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3279		 * the controller, place the interface device in D3 then to D0,
3280		 * this causes a secondary PCI reset which will reset the
3281		 * controller." */
3282
3283		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3284		if (pos == 0) {
3285			dev_err(&pdev->dev,
3286				"hpsa_reset_controller: "
3287				"PCI PM not supported\n");
3288			return -ENODEV;
3289		}
3290		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
 
3291		/* enter the D3hot power management state */
3292		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3293		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3294		pmcsr |= PCI_D3hot;
3295		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3296
3297		msleep(500);
3298
3299		/* enter the D0 power management state */
3300		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3301		pmcsr |= PCI_D0;
3302		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
 
 
 
 
 
 
 
3303	}
3304	return 0;
3305}
3306
3307static __devinit void init_driver_version(char *driver_version, int len)
3308{
3309	memset(driver_version, 0, len);
3310	strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3311}
3312
3313static __devinit int write_driver_ver_to_cfgtable(
3314	struct CfgTable __iomem *cfgtable)
3315{
3316	char *driver_version;
3317	int i, size = sizeof(cfgtable->driver_version);
3318
3319	driver_version = kmalloc(size, GFP_KERNEL);
3320	if (!driver_version)
3321		return -ENOMEM;
3322
3323	init_driver_version(driver_version, size);
3324	for (i = 0; i < size; i++)
3325		writeb(driver_version[i], &cfgtable->driver_version[i]);
3326	kfree(driver_version);
3327	return 0;
3328}
3329
3330static __devinit void read_driver_ver_from_cfgtable(
3331	struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3332{
3333	int i;
3334
3335	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3336		driver_ver[i] = readb(&cfgtable->driver_version[i]);
3337}
3338
3339static __devinit int controller_reset_failed(
3340	struct CfgTable __iomem *cfgtable)
3341{
3342
3343	char *driver_ver, *old_driver_ver;
3344	int rc, size = sizeof(cfgtable->driver_version);
3345
3346	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3347	if (!old_driver_ver)
3348		return -ENOMEM;
3349	driver_ver = old_driver_ver + size;
3350
3351	/* After a reset, the 32 bytes of "driver version" in the cfgtable
3352	 * should have been changed, otherwise we know the reset failed.
3353	 */
3354	init_driver_version(old_driver_ver, size);
3355	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3356	rc = !memcmp(driver_ver, old_driver_ver, size);
3357	kfree(old_driver_ver);
3358	return rc;
3359}
3360/* This does a hard reset of the controller using PCI power management
3361 * states or the using the doorbell register.
3362 */
3363static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3364{
3365	u64 cfg_offset;
3366	u32 cfg_base_addr;
3367	u64 cfg_base_addr_index;
3368	void __iomem *vaddr;
3369	unsigned long paddr;
3370	u32 misc_fw_support;
3371	int rc;
3372	struct CfgTable __iomem *cfgtable;
3373	u32 use_doorbell;
3374	u32 board_id;
3375	u16 command_register;
3376
3377	/* For controllers as old as the P600, this is very nearly
3378	 * the same thing as
3379	 *
3380	 * pci_save_state(pci_dev);
3381	 * pci_set_power_state(pci_dev, PCI_D3hot);
3382	 * pci_set_power_state(pci_dev, PCI_D0);
3383	 * pci_restore_state(pci_dev);
3384	 *
3385	 * For controllers newer than the P600, the pci power state
3386	 * method of resetting doesn't work so we have another way
3387	 * using the doorbell register.
3388	 */
3389
3390	rc = hpsa_lookup_board_id(pdev, &board_id);
3391	if (rc < 0 || !ctlr_is_resettable(board_id)) {
3392		dev_warn(&pdev->dev, "Not resetting device.\n");
3393		return -ENODEV;
3394	}
3395
3396	/* if controller is soft- but not hard resettable... */
3397	if (!ctlr_is_hard_resettable(board_id))
3398		return -ENOTSUPP; /* try soft reset later. */
3399
3400	/* Save the PCI command register */
3401	pci_read_config_word(pdev, 4, &command_register);
3402	/* Turn the board off.  This is so that later pci_restore_state()
3403	 * won't turn the board on before the rest of config space is ready.
3404	 */
3405	pci_disable_device(pdev);
3406	pci_save_state(pdev);
3407
3408	/* find the first memory BAR, so we can find the cfg table */
3409	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3410	if (rc)
3411		return rc;
3412	vaddr = remap_pci_mem(paddr, 0x250);
3413	if (!vaddr)
3414		return -ENOMEM;
3415
3416	/* find cfgtable in order to check if reset via doorbell is supported */
3417	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3418					&cfg_base_addr_index, &cfg_offset);
3419	if (rc)
3420		goto unmap_vaddr;
3421	cfgtable = remap_pci_mem(pci_resource_start(pdev,
3422		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3423	if (!cfgtable) {
3424		rc = -ENOMEM;
3425		goto unmap_vaddr;
3426	}
3427	rc = write_driver_ver_to_cfgtable(cfgtable);
3428	if (rc)
3429		goto unmap_vaddr;
3430
3431	/* If reset via doorbell register is supported, use that.
3432	 * There are two such methods.  Favor the newest method.
3433	 */
3434	misc_fw_support = readl(&cfgtable->misc_fw_support);
3435	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3436	if (use_doorbell) {
3437		use_doorbell = DOORBELL_CTLR_RESET2;
3438	} else {
3439		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3440		if (use_doorbell) {
3441			dev_warn(&pdev->dev, "Controller claims that "
3442				"'Bit 2 doorbell reset' is "
3443				"supported, but not 'bit 5 doorbell reset'.  "
3444				"Firmware update is recommended.\n");
3445			rc = -ENOTSUPP; /* try soft reset */
3446			goto unmap_cfgtable;
3447		}
3448	}
3449
3450	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3451	if (rc)
3452		goto unmap_cfgtable;
3453
3454	pci_restore_state(pdev);
3455	rc = pci_enable_device(pdev);
3456	if (rc) {
3457		dev_warn(&pdev->dev, "failed to enable device.\n");
3458		goto unmap_cfgtable;
3459	}
3460	pci_write_config_word(pdev, 4, command_register);
3461
3462	/* Some devices (notably the HP Smart Array 5i Controller)
3463	   need a little pause here */
3464	msleep(HPSA_POST_RESET_PAUSE_MSECS);
3465
3466	/* Wait for board to become not ready, then ready. */
3467	dev_info(&pdev->dev, "Waiting for board to reset.\n");
3468	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3469	if (rc) {
3470		dev_warn(&pdev->dev,
3471			"failed waiting for board to reset."
3472			" Will try soft reset.\n");
3473		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3474		goto unmap_cfgtable;
3475	}
3476	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3477	if (rc) {
3478		dev_warn(&pdev->dev,
3479			"failed waiting for board to become ready "
3480			"after hard reset\n");
3481		goto unmap_cfgtable;
3482	}
3483
3484	rc = controller_reset_failed(vaddr);
3485	if (rc < 0)
3486		goto unmap_cfgtable;
3487	if (rc) {
3488		dev_warn(&pdev->dev, "Unable to successfully reset "
3489			"controller. Will try soft reset.\n");
3490		rc = -ENOTSUPP;
3491	} else {
3492		dev_info(&pdev->dev, "board ready after hard reset.\n");
3493	}
3494
3495unmap_cfgtable:
3496	iounmap(cfgtable);
3497
3498unmap_vaddr:
3499	iounmap(vaddr);
3500	return rc;
3501}
3502
3503/*
3504 *  We cannot read the structure directly, for portability we must use
3505 *   the io functions.
3506 *   This is for debug only.
3507 */
3508static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3509{
3510#ifdef HPSA_DEBUG
3511	int i;
3512	char temp_name[17];
3513
3514	dev_info(dev, "Controller Configuration information\n");
3515	dev_info(dev, "------------------------------------\n");
3516	for (i = 0; i < 4; i++)
3517		temp_name[i] = readb(&(tb->Signature[i]));
3518	temp_name[4] = '\0';
3519	dev_info(dev, "   Signature = %s\n", temp_name);
3520	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3521	dev_info(dev, "   Transport methods supported = 0x%x\n",
3522	       readl(&(tb->TransportSupport)));
3523	dev_info(dev, "   Transport methods active = 0x%x\n",
3524	       readl(&(tb->TransportActive)));
3525	dev_info(dev, "   Requested transport Method = 0x%x\n",
3526	       readl(&(tb->HostWrite.TransportRequest)));
3527	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3528	       readl(&(tb->HostWrite.CoalIntDelay)));
3529	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3530	       readl(&(tb->HostWrite.CoalIntCount)));
3531	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3532	       readl(&(tb->CmdsOutMax)));
3533	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3534	for (i = 0; i < 16; i++)
3535		temp_name[i] = readb(&(tb->ServerName[i]));
3536	temp_name[16] = '\0';
3537	dev_info(dev, "   Server Name = %s\n", temp_name);
3538	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3539		readl(&(tb->HeartBeat)));
3540#endif				/* HPSA_DEBUG */
3541}
3542
3543static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3544{
3545	int i, offset, mem_type, bar_type;
3546
3547	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3548		return 0;
3549	offset = 0;
3550	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3551		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3552		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3553			offset += 4;
3554		else {
3555			mem_type = pci_resource_flags(pdev, i) &
3556			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3557			switch (mem_type) {
3558			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3559			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3560				offset += 4;	/* 32 bit */
3561				break;
3562			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3563				offset += 8;
3564				break;
3565			default:	/* reserved in PCI 2.2 */
3566				dev_warn(&pdev->dev,
3567				       "base address is invalid\n");
3568				return -1;
3569				break;
3570			}
3571		}
3572		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3573			return i + 1;
3574	}
3575	return -1;
3576}
3577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3578/* If MSI/MSI-X is supported by the kernel we will try to enable it on
3579 * controllers that are capable. If not, we use IO-APIC mode.
3580 */
3581
3582static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3583{
3584#ifdef CONFIG_PCI_MSI
3585	int err;
3586	struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3587	{0, 2}, {0, 3}
3588	};
3589
3590	/* Some boards advertise MSI but don't really support it */
3591	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3592	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3593		goto default_int_mode;
3594	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3595		dev_info(&h->pdev->dev, "MSIX\n");
3596		err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3597		if (!err) {
3598			h->intr[0] = hpsa_msix_entries[0].vector;
3599			h->intr[1] = hpsa_msix_entries[1].vector;
3600			h->intr[2] = hpsa_msix_entries[2].vector;
3601			h->intr[3] = hpsa_msix_entries[3].vector;
3602			h->msix_vector = 1;
3603			return;
3604		}
3605		if (err > 0) {
3606			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3607			       "available\n", err);
3608			goto default_int_mode;
3609		} else {
3610			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3611			       err);
3612			goto default_int_mode;
3613		}
 
 
 
3614	}
3615	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3616		dev_info(&h->pdev->dev, "MSI\n");
3617		if (!pci_enable_msi(h->pdev))
3618			h->msi_vector = 1;
3619		else
3620			dev_warn(&h->pdev->dev, "MSI init failed\n");
3621	}
3622default_int_mode:
3623#endif				/* CONFIG_PCI_MSI */
3624	/* if we get here we're going to use the default interrupt mode */
3625	h->intr[h->intr_mode] = h->pdev->irq;
3626}
3627
3628static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
 
3629{
3630	int i;
3631	u32 subsystem_vendor_id, subsystem_device_id;
3632
3633	subsystem_vendor_id = pdev->subsystem_vendor;
3634	subsystem_device_id = pdev->subsystem_device;
3635	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3636		    subsystem_vendor_id;
3637
 
 
3638	for (i = 0; i < ARRAY_SIZE(products); i++)
3639		if (*board_id == products[i].board_id)
 
 
 
 
 
 
 
 
3640			return i;
 
3641
3642	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3643		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3644		!hpsa_allow_any) {
3645		dev_warn(&pdev->dev, "unrecognized board ID: "
3646			"0x%08x, ignoring.\n", *board_id);
3647			return -ENODEV;
3648	}
3649	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3650}
3651
3652static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3653{
3654	u16 command;
3655
3656	(void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3657	return ((command & PCI_COMMAND_MEMORY) == 0);
3658}
3659
3660static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3661	unsigned long *memory_bar)
3662{
3663	int i;
3664
3665	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3666		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3667			/* addressing mode bits already removed */
3668			*memory_bar = pci_resource_start(pdev, i);
3669			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3670				*memory_bar);
3671			return 0;
3672		}
3673	dev_warn(&pdev->dev, "no memory BAR found\n");
3674	return -ENODEV;
3675}
3676
3677static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3678	void __iomem *vaddr, int wait_for_ready)
3679{
3680	int i, iterations;
3681	u32 scratchpad;
3682	if (wait_for_ready)
3683		iterations = HPSA_BOARD_READY_ITERATIONS;
3684	else
3685		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3686
3687	for (i = 0; i < iterations; i++) {
3688		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3689		if (wait_for_ready) {
3690			if (scratchpad == HPSA_FIRMWARE_READY)
3691				return 0;
3692		} else {
3693			if (scratchpad != HPSA_FIRMWARE_READY)
3694				return 0;
3695		}
3696		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3697	}
3698	dev_warn(&pdev->dev, "board not ready, timed out.\n");
3699	return -ENODEV;
3700}
3701
3702static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3703	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3704	u64 *cfg_offset)
3705{
3706	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3707	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3708	*cfg_base_addr &= (u32) 0x0000ffff;
3709	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3710	if (*cfg_base_addr_index == -1) {
3711		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3712		return -ENODEV;
3713	}
3714	return 0;
3715}
3716
3717static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3718{
3719	u64 cfg_offset;
3720	u32 cfg_base_addr;
3721	u64 cfg_base_addr_index;
3722	u32 trans_offset;
3723	int rc;
3724
3725	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3726		&cfg_base_addr_index, &cfg_offset);
3727	if (rc)
3728		return rc;
3729	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3730		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3731	if (!h->cfgtable)
 
3732		return -ENOMEM;
 
3733	rc = write_driver_ver_to_cfgtable(h->cfgtable);
3734	if (rc)
3735		return rc;
3736	/* Find performant mode table. */
3737	trans_offset = readl(&h->cfgtable->TransMethodOffset);
3738	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3739				cfg_base_addr_index)+cfg_offset+trans_offset,
3740				sizeof(*h->transtable));
3741	if (!h->transtable)
 
 
3742		return -ENOMEM;
 
3743	return 0;
3744}
3745
3746static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3747{
3748	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
 
 
 
3749
3750	/* Limit commands in memory limited kdump scenario. */
3751	if (reset_devices && h->max_commands > 32)
3752		h->max_commands = 32;
3753
3754	if (h->max_commands < 16) {
3755		dev_warn(&h->pdev->dev, "Controller reports "
3756			"max supported commands of %d, an obvious lie. "
3757			"Using 16.  Ensure that firmware is up to date.\n",
3758			h->max_commands);
3759		h->max_commands = 16;
3760	}
3761}
3762
 
 
 
 
 
 
 
 
 
3763/* Interrogate the hardware for some limits:
3764 * max commands, max SG elements without chaining, and with chaining,
3765 * SG chain block size, etc.
3766 */
3767static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3768{
3769	hpsa_get_max_perf_mode_cmds(h);
3770	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3771	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3772	/*
3773	 * Limit in-command s/g elements to 32 save dma'able memory.
3774	 * Howvever spec says if 0, use 31
3775	 */
3776	h->max_cmd_sg_entries = 31;
3777	if (h->maxsgentries > 512) {
3778		h->max_cmd_sg_entries = 32;
3779		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3780		h->maxsgentries--; /* save one for chain pointer */
3781	} else {
 
 
 
 
 
 
3782		h->maxsgentries = 31; /* default to traditional values */
3783		h->chainsize = 0;
3784	}
 
 
 
 
 
 
 
 
 
3785}
3786
3787static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3788{
3789	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3790	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
3791	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
3792	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
3793		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3794		return false;
3795	}
3796	return true;
3797}
3798
3799/* Need to enable prefetch in the SCSI core for 6400 in x86 */
3800static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3801{
3802#ifdef CONFIG_X86
3803	u32 prefetch;
3804
3805	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3806	prefetch |= 0x100;
3807	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
 
3808#endif
 
 
3809}
3810
3811/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3812 * in a prefetch beyond physical memory.
3813 */
3814static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3815{
3816	u32 dma_prefetch;
3817
3818	if (h->board_id != 0x3225103C)
3819		return;
3820	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3821	dma_prefetch |= 0x8000;
3822	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3823}
3824
3825static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3826{
3827	int i;
3828	u32 doorbell_value;
3829	unsigned long flags;
3830
3831	/* under certain very rare conditions, this can take awhile.
3832	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3833	 * as we enter this code.)
3834	 */
3835	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
 
 
3836		spin_lock_irqsave(&h->lock, flags);
3837		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3838		spin_unlock_irqrestore(&h->lock, flags);
3839		if (!(doorbell_value & CFGTBL_ChangeReq))
3840			break;
3841		/* delay and try again */
3842		usleep_range(10000, 20000);
3843	}
 
 
 
3844}
3845
3846static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
 
3847{
3848	u32 trans_support;
3849
3850	trans_support = readl(&(h->cfgtable->TransportSupport));
3851	if (!(trans_support & SIMPLE_MODE))
3852		return -ENOTSUPP;
3853
3854	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
 
3855	/* Update the field, and then ring the doorbell */
3856	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
 
3857	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3858	hpsa_wait_for_mode_change_ack(h);
 
3859	print_cfg_table(&h->pdev->dev, h->cfgtable);
3860	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3861		dev_warn(&h->pdev->dev,
3862			"unable to get board into simple mode\n");
3863		return -ENODEV;
3864	}
3865	h->transMethod = CFGTBL_Trans_Simple;
3866	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3867}
3868
3869static int __devinit hpsa_pci_init(struct ctlr_info *h)
 
3870{
3871	int prod_index, err;
 
3872
3873	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3874	if (prod_index < 0)
3875		return -ENODEV;
3876	h->product_name = products[prod_index].product_name;
3877	h->access = *(products[prod_index].access);
 
 
 
3878
3879	if (hpsa_board_disabled(h->pdev)) {
3880		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3881		return -ENODEV;
3882	}
3883	err = pci_enable_device(h->pdev);
3884	if (err) {
3885		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
 
3886		return err;
3887	}
3888
3889	err = pci_request_regions(h->pdev, "hpsa");
3890	if (err) {
3891		dev_err(&h->pdev->dev,
3892			"cannot obtain PCI resources, aborting\n");
 
3893		return err;
3894	}
3895	hpsa_interrupt_mode(h);
 
 
 
 
 
 
 
 
 
3896	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3897	if (err)
3898		goto err_out_free_res;
3899	h->vaddr = remap_pci_mem(h->paddr, 0x250);
3900	if (!h->vaddr) {
 
3901		err = -ENOMEM;
3902		goto err_out_free_res;
3903	}
3904	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3905	if (err)
3906		goto err_out_free_res;
3907	err = hpsa_find_cfgtables(h);
3908	if (err)
3909		goto err_out_free_res;
3910	hpsa_find_board_params(h);
3911
3912	if (!hpsa_CISS_signature_present(h)) {
3913		err = -ENODEV;
3914		goto err_out_free_res;
3915	}
3916	hpsa_enable_scsi_prefetch(h);
3917	hpsa_p600_dma_prefetch_quirk(h);
3918	err = hpsa_enter_simple_mode(h);
3919	if (err)
3920		goto err_out_free_res;
3921	return 0;
3922
3923err_out_free_res:
3924	if (h->transtable)
3925		iounmap(h->transtable);
3926	if (h->cfgtable)
3927		iounmap(h->cfgtable);
3928	if (h->vaddr)
3929		iounmap(h->vaddr);
 
3930	/*
3931	 * Deliberately omit pci_disable_device(): it does something nasty to
3932	 * Smart Array controllers that pci_enable_device does not undo
3933	 */
 
3934	pci_release_regions(h->pdev);
3935	return err;
3936}
3937
3938static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3939{
3940	int rc;
3941
3942#define HBA_INQUIRY_BYTE_COUNT 64
3943	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3944	if (!h->hba_inquiry_data)
3945		return;
3946	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3947		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3948	if (rc != 0) {
3949		kfree(h->hba_inquiry_data);
3950		h->hba_inquiry_data = NULL;
3951	}
3952}
3953
3954static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3955{
3956	int rc, i;
 
3957
3958	if (!reset_devices)
3959		return 0;
3960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3961	/* Reset the controller with a PCI power-cycle or via doorbell */
3962	rc = hpsa_kdump_hard_reset_controller(pdev);
3963
3964	/* -ENOTSUPP here means we cannot reset the controller
3965	 * but it's already (and still) up and running in
3966	 * "performant mode".  Or, it might be 640x, which can't reset
3967	 * due to concerns about shared bbwc between 6402/6404 pair.
3968	 */
3969	if (rc == -ENOTSUPP)
3970		return rc; /* just try to do the kdump anyhow. */
3971	if (rc)
3972		return -ENODEV;
3973
3974	/* Now try to get the controller to respond to a no-op */
3975	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
3976	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3977		if (hpsa_noop(pdev) == 0)
3978			break;
3979		else
3980			dev_warn(&pdev->dev, "no-op failed%s\n",
3981					(i < 11 ? "; re-trying" : ""));
3982	}
3983	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3984}
3985
3986static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
3987{
3988	h->cmd_pool_bits = kzalloc(
3989		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
3990		sizeof(unsigned long), GFP_KERNEL);
3991	h->cmd_pool = pci_alloc_consistent(h->pdev,
3992		    h->nr_cmds * sizeof(*h->cmd_pool),
3993		    &(h->cmd_pool_dhandle));
3994	h->errinfo_pool = pci_alloc_consistent(h->pdev,
3995		    h->nr_cmds * sizeof(*h->errinfo_pool),
3996		    &(h->errinfo_pool_dhandle));
3997	if ((h->cmd_pool_bits == NULL)
3998	    || (h->cmd_pool == NULL)
3999	    || (h->errinfo_pool == NULL)) {
4000		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4001		return -ENOMEM;
4002	}
 
4003	return 0;
 
 
 
4004}
4005
4006static void hpsa_free_cmd_pool(struct ctlr_info *h)
 
4007{
4008	kfree(h->cmd_pool_bits);
4009	if (h->cmd_pool)
4010		pci_free_consistent(h->pdev,
4011			    h->nr_cmds * sizeof(struct CommandList),
4012			    h->cmd_pool, h->cmd_pool_dhandle);
4013	if (h->errinfo_pool)
4014		pci_free_consistent(h->pdev,
4015			    h->nr_cmds * sizeof(struct ErrorInfo),
4016			    h->errinfo_pool,
4017			    h->errinfo_pool_dhandle);
 
 
 
 
 
4018}
4019
4020static int hpsa_request_irq(struct ctlr_info *h,
 
4021	irqreturn_t (*msixhandler)(int, void *),
4022	irqreturn_t (*intxhandler)(int, void *))
4023{
4024	int rc;
4025
4026	if (h->msix_vector || h->msi_vector)
4027		rc = request_irq(h->intr[h->intr_mode], msixhandler,
4028				IRQF_DISABLED, h->devname, h);
4029	else
4030		rc = request_irq(h->intr[h->intr_mode], intxhandler,
4031				IRQF_DISABLED, h->devname, h);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4032	if (rc) {
4033		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4034		       h->intr[h->intr_mode], h->devname);
 
4035		return -ENODEV;
4036	}
4037	return 0;
4038}
4039
4040static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4041{
4042	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4043		HPSA_RESET_TYPE_CONTROLLER)) {
4044		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4045		return -EIO;
4046	}
4047
4048	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4049	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
 
4050		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4051		return -1;
4052	}
4053
4054	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4055	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
 
4056		dev_warn(&h->pdev->dev, "Board failed to become ready "
4057			"after soft reset.\n");
4058		return -1;
4059	}
4060
4061	return 0;
4062}
4063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4064static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4065{
4066	free_irq(h->intr[h->intr_mode], h);
4067#ifdef CONFIG_PCI_MSI
4068	if (h->msix_vector)
4069		pci_disable_msix(h->pdev);
4070	else if (h->msi_vector)
4071		pci_disable_msi(h->pdev);
4072#endif /* CONFIG_PCI_MSI */
4073	hpsa_free_sg_chain_blocks(h);
4074	hpsa_free_cmd_pool(h);
4075	kfree(h->blockFetchTable);
4076	pci_free_consistent(h->pdev, h->reply_pool_size,
4077		h->reply_pool, h->reply_pool_dhandle);
4078	if (h->vaddr)
4079		iounmap(h->vaddr);
4080	if (h->transtable)
4081		iounmap(h->transtable);
4082	if (h->cfgtable)
4083		iounmap(h->cfgtable);
4084	pci_release_regions(h->pdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4085	kfree(h);
4086}
4087
4088static int __devinit hpsa_init_one(struct pci_dev *pdev,
4089				    const struct pci_device_id *ent)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4090{
4091	int dac, rc;
4092	struct ctlr_info *h;
4093	int try_soft_reset = 0;
4094	unsigned long flags;
 
4095
4096	if (number_of_controllers == 0)
4097		printk(KERN_INFO DRIVER_NAME "\n");
4098
4099	rc = hpsa_init_reset_devices(pdev);
 
 
 
 
 
 
4100	if (rc) {
4101		if (rc != -ENOTSUPP)
4102			return rc;
4103		/* If the reset fails in a particular way (it has no way to do
4104		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4105		 * a soft reset once we get the controller configured up to the
4106		 * point that it can accept a command.
4107		 */
4108		try_soft_reset = 1;
4109		rc = 0;
4110	}
4111
4112reinit_after_soft_reset:
4113
4114	/* Command structures must be aligned on a 32-byte boundary because
4115	 * the 5 lower bits of the address are used by the hardware. and by
4116	 * the driver.  See comments in hpsa.h for more info.
4117	 */
4118#define COMMANDLIST_ALIGNMENT 32
4119	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4120	h = kzalloc(sizeof(*h), GFP_KERNEL);
4121	if (!h)
 
4122		return -ENOMEM;
 
4123
4124	h->pdev = pdev;
4125	h->busy_initializing = 1;
4126	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4127	INIT_LIST_HEAD(&h->cmpQ);
4128	INIT_LIST_HEAD(&h->reqQ);
4129	spin_lock_init(&h->lock);
 
4130	spin_lock_init(&h->scan_lock);
 
 
 
 
 
 
 
 
 
 
 
 
4131	rc = hpsa_pci_init(h);
4132	if (rc != 0)
4133		goto clean1;
 
 
 
 
 
 
4134
4135	sprintf(h->devname, "hpsa%d", number_of_controllers);
4136	h->ctlr = number_of_controllers;
4137	number_of_controllers++;
4138
4139	/* configure PCI DMA stuff */
4140	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4141	if (rc == 0) {
4142		dac = 1;
4143	} else {
4144		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4145		if (rc == 0) {
4146			dac = 0;
4147		} else {
4148			dev_err(&pdev->dev, "no suitable DMA available\n");
4149			goto clean1;
4150		}
4151	}
4152
4153	/* make sure the board interrupts are off */
4154	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4155
4156	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4157		goto clean2;
4158	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4159	       h->devname, pdev->device,
4160	       h->intr[h->intr_mode], dac ? "" : " not");
4161	if (hpsa_allocate_cmd_pool(h))
4162		goto clean4;
4163	if (hpsa_allocate_sg_chain_blocks(h))
4164		goto clean4;
4165	init_waitqueue_head(&h->scan_wait_queue);
 
 
4166	h->scan_finished = 1; /* no scan currently in progress */
 
4167
4168	pci_set_drvdata(pdev, h);
4169	h->ndevices = 0;
4170	h->scsi_host = NULL;
4171	spin_lock_init(&h->devlock);
4172	hpsa_put_ctlr_into_performant_mode(h);
 
 
 
 
 
 
 
 
 
4173
4174	/* At this point, the controller is ready to take commands.
 
 
 
 
 
 
 
4175	 * Now, if reset_devices and the hard reset didn't work, try
4176	 * the soft reset and see if that works.
4177	 */
4178	if (try_soft_reset) {
4179
4180		/* This is kind of gross.  We may or may not get a completion
4181		 * from the soft reset command, and if we do, then the value
4182		 * from the fifo may or may not be valid.  So, we wait 10 secs
4183		 * after the reset throwing away any completions we get during
4184		 * that time.  Unregister the interrupt handler and register
4185		 * fake ones to scoop up any residual completions.
4186		 */
4187		spin_lock_irqsave(&h->lock, flags);
4188		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4189		spin_unlock_irqrestore(&h->lock, flags);
4190		free_irq(h->intr[h->intr_mode], h);
4191		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4192					hpsa_intx_discard_completions);
4193		if (rc) {
4194			dev_warn(&h->pdev->dev, "Failed to request_irq after "
4195				"soft reset.\n");
4196			goto clean4;
 
 
 
 
 
 
 
 
 
 
 
4197		}
4198
4199		rc = hpsa_kdump_soft_reset(h);
4200		if (rc)
4201			/* Neither hard nor soft reset worked, we're hosed. */
4202			goto clean4;
4203
4204		dev_info(&h->pdev->dev, "Board READY.\n");
4205		dev_info(&h->pdev->dev,
4206			"Waiting for stale completions to drain.\n");
4207		h->access.set_intr_mask(h, HPSA_INTR_ON);
4208		msleep(10000);
4209		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4210
4211		rc = controller_reset_failed(h->cfgtable);
4212		if (rc)
4213			dev_info(&h->pdev->dev,
4214				"Soft reset appears to have failed.\n");
4215
4216		/* since the controller's reset, we have to go back and re-init
4217		 * everything.  Easiest to just forget what we've done and do it
4218		 * all over again.
4219		 */
4220		hpsa_undo_allocations_after_kdump_soft_reset(h);
4221		try_soft_reset = 0;
4222		if (rc)
4223			/* don't go to clean4, we already unallocated */
4224			return -ENODEV;
4225
4226		goto reinit_after_soft_reset;
4227	}
4228
 
 
 
 
 
 
4229	/* Turn the interrupts on so we can service requests */
4230	h->access.set_intr_mask(h, HPSA_INTR_ON);
4231
4232	hpsa_hba_inquiry(h);
4233	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
4234	h->busy_initializing = 0;
4235	return 1;
4236
4237clean4:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4238	hpsa_free_sg_chain_blocks(h);
 
4239	hpsa_free_cmd_pool(h);
4240	free_irq(h->intr[h->intr_mode], h);
4241clean2:
4242clean1:
4243	h->busy_initializing = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4244	kfree(h);
4245	return rc;
4246}
4247
4248static void hpsa_flush_cache(struct ctlr_info *h)
4249{
4250	char *flush_buf;
4251	struct CommandList *c;
 
4252
 
 
4253	flush_buf = kzalloc(4, GFP_KERNEL);
4254	if (!flush_buf)
4255		return;
4256
4257	c = cmd_special_alloc(h);
4258	if (!c) {
4259		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4260		goto out_of_memory;
4261	}
4262	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4263		RAID_CTLR_LUNID, TYPE_CMD);
4264	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
 
 
4265	if (c->err_info->CommandStatus != 0)
 
4266		dev_warn(&h->pdev->dev,
4267			"error flushing cache on controller\n");
4268	cmd_special_free(h, c);
4269out_of_memory:
4270	kfree(flush_buf);
4271}
4272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4273static void hpsa_shutdown(struct pci_dev *pdev)
4274{
4275	struct ctlr_info *h;
4276
4277	h = pci_get_drvdata(pdev);
4278	/* Turn board interrupts off  and send the flush cache command
4279	 * sendcmd will turn off interrupt, and send the flush...
4280	 * To write all data in the battery backed cache to disks
4281	 */
4282	hpsa_flush_cache(h);
4283	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4284	free_irq(h->intr[h->intr_mode], h);
4285#ifdef CONFIG_PCI_MSI
4286	if (h->msix_vector)
4287		pci_disable_msix(h->pdev);
4288	else if (h->msi_vector)
4289		pci_disable_msi(h->pdev);
4290#endif				/* CONFIG_PCI_MSI */
4291}
4292
4293static void __devexit hpsa_remove_one(struct pci_dev *pdev)
 
 
 
 
 
 
 
 
 
 
4294{
4295	struct ctlr_info *h;
 
4296
4297	if (pci_get_drvdata(pdev) == NULL) {
4298		dev_err(&pdev->dev, "unable to remove device \n");
4299		return;
4300	}
4301	h = pci_get_drvdata(pdev);
4302	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
4303	hpsa_shutdown(pdev);
4304	iounmap(h->vaddr);
4305	iounmap(h->transtable);
4306	iounmap(h->cfgtable);
4307	hpsa_free_sg_chain_blocks(h);
4308	pci_free_consistent(h->pdev,
4309		h->nr_cmds * sizeof(struct CommandList),
4310		h->cmd_pool, h->cmd_pool_dhandle);
4311	pci_free_consistent(h->pdev,
4312		h->nr_cmds * sizeof(struct ErrorInfo),
4313		h->errinfo_pool, h->errinfo_pool_dhandle);
4314	pci_free_consistent(h->pdev, h->reply_pool_size,
4315		h->reply_pool, h->reply_pool_dhandle);
4316	kfree(h->cmd_pool_bits);
4317	kfree(h->blockFetchTable);
4318	kfree(h->hba_inquiry_data);
4319	/*
4320	 * Deliberately omit pci_disable_device(): it does something nasty to
4321	 * Smart Array controllers that pci_enable_device does not undo
 
 
4322	 */
4323	pci_release_regions(pdev);
4324	pci_set_drvdata(pdev, NULL);
4325	kfree(h);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4326}
4327
4328static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4329	__attribute__((unused)) pm_message_t state)
4330{
4331	return -ENOSYS;
4332}
4333
4334static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4335{
4336	return -ENOSYS;
4337}
4338
4339static struct pci_driver hpsa_pci_driver = {
4340	.name = "hpsa",
4341	.probe = hpsa_init_one,
4342	.remove = __devexit_p(hpsa_remove_one),
4343	.id_table = hpsa_pci_device_id,	/* id_table */
4344	.shutdown = hpsa_shutdown,
4345	.suspend = hpsa_suspend,
4346	.resume = hpsa_resume,
4347};
4348
4349/* Fill in bucket_map[], given nsgs (the max number of
4350 * scatter gather elements supported) and bucket[],
4351 * which is an array of 8 integers.  The bucket[] array
4352 * contains 8 different DMA transfer sizes (in 16
4353 * byte increments) which the controller uses to fetch
4354 * commands.  This function fills in bucket_map[], which
4355 * maps a given number of scatter gather elements to one of
4356 * the 8 DMA transfer sizes.  The point of it is to allow the
4357 * controller to only do as much DMA as needed to fetch the
4358 * command, with the DMA transfer size encoded in the lower
4359 * bits of the command address.
4360 */
4361static void  calc_bucket_map(int bucket[], int num_buckets,
4362	int nsgs, int *bucket_map)
4363{
4364	int i, j, b, size;
4365
4366	/* even a command with 0 SGs requires 4 blocks */
4367#define MINIMUM_TRANSFER_BLOCKS 4
4368#define NUM_BUCKETS 8
4369	/* Note, bucket_map must have nsgs+1 entries. */
4370	for (i = 0; i <= nsgs; i++) {
4371		/* Compute size of a command with i SG entries */
4372		size = i + MINIMUM_TRANSFER_BLOCKS;
4373		b = num_buckets; /* Assume the biggest bucket */
4374		/* Find the bucket that is just big enough */
4375		for (j = 0; j < 8; j++) {
4376			if (bucket[j] >= size) {
4377				b = j;
4378				break;
4379			}
4380		}
4381		/* for a command with i SG entries, use bucket b. */
4382		bucket_map[i] = b;
4383	}
4384}
4385
4386static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4387	u32 use_short_tags)
 
 
 
4388{
4389	int i;
4390	unsigned long register_value;
 
 
 
 
 
 
4391
4392	/* This is a bit complicated.  There are 8 registers on
4393	 * the controller which we write to to tell it 8 different
4394	 * sizes of commands which there may be.  It's a way of
4395	 * reducing the DMA done to fetch each command.  Encoded into
4396	 * each command's tag are 3 bits which communicate to the controller
4397	 * which of the eight sizes that command fits within.  The size of
4398	 * each command depends on how many scatter gather entries there are.
4399	 * Each SG entry requires 16 bytes.  The eight registers are programmed
4400	 * with the number of 16-byte blocks a command of that size requires.
4401	 * The smallest command possible requires 5 such 16 byte blocks.
4402	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4403	 * blocks.  Note, this only extends to the SG entries contained
4404	 * within the command block, and does not extend to chained blocks
4405	 * of SG elements.   bft[] contains the eight values we write to
4406	 * the registers.  They are not evenly distributed, but have more
4407	 * sizes for small commands, and fewer sizes for larger commands.
4408	 */
4409	int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4410	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
 
 
 
 
 
 
 
 
 
 
4411	/*  5 = 1 s/g entry or 4k
4412	 *  6 = 2 s/g entry or 8k
4413	 *  8 = 4 s/g entry or 16k
4414	 * 10 = 6 s/g entry or 24k
4415	 */
4416
4417	h->reply_pool_wraparound = 1; /* spec: init to 1 */
 
 
 
 
 
4418
4419	/* Controller spec: zero out this buffer. */
4420	memset(h->reply_pool, 0, h->reply_pool_size);
4421	h->reply_pool_head = h->reply_pool;
4422
4423	bft[7] = h->max_sg_entries + 4;
4424	calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
 
4425	for (i = 0; i < 8; i++)
4426		writel(bft[i], &h->transtable->BlockFetch[i]);
4427
4428	/* size of controller ring buffer */
4429	writel(h->max_commands, &h->transtable->RepQSize);
4430	writel(1, &h->transtable->RepQCount);
4431	writel(0, &h->transtable->RepQCtrAddrLow32);
4432	writel(0, &h->transtable->RepQCtrAddrHigh32);
4433	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4434	writel(0, &h->transtable->RepQAddr0High32);
4435	writel(CFGTBL_Trans_Performant | use_short_tags,
4436		&(h->cfgtable->HostWrite.TransportRequest));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4437	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4438	hpsa_wait_for_mode_change_ack(h);
 
 
 
 
4439	register_value = readl(&(h->cfgtable->TransportActive));
4440	if (!(register_value & CFGTBL_Trans_Performant)) {
4441		dev_warn(&h->pdev->dev, "unable to get board into"
4442					" performant mode\n");
4443		return;
4444	}
4445	/* Change the access methods to the performant access methods */
4446	h->access = SA5_performant_access;
4447	h->transMethod = CFGTBL_Trans_Performant;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4448}
4449
4450static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
 
 
 
4451{
4452	u32 trans_support;
 
 
 
4453
4454	if (hpsa_simple_mode)
4455		return;
4456
4457	trans_support = readl(&(h->cfgtable->TransportSupport));
4458	if (!(trans_support & PERFORMANT_MODE))
4459		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4460
 
4461	hpsa_get_max_perf_mode_cmds(h);
4462	h->max_sg_entries = 32;
4463	/* Performant mode ring buffer and supporting data structures */
4464	h->reply_pool_size = h->max_commands * sizeof(u64);
4465	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4466				&(h->reply_pool_dhandle));
 
 
 
 
 
 
 
 
 
 
 
4467
4468	/* Need a block fetch table for performant mode */
4469	h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4470				sizeof(u32)), GFP_KERNEL);
 
 
 
 
4471
4472	if ((h->reply_pool == NULL)
4473		|| (h->blockFetchTable == NULL))
4474		goto clean_up;
 
4475
4476	hpsa_enter_performant_mode(h,
4477		trans_support & CFGTBL_Trans_use_short_tags);
 
 
 
 
 
 
 
4478
4479	return;
 
 
 
4480
4481clean_up:
4482	if (h->reply_pool)
4483		pci_free_consistent(h->pdev, h->reply_pool_size,
4484			h->reply_pool, h->reply_pool_dhandle);
4485	kfree(h->blockFetchTable);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4486}
4487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4488/*
4489 *  This is it.  Register the PCI driver information for the cards we control
4490 *  the OS will call our registered routines when it finds one of our cards.
4491 */
4492static int __init hpsa_init(void)
4493{
4494	return pci_register_driver(&hpsa_pci_driver);
 
 
 
 
 
 
 
 
 
 
 
 
4495}
4496
4497static void __exit hpsa_cleanup(void)
4498{
4499	pci_unregister_driver(&hpsa_pci_driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4500}
4501
4502module_init(hpsa_init);
4503module_exit(hpsa_cleanup);
v4.17
   1/*
   2 *    Disk Array driver for HP Smart Array SAS controllers
   3 *    Copyright 2016 Microsemi Corporation
   4 *    Copyright 2014-2015 PMC-Sierra, Inc.
   5 *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
   6 *
   7 *    This program is free software; you can redistribute it and/or modify
   8 *    it under the terms of the GNU General Public License as published by
   9 *    the Free Software Foundation; version 2 of the License.
  10 *
  11 *    This program is distributed in the hope that it will be useful,
  12 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  14 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
  15 *
  16 *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
 
 
 
 
  17 *
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/interrupt.h>
  22#include <linux/types.h>
  23#include <linux/pci.h>
  24#include <linux/pci-aspm.h>
  25#include <linux/kernel.h>
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/fs.h>
  29#include <linux/timer.h>
 
  30#include <linux/init.h>
  31#include <linux/spinlock.h>
  32#include <linux/compat.h>
  33#include <linux/blktrace_api.h>
  34#include <linux/uaccess.h>
  35#include <linux/io.h>
  36#include <linux/dma-mapping.h>
  37#include <linux/completion.h>
  38#include <linux/moduleparam.h>
  39#include <scsi/scsi.h>
  40#include <scsi/scsi_cmnd.h>
  41#include <scsi/scsi_device.h>
  42#include <scsi/scsi_host.h>
  43#include <scsi/scsi_tcq.h>
  44#include <scsi/scsi_eh.h>
  45#include <scsi/scsi_transport_sas.h>
  46#include <scsi/scsi_dbg.h>
  47#include <linux/cciss_ioctl.h>
  48#include <linux/string.h>
  49#include <linux/bitmap.h>
  50#include <linux/atomic.h>
  51#include <linux/jiffies.h>
  52#include <linux/percpu-defs.h>
  53#include <linux/percpu.h>
  54#include <asm/unaligned.h>
  55#include <asm/div64.h>
  56#include "hpsa_cmd.h"
  57#include "hpsa.h"
  58
  59/*
  60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
  61 * with an optional trailing '-' followed by a byte value (0-255).
  62 */
  63#define HPSA_DRIVER_VERSION "3.4.20-125"
  64#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
  65#define HPSA "hpsa"
  66
  67/* How long to wait for CISS doorbell communication */
  68#define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
  69#define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
  70#define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
  71#define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
  72#define MAX_IOCTL_CONFIG_WAIT 1000
  73
  74/*define how many times we will try a command because of bus resets */
  75#define MAX_CMD_RETRIES 3
  76
  77/* Embedded module documentation macros - see modules.h */
  78MODULE_AUTHOR("Hewlett-Packard Company");
  79MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
  80	HPSA_DRIVER_VERSION);
  81MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
  82MODULE_VERSION(HPSA_DRIVER_VERSION);
  83MODULE_LICENSE("GPL");
  84MODULE_ALIAS("cciss");
  85
 
 
 
