Loading...
Note: File does not exist in v3.1.
1/*
2 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/dma-mapping.h>
18#include "mt76.h"
19#include "dma.h"
20
21#define DMA_DUMMY_TXWI ((void *) ~0)
22
23static int
24mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q)
25{
26 int size;
27 int i;
28
29 spin_lock_init(&q->lock);
30 INIT_LIST_HEAD(&q->swq);
31
32 size = q->ndesc * sizeof(struct mt76_desc);
33 q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
34 if (!q->desc)
35 return -ENOMEM;
36
37 size = q->ndesc * sizeof(*q->entry);
38 q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
39 if (!q->entry)
40 return -ENOMEM;
41
42 /* clear descriptors */
43 for (i = 0; i < q->ndesc; i++)
44 q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
45
46 iowrite32(q->desc_dma, &q->regs->desc_base);
47 iowrite32(0, &q->regs->cpu_idx);
48 iowrite32(0, &q->regs->dma_idx);
49 iowrite32(q->ndesc, &q->regs->ring_size);
50
51 return 0;
52}
53
54static int
55mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
56 struct mt76_queue_buf *buf, int nbufs, u32 info,
57 struct sk_buff *skb, void *txwi)
58{
59 struct mt76_desc *desc;
60 u32 ctrl;
61 int i, idx = -1;
62
63 if (txwi)
64 q->entry[q->head].txwi = DMA_DUMMY_TXWI;
65
66 for (i = 0; i < nbufs; i += 2, buf += 2) {
67 u32 buf0 = buf[0].addr, buf1 = 0;
68
69 ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
70 if (i < nbufs - 1) {
71 buf1 = buf[1].addr;
72 ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
73 }
74
75 if (i == nbufs - 1)
76 ctrl |= MT_DMA_CTL_LAST_SEC0;
77 else if (i == nbufs - 2)
78 ctrl |= MT_DMA_CTL_LAST_SEC1;
79
80 idx = q->head;
81 q->head = (q->head + 1) % q->ndesc;
82
83 desc = &q->desc[idx];
84
85 WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
86 WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
87 WRITE_ONCE(desc->info, cpu_to_le32(info));
88 WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));
89
90 q->queued++;
91 }
92
93 q->entry[idx].txwi = txwi;
94 q->entry[idx].skb = skb;
95
96 return idx;
97}
98
99static void
100mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
101 struct mt76_queue_entry *prev_e)
102{
103 struct mt76_queue_entry *e = &q->entry[idx];
104 __le32 __ctrl = READ_ONCE(q->desc[idx].ctrl);
105 u32 ctrl = le32_to_cpu(__ctrl);
106
107 if (!e->txwi || !e->skb) {
108 __le32 addr = READ_ONCE(q->desc[idx].buf0);
109 u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl);
110
111 dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
112 DMA_TO_DEVICE);
113 }
114
115 if (!(ctrl & MT_DMA_CTL_LAST_SEC0)) {
116 __le32 addr = READ_ONCE(q->desc[idx].buf1);
117 u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN1, ctrl);
118
119 dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
120 DMA_TO_DEVICE);
121 }
122
123 if (e->txwi == DMA_DUMMY_TXWI)
124 e->txwi = NULL;
125
126 *prev_e = *e;
127 memset(e, 0, sizeof(*e));
128}
129
130static void
131mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
132{
133 q->head = ioread32(&q->regs->dma_idx);
134 q->tail = q->head;
135 iowrite32(q->head, &q->regs->cpu_idx);
136}
137
138static void
139mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)
140{
141 struct mt76_queue *q = &dev->q_tx[qid];
142 struct mt76_queue_entry entry;
143 bool wake = false;
144 int last;
145
146 if (!q->ndesc)
147 return;
148
149 spin_lock_bh(&q->lock);
150 if (flush)
151 last = -1;
152 else
153 last = ioread32(&q->regs->dma_idx);
