Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <linux/io.h>
  18#include <linux/slab.h>
 
 
 
 
 
  19#include <asm/unaligned.h>
  20
  21#include "hw.h"
  22#include "hw-ops.h"
  23#include "rc.h"
  24#include "ar9003_mac.h"
 
 
 
  25
  26static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  27
  28MODULE_AUTHOR("Atheros Communications");
  29MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  30MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  31MODULE_LICENSE("Dual BSD/GPL");
  32
  33static int __init ath9k_init(void)
  34{
  35	return 0;
  36}
  37module_init(ath9k_init);
  38
  39static void __exit ath9k_exit(void)
  40{
  41	return;
  42}
  43module_exit(ath9k_exit);
  44
  45/* Private hardware callbacks */
  46
  47static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  48{
  49	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  50}
  51
  52static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  53{
  54	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  55}
  56
  57static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  58					struct ath9k_channel *chan)
  59{
  60	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  61}
  62
  63static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  64{
  65	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  66		return;
  67
  68	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  69}
  70
  71static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  72{
  73	/* You will not have this callback if using the old ANI */
  74	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  75		return;
  76
  77	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  78}
  79
  80/********************/
  81/* Helper Functions */
  82/********************/
  83
  84static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  85{
  86	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  87	struct ath_common *common = ath9k_hw_common(ah);
 
  88	unsigned int clockrate;
  89
  90	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  91	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  92		clockrate = 117;
  93	else if (!ah->curchan) /* should really check for CCK instead */
  94		clockrate = ATH9K_CLOCK_RATE_CCK;
  95	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  96		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  97	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  98		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  99	else
 100		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
 101
 102	if (conf_is_ht40(conf))
 103		clockrate *= 2;
 104
 105	if (ah->curchan) {
 106		if (IS_CHAN_HALF_RATE(ah->curchan))
 107			clockrate /= 2;
 108		if (IS_CHAN_QUARTER_RATE(ah->curchan))
 109			clockrate /= 4;
 110	}
 111
 112	common->clockrate = clockrate;
 113}
 114
 115static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
 116{
 117	struct ath_common *common = ath9k_hw_common(ah);
 118
 119	return usecs * common->clockrate;
 120}
 121
 122bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
 123{
 124	int i;
 125
 126	BUG_ON(timeout < AH_TIME_QUANTUM);
 127
 128	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
 129		if ((REG_READ(ah, reg) & mask) == val)
 130			return true;
 131
 132		udelay(AH_TIME_QUANTUM);
 133	}
 134
 135	ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
 136		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
 137		timeout, reg, REG_READ(ah, reg), mask, val);
 138
 139	return false;
 140}
 141EXPORT_SYMBOL(ath9k_hw_wait);
 142
 143void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
 
 
 
 
 
 
 
 
 
 
 
 
 
 144			  int column, unsigned int *writecnt)
 145{
 146	int r;
 147
 148	ENABLE_REGWRITE_BUFFER(ah);
 149	for (r = 0; r < array->ia_rows; r++) {
 150		REG_WRITE(ah, INI_RA(array, r, 0),
 151			  INI_RA(array, r, column));
 152		DO_DELAY(*writecnt);
 153	}
 154	REGWRITE_BUFFER_FLUSH(ah);
 155}
 156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157u32 ath9k_hw_reverse_bits(u32 val, u32 n)
 158{
 159	u32 retval;
 160	int i;
 161
 162	for (i = 0, retval = 0; i < n; i++) {
 163		retval = (retval << 1) | (val & 1);
 164		val >>= 1;
 165	}
 166	return retval;
 167}
 168
 169u16 ath9k_hw_computetxtime(struct ath_hw *ah,
 170			   u8 phy, int kbps,
 171			   u32 frameLen, u16 rateix,
 172			   bool shortPreamble)
 173{
 174	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
 175
 176	if (kbps == 0)
 177		return 0;
 178
 179	switch (phy) {
 180	case WLAN_RC_PHY_CCK:
 181		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
 182		if (shortPreamble)
 183			phyTime >>= 1;
 184		numBits = frameLen << 3;
 185		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
 186		break;
 187	case WLAN_RC_PHY_OFDM:
 188		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
 189			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
 
 190			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 191			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 192			txTime = OFDM_SIFS_TIME_QUARTER
 193				+ OFDM_PREAMBLE_TIME_QUARTER
 194				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
 195		} else if (ah->curchan &&
 196			   IS_CHAN_HALF_RATE(ah->curchan)) {
 197			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
 
 198			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 199			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 200			txTime = OFDM_SIFS_TIME_HALF +
 201				OFDM_PREAMBLE_TIME_HALF
 202				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
 203		} else {
 204			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
 205			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 206			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 207			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
 208				+ (numSymbols * OFDM_SYMBOL_TIME);
 209		}
 210		break;
 211	default:
 212		ath_err(ath9k_hw_common(ah),
 213			"Unknown phy %u (rate ix %u)\n", phy, rateix);
 214		txTime = 0;
 215		break;
 216	}
 217
 218	return txTime;
 219}
 220EXPORT_SYMBOL(ath9k_hw_computetxtime);
 221
 222void ath9k_hw_get_channel_centers(struct ath_hw *ah,
 223				  struct ath9k_channel *chan,
 224				  struct chan_centers *centers)
 225{
 226	int8_t extoff;
 227
 228	if (!IS_CHAN_HT40(chan)) {
 229		centers->ctl_center = centers->ext_center =
 230			centers->synth_center = chan->channel;
 231		return;
 232	}
 233
 234	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
 235	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
 236		centers->synth_center =
 237			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
 238		extoff = 1;
 239	} else {
 240		centers->synth_center =
 241			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
 242		extoff = -1;
 243	}
 244
 245	centers->ctl_center =
 246		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
 247	/* 25 MHz spacing is supported by hw but not on upper layers */
 248	centers->ext_center =
 249		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
 250}
 251
 252/******************/
 253/* Chip Revisions */
 254/******************/
 255
 256static void ath9k_hw_read_revisions(struct ath_hw *ah)
 257{
 258	u32 val;
 259
 
 
 
 260	switch (ah->hw_version.devid) {
 261	case AR5416_AR9100_DEVID:
 262		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
 263		break;
 264	case AR9300_DEVID_AR9330:
 265		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
 266		if (ah->get_mac_revision) {
 267			ah->hw_version.macRev = ah->get_mac_revision();
 268		} else {
 269			val = REG_READ(ah, AR_SREV);
 270			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 271		}
 272		return;
 273	case AR9300_DEVID_AR9340:
 274		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
 275		val = REG_READ(ah, AR_SREV);
 276		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 
 
 
 
 
 
 
 277		return;
 278	}
 279
 280	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
 281
 282	if (val == 0xFF) {
 283		val = REG_READ(ah, AR_SREV);
 284		ah->hw_version.macVersion =
 285			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
 286		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 287		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
 
 
 
 
 
 288	} else {
 289		if (!AR_SREV_9100(ah))
 290			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
 291
 292		ah->hw_version.macRev = val & AR_SREV_REVISION;
 293
 294		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
 295			ah->is_pciexpress = true;
 296	}
 297}
 298
 299/************************************/
 300/* HW Attach, Detach, Init Routines */
 301/************************************/
 302
 303static void ath9k_hw_disablepcie(struct ath_hw *ah)
 304{
 305	if (!AR_SREV_5416(ah))
 306		return;
 307
 308	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
 309	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
 310	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
 311	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
 312	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
 313	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
 314	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
 315	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
 316	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
 317
 318	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
 319}
 320
 321static void ath9k_hw_aspm_init(struct ath_hw *ah)
 322{
 323	struct ath_common *common = ath9k_hw_common(ah);
 324
 325	if (common->bus_ops->aspm_init)
 326		common->bus_ops->aspm_init(common);
 327}
 328
 329/* This should work for all families including legacy */
 330static bool ath9k_hw_chip_test(struct ath_hw *ah)
 331{
 332	struct ath_common *common = ath9k_hw_common(ah);
 333	u32 regAddr[2] = { AR_STA_ID0 };
 334	u32 regHold[2];
 335	static const u32 patternData[4] = {
 336		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
 337	};
 338	int i, j, loop_max;
 339
 340	if (!AR_SREV_9300_20_OR_LATER(ah)) {
 341		loop_max = 2;
 342		regAddr[1] = AR_PHY_BASE + (8 << 2);
 343	} else
 344		loop_max = 1;
 345
 346	for (i = 0; i < loop_max; i++) {
 347		u32 addr = regAddr[i];
 348		u32 wrData, rdData;
 349
 350		regHold[i] = REG_READ(ah, addr);
 351		for (j = 0; j < 0x100; j++) {
 352			wrData = (j << 16) | j;
 353			REG_WRITE(ah, addr, wrData);
 354			rdData = REG_READ(ah, addr);
 355			if (rdData != wrData) {
 356				ath_err(common,
 357					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 358					addr, wrData, rdData);
 359				return false;
 360			}
 361		}
 362		for (j = 0; j < 4; j++) {
 363			wrData = patternData[j];
 364			REG_WRITE(ah, addr, wrData);
 365			rdData = REG_READ(ah, addr);
 366			if (wrData != rdData) {
 367				ath_err(common,
 368					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 369					addr, wrData, rdData);
 370				return false;
 371			}
 372		}
 373		REG_WRITE(ah, regAddr[i], regHold[i]);
 374	}
 375	udelay(100);
 376
 377	return true;
 378}
 379
 380static void ath9k_hw_init_config(struct ath_hw *ah)
 381{
 382	int i;
 383
 384	ah->config.dma_beacon_response_time = 2;
 385	ah->config.sw_beacon_response_time = 10;
 386	ah->config.additional_swba_backoff = 0;
 387	ah->config.ack_6mb = 0x0;
 388	ah->config.cwm_ignore_extcca = 0;
 389	ah->config.pcie_clock_req = 0;
 390	ah->config.pcie_waen = 0;
 391	ah->config.analog_shiftreg = 1;
 392	ah->config.enable_ani = true;
 393
 394	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
 395		ah->config.spurchans[i][0] = AR_NO_SPUR;
 396		ah->config.spurchans[i][1] = AR_NO_SPUR;
 397	}
 398
 399	/* PAPRD needs some more work to be enabled */
 400	ah->config.paprd_disable = 1;
 
 
 
 
 
 401
 402	ah->config.rx_intr_mitigation = true;
 403	ah->config.pcieSerDesWrite = true;
 404
 405	/*
 406	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
 407	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
 408	 * This means we use it for all AR5416 devices, and the few
 409	 * minor PCI AR9280 devices out there.
 410	 *
 411	 * Serialization is required because these devices do not handle
 412	 * well the case of two concurrent reads/writes due to the latency
 413	 * involved. During one read/write another read/write can be issued
 414	 * on another CPU while the previous read/write may still be working
 415	 * on our hardware, if we hit this case the hardware poops in a loop.
 416	 * We prevent this by serializing reads and writes.
 417	 *
 418	 * This issue is not present on PCI-Express devices or pre-AR5416
 419	 * devices (legacy, 802.11abg).
 420	 */
 421	if (num_possible_cpus() > 1)
 422		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 423}
 424
 425static void ath9k_hw_init_defaults(struct ath_hw *ah)
 426{
 427	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 428
 429	regulatory->country_code = CTRY_DEFAULT;
 430	regulatory->power_limit = MAX_RATE_POWER;
 431	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
 432
 433	ah->hw_version.magic = AR5416_MAGIC;
 434	ah->hw_version.subvendorid = 0;
 435
 436	ah->atim_window = 0;
 437	ah->sta_id1_defaults =
 438		AR_STA_ID1_CRPT_MIC_ENABLE |
 439		AR_STA_ID1_MCAST_KSRCH;
 440	if (AR_SREV_9100(ah))
 441		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
 442	ah->enable_32kHz_clock = DONT_USE_32KHZ;
 443	ah->slottime = 20;
 444	ah->globaltxtimeout = (u32) -1;
 445	ah->power_mode = ATH9K_PM_UNDEFINED;
 
 
 
 
 
 
 
 
 
 
 
 
 446}
 447
 448static int ath9k_hw_init_macaddr(struct ath_hw *ah)
 449{
 450	struct ath_common *common = ath9k_hw_common(ah);
 451	u32 sum;
 452	int i;
 453	u16 eeval;
 454	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
 455
 456	sum = 0;
 
 
 
 457	for (i = 0; i < 3; i++) {
 458		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
 459		sum += eeval;
 460		common->macaddr[2 * i] = eeval >> 8;
 461		common->macaddr[2 * i + 1] = eeval & 0xff;
 462	}
 463	if (sum == 0 || sum == 0xffff * 3)
 464		return -EADDRNOTAVAIL;
 465
 466	return 0;
 
 
 
 
 
 
 
 
 
 
 467}
 468
 469static int ath9k_hw_post_init(struct ath_hw *ah)
 470{
 471	struct ath_common *common = ath9k_hw_common(ah);
 472	int ecode;
 473
 474	if (common->bus_ops->ath_bus_type != ATH_USB) {
 475		if (!ath9k_hw_chip_test(ah))
 476			return -ENODEV;
 477	}
 478
 479	if (!AR_SREV_9300_20_OR_LATER(ah)) {
 480		ecode = ar9002_hw_rf_claim(ah);
 481		if (ecode != 0)
 482			return ecode;
 483	}
 484
 485	ecode = ath9k_hw_eeprom_init(ah);
 486	if (ecode != 0)
 487		return ecode;
 488
 489	ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
 490		"Eeprom VER: %d, REV: %d\n",
 491		ah->eep_ops->get_eeprom_ver(ah),
 492		ah->eep_ops->get_eeprom_rev(ah));
 493
 494	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
 495	if (ecode) {
 496		ath_err(ath9k_hw_common(ah),
 497			"Failed allocating banks for external radio\n");
 498		ath9k_hw_rf_free_ext_banks(ah);
 499		return ecode;
 500	}
 501
 502	if (!AR_SREV_9100(ah) && !AR_SREV_9340(ah)) {
 503		ath9k_hw_ani_setup(ah);
 504		ath9k_hw_ani_init(ah);
 
 
 
 
 
 
 