 
  86static int hpsa_simple_mode;
  87module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
  88MODULE_PARM_DESC(hpsa_simple_mode,
  89	"Use 'simple mode' rather than 'performant mode'");
  90
  91/* define the PCI info for the cards we can control */
  92static const struct pci_device_id hpsa_pci_device_id[] = {
  93	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
  94	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
  95	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
  96	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
  97	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
  98	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
  99	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
 100	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
 101	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
 102	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
 103	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
 104	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
 105	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
 106	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
 107	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
 108	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
 109	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
 110	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
 111	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
 112	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
 113	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
 114	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
 115	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
 116	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
 117	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
 118	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
 119	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
 120	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
 121	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
 122	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
 123	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
 124	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
 125	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
 126	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
 127	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
 128	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
 129	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
 130	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
 131	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
 132	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
 133	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
 134	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
 135	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
 136	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
 137	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
 138	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
 139	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
 140	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
 141	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
 142	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
 143	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
 144	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
 145	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
 146	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
 147		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
 148	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
 149		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
 150	{0,}
 151};
 152
 153MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
 154
 155/*  board_id = Subsystem Device ID & Vendor ID
 156 *  product = Marketing Name for the board
 157 *  access = Address of the struct of function pointers
 158 */
 159static struct board_type products[] = {
 160	{0x40700E11, "Smart Array 5300", &SA5A_access},
 161	{0x40800E11, "Smart Array 5i", &SA5B_access},
 162	{0x40820E11, "Smart Array 532", &SA5B_access},
 163	{0x40830E11, "Smart Array 5312", &SA5B_access},
 164	{0x409A0E11, "Smart Array 641", &SA5A_access},
 165	{0x409B0E11, "Smart Array 642", &SA5A_access},
 166	{0x409C0E11, "Smart Array 6400", &SA5A_access},
 167	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
 168	{0x40910E11, "Smart Array 6i", &SA5A_access},
 169	{0x3225103C, "Smart Array P600", &SA5A_access},
 170	{0x3223103C, "Smart Array P800", &SA5A_access},
 171	{0x3234103C, "Smart Array P400", &SA5A_access},
 172	{0x3235103C, "Smart Array P400i", &SA5A_access},
 173	{0x3211103C, "Smart Array E200i", &SA5A_access},
 174	{0x3212103C, "Smart Array E200", &SA5A_access},
 175	{0x3213103C, "Smart Array E200i", &SA5A_access},
 176	{0x3214103C, "Smart Array E200i", &SA5A_access},
 177	{0x3215103C, "Smart Array E200i", &SA5A_access},
 178	{0x3237103C, "Smart Array E500", &SA5A_access},
 179	{0x323D103C, "Smart Array P700m", &SA5A_access},
 180	{0x3241103C, "Smart Array P212", &SA5_access},
 181	{0x3243103C, "Smart Array P410", &SA5_access},
 182	{0x3245103C, "Smart Array P410i", &SA5_access},
 183	{0x3247103C, "Smart Array P411", &SA5_access},
 184	{0x3249103C, "Smart Array P812", &SA5_access},
 185	{0x324A103C, "Smart Array P712m", &SA5_access},
 186	{0x324B103C, "Smart Array P711m", &SA5_access},
 187	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
 188	{0x3350103C, "Smart Array P222", &SA5_access},
 189	{0x3351103C, "Smart Array P420", &SA5_access},
 190	{0x3352103C, "Smart Array P421", &SA5_access},
 191	{0x3353103C, "Smart Array P822", &SA5_access},
 192	{0x3354103C, "Smart Array P420i", &SA5_access},
 193	{0x3355103C, "Smart Array P220i", &SA5_access},
 194	{0x3356103C, "Smart Array P721m", &SA5_access},
 195	{0x1920103C, "Smart Array P430i", &SA5_access},
 196	{0x1921103C, "Smart Array P830i", &SA5_access},
 197	{0x1922103C, "Smart Array P430", &SA5_access},
 198	{0x1923103C, "Smart Array P431", &SA5_access},
 199	{0x1924103C, "Smart Array P830", &SA5_access},
 200	{0x1925103C, "Smart Array P831", &SA5_access},
 201	{0x1926103C, "Smart Array P731m", &SA5_access},
 202	{0x1928103C, "Smart Array P230i", &SA5_access},
 203	{0x1929103C, "Smart Array P530", &SA5_access},
 204	{0x21BD103C, "Smart Array P244br", &SA5_access},
 205	{0x21BE103C, "Smart Array P741m", &SA5_access},
 206	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
 207	{0x21C0103C, "Smart Array P440ar", &SA5_access},
 208	{0x21C1103C, "Smart Array P840ar", &SA5_access},
 209	{0x21C2103C, "Smart Array P440", &SA5_access},
 210	{0x21C3103C, "Smart Array P441", &SA5_access},
 211	{0x21C4103C, "Smart Array", &SA5_access},
 212	{0x21C5103C, "Smart Array P841", &SA5_access},
 213	{0x21C6103C, "Smart HBA H244br", &SA5_access},
 214	{0x21C7103C, "Smart HBA H240", &SA5_access},
 215	{0x21C8103C, "Smart HBA H241", &SA5_access},
 216	{0x21C9103C, "Smart Array", &SA5_access},
 217	{0x21CA103C, "Smart Array P246br", &SA5_access},
 218	{0x21CB103C, "Smart Array P840", &SA5_access},
 219	{0x21CC103C, "Smart Array", &SA5_access},
 220	{0x21CD103C, "Smart Array", &SA5_access},
 221	{0x21CE103C, "Smart HBA", &SA5_access},
 222	{0x05809005, "SmartHBA-SA", &SA5_access},
 223	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
 224	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
 225	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
 226	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
 227	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
 228	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
 229	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
 230	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
 231	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
 232	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
 233	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
 234};
 235
 236static struct scsi_transport_template *hpsa_sas_transport_template;
 237static int hpsa_add_sas_host(struct ctlr_info *h);
 238static void hpsa_delete_sas_host(struct ctlr_info *h);
 239static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
 240			struct hpsa_scsi_dev_t *device);
 241static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
 242static struct hpsa_scsi_dev_t
 243	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
 244		struct sas_rphy *rphy);
 245
 246#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
 247static const struct scsi_cmnd hpsa_cmd_busy;
 248#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
 249static const struct scsi_cmnd hpsa_cmd_idle;
 250static int number_of_controllers;
 251
 252static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
 253static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
 254static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
 
 255
 256#ifdef CONFIG_COMPAT
 257static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
 258	void __user *arg);
 259#endif
 260
 261static void cmd_free(struct ctlr_info *h, struct CommandList *c);
 
 262static struct CommandList *cmd_alloc(struct ctlr_info *h);
 263static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
 264static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
 265					    struct scsi_cmnd *scmd);
 266static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
 267	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
 268	int cmd_type);
 269static void hpsa_free_cmd_pool(struct ctlr_info *h);
 270#define VPD_PAGE (1 << 8)
 271#define HPSA_SIMPLE_ERROR_BITS 0x03
 272
 273static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
 274static void hpsa_scan_start(struct Scsi_Host *);
 275static int hpsa_scan_finished(struct Scsi_Host *sh,
 276	unsigned long elapsed_time);
 277static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
 
 278
 279static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
 280static int hpsa_slave_alloc(struct scsi_device *sdev);
 281static int hpsa_slave_configure(struct scsi_device *sdev);
 282static void hpsa_slave_destroy(struct scsi_device *sdev);
 283
 284static void hpsa_update_scsi_devices(struct ctlr_info *h);
 285static int check_for_unit_attention(struct ctlr_info *h,
 286	struct CommandList *c);
 287static void check_ioctl_unit_attention(struct ctlr_info *h,
 288	struct CommandList *c);
 289/* performant mode helper functions */
 290static void calc_bucket_map(int *bucket, int num_buckets,
 291	int nsgs, int min_blocks, u32 *bucket_map);
 292static void hpsa_free_performant_mode(struct ctlr_info *h);
 293static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
 294static inline u32 next_command(struct ctlr_info *h, u8 q);
 295static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
 296			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
 297			       u64 *cfg_offset);
 298static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
 299				    unsigned long *memory_bar);
 300static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
 301				bool *legacy_board);
 302static int wait_for_device_to_become_ready(struct ctlr_info *h,
 303					   unsigned char lunaddr[],
 304					   int reply_queue);
 305static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
 306				     int wait_for_ready);
 307static inline void finish_cmd(struct CommandList *c);
 308static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
 309#define BOARD_NOT_READY 0
 310#define BOARD_READY 1
 311static void hpsa_drain_accel_commands(struct ctlr_info *h);
 312static void hpsa_flush_cache(struct ctlr_info *h);
 313static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
 314	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
 315	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
 316static void hpsa_command_resubmit_worker(struct work_struct *work);
 317static u32 lockup_detected(struct ctlr_info *h);
 318static int detect_controller_lockup(struct ctlr_info *h);
 319static void hpsa_disable_rld_caching(struct ctlr_info *h);
 320static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
 321	struct ReportExtendedLUNdata *buf, int bufsize);
 322static bool hpsa_vpd_page_supported(struct ctlr_info *h,
 323	unsigned char scsi3addr[], u8 page);
 324static int hpsa_luns_changed(struct ctlr_info *h);
 325static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
 326			       struct hpsa_scsi_dev_t *dev,
 327			       unsigned char *scsi3addr);
 328
 329static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
 330{
 331	unsigned long *priv = shost_priv(sdev->host);
 332	return (struct ctlr_info *) *priv;
 333}
 334
 335static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
 336{
 337	unsigned long *priv = shost_priv(sh);
 338	return (struct ctlr_info *) *priv;
 339}
 340
 341static inline bool hpsa_is_cmd_idle(struct CommandList *c)
 342{
 343	return c->scsi_cmd == SCSI_CMD_IDLE;
 344}
 345
 346static inline bool hpsa_is_pending_event(struct CommandList *c)
 347{
 348	return c->reset_pending;
 349}
 350
 351/* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
 352static void decode_sense_data(const u8 *sense_data, int sense_data_len,
 353			u8 *sense_key, u8 *asc, u8 *ascq)
 354{
 355	struct scsi_sense_hdr sshdr;
 356	bool rc;
 357
 358	*sense_key = -1;
 359	*asc = -1;
 360	*ascq = -1;
 361
 362	if (sense_data_len < 1)
 363		return;
 364
 365	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
 366	if (rc) {
 367		*sense_key = sshdr.sense_key;
 368		*asc = sshdr.asc;
 369		*ascq = sshdr.ascq;
 370	}
 371}
 372
 373static int check_for_unit_attention(struct ctlr_info *h,
 374	struct CommandList *c)
 375{
 376	u8 sense_key, asc, ascq;
 377	int sense_len;
 378
 379	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
 380		sense_len = sizeof(c->err_info->SenseInfo);
 381	else
 382		sense_len = c->err_info->SenseLen;
 383
 384	decode_sense_data(c->err_info->SenseInfo, sense_len,
 385				&sense_key, &asc, &ascq);
 386	if (sense_key != UNIT_ATTENTION || asc == 0xff)
 387		return 0;
 388
 389	switch (asc) {
 390	case STATE_CHANGED:
 391		dev_warn(&h->pdev->dev,
 392			"%s: a state change detected, command retried\n",
 393			h->devname);
 394		break;
 395	case LUN_FAILED:
 396		dev_warn(&h->pdev->dev,
 397			"%s: LUN failure detected\n", h->devname);
 398		break;
 399	case REPORT_LUNS_CHANGED:
 400		dev_warn(&h->pdev->dev,
 401			"%s: report LUN data changed\n", h->devname);
 402	/*
 403	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
 404	 * target (array) devices.
 405	 */
 406		break;
 407	case POWER_OR_RESET:
 408		dev_warn(&h->pdev->dev,
 409			"%s: a power on or device reset detected\n",
 410			h->devname);
 411		break;
 412	case UNIT_ATTENTION_CLEARED:
 413		dev_warn(&h->pdev->dev,
 414			"%s: unit attention cleared by another initiator\n",
 415			h->devname);
 416		break;
 417	default:
 418		dev_warn(&h->pdev->dev,
 419			"%s: unknown unit attention detected\n",
 420			h->devname);
 421		break;
 422	}
 423	return 1;
 424}
 425
 426static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
 427{
 428	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
 429		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
 430		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
 431		return 0;
 432	dev_warn(&h->pdev->dev, HPSA "device busy");
 433	return 1;
 434}
 435
 436static u32 lockup_detected(struct ctlr_info *h);
 437static ssize_t host_show_lockup_detected(struct device *dev,
 438		struct device_attribute *attr, char *buf)
 439{
 440	int ld;
 441	struct ctlr_info *h;
 442	struct Scsi_Host *shost = class_to_shost(dev);
 443
 444	h = shost_to_hba(shost);
 445	ld = lockup_detected(h);
 446
 447	return sprintf(buf, "ld=%d\n", ld);
 448}
 449
 450static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
 451					 struct device_attribute *attr,
 452					 const char *buf, size_t count)
 453{
 454	int status, len;
 455	struct ctlr_info *h;
 456	struct Scsi_Host *shost = class_to_shost(dev);
 457	char tmpbuf[10];
 458
 459	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 460		return -EACCES;
 461	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 462	strncpy(tmpbuf, buf, len);
 463	tmpbuf[len] = '\0';
 464	if (sscanf(tmpbuf, "%d", &status) != 1)
 465		return -EINVAL;
 466	h = shost_to_hba(shost);
 467	h->acciopath_status = !!status;
 468	dev_warn(&h->pdev->dev,
 469		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
 470		h->acciopath_status ? "enabled" : "disabled");
 471	return count;
 472}
 473
 474static ssize_t host_store_raid_offload_debug(struct device *dev,
 475					 struct device_attribute *attr,
 476					 const char *buf, size_t count)
 477{
 478	int debug_level, len;
 479	struct ctlr_info *h;
 480	struct Scsi_Host *shost = class_to_shost(dev);
 481	char tmpbuf[10];
 482
 483	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 484		return -EACCES;
 485	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 486	strncpy(tmpbuf, buf, len);
 487	tmpbuf[len] = '\0';
 488	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
 489		return -EINVAL;
 490	if (debug_level < 0)
 491		debug_level = 0;
 492	h = shost_to_hba(shost);
 493	h->raid_offload_debug = debug_level;
 494	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
 495		h->raid_offload_debug);
 496	return count;
 497}
 498
 499static ssize_t host_store_rescan(struct device *dev,
 500				 struct device_attribute *attr,
 501				 const char *buf, size_t count)
 502{
 503	struct ctlr_info *h;
 504	struct Scsi_Host *shost = class_to_shost(dev);
 505	h = shost_to_hba(shost);
 506	hpsa_scan_start(h->scsi_host);
 507	return count;
 508}
 509
 510static ssize_t host_show_firmware_revision(struct device *dev,
 511	     struct device_attribute *attr, char *buf)
 512{
 513	struct ctlr_info *h;
 514	struct Scsi_Host *shost = class_to_shost(dev);
 515	unsigned char *fwrev;
 516
 517	h = shost_to_hba(shost);
 518	if (!h->hba_inquiry_data)
 519		return 0;
 520	fwrev = &h->hba_inquiry_data[32];
 521	return snprintf(buf, 20, "%c%c%c%c\n",
 522		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
 523}
 524
 525static ssize_t host_show_commands_outstanding(struct device *dev,
 526	     struct device_attribute *attr, char *buf)
 527{
 528	struct Scsi_Host *shost = class_to_shost(dev);
 529	struct ctlr_info *h = shost_to_hba(shost);
 530
 531	return snprintf(buf, 20, "%d\n",
 532			atomic_read(&h->commands_outstanding));
 533}
 534
 535static ssize_t host_show_transport_mode(struct device *dev,
 536	struct device_attribute *attr, char *buf)
 537{
 538	struct ctlr_info *h;
 539	struct Scsi_Host *shost = class_to_shost(dev);
 540
 541	h = shost_to_hba(shost);
 542	return snprintf(buf, 20, "%s\n",
 543		h->transMethod & CFGTBL_Trans_Performant ?
 544			"performant" : "simple");
 545}
 546
 547static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
 548	struct device_attribute *attr, char *buf)
 549{
 550	struct ctlr_info *h;
 551	struct Scsi_Host *shost = class_to_shost(dev);
 552
 553	h = shost_to_hba(shost);
 554	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
 555		(h->acciopath_status == 1) ?  "enabled" : "disabled");
 556}
 557
 558/* List of controllers which cannot be hard reset on kexec with reset_devices */
 559static u32 unresettable_controller[] = {
 560	0x324a103C, /* Smart Array P712m */
 561	0x324b103C, /* Smart Array P711m */
 562	0x3223103C, /* Smart Array P800 */
 563	0x3234103C, /* Smart Array P400 */
 564	0x3235103C, /* Smart Array P400i */
 565	0x3211103C, /* Smart Array E200i */
 566	0x3212103C, /* Smart Array E200 */
 567	0x3213103C, /* Smart Array E200i */
 568	0x3214103C, /* Smart Array E200i */
 569	0x3215103C, /* Smart Array E200i */
 570	0x3237103C, /* Smart Array E500 */
 571	0x323D103C, /* Smart Array P700m */
 572	0x40800E11, /* Smart Array 5i */
 573	0x409C0E11, /* Smart Array 6400 */
 574	0x409D0E11, /* Smart Array 6400 EM */
 575	0x40700E11, /* Smart Array 5300 */
 576	0x40820E11, /* Smart Array 532 */
 577	0x40830E11, /* Smart Array 5312 */
 578	0x409A0E11, /* Smart Array 641 */
 579	0x409B0E11, /* Smart Array 642 */
 580	0x40910E11, /* Smart Array 6i */
 581};
 582
 583/* List of controllers which cannot even be soft reset */
 584static u32 soft_unresettable_controller[] = {
 585	0x40800E11, /* Smart Array 5i */
 586	0x40700E11, /* Smart Array 5300 */
 587	0x40820E11, /* Smart Array 532 */
 588	0x40830E11, /* Smart Array 5312 */
 589	0x409A0E11, /* Smart Array 641 */
 590	0x409B0E11, /* Smart Array 642 */
 591	0x40910E11, /* Smart Array 6i */
 592	/* Exclude 640x boards.  These are two pci devices in one slot
 593	 * which share a battery backed cache module.  One controls the
 594	 * cache, the other accesses the cache through the one that controls
 595	 * it.  If we reset the one controlling the cache, the other will
 596	 * likely not be happy.  Just forbid resetting this conjoined mess.
 597	 * The 640x isn't really supported by hpsa anyway.
 598	 */
 599	0x409C0E11, /* Smart Array 6400 */
 600	0x409D0E11, /* Smart Array 6400 EM */
 601};
 602
 603static int board_id_in_array(u32 a[], int nelems, u32 board_id)
 604{
 605	int i;
 606
 607	for (i = 0; i < nelems; i++)
 608		if (a[i] == board_id)
 609			return 1;
 610	return 0;
 611}
 612
 613static int ctlr_is_hard_resettable(u32 board_id)
 614{
 615	return !board_id_in_array(unresettable_controller,
 616			ARRAY_SIZE(unresettable_controller), board_id);
 617}
 618
 619static int ctlr_is_soft_resettable(u32 board_id)
 620{
 621	return !board_id_in_array(soft_unresettable_controller,
 622			ARRAY_SIZE(soft_unresettable_controller), board_id);
 623}
 624
 625static int ctlr_is_resettable(u32 board_id)
 626{
 627	return ctlr_is_hard_resettable(board_id) ||
 628		ctlr_is_soft_resettable(board_id);
 629}
 630
 631static ssize_t host_show_resettable(struct device *dev,
 632	struct device_attribute *attr, char *buf)
 633{
 634	struct ctlr_info *h;
 635	struct Scsi_Host *shost = class_to_shost(dev);
 636
 637	h = shost_to_hba(shost);
 638	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
 639}
 640
 641static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
 642{
 643	return (scsi3addr[3] & 0xC0) == 0x40;
 644}
 645
 646static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
 647	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
 648};
 649#define HPSA_RAID_0	0
 650#define HPSA_RAID_4	1
 651#define HPSA_RAID_1	2	/* also used for RAID 10 */
 652#define HPSA_RAID_5	3	/* also used for RAID 50 */
 653#define HPSA_RAID_51	4
 654#define HPSA_RAID_6	5	/* also used for RAID 60 */
 655#define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
 656#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
 657#define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
 658
 659static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
 660{
 661	return !device->physical_device;
 662}
 663
 664static ssize_t raid_level_show(struct device *dev,
 665	     struct device_attribute *attr, char *buf)
 666{
 667	ssize_t l = 0;
 668	unsigned char rlevel;
 669	struct ctlr_info *h;
 670	struct scsi_device *sdev;
 671	struct hpsa_scsi_dev_t *hdev;
 672	unsigned long flags;
 673
 674	sdev = to_scsi_device(dev);
 675	h = sdev_to_hba(sdev);
 676	spin_lock_irqsave(&h->lock, flags);
 677	hdev = sdev->hostdata;
 678	if (!hdev) {
 679		spin_unlock_irqrestore(&h->lock, flags);
 680		return -ENODEV;
 681	}
 682
 683	/* Is this even a logical drive? */
 684	if (!is_logical_device(hdev)) {
 685		spin_unlock_irqrestore(&h->lock, flags);
 686		l = snprintf(buf, PAGE_SIZE, "N/A\n");
 687		return l;
 688	}
 689
 690	rlevel = hdev->raid_level;
 691	spin_unlock_irqrestore(&h->lock, flags);
 692	if (rlevel > RAID_UNKNOWN)
 693		rlevel = RAID_UNKNOWN;
 694	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
 695	return l;
 696}
 697
 698static ssize_t lunid_show(struct device *dev,
 699	     struct device_attribute *attr, char *buf)
 700{
 701	struct ctlr_info *h;
 702	struct scsi_device *sdev;
 703	struct hpsa_scsi_dev_t *hdev;
 704	unsigned long flags;
 705	unsigned char lunid[8];
 706
 707	sdev = to_scsi_device(dev);
 708	h = sdev_to_hba(sdev);
 709	spin_lock_irqsave(&h->lock, flags);
 710	hdev = sdev->hostdata;
 711	if (!hdev) {
 712		spin_unlock_irqrestore(&h->lock, flags);
 713		return -ENODEV;
 714	}
 715	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
 716	spin_unlock_irqrestore(&h->lock, flags);
 717	return snprintf(buf, 20, "0x%8phN\n", lunid);
 
 
 718}
 719
 720static ssize_t unique_id_show(struct device *dev,
 721	     struct device_attribute *attr, char *buf)
 722{
 723	struct ctlr_info *h;
 724	struct scsi_device *sdev;
 725	struct hpsa_scsi_dev_t *hdev;
 726	unsigned long flags;
 727	unsigned char sn[16];
 728
 729	sdev = to_scsi_device(dev);
 730	h = sdev_to_hba(sdev);
 731	spin_lock_irqsave(&h->lock, flags);
 732	hdev = sdev->hostdata;
 733	if (!hdev) {
 734		spin_unlock_irqrestore(&h->lock, flags);
 735		return -ENODEV;
 736	}
 737	memcpy(sn, hdev->device_id, sizeof(sn));
 738	spin_unlock_irqrestore(&h->lock, flags);
 739	return snprintf(buf, 16 * 2 + 2,
 740			"%02X%02X%02X%02X%02X%02X%02X%02X"
 741			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
 742			sn[0], sn[1], sn[2], sn[3],
 743			sn[4], sn[5], sn[6], sn[7],
 744			sn[8], sn[9], sn[10], sn[11],
 745			sn[12], sn[13], sn[14], sn[15]);
 746}
 747
 748static ssize_t sas_address_show(struct device *dev,
 749	      struct device_attribute *attr, char *buf)
 750{
 751	struct ctlr_info *h;
 752	struct scsi_device *sdev;
 753	struct hpsa_scsi_dev_t *hdev;
 754	unsigned long flags;
 755	u64 sas_address;
 756
 757	sdev = to_scsi_device(dev);
 758	h = sdev_to_hba(sdev);
 759	spin_lock_irqsave(&h->lock, flags);
 760	hdev = sdev->hostdata;
 761	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
 762		spin_unlock_irqrestore(&h->lock, flags);
 763		return -ENODEV;
 764	}
 765	sas_address = hdev->sas_address;
 766	spin_unlock_irqrestore(&h->lock, flags);
 767
 768	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
 769}
 770
 771static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
 772	     struct device_attribute *attr, char *buf)
 773{
 774	struct ctlr_info *h;
 775	struct scsi_device *sdev;
 776	struct hpsa_scsi_dev_t *hdev;
 777	unsigned long flags;
 778	int offload_enabled;
 779
 780	sdev = to_scsi_device(dev);
 781	h = sdev_to_hba(sdev);
 782	spin_lock_irqsave(&h->lock, flags);
 783	hdev = sdev->hostdata;
 784	if (!hdev) {
 785		spin_unlock_irqrestore(&h->lock, flags);
 786		return -ENODEV;
 787	}
 788	offload_enabled = hdev->offload_enabled;
 789	spin_unlock_irqrestore(&h->lock, flags);
 790
 791	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
 792		return snprintf(buf, 20, "%d\n", offload_enabled);
 793	else
 794		return snprintf(buf, 40, "%s\n",
 795				"Not applicable for a controller");
 796}
 797
 798#define MAX_PATHS 8
 799static ssize_t path_info_show(struct device *dev,
 800	     struct device_attribute *attr, char *buf)
 801{
 802	struct ctlr_info *h;
 803	struct scsi_device *sdev;
 804	struct hpsa_scsi_dev_t *hdev;
 805	unsigned long flags;
 806	int i;
 807	int output_len = 0;
 808	u8 box;
 809	u8 bay;
 810	u8 path_map_index = 0;
 811	char *active;
 812	unsigned char phys_connector[2];
 813
 814	sdev = to_scsi_device(dev);
 815	h = sdev_to_hba(sdev);
 816	spin_lock_irqsave(&h->devlock, flags);
 817	hdev = sdev->hostdata;
 818	if (!hdev) {
 819		spin_unlock_irqrestore(&h->devlock, flags);
 820		return -ENODEV;
 821	}
 822
 823	bay = hdev->bay;
 824	for (i = 0; i < MAX_PATHS; i++) {
 825		path_map_index = 1<<i;
 826		if (i == hdev->active_path_index)
 827			active = "Active";
 828		else if (hdev->path_map & path_map_index)
 829			active = "Inactive";
 830		else
 831			continue;
 832
 833		output_len += scnprintf(buf + output_len,
 834				PAGE_SIZE - output_len,
 835				"[%d:%d:%d:%d] %20.20s ",
 836				h->scsi_host->host_no,
 837				hdev->bus, hdev->target, hdev->lun,
 838				scsi_device_type(hdev->devtype));
 839
 840		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
 841			output_len += scnprintf(buf + output_len,
 842						PAGE_SIZE - output_len,
 843						"%s\n", active);
 844			continue;
 845		}
 846
 847		box = hdev->box[i];
 848		memcpy(&phys_connector, &hdev->phys_connector[i],
 849			sizeof(phys_connector));
 850		if (phys_connector[0] < '0')
 851			phys_connector[0] = '0';
 852		if (phys_connector[1] < '0')
 853			phys_connector[1] = '0';
 854		output_len += scnprintf(buf + output_len,
 855				PAGE_SIZE - output_len,
 856				"PORT: %.2s ",
 857				phys_connector);
 858		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
 859			hdev->expose_device) {
 860			if (box == 0 || box == 0xFF) {
 861				output_len += scnprintf(buf + output_len,
 862					PAGE_SIZE - output_len,
 863					"BAY: %hhu %s\n",
 864					bay, active);
 865			} else {
 866				output_len += scnprintf(buf + output_len,
 867					PAGE_SIZE - output_len,
 868					"BOX: %hhu BAY: %hhu %s\n",
 869					box, bay, active);
 870			}
 871		} else if (box != 0 && box != 0xFF) {
 872			output_len += scnprintf(buf + output_len,
 873				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
 874				box, active);
 875		} else
 876			output_len += scnprintf(buf + output_len,
 877				PAGE_SIZE - output_len, "%s\n", active);
 878	}
 879
 880	spin_unlock_irqrestore(&h->devlock, flags);
 881	return output_len;
 882}
 883
 884static ssize_t host_show_ctlr_num(struct device *dev,
 885	struct device_attribute *attr, char *buf)
 886{
 887	struct ctlr_info *h;
 888	struct Scsi_Host *shost = class_to_shost(dev);
 889
 890	h = shost_to_hba(shost);
 891	return snprintf(buf, 20, "%d\n", h->ctlr);
 892}
 893
 894static ssize_t host_show_legacy_board(struct device *dev,
 895	struct device_attribute *attr, char *buf)
 896{
 897	struct ctlr_info *h;
 898	struct Scsi_Host *shost = class_to_shost(dev);
 899
 900	h = shost_to_hba(shost);
 901	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
 902}
 903
 904static DEVICE_ATTR_RO(raid_level);
 905static DEVICE_ATTR_RO(lunid);
 906static DEVICE_ATTR_RO(unique_id);
 907static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
 908static DEVICE_ATTR_RO(sas_address);
 909static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
 910			host_show_hp_ssd_smart_path_enabled, NULL);
 911static DEVICE_ATTR_RO(path_info);
 912static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
 913		host_show_hp_ssd_smart_path_status,
 914		host_store_hp_ssd_smart_path_status);
 915static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
 916			host_store_raid_offload_debug);
 917static DEVICE_ATTR(firmware_revision, S_IRUGO,
 918	host_show_firmware_revision, NULL);
 919static DEVICE_ATTR(commands_outstanding, S_IRUGO,
 920	host_show_commands_outstanding, NULL);
 921static DEVICE_ATTR(transport_mode, S_IRUGO,
 922	host_show_transport_mode, NULL);
 923static DEVICE_ATTR(resettable, S_IRUGO,
 924	host_show_resettable, NULL);
 925static DEVICE_ATTR(lockup_detected, S_IRUGO,
 926	host_show_lockup_detected, NULL);
 927static DEVICE_ATTR(ctlr_num, S_IRUGO,
 928	host_show_ctlr_num, NULL);
 929static DEVICE_ATTR(legacy_board, S_IRUGO,
 930	host_show_legacy_board, NULL);
 931
 932static struct device_attribute *hpsa_sdev_attrs[] = {
 933	&dev_attr_raid_level,
 934	&dev_attr_lunid,
 935	&dev_attr_unique_id,
 936	&dev_attr_hp_ssd_smart_path_enabled,
 937	&dev_attr_path_info,
 938	&dev_attr_sas_address,
 939	NULL,
 940};
 941
 942static struct device_attribute *hpsa_shost_attrs[] = {
 943	&dev_attr_rescan,
 944	&dev_attr_firmware_revision,
 945	&dev_attr_commands_outstanding,
 946	&dev_attr_transport_mode,
 947	&dev_attr_resettable,
 948	&dev_attr_hp_ssd_smart_path_status,
 949	&dev_attr_raid_offload_debug,
 950	&dev_attr_lockup_detected,
 951	&dev_attr_ctlr_num,
 952	&dev_attr_legacy_board,
 953	NULL,
 954};
 955
 956#define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
 957				 HPSA_MAX_CONCURRENT_PASSTHRUS)
 958
 959static struct scsi_host_template hpsa_driver_template = {
 960	.module			= THIS_MODULE,
 961	.name			= HPSA,
 962	.proc_name		= HPSA,
 963	.queuecommand		= hpsa_scsi_queue_command,
 964	.scan_start		= hpsa_scan_start,
 965	.scan_finished		= hpsa_scan_finished,
 966	.change_queue_depth	= hpsa_change_queue_depth,
 967	.this_id		= -1,
 968	.use_clustering		= ENABLE_CLUSTERING,
 969	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
 970	.ioctl			= hpsa_ioctl,
 971	.slave_alloc		= hpsa_slave_alloc,
 972	.slave_configure	= hpsa_slave_configure,
 973	.slave_destroy		= hpsa_slave_destroy,
 974#ifdef CONFIG_COMPAT
 975	.compat_ioctl		= hpsa_compat_ioctl,
 976#endif
 977	.sdev_attrs = hpsa_sdev_attrs,
 978	.shost_attrs = hpsa_shost_attrs,
 979	.max_sectors = 1024,
 980	.no_write_same = 1,
 981};
 982
 983static inline u32 next_command(struct ctlr_info *h, u8 q)
 
 
 
 
 
 
 
 984{
 985	u32 a;
 986	struct reply_queue_buffer *rq = &h->reply_queue[q];
 987
 988	if (h->transMethod & CFGTBL_Trans_io_accel1)
 989		return h->access.command_completed(h, q);
 990
 991	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
 992		return h->access.command_completed(h, q);
 993
 994	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
 995		a = rq->head[rq->current_entry];
 996		rq->current_entry++;
 997		atomic_dec(&h->commands_outstanding);
 998	} else {
 999		a = FIFO_EMPTY;
1000	}
1001	/* Check for wraparound */
1002	if (rq->current_entry == h->max_commands) {
1003		rq->current_entry = 0;
1004		rq->wraparound ^= 1;
1005	}
1006	return a;
1007}
1008
1009/*
1010 * There are some special bits in the bus address of the
1011 * command that we have to set for the controller to know
1012 * how to process the command:
1013 *
1014 * Normal performant mode:
1015 * bit 0: 1 means performant mode, 0 means simple mode.
1016 * bits 1-3 = block fetch table entry
1017 * bits 4-6 = command type (== 0)
1018 *
1019 * ioaccel1 mode:
1020 * bit 0 = "performant mode" bit.
1021 * bits 1-3 = block fetch table entry
1022 * bits 4-6 = command type (== 110)
1023 * (command type is needed because ioaccel1 mode
1024 * commands are submitted through the same register as normal
1025 * mode commands, so this is how the controller knows whether
1026 * the command is normal mode or ioaccel1 mode.)
1027 *
1028 * ioaccel2 mode:
1029 * bit 0 = "performant mode" bit.
1030 * bits 1-4 = block fetch table entry (note extra bit)
1031 * bits 4-6 = not needed, because ioaccel2 mode has
1032 * a separate special register for submitting commands.
1033 */
1034
1035/*
1036 * set_performant_mode: Modify the tag for cciss performant
1037 * set bit 0 for pull model, bits 3-1 for block fetch
1038 * register number
1039 */
1040#define DEFAULT_REPLY_QUEUE (-1)
1041static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042					int reply_queue)
1043{
1044	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046		if (unlikely(!h->msix_vectors))
1047			return;
1048		c->Header.ReplyQueue = reply_queue;
1049	}
1050}
1051
1052static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1053						struct CommandList *c,
1054						int reply_queue)
1055{
1056	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1057
1058	/*
1059	 * Tell the controller to post the reply to the queue for this
1060	 * processor.  This seems to give the best I/O throughput.
1061	 */
1062	cp->ReplyQueue = reply_queue;
1063	/*
1064	 * Set the bits in the address sent down to include:
1065	 *  - performant mode bit (bit 0)
1066	 *  - pull count (bits 1-3)
1067	 *  - command type (bits 4-6)
1068	 */
1069	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1070					IOACCEL1_BUSADDR_CMDTYPE;
1071}
1072
1073static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1074						struct CommandList *c,
1075						int reply_queue)
1076{
1077	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1078		&h->ioaccel2_cmd_pool[c->cmdindex];
1079
1080	/* Tell the controller to post the reply to the queue for this
1081	 * processor.  This seems to give the best I/O throughput.
1082	 */
1083	cp->reply_queue = reply_queue;
1084	/* Set the bits in the address sent down to include:
1085	 *  - performant mode bit not used in ioaccel mode 2
1086	 *  - pull count (bits 0-3)
1087	 *  - command type isn't needed for ioaccel2
1088	 */
1089	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1090}
1091
1092static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1093						struct CommandList *c,
1094						int reply_queue)
1095{
1096	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1097
1098	/*
1099	 * Tell the controller to post the reply to the queue for this
1100	 * processor.  This seems to give the best I/O throughput.
1101	 */
1102	cp->reply_queue = reply_queue;
1103	/*
1104	 * Set the bits in the address sent down to include:
1105	 *  - performant mode bit not used in ioaccel mode 2
1106	 *  - pull count (bits 0-3)
1107	 *  - command type isn't needed for ioaccel2
1108	 */
1109	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1110}
1111
1112static int is_firmware_flash_cmd(u8 *cdb)
1113{
1114	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1115}
1116
1117/*
1118 * During firmware flash, the heartbeat register may not update as frequently
1119 * as it should.  So we dial down lockup detection during firmware flash. and
1120 * dial it back up when firmware flash completes.
1121 */
1122#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1123#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1124#define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1125static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1126		struct CommandList *c)
1127{
1128	if (!is_firmware_flash_cmd(c->Request.CDB))
1129		return;
1130	atomic_inc(&h->firmware_flash_in_progress);
1131	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1132}
1133
1134static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1135		struct CommandList *c)
1136{
1137	if (is_firmware_flash_cmd(c->Request.CDB) &&
1138		atomic_dec_and_test(&h->firmware_flash_in_progress))
1139		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1140}
1141
1142static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1143	struct CommandList *c, int reply_queue)
1144{
1145	dial_down_lockup_detection_during_fw_flash(h, c);
1146	atomic_inc(&h->commands_outstanding);
1147
1148	reply_queue = h->reply_map[raw_smp_processor_id()];
1149	switch (c->cmd_type) {
1150	case CMD_IOACCEL1:
1151		set_ioaccel1_performant_mode(h, c, reply_queue);
1152		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1153		break;
1154	case CMD_IOACCEL2:
1155		set_ioaccel2_performant_mode(h, c, reply_queue);
1156		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1157		break;
1158	case IOACCEL2_TMF:
1159		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1160		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1161		break;
1162	default:
1163		set_performant_mode(h, c, reply_queue);
1164		h->access.submit_command(h, c);
1165	}
1166}
1167
1168static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1169{
1170	if (unlikely(hpsa_is_pending_event(c)))
1171		return finish_cmd(c);
1172
1173	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1174}
1175
1176static inline int is_hba_lunid(unsigned char scsi3addr[])
1177{
1178	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1179}
1180
1181static inline int is_scsi_rev_5(struct ctlr_info *h)
1182{
1183	if (!h->hba_inquiry_data)
1184		return 0;
1185	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1186		return 1;
1187	return 0;
1188}
1189
1190static int hpsa_find_target_lun(struct ctlr_info *h,
1191	unsigned char scsi3addr[], int bus, int *target, int *lun)
1192{
1193	/* finds an unused bus, target, lun for a new physical device
1194	 * assumes h->devlock is held
1195	 */
1196	int i, found = 0;
1197	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1198
1199	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1200
1201	for (i = 0; i < h->ndevices; i++) {
1202		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1203			__set_bit(h->dev[i]->target, lun_taken);
1204	}
1205
1206	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1207	if (i < HPSA_MAX_DEVICES) {
1208		/* *bus = 1; */
1209		*target = i;
1210		*lun = 0;
1211		found = 1;
 
 
1212	}
1213	return !found;
1214}
1215
1216static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1217	struct hpsa_scsi_dev_t *dev, char *description)
1218{
1219#define LABEL_SIZE 25
1220	char label[LABEL_SIZE];
1221
1222	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1223		return;
1224
1225	switch (dev->devtype) {
1226	case TYPE_RAID:
1227		snprintf(label, LABEL_SIZE, "controller");
1228		break;
1229	case TYPE_ENCLOSURE:
1230		snprintf(label, LABEL_SIZE, "enclosure");
1231		break;
1232	case TYPE_DISK:
1233	case TYPE_ZBC:
1234		if (dev->external)
1235			snprintf(label, LABEL_SIZE, "external");
1236		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1237			snprintf(label, LABEL_SIZE, "%s",
1238				raid_label[PHYSICAL_DRIVE]);
1239		else
1240			snprintf(label, LABEL_SIZE, "RAID-%s",
1241				dev->raid_level > RAID_UNKNOWN ? "?" :
1242				raid_label[dev->raid_level]);
1243		break;
1244	case TYPE_ROM:
1245		snprintf(label, LABEL_SIZE, "rom");
1246		break;
1247	case TYPE_TAPE:
1248		snprintf(label, LABEL_SIZE, "tape");
1249		break;
1250	case TYPE_MEDIUM_CHANGER:
1251		snprintf(label, LABEL_SIZE, "changer");
1252		break;
1253	default:
1254		snprintf(label, LABEL_SIZE, "UNKNOWN");
1255		break;
1256	}
1257
1258	dev_printk(level, &h->pdev->dev,
1259			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1260			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1261			description,
1262			scsi_device_type(dev->devtype),
1263			dev->vendor,
1264			dev->model,
1265			label,
1266			dev->offload_config ? '+' : '-',
1267			dev->offload_to_be_enabled ? '+' : '-',
1268			dev->expose_device);
1269}
1270
1271/* Add an entry into h->dev[] array. */
1272static int hpsa_scsi_add_entry(struct ctlr_info *h,
1273		struct hpsa_scsi_dev_t *device,
1274		struct hpsa_scsi_dev_t *added[], int *nadded)
1275{
1276	/* assumes h->devlock is held */
1277	int n = h->ndevices;
1278	int i;
1279	unsigned char addr1[8], addr2[8];
1280	struct hpsa_scsi_dev_t *sd;
1281
1282	if (n >= HPSA_MAX_DEVICES) {
1283		dev_err(&h->pdev->dev, "too many devices, some will be "
1284			"inaccessible.\n");
1285		return -1;
1286	}
1287
1288	/* physical devices do not have lun or target assigned until now. */
1289	if (device->lun != -1)
1290		/* Logical device, lun is already assigned. */
1291		goto lun_assigned;
1292
1293	/* If this device a non-zero lun of a multi-lun device
1294	 * byte 4 of the 8-byte LUN addr will contain the logical
1295	 * unit no, zero otherwise.
1296	 */
1297	if (device->scsi3addr[4] == 0) {
1298		/* This is not a non-zero lun of a multi-lun device */
1299		if (hpsa_find_target_lun(h, device->scsi3addr,
1300			device->bus, &device->target, &device->lun) != 0)
1301			return -1;
1302		goto lun_assigned;
1303	}
1304
1305	/* This is a non-zero lun of a multi-lun device.
1306	 * Search through our list and find the device which
1307	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1308	 * Assign the same bus and target for this new LUN.
1309	 * Use the logical unit number from the firmware.
1310	 */
1311	memcpy(addr1, device->scsi3addr, 8);
1312	addr1[4] = 0;
1313	addr1[5] = 0;
1314	for (i = 0; i < n; i++) {
1315		sd = h->dev[i];
1316		memcpy(addr2, sd->scsi3addr, 8);
1317		addr2[4] = 0;
1318		addr2[5] = 0;
1319		/* differ only in byte 4 and 5? */
1320		if (memcmp(addr1, addr2, 8) == 0) {
1321			device->bus = sd->bus;
1322			device->target = sd->target;
1323			device->lun = device->scsi3addr[4];
1324			break;
1325		}
1326	}
1327	if (device->lun == -1) {
1328		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1329			" suspect firmware bug or unsupported hardware "
1330			"configuration.\n");
1331			return -1;
1332	}
1333
1334lun_assigned:
1335
1336	h->dev[n] = device;
1337	h->ndevices++;
1338	added[*nadded] = device;
1339	(*nadded)++;
1340	hpsa_show_dev_msg(KERN_INFO, h, device,
1341		device->expose_device ? "added" : "masked");
 
 
 
 
 
 
 
