Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1/*
   2	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   3	<http://rt2x00.serialmonkey.com>
   4
   5	This program is free software; you can redistribute it and/or modify
   6	it under the terms of the GNU General Public License as published by
   7	the Free Software Foundation; either version 2 of the License, or
   8	(at your option) any later version.
   9
  10	This program is distributed in the hope that it will be useful,
  11	but WITHOUT ANY WARRANTY; without even the implied warranty of
  12	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13	GNU General Public License for more details.
  14
  15	You should have received a copy of the GNU General Public License
  16	along with this program; if not, write to the
  17	Free Software Foundation, Inc.,
  18	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21/*
  22	Module: rt2400pci
  23	Abstract: rt2400pci device specific routines.
  24	Supported chipsets: RT2460.
  25 */
  26
  27#include <linux/delay.h>
  28#include <linux/etherdevice.h>
  29#include <linux/init.h>
  30#include <linux/kernel.h>
  31#include <linux/module.h>
  32#include <linux/pci.h>
  33#include <linux/eeprom_93cx6.h>
  34#include <linux/slab.h>
  35
  36#include "rt2x00.h"
  37#include "rt2x00pci.h"
  38#include "rt2400pci.h"
  39
  40/*
  41 * Register access.
  42 * All access to the CSR registers will go through the methods
  43 * rt2x00pci_register_read and rt2x00pci_register_write.
  44 * BBP and RF register require indirect register access,
  45 * and use the CSR registers BBPCSR and RFCSR to achieve this.
  46 * These indirect registers work with busy bits,
  47 * and we will try maximal REGISTER_BUSY_COUNT times to access
  48 * the register while taking a REGISTER_BUSY_DELAY us delay
  49 * between each attempt. When the busy bit is still set at that time,
  50 * the access attempt is considered to have failed,
  51 * and we will print an error.
  52 */
  53#define WAIT_FOR_BBP(__dev, __reg) \
  54	rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  55#define WAIT_FOR_RF(__dev, __reg) \
  56	rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  57
  58static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  59				const unsigned int word, const u8 value)
  60{
  61	u32 reg;
  62
  63	mutex_lock(&rt2x00dev->csr_mutex);
  64
  65	/*
  66	 * Wait until the BBP becomes available, afterwards we
  67	 * can safely write the new data into the register.
  68	 */
  69	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  70		reg = 0;
  71		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  72		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  73		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  74		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  75
  76		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  77	}
  78
  79	mutex_unlock(&rt2x00dev->csr_mutex);
  80}
  81
  82static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  83			       const unsigned int word, u8 *value)
  84{
  85	u32 reg;
  86
  87	mutex_lock(&rt2x00dev->csr_mutex);
  88
  89	/*
  90	 * Wait until the BBP becomes available, afterwards we
  91	 * can safely write the read request into the register.
  92	 * After the data has been written, we wait until hardware
  93	 * returns the correct value, if at any time the register
  94	 * doesn't become available in time, reg will be 0xffffffff
  95	 * which means we return 0xff to the caller.
  96	 */
  97	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  98		reg = 0;
  99		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
 100		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
 101		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
 102
 103		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
 104
 105		WAIT_FOR_BBP(rt2x00dev, &reg);
 106	}
 107
 108	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
 109
 110	mutex_unlock(&rt2x00dev->csr_mutex);
 111}
 112
 113static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
 114			       const unsigned int word, const u32 value)
 115{
 116	u32 reg;
 117
 118	mutex_lock(&rt2x00dev->csr_mutex);
 119
 120	/*
 121	 * Wait until the RF becomes available, afterwards we
 122	 * can safely write the new data into the register.
 123	 */
 124	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 125		reg = 0;
 126		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
 127		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
 128		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
 129		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
 130
 131		rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
 132		rt2x00_rf_write(rt2x00dev, word, value);
 133	}
 134
 135	mutex_unlock(&rt2x00dev->csr_mutex);
 136}
 137
 138static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 139{
 140	struct rt2x00_dev *rt2x00dev = eeprom->data;
 141	u32 reg;
 142
 143	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
 144
 145	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
 146	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
 147	eeprom->reg_data_clock =
 148	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
 149	eeprom->reg_chip_select =
 150	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
 151}
 152
 153static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 154{
 155	struct rt2x00_dev *rt2x00dev = eeprom->data;
 156	u32 reg = 0;
 157
 158	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
 159	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
 160	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
 161			   !!eeprom->reg_data_clock);
 162	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
 163			   !!eeprom->reg_chip_select);
 164
 165	rt2x00pci_register_write(rt2x00dev, CSR21, reg);
 166}
 167
 168#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 169static const struct rt2x00debug rt2400pci_rt2x00debug = {
 170	.owner	= THIS_MODULE,
 171	.csr	= {
 172		.read		= rt2x00pci_register_read,
 173		.write		= rt2x00pci_register_write,
 174		.flags		= RT2X00DEBUGFS_OFFSET,
 175		.word_base	= CSR_REG_BASE,
 176		.word_size	= sizeof(u32),
 177		.word_count	= CSR_REG_SIZE / sizeof(u32),
 178	},
 179	.eeprom	= {
 180		.read		= rt2x00_eeprom_read,
 181		.write		= rt2x00_eeprom_write,
 182		.word_base	= EEPROM_BASE,
 183		.word_size	= sizeof(u16),
 184		.word_count	= EEPROM_SIZE / sizeof(u16),
 185	},
 186	.bbp	= {
 187		.read		= rt2400pci_bbp_read,
 188		.write		= rt2400pci_bbp_write,
 189		.word_base	= BBP_BASE,
 190		.word_size	= sizeof(u8),
 191		.word_count	= BBP_SIZE / sizeof(u8),
 192	},
 193	.rf	= {
 194		.read		= rt2x00_rf_read,
 195		.write		= rt2400pci_rf_write,
 196		.word_base	= RF_BASE,
 197		.word_size	= sizeof(u32),
 198		.word_count	= RF_SIZE / sizeof(u32),
 199	},
 200};
 201#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 202
 203static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 204{
 205	u32 reg;
 206
 207	rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
 208	return rt2x00_get_field32(reg, GPIOCSR_BIT0);
 209}
 210
 211#ifdef CONFIG_RT2X00_LIB_LEDS
 212static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
 213				     enum led_brightness brightness)
 214{
 215	struct rt2x00_led *led =
 216	    container_of(led_cdev, struct rt2x00_led, led_dev);
 217	unsigned int enabled = brightness != LED_OFF;
 218	u32 reg;
 219
 220	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
 221
 222	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
 223		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
 224	else if (led->type == LED_TYPE_ACTIVITY)
 225		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
 226
 227	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
 228}
 229
 230static int rt2400pci_blink_set(struct led_classdev *led_cdev,
 231			       unsigned long *delay_on,
 232			       unsigned long *delay_off)
 233{
 234	struct rt2x00_led *led =
 235	    container_of(led_cdev, struct rt2x00_led, led_dev);
 236	u32 reg;
 237
 238	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
 239	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
 240	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
 241	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
 242
 243	return 0;
 244}
 245
 246static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
 247			       struct rt2x00_led *led,
 248			       enum led_type type)
 249{
 250	led->rt2x00dev = rt2x00dev;
 251	led->type = type;
 252	led->led_dev.brightness_set = rt2400pci_brightness_set;
 253	led->led_dev.blink_set = rt2400pci_blink_set;
 254	led->flags = LED_INITIALIZED;
 255}
 256#endif /* CONFIG_RT2X00_LIB_LEDS */
 257
 258/*
 259 * Configuration handlers.