 505	}
 506
 507	return 0;
 508}
 509
 510static void ath9k_hw_attach_ops(struct ath_hw *ah)
 511{
 512	if (AR_SREV_9300_20_OR_LATER(ah))
 513		ar9003_hw_attach_ops(ah);
 514	else
 515		ar9002_hw_attach_ops(ah);
 
 516}
 517
 518/* Called for all hardware families */
 519static int __ath9k_hw_init(struct ath_hw *ah)
 520{
 521	struct ath_common *common = ath9k_hw_common(ah);
 522	int r = 0;
 523
 524	ath9k_hw_read_revisions(ah);
 525
 526	/*
 527	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
 528	 * We need to do this to avoid RMW of this register. We cannot
 529	 * read the reg when chip is asleep.
 530	 */
 531	ah->WARegVal = REG_READ(ah, AR_WA);
 532	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
 533			 AR_WA_ASPM_TIMER_BASED_DISABLE);
 534
 535	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
 536		ath_err(common, "Couldn't reset chip\n");
 537		return -EIO;
 538	}
 539
 540	ath9k_hw_init_defaults(ah);
 541	ath9k_hw_init_config(ah);
 542
 543	ath9k_hw_attach_ops(ah);
 544
 545	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
 546		ath_err(common, "Couldn't wakeup chip\n");
 547		return -EIO;
 548	}
 549
 550	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
 551		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
 552		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
 553		     !ah->is_pciexpress)) {
 554			ah->config.serialize_regmode =
 555				SER_REG_MODE_ON;
 556		} else {
 557			ah->config.serialize_regmode =
 558				SER_REG_MODE_OFF;
 559		}
 560	}
 561
 562	ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
 563		ah->config.serialize_regmode);
 564
 565	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 566		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
 567	else
 568		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
 569
 570	switch (ah->hw_version.macVersion) {
 571	case AR_SREV_VERSION_5416_PCI:
 572	case AR_SREV_VERSION_5416_PCIE:
 573	case AR_SREV_VERSION_9160:
 574	case AR_SREV_VERSION_9100:
 575	case AR_SREV_VERSION_9280:
 576	case AR_SREV_VERSION_9285:
 577	case AR_SREV_VERSION_9287:
 578	case AR_SREV_VERSION_9271:
 579	case AR_SREV_VERSION_9300:
 580	case AR_SREV_VERSION_9330:
 581	case AR_SREV_VERSION_9485:
 582	case AR_SREV_VERSION_9340:
 
 
 
 
 
 583		break;
 584	default:
 585		ath_err(common,
 586			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
 587			ah->hw_version.macVersion, ah->hw_version.macRev);
 588		return -EOPNOTSUPP;
 589	}
 590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
 592	    AR_SREV_9330(ah))
 593		ah->is_pciexpress = false;
 594
 595	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
 596	ath9k_hw_init_cal_settings(ah);
 597
 598	ah->ani_function = ATH9K_ANI_ALL;
 599	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
 600		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
 601	if (!AR_SREV_9300_20_OR_LATER(ah))
 602		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
 603
 604	ath9k_hw_init_mode_regs(ah);
 605
 606
 607	if (ah->is_pciexpress)
 608		ath9k_hw_aspm_init(ah);
 609	else
 610		ath9k_hw_disablepcie(ah);
 611
 612	if (!AR_SREV_9300_20_OR_LATER(ah))
 613		ar9002_hw_cck_chan14_spread(ah);
 614
 615	r = ath9k_hw_post_init(ah);
 616	if (r)
 617		return r;
 618
 619	ath9k_hw_init_mode_gain_regs(ah);
 620	r = ath9k_hw_fill_cap_info(ah);
 621	if (r)
 622		return r;
 623
 624	r = ath9k_hw_init_macaddr(ah);
 625	if (r) {
 626		ath_err(common, "Failed to initialize MAC address\n");
 627		return r;
 628	}
 629
 630	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 631		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
 632	else
 633		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
 634
 635	if (AR_SREV_9330(ah))
 636		ah->bb_watchdog_timeout_ms = 85;
 637	else
 638		ah->bb_watchdog_timeout_ms = 25;
 639
 640	common->state = ATH_HW_INITIALIZED;
 641
 642	return 0;
 643}
 644
 645int ath9k_hw_init(struct ath_hw *ah)
 646{
 647	int ret;
 648	struct ath_common *common = ath9k_hw_common(ah);
 649
 650	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
 651	switch (ah->hw_version.devid) {
 652	case AR5416_DEVID_PCI:
 653	case AR5416_DEVID_PCIE:
 654	case AR5416_AR9100_DEVID:
 655	case AR9160_DEVID_PCI:
 656	case AR9280_DEVID_PCI:
 657	case AR9280_DEVID_PCIE:
 658	case AR9285_DEVID_PCIE:
 659	case AR9287_DEVID_PCI:
 660	case AR9287_DEVID_PCIE:
 661	case AR2427_DEVID_PCIE:
 662	case AR9300_DEVID_PCIE:
 663	case AR9300_DEVID_AR9485_PCIE:
 664	case AR9300_DEVID_AR9330:
 665	case AR9300_DEVID_AR9340:
 
 
 
 
 
 
 
 666		break;
 667	default:
 668		if (common->bus_ops->ath_bus_type == ATH_USB)
 669			break;
 670		ath_err(common, "Hardware device ID 0x%04x not supported\n",
 671			ah->hw_version.devid);
 672		return -EOPNOTSUPP;
 673	}
 674
 675	ret = __ath9k_hw_init(ah);
 676	if (ret) {
 677		ath_err(common,
 678			"Unable to initialize hardware; initialization status: %d\n",
 679			ret);
 680		return ret;
 681	}
 682
 
 
 683	return 0;
 684}
 685EXPORT_SYMBOL(ath9k_hw_init);
 686
 687static void ath9k_hw_init_qos(struct ath_hw *ah)
 688{
 689	ENABLE_REGWRITE_BUFFER(ah);
 690
 691	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
 692	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
 693
 694	REG_WRITE(ah, AR_QOS_NO_ACK,
 695		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
 696		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
 697		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
 698
 699	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
 700	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
 701	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
 702	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
 703	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
 704
 705	REGWRITE_BUFFER_FLUSH(ah);
 706}
 707
 708u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
 709{
 
 
 
 710	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 711	udelay(100);
 712	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 713
 714	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
 
 715		udelay(100);
 716
 
 
 
 
 
 
 
 
 717	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
 718}
 719EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
 720
 721static void ath9k_hw_init_pll(struct ath_hw *ah,
 722			      struct ath9k_channel *chan)
 723{
 724	u32 pll;
 725
 726	if (AR_SREV_9485(ah)) {
 727
 
 728		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
 729		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 730			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
 731		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 732			      AR_CH0_DPLL2_KD, 0x40);
 733		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 734			      AR_CH0_DPLL2_KI, 0x4);
 735
 736		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 737			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
 738		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 739			      AR_CH0_BB_DPLL1_NINI, 0x58);
 740		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 741			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
 742
 743		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 744			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
 745		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 746			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
 747		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 748			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
 749
 750		/* program BB PLL phase_shift to 0x6 */
 751		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 752			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
 753
 754		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 755			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
 756		udelay(1000);
 757	} else if (AR_SREV_9330(ah)) {
 758		u32 ddr_dpll2, pll_control2, kd;
 759
 760		if (ah->is_clk_25mhz) {
 761			ddr_dpll2 = 0x18e82f01;
 762			pll_control2 = 0xe04a3d;
 763			kd = 0x1d;
 764		} else {
 765			ddr_dpll2 = 0x19e82f01;
 766			pll_control2 = 0x886666;
 767			kd = 0x3d;
 768		}
 769
 770		/* program DDR PLL ki and kd value */
 771		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
 772
 773		/* program DDR PLL phase_shift */
 774		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
 775			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
 776
 777		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
 
 778		udelay(1000);
 779
 780		/* program refdiv, nint, frac to RTC register */
 781		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
 782
 783		/* program BB PLL kd and ki value */
 784		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
 785		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
 786
 787		/* program BB PLL phase_shift */
 788		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 789			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
 790	} else if (AR_SREV_9340(ah)) {
 
 791		u32 regval, pll2_divint, pll2_divfrac, refdiv;
 792
 793		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
 
 794		udelay(1000);
 795
 796		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
 797		udelay(100);
 798
 799		if (ah->is_clk_25mhz) {
 800			pll2_divint = 0x54;
 801			pll2_divfrac = 0x1eb85;
 802			refdiv = 3;
 
 
 
 
 
 
 803		} else {
 804			pll2_divint = 88;
 805			pll2_divfrac = 0;
 806			refdiv = 5;
 
 
 
 
 
 
 
 
 807		}
 808
 809		regval = REG_READ(ah, AR_PHY_PLL_MODE);
 810		regval |= (0x1 << 16);
 
 
 
 811		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 812		udelay(100);
 813
 814		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
 815			  (pll2_divint << 18) | pll2_divfrac);
 816		udelay(100);
 817
 818		regval = REG_READ(ah, AR_PHY_PLL_MODE);
 819		regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
 820			 (0x4 << 26) | (0x18 << 19);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 822		REG_WRITE(ah, AR_PHY_PLL_MODE,
 823			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
 
 
 
 
 
 
 824		udelay(1000);
 825	}
 826
 827	pll = ath9k_hw_compute_pll_control(ah, chan);
 828
 829	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
 830
 831	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
 
 832		udelay(1000);
 833
 834	/* Switch the core clock for ar9271 to 117Mhz */
 835	if (AR_SREV_9271(ah)) {
 836		udelay(500);
 837		REG_WRITE(ah, 0x50040, 0x304);
 838	}
 839
 840	udelay(RTC_PLL_SETTLE_DELAY);
 841
 842	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
 843
 844	if (AR_SREV_9340(ah)) {
 845		if (ah->is_clk_25mhz) {
 846			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
 847			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
 848			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
 849		} else {
 850			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
 851			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
 852			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
 853		}
 854		udelay(100);
 855	}
 856}
 857
 858static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
 859					  enum nl80211_iftype opmode)
 860{
 861	u32 sync_default = AR_INTR_SYNC_DEFAULT;
 862	u32 imr_reg = AR_IMR_TXERR |
 863		AR_IMR_TXURN |
 864		AR_IMR_RXERR |
 865		AR_IMR_RXORN |
 866		AR_IMR_BCNMISC;
 
 867
 868	if (AR_SREV_9340(ah))
 
 869		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
 870
 871	if (AR_SREV_9300_20_OR_LATER(ah)) {
 872		imr_reg |= AR_IMR_RXOK_HP;
 873		if (ah->config.rx_intr_mitigation)
 874			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 875		else
 
 876			imr_reg |= AR_IMR_RXOK_LP;
 877
 
 878	} else {
 879		if (ah->config.rx_intr_mitigation)
 880			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 881		else
 
 882			imr_reg |= AR_IMR_RXOK;
 
 
 883	}
 884
 885	if (ah->config.tx_intr_mitigation)
 886		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
 887	else
 
 888		imr_reg |= AR_IMR_TXOK;
 889
 890	if (opmode == NL80211_IFTYPE_AP)
 891		imr_reg |= AR_IMR_MIB;
 892
 893	ENABLE_REGWRITE_BUFFER(ah);
 894
 895	REG_WRITE(ah, AR_IMR, imr_reg);
 896	ah->imrs2_reg |= AR_IMR_S2_GTT;
 897	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
 898
 
 
 
 
 
 
 
 
 
 
 899	if (!AR_SREV_9100(ah)) {
 900		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
 901		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
 902		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
 903	}
 904
 905	REGWRITE_BUFFER_FLUSH(ah);
 906
 907	if (AR_SREV_9300_20_OR_LATER(ah)) {
 908		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
 909		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
 910		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
 911		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
 912	}
 913}
 914
 915static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
 916{
 917	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
 918	val = min(val, (u32) 0xFFFF);
 919	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
 920}
 921
 922static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
 923{
 924	u32 val = ath9k_hw_mac_to_clks(ah, us);
 925	val = min(val, (u32) 0xFFFF);
 926	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
 927}
 928
 929static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
 930{
 931	u32 val = ath9k_hw_mac_to_clks(ah, us);
 932	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
 933	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
 934}
 935
 936static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
 937{
 938	u32 val = ath9k_hw_mac_to_clks(ah, us);
 939	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
 940	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
 941}
 942
 943static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
 944{
 945	if (tu > 0xFFFF) {
 946		ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
 947			"bad global tx timeout %u\n", tu);
 948		ah->globaltxtimeout = (u32) -1;
 949		return false;
 950	} else {
 951		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
 952		ah->globaltxtimeout = tu;
 953		return true;
 954	}
 955}
 956
 957void ath9k_hw_init_global_settings(struct ath_hw *ah)
 958{
 959	struct ath_common *common = ath9k_hw_common(ah);
 960	struct ieee80211_conf *conf = &common->hw->conf;
 961	const struct ath9k_channel *chan = ah->curchan;
 962	int acktimeout;
 963	int slottime;
 964	int sifstime;
 965	int rx_lat = 0, tx_lat = 0, eifs = 0;
 966	u32 reg;
 967
 968	ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
 969		ah->misc_mode);
 970
 971	if (!chan)
 972		return;
 973
 974	if (ah->misc_mode != 0)
 975		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
 976
 977	rx_lat = 37;
 
 
 
 978	tx_lat = 54;
 979
 
 
 
 
 
 980	if (IS_CHAN_HALF_RATE(chan)) {
 981		eifs = 175;
 982		rx_lat *= 2;
 983		tx_lat *= 2;
 984		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
 985		    tx_lat += 11;
 986
 987		slottime = 13;
 988		sifstime = 32;
 
 
 
 989	} else if (IS_CHAN_QUARTER_RATE(chan)) {
 990		eifs = 340;
 991		rx_lat *= 4;
 992		tx_lat *= 4;
 993		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
 994		    tx_lat += 22;
 995
 996		slottime = 21;
 997		sifstime = 64;
 
 
 
 998	} else {
 999		eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS);
1000		reg = REG_READ(ah, AR_USEC);
 
 
 
 
 