1342	return 0;
1343}
1344
1345/*
1346 * Called during a scan operation.
1347 *
1348 * Update an entry in h->dev[] array.
1349 */
1350static void hpsa_scsi_update_entry(struct ctlr_info *h,
1351	int entry, struct hpsa_scsi_dev_t *new_entry)
1352{
1353	/* assumes h->devlock is held */
1354	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1355
1356	/* Raid level changed. */
1357	h->dev[entry]->raid_level = new_entry->raid_level;
1358
1359	/*
1360	 * ioacccel_handle may have changed for a dual domain disk
1361	 */
1362	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1363
1364	/* Raid offload parameters changed.  Careful about the ordering. */
1365	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1366		/*
1367		 * if drive is newly offload_enabled, we want to copy the
1368		 * raid map data first.  If previously offload_enabled and
1369		 * offload_config were set, raid map data had better be
1370		 * the same as it was before. If raid map data has changed
1371		 * then it had better be the case that
1372		 * h->dev[entry]->offload_enabled is currently 0.
1373		 */
1374		h->dev[entry]->raid_map = new_entry->raid_map;
1375		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376	}
1377	if (new_entry->offload_to_be_enabled) {
1378		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1380	}
1381	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1382	h->dev[entry]->offload_config = new_entry->offload_config;
1383	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1384	h->dev[entry]->queue_depth = new_entry->queue_depth;
1385
1386	/*
1387	 * We can turn off ioaccel offload now, but need to delay turning
1388	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1389	 * can't do that until all the devices are updated.
1390	 */
1391	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1392
1393	/*
1394	 * turn ioaccel off immediately if told to do so.
1395	 */
1396	if (!new_entry->offload_to_be_enabled)
1397		h->dev[entry]->offload_enabled = 0;
1398
1399	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1400}
1401
1402/* Replace an entry from h->dev[] array. */
1403static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1404	int entry, struct hpsa_scsi_dev_t *new_entry,
1405	struct hpsa_scsi_dev_t *added[], int *nadded,
1406	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1407{
1408	/* assumes h->devlock is held */
1409	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1410	removed[*nremoved] = h->dev[entry];
1411	(*nremoved)++;
1412
1413	/*
1414	 * New physical devices won't have target/lun assigned yet
1415	 * so we need to preserve the values in the slot we are replacing.
1416	 */
1417	if (new_entry->target == -1) {
1418		new_entry->target = h->dev[entry]->target;
1419		new_entry->lun = h->dev[entry]->lun;
1420	}
1421
1422	h->dev[entry] = new_entry;
1423	added[*nadded] = new_entry;
1424	(*nadded)++;
1425
1426	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
 
1427}
1428
1429/* Remove an entry from h->dev[] array. */
1430static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1431	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1432{
1433	/* assumes h->devlock is held */
1434	int i;
1435	struct hpsa_scsi_dev_t *sd;
1436
1437	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1438
1439	sd = h->dev[entry];
1440	removed[*nremoved] = h->dev[entry];
1441	(*nremoved)++;
1442
1443	for (i = entry; i < h->ndevices-1; i++)
1444		h->dev[i] = h->dev[i+1];
1445	h->ndevices--;
1446	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
 
 
1447}
1448
1449#define SCSI3ADDR_EQ(a, b) ( \
1450	(a)[7] == (b)[7] && \
1451	(a)[6] == (b)[6] && \
1452	(a)[5] == (b)[5] && \
1453	(a)[4] == (b)[4] && \
1454	(a)[3] == (b)[3] && \
1455	(a)[2] == (b)[2] && \
1456	(a)[1] == (b)[1] && \
1457	(a)[0] == (b)[0])
1458
1459static void fixup_botched_add(struct ctlr_info *h,
1460	struct hpsa_scsi_dev_t *added)
1461{
1462	/* called when scsi_add_device fails in order to re-adjust
1463	 * h->dev[] to match the mid layer's view.
1464	 */
1465	unsigned long flags;
1466	int i, j;
1467
1468	spin_lock_irqsave(&h->lock, flags);
1469	for (i = 0; i < h->ndevices; i++) {
1470		if (h->dev[i] == added) {
1471			for (j = i; j < h->ndevices-1; j++)
1472				h->dev[j] = h->dev[j+1];
1473			h->ndevices--;
1474			break;
1475		}
1476	}
1477	spin_unlock_irqrestore(&h->lock, flags);
1478	kfree(added);
1479}
1480
1481static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1482	struct hpsa_scsi_dev_t *dev2)
1483{
1484	/* we compare everything except lun and target as these
1485	 * are not yet assigned.  Compare parts likely
1486	 * to differ first
1487	 */
1488	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1489		sizeof(dev1->scsi3addr)) != 0)
1490		return 0;
1491	if (memcmp(dev1->device_id, dev2->device_id,
1492		sizeof(dev1->device_id)) != 0)
1493		return 0;
1494	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1495		return 0;
1496	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1497		return 0;
1498	if (dev1->devtype != dev2->devtype)
1499		return 0;
1500	if (dev1->bus != dev2->bus)
1501		return 0;
1502	return 1;
1503}
1504
1505static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1506	struct hpsa_scsi_dev_t *dev2)
1507{
1508	/* Device attributes that can change, but don't mean
1509	 * that the device is a different device, nor that the OS
1510	 * needs to be told anything about the change.
1511	 */
1512	if (dev1->raid_level != dev2->raid_level)
1513		return 1;
1514	if (dev1->offload_config != dev2->offload_config)
1515		return 1;
1516	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1517		return 1;
1518	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1519		if (dev1->queue_depth != dev2->queue_depth)
1520			return 1;
1521	/*
1522	 * This can happen for dual domain devices. An active
1523	 * path change causes the ioaccel handle to change
1524	 *
1525	 * for example note the handle differences between p0 and p1
1526	 * Device                    WWN               ,WWN hash,Handle
1527	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1528	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1529	 */
1530	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1531		return 1;
1532	return 0;
1533}
1534
1535/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1536 * and return needle location in *index.  If scsi3addr matches, but not
1537 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1538 * location in *index.
1539 * In the case of a minor device attribute change, such as RAID level, just
1540 * return DEVICE_UPDATED, along with the updated device's location in index.
1541 * If needle not found, return DEVICE_NOT_FOUND.
1542 */
1543static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1544	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1545	int *index)
1546{
1547	int i;
1548#define DEVICE_NOT_FOUND 0
1549#define DEVICE_CHANGED 1
1550#define DEVICE_SAME 2
1551#define DEVICE_UPDATED 3
1552	if (needle == NULL)
1553		return DEVICE_NOT_FOUND;
1554
1555	for (i = 0; i < haystack_size; i++) {
1556		if (haystack[i] == NULL) /* previously removed. */
1557			continue;
1558		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1559			*index = i;
1560			if (device_is_the_same(needle, haystack[i])) {
1561				if (device_updated(needle, haystack[i]))
1562					return DEVICE_UPDATED;
1563				return DEVICE_SAME;
1564			} else {
1565				/* Keep offline devices offline */
1566				if (needle->volume_offline)
1567					return DEVICE_NOT_FOUND;
1568				return DEVICE_CHANGED;
1569			}
1570		}
1571	}
1572	*index = -1;
1573	return DEVICE_NOT_FOUND;
1574}
1575
1576static void hpsa_monitor_offline_device(struct ctlr_info *h,
1577					unsigned char scsi3addr[])
1578{
1579	struct offline_device_entry *device;
1580	unsigned long flags;
1581
1582	/* Check to see if device is already on the list */
1583	spin_lock_irqsave(&h->offline_device_lock, flags);
1584	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1585		if (memcmp(device->scsi3addr, scsi3addr,
1586			sizeof(device->scsi3addr)) == 0) {
1587			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588			return;
1589		}
1590	}
1591	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1592
1593	/* Device is not on the list, add it. */
1594	device = kmalloc(sizeof(*device), GFP_KERNEL);
1595	if (!device)
1596		return;
1597
1598	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1599	spin_lock_irqsave(&h->offline_device_lock, flags);
1600	list_add_tail(&device->offline_list, &h->offline_device_list);
1601	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1602}
1603
1604/* Print a message explaining various offline volume states */
1605static void hpsa_show_volume_status(struct ctlr_info *h,
1606	struct hpsa_scsi_dev_t *sd)
1607{
1608	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1609		dev_info(&h->pdev->dev,
1610			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1611			h->scsi_host->host_no,
1612			sd->bus, sd->target, sd->lun);
1613	switch (sd->volume_offline) {
1614	case HPSA_LV_OK:
1615		break;
1616	case HPSA_LV_UNDERGOING_ERASE:
1617		dev_info(&h->pdev->dev,
1618			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1619			h->scsi_host->host_no,
1620			sd->bus, sd->target, sd->lun);
1621		break;
1622	case HPSA_LV_NOT_AVAILABLE:
1623		dev_info(&h->pdev->dev,
1624			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1625			h->scsi_host->host_no,
1626			sd->bus, sd->target, sd->lun);
1627		break;
1628	case HPSA_LV_UNDERGOING_RPI:
1629		dev_info(&h->pdev->dev,
1630			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1631			h->scsi_host->host_no,
1632			sd->bus, sd->target, sd->lun);
1633		break;
1634	case HPSA_LV_PENDING_RPI:
1635		dev_info(&h->pdev->dev,
1636			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1637			h->scsi_host->host_no,
1638			sd->bus, sd->target, sd->lun);
1639		break;
1640	case HPSA_LV_ENCRYPTED_NO_KEY:
1641		dev_info(&h->pdev->dev,
1642			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1643			h->scsi_host->host_no,
1644			sd->bus, sd->target, sd->lun);
1645		break;
1646	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1647		dev_info(&h->pdev->dev,
1648			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1649			h->scsi_host->host_no,
1650			sd->bus, sd->target, sd->lun);
1651		break;
1652	case HPSA_LV_UNDERGOING_ENCRYPTION:
1653		dev_info(&h->pdev->dev,
1654			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1655			h->scsi_host->host_no,
1656			sd->bus, sd->target, sd->lun);
1657		break;
1658	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1659		dev_info(&h->pdev->dev,
1660			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1661			h->scsi_host->host_no,
1662			sd->bus, sd->target, sd->lun);
1663		break;
1664	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1665		dev_info(&h->pdev->dev,
1666			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1667			h->scsi_host->host_no,
1668			sd->bus, sd->target, sd->lun);
1669		break;
1670	case HPSA_LV_PENDING_ENCRYPTION:
1671		dev_info(&h->pdev->dev,
1672			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1673			h->scsi_host->host_no,
1674			sd->bus, sd->target, sd->lun);
1675		break;
1676	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1677		dev_info(&h->pdev->dev,
1678			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1679			h->scsi_host->host_no,
1680			sd->bus, sd->target, sd->lun);
1681		break;
1682	}
1683}
1684
1685/*
1686 * Figure the list of physical drive pointers for a logical drive with
1687 * raid offload configured.
1688 */
1689static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1690				struct hpsa_scsi_dev_t *dev[], int ndevices,
1691				struct hpsa_scsi_dev_t *logical_drive)
1692{
1693	struct raid_map_data *map = &logical_drive->raid_map;
1694	struct raid_map_disk_data *dd = &map->data[0];
1695	int i, j;
1696	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1697				le16_to_cpu(map->metadata_disks_per_row);
1698	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1699				le16_to_cpu(map->layout_map_count) *
1700				total_disks_per_row;
1701	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1702				total_disks_per_row;
1703	int qdepth;
1704
1705	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1706		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1707
1708	logical_drive->nphysical_disks = nraid_map_entries;
1709
1710	qdepth = 0;
1711	for (i = 0; i < nraid_map_entries; i++) {
1712		logical_drive->phys_disk[i] = NULL;
1713		if (!logical_drive->offload_config)
1714			continue;
1715		for (j = 0; j < ndevices; j++) {
1716			if (dev[j] == NULL)
1717				continue;
1718			if (dev[j]->devtype != TYPE_DISK &&
1719			    dev[j]->devtype != TYPE_ZBC)
1720				continue;
1721			if (is_logical_device(dev[j]))
1722				continue;
1723			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1724				continue;
1725
1726			logical_drive->phys_disk[i] = dev[j];
1727			if (i < nphys_disk)
1728				qdepth = min(h->nr_cmds, qdepth +
1729				    logical_drive->phys_disk[i]->queue_depth);
1730			break;
1731		}
1732
1733		/*
1734		 * This can happen if a physical drive is removed and
1735		 * the logical drive is degraded.  In that case, the RAID
1736		 * map data will refer to a physical disk which isn't actually
1737		 * present.  And in that case offload_enabled should already
1738		 * be 0, but we'll turn it off here just in case
1739		 */
1740		if (!logical_drive->phys_disk[i]) {
1741			dev_warn(&h->pdev->dev,
1742				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1743				__func__,
1744				h->scsi_host->host_no, logical_drive->bus,
1745				logical_drive->target, logical_drive->lun);
1746			logical_drive->offload_enabled = 0;
1747			logical_drive->offload_to_be_enabled = 0;
1748			logical_drive->queue_depth = 8;
1749		}
1750	}
1751	if (nraid_map_entries)
1752		/*
1753		 * This is correct for reads, too high for full stripe writes,
1754		 * way too high for partial stripe writes
1755		 */
1756		logical_drive->queue_depth = qdepth;
1757	else {
1758		if (logical_drive->external)
1759			logical_drive->queue_depth = EXTERNAL_QD;
1760		else
1761			logical_drive->queue_depth = h->nr_cmds;
1762	}
1763}
1764
1765static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1766				struct hpsa_scsi_dev_t *dev[], int ndevices)
1767{
1768	int i;
1769
1770	for (i = 0; i < ndevices; i++) {
1771		if (dev[i] == NULL)
1772			continue;
1773		if (dev[i]->devtype != TYPE_DISK &&
1774		    dev[i]->devtype != TYPE_ZBC)
1775			continue;
1776		if (!is_logical_device(dev[i]))
1777			continue;
1778
1779		/*
1780		 * If offload is currently enabled, the RAID map and
1781		 * phys_disk[] assignment *better* not be changing
1782		 * because we would be changing ioaccel phsy_disk[] pointers
1783		 * on a ioaccel volume processing I/O requests.
1784		 *
1785		 * If an ioaccel volume status changed, initially because it was
1786		 * re-configured and thus underwent a transformation, or
1787		 * a drive failed, we would have received a state change
1788		 * request and ioaccel should have been turned off. When the
1789		 * transformation completes, we get another state change
1790		 * request to turn ioaccel back on. In this case, we need
1791		 * to update the ioaccel information.
1792		 *
1793		 * Thus: If it is not currently enabled, but will be after
1794		 * the scan completes, make sure the ioaccel pointers
1795		 * are up to date.
1796		 */
1797
1798		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1799			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1800	}
1801}
1802
1803static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1804{
1805	int rc = 0;
1806
1807	if (!h->scsi_host)
1808		return 1;
1809
1810	if (is_logical_device(device)) /* RAID */
1811		rc = scsi_add_device(h->scsi_host, device->bus,
1812					device->target, device->lun);
1813	else /* HBA */
1814		rc = hpsa_add_sas_device(h->sas_host, device);
1815
1816	return rc;
1817}
1818
1819static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1820						struct hpsa_scsi_dev_t *dev)
1821{
1822	int i;
1823	int count = 0;
1824
1825	for (i = 0; i < h->nr_cmds; i++) {
1826		struct CommandList *c = h->cmd_pool + i;
1827		int refcount = atomic_inc_return(&c->refcount);
1828
1829		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1830				dev->scsi3addr)) {
1831			unsigned long flags;
1832
1833			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1834			if (!hpsa_is_cmd_idle(c))
1835				++count;
1836			spin_unlock_irqrestore(&h->lock, flags);
1837		}
1838
1839		cmd_free(h, c);
1840	}
1841
1842	return count;
1843}
1844
1845static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1846						struct hpsa_scsi_dev_t *device)
1847{
1848	int cmds = 0;
1849	int waits = 0;
1850
1851	while (1) {
1852		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853		if (cmds == 0)
1854			break;
1855		if (++waits > 20)
1856			break;
1857		msleep(1000);
1858	}
1859
1860	if (waits > 20)
1861		dev_warn(&h->pdev->dev,
1862			"%s: removing device with %d outstanding commands!\n",
1863			__func__, cmds);
1864}
1865
1866static void hpsa_remove_device(struct ctlr_info *h,
1867			struct hpsa_scsi_dev_t *device)
1868{
1869	struct scsi_device *sdev = NULL;
1870
1871	if (!h->scsi_host)
1872		return;
1873
1874	/*
1875	 * Allow for commands to drain
1876	 */
1877	device->removed = 1;
1878	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1879
1880	if (is_logical_device(device)) { /* RAID */
1881		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1882						device->target, device->lun);
1883		if (sdev) {
1884			scsi_remove_device(sdev);
1885			scsi_device_put(sdev);
1886		} else {
1887			/*
1888			 * We don't expect to get here.  Future commands
1889			 * to this device will get a selection timeout as
1890			 * if the device were gone.
1891			 */
1892			hpsa_show_dev_msg(KERN_WARNING, h, device,
1893					"didn't find device for removal.");
1894		}
1895	} else { /* HBA */
1896
1897		hpsa_remove_sas_device(device);
1898	}
1899}
1900
1901static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1902	struct hpsa_scsi_dev_t *sd[], int nsds)
1903{
1904	/* sd contains scsi3 addresses and devtypes, and inquiry
1905	 * data.  This function takes what's in sd to be the current
1906	 * reality and updates h->dev[] to reflect that reality.
1907	 */
1908	int i, entry, device_change, changes = 0;
1909	struct hpsa_scsi_dev_t *csd;
1910	unsigned long flags;
1911	struct hpsa_scsi_dev_t **added, **removed;
1912	int nadded, nremoved;
 
1913
1914	/*
1915	 * A reset can cause a device status to change
1916	 * re-schedule the scan to see what happened.
1917	 */
1918	spin_lock_irqsave(&h->reset_lock, flags);
1919	if (h->reset_in_progress) {
1920		h->drv_req_rescan = 1;
1921		spin_unlock_irqrestore(&h->reset_lock, flags);
1922		return;
1923	}
1924	spin_unlock_irqrestore(&h->reset_lock, flags);
1925
1926	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1927	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1928
1929	if (!added || !removed) {
1930		dev_warn(&h->pdev->dev, "out of memory in "
1931			"adjust_hpsa_scsi_table\n");
1932		goto free_and_out;
1933	}
1934
1935	spin_lock_irqsave(&h->devlock, flags);
1936
1937	/* find any devices in h->dev[] that are not in
1938	 * sd[] and remove them from h->dev[], and for any
1939	 * devices which have changed, remove the old device
1940	 * info and add the new device info.
1941	 * If minor device attributes change, just update
1942	 * the existing device structure.
1943	 */
1944	i = 0;
1945	nremoved = 0;
1946	nadded = 0;
1947	while (i < h->ndevices) {
1948		csd = h->dev[i];
1949		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1950		if (device_change == DEVICE_NOT_FOUND) {
1951			changes++;
1952			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
 
1953			continue; /* remove ^^^, hence i not incremented */
1954		} else if (device_change == DEVICE_CHANGED) {
1955			changes++;
1956			hpsa_scsi_replace_entry(h, i, sd[entry],
1957				added, &nadded, removed, &nremoved);
1958			/* Set it to NULL to prevent it from being freed
1959			 * at the bottom of hpsa_update_scsi_devices()
1960			 */
1961			sd[entry] = NULL;
1962		} else if (device_change == DEVICE_UPDATED) {
1963			hpsa_scsi_update_entry(h, i, sd[entry]);
1964		}
1965		i++;
1966	}
1967
1968	/* Now, make sure every device listed in sd[] is also
1969	 * listed in h->dev[], adding them if they aren't found
1970	 */
1971
1972	for (i = 0; i < nsds; i++) {
1973		if (!sd[i]) /* if already added above. */
1974			continue;
1975
1976		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1977		 * as the SCSI mid-layer does not handle such devices well.
1978		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1979		 * at 160Hz, and prevents the system from coming up.
1980		 */
1981		if (sd[i]->volume_offline) {
1982			hpsa_show_volume_status(h, sd[i]);
1983			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1984			continue;
1985		}
1986
1987		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1988					h->ndevices, &entry);
1989		if (device_change == DEVICE_NOT_FOUND) {
1990			changes++;
1991			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
 
1992				break;
1993			sd[i] = NULL; /* prevent from being freed later. */
1994		} else if (device_change == DEVICE_CHANGED) {
1995			/* should never happen... */
1996			changes++;
1997			dev_warn(&h->pdev->dev,
1998				"device unexpectedly changed.\n");
1999			/* but if it does happen, we just ignore that device */
2000		}
2001	}
2002	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2003
2004	/*
2005	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2006	 * any logical drives that need it enabled.
2007	 *
2008	 * The raid map should be current by now.
2009	 *
2010	 * We are updating the device list used for I/O requests.
2011	 */
2012	for (i = 0; i < h->ndevices; i++) {
2013		if (h->dev[i] == NULL)
2014			continue;
2015		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2016	}
2017
2018	spin_unlock_irqrestore(&h->devlock, flags);
2019
2020	/* Monitor devices which are in one of several NOT READY states to be
2021	 * brought online later. This must be done without holding h->devlock,
2022	 * so don't touch h->dev[]
2023	 */
2024	for (i = 0; i < nsds; i++) {
2025		if (!sd[i]) /* if already added above. */
2026			continue;
2027		if (sd[i]->volume_offline)
2028			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2029	}
2030
2031	/* Don't notify scsi mid layer of any changes the first time through
2032	 * (or if there are no changes) scsi_scan_host will do it later the
2033	 * first time through.
2034	 */
2035	if (!changes)
2036		goto free_and_out;
2037
 
2038	/* Notify scsi mid layer of any removed devices */
2039	for (i = 0; i < nremoved; i++) {
2040		if (removed[i] == NULL)
2041			continue;
2042		if (removed[i]->expose_device)
2043			hpsa_remove_device(h, removed[i]);
 
 
 
 
 
 
 
 
 
 
 
2044		kfree(removed[i]);
2045		removed[i] = NULL;
2046	}
2047
2048	/* Notify scsi mid layer of any added devices */
2049	for (i = 0; i < nadded; i++) {
2050		int rc = 0;
2051
2052		if (added[i] == NULL)
2053			continue;
2054		if (!(added[i]->expose_device))
2055			continue;
2056		rc = hpsa_add_device(h, added[i]);
2057		if (!rc)
2058			continue;
2059		dev_warn(&h->pdev->dev,
2060			"addition failed %d, device not added.", rc);
2061		/* now we have to remove it from h->dev,
2062		 * since it didn't get added to scsi mid layer
2063		 */
2064		fixup_botched_add(h, added[i]);
2065		h->drv_req_rescan = 1;
2066	}
2067
2068free_and_out:
2069	kfree(added);
2070	kfree(removed);
2071}
2072
2073/*
2074 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2075 * Assume's h->devlock is held.
2076 */
2077static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2078	int bus, int target, int lun)
2079{
2080	int i;
2081	struct hpsa_scsi_dev_t *sd;
2082
2083	for (i = 0; i < h->ndevices; i++) {
2084		sd = h->dev[i];
2085		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2086			return sd;
2087	}
2088	return NULL;
2089}
2090
 
2091static int hpsa_slave_alloc(struct scsi_device *sdev)
2092{
2093	struct hpsa_scsi_dev_t *sd = NULL;
2094	unsigned long flags;
2095	struct ctlr_info *h;
2096
2097	h = sdev_to_hba(sdev);
2098	spin_lock_irqsave(&h->devlock, flags);
2099	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2100		struct scsi_target *starget;
2101		struct sas_rphy *rphy;
2102
2103		starget = scsi_target(sdev);
2104		rphy = target_to_rphy(starget);
2105		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2106		if (sd) {
2107			sd->target = sdev_id(sdev);
2108			sd->lun = sdev->lun;
2109		}
2110	}
2111	if (!sd)
2112		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2113					sdev_id(sdev), sdev->lun);
2114
2115	if (sd && sd->expose_device) {
2116		atomic_set(&sd->ioaccel_cmds_out, 0);
2117		sdev->hostdata = sd;
2118	} else
2119		sdev->hostdata = NULL;
2120	spin_unlock_irqrestore(&h->devlock, flags);
2121	return 0;
2122}
2123
2124/* configure scsi device based on internal per-device structure */
2125static int hpsa_slave_configure(struct scsi_device *sdev)
2126{
2127	struct hpsa_scsi_dev_t *sd;
2128	int queue_depth;
2129
2130	sd = sdev->hostdata;
2131	sdev->no_uld_attach = !sd || !sd->expose_device;
2132
2133	if (sd) {
2134		if (sd->external)
2135			queue_depth = EXTERNAL_QD;
2136		else
2137			queue_depth = sd->queue_depth != 0 ?
2138					sd->queue_depth : sdev->host->can_queue;
2139	} else
2140		queue_depth = sdev->host->can_queue;
2141
2142	scsi_change_queue_depth(sdev, queue_depth);
2143
2144	return 0;
2145}
2146
2147static void hpsa_slave_destroy(struct scsi_device *sdev)
2148{
2149	/* nothing to do. */
2150}
2151
2152static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2153{
2154	int i;
2155
2156	if (!h->ioaccel2_cmd_sg_list)
2157		return;
2158	for (i = 0; i < h->nr_cmds; i++) {
2159		kfree(h->ioaccel2_cmd_sg_list[i]);
2160		h->ioaccel2_cmd_sg_list[i] = NULL;
2161	}
2162	kfree(h->ioaccel2_cmd_sg_list);
2163	h->ioaccel2_cmd_sg_list = NULL;
2164}
2165
2166static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2167{
2168	int i;
2169
2170	if (h->chainsize <= 0)
2171		return 0;
2172
2173	h->ioaccel2_cmd_sg_list =
2174		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2175					GFP_KERNEL);
2176	if (!h->ioaccel2_cmd_sg_list)
2177		return -ENOMEM;
2178	for (i = 0; i < h->nr_cmds; i++) {
2179		h->ioaccel2_cmd_sg_list[i] =
2180			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2181					h->maxsgentries, GFP_KERNEL);
2182		if (!h->ioaccel2_cmd_sg_list[i])
2183			goto clean;
2184	}
2185	return 0;
2186
2187clean:
2188	hpsa_free_ioaccel2_sg_chain_blocks(h);
2189	return -ENOMEM;
2190}
2191
2192static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2193{
2194	int i;
2195
2196	if (!h->cmd_sg_list)
2197		return;
2198	for (i = 0; i < h->nr_cmds; i++) {
2199		kfree(h->cmd_sg_list[i]);
2200		h->cmd_sg_list[i] = NULL;
2201	}
2202	kfree(h->cmd_sg_list);
2203	h->cmd_sg_list = NULL;
2204}
2205
2206static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2207{
2208	int i;
2209
2210	if (h->chainsize <= 0)
2211		return 0;
2212
2213	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2214				GFP_KERNEL);
2215	if (!h->cmd_sg_list)
2216		return -ENOMEM;
2217
2218	for (i = 0; i < h->nr_cmds; i++) {
2219		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2220						h->chainsize, GFP_KERNEL);
2221		if (!h->cmd_sg_list[i])
2222			goto clean;
2223
2224	}
2225	return 0;
2226
2227clean:
2228	hpsa_free_sg_chain_blocks(h);
2229	return -ENOMEM;
2230}
2231
2232static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2233	struct io_accel2_cmd *cp, struct CommandList *c)
2234{
2235	struct ioaccel2_sg_element *chain_block;
2236	u64 temp64;
2237	u32 chain_size;
2238
2239	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2240	chain_size = le32_to_cpu(cp->sg[0].length);
2241	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2242				PCI_DMA_TODEVICE);
2243	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2244		/* prevent subsequent unmapping */
2245		cp->sg->address = 0;
2246		return -1;
2247	}
2248	cp->sg->address = cpu_to_le64(temp64);
2249	return 0;
2250}
2251
2252static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2253	struct io_accel2_cmd *cp)
2254{
2255	struct ioaccel2_sg_element *chain_sg;
2256	u64 temp64;
2257	u32 chain_size;
2258
2259	chain_sg = cp->sg;
2260	temp64 = le64_to_cpu(chain_sg->address);
2261	chain_size = le32_to_cpu(cp->sg[0].length);
2262	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2263}
2264
2265static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2266	struct CommandList *c)
2267{
2268	struct SGDescriptor *chain_sg, *chain_block;
2269	u64 temp64;
2270	u32 chain_len;
2271
2272	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2273	chain_block = h->cmd_sg_list[c->cmdindex];
2274	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2275	chain_len = sizeof(*chain_sg) *
2276		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2277	chain_sg->Len = cpu_to_le32(chain_len);
2278	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2279				PCI_DMA_TODEVICE);
2280	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2281		/* prevent subsequent unmapping */
2282		chain_sg->Addr = cpu_to_le64(0);
2283		return -1;
2284	}
2285	chain_sg->Addr = cpu_to_le64(temp64);
2286	return 0;
2287}
2288
2289static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2290	struct CommandList *c)
2291{
2292	struct SGDescriptor *chain_sg;
 
2293
2294	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2295		return;
2296
2297	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2298	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2299			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2300}
2301
2302
2303/* Decode the various types of errors on ioaccel2 path.
2304 * Return 1 for any error that should generate a RAID path retry.
2305 * Return 0 for errors that don't require a RAID path retry.
2306 */
2307static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2308					struct CommandList *c,
2309					struct scsi_cmnd *cmd,
2310					struct io_accel2_cmd *c2,
2311					struct hpsa_scsi_dev_t *dev)
2312{
2313	int data_len;
2314	int retry = 0;
2315	u32 ioaccel2_resid = 0;
2316
2317	switch (c2->error_data.serv_response) {
2318	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2319		switch (c2->error_data.status) {
2320		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2321			break;
2322		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2323			cmd->result |= SAM_STAT_CHECK_CONDITION;
2324			if (c2->error_data.data_present !=
2325					IOACCEL2_SENSE_DATA_PRESENT) {
2326				memset(cmd->sense_buffer, 0,
2327					SCSI_SENSE_BUFFERSIZE);
2328				break;
2329			}
2330			/* copy the sense data */
2331			data_len = c2->error_data.sense_data_len;
2332			if (data_len > SCSI_SENSE_BUFFERSIZE)
2333				data_len = SCSI_SENSE_BUFFERSIZE;
2334			if (data_len > sizeof(c2->error_data.sense_data_buff))
2335				data_len =
2336					sizeof(c2->error_data.sense_data_buff);
2337			memcpy(cmd->sense_buffer,
2338				c2->error_data.sense_data_buff, data_len);
2339			retry = 1;
2340			break;
2341		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2342			retry = 1;
2343			break;
2344		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2345			retry = 1;
2346			break;
2347		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2348			retry = 1;
2349			break;
2350		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2351			retry = 1;
2352			break;
2353		default:
2354			retry = 1;
2355			break;
2356		}
2357		break;
2358	case IOACCEL2_SERV_RESPONSE_FAILURE:
2359		switch (c2->error_data.status) {
2360		case IOACCEL2_STATUS_SR_IO_ERROR:
2361		case IOACCEL2_STATUS_SR_IO_ABORTED:
2362		case IOACCEL2_STATUS_SR_OVERRUN:
2363			retry = 1;
2364			break;
2365		case IOACCEL2_STATUS_SR_UNDERRUN:
2366			cmd->result = (DID_OK << 16);		/* host byte */
2367			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2368			ioaccel2_resid = get_unaligned_le32(
2369						&c2->error_data.resid_cnt[0]);
2370			scsi_set_resid(cmd, ioaccel2_resid);
2371			break;
2372		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2373		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2374		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2375			/*
2376			 * Did an HBA disk disappear? We will eventually
2377			 * get a state change event from the controller but
2378			 * in the meantime, we need to tell the OS that the
2379			 * HBA disk is no longer there and stop I/O
2380			 * from going down. This allows the potential re-insert
2381			 * of the disk to get the same device node.
2382			 */
2383			if (dev->physical_device && dev->expose_device) {
2384				cmd->result = DID_NO_CONNECT << 16;
2385				dev->removed = 1;
2386				h->drv_req_rescan = 1;
2387				dev_warn(&h->pdev->dev,
2388					"%s: device is gone!\n", __func__);
2389			} else
2390				/*
2391				 * Retry by sending down the RAID path.
2392				 * We will get an event from ctlr to
2393				 * trigger rescan regardless.
2394				 */
2395				retry = 1;
2396			break;
2397		default:
2398			retry = 1;
2399		}
2400		break;
2401	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2402		break;
2403	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2404		break;
2405	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2406		retry = 1;
2407		break;
2408	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2409		break;
2410	default:
2411		retry = 1;
2412		break;
2413	}
2414
2415	return retry;	/* retry on raid path? */
2416}
2417
2418static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2419		struct CommandList *c)
2420{
2421	bool do_wake = false;
2422
2423	/*
2424	 * Reset c->scsi_cmd here so that the reset handler will know
2425	 * this command has completed.  Then, check to see if the handler is
2426	 * waiting for this command, and, if so, wake it.
2427	 */
2428	c->scsi_cmd = SCSI_CMD_IDLE;
2429	mb();	/* Declare command idle before checking for pending events. */
2430	if (c->reset_pending) {
2431		unsigned long flags;
2432		struct hpsa_scsi_dev_t *dev;
2433
2434		/*
2435		 * There appears to be a reset pending; lock the lock and
2436		 * reconfirm.  If so, then decrement the count of outstanding
2437		 * commands and wake the reset command if this is the last one.
2438		 */
2439		spin_lock_irqsave(&h->lock, flags);
2440		dev = c->reset_pending;		/* Re-fetch under the lock. */
2441		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2442			do_wake = true;
2443		c->reset_pending = NULL;
2444		spin_unlock_irqrestore(&h->lock, flags);
2445	}
2446
2447	if (do_wake)
2448		wake_up_all(&h->event_sync_wait_queue);
2449}
2450
2451static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2452				      struct CommandList *c)
2453{
2454	hpsa_cmd_resolve_events(h, c);
2455	cmd_tagged_free(h, c);
2456}
2457
2458static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2459		struct CommandList *c, struct scsi_cmnd *cmd)
2460{
2461	hpsa_cmd_resolve_and_free(h, c);
2462	if (cmd && cmd->scsi_done)
2463		cmd->scsi_done(cmd);
2464}
2465
2466static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2467{
2468	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2469	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2470}
2471
2472static void process_ioaccel2_completion(struct ctlr_info *h,
2473		struct CommandList *c, struct scsi_cmnd *cmd,
2474		struct hpsa_scsi_dev_t *dev)
2475{
2476	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2477
2478	/* check for good status */
2479	if (likely(c2->error_data.serv_response == 0 &&
2480			c2->error_data.status == 0))
2481		return hpsa_cmd_free_and_done(h, c, cmd);
2482
2483	/*
2484	 * Any RAID offload error results in retry which will use
2485	 * the normal I/O path so the controller can handle whatever is
2486	 * wrong.
2487	 */
2488	if (is_logical_device(dev) &&
2489		c2->error_data.serv_response ==
2490			IOACCEL2_SERV_RESPONSE_FAILURE) {
2491		if (c2->error_data.status ==
2492			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2493			dev->offload_enabled = 0;
2494			dev->offload_to_be_enabled = 0;
2495		}
2496
2497		return hpsa_retry_cmd(h, c);
2498	}
2499
2500	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2501		return hpsa_retry_cmd(h, c);
2502
2503	return hpsa_cmd_free_and_done(h, c, cmd);
2504}
2505
2506/* Returns 0 on success, < 0 otherwise. */
2507static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2508					struct CommandList *cp)
2509{
2510	u8 tmf_status = cp->err_info->ScsiStatus;
2511
2512	switch (tmf_status) {
2513	case CISS_TMF_COMPLETE:
2514		/*
2515		 * CISS_TMF_COMPLETE never happens, instead,
2516		 * ei->CommandStatus == 0 for this case.
2517		 */
2518	case CISS_TMF_SUCCESS:
2519		return 0;
2520	case CISS_TMF_INVALID_FRAME:
2521	case CISS_TMF_NOT_SUPPORTED:
2522	case CISS_TMF_FAILED:
2523	case CISS_TMF_WRONG_LUN:
2524	case CISS_TMF_OVERLAPPED_TAG:
2525		break;
2526	default:
2527		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2528				tmf_status);
2529		break;
2530	}
2531	return -tmf_status;
2532}
2533
2534static void complete_scsi_command(struct CommandList *cp)
2535{
2536	struct scsi_cmnd *cmd;
2537	struct ctlr_info *h;
2538	struct ErrorInfo *ei;
2539	struct hpsa_scsi_dev_t *dev;
2540	struct io_accel2_cmd *c2;
2541
2542	u8 sense_key;
2543	u8 asc;      /* additional sense code */
2544	u8 ascq;     /* additional sense code qualifier */
2545	unsigned long sense_data_size;
2546
2547	ei = cp->err_info;
2548	cmd = cp->scsi_cmd;
2549	h = cp->h;
2550
2551	if (!cmd->device) {
2552		cmd->result = DID_NO_CONNECT << 16;
2553		return hpsa_cmd_free_and_done(h, cp, cmd);
2554	}
2555
2556	dev = cmd->device->hostdata;
2557	if (!dev) {
2558		cmd->result = DID_NO_CONNECT << 16;
2559		return hpsa_cmd_free_and_done(h, cp, cmd);
2560	}
2561	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2562
2563	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2564	if ((cp->cmd_type == CMD_SCSI) &&
2565		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2566		hpsa_unmap_sg_chain_block(h, cp);
2567
2568	if ((cp->cmd_type == CMD_IOACCEL2) &&
2569		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2570		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2571
2572	cmd->result = (DID_OK << 16); 		/* host byte */
2573	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
 
2574
2575	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2576		if (dev->physical_device && dev->expose_device &&
2577			dev->removed) {
2578			cmd->result = DID_NO_CONNECT << 16;
2579			return hpsa_cmd_free_and_done(h, cp, cmd);
2580		}
2581		if (likely(cp->phys_disk != NULL))
2582			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2583	}
2584
2585	/*
2586	 * We check for lockup status here as it may be set for
2587	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2588	 * fail_all_oustanding_cmds()
2589	 */
2590	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2591		/* DID_NO_CONNECT will prevent a retry */
2592		cmd->result = DID_NO_CONNECT << 16;
2593		return hpsa_cmd_free_and_done(h, cp, cmd);
2594	}
2595
2596	if ((unlikely(hpsa_is_pending_event(cp))))
2597		if (cp->reset_pending)
2598			return hpsa_cmd_free_and_done(h, cp, cmd);
2599
2600	if (cp->cmd_type == CMD_IOACCEL2)
2601		return process_ioaccel2_completion(h, cp, cmd, dev);
2602
 
2603	scsi_set_resid(cmd, ei->ResidualCnt);
2604	if (ei->CommandStatus == 0)
2605		return hpsa_cmd_free_and_done(h, cp, cmd);
2606
2607	/* For I/O accelerator commands, copy over some fields to the normal
2608	 * CISS header used below for error handling.
2609	 */
2610	if (cp->cmd_type == CMD_IOACCEL1) {
2611		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2612		cp->Header.SGList = scsi_sg_count(cmd);
2613		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2614		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2615			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2616		cp->Header.tag = c->tag;
2617		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2618		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2619
2620		/* Any RAID offload error results in retry which will use
2621		 * the normal I/O path so the controller can handle whatever's
2622		 * wrong.
2623		 */
2624		if (is_logical_device(dev)) {
2625			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2626				dev->offload_enabled = 0;
2627			return hpsa_retry_cmd(h, cp);
2628		}
2629	}
2630
2631	/* an error has occurred */
2632	switch (ei->CommandStatus) {
2633
2634	case CMD_TARGET_STATUS:
2635		cmd->result |= ei->ScsiStatus;
2636		/* copy the sense data */
2637		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2638			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2639		else
2640			sense_data_size = sizeof(ei->SenseInfo);
2641		if (ei->SenseLen < sense_data_size)
2642			sense_data_size = ei->SenseLen;
2643		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2644		if (ei->ScsiStatus)
2645			decode_sense_data(ei->SenseInfo, sense_data_size,
2646				&sense_key, &asc, &ascq);
2647		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2648			if (sense_key == ABORTED_COMMAND) {
2649				cmd->result |= DID_SOFT_ERROR << 16;
 
 
 
 
 
2650				break;
2651			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2652			break;
2653		}
 
 
2654		/* Problem was not a check condition
2655		 * Pass it up to the upper layers...
2656		 */
2657		if (ei->ScsiStatus) {
2658			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2659				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2660				"Returning result: 0x%x\n",
2661				cp, ei->ScsiStatus,
2662				sense_key, asc, ascq,
2663				cmd->result);
2664		} else {  /* scsi status is zero??? How??? */
2665			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2666				"Returning no connection.\n", cp),
2667
2668			/* Ordinarily, this case should never happen,
2669			 * but there is a bug in some released firmware
2670			 * revisions that allows it to happen if, for
2671			 * example, a 4100 backplane loses power and
2672			 * the tape drive is in it.  We assume that
2673			 * it's a fatal error of some kind because we
2674			 * can't show that it wasn't. We will make it
2675			 * look like selection timeout since that is
2676			 * the most common reason for this to occur,
2677			 * and it's severe enough.
2678			 */
2679
2680			cmd->result = DID_NO_CONNECT << 16;
2681		}
2682		break;
2683
2684	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2685		break;
2686	case CMD_DATA_OVERRUN:
2687		dev_warn(&h->pdev->dev,
2688			"CDB %16phN data overrun\n", cp->Request.CDB);
 
2689		break;
2690	case CMD_INVALID: {
2691		/* print_bytes(cp, sizeof(*cp), 1, 0);
2692		print_cmd(cp); */
2693		/* We get CMD_INVALID if you address a non-existent device
2694		 * instead of a selection timeout (no response).  You will
2695		 * see this if you yank out a drive, then try to access it.
2696		 * This is kind of a shame because it means that any other
2697		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2698		 * missing target. */
2699		cmd->result = DID_NO_CONNECT << 16;
2700	}
2701		break;
2702	case CMD_PROTOCOL_ERR:
2703		cmd->result = DID_ERROR << 16;
2704		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2705				cp->Request.CDB);
2706		break;
2707	case CMD_HARDWARE_ERR:
2708		cmd->result = DID_ERROR << 16;
2709		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2710			cp->Request.CDB);
2711		break;
2712	case CMD_CONNECTION_LOST:
2713		cmd->result = DID_ERROR << 16;
2714		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2715			cp->Request.CDB);
2716		break;
2717	case CMD_ABORTED:
2718		cmd->result = DID_ABORT << 16;
 
 
2719		break;
2720	case CMD_ABORT_FAILED:
2721		cmd->result = DID_ERROR << 16;
2722		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2723			cp->Request.CDB);
2724		break;
2725	case CMD_UNSOLICITED_ABORT:
2726		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2727		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2728			cp->Request.CDB);
2729		break;
2730	case CMD_TIMEOUT:
2731		cmd->result = DID_TIME_OUT << 16;
2732		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2733			cp->Request.CDB);
2734		break;
2735	case CMD_UNABORTABLE:
2736		cmd->result = DID_ERROR << 16;
2737		dev_warn(&h->pdev->dev, "Command unabortable\n");
2738		break;
2739	case CMD_TMF_STATUS:
2740		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2741			cmd->result = DID_ERROR << 16;
2742		break;
2743	case CMD_IOACCEL_DISABLED:
2744		/* This only handles the direct pass-through case since RAID
2745		 * offload is handled above.  Just attempt a retry.
2746		 */
2747		cmd->result = DID_SOFT_ERROR << 16;
2748		dev_warn(&h->pdev->dev,
2749				"cp %p had HP SSD Smart Path error\n", cp);
2750		break;
2751	default:
2752		cmd->result = DID_ERROR << 16;
2753		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2754				cp, ei->CommandStatus);
2755	}
 
 
 
 
 
 
 
 
 
 
 
 
2756
2757	return hpsa_cmd_free_and_done(h, cp, cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2758}
2759
2760static void hpsa_pci_unmap(struct pci_dev *pdev,
2761	struct CommandList *c, int sg_used, int data_direction)
2762{
2763	int i;
 
2764
2765	for (i = 0; i < sg_used; i++)
2766		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2767				le32_to_cpu(c->SG[i].Len),
2768				data_direction);
 