 260 */
 261static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
 262				    const unsigned int filter_flags)
 263{
 264	u32 reg;
 265
 266	/*
 267	 * Start configuration steps.
 268	 * Note that the version error will always be dropped
 269	 * since there is no filter for it at this time.
 270	 */
 271	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
 272	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
 273			   !(filter_flags & FIF_FCSFAIL));
 274	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
 275			   !(filter_flags & FIF_PLCPFAIL));
 276	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
 277			   !(filter_flags & FIF_CONTROL));
 278	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
 279			   !(filter_flags & FIF_PROMISC_IN_BSS));
 280	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
 281			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
 282			   !rt2x00dev->intf_ap_count);
 283	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
 284	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
 285}
 286
 287static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
 288				  struct rt2x00_intf *intf,
 289				  struct rt2x00intf_conf *conf,
 290				  const unsigned int flags)
 291{
 292	unsigned int bcn_preload;
 293	u32 reg;
 294
 295	if (flags & CONFIG_UPDATE_TYPE) {
 296		/*
 297		 * Enable beacon config
 298		 */
 299		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
 300		rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
 301		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
 302		rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
 303
 304		/*
 305		 * Enable synchronisation.
 306		 */
 307		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
 308		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
 309		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
 310	}
 311
 312	if (flags & CONFIG_UPDATE_MAC)
 313		rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
 314					      conf->mac, sizeof(conf->mac));
 315
 316	if (flags & CONFIG_UPDATE_BSSID)
 317		rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
 318					      conf->bssid, sizeof(conf->bssid));
 319}
 320
 321static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
 322				 struct rt2x00lib_erp *erp,
 323				 u32 changed)
 324{
 325	int preamble_mask;
 326	u32 reg;
 327
 328	/*
 329	 * When short preamble is enabled, we should set bit 0x08
 330	 */
 331	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 332		preamble_mask = erp->short_preamble << 3;
 333
 334		rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
 335		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
 336		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
 337		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
 338		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
 339		rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
 340
 341		rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
 342		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
 343		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
 344		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 345				   GET_DURATION(ACK_SIZE, 10));
 346		rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
 347
 348		rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
 349		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
 350		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
 351		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 352				   GET_DURATION(ACK_SIZE, 20));
 353		rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
 354
 355		rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
 356		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
 357		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
 358		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 359				   GET_DURATION(ACK_SIZE, 55));
 360		rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
 361
 362		rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
 363		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
 364		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
 365		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 366				   GET_DURATION(ACK_SIZE, 110));
 367		rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
 368	}
 369
 370	if (changed & BSS_CHANGED_BASIC_RATES)
 371		rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
 372
 373	if (changed & BSS_CHANGED_ERP_SLOT) {
 374		rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
 375		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
 376		rt2x00pci_register_write(rt2x00dev, CSR11, reg);
 377
 378		rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
 379		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
 380		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
 381		rt2x00pci_register_write(rt2x00dev, CSR18, reg);
 382
 383		rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
 384		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
 385		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
 386		rt2x00pci_register_write(rt2x00dev, CSR19, reg);
 387	}
 388
 389	if (changed & BSS_CHANGED_BEACON_INT) {
 390		rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
 391		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
 392				   erp->beacon_int * 16);
 393		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
 394				   erp->beacon_int * 16);
 395		rt2x00pci_register_write(rt2x00dev, CSR12, reg);
 396	}
 397}
 398
 399static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
 400				 struct antenna_setup *ant)
 401{
 402	u8 r1;
 403	u8 r4;
 404
 405	/*
 406	 * We should never come here because rt2x00lib is supposed
 407	 * to catch this and send us the correct antenna explicitely.
 408	 */
 409	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 410	       ant->tx == ANTENNA_SW_DIVERSITY);
 411
 412	rt2400pci_bbp_read(rt2x00dev, 4, &r4);
 413	rt2400pci_bbp_read(rt2x00dev, 1, &r1);
 414
 415	/*
 416	 * Configure the TX antenna.
 417	 */
 418	switch (ant->tx) {
 419	case ANTENNA_HW_DIVERSITY:
 420		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
 421		break;
 422	case ANTENNA_A:
 423		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
 424		break;
 425	case ANTENNA_B:
 426	default:
 427		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
 428		break;
 429	}
 430
 431	/*
 432	 * Configure the RX antenna.