 
1001		rx_lat = MS(reg, AR_USEC_RX_LAT);
1002		tx_lat = MS(reg, AR_USEC_TX_LAT);
1003
1004		slottime = ah->slottime;
1005		if (IS_CHAN_5GHZ(chan))
1006			sifstime = 16;
1007		else
1008			sifstime = 10;
1009	}
1010
1011	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1012	acktimeout = slottime + sifstime + 3 * ah->coverage_class;
 
 
1013
1014	/*
1015	 * Workaround for early ACK timeouts, add an offset to match the
1016	 * initval's 64us ack timeout value.
1017	 * This was initially only meant to work around an issue with delayed
1018	 * BA frames in some implementations, but it has been found to fix ACK
1019	 * timeout issues in other cases as well.
1020	 */
1021	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
 
1022		acktimeout += 64 - sifstime - ah->slottime;
 
 
 
 
 
 
 
 
 
 
1023
1024	ath9k_hw_set_sifs_time(ah, sifstime);
1025	ath9k_hw_setslottime(ah, slottime);
1026	ath9k_hw_set_ack_timeout(ah, acktimeout);
1027	ath9k_hw_set_cts_timeout(ah, acktimeout);
1028	if (ah->globaltxtimeout != (u32) -1)
1029		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1030
1031	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1032	REG_RMW(ah, AR_USEC,
1033		(common->clockrate - 1) |
1034		SM(rx_lat, AR_USEC_RX_LAT) |
1035		SM(tx_lat, AR_USEC_TX_LAT),
1036		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1037
 
 
 
 
1038}
1039EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1040
1041void ath9k_hw_deinit(struct ath_hw *ah)
1042{
1043	struct ath_common *common = ath9k_hw_common(ah);
1044
1045	if (common->state < ATH_HW_INITIALIZED)
1046		goto free_hw;
1047
1048	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1049
1050free_hw:
1051	ath9k_hw_rf_free_ext_banks(ah);
1052}
1053EXPORT_SYMBOL(ath9k_hw_deinit);
1054
1055/*******/
1056/* INI */
1057/*******/
1058
1059u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1060{
1061	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1062
1063	if (IS_CHAN_B(chan))
1064		ctl |= CTL_11B;
1065	else if (IS_CHAN_G(chan))
1066		ctl |= CTL_11G;
1067	else
1068		ctl |= CTL_11A;
1069
1070	return ctl;
1071}
1072
1073/****************************************/
1074/* Reset and Channel Switching Routines */
1075/****************************************/
1076
1077static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1078{
1079	struct ath_common *common = ath9k_hw_common(ah);
 
1080
1081	ENABLE_REGWRITE_BUFFER(ah);
1082
1083	/*
1084	 * set AHB_MODE not to do cacheline prefetches
1085	*/
1086	if (!AR_SREV_9300_20_OR_LATER(ah))
1087		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1088
1089	/*
1090	 * let mac dma reads be in 128 byte chunks
1091	 */
1092	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1093
1094	REGWRITE_BUFFER_FLUSH(ah);
1095
1096	/*
1097	 * Restore TX Trigger Level to its pre-reset value.
1098	 * The initial value depends on whether aggregation is enabled, and is
1099	 * adjusted whenever underruns are detected.
1100	 */
1101	if (!AR_SREV_9300_20_OR_LATER(ah))
1102		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1103
1104	ENABLE_REGWRITE_BUFFER(ah);
1105
1106	/*
1107	 * let mac dma writes be in 128 byte chunks
1108	 */
1109	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1110
1111	/*
1112	 * Setup receive FIFO threshold to hold off TX activities
1113	 */
1114	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1115
1116	if (AR_SREV_9300_20_OR_LATER(ah)) {
1117		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1118		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1119
1120		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1121			ah->caps.rx_status_len);
1122	}
1123
1124	/*
1125	 * reduce the number of usable entries in PCU TXBUF to avoid
1126	 * wrap around issues.
1127	 */
1128	if (AR_SREV_9285(ah)) {
1129		/* For AR9285 the number of Fifos are reduced to half.
1130		 * So set the usable tx buf size also to half to
1131		 * avoid data/delimiter underruns
1132		 */
1133		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1134			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1135	} else if (!AR_SREV_9271(ah)) {
1136		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1137			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
 
1138	}
1139
 
 
 
1140	REGWRITE_BUFFER_FLUSH(ah);
1141
1142	if (AR_SREV_9300_20_OR_LATER(ah))
1143		ath9k_hw_reset_txstatus_ring(ah);
1144}
1145
1146static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1147{
1148	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1149	u32 set = AR_STA_ID1_KSRCH_MODE;
1150
 
1151	switch (opmode) {
1152	case NL80211_IFTYPE_ADHOC:
 
 
 
 
 
 
 
1153	case NL80211_IFTYPE_MESH_POINT:
1154		set |= AR_STA_ID1_ADHOC;
1155		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1156		break;
1157	case NL80211_IFTYPE_AP:
1158		set |= AR_STA_ID1_STA_AP;
1159		/* fall through */
1160	case NL80211_IFTYPE_STATION:
1161		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1162		break;
1163	default:
1164		if (!ah->is_monitoring)
1165			set = 0;
1166		break;
1167	}
1168	REG_RMW(ah, AR_STA_ID1, set, mask);
 
1169}
1170
1171void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1172				   u32 *coef_mantissa, u32 *coef_exponent)
1173{
1174	u32 coef_exp, coef_man;
1175
1176	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1177		if ((coef_scaled >> coef_exp) & 0x1)
1178			break;
1179
1180	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1181
1182	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1183
1184	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1185	*coef_exponent = coef_exp - 16;
1186}
1187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1188static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1189{
1190	u32 rst_flags;
1191	u32 tmpReg;
1192
1193	if (AR_SREV_9100(ah)) {
1194		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1195			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1196		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1197	}
1198
1199	ENABLE_REGWRITE_BUFFER(ah);
1200
1201	if (AR_SREV_9300_20_OR_LATER(ah)) {
1202		REG_WRITE(ah, AR_WA, ah->WARegVal);
1203		udelay(10);
1204	}
1205
1206	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1207		  AR_RTC_FORCE_WAKE_ON_INT);
1208
1209	if (AR_SREV_9100(ah)) {
1210		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1211			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1212	} else {
1213		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1214		if (tmpReg &
1215		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1216		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
 
 
 
 
1217			u32 val;
1218			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1219
1220			val = AR_RC_HOSTIF;
1221			if (!AR_SREV_9300_20_OR_LATER(ah))
1222				val |= AR_RC_AHB;
1223			REG_WRITE(ah, AR_RC, val);
1224
1225		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1226			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1227
1228		rst_flags = AR_RTC_RC_MAC_WARM;
1229		if (type == ATH9K_RESET_COLD)
1230			rst_flags |= AR_RTC_RC_MAC_COLD;
1231	}
1232
1233	if (AR_SREV_9330(ah)) {
1234		int npend = 0;
1235		int i;
1236
1237		/* AR9330 WAR:
1238		 * call external reset function to reset WMAC if:
1239		 * - doing a cold reset
1240		 * - we have pending frames in the TX queues
1241		 */
1242
1243		for (i = 0; i < AR_NUM_QCU; i++) {
1244			npend = ath9k_hw_numtxpending(ah, i);
1245			if (npend)
1246				break;
1247		}
1248
1249		if (ah->external_reset &&
1250		    (npend || type == ATH9K_RESET_COLD)) {
1251			int reset_err = 0;
1252
1253			ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1254				"reset MAC via external reset\n");
1255
1256			reset_err = ah->external_reset();
1257			if (reset_err) {
1258				ath_err(ath9k_hw_common(ah),
1259					"External reset failed, err=%d\n",
1260					reset_err);
1261				return false;
1262			}
1263
1264			REG_WRITE(ah, AR_RTC_RESET, 1);
1265		}
 
 
 
 
 
 
1266	}
1267
1268	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1269
1270	REGWRITE_BUFFER_FLUSH(ah);
1271
1272	udelay(50);
 
 
 
 
 
1273
1274	REG_WRITE(ah, AR_RTC_RC, 0);
1275	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1276		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1277			"RTC stuck in MAC reset\n");
1278		return false;
1279	}
1280
1281	if (!AR_SREV_9100(ah))
1282		REG_WRITE(ah, AR_RC, 0);
1283
1284	if (AR_SREV_9100(ah))
1285		udelay(50);
1286
1287	return true;
1288}
1289
1290static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1291{
1292	ENABLE_REGWRITE_BUFFER(ah);
1293
1294	if (AR_SREV_9300_20_OR_LATER(ah)) {
1295		REG_WRITE(ah, AR_WA, ah->WARegVal);
1296		udelay(10);
1297	}
1298
1299	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1300		  AR_RTC_FORCE_WAKE_ON_INT);
1301
1302	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1303		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1304
1305	REG_WRITE(ah, AR_RTC_RESET, 0);
1306
1307	REGWRITE_BUFFER_FLUSH(ah);
1308
1309	if (!AR_SREV_9300_20_OR_LATER(ah))
1310		udelay(2);
1311
1312	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1313		REG_WRITE(ah, AR_RC, 0);
1314
1315	REG_WRITE(ah, AR_RTC_RESET, 1);
1316
1317	if (!ath9k_hw_wait(ah,
1318			   AR_RTC_STATUS,
1319			   AR_RTC_STATUS_M,
1320			   AR_RTC_STATUS_ON,
1321			   AH_WAIT_TIMEOUT)) {
1322		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1323			"RTC not waking up\n");
1324		return false;
1325	}
1326
1327	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1328}
1329
1330static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1331{
 
 
1332	if (AR_SREV_9300_20_OR_LATER(ah)) {
1333		REG_WRITE(ah, AR_WA, ah->WARegVal);
1334		udelay(10);
1335	}
1336
1337	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1338		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1339
 
 
 
1340	switch (type) {
1341	case ATH9K_RESET_POWER_ON:
1342		return ath9k_hw_set_reset_power_on(ah);
 
 
 
1343	case ATH9K_RESET_WARM:
1344	case ATH9K_RESET_COLD:
1345		return ath9k_hw_set_reset(ah, type);
 
1346	default:
1347		return false;
1348	}
 
 
1349}
1350
1351static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1352				struct ath9k_channel *chan)
1353{
1354	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1355		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1356			return false;
1357	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
 
 
 
 
 
 
 
 
1358		return false;
1359
1360	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1361		return false;
1362
1363	ah->chip_fullsleep = false;
 
 
 
1364	ath9k_hw_init_pll(ah, chan);
1365	ath9k_hw_set_rfmode(ah, chan);
1366
1367	return true;
1368}
1369
1370static bool ath9k_hw_channel_change(struct ath_hw *ah,
1371				    struct ath9k_channel *chan)
1372{
1373	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1374	struct ath_common *common = ath9k_hw_common(ah);
1375	struct ieee80211_channel *channel = chan->chan;
 
 
1376	u32 qnum;
1377	int r;
1378
 
 
 
 
 
 
1379	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1380		if (ath9k_hw_numtxpending(ah, qnum)) {
1381			ath_dbg(common, ATH_DBG_QUEUE,
1382				"Transmit frames pending on queue %d\n", qnum);
1383			return false;
1384		}
1385	}
1386
1387	if (!ath9k_hw_rfbus_req(ah)) {
1388		ath_err(common, "Could not kill baseband RX\n");
1389		return false;
1390	}
1391
 
 
 
 
 
 
 
 
 
 
 
 
 
1392	ath9k_hw_set_channel_regs(ah, chan);
1393
1394	r = ath9k_hw_rf_set_freq(ah, chan);
1395	if (r) {
1396		ath_err(common, "Failed to set channel\n");
1397		return false;
1398	}
1399	ath9k_hw_set_clockrate(ah);
 
1400
1401	ah->eep_ops->set_txpower(ah, chan,
1402			     ath9k_regd_get_ctl(regulatory, chan),
1403			     channel->max_antenna_gain * 2,
1404			     channel->max_power * 2,
1405			     min((u32) MAX_RATE_POWER,
1406			     (u32) regulatory->power_limit), false);
1407
1408	ath9k_hw_rfbus_done(ah);
 
1409
1410	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1411		ath9k_hw_set_delta_slope(ah, chan);
1412
1413	ath9k_hw_spur_mitigate_freq(ah, chan);
 
 
 
 
1414
1415	return true;
1416}
1417
1418static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1419{
1420	u32 gpio_mask = ah->gpio_mask;
1421	int i;
1422
1423	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1424		if (!(gpio_mask & 1))
1425			continue;
1426
1427		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
 
1428		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
 
1429	}
1430}
1431
 
 
 
 
 
 
 
 
 
 
 
 
 
1432bool ath9k_hw_check_alive(struct ath_hw *ah)
1433{
1434	int count = 50;
1435	u32 reg;
 
 
 
 
 
 
 
1436
1437	if (AR_SREV_9285_12_OR_LATER(ah))
1438		return true;
1439
 
1440	do {
1441		reg = REG_READ(ah, AR_OBS_BUS_1);
 
 
1442
 
 
1443		if ((reg & 0x7E7FFFEF) == 0x00702400)
1444			continue;
1445
1446		switch (reg & 0x7E000B00) {
1447		case 0x1E000000:
1448		case 0x52000B00:
1449		case 0x18000B00:
1450			continue;
1451		default:
1452			return true;
1453		}
1454	} while (count-- > 0);
1455
1456	return false;
1457}
1458EXPORT_SYMBOL(ath9k_hw_check_alive);
1459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1460int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1461		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1462{
1463	struct ath_common *common = ath9k_hw_common(ah);
1464	u32 saveLedState;
1465	struct ath9k_channel *curchan = ah->curchan;
1466	u32 saveDefAntenna;
1467	u32 macStaId1;
 
 
1468	u64 tsf = 0;
1469	int i, r;
 
 
1470
1471	ah->txchainmask = common->tx_chainmask;
1472	ah->rxchainmask = common->rx_chainmask;
 
 
 
1473
1474	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1475		return -EIO;
1476
1477	if (curchan && !ah->chip_fullsleep)
1478		ath9k_hw_getnf(ah, curchan);
1479
1480	ah->caldata = caldata;
1481	if (caldata &&
1482	    (chan->channel != caldata->channel ||
1483	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1484	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1485		/* Operating channel changed, reset channel calibration data */
1486		memset(caldata, 0, sizeof(*caldata));
1487		ath9k_init_nfcal_hist_buffer(ah, chan);
 