 
2769}
2770
2771static int hpsa_map_one(struct pci_dev *pdev,
2772		struct CommandList *cp,
2773		unsigned char *buf,
2774		size_t buflen,
2775		int data_direction)
2776{
2777	u64 addr64;
2778
2779	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2780		cp->Header.SGList = 0;
2781		cp->Header.SGTotal = cpu_to_le16(0);
2782		return 0;
2783	}
2784
2785	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2786	if (dma_mapping_error(&pdev->dev, addr64)) {
2787		/* Prevent subsequent unmap of something never mapped */
2788		cp->Header.SGList = 0;
2789		cp->Header.SGTotal = cpu_to_le16(0);
2790		return -1;
2791	}
2792	cp->SG[0].Addr = cpu_to_le64(addr64);
2793	cp->SG[0].Len = cpu_to_le32(buflen);
2794	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2795	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2796	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2797	return 0;
2798}
2799
2800#define NO_TIMEOUT ((unsigned long) -1)
2801#define DEFAULT_TIMEOUT 30000 /* milliseconds */
2802static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2803	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2804{
2805	DECLARE_COMPLETION_ONSTACK(wait);
2806
2807	c->waiting = &wait;
2808	__enqueue_cmd_and_start_io(h, c, reply_queue);
2809	if (timeout_msecs == NO_TIMEOUT) {
2810		/* TODO: get rid of this no-timeout thing */
2811		wait_for_completion_io(&wait);
2812		return IO_OK;
2813	}
2814	if (!wait_for_completion_io_timeout(&wait,
2815					msecs_to_jiffies(timeout_msecs))) {
2816		dev_warn(&h->pdev->dev, "Command timed out.\n");
2817		return -ETIMEDOUT;
2818	}
2819	return IO_OK;
2820}
2821
2822static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2823				   int reply_queue, unsigned long timeout_msecs)
2824{
2825	if (unlikely(lockup_detected(h))) {
2826		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2827		return IO_OK;
2828	}
2829	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2830}
2831
2832static u32 lockup_detected(struct ctlr_info *h)
2833{
2834	int cpu;
2835	u32 rc, *lockup_detected;
2836
2837	cpu = get_cpu();
2838	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2839	rc = *lockup_detected;
2840	put_cpu();
2841	return rc;
2842}
2843
2844#define MAX_DRIVER_CMD_RETRIES 25
2845static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2846	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2847{
2848	int backoff_time = 10, retry_count = 0;
2849	int rc;
2850
2851	do {
2852		memset(c->err_info, 0, sizeof(*c->err_info));
2853		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2854						  timeout_msecs);
2855		if (rc)
2856			break;
2857		retry_count++;
2858		if (retry_count > 3) {
2859			msleep(backoff_time);
2860			if (backoff_time < 1000)
2861				backoff_time *= 2;
2862		}
2863	} while ((check_for_unit_attention(h, c) ||
2864			check_for_busy(h, c)) &&
2865			retry_count <= MAX_DRIVER_CMD_RETRIES);
2866	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2867	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2868		rc = -EIO;
2869	return rc;
2870}
2871
2872static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2873				struct CommandList *c)
2874{
2875	const u8 *cdb = c->Request.CDB;
2876	const u8 *lun = c->Header.LUN.LunAddrBytes;
2877
2878	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2879		 txt, lun, cdb);
2880}
2881
2882static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2883			struct CommandList *cp)
2884{
2885	const struct ErrorInfo *ei = cp->err_info;
2886	struct device *d = &cp->h->pdev->dev;
2887	u8 sense_key, asc, ascq;
2888	int sense_len;
2889
 
2890	switch (ei->CommandStatus) {
2891	case CMD_TARGET_STATUS:
2892		if (ei->SenseLen > sizeof(ei->SenseInfo))
2893			sense_len = sizeof(ei->SenseInfo);
2894		else
2895			sense_len = ei->SenseLen;
2896		decode_sense_data(ei->SenseInfo, sense_len,
2897					&sense_key, &asc, &ascq);
2898		hpsa_print_cmd(h, "SCSI status", cp);
2899		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2900			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2901				sense_key, asc, ascq);
2902		else
2903			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2904		if (ei->ScsiStatus == 0)
2905			dev_warn(d, "SCSI status is abnormally zero.  "
2906			"(probably indicates selection timeout "
2907			"reported incorrectly due to a known "
2908			"firmware bug, circa July, 2001.)\n");
2909		break;
2910	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
 
2911		break;
2912	case CMD_DATA_OVERRUN:
2913		hpsa_print_cmd(h, "overrun condition", cp);
2914		break;
2915	case CMD_INVALID: {
2916		/* controller unfortunately reports SCSI passthru's
2917		 * to non-existent targets as invalid commands.
2918		 */
2919		hpsa_print_cmd(h, "invalid command", cp);
2920		dev_warn(d, "probably means device no longer present\n");
 
 
2921		}
2922		break;
2923	case CMD_PROTOCOL_ERR:
2924		hpsa_print_cmd(h, "protocol error", cp);
2925		break;
2926	case CMD_HARDWARE_ERR:
2927		hpsa_print_cmd(h, "hardware error", cp);
 
2928		break;
2929	case CMD_CONNECTION_LOST:
2930		hpsa_print_cmd(h, "connection lost", cp);
2931		break;
2932	case CMD_ABORTED:
2933		hpsa_print_cmd(h, "aborted", cp);
2934		break;
2935	case CMD_ABORT_FAILED:
2936		hpsa_print_cmd(h, "abort failed", cp);
2937		break;
2938	case CMD_UNSOLICITED_ABORT:
2939		hpsa_print_cmd(h, "unsolicited abort", cp);
2940		break;
2941	case CMD_TIMEOUT:
2942		hpsa_print_cmd(h, "timed out", cp);
2943		break;
2944	case CMD_UNABORTABLE:
2945		hpsa_print_cmd(h, "unabortable", cp);
2946		break;
2947	case CMD_CTLR_LOCKUP:
2948		hpsa_print_cmd(h, "controller lockup detected", cp);
2949		break;
2950	default:
2951		hpsa_print_cmd(h, "unknown status", cp);
2952		dev_warn(d, "Unknown command status %x\n",
2953				ei->CommandStatus);
2954	}
2955}
2956
2957static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2958					u8 page, u8 *buf, size_t bufsize)
2959{
2960	int rc = IO_OK;
2961	struct CommandList *c;
2962	struct ErrorInfo *ei;
2963
2964	c = cmd_alloc(h);
2965	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2966			page, scsi3addr, TYPE_CMD)) {
2967		rc = -1;
2968		goto out;
2969	}
2970	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2971		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2972	if (rc)
2973		goto out;
2974	ei = c->err_info;
2975	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2976		hpsa_scsi_interpret_error(h, c);
2977		rc = -1;
2978	}
2979out:
2980	cmd_free(h, c);
2981	return rc;
2982}
2983
2984static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2985						u8 *scsi3addr)
2986{
2987	u8 *buf;
2988	u64 sa = 0;
2989	int rc = 0;
2990
2991	buf = kzalloc(1024, GFP_KERNEL);
2992	if (!buf)
2993		return 0;
2994
2995	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
2996					buf, 1024);
2997
2998	if (rc)
2999		goto out;
3000
3001	sa = get_unaligned_be64(buf+12);
3002
3003out:
3004	kfree(buf);
3005	return sa;
3006}
3007
3008static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3009			u16 page, unsigned char *buf,
3010			unsigned char bufsize)
3011{
3012	int rc = IO_OK;
3013	struct CommandList *c;
3014	struct ErrorInfo *ei;
3015
3016	c = cmd_alloc(h);
3017
3018	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3019			page, scsi3addr, TYPE_CMD)) {
3020		rc = -1;
3021		goto out;
3022	}
3023	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3024					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3025	if (rc)
3026		goto out;
3027	ei = c->err_info;
3028	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3029		hpsa_scsi_interpret_error(h, c);
3030		rc = -1;
3031	}
3032out:
3033	cmd_free(h, c);
3034	return rc;
3035}
3036
3037static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3038	u8 reset_type, int reply_queue)
3039{
3040	int rc = IO_OK;
3041	struct CommandList *c;
3042	struct ErrorInfo *ei;
3043
3044	c = cmd_alloc(h);
3045
 
 
 
 
3046
3047	/* fill_cmd can't fail here, no data buffer to map. */
3048	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3049			scsi3addr, TYPE_MSG);
3050	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3051	if (rc) {
3052		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3053		goto out;
3054	}
3055	/* no unmap needed here because no data xfer. */
3056
3057	ei = c->err_info;
3058	if (ei->CommandStatus != 0) {
3059		hpsa_scsi_interpret_error(h, c);
3060		rc = -1;
3061	}
3062out:
3063	cmd_free(h, c);
3064	return rc;
3065}
3066
3067static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3068			       struct hpsa_scsi_dev_t *dev,
3069			       unsigned char *scsi3addr)
3070{
3071	int i;
3072	bool match = false;
3073	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3074	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3075
3076	if (hpsa_is_cmd_idle(c))
3077		return false;
3078
3079	switch (c->cmd_type) {
3080	case CMD_SCSI:
3081	case CMD_IOCTL_PEND:
3082		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3083				sizeof(c->Header.LUN.LunAddrBytes));
3084		break;
3085
3086	case CMD_IOACCEL1:
3087	case CMD_IOACCEL2:
3088		if (c->phys_disk == dev) {
3089			/* HBA mode match */
3090			match = true;
3091		} else {
3092			/* Possible RAID mode -- check each phys dev. */
3093			/* FIXME:  Do we need to take out a lock here?  If
3094			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3095			 * instead. */
3096			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3097				/* FIXME: an alternate test might be
3098				 *
3099				 * match = dev->phys_disk[i]->ioaccel_handle
3100				 *              == c2->scsi_nexus;      */
3101				match = dev->phys_disk[i] == c->phys_disk;
3102			}
3103		}
3104		break;
3105
3106	case IOACCEL2_TMF:
3107		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3108			match = dev->phys_disk[i]->ioaccel_handle ==
3109					le32_to_cpu(ac->it_nexus);
3110		}
3111		break;
3112
3113	case 0:		/* The command is in the middle of being initialized. */
3114		match = false;
3115		break;
3116
3117	default:
3118		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3119			c->cmd_type);
3120		BUG();
3121	}
3122
3123	return match;
3124}
3125
3126static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3127	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3128{
3129	int i;
3130	int rc = 0;
3131
3132	/* We can really only handle one reset at a time */
3133	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3134		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3135		return -EINTR;
3136	}
3137
3138	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3139
3140	for (i = 0; i < h->nr_cmds; i++) {
3141		struct CommandList *c = h->cmd_pool + i;
3142		int refcount = atomic_inc_return(&c->refcount);
3143
3144		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3145			unsigned long flags;
3146
3147			/*
3148			 * Mark the target command as having a reset pending,
3149			 * then lock a lock so that the command cannot complete
3150			 * while we're considering it.  If the command is not
3151			 * idle then count it; otherwise revoke the event.
3152			 */
3153			c->reset_pending = dev;
3154			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3155			if (!hpsa_is_cmd_idle(c))
3156				atomic_inc(&dev->reset_cmds_out);
3157			else
3158				c->reset_pending = NULL;
3159			spin_unlock_irqrestore(&h->lock, flags);
3160		}
3161
3162		cmd_free(h, c);
3163	}
3164
3165	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3166	if (!rc)
3167		wait_event(h->event_sync_wait_queue,
3168			atomic_read(&dev->reset_cmds_out) == 0 ||
3169			lockup_detected(h));
3170
3171	if (unlikely(lockup_detected(h))) {
3172		dev_warn(&h->pdev->dev,
3173			 "Controller lockup detected during reset wait\n");
3174		rc = -ENODEV;
3175	}
3176
3177	if (unlikely(rc))
3178		atomic_set(&dev->reset_cmds_out, 0);
3179	else
3180		rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3181
3182	mutex_unlock(&h->reset_mutex);
3183	return rc;
3184}
3185
3186static void hpsa_get_raid_level(struct ctlr_info *h,
3187	unsigned char *scsi3addr, unsigned char *raid_level)
3188{
3189	int rc;
3190	unsigned char *buf;
3191
3192	*raid_level = RAID_UNKNOWN;
3193	buf = kzalloc(64, GFP_KERNEL);
3194	if (!buf)
3195		return;
3196
3197	if (!hpsa_vpd_page_supported(h, scsi3addr,
3198		HPSA_VPD_LV_DEVICE_GEOMETRY))
3199		goto exit;
3200
3201	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3202		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3203
3204	if (rc == 0)
3205		*raid_level = buf[8];
3206	if (*raid_level > RAID_UNKNOWN)
3207		*raid_level = RAID_UNKNOWN;
3208exit:
3209	kfree(buf);
3210	return;
3211}
3212
3213#define HPSA_MAP_DEBUG
3214#ifdef HPSA_MAP_DEBUG
3215static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3216				struct raid_map_data *map_buff)
3217{
3218	struct raid_map_disk_data *dd = &map_buff->data[0];
3219	int map, row, col;
3220	u16 map_cnt, row_cnt, disks_per_row;
3221
3222	if (rc != 0)
3223		return;
3224
3225	/* Show details only if debugging has been activated. */
3226	if (h->raid_offload_debug < 2)
3227		return;
3228
3229	dev_info(&h->pdev->dev, "structure_size = %u\n",
3230				le32_to_cpu(map_buff->structure_size));
3231	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3232			le32_to_cpu(map_buff->volume_blk_size));
3233	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3234			le64_to_cpu(map_buff->volume_blk_cnt));
3235	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3236			map_buff->phys_blk_shift);
3237	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3238			map_buff->parity_rotation_shift);
3239	dev_info(&h->pdev->dev, "strip_size = %u\n",
3240			le16_to_cpu(map_buff->strip_size));
3241	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3242			le64_to_cpu(map_buff->disk_starting_blk));
3243	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3244			le64_to_cpu(map_buff->disk_blk_cnt));
3245	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3246			le16_to_cpu(map_buff->data_disks_per_row));
3247	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3248			le16_to_cpu(map_buff->metadata_disks_per_row));
3249	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3250			le16_to_cpu(map_buff->row_cnt));
3251	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3252			le16_to_cpu(map_buff->layout_map_count));
3253	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3254			le16_to_cpu(map_buff->flags));
3255	dev_info(&h->pdev->dev, "encryption = %s\n",
3256			le16_to_cpu(map_buff->flags) &
3257			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3258	dev_info(&h->pdev->dev, "dekindex = %u\n",
3259			le16_to_cpu(map_buff->dekindex));
3260	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3261	for (map = 0; map < map_cnt; map++) {
3262		dev_info(&h->pdev->dev, "Map%u:\n", map);
3263		row_cnt = le16_to_cpu(map_buff->row_cnt);
3264		for (row = 0; row < row_cnt; row++) {
3265			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3266			disks_per_row =
3267				le16_to_cpu(map_buff->data_disks_per_row);
3268			for (col = 0; col < disks_per_row; col++, dd++)
3269				dev_info(&h->pdev->dev,
3270					"    D%02u: h=0x%04x xor=%u,%u\n",
3271					col, dd->ioaccel_handle,
3272					dd->xor_mult[0], dd->xor_mult[1]);
3273			disks_per_row =
3274				le16_to_cpu(map_buff->metadata_disks_per_row);
3275			for (col = 0; col < disks_per_row; col++, dd++)
3276				dev_info(&h->pdev->dev,
3277					"    M%02u: h=0x%04x xor=%u,%u\n",
3278					col, dd->ioaccel_handle,
3279					dd->xor_mult[0], dd->xor_mult[1]);
3280		}
3281	}
3282}
3283#else
3284static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3285			__attribute__((unused)) int rc,
3286			__attribute__((unused)) struct raid_map_data *map_buff)
3287{
3288}
3289#endif
3290
3291static int hpsa_get_raid_map(struct ctlr_info *h,
3292	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3293{
3294	int rc = 0;
3295	struct CommandList *c;
3296	struct ErrorInfo *ei;
3297
3298	c = cmd_alloc(h);
3299
3300	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3301			sizeof(this_device->raid_map), 0,
3302			scsi3addr, TYPE_CMD)) {
3303		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3304		cmd_free(h, c);
3305		return -1;
3306	}
3307	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3308					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3309	if (rc)
3310		goto out;
3311	ei = c->err_info;
3312	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3313		hpsa_scsi_interpret_error(h, c);
3314		rc = -1;
3315		goto out;
3316	}
3317	cmd_free(h, c);
3318
3319	/* @todo in the future, dynamically allocate RAID map memory */
3320	if (le32_to_cpu(this_device->raid_map.structure_size) >
3321				sizeof(this_device->raid_map)) {
3322		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3323		rc = -1;
3324	}
3325	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3326	return rc;
3327out:
3328	cmd_free(h, c);
3329	return rc;
3330}
3331
3332static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3333		unsigned char scsi3addr[], u16 bmic_device_index,
3334		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3335{
3336	int rc = IO_OK;
3337	struct CommandList *c;
3338	struct ErrorInfo *ei;
3339
3340	c = cmd_alloc(h);
3341
3342	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3343		0, RAID_CTLR_LUNID, TYPE_CMD);
3344	if (rc)
3345		goto out;
3346
3347	c->Request.CDB[2] = bmic_device_index & 0xff;
3348	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3349
3350	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3351				PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3352	if (rc)
3353		goto out;
3354	ei = c->err_info;
3355	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3356		hpsa_scsi_interpret_error(h, c);
3357		rc = -1;
3358	}
3359out:
3360	cmd_free(h, c);
3361	return rc;
3362}
3363
3364static int hpsa_bmic_id_controller(struct ctlr_info *h,
3365	struct bmic_identify_controller *buf, size_t bufsize)
3366{
3367	int rc = IO_OK;
3368	struct CommandList *c;
3369	struct ErrorInfo *ei;
3370
3371	c = cmd_alloc(h);
3372
3373	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3374		0, RAID_CTLR_LUNID, TYPE_CMD);
3375	if (rc)
3376		goto out;
3377
3378	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3379		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3380	if (rc)
3381		goto out;
3382	ei = c->err_info;
3383	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3384		hpsa_scsi_interpret_error(h, c);
3385		rc = -1;
3386	}
3387out:
3388	cmd_free(h, c);
3389	return rc;
3390}
3391
3392static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3393		unsigned char scsi3addr[], u16 bmic_device_index,
3394		struct bmic_identify_physical_device *buf, size_t bufsize)
3395{
3396	int rc = IO_OK;
3397	struct CommandList *c;
3398	struct ErrorInfo *ei;
3399
3400	c = cmd_alloc(h);
3401	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3402		0, RAID_CTLR_LUNID, TYPE_CMD);
3403	if (rc)
3404		goto out;
3405
3406	c->Request.CDB[2] = bmic_device_index & 0xff;
3407	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3408
3409	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3410						NO_TIMEOUT);
3411	ei = c->err_info;
3412	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3413		hpsa_scsi_interpret_error(h, c);
3414		rc = -1;
3415	}
3416out:
3417	cmd_free(h, c);
3418
3419	return rc;
3420}
3421
3422/*
3423 * get enclosure information
3424 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3425 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3426 * Uses id_physical_device to determine the box_index.
3427 */
3428static void hpsa_get_enclosure_info(struct ctlr_info *h,
3429			unsigned char *scsi3addr,
3430			struct ReportExtendedLUNdata *rlep, int rle_index,
3431			struct hpsa_scsi_dev_t *encl_dev)
3432{
3433	int rc = -1;
3434	struct CommandList *c = NULL;
3435	struct ErrorInfo *ei = NULL;
3436	struct bmic_sense_storage_box_params *bssbp = NULL;
3437	struct bmic_identify_physical_device *id_phys = NULL;
3438	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3439	u16 bmic_device_index = 0;
3440
3441	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3442
3443	encl_dev->sas_address =
3444		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3445
3446	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3447		rc = IO_OK;
3448		goto out;
3449	}
3450
3451	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3452		rc = IO_OK;
3453		goto out;
3454	}
3455
3456	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3457	if (!bssbp)
3458		goto out;
3459
3460	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3461	if (!id_phys)
3462		goto out;
3463
3464	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3465						id_phys, sizeof(*id_phys));
3466	if (rc) {
3467		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3468			__func__, encl_dev->external, bmic_device_index);
3469		goto out;
3470	}
3471
3472	c = cmd_alloc(h);
3473
3474	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3475			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3476
3477	if (rc)
3478		goto out;
3479
3480	if (id_phys->phys_connector[1] == 'E')
3481		c->Request.CDB[5] = id_phys->box_index;
3482	else
3483		c->Request.CDB[5] = 0;
3484
3485	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3486						NO_TIMEOUT);
3487	if (rc)
3488		goto out;
3489
3490	ei = c->err_info;
3491	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3492		rc = -1;
3493		goto out;
3494	}
3495
3496	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3497	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3498		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3499
3500	rc = IO_OK;
3501out:
3502	kfree(bssbp);
3503	kfree(id_phys);
3504
3505	if (c)
3506		cmd_free(h, c);
3507
3508	if (rc != IO_OK)
3509		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3510			"Error, could not get enclosure information");
3511}
3512
3513static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3514						unsigned char *scsi3addr)
3515{
3516	struct ReportExtendedLUNdata *physdev;
3517	u32 nphysicals;
3518	u64 sa = 0;
3519	int i;
3520
3521	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3522	if (!physdev)
3523		return 0;
3524
3525	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3526		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3527		kfree(physdev);
3528		return 0;
3529	}
3530	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3531
3532	for (i = 0; i < nphysicals; i++)
3533		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3534			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3535			break;
3536		}
3537
3538	kfree(physdev);
3539
3540	return sa;
3541}
3542
3543static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3544					struct hpsa_scsi_dev_t *dev)
3545{
3546	int rc;
3547	u64 sa = 0;
3548
3549	if (is_hba_lunid(scsi3addr)) {
3550		struct bmic_sense_subsystem_info *ssi;
3551
3552		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3553		if (!ssi)
3554			return;
3555
3556		rc = hpsa_bmic_sense_subsystem_information(h,
3557					scsi3addr, 0, ssi, sizeof(*ssi));
3558		if (rc == 0) {
3559			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3560			h->sas_address = sa;
3561		}
3562
3563		kfree(ssi);
3564	} else
3565		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3566
3567	dev->sas_address = sa;
3568}
3569
3570static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3571	struct ReportExtendedLUNdata *physdev)
3572{
3573	u32 nphysicals;
3574	int i;
3575
3576	if (h->discovery_polling)
3577		return;
3578
3579	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3580
3581	for (i = 0; i < nphysicals; i++) {
3582		if (physdev->LUN[i].device_type ==
3583			BMIC_DEVICE_TYPE_CONTROLLER
3584			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3585			dev_info(&h->pdev->dev,
3586				"External controller present, activate discovery polling and disable rld caching\n");
3587			hpsa_disable_rld_caching(h);
3588			h->discovery_polling = 1;
3589			break;
3590		}
3591	}
3592}
3593
3594/* Get a device id from inquiry page 0x83 */
3595static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3596	unsigned char scsi3addr[], u8 page)
3597{
3598	int rc;
3599	int i;
3600	int pages;
3601	unsigned char *buf, bufsize;
3602
3603	buf = kzalloc(256, GFP_KERNEL);
3604	if (!buf)
3605		return false;
3606
3607	/* Get the size of the page list first */
3608	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3609				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3610				buf, HPSA_VPD_HEADER_SZ);
3611	if (rc != 0)
3612		goto exit_unsupported;
3613	pages = buf[3];
3614	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3615		bufsize = pages + HPSA_VPD_HEADER_SZ;
3616	else
3617		bufsize = 255;
3618
3619	/* Get the whole VPD page list */
3620	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3621				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3622				buf, bufsize);
3623	if (rc != 0)
3624		goto exit_unsupported;
3625
3626	pages = buf[3];
3627	for (i = 1; i <= pages; i++)
3628		if (buf[3 + i] == page)
3629			goto exit_supported;
3630exit_unsupported:
3631	kfree(buf);
3632	return false;
3633exit_supported:
3634	kfree(buf);
3635	return true;
3636}
3637
3638/*
3639 * Called during a scan operation.
3640 * Sets ioaccel status on the new device list, not the existing device list
3641 *
3642 * The device list used during I/O will be updated later in
3643 * adjust_hpsa_scsi_table.
3644 */
3645static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3646	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3647{
3648	int rc;
3649	unsigned char *buf;
3650	u8 ioaccel_status;
3651
3652	this_device->offload_config = 0;
3653	this_device->offload_enabled = 0;
3654	this_device->offload_to_be_enabled = 0;
3655
3656	buf = kzalloc(64, GFP_KERNEL);
3657	if (!buf)
3658		return;
3659	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3660		goto out;
3661	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3662			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3663	if (rc != 0)
3664		goto out;
3665
3666#define IOACCEL_STATUS_BYTE 4
3667#define OFFLOAD_CONFIGURED_BIT 0x01
3668#define OFFLOAD_ENABLED_BIT 0x02
3669	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3670	this_device->offload_config =
3671		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3672	if (this_device->offload_config) {
3673		this_device->offload_to_be_enabled =
3674			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3675		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3676			this_device->offload_to_be_enabled = 0;
3677	}
3678
3679out:
3680	kfree(buf);
3681	return;
3682}
3683
3684/* Get the device id from inquiry page 0x83 */
3685static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3686	unsigned char *device_id, int index, int buflen)
3687{
3688	int rc;
3689	unsigned char *buf;
3690
3691	/* Does controller have VPD for device id? */
3692	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3693		return 1; /* not supported */
3694
3695	buf = kzalloc(64, GFP_KERNEL);
3696	if (!buf)
3697		return -ENOMEM;
3698
3699	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3700					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3701	if (rc == 0) {
3702		if (buflen > 16)
3703			buflen = 16;
3704		memcpy(device_id, &buf[8], buflen);
3705	}
3706
3707	kfree(buf);
3708
3709	return rc; /*0 - got id,  otherwise, didn't */
3710}
3711
3712static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3713		void *buf, int bufsize,
3714		int extended_response)
3715{
3716	int rc = IO_OK;
3717	struct CommandList *c;
3718	unsigned char scsi3addr[8];
3719	struct ErrorInfo *ei;
3720
3721	c = cmd_alloc(h);
3722
 
 
 
3723	/* address the controller */
3724	memset(scsi3addr, 0, sizeof(scsi3addr));
3725	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3726		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3727		rc = -EAGAIN;
3728		goto out;
3729	}
3730	if (extended_response)
3731		c->Request.CDB[1] = extended_response;
3732	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3733					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3734	if (rc)
3735		goto out;
3736	ei = c->err_info;
3737	if (ei->CommandStatus != 0 &&
3738	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3739		hpsa_scsi_interpret_error(h, c);
3740		rc = -EIO;
3741	} else {
3742		struct ReportLUNdata *rld = buf;
3743
3744		if (rld->extended_response_flag != extended_response) {
3745			if (!h->legacy_board) {
3746				dev_err(&h->pdev->dev,
3747					"report luns requested format %u, got %u\n",
3748					extended_response,
3749					rld->extended_response_flag);
3750				rc = -EINVAL;
3751			} else
3752				rc = -EOPNOTSUPP;
3753		}
3754	}
3755out:
3756	cmd_free(h, c);
3757	return rc;
3758}
3759
3760static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3761		struct ReportExtendedLUNdata *buf, int bufsize)
 
3762{
3763	int rc;
3764	struct ReportLUNdata *lbuf;
3765
3766	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3767				      HPSA_REPORT_PHYS_EXTENDED);
3768	if (!rc || rc != -EOPNOTSUPP)
3769		return rc;
3770
3771	/* REPORT PHYS EXTENDED is not supported */
3772	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3773	if (!lbuf)
3774		return -ENOMEM;
3775
3776	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3777	if (!rc) {
3778		int i;
3779		u32 nphys;
3780
3781		/* Copy ReportLUNdata header */
3782		memcpy(buf, lbuf, 8);
3783		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3784		for (i = 0; i < nphys; i++)
3785			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3786	}
3787	kfree(lbuf);
3788	return rc;
3789}
3790
3791static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3792		struct ReportLUNdata *buf, int bufsize)
3793{
3794	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3795}
3796
3797static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3798	int bus, int target, int lun)
3799{
3800	device->bus = bus;
3801	device->target = target;
3802	device->lun = lun;
3803}
3804
3805/* Use VPD inquiry to get details of volume status */
3806static int hpsa_get_volume_status(struct ctlr_info *h,
3807					unsigned char scsi3addr[])
3808{
3809	int rc;
3810	int status;
3811	int size;
3812	unsigned char *buf;
3813
3814	buf = kzalloc(64, GFP_KERNEL);
3815	if (!buf)
3816		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3817
3818	/* Does controller have VPD for logical volume status? */
3819	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3820		goto exit_failed;
3821
3822	/* Get the size of the VPD return buffer */
3823	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3824					buf, HPSA_VPD_HEADER_SZ);
3825	if (rc != 0)
3826		goto exit_failed;
3827	size = buf[3];
3828
3829	/* Now get the whole VPD buffer */
3830	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3831					buf, size + HPSA_VPD_HEADER_SZ);
3832	if (rc != 0)
3833		goto exit_failed;
3834	status = buf[4]; /* status byte */
3835
3836	kfree(buf);
3837	return status;
3838exit_failed:
3839	kfree(buf);
3840	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3841}
3842
3843/* Determine offline status of a volume.
3844 * Return either:
3845 *  0 (not offline)
3846 *  0xff (offline for unknown reasons)
3847 *  # (integer code indicating one of several NOT READY states
3848 *     describing why a volume is to be kept offline)
3849 */
3850static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3851					unsigned char scsi3addr[])
3852{
3853	struct CommandList *c;
3854	unsigned char *sense;
3855	u8 sense_key, asc, ascq;
3856	int sense_len;
3857	int rc, ldstat = 0;
3858	u16 cmd_status;
3859	u8 scsi_status;
3860#define ASC_LUN_NOT_READY 0x04
3861#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3862#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3863
3864	c = cmd_alloc(h);
3865
3866	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3867	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3868					NO_TIMEOUT);
3869	if (rc) {
3870		cmd_free(h, c);
3871		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3872	}
3873	sense = c->err_info->SenseInfo;
3874	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3875		sense_len = sizeof(c->err_info->SenseInfo);
3876	else
3877		sense_len = c->err_info->SenseLen;
3878	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3879	cmd_status = c->err_info->CommandStatus;
3880	scsi_status = c->err_info->ScsiStatus;
3881	cmd_free(h, c);
3882
3883	/* Determine the reason for not ready state */
3884	ldstat = hpsa_get_volume_status(h, scsi3addr);
3885
3886	/* Keep volume offline in certain cases: */
3887	switch (ldstat) {
3888	case HPSA_LV_FAILED:
3889	case HPSA_LV_UNDERGOING_ERASE:
3890	case HPSA_LV_NOT_AVAILABLE:
3891	case HPSA_LV_UNDERGOING_RPI:
3892	case HPSA_LV_PENDING_RPI:
3893	case HPSA_LV_ENCRYPTED_NO_KEY:
3894	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3895	case HPSA_LV_UNDERGOING_ENCRYPTION:
3896	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3897	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3898		return ldstat;
3899	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3900		/* If VPD status page isn't available,
3901		 * use ASC/ASCQ to determine state
3902		 */
3903		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3904			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3905			return ldstat;
3906		break;
3907	default:
3908		break;
3909	}
3910	return HPSA_LV_OK;
3911}
3912
3913static int hpsa_update_device_info(struct ctlr_info *h,
3914	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3915	unsigned char *is_OBDR_device)
3916{
3917
3918#define OBDR_SIG_OFFSET 43
3919#define OBDR_TAPE_SIG "$DR-10"
3920#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3921#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3922
3923	unsigned char *inq_buff;
3924	unsigned char *obdr_sig;
3925	int rc = 0;
3926
3927	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3928	if (!inq_buff) {
3929		rc = -ENOMEM;
3930		goto bail_out;
3931	}
3932
3933	/* Do an inquiry to the device to see what it is. */
3934	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3935		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
 
3936		dev_err(&h->pdev->dev,
3937			"%s: inquiry failed, device will be skipped.\n",
3938			__func__);
3939		rc = HPSA_INQUIRY_FAILED;
3940		goto bail_out;
3941	}
3942
3943	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3944	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3945
3946	this_device->devtype = (inq_buff[0] & 0x1f);
3947	memcpy(this_device->scsi3addr, scsi3addr, 8);
3948	memcpy(this_device->vendor, &inq_buff[8],
3949		sizeof(this_device->vendor));
3950	memcpy(this_device->model, &inq_buff[16],
3951		sizeof(this_device->model));
3952	this_device->rev = inq_buff[2];
3953	memset(this_device->device_id, 0,
3954		sizeof(this_device->device_id));
3955	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3956		sizeof(this_device->device_id)) < 0)
3957		dev_err(&h->pdev->dev,
3958			"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3959			h->ctlr, __func__,
3960			h->scsi_host->host_no,
3961			this_device->target, this_device->lun,
3962			scsi_device_type(this_device->devtype),
3963			this_device->model);
3964
3965	if ((this_device->devtype == TYPE_DISK ||
3966		this_device->devtype == TYPE_ZBC) &&
3967		is_logical_dev_addr_mode(scsi3addr)) {
3968		unsigned char volume_offline;
3969
 
 
3970		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3971		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3972			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3973		volume_offline = hpsa_volume_offline(h, scsi3addr);
3974		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3975		    h->legacy_board) {
3976			/*
3977			 * Legacy boards might not support volume status
3978			 */
3979			dev_info(&h->pdev->dev,
3980				 "C0:T%d:L%d Volume status not available, assuming online.\n",
3981				 this_device->target, this_device->lun);
3982			volume_offline = 0;
3983		}
3984		this_device->volume_offline = volume_offline;
3985		if (volume_offline == HPSA_LV_FAILED) {
3986			rc = HPSA_LV_FAILED;
3987			dev_err(&h->pdev->dev,
3988				"%s: LV failed, device will be skipped.\n",
3989				__func__);
3990			goto bail_out;
3991		}
3992	} else {
3993		this_device->raid_level = RAID_UNKNOWN;
3994		this_device->offload_config = 0;
3995		this_device->offload_enabled = 0;
3996		this_device->offload_to_be_enabled = 0;
3997		this_device->hba_ioaccel_enabled = 0;
3998		this_device->volume_offline = 0;
3999		this_device->queue_depth = h->nr_cmds;
4000	}
4001
4002	if (this_device->external)
4003		this_device->queue_depth = EXTERNAL_QD;
4004
4005	if (is_OBDR_device) {
4006		/* See if this is a One-Button-Disaster-Recovery device
4007		 * by looking for "$DR-10" at offset 43 in inquiry data.
4008		 */
4009		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4010		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4011					strncmp(obdr_sig, OBDR_TAPE_SIG,
4012						OBDR_SIG_LEN) == 0);
4013	}
 
4014	kfree(inq_buff);
4015	return 0;
4016
4017bail_out:
4018	kfree(inq_buff);
4019	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4020}
4021
4022/*
4023 * Helper function to assign bus, target, lun mapping of devices.
 
4024 * Logical drive target and lun are assigned at this time, but
4025 * physical device lun and target assignment are deferred (assigned
4026 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4027*/
4028static void figure_bus_target_lun(struct ctlr_info *h,
4029	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
 
4030{
4031	u32 lunid = get_unaligned_le32(lunaddrbytes);
4032
4033	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4034		/* physical device, target and lun filled in later */
4035		if (is_hba_lunid(lunaddrbytes)) {
4036			int bus = HPSA_HBA_BUS;
4037
4038			if (!device->rev)
4039				bus = HPSA_LEGACY_HBA_BUS;
4040			hpsa_set_bus_target_lun(device,
4041					bus, 0, lunid & 0x3fff);
4042		} else
4043			/* defer target, lun assignment for physical devices */
4044			hpsa_set_bus_target_lun(device,
4045					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4046		return;
4047	}
4048	/* It's a logical device */
4049	if (device->external) {
4050		hpsa_set_bus_target_lun(device,
4051			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4052			lunid & 0x00ff);
4053		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4054	}
4055	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4056				0, lunid & 0x3fff);
4057}
4058
4059static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4060	int i, int nphysicals, int nlocal_logicals)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4061{
4062	/* In report logicals, local logicals are listed first,
4063	* then any externals.
4064	*/
4065	int logicals_start = nphysicals + (raid_ctlr_position == 0);
 
 
 
 
 
 
4066
4067	if (i == raid_ctlr_position)
4068		return 0;
4069
4070	if (i < logicals_start)
 
 
 
 
 
 
 
 
 
 
 
 
4071		return 0;
 
4072
4073	/* i is in logicals range, but still within local logicals */
4074	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4075		return 0;
4076
4077	return 1; /* it's an external lun */
 
 
4078}
4079
4080/*
4081 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4082 * logdev.  The number of luns in physdev and logdev are returned in
4083 * *nphysicals and *nlogicals, respectively.
4084 * Returns 0 on success, -1 otherwise.
4085 */
4086static int hpsa_gather_lun_info(struct ctlr_info *h,
4087	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
 
4088	struct ReportLUNdata *logdev, u32 *nlogicals)
4089{
4090	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4091		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4092		return -1;
4093	}
4094	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4095	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4096		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4097			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
 
4098		*nphysicals = HPSA_MAX_PHYS_LUN;
4099	}
4100	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4101		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4102		return -1;
4103	}
4104	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4105	/* Reject Logicals in excess of our max capability. */
4106	if (*nlogicals > HPSA_MAX_LUN) {
4107		dev_warn(&h->pdev->dev,
4108			"maximum logical LUNs (%d) exceeded.  "
4109			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4110			*nlogicals - HPSA_MAX_LUN);
4111			*nlogicals = HPSA_MAX_LUN;
4112	}
4113	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4114		dev_warn(&h->pdev->dev,
4115			"maximum logical + physical LUNs (%d) exceeded. "
4116			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4117			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4118		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4119	}
4120	return 0;
4121}
4122
4123static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4124	int i, int nphysicals, int nlogicals,
4125	struct ReportExtendedLUNdata *physdev_list,
4126	struct ReportLUNdata *logdev_list)
4127{
4128	/* Helper function, figure out where the LUN ID info is coming from
4129	 * given index i, lists of physical and logical devices, where in
4130	 * the list the raid controller is supposed to appear (first or last)
4131	 */
4132
4133	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4134	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4135
4136	if (i == raid_ctlr_position)
4137		return RAID_CTLR_LUNID;
4138
4139	if (i < logicals_start)
4140		return &physdev_list->LUN[i -
4141				(raid_ctlr_position == 0)].lunid[0];
4142
4143	if (i < last_device)
4144		return &logdev_list->LUN[i - nphysicals -
4145			(raid_ctlr_position == 0)][0];
4146	BUG();
4147	return NULL;
4148}
4149
4150/* get physical drive ioaccel handle and queue depth */
4151static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4152		struct hpsa_scsi_dev_t *dev,
4153		struct ReportExtendedLUNdata *rlep, int rle_index,
4154		struct bmic_identify_physical_device *id_phys)
4155{
4156	int rc;
4157	struct ext_report_lun_entry *rle;
4158
4159	rle = &rlep->LUN[rle_index];
4160
4161	dev->ioaccel_handle = rle->ioaccel_handle;
4162	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4163		dev->hba_ioaccel_enabled = 1;
4164	memset(id_phys, 0, sizeof(*id_phys));
4165	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4166			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4167			sizeof(*id_phys));
4168	if (!rc)
4169		/* Reserve space for FW operations */
4170#define DRIVE_CMDS_RESERVED_FOR_FW 2
4171#define DRIVE_QUEUE_DEPTH 7
4172		dev->queue_depth =
4173			le16_to_cpu(id_phys->current_queue_depth_limit) -
4174				DRIVE_CMDS_RESERVED_FOR_FW;
4175	else
4176		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4177}
4178
4179static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4180	struct ReportExtendedLUNdata *rlep, int rle_index,
4181	struct bmic_identify_physical_device *id_phys)
4182{
4183	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4184
4185	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4186		this_device->hba_ioaccel_enabled = 1;
4187
4188	memcpy(&this_device->active_path_index,
4189		&id_phys->active_path_number,
4190		sizeof(this_device->active_path_index));
4191	memcpy(&this_device->path_map,
4192		&id_phys->redundant_path_present_map,
4193		sizeof(this_device->path_map));
4194	memcpy(&this_device->box,
4195		&id_phys->alternate_paths_phys_box_on_port,
4196		sizeof(this_device->box));
4197	memcpy(&this_device->phys_connector,
4198		&id_phys->alternate_paths_phys_connector,
4199		sizeof(this_device->phys_connector));
4200	memcpy(&this_device->bay,
4201		&id_phys->phys_bay_in_box,
4202		sizeof(this_device->bay));
4203}
4204
4205/* get number of local logical disks. */
4206static int hpsa_set_local_logical_count(struct ctlr_info *h,
4207	struct bmic_identify_controller *id_ctlr,
4208	u32 *nlocals)
4209{
4210	int rc;
4211
4212	if (!id_ctlr) {
4213		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4214			__func__);
4215		return -ENOMEM;
4216	}
4217	memset(id_ctlr, 0, sizeof(*id_ctlr));
4218	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4219	if (!rc)
4220		if (id_ctlr->configured_logical_drive_count < 255)
4221			*nlocals = id_ctlr->configured_logical_drive_count;
4222		else
4223			*nlocals = le16_to_cpu(
4224					id_ctlr->extended_logical_unit_count);
4225	else
4226		*nlocals = -1;
4227	return rc;
4228}
4229
4230static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4231{
4232	struct bmic_identify_physical_device *id_phys;
4233	bool is_spare = false;
4234	int rc;
4235
4236	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4237	if (!id_phys)
4238		return false;
4239
4240	rc = hpsa_bmic_id_physical_device(h,
4241					lunaddrbytes,
4242					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4243					id_phys, sizeof(*id_phys));
4244	if (rc == 0)
4245		is_spare = (id_phys->more_flags >> 6) & 0x01;
4246
4247	kfree(id_phys);
4248	return is_spare;
4249}
4250
4251#define RPL_DEV_FLAG_NON_DISK                           0x1
4252#define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4253#define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4254
4255#define BMIC_DEVICE_TYPE_ENCLOSURE  6
4256
4257static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4258				struct ext_report_lun_entry *rle)
4259{
4260	u8 device_flags;
4261	u8 device_type;
4262
4263	if (!MASKED_DEVICE(lunaddrbytes))
4264		return false;
4265
4266	device_flags = rle->device_flags;
4267	device_type = rle->device_type;
4268
4269	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4270		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4271			return false;
4272		return true;
4273	}
4274
4275	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4276		return false;
4277
4278	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4279		return false;
4280
4281	/*
4282	 * Spares may be spun down, we do not want to
4283	 * do an Inquiry to a RAID set spare drive as
4284	 * that would have them spun up, that is a
4285	 * performance hit because I/O to the RAID device
4286	 * stops while the spin up occurs which can take
4287	 * over 50 seconds.
4288	 */
4289	if (hpsa_is_disk_spare(h, lunaddrbytes))
4290		return true;
4291
4292	return false;
4293}
4294
4295static void hpsa_update_scsi_devices(struct ctlr_info *h)
4296{
4297	/* the idea here is we could get notified
4298	 * that some devices have changed, so we do a report
4299	 * physical luns and report logical luns cmd, and adjust
4300	 * our list of devices accordingly.
4301	 *
4302	 * The scsi3addr's of devices won't change so long as the
4303	 * adapter is not reset.  That means we can rescan and
4304	 * tell which devices we already know about, vs. new
4305	 * devices, vs.  disappearing devices.
4306	 */
4307	struct ReportExtendedLUNdata *physdev_list = NULL;
4308	struct ReportLUNdata *logdev_list = NULL;
4309	struct bmic_identify_physical_device *id_phys = NULL;
4310	struct bmic_identify_controller *id_ctlr = NULL;
4311	u32 nphysicals = 0;
4312	u32 nlogicals = 0;
4313	u32 nlocal_logicals = 0;
4314	u32 ndev_allocated = 0;
4315	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4316	int ncurrent = 0;
4317	int i, n_ext_target_devs, ndevs_to_allocate;
 
 
4318	int raid_ctlr_position;
4319	bool physical_device;
4320	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4321
4322	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4323	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4324	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
 
4325	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4326	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4327	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4328
4329	if (!currentsd || !physdev_list || !logdev_list ||
4330		!tmpdevice || !id_phys || !id_ctlr) {
4331		dev_err(&h->pdev->dev, "out of memory\n");
4332		goto out;
4333	}
4334	memset(lunzerobits, 0, sizeof(lunzerobits));
4335
4336	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4337
4338	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4339			logdev_list, &nlogicals)) {
4340		h->drv_req_rescan = 1;
4341		goto out;
4342	}
4343
4344	/* Set number of local logicals (non PTRAID) */
4345	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4346		dev_warn(&h->pdev->dev,
4347			"%s: Can't determine number of local logical devices.\n",
4348			__func__);
4349	}
4350
4351	/* We might see up to the maximum number of logical and physical disks
4352	 * plus external target devices, and a device for the local RAID
4353	 * controller.
4354	 */
4355	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4356
4357	hpsa_ext_ctrl_present(h, physdev_list);
4358
4359	/* Allocate the per device structures */
4360	for (i = 0; i < ndevs_to_allocate; i++) {
4361		if (i >= HPSA_MAX_DEVICES) {
4362			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4363				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4364				ndevs_to_allocate - HPSA_MAX_DEVICES);
4365			break;
4366		}
4367
4368		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4369		if (!currentsd[i]) {
4370			h->drv_req_rescan = 1;
 
4371			goto out;
4372		}
4373		ndev_allocated++;
4374	}
4375
4376	if (is_scsi_rev_5(h))
4377		raid_ctlr_position = 0;
4378	else
4379		raid_ctlr_position = nphysicals + nlogicals;
4380
4381	/* adjust our table of devices */
4382	n_ext_target_devs = 0;
4383	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4384		u8 *lunaddrbytes, is_OBDR = 0;
4385		int rc = 0;
4386		int phys_dev_index = i - (raid_ctlr_position == 0);
4387		bool skip_device = false;
4388
4389		memset(tmpdevice, 0, sizeof(*tmpdevice));
4390
4391		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4392
4393		/* Figure out where the LUN ID info is coming from */
4394		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4395			i, nphysicals, nlogicals, physdev_list, logdev_list);
 
 
 
 
4396
4397		/* Determine if this is a lun from an external target array */
4398		tmpdevice->external =
4399			figure_external_status(h, raid_ctlr_position, i,
4400						nphysicals, nlocal_logicals);
 
 
 
4401
4402		/*
4403		 * Skip over some devices such as a spare.
 