154
155 while (q->queued && q->tail != last) {
156 mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
157 if (entry.schedule)
158 q->swq_queued--;
159
160 if (entry.skb)
161 dev->drv->tx_complete_skb(dev, q, &entry, flush);
162
163 if (entry.txwi) {
164 mt76_put_txwi(dev, entry.txwi);
165 wake = true;
166 }
167
168 q->tail = (q->tail + 1) % q->ndesc;
169 q->queued--;
170
171 if (!flush && q->tail == last)
172 last = ioread32(&q->regs->dma_idx);
173 }
174
175 if (!flush)
176 mt76_txq_schedule(dev, q);
177 else
178 mt76_dma_sync_idx(dev, q);
179
180 wake = wake && qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8;
181 spin_unlock_bh(&q->lock);
182
183 if (wake)
184 ieee80211_wake_queue(dev->hw, qid);
185}
186
187static void *
188mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
189 int *len, u32 *info, bool *more)
190{
191 struct mt76_queue_entry *e = &q->entry[idx];
192 struct mt76_desc *desc = &q->desc[idx];
193 dma_addr_t buf_addr;
194 void *buf = e->buf;
195 int buf_len = SKB_WITH_OVERHEAD(q->buf_size);
196
197 buf_addr = le32_to_cpu(READ_ONCE(desc->buf0));
198 if (len) {
199 u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
200 *len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
201 *more = !(ctl & MT_DMA_CTL_LAST_SEC0);
202 }
203
204 if (info)
205 *info = le32_to_cpu(desc->info);
206
207 dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
208 e->buf = NULL;
209
210 return buf;
211}
212
213static void *
214mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
215 int *len, u32 *info, bool *more)
216{
217 int idx = q->tail;
218
219 *more = false;
220 if (!q->queued)
221 return NULL;
222
223 if (!flush && !(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
224 return NULL;
225
226 q->tail = (q->tail + 1) % q->ndesc;
227 q->queued--;
228
229 return mt76_dma_get_buf(dev, q, idx, len, info, more);
230}
231
232static void
233mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
234{
235 iowrite32(q->head, &q->regs->cpu_idx);
236}
237
238static int
239mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q, bool napi)
240{
241 dma_addr_t addr;
242 void *buf;
243 int frames = 0;
244 int len = SKB_WITH_OVERHEAD(q->buf_size);
245 int offset = q->buf_offset;
246 int idx;
247 void *(*alloc)(unsigned int fragsz);
248
249 if (napi)
250 alloc = napi_alloc_frag;
251 else
252 alloc = netdev_alloc_frag;
253
254 spin_lock_bh(&q->lock);
255
256 while (q->queued < q->ndesc - 1) {
257 struct mt76_queue_buf qbuf;
258
259 buf = alloc(q->buf_size);
260 if (!buf)
261 break;
262
263 addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
264 if (dma_mapping_error(dev->dev, addr)) {
265 skb_free_frag(buf);
266 break;
267 }
268
269 qbuf.addr = addr + offset;
270 qbuf.len = len - offset;
271 idx = mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
272 frames++;
273 }
274
275 if (frames)
276 mt76_dma_kick_queue(dev, q);
277
278 spin_unlock_bh(&q->lock);
279
280 return frames;
281}
282
283static void
284mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
285{
286 void *buf;
287 bool more;
288
289 spin_lock_bh(&q->lock);
290 do {
291 buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
292 if (!buf)
293 break;
294
295 skb_free_frag(buf);
296 } while (1);
297 spin_unlock_bh(&q->lock);
298}
299
300static void
301mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
302{
303 struct mt76_queue *q = &dev->q_rx[qid];
304 int i;