 
1488	}
 
1489
1490	if (bChannelChange &&
1491	    (ah->chip_fullsleep != true) &&
1492	    (ah->curchan != NULL) &&
1493	    (chan->channel != ah->curchan->channel) &&
1494	    ((chan->channelFlags & CHANNEL_ALL) ==
1495	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1496	    (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1497
1498		if (ath9k_hw_channel_change(ah, chan)) {
1499			ath9k_hw_loadnf(ah, ah->curchan);
1500			ath9k_hw_start_nfcal(ah, true);
1501			if (AR_SREV_9271(ah))
1502				ar9002_hw_load_ani_reg(ah, chan);
1503			return 0;
1504		}
1505	}
1506
 
 
 
1507	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1508	if (saveDefAntenna == 0)
1509		saveDefAntenna = 1;
1510
1511	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1512
1513	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1514	if (AR_SREV_9100(ah) ||
1515	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1516		tsf = ath9k_hw_gettsf64(ah);
1517
1518	saveLedState = REG_READ(ah, AR_CFG_LED) &
1519		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1520		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1521
1522	ath9k_hw_mark_phy_inactive(ah);
1523
1524	ah->paprd_table_write_done = false;
1525
1526	/* Only required on the first reset */
1527	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1528		REG_WRITE(ah,
1529			  AR9271_RESET_POWER_DOWN_CONTROL,
1530			  AR9271_RADIO_RF_RST);
1531		udelay(50);
1532	}
1533
1534	if (!ath9k_hw_chip_reset(ah, chan)) {
1535		ath_err(common, "Chip reset failed\n");
1536		return -EINVAL;
1537	}
1538
1539	/* Only required on the first reset */
1540	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1541		ah->htc_reset_init = false;
1542		REG_WRITE(ah,
1543			  AR9271_RESET_POWER_DOWN_CONTROL,
1544			  AR9271_GATE_MAC_CTL);
1545		udelay(50);
1546	}
1547
1548	/* Restore TSF */
1549	if (tsf)
1550		ath9k_hw_settsf64(ah, tsf);
1551
1552	if (AR_SREV_9280_20_OR_LATER(ah))
1553		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1554
1555	if (!AR_SREV_9300_20_OR_LATER(ah))
1556		ar9002_hw_enable_async_fifo(ah);
1557
1558	r = ath9k_hw_process_ini(ah, chan);
1559	if (r)
1560		return r;
1561
 
 
 
 
 
1562	/*
1563	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1564	 * right after the chip reset. When that happens, write a new
1565	 * value after the initvals have been applied, with an offset
1566	 * based on measured time difference
1567	 */
1568	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1569		tsf += 1500;
1570		ath9k_hw_settsf64(ah, tsf);
1571	}
1572
1573	/* Setup MFP options for CCMP */
1574	if (AR_SREV_9280_20_OR_LATER(ah)) {
1575		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1576		 * frames when constructing CCMP AAD. */
1577		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1578			      0xc7ff);
1579		ah->sw_mgmt_crypto = false;
1580	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1581		/* Disable hardware crypto for management frames */
1582		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1583			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1584		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1585			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1586		ah->sw_mgmt_crypto = true;
1587	} else
1588		ah->sw_mgmt_crypto = true;
1589
1590	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1591		ath9k_hw_set_delta_slope(ah, chan);
1592
 
1593	ath9k_hw_spur_mitigate_freq(ah, chan);
1594	ah->eep_ops->set_board_values(ah, chan);
1595
1596	ENABLE_REGWRITE_BUFFER(ah);
1597
1598	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1599	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1600		  | macStaId1
1601		  | AR_STA_ID1_RTS_USE_DEF
1602		  | (ah->config.
1603		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1604		  | ah->sta_id1_defaults);
1605	ath_hw_setbssidmask(common);
1606	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1607	ath9k_hw_write_associd(ah);
1608	REG_WRITE(ah, AR_ISR, ~0);
1609	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1610
1611	REGWRITE_BUFFER_FLUSH(ah);
1612
1613	ath9k_hw_set_operating_mode(ah, ah->opmode);
1614
1615	r = ath9k_hw_rf_set_freq(ah, chan);
1616	if (r)
1617		return r;
1618
1619	ath9k_hw_set_clockrate(ah);
1620
1621	ENABLE_REGWRITE_BUFFER(ah);
1622
1623	for (i = 0; i < AR_NUM_DCU; i++)
1624		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1625
1626	REGWRITE_BUFFER_FLUSH(ah);
1627
1628	ah->intr_txqs = 0;
1629	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1630		ath9k_hw_resettxqueue(ah, i);
1631
1632	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1633	ath9k_hw_ani_cache_ini_regs(ah);
1634	ath9k_hw_init_qos(ah);
1635
1636	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1637		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1638
1639	ath9k_hw_init_global_settings(ah);
1640
1641	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1642		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1643			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1644		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1645			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1646		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1647			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1648	}
1649
1650	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1651
1652	ath9k_hw_set_dma(ah);
1653
1654	REG_WRITE(ah, AR_OBS, 8);
 
1655
 
1656	if (ah->config.rx_intr_mitigation) {
1657		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1658		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1659	}
1660
1661	if (ah->config.tx_intr_mitigation) {
1662		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1663		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1664	}
 
1665
1666	ath9k_hw_init_bb(ah, chan);
1667
 
 
 
 
1668	if (!ath9k_hw_init_cal(ah, chan))
1669		return -EIO;
1670
 
 
 
1671	ENABLE_REGWRITE_BUFFER(ah);
1672
1673	ath9k_hw_restore_chainmask(ah);
1674	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1675
1676	REGWRITE_BUFFER_FLUSH(ah);
1677
1678	/*
1679	 * For big endian systems turn on swapping for descriptors
1680	 */
1681	if (AR_SREV_9100(ah)) {
1682		u32 mask;
1683		mask = REG_READ(ah, AR_CFG);
1684		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1685			ath_dbg(common, ATH_DBG_RESET,
1686				"CFG Byte Swap Set 0x%x\n", mask);
1687		} else {
1688			mask =
1689				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1690			REG_WRITE(ah, AR_CFG, mask);
1691			ath_dbg(common, ATH_DBG_RESET,
1692				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1693		}
1694	} else {
1695		if (common->bus_ops->ath_bus_type == ATH_USB) {
1696			/* Configure AR9271 target WLAN */
1697			if (AR_SREV_9271(ah))
1698				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1699			else
1700				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1701		}
1702#ifdef __BIG_ENDIAN
1703		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
1704			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1705		else
1706			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1707#endif
1708	}
1709
1710	if (ah->btcoex_hw.enabled)
 
 
1711		ath9k_hw_btcoex_enable(ah);
1712
 
 
 
1713	if (AR_SREV_9300_20_OR_LATER(ah)) {
 
 
 
 
 
1714		ar9003_hw_bb_watchdog_config(ah);
1715
 
1716		ar9003_hw_disable_phy_restart(ah);
1717	}
1718
1719	ath9k_hw_apply_gpio_override(ah);
1720
 
 
 
 
 
 
 
 
 
1721	return 0;
1722}
1723EXPORT_SYMBOL(ath9k_hw_reset);
1724
1725/******************************/
1726/* Power Management (Chipset) */
1727/******************************/
1728
1729/*
1730 * Notify Power Mgt is disabled in self-generated frames.
1731 * If requested, force chip to sleep.
1732 */
1733static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1734{
1735	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1736	if (setChip) {
1737		/*
1738		 * Clear the RTC force wake bit to allow the
1739		 * mac to go to sleep.
1740		 */
1741		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1742			    AR_RTC_FORCE_WAKE_EN);
1743		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1744			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1745
1746		/* Shutdown chip. Active low */
1747		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1748			REG_CLR_BIT(ah, (AR_RTC_RESET),
1749				    AR_RTC_RESET_EN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1750	}
1751
1752	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1753	if (AR_SREV_9300_20_OR_LATER(ah))
1754		REG_WRITE(ah, AR_WA,
1755			  ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1756}
1757
1758/*
1759 * Notify Power Management is enabled in self-generating
1760 * frames. If request, set power mode of chip to
1761 * auto/normal.  Duration in units of 128us (1/8 TU).
1762 */
1763static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1764{
 
 
1765	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1766	if (setChip) {
1767		struct ath9k_hw_capabilities *pCap = &ah->caps;
1768
1769		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1770			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1771			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1772				  AR_RTC_FORCE_WAKE_ON_INT);
1773		} else {
1774			/*
1775			 * Clear the RTC force wake bit to allow the
1776			 * mac to go to sleep.
1777			 */
1778			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1779				    AR_RTC_FORCE_WAKE_EN);
1780		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1781	}
1782
1783	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1784	if (AR_SREV_9300_20_OR_LATER(ah))
1785		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1786}
1787
1788static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1789{
1790	u32 val;
1791	int i;
1792
1793	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1794	if (AR_SREV_9300_20_OR_LATER(ah)) {
1795		REG_WRITE(ah, AR_WA, ah->WARegVal);
1796		udelay(10);
1797	}
1798
1799	if (setChip) {
1800		if ((REG_READ(ah, AR_RTC_STATUS) &
1801		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1802			if (ath9k_hw_set_reset_reg(ah,
1803					   ATH9K_RESET_POWER_ON) != true) {
1804				return false;
1805			}
1806			if (!AR_SREV_9300_20_OR_LATER(ah))
1807				ath9k_hw_init_pll(ah, NULL);
1808		}
1809		if (AR_SREV_9100(ah))
1810			REG_SET_BIT(ah, AR_RTC_RESET,
1811				    AR_RTC_RESET_EN);
 
 
 
1812
1813		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1814			    AR_RTC_FORCE_WAKE_EN);
 
 
 
1815		udelay(50);
1816
1817		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1818			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1819			if (val == AR_RTC_STATUS_ON)
1820				break;
1821			udelay(50);
1822			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1823				    AR_RTC_FORCE_WAKE_EN);
1824		}
1825		if (i == 0) {
1826			ath_err(ath9k_hw_common(ah),
1827				"Failed to wakeup in %uus\n",
1828				POWER_UP_TIME / 20);
1829			return false;
1830		}
1831	}
1832
 
 
 
1833	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1834
1835	return true;
1836}
1837
1838bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1839{
1840	struct ath_common *common = ath9k_hw_common(ah);
1841	int status = true, setChip = true;
1842	static const char *modes[] = {
1843		"AWAKE",
1844		"FULL-SLEEP",
1845		"NETWORK SLEEP",
1846		"UNDEFINED"
1847	};
1848
1849	if (ah->power_mode == mode)
1850		return status;
1851
1852	ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1853		modes[ah->power_mode], modes[mode]);
1854
1855	switch (mode) {
1856	case ATH9K_PM_AWAKE:
1857		status = ath9k_hw_set_power_awake(ah, setChip);
1858		break;
1859	case ATH9K_PM_FULL_SLEEP:
1860		ath9k_set_power_sleep(ah, setChip);
 
 
 
1861		ah->chip_fullsleep = true;
1862		break;
1863	case ATH9K_PM_NETWORK_SLEEP:
1864		ath9k_set_power_network_sleep(ah, setChip);
1865		break;
1866	default:
1867		ath_err(common, "Unknown power mode %u\n", mode);
1868		return false;
1869	}
1870	ah->power_mode = mode;
1871
1872	/*
1873	 * XXX: If this warning never comes up after a while then
1874	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1875	 * ath9k_hw_setpower() return type void.
1876	 */
1877
1878	if (!(ah->ah_flags & AH_UNPLUGGED))
1879		ATH_DBG_WARN_ON_ONCE(!status);
1880
1881	return status;
1882}
1883EXPORT_SYMBOL(ath9k_hw_setpower);
1884
1885/*******************/
1886/* Beacon Handling */
1887/*******************/
1888
1889void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1890{
1891	int flags = 0;
1892
1893	ENABLE_REGWRITE_BUFFER(ah);
1894
1895	switch (ah->opmode) {
1896	case NL80211_IFTYPE_ADHOC:
1897	case NL80211_IFTYPE_MESH_POINT:
1898		REG_SET_BIT(ah, AR_TXCFG,
1899			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1900		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
1901			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
1902		flags |= AR_NDP_TIMER_EN;
1903	case NL80211_IFTYPE_AP:
1904		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
1905		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
1906			  TU_TO_USEC(ah->config.dma_beacon_response_time));
1907		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
1908			  TU_TO_USEC(ah->config.sw_beacon_response_time));
1909		flags |=
1910			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1911		break;
1912	default:
1913		ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1914			"%s: unsupported opmode: %d\n",
1915			__func__, ah->opmode);
1916		return;
1917		break;
1918	}
1919
1920	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
1921	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
1922	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
1923	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
1924
1925	REGWRITE_BUFFER_FLUSH(ah);
1926
1927	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1928}
1929EXPORT_SYMBOL(ath9k_hw_beaconinit);
1930
1931void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1932				    const struct ath9k_beacon_state *bs)
1933{
1934	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1935	struct ath9k_hw_capabilities *pCap = &ah->caps;
1936	struct ath_common *common = ath9k_hw_common(ah);
1937
1938	ENABLE_REGWRITE_BUFFER(ah);
1939
1940	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1941
1942	REG_WRITE(ah, AR_BEACON_PERIOD,
1943		  TU_TO_USEC(bs->bs_intval));
1944	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1945		  TU_TO_USEC(bs->bs_intval));
1946
1947	REGWRITE_BUFFER_FLUSH(ah);
1948
1949	REG_RMW_FIELD(ah, AR_RSSI_THR,
1950		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1951
1952	beaconintval = bs->bs_intval;
1953
1954	if (bs->bs_sleepduration > beaconintval)
1955		beaconintval = bs->bs_sleepduration;
1956
1957	dtimperiod = bs->bs_dtimperiod;
1958	if (bs->bs_sleepduration > dtimperiod)
1959		dtimperiod = bs->bs_sleepduration;
1960
1961	if (beaconintval == dtimperiod)
1962		nextTbtt = bs->bs_nextdtim;
1963	else
1964		nextTbtt = bs->bs_nexttbtt;
1965
1966	ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1967	ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1968	ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1969	ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1970
1971	ENABLE_REGWRITE_BUFFER(ah);
1972
1973	REG_WRITE(ah, AR_NEXT_DTIM,
1974		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1975	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1976
1977	REG_WRITE(ah, AR_SLEEP1,
1978		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1979		  | AR_SLEEP1_ASSUME_DTIM);
1980
1981	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1982		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1983	else
1984		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1985
1986	REG_WRITE(ah, AR_SLEEP2,
1987		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1988
1989	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1990	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1991
1992	REGWRITE_BUFFER_FLUSH(ah);
1993
1994	REG_SET_BIT(ah, AR_TIMER_MODE,
1995		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1996		    AR_DTIM_TIMER_EN);
1997
1998	/* TSF Out of Range Threshold */
1999	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2000}
2001EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2002
2003/*******************/
2004/* HW Capabilities */
2005/*******************/
2006
2007static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2008{
2009	eeprom_chainmask &= chip_chainmask;
2010	if (eeprom_chainmask)
2011		return eeprom_chainmask;
2012	else
2013		return chip_chainmask;
2014}
2015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2016int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2017{
2018	struct ath9k_hw_capabilities *pCap = &ah->caps;
2019	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2020	struct ath_common *common = ath9k_hw_common(ah);
2021	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2022	unsigned int chip_chainmask;
2023
2024	u16 eeval;
2025	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2026
2027	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2028	regulatory->current_rd = eeval;
2029
2030	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
2031	if (AR_SREV_9285_12_OR_LATER(ah))
2032		eeval |= AR9285_RDEXT_DEFAULT;
2033	regulatory->current_rd_ext = eeval;
2034
2035	if (ah->opmode != NL80211_IFTYPE_AP &&
2036	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2037		if (regulatory->current_rd == 0x64 ||
2038		    regulatory->current_rd == 0x65)
2039			regulatory->current_rd += 5;
2040		else if (regulatory->current_rd == 0x41)
2041			regulatory->current_rd = 0x43;
2042		ath_dbg(common, ATH_DBG_REGULATORY,
2043			"regdomain mapped to 0x%x\n", regulatory->current_rd);
2044	}
2045
2046	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2047	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2048		ath_err(common,
2049			"no band has been marked as supported in EEPROM\n");
2050		return -EINVAL;
 