 
 
 
4404		 */
4405		if (!tmpdevice->external && physical_device) {
4406			skip_device = hpsa_skip_device(h, lunaddrbytes,
4407					&physdev_list->LUN[phys_dev_index]);
4408			if (skip_device)
4409				continue;
4410		}
4411
4412		/* Get device type, vendor, model, device id, raid_map */
4413		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4414							&is_OBDR);
4415		if (rc == -ENOMEM) {
4416			dev_warn(&h->pdev->dev,
4417				"Out of memory, rescan deferred.\n");
4418			h->drv_req_rescan = 1;
4419			goto out;
4420		}
4421		if (rc) {
4422			h->drv_req_rescan = 1;
4423			continue;
4424		}
4425
4426		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4427		this_device = currentsd[ncurrent];
4428
4429		*this_device = *tmpdevice;
4430		this_device->physical_device = physical_device;
4431
4432		/*
4433		 * Expose all devices except for physical devices that
4434		 * are masked.
4435		 */
4436		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4437			this_device->expose_device = 0;
4438		else
4439			this_device->expose_device = 1;
4440
4441
4442		/*
4443		 * Get the SAS address for physical devices that are exposed.
4444		 */
4445		if (this_device->physical_device && this_device->expose_device)
4446			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4447
4448		switch (this_device->devtype) {
4449		case TYPE_ROM:
4450			/* We don't *really* support actual CD-ROM devices,
4451			 * just "One Button Disaster Recovery" tape drive
4452			 * which temporarily pretends to be a CD-ROM drive.
4453			 * So we check that the device is really an OBDR tape
4454			 * device by checking for "$DR-10" in bytes 43-48 of
4455			 * the inquiry data.
4456			 */
4457			if (is_OBDR)
4458				ncurrent++;
4459			break;
4460		case TYPE_DISK:
4461		case TYPE_ZBC:
4462			if (this_device->physical_device) {
4463				/* The disk is in HBA mode. */
4464				/* Never use RAID mapper in HBA mode. */
4465				this_device->offload_enabled = 0;
4466				hpsa_get_ioaccel_drive_info(h, this_device,
4467					physdev_list, phys_dev_index, id_phys);
4468				hpsa_get_path_info(this_device,
4469					physdev_list, phys_dev_index, id_phys);
4470			}
4471			ncurrent++;
4472			break;
4473		case TYPE_TAPE:
4474		case TYPE_MEDIUM_CHANGER:
4475			ncurrent++;
4476			break;
4477		case TYPE_ENCLOSURE:
4478			if (!this_device->external)
4479				hpsa_get_enclosure_info(h, lunaddrbytes,
4480						physdev_list, phys_dev_index,
4481						this_device);
4482			ncurrent++;
4483			break;
4484		case TYPE_RAID:
4485			/* Only present the Smartarray HBA as a RAID controller.
4486			 * If it's a RAID controller other than the HBA itself
4487			 * (an external RAID controller, MSA500 or similar)
4488			 * don't present it.
4489			 */
4490			if (!is_hba_lunid(lunaddrbytes))
4491				break;
4492			ncurrent++;
4493			break;
4494		default:
4495			break;
4496		}
4497		if (ncurrent >= HPSA_MAX_DEVICES)
4498			break;
4499	}
4500
4501	if (h->sas_host == NULL) {
4502		int rc = 0;
4503
4504		rc = hpsa_add_sas_host(h);
4505		if (rc) {
4506			dev_warn(&h->pdev->dev,
4507				"Could not add sas host %d\n", rc);
4508			goto out;
4509		}
4510	}
4511
4512	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4513out:
4514	kfree(tmpdevice);
4515	for (i = 0; i < ndev_allocated; i++)
4516		kfree(currentsd[i]);
4517	kfree(currentsd);
4518	kfree(physdev_list);
4519	kfree(logdev_list);
4520	kfree(id_ctlr);
4521	kfree(id_phys);
4522}
4523
4524static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4525				   struct scatterlist *sg)
4526{
4527	u64 addr64 = (u64) sg_dma_address(sg);
4528	unsigned int len = sg_dma_len(sg);
4529
4530	desc->Addr = cpu_to_le64(addr64);
4531	desc->Len = cpu_to_le32(len);
4532	desc->Ext = 0;
4533}
4534
4535/*
4536 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4537 * dma mapping  and fills in the scatter gather entries of the
4538 * hpsa command, cp.
4539 */
4540static int hpsa_scatter_gather(struct ctlr_info *h,
4541		struct CommandList *cp,
4542		struct scsi_cmnd *cmd)
4543{
 
4544	struct scatterlist *sg;
4545	int use_sg, i, sg_limit, chained, last_sg;
 
4546	struct SGDescriptor *curr_sg;
4547
4548	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4549
4550	use_sg = scsi_dma_map(cmd);
4551	if (use_sg < 0)
4552		return use_sg;
4553
4554	if (!use_sg)
4555		goto sglist_finished;
4556
4557	/*
4558	 * If the number of entries is greater than the max for a single list,
4559	 * then we have a chained list; we will set up all but one entry in the
4560	 * first list (the last entry is saved for link information);
4561	 * otherwise, we don't have a chained list and we'll set up at each of
4562	 * the entries in the one list.
4563	 */
4564	curr_sg = cp->SG;
4565	chained = use_sg > h->max_cmd_sg_entries;
4566	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4567	last_sg = scsi_sg_count(cmd) - 1;
4568	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4569		hpsa_set_sg_descriptor(curr_sg, sg);
 
 
 
 
 
 
 
 
 
 
4570		curr_sg++;
4571	}
4572
4573	if (chained) {
4574		/*
4575		 * Continue with the chained list.  Set curr_sg to the chained
4576		 * list.  Modify the limit to the total count less the entries
4577		 * we've already set up.  Resume the scan at the list entry
4578		 * where the previous loop left off.
4579		 */
4580		curr_sg = h->cmd_sg_list[cp->cmdindex];
4581		sg_limit = use_sg - sg_limit;
4582		for_each_sg(sg, sg, sg_limit, i) {
4583			hpsa_set_sg_descriptor(curr_sg, sg);
4584			curr_sg++;
4585		}
4586	}
4587
4588	/* Back the pointer up to the last entry and mark it as "last". */
4589	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4590
4591	if (use_sg + chained > h->maxSG)
4592		h->maxSG = use_sg + chained;
4593
4594	if (chained) {
4595		cp->Header.SGList = h->max_cmd_sg_entries;
4596		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4597		if (hpsa_map_sg_chain_block(h, cp)) {
4598			scsi_dma_unmap(cmd);
4599			return -1;
4600		}
4601		return 0;
4602	}
4603
4604sglist_finished:
4605
4606	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4607	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4608	return 0;
4609}
4610
4611static inline void warn_zero_length_transfer(struct ctlr_info *h,
4612						u8 *cdb, int cdb_len,
4613						const char *func)
4614{
4615	dev_warn(&h->pdev->dev,
4616		 "%s: Blocking zero-length request: CDB:%*phN\n",
4617		 func, cdb_len, cdb);
4618}
4619
4620#define IO_ACCEL_INELIGIBLE 1
4621/* zero-length transfers trigger hardware errors. */
4622static bool is_zero_length_transfer(u8 *cdb)
4623{
4624	u32 block_cnt;
4625
4626	/* Block zero-length transfer sizes on certain commands. */
4627	switch (cdb[0]) {
4628	case READ_10:
4629	case WRITE_10:
4630	case VERIFY:		/* 0x2F */
4631	case WRITE_VERIFY:	/* 0x2E */
4632		block_cnt = get_unaligned_be16(&cdb[7]);
4633		break;
4634	case READ_12:
4635	case WRITE_12:
4636	case VERIFY_12: /* 0xAF */
4637	case WRITE_VERIFY_12:	/* 0xAE */
4638		block_cnt = get_unaligned_be32(&cdb[6]);
4639		break;
4640	case READ_16:
4641	case WRITE_16:
4642	case VERIFY_16:		/* 0x8F */
4643		block_cnt = get_unaligned_be32(&cdb[10]);
4644		break;
4645	default:
4646		return false;
4647	}
4648
4649	return block_cnt == 0;
4650}
4651
4652static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
 
4653{
4654	int is_write = 0;
4655	u32 block;
4656	u32 block_cnt;
4657
4658	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4659	switch (cdb[0]) {
4660	case WRITE_6:
4661	case WRITE_12:
4662		is_write = 1;
4663	case READ_6:
4664	case READ_12:
4665		if (*cdb_len == 6) {
4666			block = (((cdb[1] & 0x1F) << 16) |
4667				(cdb[2] << 8) |
4668				cdb[3]);
4669			block_cnt = cdb[4];
4670			if (block_cnt == 0)
4671				block_cnt = 256;
4672		} else {
4673			BUG_ON(*cdb_len != 12);
4674			block = get_unaligned_be32(&cdb[2]);
4675			block_cnt = get_unaligned_be32(&cdb[6]);
4676		}
4677		if (block_cnt > 0xffff)
4678			return IO_ACCEL_INELIGIBLE;
4679
4680		cdb[0] = is_write ? WRITE_10 : READ_10;
4681		cdb[1] = 0;
4682		cdb[2] = (u8) (block >> 24);
4683		cdb[3] = (u8) (block >> 16);
4684		cdb[4] = (u8) (block >> 8);
4685		cdb[5] = (u8) (block);
4686		cdb[6] = 0;
4687		cdb[7] = (u8) (block_cnt >> 8);
4688		cdb[8] = (u8) (block_cnt);
4689		cdb[9] = 0;
4690		*cdb_len = 10;
4691		break;
4692	}
4693	return 0;
4694}
4695
4696static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4697	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4698	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4699{
4700	struct scsi_cmnd *cmd = c->scsi_cmd;
4701	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4702	unsigned int len;
4703	unsigned int total_len = 0;
4704	struct scatterlist *sg;
4705	u64 addr64;
4706	int use_sg, i;
4707	struct SGDescriptor *curr_sg;
4708	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4709
4710	/* TODO: implement chaining support */
4711	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4712		atomic_dec(&phys_disk->ioaccel_cmds_out);
4713		return IO_ACCEL_INELIGIBLE;
4714	}
4715
4716	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4717
4718	if (is_zero_length_transfer(cdb)) {
4719		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4720		atomic_dec(&phys_disk->ioaccel_cmds_out);
4721		return IO_ACCEL_INELIGIBLE;
4722	}
4723
4724	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4725		atomic_dec(&phys_disk->ioaccel_cmds_out);
4726		return IO_ACCEL_INELIGIBLE;
4727	}
4728
4729	c->cmd_type = CMD_IOACCEL1;
4730
4731	/* Adjust the DMA address to point to the accelerated command buffer */
4732	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4733				(c->cmdindex * sizeof(*cp));
4734	BUG_ON(c->busaddr & 0x0000007F);
4735
4736	use_sg = scsi_dma_map(cmd);
4737	if (use_sg < 0) {
4738		atomic_dec(&phys_disk->ioaccel_cmds_out);
4739		return use_sg;
4740	}
4741
4742	if (use_sg) {
4743		curr_sg = cp->SG;
4744		scsi_for_each_sg(cmd, sg, use_sg, i) {
4745			addr64 = (u64) sg_dma_address(sg);
4746			len  = sg_dma_len(sg);
4747			total_len += len;
4748			curr_sg->Addr = cpu_to_le64(addr64);
4749			curr_sg->Len = cpu_to_le32(len);
4750			curr_sg->Ext = cpu_to_le32(0);
4751			curr_sg++;
4752		}
4753		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4754
4755		switch (cmd->sc_data_direction) {
4756		case DMA_TO_DEVICE:
4757			control |= IOACCEL1_CONTROL_DATA_OUT;
4758			break;
4759		case DMA_FROM_DEVICE:
4760			control |= IOACCEL1_CONTROL_DATA_IN;
4761			break;
4762		case DMA_NONE:
4763			control |= IOACCEL1_CONTROL_NODATAXFER;
4764			break;
4765		default:
4766			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4767			cmd->sc_data_direction);
4768			BUG();
4769			break;
4770		}
4771	} else {
4772		control |= IOACCEL1_CONTROL_NODATAXFER;
4773	}
4774
4775	c->Header.SGList = use_sg;
4776	/* Fill out the command structure to submit */
4777	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4778	cp->transfer_len = cpu_to_le32(total_len);
4779	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4780			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4781	cp->control = cpu_to_le32(control);
4782	memcpy(cp->CDB, cdb, cdb_len);
4783	memcpy(cp->CISS_LUN, scsi3addr, 8);
4784	/* Tag was already set at init time. */
4785	enqueue_cmd_and_start_io(h, c);
4786	return 0;
4787}
4788
4789/*
4790 * Queue a command directly to a device behind the controller using the
4791 * I/O accelerator path.
4792 */
4793static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4794	struct CommandList *c)
4795{
4796	struct scsi_cmnd *cmd = c->scsi_cmd;
4797	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4798
4799	if (!dev)
4800		return -1;
4801
4802	c->phys_disk = dev;
4803
4804	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4805		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4806}
4807
4808/*
4809 * Set encryption parameters for the ioaccel2 request
4810 */
4811static void set_encrypt_ioaccel2(struct ctlr_info *h,
4812	struct CommandList *c, struct io_accel2_cmd *cp)
4813{
4814	struct scsi_cmnd *cmd = c->scsi_cmd;
4815	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4816	struct raid_map_data *map = &dev->raid_map;
4817	u64 first_block;
4818
4819	/* Are we doing encryption on this device */
4820	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4821		return;
4822	/* Set the data encryption key index. */
4823	cp->dekindex = map->dekindex;
4824
4825	/* Set the encryption enable flag, encoded into direction field. */
4826	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4827
4828	/* Set encryption tweak values based on logical block address
4829	 * If block size is 512, tweak value is LBA.
4830	 * For other block sizes, tweak is (LBA * block size)/ 512)
4831	 */
4832	switch (cmd->cmnd[0]) {
4833	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4834	case READ_6:
4835	case WRITE_6:
4836		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4837				(cmd->cmnd[2] << 8) |
4838				cmd->cmnd[3]);
4839		break;
4840	case WRITE_10:
4841	case READ_10:
4842	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4843	case WRITE_12:
4844	case READ_12:
4845		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4846		break;
4847	case WRITE_16:
4848	case READ_16:
4849		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4850		break;
4851	default:
4852		dev_err(&h->pdev->dev,
4853			"ERROR: %s: size (0x%x) not supported for encryption\n",
4854			__func__, cmd->cmnd[0]);
4855		BUG();
4856		break;
4857	}
4858
4859	if (le32_to_cpu(map->volume_blk_size) != 512)
4860		first_block = first_block *
4861				le32_to_cpu(map->volume_blk_size)/512;
4862
4863	cp->tweak_lower = cpu_to_le32(first_block);
4864	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4865}
4866
4867static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4868	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4869	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4870{
4871	struct scsi_cmnd *cmd = c->scsi_cmd;
4872	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4873	struct ioaccel2_sg_element *curr_sg;
4874	int use_sg, i;
4875	struct scatterlist *sg;
4876	u64 addr64;
4877	u32 len;
4878	u32 total_len = 0;
4879
4880	if (!cmd->device)
4881		return -1;
4882
4883	if (!cmd->device->hostdata)
4884		return -1;
4885
4886	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4887
4888	if (is_zero_length_transfer(cdb)) {
4889		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4890		atomic_dec(&phys_disk->ioaccel_cmds_out);
4891		return IO_ACCEL_INELIGIBLE;
4892	}
4893
4894	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4895		atomic_dec(&phys_disk->ioaccel_cmds_out);
4896		return IO_ACCEL_INELIGIBLE;
4897	}
4898
4899	c->cmd_type = CMD_IOACCEL2;
4900	/* Adjust the DMA address to point to the accelerated command buffer */
4901	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4902				(c->cmdindex * sizeof(*cp));
4903	BUG_ON(c->busaddr & 0x0000007F);
4904
4905	memset(cp, 0, sizeof(*cp));
4906	cp->IU_type = IOACCEL2_IU_TYPE;
4907
4908	use_sg = scsi_dma_map(cmd);
4909	if (use_sg < 0) {
4910		atomic_dec(&phys_disk->ioaccel_cmds_out);
4911		return use_sg;
4912	}
4913
4914	if (use_sg) {
4915		curr_sg = cp->sg;
4916		if (use_sg > h->ioaccel_maxsg) {
4917			addr64 = le64_to_cpu(
4918				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4919			curr_sg->address = cpu_to_le64(addr64);
4920			curr_sg->length = 0;
4921			curr_sg->reserved[0] = 0;
4922			curr_sg->reserved[1] = 0;
4923			curr_sg->reserved[2] = 0;
4924			curr_sg->chain_indicator = 0x80;
4925
4926			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4927		}
4928		scsi_for_each_sg(cmd, sg, use_sg, i) {
4929			addr64 = (u64) sg_dma_address(sg);
4930			len  = sg_dma_len(sg);
4931			total_len += len;
4932			curr_sg->address = cpu_to_le64(addr64);
4933			curr_sg->length = cpu_to_le32(len);
4934			curr_sg->reserved[0] = 0;
4935			curr_sg->reserved[1] = 0;
4936			curr_sg->reserved[2] = 0;
4937			curr_sg->chain_indicator = 0;
4938			curr_sg++;
4939		}
4940
4941		switch (cmd->sc_data_direction) {
4942		case DMA_TO_DEVICE:
4943			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4944			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4945			break;
4946		case DMA_FROM_DEVICE:
4947			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4948			cp->direction |= IOACCEL2_DIR_DATA_IN;
4949			break;
4950		case DMA_NONE:
4951			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4952			cp->direction |= IOACCEL2_DIR_NO_DATA;
4953			break;
4954		default:
4955			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4956				cmd->sc_data_direction);
4957			BUG();
4958			break;
4959		}
4960	} else {
4961		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4962		cp->direction |= IOACCEL2_DIR_NO_DATA;
4963	}
4964
4965	/* Set encryption parameters, if necessary */
4966	set_encrypt_ioaccel2(h, c, cp);
4967
4968	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4969	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4970	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4971
4972	cp->data_len = cpu_to_le32(total_len);
4973	cp->err_ptr = cpu_to_le64(c->busaddr +
4974			offsetof(struct io_accel2_cmd, error_data));
4975	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4976
4977	/* fill in sg elements */
4978	if (use_sg > h->ioaccel_maxsg) {
4979		cp->sg_count = 1;
4980		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4981		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4982			atomic_dec(&phys_disk->ioaccel_cmds_out);
4983			scsi_dma_unmap(cmd);
4984			return -1;
4985		}
4986	} else
4987		cp->sg_count = (u8) use_sg;
4988
4989	enqueue_cmd_and_start_io(h, c);
4990	return 0;
4991}
4992
4993/*
4994 * Queue a command to the correct I/O accelerator path.
4995 */
4996static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4997	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4998	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4999{
5000	if (!c->scsi_cmd->device)
5001		return -1;
5002
5003	if (!c->scsi_cmd->device->hostdata)
5004		return -1;
5005
5006	/* Try to honor the device's queue depth */
5007	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5008					phys_disk->queue_depth) {
5009		atomic_dec(&phys_disk->ioaccel_cmds_out);
5010		return IO_ACCEL_INELIGIBLE;
5011	}
5012	if (h->transMethod & CFGTBL_Trans_io_accel1)
5013		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5014						cdb, cdb_len, scsi3addr,
5015						phys_disk);
5016	else
5017		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5018						cdb, cdb_len, scsi3addr,
5019						phys_disk);
5020}
5021
5022static void raid_map_helper(struct raid_map_data *map,
5023		int offload_to_mirror, u32 *map_index, u32 *current_group)
5024{
5025	if (offload_to_mirror == 0)  {
5026		/* use physical disk in the first mirrored group. */
5027		*map_index %= le16_to_cpu(map->data_disks_per_row);
5028		return;
5029	}
5030	do {
5031		/* determine mirror group that *map_index indicates */
5032		*current_group = *map_index /
5033			le16_to_cpu(map->data_disks_per_row);
5034		if (offload_to_mirror == *current_group)
5035			continue;
5036		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5037			/* select map index from next group */
5038			*map_index += le16_to_cpu(map->data_disks_per_row);
5039			(*current_group)++;
5040		} else {
5041			/* select map index from first group */
5042			*map_index %= le16_to_cpu(map->data_disks_per_row);
5043			*current_group = 0;
5044		}
5045	} while (offload_to_mirror != *current_group);
5046}
5047
5048/*
5049 * Attempt to perform offload RAID mapping for a logical volume I/O.
5050 */
5051static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5052	struct CommandList *c)
5053{
5054	struct scsi_cmnd *cmd = c->scsi_cmd;
5055	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5056	struct raid_map_data *map = &dev->raid_map;
5057	struct raid_map_disk_data *dd = &map->data[0];
5058	int is_write = 0;
5059	u32 map_index;
5060	u64 first_block, last_block;
5061	u32 block_cnt;
5062	u32 blocks_per_row;
5063	u64 first_row, last_row;
5064	u32 first_row_offset, last_row_offset;
5065	u32 first_column, last_column;
5066	u64 r0_first_row, r0_last_row;
5067	u32 r5or6_blocks_per_row;
5068	u64 r5or6_first_row, r5or6_last_row;
5069	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5070	u32 r5or6_first_column, r5or6_last_column;
5071	u32 total_disks_per_row;
5072	u32 stripesize;
5073	u32 first_group, last_group, current_group;
5074	u32 map_row;
5075	u32 disk_handle;
5076	u64 disk_block;
5077	u32 disk_block_cnt;
5078	u8 cdb[16];
5079	u8 cdb_len;
5080	u16 strip_size;
5081#if BITS_PER_LONG == 32
5082	u64 tmpdiv;
5083#endif
5084	int offload_to_mirror;
5085
5086	if (!dev)
5087		return -1;
5088
5089	/* check for valid opcode, get LBA and block count */
5090	switch (cmd->cmnd[0]) {
5091	case WRITE_6:
5092		is_write = 1;
5093	case READ_6:
5094		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5095				(cmd->cmnd[2] << 8) |
5096				cmd->cmnd[3]);
5097		block_cnt = cmd->cmnd[4];
5098		if (block_cnt == 0)
5099			block_cnt = 256;
5100		break;
5101	case WRITE_10:
5102		is_write = 1;
5103	case READ_10:
5104		first_block =
5105			(((u64) cmd->cmnd[2]) << 24) |
5106			(((u64) cmd->cmnd[3]) << 16) |
5107			(((u64) cmd->cmnd[4]) << 8) |
5108			cmd->cmnd[5];
5109		block_cnt =
5110			(((u32) cmd->cmnd[7]) << 8) |
5111			cmd->cmnd[8];
5112		break;
5113	case WRITE_12:
5114		is_write = 1;
5115	case READ_12:
5116		first_block =
5117			(((u64) cmd->cmnd[2]) << 24) |
5118			(((u64) cmd->cmnd[3]) << 16) |
5119			(((u64) cmd->cmnd[4]) << 8) |
5120			cmd->cmnd[5];
5121		block_cnt =
5122			(((u32) cmd->cmnd[6]) << 24) |
5123			(((u32) cmd->cmnd[7]) << 16) |
5124			(((u32) cmd->cmnd[8]) << 8) |
5125		cmd->cmnd[9];
5126		break;
5127	case WRITE_16:
5128		is_write = 1;
5129	case READ_16:
5130		first_block =
5131			(((u64) cmd->cmnd[2]) << 56) |
5132			(((u64) cmd->cmnd[3]) << 48) |
5133			(((u64) cmd->cmnd[4]) << 40) |
5134			(((u64) cmd->cmnd[5]) << 32) |
5135			(((u64) cmd->cmnd[6]) << 24) |
5136			(((u64) cmd->cmnd[7]) << 16) |
5137			(((u64) cmd->cmnd[8]) << 8) |
5138			cmd->cmnd[9];
5139		block_cnt =
5140			(((u32) cmd->cmnd[10]) << 24) |
5141			(((u32) cmd->cmnd[11]) << 16) |
5142			(((u32) cmd->cmnd[12]) << 8) |
5143			cmd->cmnd[13];
5144		break;
5145	default:
5146		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5147	}
5148	last_block = first_block + block_cnt - 1;
5149
5150	/* check for write to non-RAID-0 */
5151	if (is_write && dev->raid_level != 0)
5152		return IO_ACCEL_INELIGIBLE;
5153
5154	/* check for invalid block or wraparound */
5155	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5156		last_block < first_block)
5157		return IO_ACCEL_INELIGIBLE;
5158
5159	/* calculate stripe information for the request */
5160	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5161				le16_to_cpu(map->strip_size);
5162	strip_size = le16_to_cpu(map->strip_size);
5163#if BITS_PER_LONG == 32
5164	tmpdiv = first_block;
5165	(void) do_div(tmpdiv, blocks_per_row);
5166	first_row = tmpdiv;
5167	tmpdiv = last_block;
5168	(void) do_div(tmpdiv, blocks_per_row);
5169	last_row = tmpdiv;
5170	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5171	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5172	tmpdiv = first_row_offset;
5173	(void) do_div(tmpdiv, strip_size);
5174	first_column = tmpdiv;
5175	tmpdiv = last_row_offset;
5176	(void) do_div(tmpdiv, strip_size);
5177	last_column = tmpdiv;
5178#else
5179	first_row = first_block / blocks_per_row;
5180	last_row = last_block / blocks_per_row;
5181	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5182	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5183	first_column = first_row_offset / strip_size;
5184	last_column = last_row_offset / strip_size;
5185#endif
5186
5187	/* if this isn't a single row/column then give to the controller */
5188	if ((first_row != last_row) || (first_column != last_column))
5189		return IO_ACCEL_INELIGIBLE;
5190
5191	/* proceeding with driver mapping */
5192	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5193				le16_to_cpu(map->metadata_disks_per_row);
5194	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5195				le16_to_cpu(map->row_cnt);
5196	map_index = (map_row * total_disks_per_row) + first_column;
5197
5198	switch (dev->raid_level) {
5199	case HPSA_RAID_0:
5200		break; /* nothing special to do */
5201	case HPSA_RAID_1:
5202		/* Handles load balance across RAID 1 members.
5203		 * (2-drive R1 and R10 with even # of drives.)
5204		 * Appropriate for SSDs, not optimal for HDDs
5205		 */
5206		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5207		if (dev->offload_to_mirror)
5208			map_index += le16_to_cpu(map->data_disks_per_row);
5209		dev->offload_to_mirror = !dev->offload_to_mirror;
5210		break;
5211	case HPSA_RAID_ADM:
5212		/* Handles N-way mirrors  (R1-ADM)
5213		 * and R10 with # of drives divisible by 3.)
5214		 */
5215		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5216
5217		offload_to_mirror = dev->offload_to_mirror;
5218		raid_map_helper(map, offload_to_mirror,
5219				&map_index, &current_group);
5220		/* set mirror group to use next time */
5221		offload_to_mirror =
5222			(offload_to_mirror >=
5223			le16_to_cpu(map->layout_map_count) - 1)
5224			? 0 : offload_to_mirror + 1;
5225		dev->offload_to_mirror = offload_to_mirror;
5226		/* Avoid direct use of dev->offload_to_mirror within this
5227		 * function since multiple threads might simultaneously
5228		 * increment it beyond the range of dev->layout_map_count -1.
5229		 */
5230		break;
5231	case HPSA_RAID_5:
5232	case HPSA_RAID_6:
5233		if (le16_to_cpu(map->layout_map_count) <= 1)
5234			break;
5235
5236		/* Verify first and last block are in same RAID group */
5237		r5or6_blocks_per_row =
5238			le16_to_cpu(map->strip_size) *
5239			le16_to_cpu(map->data_disks_per_row);
5240		BUG_ON(r5or6_blocks_per_row == 0);
5241		stripesize = r5or6_blocks_per_row *
5242			le16_to_cpu(map->layout_map_count);
5243#if BITS_PER_LONG == 32
5244		tmpdiv = first_block;
5245		first_group = do_div(tmpdiv, stripesize);
5246		tmpdiv = first_group;
5247		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5248		first_group = tmpdiv;
5249		tmpdiv = last_block;
5250		last_group = do_div(tmpdiv, stripesize);
5251		tmpdiv = last_group;
5252		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5253		last_group = tmpdiv;
5254#else
5255		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5256		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5257#endif
5258		if (first_group != last_group)
5259			return IO_ACCEL_INELIGIBLE;
5260
5261		/* Verify request is in a single row of RAID 5/6 */
5262#if BITS_PER_LONG == 32
5263		tmpdiv = first_block;
5264		(void) do_div(tmpdiv, stripesize);
5265		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5266		tmpdiv = last_block;
5267		(void) do_div(tmpdiv, stripesize);
5268		r5or6_last_row = r0_last_row = tmpdiv;
5269#else
5270		first_row = r5or6_first_row = r0_first_row =
5271						first_block / stripesize;
5272		r5or6_last_row = r0_last_row = last_block / stripesize;
5273#endif
5274		if (r5or6_first_row != r5or6_last_row)
5275			return IO_ACCEL_INELIGIBLE;
5276
5277
5278		/* Verify request is in a single column */
5279#if BITS_PER_LONG == 32
5280		tmpdiv = first_block;
5281		first_row_offset = do_div(tmpdiv, stripesize);
5282		tmpdiv = first_row_offset;
5283		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5284		r5or6_first_row_offset = first_row_offset;
5285		tmpdiv = last_block;
5286		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5287		tmpdiv = r5or6_last_row_offset;
5288		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5289		tmpdiv = r5or6_first_row_offset;
5290		(void) do_div(tmpdiv, map->strip_size);
5291		first_column = r5or6_first_column = tmpdiv;
5292		tmpdiv = r5or6_last_row_offset;
5293		(void) do_div(tmpdiv, map->strip_size);
5294		r5or6_last_column = tmpdiv;
5295#else
5296		first_row_offset = r5or6_first_row_offset =
5297			(u32)((first_block % stripesize) %
5298						r5or6_blocks_per_row);
5299
5300		r5or6_last_row_offset =
5301			(u32)((last_block % stripesize) %
5302						r5or6_blocks_per_row);
5303
5304		first_column = r5or6_first_column =
5305			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5306		r5or6_last_column =
5307			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5308#endif
5309		if (r5or6_first_column != r5or6_last_column)
5310			return IO_ACCEL_INELIGIBLE;
5311
5312		/* Request is eligible */
5313		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5314			le16_to_cpu(map->row_cnt);
5315
5316		map_index = (first_group *
5317			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5318			(map_row * total_disks_per_row) + first_column;
5319		break;
5320	default:
5321		return IO_ACCEL_INELIGIBLE;
5322	}
5323
5324	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5325		return IO_ACCEL_INELIGIBLE;
5326
5327	c->phys_disk = dev->phys_disk[map_index];
5328	if (!c->phys_disk)
5329		return IO_ACCEL_INELIGIBLE;
5330
5331	disk_handle = dd[map_index].ioaccel_handle;
5332	disk_block = le64_to_cpu(map->disk_starting_blk) +
5333			first_row * le16_to_cpu(map->strip_size) +
5334			(first_row_offset - first_column *
5335			le16_to_cpu(map->strip_size));
5336	disk_block_cnt = block_cnt;
5337
5338	/* handle differing logical/physical block sizes */
5339	if (map->phys_blk_shift) {
5340		disk_block <<= map->phys_blk_shift;
5341		disk_block_cnt <<= map->phys_blk_shift;
5342	}
5343	BUG_ON(disk_block_cnt > 0xffff);
5344
5345	/* build the new CDB for the physical disk I/O */
5346	if (disk_block > 0xffffffff) {
5347		cdb[0] = is_write ? WRITE_16 : READ_16;
5348		cdb[1] = 0;
5349		cdb[2] = (u8) (disk_block >> 56);
5350		cdb[3] = (u8) (disk_block >> 48);
5351		cdb[4] = (u8) (disk_block >> 40);
5352		cdb[5] = (u8) (disk_block >> 32);
5353		cdb[6] = (u8) (disk_block >> 24);
5354		cdb[7] = (u8) (disk_block >> 16);
5355		cdb[8] = (u8) (disk_block >> 8);
5356		cdb[9] = (u8) (disk_block);
5357		cdb[10] = (u8) (disk_block_cnt >> 24);
5358		cdb[11] = (u8) (disk_block_cnt >> 16);
5359		cdb[12] = (u8) (disk_block_cnt >> 8);
5360		cdb[13] = (u8) (disk_block_cnt);
5361		cdb[14] = 0;
5362		cdb[15] = 0;
5363		cdb_len = 16;
5364	} else {
5365		cdb[0] = is_write ? WRITE_10 : READ_10;
5366		cdb[1] = 0;
5367		cdb[2] = (u8) (disk_block >> 24);
5368		cdb[3] = (u8) (disk_block >> 16);
5369		cdb[4] = (u8) (disk_block >> 8);
5370		cdb[5] = (u8) (disk_block);
5371		cdb[6] = 0;
5372		cdb[7] = (u8) (disk_block_cnt >> 8);
5373		cdb[8] = (u8) (disk_block_cnt);
5374		cdb[9] = 0;
5375		cdb_len = 10;
5376	}
5377	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5378						dev->scsi3addr,
5379						dev->phys_disk[map_index]);
5380}
5381
5382/*
5383 * Submit commands down the "normal" RAID stack path
5384 * All callers to hpsa_ciss_submit must check lockup_detected
5385 * beforehand, before (opt.) and after calling cmd_alloc
5386 */
5387static int hpsa_ciss_submit(struct ctlr_info *h,
5388	struct CommandList *c, struct scsi_cmnd *cmd,
5389	unsigned char scsi3addr[])
5390{
5391	cmd->host_scribble = (unsigned char *) c;
5392	c->cmd_type = CMD_SCSI;
5393	c->scsi_cmd = cmd;
5394	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5395	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5396	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
 
5397
5398	/* Fill in the request block... */
5399
5400	c->Request.Timeout = 0;
 
5401	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5402	c->Request.CDBLen = cmd->cmd_len;
5403	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
 
 
5404	switch (cmd->sc_data_direction) {
5405	case DMA_TO_DEVICE:
5406		c->Request.type_attr_dir =
5407			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5408		break;
5409	case DMA_FROM_DEVICE:
5410		c->Request.type_attr_dir =
5411			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5412		break;
5413	case DMA_NONE:
5414		c->Request.type_attr_dir =
5415			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5416		break;
5417	case DMA_BIDIRECTIONAL:
5418		/* This can happen if a buggy application does a scsi passthru
5419		 * and sets both inlen and outlen to non-zero. ( see
5420		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5421		 */
5422
5423		c->Request.type_attr_dir =
5424			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5425		/* This is technically wrong, and hpsa controllers should
5426		 * reject it with CMD_INVALID, which is the most correct
5427		 * response, but non-fibre backends appear to let it
5428		 * slide by, and give the same results as if this field
5429		 * were set correctly.  Either way is acceptable for
5430		 * our purposes here.
5431		 */
5432
5433		break;
5434
5435	default:
5436		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5437			cmd->sc_data_direction);
5438		BUG();
5439		break;
5440	}
5441
5442	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5443		hpsa_cmd_resolve_and_free(h, c);
5444		return SCSI_MLQUEUE_HOST_BUSY;
5445	}
5446	enqueue_cmd_and_start_io(h, c);
5447	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5448	return 0;
5449}
5450
5451static void hpsa_cmd_init(struct ctlr_info *h, int index,
5452				struct CommandList *c)
5453{
5454	dma_addr_t cmd_dma_handle, err_dma_handle;
5455
5456	/* Zero out all of commandlist except the last field, refcount */
5457	memset(c, 0, offsetof(struct CommandList, refcount));
5458	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5459	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5460	c->err_info = h->errinfo_pool + index;
5461	memset(c->err_info, 0, sizeof(*c->err_info));
5462	err_dma_handle = h->errinfo_pool_dhandle
5463	    + index * sizeof(*c->err_info);
5464	c->cmdindex = index;
5465	c->busaddr = (u32) cmd_dma_handle;
5466	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5467	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5468	c->h = h;
5469	c->scsi_cmd = SCSI_CMD_IDLE;
5470}
5471
5472static void hpsa_preinitialize_commands(struct ctlr_info *h)
5473{
5474	int i;
5475
5476	for (i = 0; i < h->nr_cmds; i++) {
5477		struct CommandList *c = h->cmd_pool + i;
5478
5479		hpsa_cmd_init(h, i, c);
5480		atomic_set(&c->refcount, 0);
5481	}
5482}
5483
5484static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5485				struct CommandList *c)
5486{
5487	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5488
5489	BUG_ON(c->cmdindex != index);
5490
5491	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5492	memset(c->err_info, 0, sizeof(*c->err_info));
5493	c->busaddr = (u32) cmd_dma_handle;
5494}
5495
5496static int hpsa_ioaccel_submit(struct ctlr_info *h,
5497		struct CommandList *c, struct scsi_cmnd *cmd,
5498		unsigned char *scsi3addr)
5499{
5500	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5501	int rc = IO_ACCEL_INELIGIBLE;
5502
5503	if (!dev)
5504		return SCSI_MLQUEUE_HOST_BUSY;
5505
5506	cmd->host_scribble = (unsigned char *) c;
5507
5508	if (dev->offload_enabled) {
5509		hpsa_cmd_init(h, c->cmdindex, c);
5510		c->cmd_type = CMD_SCSI;
5511		c->scsi_cmd = cmd;
5512		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5513		if (rc < 0)     /* scsi_dma_map failed. */
5514			rc = SCSI_MLQUEUE_HOST_BUSY;
5515	} else if (dev->hba_ioaccel_enabled) {
5516		hpsa_cmd_init(h, c->cmdindex, c);
5517		c->cmd_type = CMD_SCSI;
5518		c->scsi_cmd = cmd;
5519		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5520		if (rc < 0)     /* scsi_dma_map failed. */
5521			rc = SCSI_MLQUEUE_HOST_BUSY;
5522	}
5523	return rc;
5524}
5525
5526static void hpsa_command_resubmit_worker(struct work_struct *work)
5527{
5528	struct scsi_cmnd *cmd;
5529	struct hpsa_scsi_dev_t *dev;
5530	struct CommandList *c = container_of(work, struct CommandList, work);
5531
5532	cmd = c->scsi_cmd;
5533	dev = cmd->device->hostdata;
5534	if (!dev) {
5535		cmd->result = DID_NO_CONNECT << 16;
5536		return hpsa_cmd_free_and_done(c->h, c, cmd);
5537	}
5538	if (c->reset_pending)
5539		return hpsa_cmd_free_and_done(c->h, c, cmd);
5540	if (c->cmd_type == CMD_IOACCEL2) {
5541		struct ctlr_info *h = c->h;
5542		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5543		int rc;
5544
5545		if (c2->error_data.serv_response ==
5546				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5547			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5548			if (rc == 0)
5549				return;
5550			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5551				/*
5552				 * If we get here, it means dma mapping failed.
5553				 * Try again via scsi mid layer, which will
5554				 * then get SCSI_MLQUEUE_HOST_BUSY.
5555				 */
5556				cmd->result = DID_IMM_RETRY << 16;
5557				return hpsa_cmd_free_and_done(h, c, cmd);
5558			}
5559			/* else, fall thru and resubmit down CISS path */
5560		}
5561	}
5562	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5563	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5564		/*
5565		 * If we get here, it means dma mapping failed. Try
5566		 * again via scsi mid layer, which will then get
5567		 * SCSI_MLQUEUE_HOST_BUSY.
5568		 *
5569		 * hpsa_ciss_submit will have already freed c
5570		 * if it encountered a dma mapping failure.
5571		 */
5572		cmd->result = DID_IMM_RETRY << 16;
5573		cmd->scsi_done(cmd);
5574	}
5575}
5576
5577/* Running in struct Scsi_Host->host_lock less mode */
5578static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5579{
5580	struct ctlr_info *h;
5581	struct hpsa_scsi_dev_t *dev;
5582	unsigned char scsi3addr[8];
5583	struct CommandList *c;
5584	int rc = 0;
5585
5586	/* Get the ptr to our adapter structure out of cmd->host. */
5587	h = sdev_to_hba(cmd->device);
5588
5589	BUG_ON(cmd->request->tag < 0);
5590
5591	dev = cmd->device->hostdata;
5592	if (!dev) {
5593		cmd->result = DID_NO_CONNECT << 16;
5594		cmd->scsi_done(cmd);
5595		return 0;
5596	}
5597
5598	if (dev->removed) {
5599		cmd->result = DID_NO_CONNECT << 16;
5600		cmd->scsi_done(cmd);
5601		return 0;
5602	}
5603
5604	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5605
5606	if (unlikely(lockup_detected(h))) {
5607		cmd->result = DID_NO_CONNECT << 16;
5608		cmd->scsi_done(cmd);
5609		return 0;
5610	}
5611	c = cmd_tagged_alloc(h, cmd);
5612
5613	/*
5614	 * Call alternate submit routine for I/O accelerated commands.
5615	 * Retries always go down the normal I/O path.
5616	 */
5617	if (likely(cmd->retries == 0 &&
5618			!blk_rq_is_passthrough(cmd->request) &&
5619			h->acciopath_status)) {
5620		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5621		if (rc == 0)
5622			return 0;
5623		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5624			hpsa_cmd_resolve_and_free(h, c);
5625			return SCSI_MLQUEUE_HOST_BUSY;
5626		}
5627	}
5628	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5629}
5630
5631static void hpsa_scan_complete(struct ctlr_info *h)
5632{
5633	unsigned long flags;
5634
5635	spin_lock_irqsave(&h->scan_lock, flags);
5636	h->scan_finished = 1;
5637	wake_up(&h->scan_wait_queue);
5638	spin_unlock_irqrestore(&h->scan_lock, flags);
5639}
5640
5641static void hpsa_scan_start(struct Scsi_Host *sh)
5642{
5643	struct ctlr_info *h = shost_to_hba(sh);
5644	unsigned long flags;
5645
5646	/*
5647	 * Don't let rescans be initiated on a controller known to be locked
5648	 * up.  If the controller locks up *during* a rescan, that thread is
5649	 * probably hosed, but at least we can prevent new rescan threads from
5650	 * piling up on a locked up controller.
5651	 */
5652	if (unlikely(lockup_detected(h)))
5653		return hpsa_scan_complete(h);
5654
5655	/*
5656	 * If a scan is already waiting to run, no need to add another
5657	 */
5658	spin_lock_irqsave(&h->scan_lock, flags);
5659	if (h->scan_waiting) {
5660		spin_unlock_irqrestore(&h->scan_lock, flags);
5661		return;
5662	}
5663
5664	spin_unlock_irqrestore(&h->scan_lock, flags);
5665
5666	/* wait until any scan already in progress is finished. */
5667	while (1) {
5668		spin_lock_irqsave(&h->scan_lock, flags);
5669		if (h->scan_finished)
5670			break;
5671		h->scan_waiting = 1;
5672		spin_unlock_irqrestore(&h->scan_lock, flags);
5673		wait_event(h->scan_wait_queue, h->scan_finished);
5674		/* Note: We don't need to worry about a race between this
5675		 * thread and driver unload because the midlayer will
5676		 * have incremented the reference count, so unload won't
5677		 * happen if we're in here.
5678		 */
5679	}
5680	h->scan_finished = 0; /* mark scan as in progress */
5681	h->scan_waiting = 0;
5682	spin_unlock_irqrestore(&h->scan_lock, flags);
5683
5684	if (unlikely(lockup_detected(h)))
5685		return hpsa_scan_complete(h);
5686
5687	/*
5688	 * Do the scan after a reset completion
5689	 */
5690	spin_lock_irqsave(&h->reset_lock, flags);
5691	if (h->reset_in_progress) {
5692		h->drv_req_rescan = 1;
5693		spin_unlock_irqrestore(&h->reset_lock, flags);
5694		hpsa_scan_complete(h);
5695		return;
5696	}
5697	spin_unlock_irqrestore(&h->reset_lock, flags);
5698
5699	hpsa_update_scsi_devices(h);
5700
5701	hpsa_scan_complete(h);
5702}
5703
5704static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5705{
5706	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5707
5708	if (!logical_drive)
5709		return -ENODEV;
5710
5711	if (qdepth < 1)
5712		qdepth = 1;
5713	else if (qdepth > logical_drive->queue_depth)
5714		qdepth = logical_drive->queue_depth;
5715
5716	return scsi_change_queue_depth(sdev, qdepth);
5717}
5718
5719static int hpsa_scan_finished(struct Scsi_Host *sh,
5720	unsigned long elapsed_time)
5721{
5722	struct ctlr_info *h = shost_to_hba(sh);
5723	unsigned long flags;
5724	int finished;
5725
5726	spin_lock_irqsave(&h->scan_lock, flags);
5727	finished = h->scan_finished;
5728	spin_unlock_irqrestore(&h->scan_lock, flags);
5729	return finished;
5730}
5731
5732static int hpsa_scsi_host_alloc(struct ctlr_info *h)
 