 433	 */
 434	switch (ant->rx) {
 435	case ANTENNA_HW_DIVERSITY:
 436		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
 437		break;
 438	case ANTENNA_A:
 439		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
 440		break;
 441	case ANTENNA_B:
 442	default:
 443		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
 444		break;
 445	}
 446
 447	rt2400pci_bbp_write(rt2x00dev, 4, r4);
 448	rt2400pci_bbp_write(rt2x00dev, 1, r1);
 449}
 450
 451static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
 452				     struct rf_channel *rf)
 453{
 454	/*
 455	 * Switch on tuning bits.
 456	 */
 457	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
 458	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
 459
 460	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
 461	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
 462	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
 463
 464	/*
 465	 * RF2420 chipset don't need any additional actions.
 466	 */
 467	if (rt2x00_rf(rt2x00dev, RF2420))
 468		return;
 469
 470	/*
 471	 * For the RT2421 chipsets we need to write an invalid
 472	 * reference clock rate to activate auto_tune.
 473	 * After that we set the value back to the correct channel.
 474	 */
 475	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
 476	rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
 477	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
 478
 479	msleep(1);
 480
 481	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
 482	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
 483	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
 484
 485	msleep(1);
 486
 487	/*
 488	 * Switch off tuning bits.
 489	 */
 490	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
 491	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
 492
 493	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
 494	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
 495
 496	/*
 497	 * Clear false CRC during channel switch.
 498	 */
 499	rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
 500}
 501
 502static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
 503{
 504	rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
 505}
 506
 507static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 508					 struct rt2x00lib_conf *libconf)
 509{
 510	u32 reg;
 511
 512	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
 513	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
 514			   libconf->conf->long_frame_max_tx_count);
 515	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
 516			   libconf->conf->short_frame_max_tx_count);
 517	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
 518}
 519
 520static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
 521				struct rt2x00lib_conf *libconf)
 522{
 523	enum dev_state state =
 524	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
 525		STATE_SLEEP : STATE_AWAKE;
 526	u32 reg;
 527
 528	if (state == STATE_SLEEP) {
 529		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
 530		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
 531				   (rt2x00dev->beacon_int - 20) * 16);
 532		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
 533				   libconf->conf->listen_interval - 1);
 534
 535		/* We must first disable autowake before it can be enabled */
 536		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 537		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
 538
 539		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
 540		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
 541	} else {
 542		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
 543		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 544		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
 545	}
 546
 547	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 548}
 549
 550static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
 551			     struct rt2x00lib_conf *libconf,
 552			     const unsigned int flags)
 553{
 554	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 555		rt2400pci_config_channel(rt2x00dev, &libconf->rf);
 556	if (flags & IEEE80211_CONF_CHANGE_POWER)
 557		rt2400pci_config_txpower(rt2x00dev,
 558					 libconf->conf->power_level);
 559	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
 560		rt2400pci_config_retry_limit(rt2x00dev, libconf);
 561	if (flags & IEEE80211_CONF_CHANGE_PS)
 562		rt2400pci_config_ps(rt2x00dev, libconf);
 563}
 564
 565static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
 566				const int cw_min, const int cw_max)
 567{
 568	u32 reg;
 569
 570	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
 571	rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
 572	rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
 573	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
 574}
 575
 576/*
 577 * Link tuning
 578 */
 579static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
 580				 struct link_qual *qual)
 581{
 582	u32 reg;
 583	u8 bbp;
 584
 585	/*
 586	 * Update FCS error count from register.
 587	 */
 588	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
 589	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
 590
 591	/*
 592	 * Update False CCA count from register.
 593	 */
 594	rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
 595	qual->false_cca = bbp;
 596}
 597
 598static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
 599				     struct link_qual *qual, u8 vgc_level)
 600{
 601	if (qual->vgc_level_reg != vgc_level) {
 602		rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
 603		qual->vgc_level = vgc_level;
 604		qual->vgc_level_reg = vgc_level;
 605	}
 606}
 607
 608static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
 609				  struct link_qual *qual)
 610{
 611	rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
 612}
 613
 614static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
 615				 struct link_qual *qual, const u32 count)
 616{
 617	/*
 618	 * The link tuner should not run longer then 60 seconds,
 619	 * and should run once every 2 seconds.
 620	 */
 621	if (count > 60 || !(count & 1))
 622		return;
 623
 624	/*
 625	 * Base r13 link tuning on the false cca count.
 626	 */
 627	if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
 628		rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
 629	else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
 630		rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
 631}
 632
 633/*
 634 * Queue handlers.
 635 */
 636static void rt2400pci_start_queue(struct data_queue *queue)
 637{
 638	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 639	u32 reg;
 640
 641	switch (queue->qid) {
 642	case QID_RX:
 643		rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
 644		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
 645		rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
 646		break;
 647	case QID_BEACON:
 648		/*
 649		 * Allow the tbtt tasklet to be scheduled.
 650		 */
 651		tasklet_enable(&rt2x00dev->tbtt_tasklet);
 652
 653		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
 654		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
 655		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
 656		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
 657		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
 658		break;
 659	default:
 660		break;
 661	}
 662}
 663
 664static void rt2400pci_kick_queue(struct data_queue *queue)
 665{
 666	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 667	u32 reg;
 668
 669	switch (queue->qid) {
 670	case QID_AC_VO:
 671		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
 672		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
 673		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
 674		break;
 675	case QID_AC_VI:
 676		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
 677		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
 678		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
 679		break;
 680	case QID_ATIM:
 681		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
 682		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
 683		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
 684		break;
 685	default:
 686		break;
 687	}
 688}
 689
 690static void rt2400pci_stop_queue(struct data_queue *queue)
 691{
 692	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 693	u32 reg;
 694
 695	switch (queue->qid) {
 696	case QID_AC_VO:
 697	case QID_AC_VI:
 698	case QID_ATIM:
 699		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
 700		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
 701		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
 702		break;
 703	case QID_RX:
 704		rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
 705		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
 706		rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
 707		break;
 708	case QID_BEACON:
 709		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
 710		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 711		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 712		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 713		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
 714
 715		/*
 716		 * Wait for possibly running tbtt tasklets.