 
 
 
 
 
 
 
 
2051	}
2052
2053	if (eeval & AR5416_OPFLAGS_11A)
2054		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
 
 
2055
2056	if (eeval & AR5416_OPFLAGS_11G)
2057		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2058
2059	if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
2060		chip_chainmask = 1;
 
 
 
2061	else if (!AR_SREV_9280_20_OR_LATER(ah))
2062		chip_chainmask = 7;
2063	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2064		chip_chainmask = 3;
 
 
 
2065	else
2066		chip_chainmask = 7;
2067
2068	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2069	/*
2070	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2071	 * the EEPROM.
2072	 */
2073	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2074	    !(eeval & AR5416_OPFLAGS_11A) &&
2075	    !(AR_SREV_9271(ah)))
2076		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2077		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2078	else if (AR_SREV_9100(ah))
2079		pCap->rx_chainmask = 0x7;
2080	else
2081		/* Use rx_chainmask from EEPROM. */
2082		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2083
2084	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2085	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
 
 
2086
2087	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2088
2089	/* enable key search for every frame in an aggregate */
2090	if (AR_SREV_9300_20_OR_LATER(ah))
2091		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2092
2093	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2094
2095	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2096		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2097	else
2098		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2099
2100	if (AR_SREV_9271(ah))
2101		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2102	else if (AR_DEVID_7010(ah))
2103		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2104	else if (AR_SREV_9285_12_OR_LATER(ah))
2105		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2106	else if (AR_SREV_9280_20_OR_LATER(ah))
2107		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2108	else
2109		pCap->num_gpio_pins = AR_NUM_GPIO;
2110
2111	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2112		pCap->hw_caps |= ATH9K_HW_CAP_CST;
2113		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2114	} else {
2115		pCap->rts_aggr_limit = (8 * 1024);
2116	}
2117
2118#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2119	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2120	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2121		ah->rfkill_gpio =
2122			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2123		ah->rfkill_polarity =
2124			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2125
2126		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2127	}
2128#endif
2129	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2130		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2131	else
2132		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2133
2134	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2135		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2136	else
2137		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2138
2139	if (common->btcoex_enabled) {
2140		if (AR_SREV_9300_20_OR_LATER(ah)) {
2141			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2142			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300;
2143			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300;
2144			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300;
2145		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
2146			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280;
2147			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280;
2148
2149			if (AR_SREV_9285(ah)) {
2150				btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2151				btcoex_hw->btpriority_gpio =
2152						ATH_BTPRIORITY_GPIO_9285;
2153			} else {
2154				btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2155			}
2156		}
2157	} else {
2158		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2159	}
2160
2161	if (AR_SREV_9300_20_OR_LATER(ah)) {
2162		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2163		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
 
2164			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2165
2166		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2167		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2168		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2169		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2170		pCap->txs_len = sizeof(struct ar9003_txs);
2171		if (!ah->config.paprd_disable &&
2172		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2173			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2174	} else {
2175		pCap->tx_desc_len = sizeof(struct ath_desc);
2176		if (AR_SREV_9280_20(ah))
2177			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2178	}
2179
2180	if (AR_SREV_9300_20_OR_LATER(ah))
2181		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2182
2183	if (AR_SREV_9300_20_OR_LATER(ah))
 
 
2184		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2185
2186	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2187		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2188
2189	if (AR_SREV_9285(ah))
2190		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2191			ant_div_ctl1 =
2192				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2193			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2194				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
 
 
2195		}
 
 
2196	if (AR_SREV_9300_20_OR_LATER(ah)) {
2197		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2198			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2199	}
2200
2201
2202	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2203		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2204		/*
2205		 * enable the diversity-combining algorithm only when
2206		 * both enable_lna_div and enable_fast_div are set
2207		 *		Table for Diversity
2208		 * ant_div_alt_lnaconf		bit 0-1
2209		 * ant_div_main_lnaconf		bit 2-3
2210		 * ant_div_alt_gaintb		bit 4
2211		 * ant_div_main_gaintb		bit 5
2212		 * enable_ant_div_lnadiv	bit 6
2213		 * enable_ant_fast_div		bit 7
2214		 */
2215		if ((ant_div_ctl1 >> 0x6) == 0x3)
2216			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
 
 
2217	}
2218
2219	if (AR_SREV_9485_10(ah)) {
2220		pCap->pcie_lcr_extsync_en = true;
2221		pCap->pcie_lcr_offset = 0x80;
2222	}
2223
2224	tx_chainmask = pCap->tx_chainmask;
2225	rx_chainmask = pCap->rx_chainmask;
2226	while (tx_chainmask || rx_chainmask) {
2227		if (tx_chainmask & BIT(0))
2228			pCap->max_txchains++;
2229		if (rx_chainmask & BIT(0))
2230			pCap->max_rxchains++;
2231
2232		tx_chainmask >>= 1;
2233		rx_chainmask >>= 1;
2234	}
2235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2236	return 0;
2237}
2238
2239/****************************/
2240/* GPIO / RFKILL / Antennae */
2241/****************************/
2242
2243static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2244					 u32 gpio, u32 type)
2245{
2246	int addr;
2247	u32 gpio_shift, tmp;
2248
2249	if (gpio > 11)
2250		addr = AR_GPIO_OUTPUT_MUX3;
2251	else if (gpio > 5)
2252		addr = AR_GPIO_OUTPUT_MUX2;
2253	else
2254		addr = AR_GPIO_OUTPUT_MUX1;
2255
2256	gpio_shift = (gpio % 6) * 5;
2257
2258	if (AR_SREV_9280_20_OR_LATER(ah)
2259	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2260		REG_RMW(ah, addr, (type << gpio_shift),
2261			(0x1f << gpio_shift));
2262	} else {
2263		tmp = REG_READ(ah, addr);
2264		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2265		tmp &= ~(0x1f << gpio_shift);
2266		tmp |= (type << gpio_shift);
2267		REG_WRITE(ah, addr, tmp);
2268	}
2269}
2270
2271void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
 
 
 
2272{
2273	u32 gpio_shift;
 
2274
2275	BUG_ON(gpio >= ah->caps.num_gpio_pins);
 
2276
2277	if (AR_DEVID_7010(ah)) {
2278		gpio_shift = gpio;
2279		REG_RMW(ah, AR7010_GPIO_OE,
2280			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2281			(AR7010_GPIO_OE_MASK << gpio_shift));
2282		return;
2283	}
2284
2285	gpio_shift = gpio << 1;
2286	REG_RMW(ah,
2287		AR_GPIO_OE_OUT,
2288		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2289		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2290}
2291EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2292
2293u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
 
2294{
2295#define MS_REG_READ(x, y) \
2296	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2297
2298	if (gpio >= ah->caps.num_gpio_pins)
2299		return 0xffffffff;
2300
2301	if (AR_DEVID_7010(ah)) {
2302		u32 val;
2303		val = REG_READ(ah, AR7010_GPIO_IN);
2304		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2305	} else if (AR_SREV_9300_20_OR_LATER(ah))
2306		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2307			AR_GPIO_BIT(gpio)) != 0;
2308	else if (AR_SREV_9271(ah))
2309		return MS_REG_READ(AR9271, gpio) != 0;
2310	else if (AR_SREV_9287_11_OR_LATER(ah))
2311		return MS_REG_READ(AR9287, gpio) != 0;
2312	else if (AR_SREV_9285_12_OR_LATER(ah))
2313		return MS_REG_READ(AR9285, gpio) != 0;
2314	else if (AR_SREV_9280_20_OR_LATER(ah))
2315		return MS_REG_READ(AR928X, gpio) != 0;
2316	else
2317		return MS_REG_READ(AR, gpio) != 0;
 
 
2318}
2319EXPORT_SYMBOL(ath9k_hw_gpio_get);
2320
2321void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2322			 u32 ah_signal_type)
2323{
2324	u32 gpio_shift;
2325
2326	if (AR_DEVID_7010(ah)) {
2327		gpio_shift = gpio;
2328		REG_RMW(ah, AR7010_GPIO_OE,
2329			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2330			(AR7010_GPIO_OE_MASK << gpio_shift));
2331		return;
2332	}
2333
2334	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2335	gpio_shift = 2 * gpio;
2336	REG_RMW(ah,
2337		AR_GPIO_OE_OUT,
2338		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2339		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2340}
2341EXPORT_SYMBOL(ath9k_hw_cfg_output);
2342
2343void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
 
2344{
2345	if (AR_DEVID_7010(ah)) {
2346		val = val ? 0 : 1;
2347		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2348			AR_GPIO_BIT(gpio));
 
 
 
2349		return;
 
 
 
 
 
 
2350	}
 
 
2351
2352	if (AR_SREV_9271(ah))
2353		val = ~val;
 
 
 
 
2354
2355	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2356		AR_GPIO_BIT(gpio));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2357}
2358EXPORT_SYMBOL(ath9k_hw_set_gpio);
2359
2360u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2361{
2362	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2363}
2364EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2365
2366void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2367{
2368	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2369}
2370EXPORT_SYMBOL(ath9k_hw_setantenna);
2371
2372/*********************/
2373/* General Operation */
2374/*********************/
2375
2376u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2377{
2378	u32 bits = REG_READ(ah, AR_RX_FILTER);
2379	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2380
2381	if (phybits & AR_PHY_ERR_RADAR)
2382		bits |= ATH9K_RX_FILTER_PHYRADAR;
2383	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2384		bits |= ATH9K_RX_FILTER_PHYERR;
2385
2386	return bits;
2387}
2388EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2389
2390void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2391{
2392	u32 phybits;
2393
2394	ENABLE_REGWRITE_BUFFER(ah);
2395
2396	REG_WRITE(ah, AR_RX_FILTER, bits);
2397
2398	phybits = 0;
2399	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2400		phybits |= AR_PHY_ERR_RADAR;
2401	if (bits & ATH9K_RX_FILTER_PHYERR)
2402		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2403	REG_WRITE(ah, AR_PHY_ERR, phybits);
2404
2405	if (phybits)
2406		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2407	else
2408		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2409
2410	REGWRITE_BUFFER_FLUSH(ah);
2411}
2412EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2413
2414bool ath9k_hw_phy_disable(struct ath_hw *ah)
2415{
 
 
 
2416	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2417		return false;
2418
2419	ath9k_hw_init_pll(ah, NULL);
 
2420	return true;
2421}
2422EXPORT_SYMBOL(ath9k_hw_phy_disable);
2423
2424bool ath9k_hw_disable(struct ath_hw *ah)
2425{
2426	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2427		return false;
2428
2429	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2430		return false;
2431
2432	ath9k_hw_init_pll(ah, NULL);
2433	return true;
2434}
2435EXPORT_SYMBOL(ath9k_hw_disable);
2436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2437void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2438{
2439	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2440	struct ath9k_channel *chan = ah->curchan;
2441	struct ieee80211_channel *channel = chan->chan;
2442
2443	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
 