5733{
5734	struct Scsi_Host *sh;
5735
5736	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5737	if (sh == NULL) {
5738		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5739		return -ENOMEM;
5740	}
5741
5742	sh->io_port = 0;
5743	sh->n_io_port = 0;
5744	sh->this_id = -1;
5745	sh->max_channel = 3;
5746	sh->max_cmd_len = MAX_COMMAND_SIZE;
5747	sh->max_lun = HPSA_MAX_LUN;
5748	sh->max_id = HPSA_MAX_LUN;
5749	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5750	sh->cmd_per_lun = sh->can_queue;
5751	sh->sg_tablesize = h->maxsgentries;
5752	sh->transportt = hpsa_sas_transport_template;
5753	sh->hostdata[0] = (unsigned long) h;
5754	sh->irq = pci_irq_vector(h->pdev, 0);
5755	sh->unique_id = sh->irq;
5756
5757	h->scsi_host = sh;
5758	return 0;
5759}
5760
5761static int hpsa_scsi_add_host(struct ctlr_info *h)
5762{
5763	int rv;
5764
5765	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5766	if (rv) {
5767		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5768		return rv;
5769	}
5770	scsi_scan_host(h->scsi_host);
5771	return 0;
5772}
5773
5774/*
5775 * The block layer has already gone to the trouble of picking out a unique,
5776 * small-integer tag for this request.  We use an offset from that value as
5777 * an index to select our command block.  (The offset allows us to reserve the
5778 * low-numbered entries for our own uses.)
5779 */
5780static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5781{
5782	int idx = scmd->request->tag;
5783
5784	if (idx < 0)
5785		return idx;
5786
5787	/* Offset to leave space for internal cmds. */
5788	return idx += HPSA_NRESERVED_CMDS;
5789}
5790
5791/*
5792 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5793 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5794 */
5795static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5796				struct CommandList *c, unsigned char lunaddr[],
5797				int reply_queue)
5798{
5799	int rc;
5800
5801	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5802	(void) fill_cmd(c, TEST_UNIT_READY, h,
5803			NULL, 0, 0, lunaddr, TYPE_CMD);
5804	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5805	if (rc)
5806		return rc;
5807	/* no unmap needed here because no data xfer. */
5808
5809	/* Check if the unit is already ready. */
5810	if (c->err_info->CommandStatus == CMD_SUCCESS)
5811		return 0;
5812
5813	/*
5814	 * The first command sent after reset will receive "unit attention" to
5815	 * indicate that the LUN has been reset...this is actually what we're
5816	 * looking for (but, success is good too).
5817	 */
5818	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5819		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5820			(c->err_info->SenseInfo[2] == NO_SENSE ||
5821			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5822		return 0;
5823
5824	return 1;
5825}
5826
5827/*
5828 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5829 * returns zero when the unit is ready, and non-zero when giving up.
5830 */
5831static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5832				struct CommandList *c,
5833				unsigned char lunaddr[], int reply_queue)
5834{
5835	int rc;
5836	int count = 0;
5837	int waittime = 1; /* seconds */
 
 
 
 
 
 
 
 
5838
5839	/* Send test unit ready until device ready, or give up. */
5840	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5841
5842		/*
5843		 * Wait for a bit.  do this first, because if we send
5844		 * the TUR right away, the reset will just abort it.
5845		 */
5846		msleep(1000 * waittime);
5847
5848		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5849		if (!rc)
5850			break;
5851
5852		/* Increase wait time with each try, up to a point. */
5853		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5854			waittime *= 2;
5855
5856		dev_warn(&h->pdev->dev,
5857			 "waiting %d secs for device to become ready.\n",
5858			 waittime);
5859	}
5860
5861	return rc;
5862}
5863
5864static int wait_for_device_to_become_ready(struct ctlr_info *h,
5865					   unsigned char lunaddr[],
5866					   int reply_queue)
5867{
5868	int first_queue;
5869	int last_queue;
5870	int rq;
5871	int rc = 0;
5872	struct CommandList *c;
5873
5874	c = cmd_alloc(h);
5875
5876	/*
5877	 * If no specific reply queue was requested, then send the TUR
5878	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5879	 * the loop exactly once using only the specified queue.
5880	 */
5881	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5882		first_queue = 0;
5883		last_queue = h->nreply_queues - 1;
5884	} else {
5885		first_queue = reply_queue;
5886		last_queue = reply_queue;
5887	}
5888
5889	for (rq = first_queue; rq <= last_queue; rq++) {
5890		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5891		if (rc)
5892			break;
5893	}
5894
5895	if (rc)
5896		dev_warn(&h->pdev->dev, "giving up on device.\n");
5897	else
5898		dev_warn(&h->pdev->dev, "device is ready.\n");
5899
5900	cmd_free(h, c);
5901	return rc;
5902}
5903
5904/* Need at least one of these error handlers to keep ../scsi/hosts.c from
5905 * complaining.  Doing a host- or bus-reset can't do anything good here.
5906 */
5907static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5908{
5909	int rc = SUCCESS;
5910	struct ctlr_info *h;
5911	struct hpsa_scsi_dev_t *dev;
5912	u8 reset_type;
5913	char msg[48];
5914	unsigned long flags;
5915
5916	/* find the controller to which the command to be aborted was sent */
5917	h = sdev_to_hba(scsicmd->device);
5918	if (h == NULL) /* paranoia */
5919		return FAILED;
5920
5921	spin_lock_irqsave(&h->reset_lock, flags);
5922	h->reset_in_progress = 1;
5923	spin_unlock_irqrestore(&h->reset_lock, flags);
5924
5925	if (lockup_detected(h)) {
5926		rc = FAILED;
5927		goto return_reset_status;
5928	}
5929
5930	dev = scsicmd->device->hostdata;
5931	if (!dev) {
5932		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5933		rc = FAILED;
5934		goto return_reset_status;
5935	}
5936
5937	if (dev->devtype == TYPE_ENCLOSURE) {
5938		rc = SUCCESS;
5939		goto return_reset_status;
5940	}
5941
5942	/* if controller locked up, we can guarantee command won't complete */
5943	if (lockup_detected(h)) {
5944		snprintf(msg, sizeof(msg),
5945			 "cmd %d RESET FAILED, lockup detected",
5946			 hpsa_get_cmd_index(scsicmd));
5947		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5948		rc = FAILED;
5949		goto return_reset_status;
5950	}
5951
5952	/* this reset request might be the result of a lockup; check */
5953	if (detect_controller_lockup(h)) {
5954		snprintf(msg, sizeof(msg),
5955			 "cmd %d RESET FAILED, new lockup detected",
5956			 hpsa_get_cmd_index(scsicmd));
5957		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5958		rc = FAILED;
5959		goto return_reset_status;
5960	}
5961
5962	/* Do not attempt on controller */
5963	if (is_hba_lunid(dev->scsi3addr)) {
5964		rc = SUCCESS;
5965		goto return_reset_status;
5966	}
5967
5968	if (is_logical_dev_addr_mode(dev->scsi3addr))
5969		reset_type = HPSA_DEVICE_RESET_MSG;
5970	else
5971		reset_type = HPSA_PHYS_TARGET_RESET;
5972
5973	sprintf(msg, "resetting %s",
5974		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5975	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5976
5977	/* send a reset to the SCSI LUN which the command was sent to */
5978	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5979			   DEFAULT_REPLY_QUEUE);
5980	if (rc == 0)
5981		rc = SUCCESS;
5982	else
5983		rc = FAILED;
5984
5985	sprintf(msg, "reset %s %s",
5986		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5987		rc == SUCCESS ? "completed successfully" : "failed");
5988	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5989
5990return_reset_status:
5991	spin_lock_irqsave(&h->reset_lock, flags);
5992	h->reset_in_progress = 0;
5993	spin_unlock_irqrestore(&h->reset_lock, flags);
5994	return rc;
5995}
5996
5997/*
5998 * For operations with an associated SCSI command, a command block is allocated
5999 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6000 * block request tag as an index into a table of entries.  cmd_tagged_free() is
6001 * the complement, although cmd_free() may be called instead.
6002 */
6003static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6004					    struct scsi_cmnd *scmd)
6005{
6006	int idx = hpsa_get_cmd_index(scmd);
6007	struct CommandList *c = h->cmd_pool + idx;
 
 
6008
6009	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6010		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6011			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6012		/* The index value comes from the block layer, so if it's out of
6013		 * bounds, it's probably not our bug.
6014		 */
6015		BUG();
6016	}
 
 
 
 
 
 
 
 
 
 
6017
6018	atomic_inc(&c->refcount);
6019	if (unlikely(!hpsa_is_cmd_idle(c))) {
6020		/*
6021		 * We expect that the SCSI layer will hand us a unique tag
6022		 * value.  Thus, there should never be a collision here between
6023		 * two requests...because if the selected command isn't idle
6024		 * then someone is going to be very disappointed.
6025		 */
6026		dev_err(&h->pdev->dev,
6027			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
6028			idx);
6029		if (c->scsi_cmd != NULL)
6030			scsi_print_command(c->scsi_cmd);
6031		scsi_print_command(scmd);
6032	}
6033
6034	hpsa_cmd_partial_init(h, idx, c);
6035	return c;
6036}
6037
6038static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
 
 
 
 
6039{
6040	/*
6041	 * Release our reference to the block.  We don't need to do anything
6042	 * else to free it, because it is accessed by index.
6043	 */
6044	(void)atomic_dec(&c->refcount);
6045}
6046
6047/*
6048 * For operations that cannot sleep, a command block is allocated at init,
6049 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6050 * which ones are free or in use.  Lock must be held when calling this.
6051 * cmd_free() is the complement.
6052 * This function never gives up and returns NULL.  If it hangs,
6053 * another thread must call cmd_free() to free some tags.
6054 */
6055
6056static struct CommandList *cmd_alloc(struct ctlr_info *h)
6057{
6058	struct CommandList *c;
6059	int refcount, i;
6060	int offset = 0;
6061
6062	/*
6063	 * There is some *extremely* small but non-zero chance that that
6064	 * multiple threads could get in here, and one thread could
6065	 * be scanning through the list of bits looking for a free
6066	 * one, but the free ones are always behind him, and other
6067	 * threads sneak in behind him and eat them before he can
6068	 * get to them, so that while there is always a free one, a
6069	 * very unlucky thread might be starved anyway, never able to
6070	 * beat the other threads.  In reality, this happens so
6071	 * infrequently as to be indistinguishable from never.
6072	 *
6073	 * Note that we start allocating commands before the SCSI host structure
6074	 * is initialized.  Since the search starts at bit zero, this
6075	 * all works, since we have at least one command structure available;
6076	 * however, it means that the structures with the low indexes have to be
6077	 * reserved for driver-initiated requests, while requests from the block
6078	 * layer will use the higher indexes.
6079	 */
6080
6081	for (;;) {
6082		i = find_next_zero_bit(h->cmd_pool_bits,
6083					HPSA_NRESERVED_CMDS,
6084					offset);
6085		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6086			offset = 0;
6087			continue;
6088		}
6089		c = h->cmd_pool + i;
6090		refcount = atomic_inc_return(&c->refcount);
6091		if (unlikely(refcount > 1)) {
6092			cmd_free(h, c); /* already in use */
6093			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6094			continue;
6095		}
6096		set_bit(i & (BITS_PER_LONG - 1),
6097			h->cmd_pool_bits + (i / BITS_PER_LONG));
6098		break; /* it's ours now. */
6099	}
6100	hpsa_cmd_partial_init(h, i, c);
 
 
 
 
 
 
 
 
 
6101	return c;
6102}
6103
6104/*
6105 * This is the complementary operation to cmd_alloc().  Note, however, in some
6106 * corner cases it may also be used to free blocks allocated by
6107 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6108 * the clear-bit is harmless.
6109 */
6110static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6111{
6112	if (atomic_dec_and_test(&c->refcount)) {
6113		int i;
6114
6115		i = c - h->cmd_pool;
6116		clear_bit(i & (BITS_PER_LONG - 1),
6117			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6118	}
 
 
 
 
 
 
 
 
 
 
 
 
6119}
6120
6121#ifdef CONFIG_COMPAT
6122
6123static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6124	void __user *arg)
6125{
6126	IOCTL32_Command_struct __user *arg32 =
6127	    (IOCTL32_Command_struct __user *) arg;
6128	IOCTL_Command_struct arg64;
6129	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6130	int err;
6131	u32 cp;
6132
6133	memset(&arg64, 0, sizeof(arg64));
6134	err = 0;
6135	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6136			   sizeof(arg64.LUN_info));
6137	err |= copy_from_user(&arg64.Request, &arg32->Request,
6138			   sizeof(arg64.Request));
6139	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6140			   sizeof(arg64.error_info));
6141	err |= get_user(arg64.buf_size, &arg32->buf_size);
6142	err |= get_user(cp, &arg32->buf);
6143	arg64.buf = compat_ptr(cp);
6144	err |= copy_to_user(p, &arg64, sizeof(arg64));
6145
6146	if (err)
6147		return -EFAULT;
6148
6149	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6150	if (err)
6151		return err;
6152	err |= copy_in_user(&arg32->error_info, &p->error_info,
6153			 sizeof(arg32->error_info));
6154	if (err)
6155		return -EFAULT;
6156	return err;
6157}
6158
6159static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6160	int cmd, void __user *arg)
6161{
6162	BIG_IOCTL32_Command_struct __user *arg32 =
6163	    (BIG_IOCTL32_Command_struct __user *) arg;
6164	BIG_IOCTL_Command_struct arg64;
6165	BIG_IOCTL_Command_struct __user *p =
6166	    compat_alloc_user_space(sizeof(arg64));
6167	int err;
6168	u32 cp;
6169
6170	memset(&arg64, 0, sizeof(arg64));
6171	err = 0;
6172	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6173			   sizeof(arg64.LUN_info));
6174	err |= copy_from_user(&arg64.Request, &arg32->Request,
6175			   sizeof(arg64.Request));
6176	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6177			   sizeof(arg64.error_info));
6178	err |= get_user(arg64.buf_size, &arg32->buf_size);
6179	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6180	err |= get_user(cp, &arg32->buf);
6181	arg64.buf = compat_ptr(cp);
6182	err |= copy_to_user(p, &arg64, sizeof(arg64));
6183
6184	if (err)
6185		return -EFAULT;
6186
6187	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6188	if (err)
6189		return err;
6190	err |= copy_in_user(&arg32->error_info, &p->error_info,
6191			 sizeof(arg32->error_info));
6192	if (err)
6193		return -EFAULT;
6194	return err;
6195}
6196
6197static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6198{
6199	switch (cmd) {
6200	case CCISS_GETPCIINFO:
6201	case CCISS_GETINTINFO:
6202	case CCISS_SETINTINFO:
6203	case CCISS_GETNODENAME:
6204	case CCISS_SETNODENAME:
6205	case CCISS_GETHEARTBEAT:
6206	case CCISS_GETBUSTYPES:
6207	case CCISS_GETFIRMVER:
6208	case CCISS_GETDRIVVER:
6209	case CCISS_REVALIDVOLS:
6210	case CCISS_DEREGDISK:
6211	case CCISS_REGNEWDISK:
6212	case CCISS_REGNEWD:
6213	case CCISS_RESCANDISK:
6214	case CCISS_GETLUNINFO:
6215		return hpsa_ioctl(dev, cmd, arg);
6216
6217	case CCISS_PASSTHRU32:
6218		return hpsa_ioctl32_passthru(dev, cmd, arg);
6219	case CCISS_BIG_PASSTHRU32:
6220		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6221
6222	default:
6223		return -ENOIOCTLCMD;
6224	}
6225}
6226#endif
6227
6228static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6229{
6230	struct hpsa_pci_info pciinfo;
6231
6232	if (!argp)
6233		return -EINVAL;
6234	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6235	pciinfo.bus = h->pdev->bus->number;
6236	pciinfo.dev_fn = h->pdev->devfn;
6237	pciinfo.board_id = h->board_id;
6238	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6239		return -EFAULT;
6240	return 0;
6241}
6242
6243static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6244{
6245	DriverVer_type DriverVer;
6246	unsigned char vmaj, vmin, vsubmin;
6247	int rc;
6248
6249	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6250		&vmaj, &vmin, &vsubmin);
6251	if (rc != 3) {
6252		dev_info(&h->pdev->dev, "driver version string '%s' "
6253			"unrecognized.", HPSA_DRIVER_VERSION);
6254		vmaj = 0;
6255		vmin = 0;
6256		vsubmin = 0;
6257	}
6258	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6259	if (!argp)
6260		return -EINVAL;
6261	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6262		return -EFAULT;
6263	return 0;
6264}
6265
6266static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6267{
6268	IOCTL_Command_struct iocommand;
6269	struct CommandList *c;
6270	char *buff = NULL;
6271	u64 temp64;
6272	int rc = 0;
6273
6274	if (!argp)
6275		return -EINVAL;
6276	if (!capable(CAP_SYS_RAWIO))
6277		return -EPERM;
6278	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6279		return -EFAULT;
6280	if ((iocommand.buf_size < 1) &&
6281	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6282		return -EINVAL;
6283	}
6284	if (iocommand.buf_size > 0) {
6285		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6286		if (buff == NULL)
6287			return -ENOMEM;
6288		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6289			/* Copy the data into the buffer we created */
6290			if (copy_from_user(buff, iocommand.buf,
6291				iocommand.buf_size)) {
6292				rc = -EFAULT;
6293				goto out_kfree;
6294			}
6295		} else {
6296			memset(buff, 0, iocommand.buf_size);
6297		}
6298	}
6299	c = cmd_alloc(h);
6300
 
 
 
6301	/* Fill in the command type */
6302	c->cmd_type = CMD_IOCTL_PEND;
6303	c->scsi_cmd = SCSI_CMD_BUSY;
6304	/* Fill in Command Header */
6305	c->Header.ReplyQueue = 0; /* unused in simple mode */
6306	if (iocommand.buf_size > 0) {	/* buffer to fill */
6307		c->Header.SGList = 1;
6308		c->Header.SGTotal = cpu_to_le16(1);
6309	} else	{ /* no buffers to fill */
6310		c->Header.SGList = 0;
6311		c->Header.SGTotal = cpu_to_le16(0);
6312	}
6313	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
 
 
6314
6315	/* Fill in Request block */
6316	memcpy(&c->Request, &iocommand.Request,
6317		sizeof(c->Request));
6318
6319	/* Fill in the scatter gather information */
6320	if (iocommand.buf_size > 0) {
6321		temp64 = pci_map_single(h->pdev, buff,
6322			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6323		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6324			c->SG[0].Addr = cpu_to_le64(0);
6325			c->SG[0].Len = cpu_to_le32(0);
6326			rc = -ENOMEM;
6327			goto out;
6328		}
6329		c->SG[0].Addr = cpu_to_le64(temp64);
6330		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6331		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6332	}
6333	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6334					NO_TIMEOUT);
6335	if (iocommand.buf_size > 0)
6336		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6337	check_ioctl_unit_attention(h, c);
6338	if (rc) {
6339		rc = -EIO;
6340		goto out;
6341	}
6342
6343	/* Copy the error information out */
6344	memcpy(&iocommand.error_info, c->err_info,
6345		sizeof(iocommand.error_info));
6346	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6347		rc = -EFAULT;
6348		goto out;
 
6349	}
6350	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6351		iocommand.buf_size > 0) {
6352		/* Copy the data out of the buffer we created */
6353		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6354			rc = -EFAULT;
6355			goto out;
 
6356		}
6357	}
6358out:
6359	cmd_free(h, c);
6360out_kfree:
6361	kfree(buff);
6362	return rc;
 
6363}
6364
6365static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6366{
6367	BIG_IOCTL_Command_struct *ioc;
6368	struct CommandList *c;
6369	unsigned char **buff = NULL;
6370	int *buff_size = NULL;
6371	u64 temp64;
6372	BYTE sg_used = 0;
6373	int status = 0;
 
6374	u32 left;
6375	u32 sz;
6376	BYTE __user *data_ptr;
6377
6378	if (!argp)
6379		return -EINVAL;
6380	if (!capable(CAP_SYS_RAWIO))
6381		return -EPERM;
6382	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
 
6383	if (!ioc) {
6384		status = -ENOMEM;
6385		goto cleanup1;
6386	}
6387	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6388		status = -EFAULT;
6389		goto cleanup1;
6390	}
6391	if ((ioc->buf_size < 1) &&
6392	    (ioc->Request.Type.Direction != XFER_NONE)) {
6393		status = -EINVAL;
6394		goto cleanup1;
6395	}
6396	/* Check kmalloc limits  using all SGs */
6397	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6398		status = -EINVAL;
6399		goto cleanup1;
6400	}
6401	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6402		status = -EINVAL;
6403		goto cleanup1;
6404	}
6405	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6406	if (!buff) {
6407		status = -ENOMEM;
6408		goto cleanup1;
6409	}
6410	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6411	if (!buff_size) {
6412		status = -ENOMEM;
6413		goto cleanup1;
6414	}
6415	left = ioc->buf_size;
6416	data_ptr = ioc->buf;
6417	while (left) {
6418		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6419		buff_size[sg_used] = sz;
6420		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6421		if (buff[sg_used] == NULL) {
6422			status = -ENOMEM;
6423			goto cleanup1;
6424		}
6425		if (ioc->Request.Type.Direction & XFER_WRITE) {
6426			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6427				status = -EFAULT;
6428				goto cleanup1;
6429			}
6430		} else
6431			memset(buff[sg_used], 0, sz);
6432		left -= sz;
6433		data_ptr += sz;
6434		sg_used++;
6435	}
6436	c = cmd_alloc(h);
6437
 
 
 
6438	c->cmd_type = CMD_IOCTL_PEND;
6439	c->scsi_cmd = SCSI_CMD_BUSY;
6440	c->Header.ReplyQueue = 0;
6441	c->Header.SGList = (u8) sg_used;
6442	c->Header.SGTotal = cpu_to_le16(sg_used);
6443	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
 
6444	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6445	if (ioc->buf_size > 0) {
6446		int i;
6447		for (i = 0; i < sg_used; i++) {
6448			temp64 = pci_map_single(h->pdev, buff[i],
6449				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6450			if (dma_mapping_error(&h->pdev->dev,
6451							(dma_addr_t) temp64)) {
6452				c->SG[i].Addr = cpu_to_le64(0);
6453				c->SG[i].Len = cpu_to_le32(0);
6454				hpsa_pci_unmap(h->pdev, c, i,
6455					PCI_DMA_BIDIRECTIONAL);
6456				status = -ENOMEM;
6457				goto cleanup0;
6458			}
6459			c->SG[i].Addr = cpu_to_le64(temp64);
6460			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6461			c->SG[i].Ext = cpu_to_le32(0);
6462		}
6463		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6464	}
6465	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6466						NO_TIMEOUT);
6467	if (sg_used)
6468		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6469	check_ioctl_unit_attention(h, c);
6470	if (status) {
6471		status = -EIO;
6472		goto cleanup0;
6473	}
6474
6475	/* Copy the error information out */
6476	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6477	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
 
6478		status = -EFAULT;
6479		goto cleanup0;
6480	}
6481	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6482		int i;
6483
6484		/* Copy the data out of the buffer we created */
6485		BYTE __user *ptr = ioc->buf;
6486		for (i = 0; i < sg_used; i++) {
6487			if (copy_to_user(ptr, buff[i], buff_size[i])) {
 
6488				status = -EFAULT;
6489				goto cleanup0;
6490			}
6491			ptr += buff_size[i];
6492		}
6493	}
 
6494	status = 0;
6495cleanup0:
6496	cmd_free(h, c);
6497cleanup1:
6498	if (buff) {
6499		int i;
6500
6501		for (i = 0; i < sg_used; i++)
6502			kfree(buff[i]);
6503		kfree(buff);
6504	}
6505	kfree(buff_size);
6506	kfree(ioc);
6507	return status;
6508}
6509
6510static void check_ioctl_unit_attention(struct ctlr_info *h,
6511	struct CommandList *c)
6512{
6513	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6514			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6515		(void) check_for_unit_attention(h, c);
6516}
6517
6518/*
6519 * ioctl
6520 */
6521static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6522{
6523	struct ctlr_info *h;
6524	void __user *argp = (void __user *)arg;
6525	int rc;
6526
6527	h = sdev_to_hba(dev);
6528
6529	switch (cmd) {
6530	case CCISS_DEREGDISK:
6531	case CCISS_REGNEWDISK:
6532	case CCISS_REGNEWD:
6533		hpsa_scan_start(h->scsi_host);
6534		return 0;
6535	case CCISS_GETPCIINFO:
6536		return hpsa_getpciinfo_ioctl(h, argp);
6537	case CCISS_GETDRIVVER:
6538		return hpsa_getdrivver_ioctl(h, argp);
6539	case CCISS_PASSTHRU:
6540		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6541			return -EAGAIN;
6542		rc = hpsa_passthru_ioctl(h, argp);
6543		atomic_inc(&h->passthru_cmds_avail);
6544		return rc;
6545	case CCISS_BIG_PASSTHRU:
6546		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6547			return -EAGAIN;
6548		rc = hpsa_big_passthru_ioctl(h, argp);
6549		atomic_inc(&h->passthru_cmds_avail);
6550		return rc;
6551	default:
6552		return -ENOTTY;
6553	}
6554}
6555
6556static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6557				u8 reset_type)
6558{
6559	struct CommandList *c;
6560
6561	c = cmd_alloc(h);
6562
6563	/* fill_cmd can't fail here, no data buffer to map */
6564	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6565		RAID_CTLR_LUNID, TYPE_MSG);
6566	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6567	c->waiting = NULL;
6568	enqueue_cmd_and_start_io(h, c);
6569	/* Don't wait for completion, the reset won't complete.  Don't free
6570	 * the command either.  This is the last command we will send before
6571	 * re-initializing everything, so it doesn't matter and won't leak.
6572	 */
6573	return;
6574}
6575
6576static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6577	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6578	int cmd_type)
6579{
6580	int pci_dir = XFER_NONE;
6581
6582	c->cmd_type = CMD_IOCTL_PEND;
6583	c->scsi_cmd = SCSI_CMD_BUSY;
6584	c->Header.ReplyQueue = 0;
6585	if (buff != NULL && size > 0) {
6586		c->Header.SGList = 1;
6587		c->Header.SGTotal = cpu_to_le16(1);
6588	} else {
6589		c->Header.SGList = 0;
6590		c->Header.SGTotal = cpu_to_le16(0);
6591	}
 
6592	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6593
 
6594	if (cmd_type == TYPE_CMD) {
6595		switch (cmd) {
6596		case HPSA_INQUIRY:
6597			/* are we trying to read a vital product page */
6598			if (page_code & VPD_PAGE) {
6599				c->Request.CDB[1] = 0x01;
6600				c->Request.CDB[2] = (page_code & 0xff);
6601			}
6602			c->Request.CDBLen = 6;
6603			c->Request.type_attr_dir =
6604				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6605			c->Request.Timeout = 0;
6606			c->Request.CDB[0] = HPSA_INQUIRY;
6607			c->Request.CDB[4] = size & 0xFF;
6608			break;
6609		case RECEIVE_DIAGNOSTIC:
6610			c->Request.CDBLen = 6;
6611			c->Request.type_attr_dir =
6612				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6613			c->Request.Timeout = 0;
6614			c->Request.CDB[0] = cmd;
6615			c->Request.CDB[1] = 1;
6616			c->Request.CDB[2] = 1;
6617			c->Request.CDB[3] = (size >> 8) & 0xFF;
6618			c->Request.CDB[4] = size & 0xFF;
6619			break;
6620		case HPSA_REPORT_LOG:
6621		case HPSA_REPORT_PHYS:
6622			/* Talking to controller so It's a physical command
6623			   mode = 00 target = 0.  Nothing to write.
6624			 */
6625			c->Request.CDBLen = 12;
6626			c->Request.type_attr_dir =
6627				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6628			c->Request.Timeout = 0;
6629			c->Request.CDB[0] = cmd;
6630			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6631			c->Request.CDB[7] = (size >> 16) & 0xFF;
6632			c->Request.CDB[8] = (size >> 8) & 0xFF;
6633			c->Request.CDB[9] = size & 0xFF;
6634			break;
6635		case BMIC_SENSE_DIAG_OPTIONS:
6636			c->Request.CDBLen = 16;
6637			c->Request.type_attr_dir =
6638				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6639			c->Request.Timeout = 0;
6640			/* Spec says this should be BMIC_WRITE */
6641			c->Request.CDB[0] = BMIC_READ;
6642			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6643			break;
6644		case BMIC_SET_DIAG_OPTIONS:
6645			c->Request.CDBLen = 16;
6646			c->Request.type_attr_dir =
6647					TYPE_ATTR_DIR(cmd_type,
6648						ATTR_SIMPLE, XFER_WRITE);
6649			c->Request.Timeout = 0;
6650			c->Request.CDB[0] = BMIC_WRITE;
6651			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6652			break;
6653		case HPSA_CACHE_FLUSH:
6654			c->Request.CDBLen = 12;
6655			c->Request.type_attr_dir =
6656					TYPE_ATTR_DIR(cmd_type,
6657						ATTR_SIMPLE, XFER_WRITE);
6658			c->Request.Timeout = 0;
6659			c->Request.CDB[0] = BMIC_WRITE;
6660			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6661			c->Request.CDB[7] = (size >> 8) & 0xFF;
6662			c->Request.CDB[8] = size & 0xFF;
6663			break;
6664		case TEST_UNIT_READY:
6665			c->Request.CDBLen = 6;
6666			c->Request.type_attr_dir =
6667				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6668			c->Request.Timeout = 0;
6669			break;
6670		case HPSA_GET_RAID_MAP:
6671			c->Request.CDBLen = 12;
6672			c->Request.type_attr_dir =
6673				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6674			c->Request.Timeout = 0;
6675			c->Request.CDB[0] = HPSA_CISS_READ;
6676			c->Request.CDB[1] = cmd;
6677			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6678			c->Request.CDB[7] = (size >> 16) & 0xFF;
6679			c->Request.CDB[8] = (size >> 8) & 0xFF;
6680			c->Request.CDB[9] = size & 0xFF;
6681			break;
6682		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6683			c->Request.CDBLen = 10;
6684			c->Request.type_attr_dir =
6685				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6686			c->Request.Timeout = 0;
6687			c->Request.CDB[0] = BMIC_READ;
6688			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6689			c->Request.CDB[7] = (size >> 16) & 0xFF;
6690			c->Request.CDB[8] = (size >> 8) & 0xFF;
6691			break;
6692		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6693			c->Request.CDBLen = 10;
6694			c->Request.type_attr_dir =
6695				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6696			c->Request.Timeout = 0;
6697			c->Request.CDB[0] = BMIC_READ;
6698			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6699			c->Request.CDB[7] = (size >> 16) & 0xFF;
6700			c->Request.CDB[8] = (size >> 8) & 0XFF;
6701			break;
6702		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6703			c->Request.CDBLen = 10;
6704			c->Request.type_attr_dir =
6705				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6706			c->Request.Timeout = 0;
6707			c->Request.CDB[0] = BMIC_READ;
6708			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6709			c->Request.CDB[7] = (size >> 16) & 0xFF;
6710			c->Request.CDB[8] = (size >> 8) & 0XFF;
6711			break;
6712		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6713			c->Request.CDBLen = 10;
6714			c->Request.type_attr_dir =
6715				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6716			c->Request.Timeout = 0;
6717			c->Request.CDB[0] = BMIC_READ;
6718			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6719			c->Request.CDB[7] = (size >> 16) & 0xFF;
6720			c->Request.CDB[8] = (size >> 8) & 0XFF;
6721			break;
6722		case BMIC_IDENTIFY_CONTROLLER:
6723			c->Request.CDBLen = 10;
6724			c->Request.type_attr_dir =
6725				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6726			c->Request.Timeout = 0;
6727			c->Request.CDB[0] = BMIC_READ;
6728			c->Request.CDB[1] = 0;
6729			c->Request.CDB[2] = 0;
6730			c->Request.CDB[3] = 0;
6731			c->Request.CDB[4] = 0;
6732			c->Request.CDB[5] = 0;
6733			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6734			c->Request.CDB[7] = (size >> 16) & 0xFF;
6735			c->Request.CDB[8] = (size >> 8) & 0XFF;
6736			c->Request.CDB[9] = 0;
6737			break;
6738		default:
6739			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6740			BUG();
 
6741		}
6742	} else if (cmd_type == TYPE_MSG) {
6743		switch (cmd) {
6744
6745		case  HPSA_PHYS_TARGET_RESET:
6746			c->Request.CDBLen = 16;
6747			c->Request.type_attr_dir =
6748				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6749			c->Request.Timeout = 0; /* Don't time out */
6750			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6751			c->Request.CDB[0] = HPSA_RESET;
6752			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6753			/* Physical target reset needs no control bytes 4-7*/
6754			c->Request.CDB[4] = 0x00;
6755			c->Request.CDB[5] = 0x00;
6756			c->Request.CDB[6] = 0x00;
6757			c->Request.CDB[7] = 0x00;
6758			break;
6759		case  HPSA_DEVICE_RESET_MSG:
6760			c->Request.CDBLen = 16;
6761			c->Request.type_attr_dir =
6762				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
 
6763			c->Request.Timeout = 0; /* Don't time out */
6764			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6765			c->Request.CDB[0] =  cmd;
6766			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6767			/* If bytes 4-7 are zero, it means reset the */
6768			/* LunID device */
6769			c->Request.CDB[4] = 0x00;
6770			c->Request.CDB[5] = 0x00;
6771			c->Request.CDB[6] = 0x00;
6772			c->Request.CDB[7] = 0x00;
6773			break;
 
6774		default:
6775			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6776				cmd);
6777			BUG();
6778		}
6779	} else {
6780		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6781		BUG();
6782	}
6783
6784	switch (GET_DIR(c->Request.type_attr_dir)) {
6785	case XFER_READ:
6786		pci_dir = PCI_DMA_FROMDEVICE;
6787		break;
6788	case XFER_WRITE:
6789		pci_dir = PCI_DMA_TODEVICE;
6790		break;
6791	case XFER_NONE:
6792		pci_dir = PCI_DMA_NONE;
6793		break;
6794	default:
6795		pci_dir = PCI_DMA_BIDIRECTIONAL;
6796	}
6797	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6798		return -1;
6799	return 0;
 
6800}
6801
6802/*
6803 * Map (physical) PCI mem into (virtual) kernel space
6804 */
6805static void __iomem *remap_pci_mem(ulong base, ulong size)
6806{
6807	ulong page_base = ((ulong) base) & PAGE_MASK;
6808	ulong page_offs = ((ulong) base) - page_base;
6809	void __iomem *page_remapped = ioremap_nocache(page_base,
6810		page_offs + size);
6811
6812	return page_remapped ? (page_remapped + page_offs) : NULL;
6813}
6814
6815static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
 
 
 
6816{
6817	return h->access.command_completed(h, q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6818}
6819
6820static inline bool interrupt_pending(struct ctlr_info *h)
6821{
6822	return h->access.intr_pending(h);
6823}
6824
6825static inline long interrupt_not_for_us(struct ctlr_info *h)
6826{
6827	return (h->access.intr_pending(h) == 0) ||
6828		(h->interrupts_enabled == 0);
6829}
6830
6831static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6832	u32 raw_tag)
6833{
6834	if (unlikely(tag_index >= h->nr_cmds)) {
6835		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6836		return 1;
6837	}
6838	return 0;
6839}
6840
6841static inline void finish_cmd(struct CommandList *c)
6842{
6843	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6844	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6845			|| c->cmd_type == CMD_IOACCEL2))
6846		complete_scsi_command(c);
6847	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6848		complete(c->waiting);
6849}
6850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6851/* process completion of an indexed ("direct lookup") command */
6852static inline void process_indexed_cmd(struct ctlr_info *h,
6853	u32 raw_tag)
6854{
6855	u32 tag_index;
6856	struct CommandList *c;
6857
6858	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6859	if (!bad_tag(h, tag_index, raw_tag)) {
6860		c = h->cmd_pool + tag_index;
6861		finish_cmd(c);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6862	}
 
 
6863}
6864
6865/* Some controllers, like p400, will give us one interrupt
6866 * after a soft reset, even if we turned interrupts off.
6867 * Only need to check for this in the hpsa_xxx_discard_completions
6868 * functions.
6869 */
6870static int ignore_bogus_interrupt(struct ctlr_info *h)
6871{
6872	if (likely(!reset_devices))
6873		return 0;
6874
6875	if (likely(h->interrupts_enabled))
6876		return 0;
6877
6878	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6879		"(known firmware bug.)  Ignoring.\n");
6880
6881	return 1;
6882}
6883
6884/*
6885 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6886 * Relies on (h-q[x] == x) being true for x such that
6887 * 0 <= x < MAX_REPLY_QUEUES.
6888 */
6889static struct ctlr_info *queue_to_hba(u8 *queue)
6890{
6891	return container_of((queue - *queue), struct ctlr_info, q[0]);
6892}
6893
6894static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6895{
6896	struct ctlr_info *h = queue_to_hba(queue);
6897	u8 q = *(u8 *) queue;
6898	u32 raw_tag;
6899
6900	if (ignore_bogus_interrupt(h))
6901		return IRQ_NONE;
6902
6903	if (interrupt_not_for_us(h))
6904		return IRQ_NONE;
6905	h->last_intr_timestamp = get_jiffies_64();
6906	while (interrupt_pending(h)) {
6907		raw_tag = get_next_completion(h, q);
6908		while (raw_tag != FIFO_EMPTY)
6909			raw_tag = next_command(h, q);
6910	}
 
6911	return IRQ_HANDLED;
6912}
6913
6914static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6915{
6916	struct ctlr_info *h = queue_to_hba(queue);
 
6917	u32 raw_tag;
6918	u8 q = *(u8 *) queue;
6919
6920	if (ignore_bogus_interrupt(h))
6921		return IRQ_NONE;
6922
6923	h->last_intr_timestamp = get_jiffies_64();
6924	raw_tag = get_next_completion(h, q);
6925	while (raw_tag != FIFO_EMPTY)
6926		raw_tag = next_command(h, q);
 
6927	return IRQ_HANDLED;
6928}
6929
6930static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6931{
6932	struct ctlr_info *h = queue_to_hba((u8 *) queue);
 
6933	u32 raw_tag;
6934	u8 q = *(u8 *) queue;
6935
6936	if (interrupt_not_for_us(h))
6937		return IRQ_NONE;
6938	h->last_intr_timestamp = get_jiffies_64();
6939	while (interrupt_pending(h)) {
6940		raw_tag = get_next_completion(h, q);
6941		while (raw_tag != FIFO_EMPTY) {
6942			process_indexed_cmd(h, raw_tag);
6943			raw_tag = next_command(h, q);
 
 
6944		}
6945	}
 
6946	return IRQ_HANDLED;
6947}
6948
6949static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6950{
6951	struct ctlr_info *h = queue_to_hba(queue);
 
6952	u32 raw_tag;
6953	u8 q = *(u8 *) queue;
6954
6955	h->last_intr_timestamp = get_jiffies_64();
6956	raw_tag = get_next_completion(h, q);
6957	while (raw_tag != FIFO_EMPTY) {
6958		process_indexed_cmd(h, raw_tag);
6959		raw_tag = next_command(h, q);
 
 
6960	}
 
6961	return IRQ_HANDLED;
6962}
6963
6964/* Send a message CDB to the firmware. Careful, this only works
6965 * in simple mode, not performant mode due to the tag lookup.
6966 * We only ever use this immediately after a controller reset.
6967 */
6968static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6969			unsigned char type)
6970{
6971	struct Command {
6972		struct CommandListHeader CommandHeader;
6973		struct RequestBlock Request;
6974		struct ErrDescriptor ErrorDescriptor;
6975	};
6976	struct Command *cmd;
6977	static const size_t cmd_sz = sizeof(*cmd) +
6978					sizeof(cmd->ErrorDescriptor);
6979	dma_addr_t paddr64;
6980	__le32 paddr32;
6981	u32 tag;
6982	void __iomem *vaddr;
6983	int i, err;
6984
6985	vaddr = pci_ioremap_bar(pdev, 0);
6986	if (vaddr == NULL)
6987		return -ENOMEM;
6988
6989	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
6990	 * CCISS commands, so they must be allocated from the lower 4GiB of
6991	 * memory.
6992	 */
6993	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6994	if (err) {
6995		iounmap(vaddr);
6996		return err;
6997	}
6998
6999	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7000	if (cmd == NULL) {
7001		iounmap(vaddr);
7002		return -ENOMEM;
7003	}
7004
7005	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7006	 * although there's no guarantee, we assume that the address is at
7007	 * least 4-byte aligned (most likely, it's page-aligned).
7008	 */
7009	paddr32 = cpu_to_le32(paddr64);
7010
7011	cmd->CommandHeader.ReplyQueue = 0;
7012	cmd->CommandHeader.SGList = 0;
7013	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7014	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
 
7015	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7016
7017	cmd->Request.CDBLen = 16;
7018	cmd->Request.type_attr_dir =
7019			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
 