 717		 */
 718		tasklet_disable(&rt2x00dev->tbtt_tasklet);
 719		break;
 720	default:
 721		break;
 722	}
 723}
 724
 725/*
 726 * Initialization functions.
 727 */
 728static bool rt2400pci_get_entry_state(struct queue_entry *entry)
 729{
 730	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
 731	u32 word;
 732
 733	if (entry->queue->qid == QID_RX) {
 734		rt2x00_desc_read(entry_priv->desc, 0, &word);
 735
 736		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
 737	} else {
 738		rt2x00_desc_read(entry_priv->desc, 0, &word);
 739
 740		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
 741		        rt2x00_get_field32(word, TXD_W0_VALID));
 742	}
 743}
 744
 745static void rt2400pci_clear_entry(struct queue_entry *entry)
 746{
 747	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
 748	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 749	u32 word;
 750
 751	if (entry->queue->qid == QID_RX) {
 752		rt2x00_desc_read(entry_priv->desc, 2, &word);
 753		rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
 754		rt2x00_desc_write(entry_priv->desc, 2, word);
 755
 756		rt2x00_desc_read(entry_priv->desc, 1, &word);
 757		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
 758		rt2x00_desc_write(entry_priv->desc, 1, word);
 759
 760		rt2x00_desc_read(entry_priv->desc, 0, &word);
 761		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
 762		rt2x00_desc_write(entry_priv->desc, 0, word);
 763	} else {
 764		rt2x00_desc_read(entry_priv->desc, 0, &word);
 765		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
 766		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
 767		rt2x00_desc_write(entry_priv->desc, 0, word);
 768	}
 769}
 770
 771static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
 772{
 773	struct queue_entry_priv_pci *entry_priv;
 774	u32 reg;
 775
 776	/*
 777	 * Initialize registers.
 778	 */
 779	rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
 780	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
 781	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
 782	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
 783	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
 784	rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
 785
 786	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
 787	rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
 788	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
 789			   entry_priv->desc_dma);
 790	rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
 791
 792	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
 793	rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
 794	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
 795			   entry_priv->desc_dma);
 796	rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
 797
 798	entry_priv = rt2x00dev->atim->entries[0].priv_data;
 799	rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
 800	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
 801			   entry_priv->desc_dma);
 802	rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
 803
 804	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
 805	rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
 806	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
 807			   entry_priv->desc_dma);
 808	rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
 809
 810	rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
 811	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
 812	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
 813	rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
 814
 815	entry_priv = rt2x00dev->rx->entries[0].priv_data;
 816	rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
 817	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
 818			   entry_priv->desc_dma);
 819	rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
 820
 821	return 0;
 822}
 823
 824static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
 825{
 826	u32 reg;
 827
 828	rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
 829	rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
 830	rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
 831	rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
 832
 833	rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
 834	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
 835	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
 836	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
 837	rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
 838
 839	rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
 840	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
 841			   (rt2x00dev->rx->data_size / 128));
 842	rt2x00pci_register_write(rt2x00dev, CSR9, reg);
 843
 844	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
 845	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 846	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
 847	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 848	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
 849	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
 850	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 851	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
 852	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
 853	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
 854
 855	rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
 856
 857	rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
 858	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
 859	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
 860	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
 861	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
 862	rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
 863
 864	rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
 865	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
 866	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
 867	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
 868	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
 869	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
 870	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
 871	rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
 872
 873	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
 874
 875	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 876		return -EBUSY;
 877
 878	rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
 879	rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
 880
 881	rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
 882	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
 883	rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
 884
 885	rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
 886	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
 887	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
 888	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
 889	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
 890	rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
 891
 892	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
 893	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
 894	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
 895	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
 896	rt2x00pci_register_write(rt2x00dev, CSR1, reg);
 897
 898	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
 899	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
 900	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
 901	rt2x00pci_register_write(rt2x00dev, CSR1, reg);
 902
 903	/*
 904	 * We must clear the FCS and FIFO error count.
 905	 * These registers are cleared on read,
 906	 * so we may pass a useless variable to store the value.
 907	 */
 908	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
 909	rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
 910
 911	return 0;
 912}
 913
 914static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
 915{
 916	unsigned int i;
 917	u8 value;
 918
 919	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
 920		rt2400pci_bbp_read(rt2x00dev, 0, &value);
 921		if ((value != 0xff) && (value != 0x00))
 922			return 0;
 923		udelay(REGISTER_BUSY_DELAY);
 924	}
 925
 926	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
 927	return -EACCES;
 928}
 929
 930static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
 931{
 932	unsigned int i;
 933	u16 eeprom;
 934	u8 reg_id;
 935	u8 value;
 936
 937	if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
 938		return -EACCES;
 939
 940	rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
 941	rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
 942	rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
 943	rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
 944	rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
 945	rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
 946	rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
 947	rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
 948	rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
 949	rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
 950	rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
 951	rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
 952	rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
 953	rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
 954
 955	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
 956		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
 957
 958		if (eeprom != 0xffff && eeprom != 0x0000) {
 959			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
 960			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
 961			rt2400pci_bbp_write(rt2x00dev, reg_id, value);
 962		}
 963	}
 964
 965	return 0;
 966}
 967
 968/*
 969 * Device state switch handlers.
 970 */
 971static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
 972				 enum dev_state state)
 973{
 974	int mask = (state == STATE_RADIO_IRQ_OFF);
 975	u32 reg;
 976	unsigned long flags;
 977
 978	/*
 979	 * When interrupts are being enabled, the interrupt registers
 980	 * should clear the register to assure a clean state.
 981	 */
 982	if (state == STATE_RADIO_IRQ_ON) {
 983		rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
 984		rt2x00pci_register_write(rt2x00dev, CSR7, reg);
 985
 986		/*
 987		 * Enable tasklets.
 988		 */
 989		tasklet_enable(&rt2x00dev->txstatus_tasklet);
 990		tasklet_enable(&rt2x00dev->rxdone_tasklet);
 991	}
 992
 993	/*
 994	 * Only toggle the interrupts bits we are going to use.