 
2444
2445	ah->eep_ops->set_txpower(ah, chan,
2446				 ath9k_regd_get_ctl(regulatory, chan),
2447				 channel->max_antenna_gain * 2,
2448				 channel->max_power * 2,
2449				 min((u32) MAX_RATE_POWER,
2450				 (u32) regulatory->power_limit), test);
2451}
2452EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2453
2454void ath9k_hw_setopmode(struct ath_hw *ah)
2455{
2456	ath9k_hw_set_operating_mode(ah, ah->opmode);
2457}
2458EXPORT_SYMBOL(ath9k_hw_setopmode);
2459
2460void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2461{
2462	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2463	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2464}
2465EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2466
2467void ath9k_hw_write_associd(struct ath_hw *ah)
2468{
2469	struct ath_common *common = ath9k_hw_common(ah);
2470
2471	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2472	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2473		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2474}
2475EXPORT_SYMBOL(ath9k_hw_write_associd);
2476
2477#define ATH9K_MAX_TSF_READ 10
2478
2479u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2480{
2481	u32 tsf_lower, tsf_upper1, tsf_upper2;
2482	int i;
2483
2484	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2485	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2486		tsf_lower = REG_READ(ah, AR_TSF_L32);
2487		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2488		if (tsf_upper2 == tsf_upper1)
2489			break;
2490		tsf_upper1 = tsf_upper2;
2491	}
2492
2493	WARN_ON( i == ATH9K_MAX_TSF_READ );
2494
2495	return (((u64)tsf_upper1 << 32) | tsf_lower);
2496}
2497EXPORT_SYMBOL(ath9k_hw_gettsf64);
2498
2499void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2500{
2501	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2502	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2503}
2504EXPORT_SYMBOL(ath9k_hw_settsf64);
2505
2506void ath9k_hw_reset_tsf(struct ath_hw *ah)
2507{
2508	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2509			   AH_TSF_WRITE_TIMEOUT))
2510		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2511			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2512
2513	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2514}
2515EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2516
2517void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2518{
2519	if (setting)
2520		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2521	else
2522		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2523}
2524EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2525
2526void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2527{
2528	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2529	u32 macmode;
2530
2531	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2532		macmode = AR_2040_JOINED_RX_CLEAR;
2533	else
2534		macmode = 0;
2535
2536	REG_WRITE(ah, AR_2040_MODE, macmode);
2537}
2538
2539/* HW Generic timers configuration */
2540
2541static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2542{
2543	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2544	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2545	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2546	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2547	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2548	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2549	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2550	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2551	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2552	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2553				AR_NDP2_TIMER_MODE, 0x0002},
2554	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2555				AR_NDP2_TIMER_MODE, 0x0004},
2556	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2557				AR_NDP2_TIMER_MODE, 0x0008},
2558	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2559				AR_NDP2_TIMER_MODE, 0x0010},
2560	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2561				AR_NDP2_TIMER_MODE, 0x0020},
2562	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2563				AR_NDP2_TIMER_MODE, 0x0040},
2564	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2565				AR_NDP2_TIMER_MODE, 0x0080}
2566};
2567
2568/* HW generic timer primitives */
2569
2570/* compute and clear index of rightmost 1 */
2571static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2572{
2573	u32 b;
2574
2575	b = *mask;
2576	b &= (0-b);
2577	*mask &= ~b;
2578	b *= debruijn32;
2579	b >>= 27;
2580
2581	return timer_table->gen_timer_index[b];
2582}
2583
2584u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2585{
2586	return REG_READ(ah, AR_TSF_L32);
2587}
2588EXPORT_SYMBOL(ath9k_hw_gettsf32);
2589
 
 
 
 
 
 
 
 
 
 
2590struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2591					  void (*trigger)(void *),
2592					  void (*overflow)(void *),
2593					  void *arg,
2594					  u8 timer_index)
2595{
2596	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2597	struct ath_gen_timer *timer;
2598
2599	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
 
 
2600
2601	if (timer == NULL) {
2602		ath_err(ath9k_hw_common(ah),
2603			"Failed to allocate memory for hw timer[%d]\n",
2604			timer_index);
 
 
2605		return NULL;
2606	}
2607
2608	/* allocate a hardware generic timer slot */
2609	timer_table->timers[timer_index] = timer;
2610	timer->index = timer_index;
2611	timer->trigger = trigger;
2612	timer->overflow = overflow;
2613	timer->arg = arg;
2614
 
 
 
 
 
2615	return timer;
2616}
2617EXPORT_SYMBOL(ath_gen_timer_alloc);
2618
2619void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2620			      struct ath_gen_timer *timer,
2621			      u32 trig_timeout,
2622			      u32 timer_period)
2623{
2624	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2625	u32 tsf, timer_next;
2626
2627	BUG_ON(!timer_period);
2628
2629	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2630
2631	tsf = ath9k_hw_gettsf32(ah);
2632
2633	timer_next = tsf + trig_timeout;
2634
2635	ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2636		"current tsf %x period %x timer_next %x\n",
2637		tsf, timer_period, timer_next);
2638
2639	/*
2640	 * Program generic timer registers
2641	 */
2642	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2643		 timer_next);
2644	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2645		  timer_period);
2646	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2647		    gen_tmr_configuration[timer->index].mode_mask);
2648
2649	/* Enable both trigger and thresh interrupt masks */
2650	REG_SET_BIT(ah, AR_IMR_S5,
2651		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2652		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2653}
2654EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2655
2656void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2657{
2658	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2659
2660	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2661		(timer->index >= ATH_MAX_GEN_TIMER)) {
2662		return;
2663	}
2664
2665	/* Clear generic timer enable bits. */
2666	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2667			gen_tmr_configuration[timer->index].mode_mask);
2668
 
 
 
 
 
 
 
 
 
 
2669	/* Disable both trigger and thresh interrupt masks */
2670	REG_CLR_BIT(ah, AR_IMR_S5,
2671		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2672		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2673
2674	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
 
 
 
 
 
2675}
2676EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2677
2678void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2679{
2680	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2681
2682	/* free the hardware generic timer slot */
2683	timer_table->timers[timer->index] = NULL;
2684	kfree(timer);
2685}
2686EXPORT_SYMBOL(ath_gen_timer_free);
2687
2688/*
2689 * Generic Timer Interrupts handling
2690 */
2691void ath_gen_timer_isr(struct ath_hw *ah)
2692{
2693	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2694	struct ath_gen_timer *timer;
2695	struct ath_common *common = ath9k_hw_common(ah);
2696	u32 trigger_mask, thresh_mask, index;
2697
2698	/* get hardware generic timer interrupt status */
2699	trigger_mask = ah->intr_gen_timer_trigger;
2700	thresh_mask = ah->intr_gen_timer_thresh;
2701	trigger_mask &= timer_table->timer_mask.val;
2702	thresh_mask &= timer_table->timer_mask.val;
2703
2704	trigger_mask &= ~thresh_mask;
2705
2706	while (thresh_mask) {
2707		index = rightmost_index(timer_table, &thresh_mask);
2708		timer = timer_table->timers[index];
2709		BUG_ON(!timer);
2710		ath_dbg(common, ATH_DBG_HWTIMER,
2711			"TSF overflow for Gen timer %d\n", index);
 
 
 
2712		timer->overflow(timer->arg);
2713	}
2714
2715	while (trigger_mask) {
2716		index = rightmost_index(timer_table, &trigger_mask);
2717		timer = timer_table->timers[index];
2718		BUG_ON(!timer);
2719		ath_dbg(common, ATH_DBG_HWTIMER,
2720			"Gen timer[%d] trigger\n", index);
 
2721		timer->trigger(timer->arg);
2722	}
2723}
2724EXPORT_SYMBOL(ath_gen_timer_isr);
2725
2726/********/
2727/* HTC  */
2728/********/
2729
2730void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2731{
2732	ah->htc_reset_init = true;
2733}
2734EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2735
2736static struct {
2737	u32 version;
2738	const char * name;
2739} ath_mac_bb_names[] = {
2740	/* Devices with external radios */
2741	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2742	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2743	{ AR_SREV_VERSION_9100,		"9100" },
2744	{ AR_SREV_VERSION_9160,		"9160" },
2745	/* Single-chip solutions */
2746	{ AR_SREV_VERSION_9280,		"9280" },
2747	{ AR_SREV_VERSION_9285,		"9285" },
2748	{ AR_SREV_VERSION_9287,         "9287" },
2749	{ AR_SREV_VERSION_9271,         "9271" },
2750	{ AR_SREV_VERSION_9300,         "9300" },
2751	{ AR_SREV_VERSION_9330,         "9330" },
 
2752	{ AR_SREV_VERSION_9485,         "9485" },
 
 
 
 
 
2753};
2754
2755/* For devices with external radios */
2756static struct {
2757	u16 version;
2758	const char * name;
2759} ath_rf_names[] = {
2760	{ 0,				"5133" },
2761	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2762	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2763	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2764	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2765};
2766
2767/*
2768 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2769 */
2770static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2771{
2772	int i;
2773
2774	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2775		if (ath_mac_bb_names[i].version == mac_bb_version) {
2776			return ath_mac_bb_names[i].name;
2777		}
2778	}
2779
2780	return "????";
2781}
2782
2783/*
2784 * Return the RF name. "????" is returned if the RF is unknown.
2785 * Used for devices with external radios.
2786 */
2787static const char *ath9k_hw_rf_name(u16 rf_version)
2788{
2789	int i;
2790
2791	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2792		if (ath_rf_names[i].version == rf_version) {
2793			return ath_rf_names[i].name;
2794		}
2795	}
2796
2797	return "????";
2798}
2799
2800void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2801{
2802	int used;
2803
2804	/* chipsets >= AR9280 are single-chip */
2805	if (AR_SREV_9280_20_OR_LATER(ah)) {
2806		used = snprintf(hw_name, len,
2807			       "Atheros AR%s Rev:%x",
2808			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2809			       ah->hw_version.macRev);
2810	}
2811	else {
2812		used = snprintf(hw_name, len,
2813			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2814			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2815			       ah->hw_version.macRev,
2816			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2817						AR_RADIO_SREV_MAJOR)),
2818			       ah->hw_version.phyRev);
2819	}
2820
2821	hw_name[used] = '\0';
2822}
2823EXPORT_SYMBOL(ath9k_hw_name);
v4.17
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <linux/io.h>
  18#include <linux/slab.h>
  19#include <linux/module.h>
  20#include <linux/time.h>
  21#include <linux/bitops.h>
  22#include <linux/etherdevice.h>
  23#include <linux/gpio.h>
  24#include <asm/unaligned.h>
  25
  26#include "hw.h"
  27#include "hw-ops.h"
 
  28#include "ar9003_mac.h"
  29#include "ar9003_mci.h"
  30#include "ar9003_phy.h"
  31#include "ath9k.h"
  32
  33static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  34
  35MODULE_AUTHOR("Atheros Communications");
  36MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  37MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  38MODULE_LICENSE("Dual BSD/GPL");
  39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  41{
 
  42	struct ath_common *common = ath9k_hw_common(ah);
  43	struct ath9k_channel *chan = ah->curchan;
  44	unsigned int clockrate;
  45
  46	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  47	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  48		clockrate = 117;
  49	else if (!chan) /* should really check for CCK instead */
  50		clockrate = ATH9K_CLOCK_RATE_CCK;
  51	else if (IS_CHAN_2GHZ(chan))
  52		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  53	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  54		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  55	else
  56		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  57
  58	if (chan) {
  59		if (IS_CHAN_HT40(chan))
  60			clockrate *= 2;
  61		if (IS_CHAN_HALF_RATE(chan))
 
  62			clockrate /= 2;
  63		if (IS_CHAN_QUARTER_RATE(chan))
  64			clockrate /= 4;
  65	}
  66
  67	common->clockrate = clockrate;
  68}
  69
  70static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  71{
  72	struct ath_common *common = ath9k_hw_common(ah);
  73
  74	return usecs * common->clockrate;
  75}
  76
  77bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  78{
  79	int i;
  80
  81	BUG_ON(timeout < AH_TIME_QUANTUM);
  82
  83	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  84		if ((REG_READ(ah, reg) & mask) == val)
  85			return true;
  86
  87		udelay(AH_TIME_QUANTUM);
  88	}
  89
  90	ath_dbg(ath9k_hw_common(ah), ANY,
  91		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  92		timeout, reg, REG_READ(ah, reg), mask, val);
  93
  94	return false;
  95}
  96EXPORT_SYMBOL(ath9k_hw_wait);
  97
  98void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  99			  int hw_delay)
 100{
 101	hw_delay /= 10;
 102
 103	if (IS_CHAN_HALF_RATE(chan))
 104		hw_delay *= 2;
 105	else if (IS_CHAN_QUARTER_RATE(chan))
 106		hw_delay *= 4;
 107
 108	udelay(hw_delay + BASE_ACTIVATE_DELAY);
 109}
 110
 111void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
 112			  int column, unsigned int *writecnt)
 113{
 114	int r;
 115
 116	ENABLE_REGWRITE_BUFFER(ah);
 117	for (r = 0; r < array->ia_rows; r++) {
 118		REG_WRITE(ah, INI_RA(array, r, 0),
 119			  INI_RA(array, r, column));
 120		DO_DELAY(*writecnt);
 121	}
 122	REGWRITE_BUFFER_FLUSH(ah);
 123}
 124
 125void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
 126{
 127	u32 *tmp_reg_list, *tmp_data;
 128	int i;
 129
 130	tmp_reg_list = kmalloc(size * sizeof(u32), GFP_KERNEL);
 131	if (!tmp_reg_list) {
 132		dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
 133		return;
 134	}
 135
 136	tmp_data = kmalloc(size * sizeof(u32), GFP_KERNEL);
 137	if (!tmp_data) {
 138		dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
 139		goto error_tmp_data;
 140	}
 141
 142	for (i = 0; i < size; i++)
 143		tmp_reg_list[i] = array[i][0];
 144
 145	REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
 146
 147	for (i = 0; i < size; i++)
 148		array[i][1] = tmp_data[i];
 149
 150	kfree(tmp_data);
 151error_tmp_data:
 152	kfree(tmp_reg_list);
 153}
 154
 155u32 ath9k_hw_reverse_bits(u32 val, u32 n)
 156{
 157	u32 retval;
 158	int i;
 159
 160	for (i = 0, retval = 0; i < n; i++) {
 161		retval = (retval << 1) | (val & 1);
 162		val >>= 1;
 163	}
 164	return retval;
 165}
 166
 167u16 ath9k_hw_computetxtime(struct ath_hw *ah,
 168			   u8 phy, int kbps,
 169			   u32 frameLen, u16 rateix,
 170			   bool shortPreamble)
 171{
 172	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
 173
 174	if (kbps == 0)
 175		return 0;
 176
 177	switch (phy) {
 178	case WLAN_RC_PHY_CCK:
 179		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
 180		if (shortPreamble)
 181			phyTime >>= 1;
 182		numBits = frameLen << 3;
 183		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
 184		break;
 185	case WLAN_RC_PHY_OFDM:
 186		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
 187			bitsPerSymbol =
 188				((kbps >> 2) * OFDM_SYMBOL_TIME_QUARTER) / 1000;
 189			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 190			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 191			txTime = OFDM_SIFS_TIME_QUARTER
 192				+ OFDM_PREAMBLE_TIME_QUARTER
 193				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
 194		} else if (ah->curchan &&
 195			   IS_CHAN_HALF_RATE(ah->curchan)) {
 196			bitsPerSymbol =
 197				((kbps >> 1) * OFDM_SYMBOL_TIME_HALF) / 1000;
 198			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 199			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 200			txTime = OFDM_SIFS_TIME_HALF +
 201				OFDM_PREAMBLE_TIME_HALF
 202				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
 203		} else {
 204			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
 205			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 206			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 207			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
 208				+ (numSymbols * OFDM_SYMBOL_TIME);
 209		}
 210		break;
 211	default:
 212		ath_err(ath9k_hw_common(ah),
 213			"Unknown phy %u (rate ix %u)\n", phy, rateix);
 214		txTime = 0;
 215		break;
 216	}
 217
 218	return txTime;
 219}
 220EXPORT_SYMBOL(ath9k_hw_computetxtime);
 221
 222void ath9k_hw_get_channel_centers(struct ath_hw *ah,
 223				  struct ath9k_channel *chan,
 224				  struct chan_centers *centers)
 225{
 226	int8_t extoff;
 227
 228	if (!IS_CHAN_HT40(chan)) {
 229		centers->ctl_center = centers->ext_center =
 230			centers->synth_center = chan->channel;
 231		return;
 232	}
 233
 234	if (IS_CHAN_HT40PLUS(chan)) {
 