7020	cmd->Request.Timeout = 0; /* Don't time out */
7021	cmd->Request.CDB[0] = opcode;
7022	cmd->Request.CDB[1] = type;
7023	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7024	cmd->ErrorDescriptor.Addr =
7025			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7026	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7027
7028	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7029
7030	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7031		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7032		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7033			break;
7034		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7035	}
7036
7037	iounmap(vaddr);
7038
7039	/* we leak the DMA buffer here ... no choice since the controller could
7040	 *  still complete the command.
7041	 */
7042	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7043		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7044			opcode, type);
7045		return -ETIMEDOUT;
7046	}
7047
7048	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7049
7050	if (tag & HPSA_ERROR_BIT) {
7051		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7052			opcode, type);
7053		return -EIO;
7054	}
7055
7056	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7057		opcode, type);
7058	return 0;
7059}
7060
7061#define hpsa_noop(p) hpsa_message(p, 3, 0)
7062
7063static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7064	void __iomem *vaddr, u32 use_doorbell)
7065{
 
 
7066
7067	if (use_doorbell) {
7068		/* For everything after the P600, the PCI power state method
7069		 * of resetting the controller doesn't work, so we have this
7070		 * other way using the doorbell register.
7071		 */
7072		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7073		writel(use_doorbell, vaddr + SA5_DOORBELL);
7074
7075		/* PMC hardware guys tell us we need a 10 second delay after
7076		 * doorbell reset and before any attempt to talk to the board
7077		 * at all to ensure that this actually works and doesn't fall
7078		 * over in some weird corner cases.
7079		 */
7080		msleep(10000);
7081	} else { /* Try to do it the PCI power state way */
7082
7083		/* Quoting from the Open CISS Specification: "The Power
7084		 * Management Control/Status Register (CSR) controls the power
7085		 * state of the device.  The normal operating state is D0,
7086		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7087		 * the controller, place the interface device in D3 then to D0,
7088		 * this causes a secondary PCI reset which will reset the
7089		 * controller." */
7090
7091		int rc = 0;
7092
 
 
 
 
 
7093		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7094
7095		/* enter the D3hot power management state */
7096		rc = pci_set_power_state(pdev, PCI_D3hot);
7097		if (rc)
7098			return rc;
 
7099
7100		msleep(500);
7101
7102		/* enter the D0 power management state */
7103		rc = pci_set_power_state(pdev, PCI_D0);
7104		if (rc)
7105			return rc;
7106
7107		/*
7108		 * The P600 requires a small delay when changing states.
7109		 * Otherwise we may think the board did not reset and we bail.
7110		 * This for kdump only and is particular to the P600.
7111		 */
7112		msleep(500);
7113	}
7114	return 0;
7115}
7116
7117static void init_driver_version(char *driver_version, int len)
7118{
7119	memset(driver_version, 0, len);
7120	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7121}
7122
7123static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
 
7124{
7125	char *driver_version;
7126	int i, size = sizeof(cfgtable->driver_version);
7127
7128	driver_version = kmalloc(size, GFP_KERNEL);
7129	if (!driver_version)
7130		return -ENOMEM;
7131
7132	init_driver_version(driver_version, size);
7133	for (i = 0; i < size; i++)
7134		writeb(driver_version[i], &cfgtable->driver_version[i]);
7135	kfree(driver_version);
7136	return 0;
7137}
7138
7139static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7140					  unsigned char *driver_ver)
7141{
7142	int i;
7143
7144	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7145		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7146}
7147
7148static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
 
7149{
7150
7151	char *driver_ver, *old_driver_ver;
7152	int rc, size = sizeof(cfgtable->driver_version);
7153
7154	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7155	if (!old_driver_ver)
7156		return -ENOMEM;
7157	driver_ver = old_driver_ver + size;
7158
7159	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7160	 * should have been changed, otherwise we know the reset failed.
7161	 */
7162	init_driver_version(old_driver_ver, size);
7163	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7164	rc = !memcmp(driver_ver, old_driver_ver, size);
7165	kfree(old_driver_ver);
7166	return rc;
7167}
7168/* This does a hard reset of the controller using PCI power management
7169 * states or the using the doorbell register.
7170 */
7171static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7172{
7173	u64 cfg_offset;
7174	u32 cfg_base_addr;
7175	u64 cfg_base_addr_index;
7176	void __iomem *vaddr;
7177	unsigned long paddr;
7178	u32 misc_fw_support;
7179	int rc;
7180	struct CfgTable __iomem *cfgtable;
7181	u32 use_doorbell;
 
7182	u16 command_register;
7183
7184	/* For controllers as old as the P600, this is very nearly
7185	 * the same thing as
7186	 *
7187	 * pci_save_state(pci_dev);
7188	 * pci_set_power_state(pci_dev, PCI_D3hot);
7189	 * pci_set_power_state(pci_dev, PCI_D0);
7190	 * pci_restore_state(pci_dev);
7191	 *
7192	 * For controllers newer than the P600, the pci power state
7193	 * method of resetting doesn't work so we have another way
7194	 * using the doorbell register.
7195	 */
7196
7197	if (!ctlr_is_resettable(board_id)) {
7198		dev_warn(&pdev->dev, "Controller not resettable\n");
 
7199		return -ENODEV;
7200	}
7201
7202	/* if controller is soft- but not hard resettable... */
7203	if (!ctlr_is_hard_resettable(board_id))
7204		return -ENOTSUPP; /* try soft reset later. */
7205
7206	/* Save the PCI command register */
7207	pci_read_config_word(pdev, 4, &command_register);
 
 
 
 
7208	pci_save_state(pdev);
7209
7210	/* find the first memory BAR, so we can find the cfg table */
7211	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7212	if (rc)
7213		return rc;
7214	vaddr = remap_pci_mem(paddr, 0x250);
7215	if (!vaddr)
7216		return -ENOMEM;
7217
7218	/* find cfgtable in order to check if reset via doorbell is supported */
7219	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7220					&cfg_base_addr_index, &cfg_offset);
7221	if (rc)
7222		goto unmap_vaddr;
7223	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7224		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7225	if (!cfgtable) {
7226		rc = -ENOMEM;
7227		goto unmap_vaddr;
7228	}
7229	rc = write_driver_ver_to_cfgtable(cfgtable);
7230	if (rc)
7231		goto unmap_cfgtable;
7232
7233	/* If reset via doorbell register is supported, use that.
7234	 * There are two such methods.  Favor the newest method.
7235	 */
7236	misc_fw_support = readl(&cfgtable->misc_fw_support);
7237	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7238	if (use_doorbell) {
7239		use_doorbell = DOORBELL_CTLR_RESET2;
7240	} else {
7241		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7242		if (use_doorbell) {
7243			dev_warn(&pdev->dev,
7244				"Soft reset not supported. Firmware update is required.\n");
 
 
7245			rc = -ENOTSUPP; /* try soft reset */
7246			goto unmap_cfgtable;
7247		}
7248	}
7249
7250	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7251	if (rc)
7252		goto unmap_cfgtable;
7253
7254	pci_restore_state(pdev);
 
 
 
 
 
7255	pci_write_config_word(pdev, 4, command_register);
7256
7257	/* Some devices (notably the HP Smart Array 5i Controller)
7258	   need a little pause here */
7259	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7260
 
 
 
 
 
 
 
 
 
 
7261	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7262	if (rc) {
7263		dev_warn(&pdev->dev,
7264			"Failed waiting for board to become ready after hard reset\n");
 
7265		goto unmap_cfgtable;
7266	}
7267
7268	rc = controller_reset_failed(vaddr);
7269	if (rc < 0)
7270		goto unmap_cfgtable;
7271	if (rc) {
7272		dev_warn(&pdev->dev, "Unable to successfully reset "
7273			"controller. Will try soft reset.\n");
7274		rc = -ENOTSUPP;
7275	} else {
7276		dev_info(&pdev->dev, "board ready after hard reset.\n");
7277	}
7278
7279unmap_cfgtable:
7280	iounmap(cfgtable);
7281
7282unmap_vaddr:
7283	iounmap(vaddr);
7284	return rc;
7285}
7286
7287/*
7288 *  We cannot read the structure directly, for portability we must use
7289 *   the io functions.
7290 *   This is for debug only.
7291 */
7292static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7293{
7294#ifdef HPSA_DEBUG
7295	int i;
7296	char temp_name[17];
7297
7298	dev_info(dev, "Controller Configuration information\n");
7299	dev_info(dev, "------------------------------------\n");
7300	for (i = 0; i < 4; i++)
7301		temp_name[i] = readb(&(tb->Signature[i]));
7302	temp_name[4] = '\0';
7303	dev_info(dev, "   Signature = %s\n", temp_name);
7304	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7305	dev_info(dev, "   Transport methods supported = 0x%x\n",
7306	       readl(&(tb->TransportSupport)));
7307	dev_info(dev, "   Transport methods active = 0x%x\n",
7308	       readl(&(tb->TransportActive)));
7309	dev_info(dev, "   Requested transport Method = 0x%x\n",
7310	       readl(&(tb->HostWrite.TransportRequest)));
7311	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7312	       readl(&(tb->HostWrite.CoalIntDelay)));
7313	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7314	       readl(&(tb->HostWrite.CoalIntCount)));
7315	dev_info(dev, "   Max outstanding commands = %d\n",
7316	       readl(&(tb->CmdsOutMax)));
7317	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7318	for (i = 0; i < 16; i++)
7319		temp_name[i] = readb(&(tb->ServerName[i]));
7320	temp_name[16] = '\0';
7321	dev_info(dev, "   Server Name = %s\n", temp_name);
7322	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7323		readl(&(tb->HeartBeat)));
7324#endif				/* HPSA_DEBUG */
7325}
7326
7327static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7328{
7329	int i, offset, mem_type, bar_type;
7330
7331	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7332		return 0;
7333	offset = 0;
7334	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7335		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7336		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7337			offset += 4;
7338		else {
7339			mem_type = pci_resource_flags(pdev, i) &
7340			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7341			switch (mem_type) {
7342			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7343			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7344				offset += 4;	/* 32 bit */
7345				break;
7346			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7347				offset += 8;
7348				break;
7349			default:	/* reserved in PCI 2.2 */
7350				dev_warn(&pdev->dev,
7351				       "base address is invalid\n");
7352				return -1;
7353				break;
7354			}
7355		}
7356		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7357			return i + 1;
7358	}
7359	return -1;
7360}
7361
7362static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7363{
7364	pci_free_irq_vectors(h->pdev);
7365	h->msix_vectors = 0;
7366}
7367
7368static void hpsa_setup_reply_map(struct ctlr_info *h)
7369{
7370	const struct cpumask *mask;
7371	unsigned int queue, cpu;
7372
7373	for (queue = 0; queue < h->msix_vectors; queue++) {
7374		mask = pci_irq_get_affinity(h->pdev, queue);
7375		if (!mask)
7376			goto fallback;
7377
7378		for_each_cpu(cpu, mask)
7379			h->reply_map[cpu] = queue;
7380	}
7381	return;
7382
7383fallback:
7384	for_each_possible_cpu(cpu)
7385		h->reply_map[cpu] = 0;
7386}
7387
7388/* If MSI/MSI-X is supported by the kernel we will try to enable it on
7389 * controllers that are capable. If not, we use legacy INTx mode.
7390 */
7391static int hpsa_interrupt_mode(struct ctlr_info *h)
 
7392{
7393	unsigned int flags = PCI_IRQ_LEGACY;
7394	int ret;
 
 
 
7395
7396	/* Some boards advertise MSI but don't really support it */
7397	switch (h->board_id) {
7398	case 0x40700E11:
7399	case 0x40800E11:
7400	case 0x40820E11:
7401	case 0x40830E11:
7402		break;
7403	default:
7404		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7405				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7406		if (ret > 0) {
7407			h->msix_vectors = ret;
7408			return 0;
 
 
 
 
 
 
 
 
 
 
7409		}
7410
7411		flags |= PCI_IRQ_MSI;
7412		break;
7413	}
7414
7415	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7416	if (ret < 0)
7417		return ret;
7418	return 0;
 
 
 
 
 
 
7419}
7420
7421static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7422				bool *legacy_board)
7423{
7424	int i;
7425	u32 subsystem_vendor_id, subsystem_device_id;
7426
7427	subsystem_vendor_id = pdev->subsystem_vendor;
7428	subsystem_device_id = pdev->subsystem_device;
7429	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7430		    subsystem_vendor_id;
7431
7432	if (legacy_board)
7433		*legacy_board = false;
7434	for (i = 0; i < ARRAY_SIZE(products); i++)
7435		if (*board_id == products[i].board_id) {
7436			if (products[i].access != &SA5A_access &&
7437			    products[i].access != &SA5B_access)
7438				return i;
7439			dev_warn(&pdev->dev,
7440				 "legacy board ID: 0x%08x\n",
7441				 *board_id);
7442			if (legacy_board)
7443			    *legacy_board = true;
7444			return i;
7445		}
7446
7447	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7448	if (legacy_board)
7449		*legacy_board = true;
 
 
 
 
7450	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7451}
7452
7453static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7454				    unsigned long *memory_bar)
 
 
 
 
 
 
 
 
7455{
7456	int i;
7457
7458	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7459		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7460			/* addressing mode bits already removed */
7461			*memory_bar = pci_resource_start(pdev, i);
7462			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7463				*memory_bar);
7464			return 0;
7465		}
7466	dev_warn(&pdev->dev, "no memory BAR found\n");
7467	return -ENODEV;
7468}
7469
7470static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7471				     int wait_for_ready)
7472{
7473	int i, iterations;
7474	u32 scratchpad;
7475	if (wait_for_ready)
7476		iterations = HPSA_BOARD_READY_ITERATIONS;
7477	else
7478		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7479
7480	for (i = 0; i < iterations; i++) {
7481		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7482		if (wait_for_ready) {
7483			if (scratchpad == HPSA_FIRMWARE_READY)
7484				return 0;
7485		} else {
7486			if (scratchpad != HPSA_FIRMWARE_READY)
7487				return 0;
7488		}
7489		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7490	}
7491	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7492	return -ENODEV;
7493}
7494
7495static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7496			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7497			       u64 *cfg_offset)
7498{
7499	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7500	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7501	*cfg_base_addr &= (u32) 0x0000ffff;
7502	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7503	if (*cfg_base_addr_index == -1) {
7504		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7505		return -ENODEV;
7506	}
7507	return 0;
7508}
7509
7510static void hpsa_free_cfgtables(struct ctlr_info *h)
7511{
7512	if (h->transtable) {
7513		iounmap(h->transtable);
7514		h->transtable = NULL;
7515	}
7516	if (h->cfgtable) {
7517		iounmap(h->cfgtable);
7518		h->cfgtable = NULL;
7519	}
7520}
7521
7522/* Find and map CISS config table and transfer table
7523+ * several items must be unmapped (freed) later
7524+ * */
7525static int hpsa_find_cfgtables(struct ctlr_info *h)
7526{
7527	u64 cfg_offset;
7528	u32 cfg_base_addr;
7529	u64 cfg_base_addr_index;
7530	u32 trans_offset;
7531	int rc;
7532
7533	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7534		&cfg_base_addr_index, &cfg_offset);
7535	if (rc)
7536		return rc;
7537	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7538		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7539	if (!h->cfgtable) {
7540		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7541		return -ENOMEM;
7542	}
7543	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7544	if (rc)
7545		return rc;
7546	/* Find performant mode table. */
7547	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7548	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7549				cfg_base_addr_index)+cfg_offset+trans_offset,
7550				sizeof(*h->transtable));
7551	if (!h->transtable) {
7552		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7553		hpsa_free_cfgtables(h);
7554		return -ENOMEM;
7555	}
7556	return 0;
7557}
7558
7559static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7560{
7561#define MIN_MAX_COMMANDS 16
7562	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7563
7564	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7565
7566	/* Limit commands in memory limited kdump scenario. */
7567	if (reset_devices && h->max_commands > 32)
7568		h->max_commands = 32;
7569
7570	if (h->max_commands < MIN_MAX_COMMANDS) {
7571		dev_warn(&h->pdev->dev,
7572			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7573			h->max_commands,
7574			MIN_MAX_COMMANDS);
7575		h->max_commands = MIN_MAX_COMMANDS;
7576	}
7577}
7578
7579/* If the controller reports that the total max sg entries is greater than 512,
7580 * then we know that chained SG blocks work.  (Original smart arrays did not
7581 * support chained SG blocks and would return zero for max sg entries.)
7582 */
7583static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7584{
7585	return h->maxsgentries > 512;
7586}
7587
7588/* Interrogate the hardware for some limits:
7589 * max commands, max SG elements without chaining, and with chaining,
7590 * SG chain block size, etc.
7591 */
7592static void hpsa_find_board_params(struct ctlr_info *h)
7593{
7594	hpsa_get_max_perf_mode_cmds(h);
7595	h->nr_cmds = h->max_commands;
7596	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7597	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7598	if (hpsa_supports_chained_sg_blocks(h)) {
7599		/* Limit in-command s/g elements to 32 save dma'able memory. */
 
 
 
7600		h->max_cmd_sg_entries = 32;
7601		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7602		h->maxsgentries--; /* save one for chain pointer */
7603	} else {
7604		/*
7605		 * Original smart arrays supported at most 31 s/g entries
7606		 * embedded inline in the command (trying to use more
7607		 * would lock up the controller)
7608		 */
7609		h->max_cmd_sg_entries = 31;
7610		h->maxsgentries = 31; /* default to traditional values */
7611		h->chainsize = 0;
7612	}
7613
7614	/* Find out what task management functions are supported and cache */
7615	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7616	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7617		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7618	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7619		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7620	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7621		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7622}
7623
7624static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7625{
7626	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7627		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
 
 
 
7628		return false;
7629	}
7630	return true;
7631}
7632
7633static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
 
7634{
7635	u32 driver_support;
 
7636
7637	driver_support = readl(&(h->cfgtable->driver_support));
7638	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7639#ifdef CONFIG_X86
7640	driver_support |= ENABLE_SCSI_PREFETCH;
7641#endif
7642	driver_support |= ENABLE_UNIT_ATTN;
7643	writel(driver_support, &(h->cfgtable->driver_support));
7644}
7645
7646/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7647 * in a prefetch beyond physical memory.
7648 */
7649static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7650{
7651	u32 dma_prefetch;
7652
7653	if (h->board_id != 0x3225103C)
7654		return;
7655	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7656	dma_prefetch |= 0x8000;
7657	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7658}
7659
7660static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7661{
7662	int i;
7663	u32 doorbell_value;
7664	unsigned long flags;
7665	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7666	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7667		spin_lock_irqsave(&h->lock, flags);
7668		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7669		spin_unlock_irqrestore(&h->lock, flags);
7670		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7671			goto done;
7672		/* delay and try again */
7673		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7674	}
7675	return -ENODEV;
7676done:
7677	return 0;
7678}
7679
7680static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7681{
7682	int i;
7683	u32 doorbell_value;
7684	unsigned long flags;
7685
7686	/* under certain very rare conditions, this can take awhile.
7687	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7688	 * as we enter this code.)
7689	 */
7690	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7691		if (h->remove_in_progress)
7692			goto done;
7693		spin_lock_irqsave(&h->lock, flags);
7694		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7695		spin_unlock_irqrestore(&h->lock, flags);
7696		if (!(doorbell_value & CFGTBL_ChangeReq))
7697			goto done;
7698		/* delay and try again */
7699		msleep(MODE_CHANGE_WAIT_INTERVAL);
7700	}
7701	return -ENODEV;
7702done:
7703	return 0;
7704}
7705
7706/* return -ENODEV or other reason on error, 0 on success */
7707static int hpsa_enter_simple_mode(struct ctlr_info *h)
7708{
7709	u32 trans_support;
7710
7711	trans_support = readl(&(h->cfgtable->TransportSupport));
7712	if (!(trans_support & SIMPLE_MODE))
7713		return -ENOTSUPP;
7714
7715	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7716
7717	/* Update the field, and then ring the doorbell */
7718	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7719	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7720	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7721	if (hpsa_wait_for_mode_change_ack(h))
7722		goto error;
7723	print_cfg_table(&h->pdev->dev, h->cfgtable);
7724	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7725		goto error;
 
 
 
7726	h->transMethod = CFGTBL_Trans_Simple;
7727	return 0;
7728error:
7729	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7730	return -ENODEV;
7731}
7732
7733/* free items allocated or mapped by hpsa_pci_init */
7734static void hpsa_free_pci_init(struct ctlr_info *h)
7735{
7736	hpsa_free_cfgtables(h);			/* pci_init 4 */
7737	iounmap(h->vaddr);			/* pci_init 3 */
7738	h->vaddr = NULL;
7739	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7740	/*
7741	 * call pci_disable_device before pci_release_regions per
7742	 * Documentation/PCI/pci.txt
7743	 */
7744	pci_disable_device(h->pdev);		/* pci_init 1 */
7745	pci_release_regions(h->pdev);		/* pci_init 2 */
7746}
7747
7748/* several items must be freed later */
7749static int hpsa_pci_init(struct ctlr_info *h)
7750{
7751	int prod_index, err;
7752	bool legacy_board;
7753
7754	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7755	if (prod_index < 0)
7756		return prod_index;
7757	h->product_name = products[prod_index].product_name;
7758	h->access = *(products[prod_index].access);
7759	h->legacy_board = legacy_board;
7760	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7761			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7762
 
 
 
 
7763	err = pci_enable_device(h->pdev);
7764	if (err) {
7765		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7766		pci_disable_device(h->pdev);
7767		return err;
7768	}
7769
7770	err = pci_request_regions(h->pdev, HPSA);
7771	if (err) {
7772		dev_err(&h->pdev->dev,
7773			"failed to obtain PCI resources\n");
7774		pci_disable_device(h->pdev);
7775		return err;
7776	}
7777
7778	pci_set_master(h->pdev);
7779
7780	err = hpsa_interrupt_mode(h);
7781	if (err)
7782		goto clean1;
7783
7784	/* setup mapping between CPU and reply queue */
7785	hpsa_setup_reply_map(h);
7786
7787	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7788	if (err)
7789		goto clean2;	/* intmode+region, pci */
7790	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7791	if (!h->vaddr) {
7792		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7793		err = -ENOMEM;
7794		goto clean2;	/* intmode+region, pci */
7795	}
7796	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7797	if (err)
7798		goto clean3;	/* vaddr, intmode+region, pci */
7799	err = hpsa_find_cfgtables(h);
7800	if (err)
7801		goto clean3;	/* vaddr, intmode+region, pci */
7802	hpsa_find_board_params(h);
7803
7804	if (!hpsa_CISS_signature_present(h)) {
7805		err = -ENODEV;
7806		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7807	}
7808	hpsa_set_driver_support_bits(h);
7809	hpsa_p600_dma_prefetch_quirk(h);
7810	err = hpsa_enter_simple_mode(h);
7811	if (err)
7812		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7813	return 0;
7814
7815clean4:	/* cfgtables, vaddr, intmode+region, pci */
7816	hpsa_free_cfgtables(h);
7817clean3:	/* vaddr, intmode+region, pci */
7818	iounmap(h->vaddr);
7819	h->vaddr = NULL;
7820clean2:	/* intmode+region, pci */
7821	hpsa_disable_interrupt_mode(h);
7822clean1:
7823	/*
7824	 * call pci_disable_device before pci_release_regions per
7825	 * Documentation/PCI/pci.txt
7826	 */
7827	pci_disable_device(h->pdev);
7828	pci_release_regions(h->pdev);
7829	return err;
7830}
7831
7832static void hpsa_hba_inquiry(struct ctlr_info *h)
7833{
7834	int rc;
7835
7836#define HBA_INQUIRY_BYTE_COUNT 64
7837	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7838	if (!h->hba_inquiry_data)
7839		return;
7840	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7841		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7842	if (rc != 0) {
7843		kfree(h->hba_inquiry_data);
7844		h->hba_inquiry_data = NULL;
7845	}
7846}
7847
7848static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7849{
7850	int rc, i;
7851	void __iomem *vaddr;
7852
7853	if (!reset_devices)
7854		return 0;
7855
7856	/* kdump kernel is loading, we don't know in which state is
7857	 * the pci interface. The dev->enable_cnt is equal zero
7858	 * so we call enable+disable, wait a while and switch it on.
7859	 */
7860	rc = pci_enable_device(pdev);
7861	if (rc) {
7862		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7863		return -ENODEV;
7864	}
7865	pci_disable_device(pdev);
7866	msleep(260);			/* a randomly chosen number */
7867	rc = pci_enable_device(pdev);
7868	if (rc) {
7869		dev_warn(&pdev->dev, "failed to enable device.\n");
7870		return -ENODEV;
7871	}
7872
7873	pci_set_master(pdev);
7874
7875	vaddr = pci_ioremap_bar(pdev, 0);
7876	if (vaddr == NULL) {
7877		rc = -ENOMEM;
7878		goto out_disable;
7879	}
7880	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7881	iounmap(vaddr);
7882
7883	/* Reset the controller with a PCI power-cycle or via doorbell */
7884	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7885
7886	/* -ENOTSUPP here means we cannot reset the controller
7887	 * but it's already (and still) up and running in
7888	 * "performant mode".  Or, it might be 640x, which can't reset
7889	 * due to concerns about shared bbwc between 6402/6404 pair.
7890	 */
 
 
7891	if (rc)
7892		goto out_disable;
7893
7894	/* Now try to get the controller to respond to a no-op */
7895	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7896	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7897		if (hpsa_noop(pdev) == 0)
7898			break;
7899		else
7900			dev_warn(&pdev->dev, "no-op failed%s\n",
7901					(i < 11 ? "; re-trying" : ""));
7902	}
7903
7904out_disable:
7905
7906	pci_disable_device(pdev);
7907	return rc;
7908}
7909
7910static void hpsa_free_cmd_pool(struct ctlr_info *h)
7911{
7912	kfree(h->cmd_pool_bits);
7913	h->cmd_pool_bits = NULL;
7914	if (h->cmd_pool) {
7915		pci_free_consistent(h->pdev,
7916				h->nr_cmds * sizeof(struct CommandList),
7917				h->cmd_pool,
7918				h->cmd_pool_dhandle);
7919		h->cmd_pool = NULL;
7920		h->cmd_pool_dhandle = 0;
7921	}
7922	if (h->errinfo_pool) {
7923		pci_free_consistent(h->pdev,
7924				h->nr_cmds * sizeof(struct ErrorInfo),
7925				h->errinfo_pool,
7926				h->errinfo_pool_dhandle);
7927		h->errinfo_pool = NULL;
7928		h->errinfo_pool_dhandle = 0;
7929	}
7930}
7931
7932static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7933{
7934	h->cmd_pool_bits = kzalloc(
7935		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7936		sizeof(unsigned long), GFP_KERNEL);
7937	h->cmd_pool = pci_alloc_consistent(h->pdev,
7938		    h->nr_cmds * sizeof(*h->cmd_pool),
7939		    &(h->cmd_pool_dhandle));
7940	h->errinfo_pool = pci_alloc_consistent(h->pdev,
7941		    h->nr_cmds * sizeof(*h->errinfo_pool),
7942		    &(h->errinfo_pool_dhandle));
7943	if ((h->cmd_pool_bits == NULL)
7944	    || (h->cmd_pool == NULL)
7945	    || (h->errinfo_pool == NULL)) {
7946		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7947		goto clean_up;
7948	}
7949	hpsa_preinitialize_commands(h);
7950	return 0;
7951clean_up:
7952	hpsa_free_cmd_pool(h);
7953	return -ENOMEM;
7954}
7955
7956/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7957static void hpsa_free_irqs(struct ctlr_info *h)
7958{
7959	int i;
7960
7961	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7962		/* Single reply queue, only one irq to free */
7963		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7964		h->q[h->intr_mode] = 0;
7965		return;
7966	}
7967
7968	for (i = 0; i < h->msix_vectors; i++) {
7969		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7970		h->q[i] = 0;
7971	}
7972	for (; i < MAX_REPLY_QUEUES; i++)
7973		h->q[i] = 0;
7974}
7975
7976/* returns 0 on success; cleans up and returns -Enn on error */
7977static int hpsa_request_irqs(struct ctlr_info *h,
7978	irqreturn_t (*msixhandler)(int, void *),
7979	irqreturn_t (*intxhandler)(int, void *))
7980{
7981	int rc, i;
7982
7983	/*
7984	 * initialize h->q[x] = x so that interrupt handlers know which
7985	 * queue to process.
7986	 */
7987	for (i = 0; i < MAX_REPLY_QUEUES; i++)
7988		h->q[i] = (u8) i;
7989
7990	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7991		/* If performant mode and MSI-X, use multiple reply queues */
7992		for (i = 0; i < h->msix_vectors; i++) {
7993			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7994			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7995					0, h->intrname[i],
7996					&h->q[i]);
7997			if (rc) {
7998				int j;
7999
8000				dev_err(&h->pdev->dev,
8001					"failed to get irq %d for %s\n",
8002				       pci_irq_vector(h->pdev, i), h->devname);
8003				for (j = 0; j < i; j++) {
8004					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8005					h->q[j] = 0;
8006				}
8007				for (; j < MAX_REPLY_QUEUES; j++)
8008					h->q[j] = 0;
8009				return rc;
8010			}
8011		}
8012	} else {
8013		/* Use single reply pool */
8014		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8015			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8016				h->msix_vectors ? "x" : "");
8017			rc = request_irq(pci_irq_vector(h->pdev, 0),
8018				msixhandler, 0,
8019				h->intrname[0],
8020				&h->q[h->intr_mode]);
8021		} else {
8022			sprintf(h->intrname[h->intr_mode],
8023				"%s-intx", h->devname);
8024			rc = request_irq(pci_irq_vector(h->pdev, 0),
8025				intxhandler, IRQF_SHARED,
8026				h->intrname[0],
8027				&h->q[h->intr_mode]);
8028		}
8029	}
8030	if (rc) {
8031		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8032		       pci_irq_vector(h->pdev, 0), h->devname);
8033		hpsa_free_irqs(h);
8034		return -ENODEV;
8035	}
8036	return 0;
8037}
8038
8039static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8040{
8041	int rc;
8042	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
 
 
 
8043
8044	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8045	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8046	if (rc) {
8047		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8048		return rc;
8049	}
8050
8051	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8052	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8053	if (rc) {
8054		dev_warn(&h->pdev->dev, "Board failed to become ready "
8055			"after soft reset.\n");
8056		return rc;
8057	}
8058
8059	return 0;
8060}
8061
8062static void hpsa_free_reply_queues(struct ctlr_info *h)
8063{
8064	int i;
8065
8066	for (i = 0; i < h->nreply_queues; i++) {
8067		if (!h->reply_queue[i].head)
8068			continue;
8069		pci_free_consistent(h->pdev,
8070					h->reply_queue_size,
8071					h->reply_queue[i].head,
8072					h->reply_queue[i].busaddr);
8073		h->reply_queue[i].head = NULL;
8074		h->reply_queue[i].busaddr = 0;
8075	}
8076	h->reply_queue_size = 0;
8077}
8078
8079static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8080{
8081	hpsa_free_performant_mode(h);		/* init_one 7 */
8082	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8083	hpsa_free_cmd_pool(h);			/* init_one 5 */
8084	hpsa_free_irqs(h);			/* init_one 4 */
8085	scsi_host_put(h->scsi_host);		/* init_one 3 */
8086	h->scsi_host = NULL;			/* init_one 3 */
8087	hpsa_free_pci_init(h);			/* init_one 2_5 */
8088	free_percpu(h->lockup_detected);	/* init_one 2 */
8089	h->lockup_detected = NULL;		/* init_one 2 */
8090	if (h->resubmit_wq) {
8091		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8092		h->resubmit_wq = NULL;
8093	}
8094	if (h->rescan_ctlr_wq) {
8095		destroy_workqueue(h->rescan_ctlr_wq);
8096		h->rescan_ctlr_wq = NULL;
8097	}
8098	kfree(h);				/* init_one 1 */
8099}
8100
8101/* Called when controller lockup detected. */
8102static void fail_all_outstanding_cmds(struct ctlr_info *h)
8103{
8104	int i, refcount;
8105	struct CommandList *c;
8106	int failcount = 0;
8107
8108	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8109	for (i = 0; i < h->nr_cmds; i++) {
8110		c = h->cmd_pool + i;
8111		refcount = atomic_inc_return(&c->refcount);
8112		if (refcount > 1) {
8113			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8114			finish_cmd(c);
8115			atomic_dec(&h->commands_outstanding);
8116			failcount++;
8117		}
8118		cmd_free(h, c);
8119	}
8120	dev_warn(&h->pdev->dev,
8121		"failed %d commands in fail_all\n", failcount);
8122}
8123
8124static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8125{
8126	int cpu;
8127
8128	for_each_online_cpu(cpu) {
8129		u32 *lockup_detected;
8130		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8131		*lockup_detected = value;
8132	}
8133	wmb(); /* be sure the per-cpu variables are out to memory */
8134}
8135
8136static void controller_lockup_detected(struct ctlr_info *h)
8137{
8138	unsigned long flags;
8139	u32 lockup_detected;
8140
8141	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8142	spin_lock_irqsave(&h->lock, flags);
8143	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8144	if (!lockup_detected) {
8145		/* no heartbeat, but controller gave us a zero. */
8146		dev_warn(&h->pdev->dev,
8147			"lockup detected after %d but scratchpad register is zero\n",
8148			h->heartbeat_sample_interval / HZ);
8149		lockup_detected = 0xffffffff;
8150	}
8151	set_lockup_detected_for_all_cpus(h, lockup_detected);
8152	spin_unlock_irqrestore(&h->lock, flags);
8153	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8154			lockup_detected, h->heartbeat_sample_interval / HZ);
8155	if (lockup_detected == 0xffff0000) {
8156		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8157		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8158	}
8159	pci_disable_device(h->pdev);
8160	fail_all_outstanding_cmds(h);
8161}
8162
8163static int detect_controller_lockup(struct ctlr_info *h)
8164{
8165	u64 now;
8166	u32 heartbeat;
8167	unsigned long flags;
8168
8169	now = get_jiffies_64();
8170	/* If we've received an interrupt recently, we're ok. */
8171	if (time_after64(h->last_intr_timestamp +
8172				(h->heartbeat_sample_interval), now))
8173		return false;
8174
8175	/*
8176	 * If we've already checked the heartbeat recently, we're ok.
8177	 * This could happen if someone sends us a signal. We
8178	 * otherwise don't care about signals in this thread.
8179	 */
8180	if (time_after64(h->last_heartbeat_timestamp +
8181				(h->heartbeat_sample_interval), now))
8182		return false;
8183
8184	/* If heartbeat has not changed since we last looked, we're not ok. */
8185	spin_lock_irqsave(&h->lock, flags);
8186	heartbeat = readl(&h->cfgtable->HeartBeat);
8187	spin_unlock_irqrestore(&h->lock, flags);
8188	if (h->last_heartbeat == heartbeat) {
8189		controller_lockup_detected(h);
8190		return true;
8191	}
8192
8193	/* We're ok. */
8194	h->last_heartbeat = heartbeat;
8195	h->last_heartbeat_timestamp = now;
8196	return false;
8197}
8198
8199/*
8200 * Set ioaccel status for all ioaccel volumes.
8201 *
8202 * Called from monitor controller worker (hpsa_event_monitor_worker)
8203 *
8204 * A Volume (or Volumes that comprise an Array set may be undergoing a
8205 * transformation, so we will be turning off ioaccel for all volumes that
8206 * make up the Array.
8207 */
8208static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8209{
8210	int rc;
8211	int i;
8212	u8 ioaccel_status;
8213	unsigned char *buf;
8214	struct hpsa_scsi_dev_t *device;
8215
8216	if (!h)
8217		return;
8218
8219	buf = kmalloc(64, GFP_KERNEL);
8220	if (!buf)
8221		return;
8222
8223	/*
8224	 * Run through current device list used during I/O requests.
8225	 */
8226	for (i = 0; i < h->ndevices; i++) {
8227		device = h->dev[i];
8228
8229		if (!device)
8230			continue;
8231		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8232						HPSA_VPD_LV_IOACCEL_STATUS))
8233			continue;
8234
8235		memset(buf, 0, 64);
8236
8237		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8238					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8239					buf, 64);
8240		if (rc != 0)
8241			continue;
8242
8243		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8244		device->offload_config =
8245				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8246		if (device->offload_config)
8247			device->offload_to_be_enabled =
8248				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8249
8250		/*
8251		 * Immediately turn off ioaccel for any volume the
8252		 * controller tells us to. Some of the reasons could be:
8253		 *    transformation - change to the LVs of an Array.
8254		 *    degraded volume - component failure
8255		 *
8256		 * If ioaccel is to be re-enabled, re-enable later during the
8257		 * scan operation so the driver can get a fresh raidmap
8258		 * before turning ioaccel back on.
8259		 *
8260		 */
8261		if (!device->offload_to_be_enabled)
8262			device->offload_enabled = 0;
8263	}
8264
8265	kfree(buf);
8266}
8267
8268static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8269{
8270	char *event_type;
8271
8272	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8273		return;
8274
8275	/* Ask the controller to clear the events we're handling. */
8276	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8277			| CFGTBL_Trans_io_accel2)) &&
8278		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8279		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8280
8281		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8282			event_type = "state change";
8283		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8284			event_type = "configuration change";
8285		/* Stop sending new RAID offload reqs via the IO accelerator */
8286		scsi_block_requests(h->scsi_host);
8287		hpsa_set_ioaccel_status(h);
8288		hpsa_drain_accel_commands(h);
8289		/* Set 'accelerator path config change' bit */
8290		dev_warn(&h->pdev->dev,
8291			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8292			h->events, event_type);
8293		writel(h->events, &(h->cfgtable->clear_event_notify));
8294		/* Set the "clear event notify field update" bit 6 */
8295		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8296		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8297		hpsa_wait_for_clear_event_notify_ack(h);
8298		scsi_unblock_requests(h->scsi_host);
8299	} else {
8300		/* Acknowledge controller notification events. */
8301		writel(h->events, &(h->cfgtable->clear_event_notify));
8302		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8303		hpsa_wait_for_clear_event_notify_ack(h);
8304	}
8305	return;
8306}
8307
8308/* Check a register on the controller to see if there are configuration
8309 * changes (added/changed/removed logical drives, etc.) which mean that
8310 * we should rescan the controller for devices.
8311 * Also check flag for driver-initiated rescan.
8312 */
8313static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8314{
8315	if (h->drv_req_rescan) {
8316		h->drv_req_rescan = 0;
8317		return 1;
8318	}
8319
8320	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8321		return 0;
8322
8323	h->events = readl(&(h->cfgtable->event_notify));
8324	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8325}
8326
8327/*
8328 * Check if any of the offline devices have become ready
8329 */
8330static int hpsa_offline_devices_ready(struct ctlr_info *h)
8331{
8332	unsigned long flags;
8333	struct offline_device_entry *d;
8334	struct list_head *this, *tmp;
8335
8336	spin_lock_irqsave(&h->offline_device_lock, flags);
8337	list_for_each_safe(this, tmp, &h->offline_device_list) {
8338		d = list_entry(this, struct offline_device_entry,
8339				offline_list);
8340		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8341		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8342			spin_lock_irqsave(&h->offline_device_lock, flags);
8343			list_del(&d->offline_list);
8344			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8345			return 1;
8346		}
8347		spin_lock_irqsave(&h->offline_device_lock, flags);
8348	}
8349	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8350	return 0;
8351}
8352
8353static int hpsa_luns_changed(struct ctlr_info *h)
8354{
8355	int rc = 1; /* assume there are changes */
8356	struct ReportLUNdata *logdev = NULL;
8357
8358	/* if we can't find out if lun data has changed,
8359	 * assume that it has.
8360	 */
8361
8362	if (!h->lastlogicals)
8363		return rc;
8364
8365	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8366	if (!logdev)
8367		return rc;
8368
8369	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8370		dev_warn(&h->pdev->dev,
8371			"report luns failed, can't track lun changes.\n");
8372		goto out;
8373	}
8374	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8375		dev_info(&h->pdev->dev,
8376			"Lun changes detected.\n");
8377		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8378		goto out;
8379	} else
8380		rc = 0; /* no changes detected. */
8381out:
8382	kfree(logdev);
8383	return rc;
8384}
8385
8386static void hpsa_perform_rescan(struct ctlr_info *h)
8387{
8388	struct Scsi_Host *sh = NULL;
8389	unsigned long flags;
8390
8391	/*
8392	 * Do the scan after the reset
8393	 */
8394	spin_lock_irqsave(&h->reset_lock, flags);
8395	if (h->reset_in_progress) {
8396		h->drv_req_rescan = 1;
8397		spin_unlock_irqrestore(&h->reset_lock, flags);
8398		return;
8399	}
8400	spin_unlock_irqrestore(&h->reset_lock, flags);
8401
8402	sh = scsi_host_get(h->scsi_host);
8403	if (sh != NULL) {
8404		hpsa_scan_start(sh);
8405		scsi_host_put(sh);
8406		h->drv_req_rescan = 0;
8407	}
8408}
8409
8410/*
8411 * watch for controller events
8412 */
8413static void hpsa_event_monitor_worker(struct work_struct *work)
8414{
8415	struct ctlr_info *h = container_of(to_delayed_work(work),
8416					struct ctlr_info, event_monitor_work);
8417	unsigned long flags;
8418
8419	spin_lock_irqsave(&h->lock, flags);
8420	if (h->remove_in_progress) {
8421		spin_unlock_irqrestore(&h->lock, flags);
8422		return;
8423	}
8424	spin_unlock_irqrestore(&h->lock, flags);
8425
8426	if (hpsa_ctlr_needs_rescan(h)) {
8427		hpsa_ack_ctlr_events(h);
8428		hpsa_perform_rescan(h);
8429	}
8430
8431	spin_lock_irqsave(&h->lock, flags);
8432	if (!h->remove_in_progress)
8433		schedule_delayed_work(&h->event_monitor_work,
8434					HPSA_EVENT_MONITOR_INTERVAL);
8435	spin_unlock_irqrestore(&h->lock, flags);
8436}
8437
8438static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8439{
8440	unsigned long flags;
8441	struct ctlr_info *h = container_of(to_delayed_work(work),
8442					struct ctlr_info, rescan_ctlr_work);
8443
8444	spin_lock_irqsave(&h->lock, flags);
8445	if (h->remove_in_progress) {
8446		spin_unlock_irqrestore(&h->lock, flags);
8447		return;
8448	}
8449	spin_unlock_irqrestore(&h->lock, flags);
8450
8451	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8452		hpsa_perform_rescan(h);
8453	} else if (h->discovery_polling) {
8454		if (hpsa_luns_changed(h)) {
8455			dev_info(&h->pdev->dev,
8456				"driver discovery polling rescan.\n");
8457			hpsa_perform_rescan(h);
8458		}
8459	}
8460	spin_lock_irqsave(&h->lock, flags);
8461	if (!h->remove_in_progress)
8462		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8463				h->heartbeat_sample_interval);
8464	spin_unlock_irqrestore(&h->lock, flags);
8465}
8466
8467static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8468{
8469	unsigned long flags;
8470	struct ctlr_info *h = container_of(to_delayed_work(work),
8471					struct ctlr_info, monitor_ctlr_work);
8472
8473	detect_controller_lockup(h);
8474	if (lockup_detected(h))
8475		return;
8476
8477	spin_lock_irqsave(&h->lock, flags);
8478	if (!h->remove_in_progress)
8479		schedule_delayed_work(&h->monitor_ctlr_work,
8480				h->heartbeat_sample_interval);
8481	spin_unlock_irqrestore(&h->lock, flags);
8482}
8483
8484static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8485						char *name)
8486{
8487	struct workqueue_struct *wq = NULL;
8488
8489	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8490	if (!wq)
8491		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8492
8493	return wq;
8494}
8495
8496static void hpda_free_ctlr_info(struct ctlr_info *h)
8497{
8498	kfree(h->reply_map);
8499	kfree(h);
8500}
8501
8502static struct ctlr_info *hpda_alloc_ctlr_info(void)
8503{
8504	struct ctlr_info *h;
8505
8506	h = kzalloc(sizeof(*h), GFP_KERNEL);
8507	if (!h)
8508		return NULL;
8509
8510	h->reply_map = kzalloc(sizeof(*h->reply_map) * nr_cpu_ids, GFP_KERNEL);
8511	if (!h->reply_map) {
8512		kfree(h);
8513		return NULL;
8514	}
8515	return h;
8516}
8517
8518static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8519{
8520	int dac, rc;
8521	struct ctlr_info *h;
8522	int try_soft_reset = 0;
8523	unsigned long flags;
8524	u32 board_id;
8525
8526	if (number_of_controllers == 0)
8527		printk(KERN_INFO DRIVER_NAME "\n");
8528
8529	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8530	if (rc < 0) {
8531		dev_warn(&pdev->dev, "Board ID not found\n");
8532		return rc;
8533	}
8534
8535	rc = hpsa_init_reset_devices(pdev, board_id);
8536	if (rc) {
8537		if (rc != -ENOTSUPP)
8538			return rc;
8539		/* If the reset fails in a particular way (it has no way to do
8540		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8541		 * a soft reset once we get the controller configured up to the
8542		 * point that it can accept a command.
8543		 */
8544		try_soft_reset = 1;
8545		rc = 0;
8546	}
8547
8548reinit_after_soft_reset:
8549
8550	/* Command structures must be aligned on a 32-byte boundary because
8551	 * the 5 lower bits of the address are used by the hardware. and by
8552	 * the driver.  See comments in hpsa.h for more info.
8553	 */
 