305
306 for (i = 0; i < q->ndesc; i++)
307 q->desc[i].ctrl &= ~cpu_to_le32(MT_DMA_CTL_DMA_DONE);
308
309 mt76_dma_rx_cleanup(dev, q);
310 mt76_dma_sync_idx(dev, q);
311 mt76_dma_rx_fill(dev, q, false);
312}
313
314static void
315mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
316 int len, bool more)
317{
318 struct page *page = virt_to_head_page(data);
319 int offset = data - page_address(page);
320 struct sk_buff *skb = q->rx_head;
321
322 offset += q->buf_offset;
323 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, offset, len,
324 q->buf_size);
325
326 if (more)
327 return;
328
329 q->rx_head = NULL;
330 dev->drv->rx_skb(dev, q - dev->q_rx, skb);
331}
332
333static int
334mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
335{
336 struct sk_buff *skb;
337 unsigned char *data;
338 int len;
339 int done = 0;
340 bool more;
341
342 while (done < budget) {
343 u32 info;
344
345 data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
346 if (!data)
347 break;
348
349 if (q->rx_head) {
350 mt76_add_fragment(dev, q, data, len, more);
351 continue;
352 }
353
354 skb = build_skb(data, q->buf_size);
355 if (!skb) {
356 skb_free_frag(data);
357 continue;
358 }
359
360 skb_reserve(skb, q->buf_offset);
361 if (skb->tail + len > skb->end) {
362 dev_kfree_skb(skb);
363 continue;
364 }
365
366 if (q == &dev->q_rx[MT_RXQ_MCU]) {
367 u32 *rxfce = (u32 *) skb->cb;
368 *rxfce = info;
369 }
370
371 __skb_put(skb, len);
372 done++;
373
374 if (more) {
375 q->rx_head = skb;
376 continue;
377 }
378
379 dev->drv->rx_skb(dev, q - dev->q_rx, skb);
380 }
381
382 mt76_dma_rx_fill(dev, q, true);
383 return done;
384}
385
386static int
387mt76_dma_rx_poll(struct napi_struct *napi, int budget)
388{
389 struct mt76_dev *dev;
390 int qid, done = 0, cur;
391
392 dev = container_of(napi->dev, struct mt76_dev, napi_dev);
393 qid = napi - dev->napi;
394
395 rcu_read_lock();
396
397 do {
398 cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
399 mt76_rx_poll_complete(dev, qid);
400 done += cur;
401 } while (cur && done < budget);
402
403 rcu_read_unlock();
404
405 if (done < budget) {
406 napi_complete(napi);
407 dev->drv->rx_poll_complete(dev, qid);
408 }
409
410 return done;
411}
412
413static int
414mt76_dma_init(struct mt76_dev *dev)
415{
416 int i;
417
418 init_dummy_netdev(&dev->napi_dev);
419
420 for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
421 netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll,
422 64);
423 mt76_dma_rx_fill(dev, &dev->q_rx[i], false);
424 skb_queue_head_init(&dev->rx_skb[i]);
425 napi_enable(&dev->napi[i]);
426 }
427
428 return 0;
429}
430
431static const struct mt76_queue_ops mt76_dma_ops = {
432 .init = mt76_dma_init,
433 .alloc = mt76_dma_alloc_queue,
434 .add_buf = mt76_dma_add_buf,
435 .tx_cleanup = mt76_dma_tx_cleanup,
436 .rx_reset = mt76_dma_rx_reset,
437 .kick = mt76_dma_kick_queue,
438};
439
440int mt76_dma_attach(struct mt76_dev *dev)
441{
442 dev->queue_ops = &mt76_dma_ops;
443 return 0;
444}
445EXPORT_SYMBOL_GPL(mt76_dma_attach);
446
447void mt76_dma_cleanup(struct mt76_dev *dev)
448{
449 int i;
450
451 for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++)
452 mt76_dma_tx_cleanup(dev, i, true);
453
454 for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
455 netif_napi_del(&dev->napi[i]);
456 mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
457 }
458}
459EXPORT_SYMBOL_GPL(mt76_dma_cleanup);