 235		centers->synth_center =
 236			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
 237		extoff = 1;
 238	} else {
 239		centers->synth_center =
 240			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
 241		extoff = -1;
 242	}
 243
 244	centers->ctl_center =
 245		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
 246	/* 25 MHz spacing is supported by hw but not on upper layers */
 247	centers->ext_center =
 248		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
 249}
 250
 251/******************/
 252/* Chip Revisions */
 253/******************/
 254
 255static void ath9k_hw_read_revisions(struct ath_hw *ah)
 256{
 257	u32 val;
 258
 259	if (ah->get_mac_revision)
 260		ah->hw_version.macRev = ah->get_mac_revision();
 261
 262	switch (ah->hw_version.devid) {
 263	case AR5416_AR9100_DEVID:
 264		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
 265		break;
 266	case AR9300_DEVID_AR9330:
 267		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
 268		if (!ah->get_mac_revision) {
 
 
 269			val = REG_READ(ah, AR_SREV);
 270			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 271		}
 272		return;
 273	case AR9300_DEVID_AR9340:
 274		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
 275		return;
 276	case AR9300_DEVID_QCA955X:
 277		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
 278		return;
 279	case AR9300_DEVID_AR953X:
 280		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
 281		return;
 282	case AR9300_DEVID_QCA956X:
 283		ah->hw_version.macVersion = AR_SREV_VERSION_9561;
 284		return;
 285	}
 286
 287	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
 288
 289	if (val == 0xFF) {
 290		val = REG_READ(ah, AR_SREV);
 291		ah->hw_version.macVersion =
 292			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
 293		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 294
 295		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
 296			ah->is_pciexpress = true;
 297		else
 298			ah->is_pciexpress = (val &
 299					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
 300	} else {
 301		if (!AR_SREV_9100(ah))
 302			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
 303
 304		ah->hw_version.macRev = val & AR_SREV_REVISION;
 305
 306		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
 307			ah->is_pciexpress = true;
 308	}
 309}
 310
 311/************************************/
 312/* HW Attach, Detach, Init Routines */
 313/************************************/
 314
 315static void ath9k_hw_disablepcie(struct ath_hw *ah)
 316{
 317	if (!AR_SREV_5416(ah))
 318		return;
 319
 320	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
 321	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
 322	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
 323	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
 324	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
 325	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
 326	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
 327	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
 328	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
 329
 330	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
 331}
 332
 
 
 
 
 
 
 
 
 333/* This should work for all families including legacy */
 334static bool ath9k_hw_chip_test(struct ath_hw *ah)
 335{
 336	struct ath_common *common = ath9k_hw_common(ah);
 337	u32 regAddr[2] = { AR_STA_ID0 };
 338	u32 regHold[2];
 339	static const u32 patternData[4] = {
 340		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
 341	};
 342	int i, j, loop_max;
 343
 344	if (!AR_SREV_9300_20_OR_LATER(ah)) {
 345		loop_max = 2;
 346		regAddr[1] = AR_PHY_BASE + (8 << 2);
 347	} else
 348		loop_max = 1;
 349
 350	for (i = 0; i < loop_max; i++) {
 351		u32 addr = regAddr[i];
 352		u32 wrData, rdData;
 353
 354		regHold[i] = REG_READ(ah, addr);
 355		for (j = 0; j < 0x100; j++) {
 356			wrData = (j << 16) | j;
 357			REG_WRITE(ah, addr, wrData);
 358			rdData = REG_READ(ah, addr);
 359			if (rdData != wrData) {
 360				ath_err(common,
 361					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 362					addr, wrData, rdData);
 363				return false;
 364			}
 365		}
 366		for (j = 0; j < 4; j++) {
 367			wrData = patternData[j];
 368			REG_WRITE(ah, addr, wrData);
 369			rdData = REG_READ(ah, addr);
 370			if (wrData != rdData) {
 371				ath_err(common,
 372					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 373					addr, wrData, rdData);
 374				return false;
 375			}
 376		}
 377		REG_WRITE(ah, regAddr[i], regHold[i]);
 378	}
 379	udelay(100);
 380
 381	return true;
 382}
 383
 384static void ath9k_hw_init_config(struct ath_hw *ah)
 385{
 386	struct ath_common *common = ath9k_hw_common(ah);
 387
 388	ah->config.dma_beacon_response_time = 1;
 389	ah->config.sw_beacon_response_time = 6;
 390	ah->config.cwm_ignore_extcca = false;
 
 
 
 
 391	ah->config.analog_shiftreg = 1;
 
 392
 393	ah->config.rx_intr_mitigation = true;
 
 
 
 394
 395	if (AR_SREV_9300_20_OR_LATER(ah)) {
 396		ah->config.rimt_last = 500;
 397		ah->config.rimt_first = 2000;
 398	} else {
 399		ah->config.rimt_last = 250;
 400		ah->config.rimt_first = 700;
 401	}
 402
 403	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
 404		ah->config.pll_pwrsave = 7;
 405
 406	/*
 407	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
 408	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
 409	 * This means we use it for all AR5416 devices, and the few
 410	 * minor PCI AR9280 devices out there.
 411	 *
 412	 * Serialization is required because these devices do not handle
 413	 * well the case of two concurrent reads/writes due to the latency
 414	 * involved. During one read/write another read/write can be issued
 415	 * on another CPU while the previous read/write may still be working
 416	 * on our hardware, if we hit this case the hardware poops in a loop.
 417	 * We prevent this by serializing reads and writes.
 418	 *
 419	 * This issue is not present on PCI-Express devices or pre-AR5416
 420	 * devices (legacy, 802.11abg).
 421	 */
 422	if (num_possible_cpus() > 1)
 423		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
 424
 425	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
 426		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
 427		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
 428		     !ah->is_pciexpress)) {
 429			ah->config.serialize_regmode = SER_REG_MODE_ON;
 430		} else {
 431			ah->config.serialize_regmode = SER_REG_MODE_OFF;
 432		}
 433	}
 434
 435	ath_dbg(common, RESET, "serialize_regmode is %d\n",
 436		ah->config.serialize_regmode);
 437
 438	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 439		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
 440	else
 441		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
 442}
 443
 444static void ath9k_hw_init_defaults(struct ath_hw *ah)
 445{
 446	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 447
 448	regulatory->country_code = CTRY_DEFAULT;
 449	regulatory->power_limit = MAX_RATE_POWER;
 
 450
 451	ah->hw_version.magic = AR5416_MAGIC;
 452	ah->hw_version.subvendorid = 0;
 453
 454	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
 455			       AR_STA_ID1_MCAST_KSRCH;
 
 
 456	if (AR_SREV_9100(ah))
 457		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
 458
 459	ah->slottime = 9;
 460	ah->globaltxtimeout = (u32) -1;
 461	ah->power_mode = ATH9K_PM_UNDEFINED;
 462	ah->htc_reset_init = true;
 463
 464	ah->tpc_enabled = false;
 465
 466	ah->ani_function = ATH9K_ANI_ALL;
 467	if (!AR_SREV_9300_20_OR_LATER(ah))
 468		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
 469
 470	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 471		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
 472	else
 473		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
 474}
 475
 476static void ath9k_hw_init_macaddr(struct ath_hw *ah)
 477{
 478	struct ath_common *common = ath9k_hw_common(ah);
 
 479	int i;
 480	u16 eeval;
 481	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
 482
 483	/* MAC address may already be loaded via ath9k_platform_data */
 484	if (is_valid_ether_addr(common->macaddr))
 485		return;
 486
 487	for (i = 0; i < 3; i++) {
 488		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
 
 489		common->macaddr[2 * i] = eeval >> 8;
 490		common->macaddr[2 * i + 1] = eeval & 0xff;
 491	}
 
 
 492
 493	if (is_valid_ether_addr(common->macaddr))
 494		return;
 495
 496	ath_err(common, "eeprom contains invalid mac address: %pM\n",
 497		common->macaddr);
 498
 499	random_ether_addr(common->macaddr);
 500	ath_err(common, "random mac address will be used: %pM\n",
 501		common->macaddr);
 502
 503	return;
 504}
 505
 506static int ath9k_hw_post_init(struct ath_hw *ah)
 507{
 508	struct ath_common *common = ath9k_hw_common(ah);
 509	int ecode;
 510
 511	if (common->bus_ops->ath_bus_type != ATH_USB) {
 512		if (!ath9k_hw_chip_test(ah))
 513			return -ENODEV;
 514	}
 515
 516	if (!AR_SREV_9300_20_OR_LATER(ah)) {
 517		ecode = ar9002_hw_rf_claim(ah);
 518		if (ecode != 0)
 519			return ecode;
 520	}
 521
 522	ecode = ath9k_hw_eeprom_init(ah);
 523	if (ecode != 0)
 524		return ecode;
 525
 526	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
 
 527		ah->eep_ops->get_eeprom_ver(ah),
 528		ah->eep_ops->get_eeprom_rev(ah));
 529
 530	ath9k_hw_ani_init(ah);
 
 
 
 
 
 
 531
 532	/*
 533	 * EEPROM needs to be initialized before we do this.
 534	 * This is required for regulatory compliance.
 535	 */
 536	if (AR_SREV_9300_20_OR_LATER(ah)) {
 537		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
 538		if ((regdmn & 0xF0) == CTL_FCC) {
 539			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
 540			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
 541		}
 542	}
 543
 544	return 0;
 545}
 546
 547static int ath9k_hw_attach_ops(struct ath_hw *ah)
 548{
 549	if (!AR_SREV_9300_20_OR_LATER(ah))
 550		return ar9002_hw_attach_ops(ah);
 551
 552	ar9003_hw_attach_ops(ah);
 553	return 0;
 554}
 555
 556/* Called for all hardware families */
 557static int __ath9k_hw_init(struct ath_hw *ah)
 558{
 559	struct ath_common *common = ath9k_hw_common(ah);
 560	int r = 0;
 561
 562	ath9k_hw_read_revisions(ah);
 563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564	switch (ah->hw_version.macVersion) {
 565	case AR_SREV_VERSION_5416_PCI:
 566	case AR_SREV_VERSION_5416_PCIE:
 567	case AR_SREV_VERSION_9160:
 568	case AR_SREV_VERSION_9100:
 569	case AR_SREV_VERSION_9280:
 570	case AR_SREV_VERSION_9285:
 571	case AR_SREV_VERSION_9287:
 572	case AR_SREV_VERSION_9271:
 573	case AR_SREV_VERSION_9300:
 574	case AR_SREV_VERSION_9330:
 575	case AR_SREV_VERSION_9485:
 576	case AR_SREV_VERSION_9340:
 577	case AR_SREV_VERSION_9462:
 578	case AR_SREV_VERSION_9550:
 579	case AR_SREV_VERSION_9565:
 580	case AR_SREV_VERSION_9531:
 581	case AR_SREV_VERSION_9561:
 582		break;
 583	default:
 584		ath_err(common,
 585			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
 586			ah->hw_version.macVersion, ah->hw_version.macRev);
 587		return -EOPNOTSUPP;
 588	}
 589
 590	/*
 591	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
 592	 * We need to do this to avoid RMW of this register. We cannot
 593	 * read the reg when chip is asleep.
 594	 */
 595	if (AR_SREV_9300_20_OR_LATER(ah)) {
 596		ah->WARegVal = REG_READ(ah, AR_WA);
 597		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
 598				 AR_WA_ASPM_TIMER_BASED_DISABLE);
 599	}
 600
 601	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
 602		ath_err(common, "Couldn't reset chip\n");
 603		return -EIO;
 604	}
 605
 606	if (AR_SREV_9565(ah)) {
 607		ah->WARegVal |= AR_WA_BIT22;
 608		REG_WRITE(ah, AR_WA, ah->WARegVal);
 609	}
 610
 611	ath9k_hw_init_defaults(ah);
 612	ath9k_hw_init_config(ah);
 613
 614	r = ath9k_hw_attach_ops(ah);
 615	if (r)
 616		return r;
 617
 618	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
 619		ath_err(common, "Couldn't wakeup chip\n");
 620		return -EIO;
 621	}
 622
 623	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
 624	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
 625		ah->is_pciexpress = false;
 626
 627	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
 628	ath9k_hw_init_cal_settings(ah);
 629
 630	if (!ah->is_pciexpress)
 
 
 
 
 
 
 
 
 
 
 
 631		ath9k_hw_disablepcie(ah);
 632
 
 
 