 995	 * Non-checked interrupt bits are disabled by default.
 996	 */
 997	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
 998
 999	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1000	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1001	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1002	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1003	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1004	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1005	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1006
1007	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1008
1009	if (state == STATE_RADIO_IRQ_OFF) {
1010		/*
1011		 * Ensure that all tasklets are finished before
1012		 * disabling the interrupts.
1013		 */
1014		tasklet_disable(&rt2x00dev->txstatus_tasklet);
1015		tasklet_disable(&rt2x00dev->rxdone_tasklet);
1016	}
1017}
1018
1019static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1020{
1021	/*
1022	 * Initialize all registers.
1023	 */
1024	if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
1025		     rt2400pci_init_registers(rt2x00dev) ||
1026		     rt2400pci_init_bbp(rt2x00dev)))
1027		return -EIO;
1028
1029	return 0;
1030}
1031
1032static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1033{
1034	/*
1035	 * Disable power
1036	 */
1037	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1038}
1039
1040static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
1041			       enum dev_state state)
1042{
1043	u32 reg, reg2;
1044	unsigned int i;
1045	char put_to_sleep;
1046	char bbp_state;
1047	char rf_state;
1048
1049	put_to_sleep = (state != STATE_AWAKE);
1050
1051	rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1052	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1053	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1054	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1055	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1056	rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1057
1058	/*
1059	 * Device is not guaranteed to be in the requested state yet.
1060	 * We must wait until the register indicates that the
1061	 * device has entered the correct state.
1062	 */
1063	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1064		rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
1065		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1066		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1067		if (bbp_state == state && rf_state == state)
1068			return 0;
1069		rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1070		msleep(10);
1071	}
1072
1073	return -EBUSY;
1074}
1075
1076static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1077				      enum dev_state state)
1078{
1079	int retval = 0;
1080
1081	switch (state) {
1082	case STATE_RADIO_ON:
1083		retval = rt2400pci_enable_radio(rt2x00dev);
1084		break;
1085	case STATE_RADIO_OFF:
1086		rt2400pci_disable_radio(rt2x00dev);
1087		break;
1088	case STATE_RADIO_IRQ_ON:
1089	case STATE_RADIO_IRQ_OFF:
1090		rt2400pci_toggle_irq(rt2x00dev, state);
1091		break;
1092	case STATE_DEEP_SLEEP:
1093	case STATE_SLEEP:
1094	case STATE_STANDBY:
1095	case STATE_AWAKE:
1096		retval = rt2400pci_set_state(rt2x00dev, state);
1097		break;
1098	default:
1099		retval = -ENOTSUPP;
1100		break;
1101	}
1102
1103	if (unlikely(retval))
1104		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1105		      state, retval);
1106
1107	return retval;
1108}
1109
1110/*
1111 * TX descriptor initialization
1112 */
1113static void rt2400pci_write_tx_desc(struct queue_entry *entry,
1114				    struct txentry_desc *txdesc)
1115{
1116	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1117	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1118	__le32 *txd = entry_priv->desc;
1119	u32 word;
1120
1121	/*
1122	 * Start writing the descriptor words.
1123	 */
1124	rt2x00_desc_read(txd, 1, &word);
1125	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1126	rt2x00_desc_write(txd, 1, word);
1127
1128	rt2x00_desc_read(txd, 2, &word);
1129	rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1130	rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1131	rt2x00_desc_write(txd, 2, word);
1132
1133	rt2x00_desc_read(txd, 3, &word);
1134	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1135	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1136	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1137	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1138	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1139	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1140	rt2x00_desc_write(txd, 3, word);
1141
1142	rt2x00_desc_read(txd, 4, &word);
1143	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW,
1144			   txdesc->u.plcp.length_low);
1145	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1146	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1147	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH,
1148			   txdesc->u.plcp.length_high);
1149	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1150	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1151	rt2x00_desc_write(txd, 4, word);
1152
1153	/*
1154	 * Writing TXD word 0 must the last to prevent a race condition with
1155	 * the device, whereby the device may take hold of the TXD before we
1156	 * finished updating it.
1157	 */
1158	rt2x00_desc_read(txd, 0, &word);
1159	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1160	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1161	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1162			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1163	rt2x00_set_field32(&word, TXD_W0_ACK,
1164			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1165	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1166			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1167	rt2x00_set_field32(&word, TXD_W0_RTS,
1168			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1169	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1170	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1171			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1172	rt2x00_desc_write(txd, 0, word);
1173
1174	/*
1175	 * Register descriptor details in skb frame descriptor.
1176	 */
1177	skbdesc->desc = txd;
1178	skbdesc->desc_len = TXD_DESC_SIZE;
1179}
1180
1181/*
1182 * TX data initialization
1183 */
1184static void rt2400pci_write_beacon(struct queue_entry *entry,
1185				   struct txentry_desc *txdesc)
1186{
1187	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1188	u32 reg;
1189
1190	/*
1191	 * Disable beaconing while we are reloading the beacon data,
1192	 * otherwise we might be sending out invalid data.
1193	 */
1194	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1195	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1196	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1197
1198	rt2x00queue_map_txskb(entry);
1199
1200	/*
1201	 * Write the TX descriptor for the beacon.
1202	 */
1203	rt2400pci_write_tx_desc(entry, txdesc);
1204
1205	/*
1206	 * Dump beacon to userspace through debugfs.
1207	 */
1208	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1209
1210	/*
1211	 * Enable beaconing again.
1212	 */
1213	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1214	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1215}
1216
1217/*
1218 * RX control handlers
1219 */
1220static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1221				  struct rxdone_entry_desc *rxdesc)
1222{
1223	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1224	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1225	u32 word0;
1226	u32 word2;
1227	u32 word3;
1228	u32 word4;
1229	u64 tsf;
1230	u32 rx_low;
1231	u32 rx_high;
1232
1233	rt2x00_desc_read(entry_priv->desc, 0, &word0);
1234	rt2x00_desc_read(entry_priv->desc, 2, &word2);
1235	rt2x00_desc_read(entry_priv->desc, 3, &word3);
1236	rt2x00_desc_read(entry_priv->desc, 4, &word4);
1237
1238	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1239		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1240	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1241		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1242
1243	/*
1244	 * We only get the lower 32bits from the timestamp,
1245	 * to get the full 64bits we must complement it with
1246	 * the timestamp from get_tsf().