8554	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8555	h = hpda_alloc_ctlr_info();
8556	if (!h) {
8557		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8558		return -ENOMEM;
8559	}
8560
8561	h->pdev = pdev;
8562
8563	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8564	INIT_LIST_HEAD(&h->offline_device_list);
 
8565	spin_lock_init(&h->lock);
8566	spin_lock_init(&h->offline_device_lock);
8567	spin_lock_init(&h->scan_lock);
8568	spin_lock_init(&h->reset_lock);
8569	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8570
8571	/* Allocate and clear per-cpu variable lockup_detected */
8572	h->lockup_detected = alloc_percpu(u32);
8573	if (!h->lockup_detected) {
8574		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8575		rc = -ENOMEM;
8576		goto clean1;	/* aer/h */
8577	}
8578	set_lockup_detected_for_all_cpus(h, 0);
8579
8580	rc = hpsa_pci_init(h);
8581	if (rc)
8582		goto clean2;	/* lu, aer/h */
8583
8584	/* relies on h-> settings made by hpsa_pci_init, including
8585	 * interrupt_mode h->intr */
8586	rc = hpsa_scsi_host_alloc(h);
8587	if (rc)
8588		goto clean2_5;	/* pci, lu, aer/h */
8589
8590	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8591	h->ctlr = number_of_controllers;
8592	number_of_controllers++;
8593
8594	/* configure PCI DMA stuff */
8595	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8596	if (rc == 0) {
8597		dac = 1;
8598	} else {
8599		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8600		if (rc == 0) {
8601			dac = 0;
8602		} else {
8603			dev_err(&pdev->dev, "no suitable DMA available\n");
8604			goto clean3;	/* shost, pci, lu, aer/h */
8605		}
8606	}
8607
8608	/* make sure the board interrupts are off */
8609	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8610
8611	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8612	if (rc)
8613		goto clean3;	/* shost, pci, lu, aer/h */
8614	rc = hpsa_alloc_cmd_pool(h);
8615	if (rc)
8616		goto clean4;	/* irq, shost, pci, lu, aer/h */
8617	rc = hpsa_alloc_sg_chain_blocks(h);
8618	if (rc)
8619		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8620	init_waitqueue_head(&h->scan_wait_queue);
8621	init_waitqueue_head(&h->event_sync_wait_queue);
8622	mutex_init(&h->reset_mutex);
8623	h->scan_finished = 1; /* no scan currently in progress */
8624	h->scan_waiting = 0;
8625
8626	pci_set_drvdata(pdev, h);
8627	h->ndevices = 0;
8628
8629	spin_lock_init(&h->devlock);
8630	rc = hpsa_put_ctlr_into_performant_mode(h);
8631	if (rc)
8632		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8633
8634	/* create the resubmit workqueue */
8635	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8636	if (!h->rescan_ctlr_wq) {
8637		rc = -ENOMEM;
8638		goto clean7;
8639	}
8640
8641	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8642	if (!h->resubmit_wq) {
8643		rc = -ENOMEM;
8644		goto clean7;	/* aer/h */
8645	}
8646
8647	/*
8648	 * At this point, the controller is ready to take commands.
8649	 * Now, if reset_devices and the hard reset didn't work, try
8650	 * the soft reset and see if that works.
8651	 */
8652	if (try_soft_reset) {
8653
8654		/* This is kind of gross.  We may or may not get a completion
8655		 * from the soft reset command, and if we do, then the value
8656		 * from the fifo may or may not be valid.  So, we wait 10 secs
8657		 * after the reset throwing away any completions we get during
8658		 * that time.  Unregister the interrupt handler and register
8659		 * fake ones to scoop up any residual completions.
8660		 */
8661		spin_lock_irqsave(&h->lock, flags);
8662		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8663		spin_unlock_irqrestore(&h->lock, flags);
8664		hpsa_free_irqs(h);
8665		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8666					hpsa_intx_discard_completions);
8667		if (rc) {
8668			dev_warn(&h->pdev->dev,
8669				"Failed to request_irq after soft reset.\n");
8670			/*
8671			 * cannot goto clean7 or free_irqs will be called
8672			 * again. Instead, do its work
8673			 */
8674			hpsa_free_performant_mode(h);	/* clean7 */
8675			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8676			hpsa_free_cmd_pool(h);		/* clean5 */
8677			/*
8678			 * skip hpsa_free_irqs(h) clean4 since that
8679			 * was just called before request_irqs failed
8680			 */
8681			goto clean3;
8682		}
8683
8684		rc = hpsa_kdump_soft_reset(h);
8685		if (rc)
8686			/* Neither hard nor soft reset worked, we're hosed. */
8687			goto clean7;
8688
8689		dev_info(&h->pdev->dev, "Board READY.\n");
8690		dev_info(&h->pdev->dev,
8691			"Waiting for stale completions to drain.\n");
8692		h->access.set_intr_mask(h, HPSA_INTR_ON);
8693		msleep(10000);
8694		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8695
8696		rc = controller_reset_failed(h->cfgtable);
8697		if (rc)
8698			dev_info(&h->pdev->dev,
8699				"Soft reset appears to have failed.\n");
8700
8701		/* since the controller's reset, we have to go back and re-init
8702		 * everything.  Easiest to just forget what we've done and do it
8703		 * all over again.
8704		 */
8705		hpsa_undo_allocations_after_kdump_soft_reset(h);
8706		try_soft_reset = 0;
8707		if (rc)
8708			/* don't goto clean, we already unallocated */
8709			return -ENODEV;
8710
8711		goto reinit_after_soft_reset;
8712	}
8713
8714	/* Enable Accelerated IO path at driver layer */
8715	h->acciopath_status = 1;
8716	/* Disable discovery polling.*/
8717	h->discovery_polling = 0;
8718
8719
8720	/* Turn the interrupts on so we can service requests */
8721	h->access.set_intr_mask(h, HPSA_INTR_ON);
8722
8723	hpsa_hba_inquiry(h);
 
 
 
8724
8725	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8726	if (!h->lastlogicals)
8727		dev_info(&h->pdev->dev,
8728			"Can't track change to report lun data\n");
8729
8730	/* hook into SCSI subsystem */
8731	rc = hpsa_scsi_add_host(h);
8732	if (rc)
8733		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8734
8735	/* Monitor the controller for firmware lockups */
8736	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8737	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8738	schedule_delayed_work(&h->monitor_ctlr_work,
8739				h->heartbeat_sample_interval);
8740	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8741	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8742				h->heartbeat_sample_interval);
8743	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8744	schedule_delayed_work(&h->event_monitor_work,
8745				HPSA_EVENT_MONITOR_INTERVAL);
8746	return 0;
8747
8748clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8749	hpsa_free_performant_mode(h);
8750	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8751clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8752	hpsa_free_sg_chain_blocks(h);
8753clean5: /* cmd, irq, shost, pci, lu, aer/h */
8754	hpsa_free_cmd_pool(h);
8755clean4: /* irq, shost, pci, lu, aer/h */
8756	hpsa_free_irqs(h);
8757clean3: /* shost, pci, lu, aer/h */
8758	scsi_host_put(h->scsi_host);
8759	h->scsi_host = NULL;
8760clean2_5: /* pci, lu, aer/h */
8761	hpsa_free_pci_init(h);
8762clean2: /* lu, aer/h */
8763	if (h->lockup_detected) {
8764		free_percpu(h->lockup_detected);
8765		h->lockup_detected = NULL;
8766	}
8767clean1:	/* wq/aer/h */
8768	if (h->resubmit_wq) {
8769		destroy_workqueue(h->resubmit_wq);
8770		h->resubmit_wq = NULL;
8771	}
8772	if (h->rescan_ctlr_wq) {
8773		destroy_workqueue(h->rescan_ctlr_wq);
8774		h->rescan_ctlr_wq = NULL;
8775	}
8776	kfree(h);
8777	return rc;
8778}
8779
8780static void hpsa_flush_cache(struct ctlr_info *h)
8781{
8782	char *flush_buf;
8783	struct CommandList *c;
8784	int rc;
8785
8786	if (unlikely(lockup_detected(h)))
8787		return;
8788	flush_buf = kzalloc(4, GFP_KERNEL);
8789	if (!flush_buf)
8790		return;
8791
8792	c = cmd_alloc(h);
8793
8794	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8795		RAID_CTLR_LUNID, TYPE_CMD)) {
8796		goto out;
8797	}
8798	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8799					PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8800	if (rc)
8801		goto out;
8802	if (c->err_info->CommandStatus != 0)
8803out:
8804		dev_warn(&h->pdev->dev,
8805			"error flushing cache on controller\n");
8806	cmd_free(h, c);
 
8807	kfree(flush_buf);
8808}
8809
8810/* Make controller gather fresh report lun data each time we
8811 * send down a report luns request
8812 */
8813static void hpsa_disable_rld_caching(struct ctlr_info *h)
8814{
8815	u32 *options;
8816	struct CommandList *c;
8817	int rc;
8818
8819	/* Don't bother trying to set diag options if locked up */
8820	if (unlikely(h->lockup_detected))
8821		return;
8822
8823	options = kzalloc(sizeof(*options), GFP_KERNEL);
8824	if (!options)
8825		return;
8826
8827	c = cmd_alloc(h);
8828
8829	/* first, get the current diag options settings */
8830	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8831		RAID_CTLR_LUNID, TYPE_CMD))
8832		goto errout;
8833
8834	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8835		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8836	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8837		goto errout;
8838
8839	/* Now, set the bit for disabling the RLD caching */
8840	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8841
8842	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8843		RAID_CTLR_LUNID, TYPE_CMD))
8844		goto errout;
8845
8846	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8847		PCI_DMA_TODEVICE, NO_TIMEOUT);
8848	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8849		goto errout;
8850
8851	/* Now verify that it got set: */
8852	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8853		RAID_CTLR_LUNID, TYPE_CMD))
8854		goto errout;
8855
8856	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8857		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8858	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8859		goto errout;
8860
8861	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8862		goto out;
8863
8864errout:
8865	dev_err(&h->pdev->dev,
8866			"Error: failed to disable report lun data caching.\n");
8867out:
8868	cmd_free(h, c);
8869	kfree(options);
8870}
8871
8872static void hpsa_shutdown(struct pci_dev *pdev)
8873{
8874	struct ctlr_info *h;
8875
8876	h = pci_get_drvdata(pdev);
8877	/* Turn board interrupts off  and send the flush cache command
8878	 * sendcmd will turn off interrupt, and send the flush...
8879	 * To write all data in the battery backed cache to disks
8880	 */
8881	hpsa_flush_cache(h);
8882	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8883	hpsa_free_irqs(h);			/* init_one 4 */
8884	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
 
 
 
 
 
8885}
8886
8887static void hpsa_free_device_info(struct ctlr_info *h)
8888{
8889	int i;
8890
8891	for (i = 0; i < h->ndevices; i++) {
8892		kfree(h->dev[i]);
8893		h->dev[i] = NULL;
8894	}
8895}
8896
8897static void hpsa_remove_one(struct pci_dev *pdev)
8898{
8899	struct ctlr_info *h;
8900	unsigned long flags;
8901
8902	if (pci_get_drvdata(pdev) == NULL) {
8903		dev_err(&pdev->dev, "unable to remove device\n");
8904		return;
8905	}
8906	h = pci_get_drvdata(pdev);
8907
8908	/* Get rid of any controller monitoring work items */
8909	spin_lock_irqsave(&h->lock, flags);
8910	h->remove_in_progress = 1;
8911	spin_unlock_irqrestore(&h->lock, flags);
8912	cancel_delayed_work_sync(&h->monitor_ctlr_work);
8913	cancel_delayed_work_sync(&h->rescan_ctlr_work);
8914	cancel_delayed_work_sync(&h->event_monitor_work);
8915	destroy_workqueue(h->rescan_ctlr_wq);
8916	destroy_workqueue(h->resubmit_wq);
8917
8918	hpsa_delete_sas_host(h);
8919
 
 
 
 
8920	/*
8921	 * Call before disabling interrupts.
8922	 * scsi_remove_host can trigger I/O operations especially
8923	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8924	 * operations which cannot complete and will hang the system.
8925	 */
8926	if (h->scsi_host)
8927		scsi_remove_host(h->scsi_host);		/* init_one 8 */
8928	/* includes hpsa_free_irqs - init_one 4 */
8929	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8930	hpsa_shutdown(pdev);
8931
8932	hpsa_free_device_info(h);		/* scan */
8933
8934	kfree(h->hba_inquiry_data);			/* init_one 10 */
8935	h->hba_inquiry_data = NULL;			/* init_one 10 */
8936	hpsa_free_ioaccel2_sg_chain_blocks(h);
8937	hpsa_free_performant_mode(h);			/* init_one 7 */
8938	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
8939	hpsa_free_cmd_pool(h);				/* init_one 5 */
8940	kfree(h->lastlogicals);
8941
8942	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8943
8944	scsi_host_put(h->scsi_host);			/* init_one 3 */
8945	h->scsi_host = NULL;				/* init_one 3 */
8946
8947	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8948	hpsa_free_pci_init(h);				/* init_one 2.5 */
8949
8950	free_percpu(h->lockup_detected);		/* init_one 2 */
8951	h->lockup_detected = NULL;			/* init_one 2 */
8952	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
8953
8954	hpda_free_ctlr_info(h);				/* init_one 1 */
8955}
8956
8957static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8958	__attribute__((unused)) pm_message_t state)
8959{
8960	return -ENOSYS;
8961}
8962
8963static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8964{
8965	return -ENOSYS;
8966}
8967
8968static struct pci_driver hpsa_pci_driver = {
8969	.name = HPSA,
8970	.probe = hpsa_init_one,
8971	.remove = hpsa_remove_one,
8972	.id_table = hpsa_pci_device_id,	/* id_table */
8973	.shutdown = hpsa_shutdown,
8974	.suspend = hpsa_suspend,
8975	.resume = hpsa_resume,
8976};
8977
8978/* Fill in bucket_map[], given nsgs (the max number of
8979 * scatter gather elements supported) and bucket[],
8980 * which is an array of 8 integers.  The bucket[] array
8981 * contains 8 different DMA transfer sizes (in 16
8982 * byte increments) which the controller uses to fetch
8983 * commands.  This function fills in bucket_map[], which
8984 * maps a given number of scatter gather elements to one of
8985 * the 8 DMA transfer sizes.  The point of it is to allow the
8986 * controller to only do as much DMA as needed to fetch the
8987 * command, with the DMA transfer size encoded in the lower
8988 * bits of the command address.
8989 */
8990static void  calc_bucket_map(int bucket[], int num_buckets,
8991	int nsgs, int min_blocks, u32 *bucket_map)
8992{
8993	int i, j, b, size;
8994
 
 
 
8995	/* Note, bucket_map must have nsgs+1 entries. */
8996	for (i = 0; i <= nsgs; i++) {
8997		/* Compute size of a command with i SG entries */
8998		size = i + min_blocks;
8999		b = num_buckets; /* Assume the biggest bucket */
9000		/* Find the bucket that is just big enough */
9001		for (j = 0; j < num_buckets; j++) {
9002			if (bucket[j] >= size) {
9003				b = j;
9004				break;
9005			}
9006		}
9007		/* for a command with i SG entries, use bucket b. */
9008		bucket_map[i] = b;
9009	}
9010}
9011
9012/*
9013 * return -ENODEV on err, 0 on success (or no action)
9014 * allocates numerous items that must be freed later
9015 */
9016static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9017{
9018	int i;
9019	unsigned long register_value;
9020	unsigned long transMethod = CFGTBL_Trans_Performant |
9021			(trans_support & CFGTBL_Trans_use_short_tags) |
9022				CFGTBL_Trans_enable_directed_msix |
9023			(trans_support & (CFGTBL_Trans_io_accel1 |
9024				CFGTBL_Trans_io_accel2));
9025	struct access_method access = SA5_performant_access;
9026
9027	/* This is a bit complicated.  There are 8 registers on
9028	 * the controller which we write to to tell it 8 different
9029	 * sizes of commands which there may be.  It's a way of
9030	 * reducing the DMA done to fetch each command.  Encoded into
9031	 * each command's tag are 3 bits which communicate to the controller
9032	 * which of the eight sizes that command fits within.  The size of
9033	 * each command depends on how many scatter gather entries there are.
9034	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9035	 * with the number of 16-byte blocks a command of that size requires.
9036	 * The smallest command possible requires 5 such 16 byte blocks.
9037	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9038	 * blocks.  Note, this only extends to the SG entries contained
9039	 * within the command block, and does not extend to chained blocks
9040	 * of SG elements.   bft[] contains the eight values we write to
9041	 * the registers.  They are not evenly distributed, but have more
9042	 * sizes for small commands, and fewer sizes for larger commands.
9043	 */
9044	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9045#define MIN_IOACCEL2_BFT_ENTRY 5
9046#define HPSA_IOACCEL2_HEADER_SZ 4
9047	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9048			13, 14, 15, 16, 17, 18, 19,
9049			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9050	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9051	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9052	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9053				 16 * MIN_IOACCEL2_BFT_ENTRY);
9054	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9055	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9056	/*  5 = 1 s/g entry or 4k
9057	 *  6 = 2 s/g entry or 8k
9058	 *  8 = 4 s/g entry or 16k
9059	 * 10 = 6 s/g entry or 24k
9060	 */
9061
9062	/* If the controller supports either ioaccel method then
9063	 * we can also use the RAID stack submit path that does not
9064	 * perform the superfluous readl() after each command submission.
9065	 */
9066	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9067		access = SA5_performant_access_no_read;
9068
9069	/* Controller spec: zero out this buffer. */
9070	for (i = 0; i < h->nreply_queues; i++)
9071		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9072
9073	bft[7] = SG_ENTRIES_IN_CMD + 4;
9074	calc_bucket_map(bft, ARRAY_SIZE(bft),
9075				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9076	for (i = 0; i < 8; i++)
9077		writel(bft[i], &h->transtable->BlockFetch[i]);
9078
9079	/* size of controller ring buffer */
9080	writel(h->max_commands, &h->transtable->RepQSize);
9081	writel(h->nreply_queues, &h->transtable->RepQCount);
9082	writel(0, &h->transtable->RepQCtrAddrLow32);
9083	writel(0, &h->transtable->RepQCtrAddrHigh32);
9084
9085	for (i = 0; i < h->nreply_queues; i++) {
9086		writel(0, &h->transtable->RepQAddr[i].upper);
9087		writel(h->reply_queue[i].busaddr,
9088			&h->transtable->RepQAddr[i].lower);
9089	}
9090
9091	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9092	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9093	/*
9094	 * enable outbound interrupt coalescing in accelerator mode;
9095	 */
9096	if (trans_support & CFGTBL_Trans_io_accel1) {
9097		access = SA5_ioaccel_mode1_access;
9098		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9099		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9100	} else
9101		if (trans_support & CFGTBL_Trans_io_accel2)
9102			access = SA5_ioaccel_mode2_access;
9103	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9104	if (hpsa_wait_for_mode_change_ack(h)) {
9105		dev_err(&h->pdev->dev,
9106			"performant mode problem - doorbell timeout\n");
9107		return -ENODEV;
9108	}
9109	register_value = readl(&(h->cfgtable->TransportActive));
9110	if (!(register_value & CFGTBL_Trans_Performant)) {
9111		dev_err(&h->pdev->dev,
9112			"performant mode problem - transport not active\n");
9113		return -ENODEV;
9114	}
9115	/* Change the access methods to the performant access methods */
9116	h->access = access;
9117	h->transMethod = transMethod;
9118
9119	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9120		(trans_support & CFGTBL_Trans_io_accel2)))
9121		return 0;
9122
9123	if (trans_support & CFGTBL_Trans_io_accel1) {
9124		/* Set up I/O accelerator mode */
9125		for (i = 0; i < h->nreply_queues; i++) {
9126			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9127			h->reply_queue[i].current_entry =
9128				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9129		}
9130		bft[7] = h->ioaccel_maxsg + 8;
9131		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9132				h->ioaccel1_blockFetchTable);
9133
9134		/* initialize all reply queue entries to unused */
9135		for (i = 0; i < h->nreply_queues; i++)
9136			memset(h->reply_queue[i].head,
9137				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9138				h->reply_queue_size);
9139
9140		/* set all the constant fields in the accelerator command
9141		 * frames once at init time to save CPU cycles later.
9142		 */
9143		for (i = 0; i < h->nr_cmds; i++) {
9144			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9145
9146			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9147			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9148					(i * sizeof(struct ErrorInfo)));
9149			cp->err_info_len = sizeof(struct ErrorInfo);
9150			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9151			cp->host_context_flags =
9152				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9153			cp->timeout_sec = 0;
9154			cp->ReplyQueue = 0;
9155			cp->tag =
9156				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9157			cp->host_addr =
9158				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9159					(i * sizeof(struct io_accel1_cmd)));
9160		}
9161	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9162		u64 cfg_offset, cfg_base_addr_index;
9163		u32 bft2_offset, cfg_base_addr;
9164		int rc;
9165
9166		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9167			&cfg_base_addr_index, &cfg_offset);
9168		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9169		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9170		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9171				4, h->ioaccel2_blockFetchTable);
9172		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9173		BUILD_BUG_ON(offsetof(struct CfgTable,
9174				io_accel_request_size_offset) != 0xb8);
9175		h->ioaccel2_bft2_regs =
9176			remap_pci_mem(pci_resource_start(h->pdev,
9177					cfg_base_addr_index) +
9178					cfg_offset + bft2_offset,
9179					ARRAY_SIZE(bft2) *
9180					sizeof(*h->ioaccel2_bft2_regs));
9181		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9182			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9183	}
9184	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9185	if (hpsa_wait_for_mode_change_ack(h)) {
9186		dev_err(&h->pdev->dev,
9187			"performant mode problem - enabling ioaccel mode\n");
9188		return -ENODEV;
9189	}
9190	return 0;
9191}
9192
9193/* Free ioaccel1 mode command blocks and block fetch table */
9194static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9195{
9196	if (h->ioaccel_cmd_pool) {
9197		pci_free_consistent(h->pdev,
9198			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9199			h->ioaccel_cmd_pool,
9200			h->ioaccel_cmd_pool_dhandle);
9201		h->ioaccel_cmd_pool = NULL;
9202		h->ioaccel_cmd_pool_dhandle = 0;
9203	}
9204	kfree(h->ioaccel1_blockFetchTable);
9205	h->ioaccel1_blockFetchTable = NULL;
9206}
9207
9208/* Allocate ioaccel1 mode command blocks and block fetch table */
9209static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9210{
9211	h->ioaccel_maxsg =
9212		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9213	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9214		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9215
9216	/* Command structures must be aligned on a 128-byte boundary
9217	 * because the 7 lower bits of the address are used by the
9218	 * hardware.
9219	 */
9220	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9221			IOACCEL1_COMMANDLIST_ALIGNMENT);
9222	h->ioaccel_cmd_pool =
9223		pci_alloc_consistent(h->pdev,
9224			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9225			&(h->ioaccel_cmd_pool_dhandle));
9226
9227	h->ioaccel1_blockFetchTable =
9228		kmalloc(((h->ioaccel_maxsg + 1) *
9229				sizeof(u32)), GFP_KERNEL);
9230
9231	if ((h->ioaccel_cmd_pool == NULL) ||
9232		(h->ioaccel1_blockFetchTable == NULL))
9233		goto clean_up;
9234
9235	memset(h->ioaccel_cmd_pool, 0,
9236		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9237	return 0;
9238
9239clean_up:
9240	hpsa_free_ioaccel1_cmd_and_bft(h);
9241	return -ENOMEM;
9242}
9243
9244/* Free ioaccel2 mode command blocks and block fetch table */
9245static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9246{
9247	hpsa_free_ioaccel2_sg_chain_blocks(h);
9248
9249	if (h->ioaccel2_cmd_pool) {
9250		pci_free_consistent(h->pdev,
9251			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9252			h->ioaccel2_cmd_pool,
9253			h->ioaccel2_cmd_pool_dhandle);
9254		h->ioaccel2_cmd_pool = NULL;
9255		h->ioaccel2_cmd_pool_dhandle = 0;
9256	}
9257	kfree(h->ioaccel2_blockFetchTable);
9258	h->ioaccel2_blockFetchTable = NULL;
9259}
9260
9261/* Allocate ioaccel2 mode command blocks and block fetch table */
9262static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9263{
9264	int rc;
9265
9266	/* Allocate ioaccel2 mode command blocks and block fetch table */
9267
9268	h->ioaccel_maxsg =
9269		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9270	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9271		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9272
9273	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9274			IOACCEL2_COMMANDLIST_ALIGNMENT);
9275	h->ioaccel2_cmd_pool =
9276		pci_alloc_consistent(h->pdev,
9277			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9278			&(h->ioaccel2_cmd_pool_dhandle));
9279
9280	h->ioaccel2_blockFetchTable =
9281		kmalloc(((h->ioaccel_maxsg + 1) *
9282				sizeof(u32)), GFP_KERNEL);
9283
9284	if ((h->ioaccel2_cmd_pool == NULL) ||
9285		(h->ioaccel2_blockFetchTable == NULL)) {
9286		rc = -ENOMEM;
9287		goto clean_up;
9288	}
9289
9290	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9291	if (rc)
9292		goto clean_up;
9293
9294	memset(h->ioaccel2_cmd_pool, 0,
9295		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9296	return 0;
9297
9298clean_up:
9299	hpsa_free_ioaccel2_cmd_and_bft(h);
9300	return rc;
9301}
9302
9303/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9304static void hpsa_free_performant_mode(struct ctlr_info *h)
9305{
9306	kfree(h->blockFetchTable);
9307	h->blockFetchTable = NULL;
9308	hpsa_free_reply_queues(h);
9309	hpsa_free_ioaccel1_cmd_and_bft(h);
9310	hpsa_free_ioaccel2_cmd_and_bft(h);
9311}
9312
9313/* return -ENODEV on error, 0 on success (or no action)
9314 * allocates numerous items that must be freed later
9315 */
9316static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9317{
9318	u32 trans_support;
9319	unsigned long transMethod = CFGTBL_Trans_Performant |
9320					CFGTBL_Trans_use_short_tags;
9321	int i, rc;
9322
9323	if (hpsa_simple_mode)
9324		return 0;
9325
9326	trans_support = readl(&(h->cfgtable->TransportSupport));
9327	if (!(trans_support & PERFORMANT_MODE))
9328		return 0;
9329
9330	/* Check for I/O accelerator mode support */
9331	if (trans_support & CFGTBL_Trans_io_accel1) {
9332		transMethod |= CFGTBL_Trans_io_accel1 |
9333				CFGTBL_Trans_enable_directed_msix;
9334		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9335		if (rc)
9336			return rc;
9337	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9338		transMethod |= CFGTBL_Trans_io_accel2 |
9339				CFGTBL_Trans_enable_directed_msix;
9340		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9341		if (rc)
9342			return rc;
9343	}
9344
9345	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9346	hpsa_get_max_perf_mode_cmds(h);
 
9347	/* Performant mode ring buffer and supporting data structures */
9348	h->reply_queue_size = h->max_commands * sizeof(u64);
9349
9350	for (i = 0; i < h->nreply_queues; i++) {
9351		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9352						h->reply_queue_size,
9353						&(h->reply_queue[i].busaddr));
9354		if (!h->reply_queue[i].head) {
9355			rc = -ENOMEM;
9356			goto clean1;	/* rq, ioaccel */
9357		}
9358		h->reply_queue[i].size = h->max_commands;
9359		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9360		h->reply_queue[i].current_entry = 0;
9361	}
9362
9363	/* Need a block fetch table for performant mode */
9364	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9365				sizeof(u32)), GFP_KERNEL);
9366	if (!h->blockFetchTable) {
9367		rc = -ENOMEM;
9368		goto clean1;	/* rq, ioaccel */
9369	}
9370
9371	rc = hpsa_enter_performant_mode(h, trans_support);
9372	if (rc)
9373		goto clean2;	/* bft, rq, ioaccel */
9374	return 0;
9375
9376clean2:	/* bft, rq, ioaccel */
9377	kfree(h->blockFetchTable);
9378	h->blockFetchTable = NULL;
9379clean1:	/* rq, ioaccel */
9380	hpsa_free_reply_queues(h);
9381	hpsa_free_ioaccel1_cmd_and_bft(h);
9382	hpsa_free_ioaccel2_cmd_and_bft(h);
9383	return rc;
9384}
9385
9386static int is_accelerated_cmd(struct CommandList *c)
9387{
9388	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9389}
9390
9391static void hpsa_drain_accel_commands(struct ctlr_info *h)
9392{
9393	struct CommandList *c = NULL;
9394	int i, accel_cmds_out;
9395	int refcount;
9396
9397	do { /* wait for all outstanding ioaccel commands to drain out */
9398		accel_cmds_out = 0;
9399		for (i = 0; i < h->nr_cmds; i++) {
9400			c = h->cmd_pool + i;
9401			refcount = atomic_inc_return(&c->refcount);
9402			if (refcount > 1) /* Command is allocated */
9403				accel_cmds_out += is_accelerated_cmd(c);
9404			cmd_free(h, c);
9405		}
9406		if (accel_cmds_out <= 0)
9407			break;
9408		msleep(100);
9409	} while (1);
9410}
9411
9412static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9413				struct hpsa_sas_port *hpsa_sas_port)
9414{
9415	struct hpsa_sas_phy *hpsa_sas_phy;
9416	struct sas_phy *phy;
9417
9418	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9419	if (!hpsa_sas_phy)
9420		return NULL;
9421
9422	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9423		hpsa_sas_port->next_phy_index);
9424	if (!phy) {
9425		kfree(hpsa_sas_phy);
9426		return NULL;
9427	}
9428
9429	hpsa_sas_port->next_phy_index++;
9430	hpsa_sas_phy->phy = phy;
9431	hpsa_sas_phy->parent_port = hpsa_sas_port;
9432
9433	return hpsa_sas_phy;
9434}
9435
9436static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9437{
9438	struct sas_phy *phy = hpsa_sas_phy->phy;
9439
9440	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9441	if (hpsa_sas_phy->added_to_port)
9442		list_del(&hpsa_sas_phy->phy_list_entry);
9443	sas_phy_delete(phy);
9444	kfree(hpsa_sas_phy);
9445}
9446
9447static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9448{
9449	int rc;
9450	struct hpsa_sas_port *hpsa_sas_port;
9451	struct sas_phy *phy;
9452	struct sas_identify *identify;
9453
9454	hpsa_sas_port = hpsa_sas_phy->parent_port;
9455	phy = hpsa_sas_phy->phy;
9456
9457	identify = &phy->identify;
9458	memset(identify, 0, sizeof(*identify));
9459	identify->sas_address = hpsa_sas_port->sas_address;
9460	identify->device_type = SAS_END_DEVICE;
9461	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9462	identify->target_port_protocols = SAS_PROTOCOL_STP;
9463	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9464	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9465	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9466	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9467	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9468
9469	rc = sas_phy_add(hpsa_sas_phy->phy);
9470	if (rc)
9471		return rc;
9472
9473	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9474	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9475			&hpsa_sas_port->phy_list_head);
9476	hpsa_sas_phy->added_to_port = true;
9477
9478	return 0;
9479}
9480
9481static int
9482	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9483				struct sas_rphy *rphy)
9484{
9485	struct sas_identify *identify;
9486
9487	identify = &rphy->identify;
9488	identify->sas_address = hpsa_sas_port->sas_address;
9489	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9490	identify->target_port_protocols = SAS_PROTOCOL_STP;
9491
9492	return sas_rphy_add(rphy);
9493}
9494
9495static struct hpsa_sas_port
9496	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9497				u64 sas_address)
9498{
9499	int rc;
9500	struct hpsa_sas_port *hpsa_sas_port;
9501	struct sas_port *port;
9502
9503	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9504	if (!hpsa_sas_port)
9505		return NULL;
9506
9507	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9508	hpsa_sas_port->parent_node = hpsa_sas_node;
9509
9510	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9511	if (!port)
9512		goto free_hpsa_port;
9513
9514	rc = sas_port_add(port);
9515	if (rc)
9516		goto free_sas_port;
9517
9518	hpsa_sas_port->port = port;
9519	hpsa_sas_port->sas_address = sas_address;
9520	list_add_tail(&hpsa_sas_port->port_list_entry,
9521			&hpsa_sas_node->port_list_head);
9522
9523	return hpsa_sas_port;
9524
9525free_sas_port:
9526	sas_port_free(port);
9527free_hpsa_port:
9528	kfree(hpsa_sas_port);
9529
9530	return NULL;
9531}
9532
9533static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9534{
9535	struct hpsa_sas_phy *hpsa_sas_phy;
9536	struct hpsa_sas_phy *next;
9537
9538	list_for_each_entry_safe(hpsa_sas_phy, next,
9539			&hpsa_sas_port->phy_list_head, phy_list_entry)
9540		hpsa_free_sas_phy(hpsa_sas_phy);
9541
9542	sas_port_delete(hpsa_sas_port->port);
9543	list_del(&hpsa_sas_port->port_list_entry);
9544	kfree(hpsa_sas_port);
9545}
9546
9547static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9548{
9549	struct hpsa_sas_node *hpsa_sas_node;
9550
9551	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9552	if (hpsa_sas_node) {
9553		hpsa_sas_node->parent_dev = parent_dev;
9554		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9555	}
9556
9557	return hpsa_sas_node;
9558}
9559
9560static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9561{
9562	struct hpsa_sas_port *hpsa_sas_port;
9563	struct hpsa_sas_port *next;
9564
9565	if (!hpsa_sas_node)
9566		return;
9567
9568	list_for_each_entry_safe(hpsa_sas_port, next,
9569			&hpsa_sas_node->port_list_head, port_list_entry)
9570		hpsa_free_sas_port(hpsa_sas_port);
9571
9572	kfree(hpsa_sas_node);
9573}
9574
9575static struct hpsa_scsi_dev_t
9576	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9577					struct sas_rphy *rphy)
9578{
9579	int i;
9580	struct hpsa_scsi_dev_t *device;
9581
9582	for (i = 0; i < h->ndevices; i++) {
9583		device = h->dev[i];
9584		if (!device->sas_port)
9585			continue;
9586		if (device->sas_port->rphy == rphy)
9587			return device;
9588	}
9589
9590	return NULL;
9591}
9592
9593static int hpsa_add_sas_host(struct ctlr_info *h)
9594{
9595	int rc;
9596	struct device *parent_dev;
9597	struct hpsa_sas_node *hpsa_sas_node;
9598	struct hpsa_sas_port *hpsa_sas_port;
9599	struct hpsa_sas_phy *hpsa_sas_phy;
9600
9601	parent_dev = &h->scsi_host->shost_dev;
9602
9603	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9604	if (!hpsa_sas_node)
9605		return -ENOMEM;
9606
9607	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9608	if (!hpsa_sas_port) {
9609		rc = -ENODEV;
9610		goto free_sas_node;
9611	}
9612
9613	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9614	if (!hpsa_sas_phy) {
9615		rc = -ENODEV;
9616		goto free_sas_port;
9617	}
9618
9619	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9620	if (rc)
9621		goto free_sas_phy;
9622
9623	h->sas_host = hpsa_sas_node;
9624
9625	return 0;
9626
9627free_sas_phy:
9628	hpsa_free_sas_phy(hpsa_sas_phy);
9629free_sas_port:
9630	hpsa_free_sas_port(hpsa_sas_port);
9631free_sas_node:
9632	hpsa_free_sas_node(hpsa_sas_node);
9633
9634	return rc;
9635}
9636
9637static void hpsa_delete_sas_host(struct ctlr_info *h)
9638{
9639	hpsa_free_sas_node(h->sas_host);
9640}
9641
9642static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9643				struct hpsa_scsi_dev_t *device)
9644{
9645	int rc;
9646	struct hpsa_sas_port *hpsa_sas_port;
9647	struct sas_rphy *rphy;
9648
9649	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9650	if (!hpsa_sas_port)
9651		return -ENOMEM;
9652
9653	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9654	if (!rphy) {
9655		rc = -ENODEV;
9656		goto free_sas_port;
9657	}
9658
9659	hpsa_sas_port->rphy = rphy;
9660	device->sas_port = hpsa_sas_port;
9661
9662	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9663	if (rc)
9664		goto free_sas_port;
9665
9666	return 0;
9667
9668free_sas_port:
9669	hpsa_free_sas_port(hpsa_sas_port);
9670	device->sas_port = NULL;
9671
9672	return rc;
9673}
9674
9675static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9676{
9677	if (device->sas_port) {
9678		hpsa_free_sas_port(device->sas_port);
9679		device->sas_port = NULL;
9680	}
9681}
9682
9683static int
9684hpsa_sas_get_linkerrors(struct sas_phy *phy)
9685{
9686	return 0;
9687}
9688
9689static int
9690hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9691{
9692	*identifier = rphy->identify.sas_address;
9693	return 0;
9694}
9695
9696static int
9697hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9698{
9699	return -ENXIO;
9700}
9701
9702static int
9703hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9704{
9705	return 0;
9706}
9707
9708static int
9709hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9710{
9711	return 0;
9712}
9713
9714static int
9715hpsa_sas_phy_setup(struct sas_phy *phy)
9716{
9717	return 0;
9718}
9719
9720static void
9721hpsa_sas_phy_release(struct sas_phy *phy)
9722{
9723}
9724
9725static int
9726hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9727{
9728	return -EINVAL;
9729}
9730
9731static struct sas_function_template hpsa_sas_transport_functions = {
9732	.get_linkerrors = hpsa_sas_get_linkerrors,
9733	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9734	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9735	.phy_reset = hpsa_sas_phy_reset,
9736	.phy_enable = hpsa_sas_phy_enable,
9737	.phy_setup = hpsa_sas_phy_setup,
9738	.phy_release = hpsa_sas_phy_release,
9739	.set_phy_speed = hpsa_sas_phy_speed,
9740};
9741
9742/*
9743 *  This is it.  Register the PCI driver information for the cards we control
9744 *  the OS will call our registered routines when it finds one of our cards.
9745 */
9746static int __init hpsa_init(void)
9747{
9748	int rc;
9749
9750	hpsa_sas_transport_template =
9751		sas_attach_transport(&hpsa_sas_transport_functions);
9752	if (!hpsa_sas_transport_template)
9753		return -ENODEV;
9754
9755	rc = pci_register_driver(&hpsa_pci_driver);
9756
9757	if (rc)
9758		sas_release_transport(hpsa_sas_transport_template);
9759
9760	return rc;
9761}
9762
9763static void __exit hpsa_cleanup(void)
9764{
9765	pci_unregister_driver(&hpsa_pci_driver);
9766	sas_release_transport(hpsa_sas_transport_template);
9767}
9768
9769static void __attribute__((unused)) verify_offsets(void)
9770{
9771#define VERIFY_OFFSET(member, offset) \
9772	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9773
9774	VERIFY_OFFSET(structure_size, 0);
9775	VERIFY_OFFSET(volume_blk_size, 4);
9776	VERIFY_OFFSET(volume_blk_cnt, 8);
9777	VERIFY_OFFSET(phys_blk_shift, 16);
9778	VERIFY_OFFSET(parity_rotation_shift, 17);
9779	VERIFY_OFFSET(strip_size, 18);
9780	VERIFY_OFFSET(disk_starting_blk, 20);
9781	VERIFY_OFFSET(disk_blk_cnt, 28);
9782	VERIFY_OFFSET(data_disks_per_row, 36);
9783	VERIFY_OFFSET(metadata_disks_per_row, 38);
9784	VERIFY_OFFSET(row_cnt, 40);
9785	VERIFY_OFFSET(layout_map_count, 42);
9786	VERIFY_OFFSET(flags, 44);
9787	VERIFY_OFFSET(dekindex, 46);
9788	/* VERIFY_OFFSET(reserved, 48 */
9789	VERIFY_OFFSET(data, 64);
9790
9791#undef VERIFY_OFFSET
9792
9793#define VERIFY_OFFSET(member, offset) \
9794	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9795
9796	VERIFY_OFFSET(IU_type, 0);
9797	VERIFY_OFFSET(direction, 1);
9798	VERIFY_OFFSET(reply_queue, 2);
9799	/* VERIFY_OFFSET(reserved1, 3);  */
9800	VERIFY_OFFSET(scsi_nexus, 4);
9801	VERIFY_OFFSET(Tag, 8);
9802	VERIFY_OFFSET(cdb, 16);
9803	VERIFY_OFFSET(cciss_lun, 32);
9804	VERIFY_OFFSET(data_len, 40);
9805	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9806	VERIFY_OFFSET(sg_count, 45);
9807	/* VERIFY_OFFSET(reserved3 */
9808	VERIFY_OFFSET(err_ptr, 48);
9809	VERIFY_OFFSET(err_len, 56);
9810	/* VERIFY_OFFSET(reserved4  */
9811	VERIFY_OFFSET(sg, 64);
9812
9813#undef VERIFY_OFFSET
9814
9815#define VERIFY_OFFSET(member, offset) \
9816	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9817
9818	VERIFY_OFFSET(dev_handle, 0x00);
9819	VERIFY_OFFSET(reserved1, 0x02);
9820	VERIFY_OFFSET(function, 0x03);
9821	VERIFY_OFFSET(reserved2, 0x04);
9822	VERIFY_OFFSET(err_info, 0x0C);
9823	VERIFY_OFFSET(reserved3, 0x10);
9824	VERIFY_OFFSET(err_info_len, 0x12);
9825	VERIFY_OFFSET(reserved4, 0x13);
9826	VERIFY_OFFSET(sgl_offset, 0x14);
9827	VERIFY_OFFSET(reserved5, 0x15);
9828	VERIFY_OFFSET(transfer_len, 0x1C);
9829	VERIFY_OFFSET(reserved6, 0x20);
9830	VERIFY_OFFSET(io_flags, 0x24);
9831	VERIFY_OFFSET(reserved7, 0x26);
9832	VERIFY_OFFSET(LUN, 0x34);
9833	VERIFY_OFFSET(control, 0x3C);
9834	VERIFY_OFFSET(CDB, 0x40);
9835	VERIFY_OFFSET(reserved8, 0x50);
9836	VERIFY_OFFSET(host_context_flags, 0x60);
9837	VERIFY_OFFSET(timeout_sec, 0x62);
9838	VERIFY_OFFSET(ReplyQueue, 0x64);
9839	VERIFY_OFFSET(reserved9, 0x65);
9840	VERIFY_OFFSET(tag, 0x68);
9841	VERIFY_OFFSET(host_addr, 0x70);
9842	VERIFY_OFFSET(CISS_LUN, 0x78);
9843	VERIFY_OFFSET(SG, 0x78 + 8);
9844#undef VERIFY_OFFSET
9845}
9846
9847module_init(hpsa_init);
9848module_exit(hpsa_cleanup);