1247	 * Note that when a wraparound of the lower 32bits
1248	 * has occurred between the frame arrival and the get_tsf()
1249	 * call, we must decrease the higher 32bits with 1 to get
1250	 * to correct value.
1251	 */
1252	tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
1253	rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1254	rx_high = upper_32_bits(tsf);
1255
1256	if ((u32)tsf <= rx_low)
1257		rx_high--;
1258
1259	/*
1260	 * Obtain the status about this packet.
1261	 * The signal is the PLCP value, and needs to be stripped
1262	 * of the preamble bit (0x08).
1263	 */
1264	rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1265	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1266	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1267	    entry->queue->rt2x00dev->rssi_offset;
1268	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1269
1270	rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1271	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1272		rxdesc->dev_flags |= RXDONE_MY_BSS;
1273}
1274
1275/*
1276 * Interrupt functions.
1277 */
1278static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1279			     const enum data_queue_qid queue_idx)
1280{
1281	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1282	struct queue_entry_priv_pci *entry_priv;
1283	struct queue_entry *entry;
1284	struct txdone_entry_desc txdesc;
1285	u32 word;
1286
1287	while (!rt2x00queue_empty(queue)) {
1288		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1289		entry_priv = entry->priv_data;
1290		rt2x00_desc_read(entry_priv->desc, 0, &word);
1291
1292		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1293		    !rt2x00_get_field32(word, TXD_W0_VALID))
1294			break;
1295
1296		/*
1297		 * Obtain the status about this packet.
1298		 */
1299		txdesc.flags = 0;
1300		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1301		case 0: /* Success */
1302		case 1: /* Success with retry */
1303			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
1304			break;
1305		case 2: /* Failure, excessive retries */
1306			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1307			/* Don't break, this is a failed frame! */
1308		default: /* Failure */
1309			__set_bit(TXDONE_FAILURE, &txdesc.flags);
1310		}
1311		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1312
1313		rt2x00lib_txdone(entry, &txdesc);
1314	}
1315}
1316
1317static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1318					      struct rt2x00_field32 irq_field)
1319{
1320	u32 reg;
1321
1322	/*
1323	 * Enable a single interrupt. The interrupt mask register
1324	 * access needs locking.
1325	 */
1326	spin_lock_irq(&rt2x00dev->irqmask_lock);
1327
1328	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1329	rt2x00_set_field32(&reg, irq_field, 0);
1330	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1331
1332	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1333}
1334
1335static void rt2400pci_txstatus_tasklet(unsigned long data)
1336{
1337	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1338	u32 reg;
1339
1340	/*
1341	 * Handle all tx queues.
1342	 */
1343	rt2400pci_txdone(rt2x00dev, QID_ATIM);
1344	rt2400pci_txdone(rt2x00dev, QID_AC_VO);
1345	rt2400pci_txdone(rt2x00dev, QID_AC_VI);
1346
1347	/*
1348	 * Enable all TXDONE interrupts again.
1349	 */
1350	spin_lock_irq(&rt2x00dev->irqmask_lock);
1351
1352	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1353	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1354	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1355	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1356	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1357
1358	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1359}
1360
1361static void rt2400pci_tbtt_tasklet(unsigned long data)
1362{
1363	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1364	rt2x00lib_beacondone(rt2x00dev);
1365	rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1366}
1367
1368static void rt2400pci_rxdone_tasklet(unsigned long data)
1369{
1370	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1371	if (rt2x00pci_rxdone(rt2x00dev))
1372		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1373	else
1374		rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1375}
1376
1377static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1378{
1379	struct rt2x00_dev *rt2x00dev = dev_instance;
1380	u32 reg, mask;
1381
1382	/*
1383	 * Get the interrupt sources & saved to local variable.
1384	 * Write register value back to clear pending interrupts.
1385	 */
1386	rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1387	rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1388
1389	if (!reg)
1390		return IRQ_NONE;
1391
1392	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1393		return IRQ_HANDLED;
1394
1395	mask = reg;
1396
1397	/*
1398	 * Schedule tasklets for interrupt handling.
1399	 */
1400	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1401		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1402
1403	if (rt2x00_get_field32(reg, CSR7_RXDONE))
1404		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1405
1406	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1407	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1408	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1409		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1410		/*
1411		 * Mask out all txdone interrupts.
1412		 */
1413		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1414		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1415		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1416	}
1417
1418	/*
1419	 * Disable all interrupts for which a tasklet was scheduled right now,
1420	 * the tasklet will reenable the appropriate interrupts.
1421	 */
1422	spin_lock(&rt2x00dev->irqmask_lock);
1423
1424	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1425	reg |= mask;
1426	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1427
1428	spin_unlock(&rt2x00dev->irqmask_lock);
1429
1430
1431
1432	return IRQ_HANDLED;
1433}
1434
1435/*
1436 * Device probe functions.
1437 */
1438static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1439{
1440	struct eeprom_93cx6 eeprom;
1441	u32 reg;
1442	u16 word;
1443	u8 *mac;
1444
1445	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1446
1447	eeprom.data = rt2x00dev;
1448	eeprom.register_read = rt2400pci_eepromregister_read;
1449	eeprom.register_write = rt2400pci_eepromregister_write;
1450	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1451	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1452	eeprom.reg_data_in = 0;
1453	eeprom.reg_data_out = 0;
1454	eeprom.reg_data_clock = 0;
1455	eeprom.reg_chip_select = 0;
1456
1457	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1458			       EEPROM_SIZE / sizeof(u16));
1459
1460	/*
1461	 * Start validation of the data that has been read.
1462	 */
1463	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1464	if (!is_valid_ether_addr(mac)) {
1465		random_ether_addr(mac);
1466		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1467	}
1468
1469	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1470	if (word == 0xffff) {
1471		ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1472		return -EINVAL;
1473	}
1474
1475	return 0;
1476}
1477
1478static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1479{
1480	u32 reg;
1481	u16 value;
1482	u16 eeprom;
1483
1484	/*
1485	 * Read EEPROM word for configuration.
1486	 */
1487	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1488
1489	/*
1490	 * Identify RF chipset.
1491	 */
1492	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1493	rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1494	rt2x00_set_chip(rt2x00dev, RT2460, value,
1495			rt2x00_get_field32(reg, CSR0_REVISION));
1496
1497	if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1498		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1499		return -ENODEV;
1500	}
1501
1502	/*
1503	 * Identify default antenna configuration.
1504	 */
1505	rt2x00dev->default_ant.tx =
1506	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1507	rt2x00dev->default_ant.rx =
1508	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1509
1510	/*
1511	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1512	 * I am not 100% sure about this, but the legacy drivers do not
1513	 * indicate antenna swapping in software is required when
1514	 * diversity is enabled.
1515	 */
1516	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1517		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1518	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1519		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1520
1521	/*
1522	 * Store led mode, for correct led behaviour.
1523	 */
1524#ifdef CONFIG_RT2X00_LIB_LEDS
1525	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1526
1527	rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1528	if (value == LED_MODE_TXRX_ACTIVITY ||
1529	    value == LED_MODE_DEFAULT ||
1530	    value == LED_MODE_ASUS)
1531		rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1532				   LED_TYPE_ACTIVITY);
1533#endif /* CONFIG_RT2X00_LIB_LEDS */
1534
1535	/*
1536	 * Detect if this device has an hardware controlled radio.
1537	 */
1538	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1539		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1540
1541	/*
1542	 * Check if the BBP tuning should be enabled.
1543	 */
1544	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1545		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1546
1547	return 0;
1548}
1549
1550/*
1551 * RF value list for RF2420 & RF2421
1552 * Supports: 2.4 GHz
1553 */
1554static const struct rf_channel rf_vals_b[] = {
1555	{ 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
1556	{ 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
1557	{ 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
1558	{ 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
1559	{ 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
1560	{ 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
1561	{ 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
1562	{ 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
1563	{ 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
1564	{ 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1565	{ 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1566	{ 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1567	{ 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1568	{ 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1569};
1570
1571static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1572{
1573	struct hw_mode_spec *spec = &rt2x00dev->spec;
1574	struct channel_info *info;
1575	char *tx_power;
1576	unsigned int i;
1577
1578	/*
1579	 * Initialize all hw fields.
1580	 */
1581	rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1582			       IEEE80211_HW_SIGNAL_DBM |
1583			       IEEE80211_HW_SUPPORTS_PS |
1584			       IEEE80211_HW_PS_NULLFUNC_STACK;
1585
1586	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1587	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1588				rt2x00_eeprom_addr(rt2x00dev,
1589						   EEPROM_MAC_ADDR_0));
1590
1591	/*
1592	 * Initialize hw_mode information.
1593	 */
1594	spec->supported_bands = SUPPORT_BAND_2GHZ;
1595	spec->supported_rates = SUPPORT_RATE_CCK;
1596
1597	spec->num_channels = ARRAY_SIZE(rf_vals_b);
1598	spec->channels = rf_vals_b;
1599
1600	/*
1601	 * Create channel information array
1602	 */
1603	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1604	if (!info)
1605		return -ENOMEM;
1606
1607	spec->channels_info = info;
1608
1609	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1610	for (i = 0; i < 14; i++) {
1611		info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
1612		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1613	}
1614
1615	return 0;
1616}
1617
1618static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1619{
1620	int retval;
1621
1622	/*
1623	 * Allocate eeprom data.
1624	 */
1625	retval = rt2400pci_validate_eeprom(rt2x00dev);
1626	if (retval)
1627		return retval;
1628
1629	retval = rt2400pci_init_eeprom(rt2x00dev);
1630	if (retval)
1631		return retval;
1632
1633	/*
1634	 * Initialize hw specifications.
1635	 */
1636	retval = rt2400pci_probe_hw_mode(rt2x00dev);
1637	if (retval)
1638		return retval;
1639
1640	/*
1641	 * This device requires the atim queue and DMA-mapped skbs.
1642	 */
1643	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1644	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1645	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1646
1647	/*
1648	 * Set the rssi offset.
1649	 */
1650	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1651
1652	return 0;
1653}
1654
1655/*
1656 * IEEE80211 stack callback functions.
1657 */
1658static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1659			     const struct ieee80211_tx_queue_params *params)
1660{
1661	struct rt2x00_dev *rt2x00dev = hw->priv;
1662
1663	/*
1664	 * We don't support variating cw_min and cw_max variables
1665	 * per queue. So by default we only configure the TX queue,
1666	 * and ignore all other configurations.
1667	 */
1668	if (queue != 0)
1669		return -EINVAL;
1670
1671	if (rt2x00mac_conf_tx(hw, queue, params))
1672		return -EINVAL;
1673
1674	/*
1675	 * Write configuration to register.
1676	 */
1677	rt2400pci_config_cw(rt2x00dev,
1678			    rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1679
1680	return 0;
1681}
1682
1683static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1684{
1685	struct rt2x00_dev *rt2x00dev = hw->priv;
1686	u64 tsf;
1687	u32 reg;
1688
1689	rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1690	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1691	rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1692	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1693
1694	return tsf;
1695}
1696
1697static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1698{
1699	struct rt2x00_dev *rt2x00dev = hw->priv;
1700	u32 reg;
1701
1702	rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1703	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1704}
1705
1706static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1707	.tx			= rt2x00mac_tx,
1708	.start			= rt2x00mac_start,
1709	.stop			= rt2x00mac_stop,
1710	.add_interface		= rt2x00mac_add_interface,
1711	.remove_interface	= rt2x00mac_remove_interface,
1712	.config			= rt2x00mac_config,
1713	.configure_filter	= rt2x00mac_configure_filter,
1714	.sw_scan_start		= rt2x00mac_sw_scan_start,
1715	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1716	.get_stats		= rt2x00mac_get_stats,
1717	.bss_info_changed	= rt2x00mac_bss_info_changed,
1718	.conf_tx		= rt2400pci_conf_tx,
1719	.get_tsf		= rt2400pci_get_tsf,
1720	.tx_last_beacon		= rt2400pci_tx_last_beacon,
1721	.rfkill_poll		= rt2x00mac_rfkill_poll,
1722	.flush			= rt2x00mac_flush,
1723	.set_antenna		= rt2x00mac_set_antenna,
1724	.get_antenna		= rt2x00mac_get_antenna,
1725	.get_ringparam		= rt2x00mac_get_ringparam,
1726	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1727};
1728
1729static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1730	.irq_handler		= rt2400pci_interrupt,
1731	.txstatus_tasklet	= rt2400pci_txstatus_tasklet,
1732	.tbtt_tasklet		= rt2400pci_tbtt_tasklet,
1733	.rxdone_tasklet		= rt2400pci_rxdone_tasklet,
1734	.probe_hw		= rt2400pci_probe_hw,
1735	.initialize		= rt2x00pci_initialize,
1736	.uninitialize		= rt2x00pci_uninitialize,
1737	.get_entry_state	= rt2400pci_get_entry_state,
1738	.clear_entry		= rt2400pci_clear_entry,
1739	.set_device_state	= rt2400pci_set_device_state,
1740	.rfkill_poll		= rt2400pci_rfkill_poll,
1741	.link_stats		= rt2400pci_link_stats,
1742	.reset_tuner		= rt2400pci_reset_tuner,
1743	.link_tuner		= rt2400pci_link_tuner,
1744	.start_queue		= rt2400pci_start_queue,
1745	.kick_queue		= rt2400pci_kick_queue,
1746	.stop_queue		= rt2400pci_stop_queue,
1747	.flush_queue		= rt2x00pci_flush_queue,
1748	.write_tx_desc		= rt2400pci_write_tx_desc,
1749	.write_beacon		= rt2400pci_write_beacon,
1750	.fill_rxdone		= rt2400pci_fill_rxdone,
1751	.config_filter		= rt2400pci_config_filter,
1752	.config_intf		= rt2400pci_config_intf,
1753	.config_erp		= rt2400pci_config_erp,
1754	.config_ant		= rt2400pci_config_ant,
1755	.config			= rt2400pci_config,
1756};
1757
1758static const struct data_queue_desc rt2400pci_queue_rx = {
1759	.entry_num		= 24,
1760	.data_size		= DATA_FRAME_SIZE,
1761	.desc_size		= RXD_DESC_SIZE,
1762	.priv_size		= sizeof(struct queue_entry_priv_pci),
1763};
1764
1765static const struct data_queue_desc rt2400pci_queue_tx = {
1766	.entry_num		= 24,
1767	.data_size		= DATA_FRAME_SIZE,
1768	.desc_size		= TXD_DESC_SIZE,
1769	.priv_size		= sizeof(struct queue_entry_priv_pci),
1770};
1771
1772static const struct data_queue_desc rt2400pci_queue_bcn = {
1773	.entry_num		= 1,
1774	.data_size		= MGMT_FRAME_SIZE,
1775	.desc_size		= TXD_DESC_SIZE,
1776	.priv_size		= sizeof(struct queue_entry_priv_pci),
1777};
1778
1779static const struct data_queue_desc rt2400pci_queue_atim = {
1780	.entry_num		= 8,
1781	.data_size		= DATA_FRAME_SIZE,
1782	.desc_size		= TXD_DESC_SIZE,
1783	.priv_size		= sizeof(struct queue_entry_priv_pci),
1784};
1785
1786static const struct rt2x00_ops rt2400pci_ops = {
1787	.name			= KBUILD_MODNAME,
1788	.max_sta_intf		= 1,
1789	.max_ap_intf		= 1,
1790	.eeprom_size		= EEPROM_SIZE,
1791	.rf_size		= RF_SIZE,
1792	.tx_queues		= NUM_TX_QUEUES,
1793	.extra_tx_headroom	= 0,
1794	.rx			= &rt2400pci_queue_rx,
1795	.tx			= &rt2400pci_queue_tx,
1796	.bcn			= &rt2400pci_queue_bcn,
1797	.atim			= &rt2400pci_queue_atim,
1798	.lib			= &rt2400pci_rt2x00_ops,
1799	.hw			= &rt2400pci_mac80211_ops,
1800#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1801	.debugfs		= &rt2400pci_rt2x00debug,
1802#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1803};
1804
1805/*
1806 * RT2400pci module information.
1807 */
1808static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
1809	{ PCI_DEVICE(0x1814, 0x0101) },
1810	{ 0, }
1811};
1812
1813
1814MODULE_AUTHOR(DRV_PROJECT);
1815MODULE_VERSION(DRV_VERSION);
1816MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1817MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1818MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1819MODULE_LICENSE("GPL");
1820
1821static int rt2400pci_probe(struct pci_dev *pci_dev,
1822			   const struct pci_device_id *id)
1823{
1824	return rt2x00pci_probe(pci_dev, &rt2400pci_ops);
1825}
1826
1827static struct pci_driver rt2400pci_driver = {
1828	.name		= KBUILD_MODNAME,
1829	.id_table	= rt2400pci_device_table,
1830	.probe		= rt2400pci_probe,
1831	.remove		= __devexit_p(rt2x00pci_remove),
1832	.suspend	= rt2x00pci_suspend,
1833	.resume		= rt2x00pci_resume,
1834};
1835
1836static int __init rt2400pci_init(void)
1837{
1838	return pci_register_driver(&rt2400pci_driver);
1839}
1840
1841static void __exit rt2400pci_exit(void)
1842{
1843	pci_unregister_driver(&rt2400pci_driver);
1844}
1845
1846module_init(rt2400pci_init);
1847module_exit(rt2400pci_exit);