 633	r = ath9k_hw_post_init(ah);
 634	if (r)
 635		return r;
 636
 637	ath9k_hw_init_mode_gain_regs(ah);
 638	r = ath9k_hw_fill_cap_info(ah);
 639	if (r)
 640		return r;
 641
 642	ath9k_hw_init_macaddr(ah);
 643	ath9k_hw_init_hang_checks(ah);
 
 
 
 
 
 
 
 
 
 
 
 
 
 644
 645	common->state = ATH_HW_INITIALIZED;
 646
 647	return 0;
 648}
 649
 650int ath9k_hw_init(struct ath_hw *ah)
 651{
 652	int ret;
 653	struct ath_common *common = ath9k_hw_common(ah);
 654
 655	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
 656	switch (ah->hw_version.devid) {
 657	case AR5416_DEVID_PCI:
 658	case AR5416_DEVID_PCIE:
 659	case AR5416_AR9100_DEVID:
 660	case AR9160_DEVID_PCI:
 661	case AR9280_DEVID_PCI:
 662	case AR9280_DEVID_PCIE:
 663	case AR9285_DEVID_PCIE:
 664	case AR9287_DEVID_PCI:
 665	case AR9287_DEVID_PCIE:
 666	case AR2427_DEVID_PCIE:
 667	case AR9300_DEVID_PCIE:
 668	case AR9300_DEVID_AR9485_PCIE:
 669	case AR9300_DEVID_AR9330:
 670	case AR9300_DEVID_AR9340:
 671	case AR9300_DEVID_QCA955X:
 672	case AR9300_DEVID_AR9580:
 673	case AR9300_DEVID_AR9462:
 674	case AR9485_DEVID_AR1111:
 675	case AR9300_DEVID_AR9565:
 676	case AR9300_DEVID_AR953X:
 677	case AR9300_DEVID_QCA956X:
 678		break;
 679	default:
 680		if (common->bus_ops->ath_bus_type == ATH_USB)
 681			break;
 682		ath_err(common, "Hardware device ID 0x%04x not supported\n",
 683			ah->hw_version.devid);
 684		return -EOPNOTSUPP;
 685	}
 686
 687	ret = __ath9k_hw_init(ah);
 688	if (ret) {
 689		ath_err(common,
 690			"Unable to initialize hardware; initialization status: %d\n",
 691			ret);
 692		return ret;
 693	}
 694
 695	ath_dynack_init(ah);
 696
 697	return 0;
 698}
 699EXPORT_SYMBOL(ath9k_hw_init);
 700
 701static void ath9k_hw_init_qos(struct ath_hw *ah)
 702{
 703	ENABLE_REGWRITE_BUFFER(ah);
 704
 705	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
 706	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
 707
 708	REG_WRITE(ah, AR_QOS_NO_ACK,
 709		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
 710		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
 711		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
 712
 713	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
 714	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
 715	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
 716	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
 717	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
 718
 719	REGWRITE_BUFFER_FLUSH(ah);
 720}
 721
 722u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
 723{
 724	struct ath_common *common = ath9k_hw_common(ah);
 725	int i = 0;
 726
 727	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 728	udelay(100);
 729	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 730
 731	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
 732
 733		udelay(100);
 734
 735		if (WARN_ON_ONCE(i >= 100)) {
 736			ath_err(common, "PLL4 measurement not done\n");
 737			break;
 738		}
 739
 740		i++;
 741	}
 742
 743	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
 744}
 745EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
 746
 747static void ath9k_hw_init_pll(struct ath_hw *ah,
 748			      struct ath9k_channel *chan)
 749{
 750	u32 pll;
 751
 752	pll = ath9k_hw_compute_pll_control(ah, chan);
 753
 754	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
 755		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
 756		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 757			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
 758		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 759			      AR_CH0_DPLL2_KD, 0x40);
 760		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 761			      AR_CH0_DPLL2_KI, 0x4);
 762
 763		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 764			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
 765		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 766			      AR_CH0_BB_DPLL1_NINI, 0x58);
 767		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 768			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
 769
 770		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 771			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
 772		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 773			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
 774		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 775			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
 776
 777		/* program BB PLL phase_shift to 0x6 */
 778		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 779			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
 780
 781		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 782			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
 783		udelay(1000);
 784	} else if (AR_SREV_9330(ah)) {
 785		u32 ddr_dpll2, pll_control2, kd;
 786
 787		if (ah->is_clk_25mhz) {
 788			ddr_dpll2 = 0x18e82f01;
 789			pll_control2 = 0xe04a3d;
 790			kd = 0x1d;
 791		} else {
 792			ddr_dpll2 = 0x19e82f01;
 793			pll_control2 = 0x886666;
 794			kd = 0x3d;
 795		}
 796
 797		/* program DDR PLL ki and kd value */
 798		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
 799
 800		/* program DDR PLL phase_shift */
 801		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
 802			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
 803
 804		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
 805			  pll | AR_RTC_9300_PLL_BYPASS);
 806		udelay(1000);
 807
 808		/* program refdiv, nint, frac to RTC register */
 809		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
 810
 811		/* program BB PLL kd and ki value */
 812		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
 813		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
 814
 815		/* program BB PLL phase_shift */
 816		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 817			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
 818	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
 819		   AR_SREV_9561(ah)) {
 820		u32 regval, pll2_divint, pll2_divfrac, refdiv;
 821
 822		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
 823			  pll | AR_RTC_9300_SOC_PLL_BYPASS);
 824		udelay(1000);
 825
 826		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
 827		udelay(100);
 828
 829		if (ah->is_clk_25mhz) {
 830			if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
 831				pll2_divint = 0x1c;
 832				pll2_divfrac = 0xa3d2;
 833				refdiv = 1;
 834			} else {
 835				pll2_divint = 0x54;
 836				pll2_divfrac = 0x1eb85;
 837				refdiv = 3;
 838			}
 839		} else {
 840			if (AR_SREV_9340(ah)) {
 841				pll2_divint = 88;
 842				pll2_divfrac = 0;
 843				refdiv = 5;
 844			} else {
 845				pll2_divint = 0x11;
 846				pll2_divfrac = (AR_SREV_9531(ah) ||
 847						AR_SREV_9561(ah)) ?
 848						0x26665 : 0x26666;
 849				refdiv = 1;
 850			}
 851		}
 852
 853		regval = REG_READ(ah, AR_PHY_PLL_MODE);
 854		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
 855			regval |= (0x1 << 22);
 856		else
 857			regval |= (0x1 << 16);
 858		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 859		udelay(100);
 860
 861		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
 862			  (pll2_divint << 18) | pll2_divfrac);
 863		udelay(100);
 864
 865		regval = REG_READ(ah, AR_PHY_PLL_MODE);
 866		if (AR_SREV_9340(ah))
 867			regval = (regval & 0x80071fff) |
 868				(0x1 << 30) |
 869				(0x1 << 13) |
 870				(0x4 << 26) |
 871				(0x18 << 19);
 872		else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
 873			regval = (regval & 0x01c00fff) |
 874				(0x1 << 31) |
 875				(0x2 << 29) |
 876				(0xa << 25) |
 877				(0x1 << 19);
 878
 879			if (AR_SREV_9531(ah))
 880				regval |= (0x6 << 12);
 881		} else
 882			regval = (regval & 0x80071fff) |
 883				(0x3 << 30) |
 884				(0x1 << 13) |
 885				(0x4 << 26) |
 886				(0x60 << 19);
 887		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 888
 889		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
 890			REG_WRITE(ah, AR_PHY_PLL_MODE,
 891				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
 892		else
 893			REG_WRITE(ah, AR_PHY_PLL_MODE,
 894				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
 895
 896		udelay(1000);
 897	}
 898
 899	if (AR_SREV_9565(ah))
 900		pll |= 0x40000;
 901	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
 902
 903	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
 904	    AR_SREV_9550(ah))
 905		udelay(1000);
 906
 907	/* Switch the core clock for ar9271 to 117Mhz */
 908	if (AR_SREV_9271(ah)) {
 909		udelay(500);
 910		REG_WRITE(ah, 0x50040, 0x304);
 911	}
 912
 913	udelay(RTC_PLL_SETTLE_DELAY);
 914
 915	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 916}
 917
 918static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
 919					  enum nl80211_iftype opmode)
 920{
 921	u32 sync_default = AR_INTR_SYNC_DEFAULT;
 922	u32 imr_reg = AR_IMR_TXERR |
 923		AR_IMR_TXURN |
 924		AR_IMR_RXERR |
 925		AR_IMR_RXORN |
 926		AR_IMR_BCNMISC;
 927	u32 msi_cfg = 0;
 928
 929	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
 930	    AR_SREV_9561(ah))
 931		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
 932
 933	if (AR_SREV_9300_20_OR_LATER(ah)) {
 934		imr_reg |= AR_IMR_RXOK_HP;
 935		if (ah->config.rx_intr_mitigation) {
 936			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 937			msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
 938		} else {
 939			imr_reg |= AR_IMR_RXOK_LP;
 940			msi_cfg |= AR_INTCFG_MSI_RXOK;
 941		}
 942	} else {
 943		if (ah->config.rx_intr_mitigation) {
 944			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 945			msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
 946		} else {
 947			imr_reg |= AR_IMR_RXOK;
 948			msi_cfg |= AR_INTCFG_MSI_RXOK;
 949		}
 950	}
 951
 952	if (ah->config.tx_intr_mitigation) {
 953		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
 954		msi_cfg |= AR_INTCFG_MSI_TXINTM | AR_INTCFG_MSI_TXMINTR;
 955	} else {
 956		imr_reg |= AR_IMR_TXOK;
 957		msi_cfg |= AR_INTCFG_MSI_TXOK;
 958	}
 
 959
 960	ENABLE_REGWRITE_BUFFER(ah);
 961
 962	REG_WRITE(ah, AR_IMR, imr_reg);
 963	ah->imrs2_reg |= AR_IMR_S2_GTT;
 964	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
 965
 966	if (ah->msi_enabled) {
 967		ah->msi_reg = REG_READ(ah, AR_PCIE_MSI);
 968		ah->msi_reg |= AR_PCIE_MSI_HW_DBI_WR_EN;
 969		ah->msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
 970		REG_WRITE(ah, AR_INTCFG, msi_cfg);
 971		ath_dbg(ath9k_hw_common(ah), ANY,
 972			"value of AR_INTCFG=0x%X, msi_cfg=0x%X\n",
 973			REG_READ(ah, AR_INTCFG), msi_cfg);
 974	}
 975
 976	if (!AR_SREV_9100(ah)) {
 977		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
 978		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
 979		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
 980	}
 981
 982	REGWRITE_BUFFER_FLUSH(ah);
 983
 984	if (AR_SREV_9300_20_OR_LATER(ah)) {
 985		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
 986		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
 987		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
 988		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
 989	}
 990}
 991
 992static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
 993{
 994	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
 995	val = min(val, (u32) 0xFFFF);
 996	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
 997}
 998
 999void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1000{
1001	u32 val = ath9k_hw_mac_to_clks(ah, us);
1002	val = min(val, (u32) 0xFFFF);
1003	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1004}
1005
1006void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1007{
1008	u32 val = ath9k_hw_mac_to_clks(ah, us);
1009	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1010	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1011}
1012
1013void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1014{
1015	u32 val = ath9k_hw_mac_to_clks(ah, us);
1016	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1017	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1018}
1019
1020static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1021{
1022	if (tu > 0xFFFF) {
1023		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1024			tu);
1025		ah->globaltxtimeout = (u32) -1;
1026		return false;
1027	} else {
1028		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1029		ah->globaltxtimeout = tu;
1030		return true;
1031	}
1032}
1033
1034void ath9k_hw_init_global_settings(struct ath_hw *ah)
1035{
1036	struct ath_common *common = ath9k_hw_common(ah);
 
1037	const struct ath9k_channel *chan = ah->curchan;
1038	int acktimeout, ctstimeout, ack_offset = 0;
1039	int slottime;
1040	int sifstime;
1041	int rx_lat = 0, tx_lat = 0, eifs = 0, ack_shift = 0;
1042	u32 reg;
1043
1044	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1045		ah->misc_mode);
1046
1047	if (!chan)
1048		return;
1049
1050	if (ah->misc_mode != 0)
1051		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1052
1053	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1054		rx_lat = 41;
1055	else
1056		rx_lat = 37;
1057	tx_lat = 54;
1058
1059	if (IS_CHAN_5GHZ(chan))
1060		sifstime = 16;
1061	else
1062		sifstime = 10;
1063
1064	if (IS_CHAN_HALF_RATE(chan)) {
1065		eifs = 175;
1066		rx_lat *= 2;
1067		tx_lat *= 2;
1068		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1069		    tx_lat += 11;
1070
 
1071		sifstime = 32;
1072		ack_offset = 16;
1073		ack_shift = 3;
1074		slottime = 13;
1075	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1076		eifs = 340;
1077		rx_lat = (rx_lat * 4) - 1;
1078		tx_lat *= 4;
1079		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1080		    tx_lat += 22;
1081
 
1082		sifstime = 64;
1083		ack_offset = 32;
1084		ack_shift = 1;
1085		slottime = 21;
1086	} else {
1087		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1088			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1089			reg = AR_USEC_ASYNC_FIFO;
1090		} else {
1091			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1092				common->clockrate;
1093			reg = REG_READ(ah, AR_USEC);
1094		}
1095		rx_lat = MS(reg, AR_USEC_RX_LAT);
1096		tx_lat = MS(reg, AR_USEC_TX_LAT);
1097
1098		slottime = ah->slottime;
 
 
 
 
1099	}
1100
1101	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1102	slottime += 3 * ah->coverage_class;
1103	acktimeout = slottime + sifstime + ack_offset;
1104	ctstimeout = acktimeout;
1105
1106	/*
1107	 * Workaround for early ACK timeouts, add an offset to match the
1108	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1109	 * This was initially only meant to work around an issue with delayed
1110	 * BA frames in some implementations, but it has been found to fix ACK
1111	 * timeout issues in other cases as well.
1112	 */
1113	if (IS_CHAN_2GHZ(chan) &&
1114	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1115		acktimeout += 64 - sifstime - ah->slottime;
1116		ctstimeout += 48 - sifstime - ah->slottime;
1117	}
1118
1119	if (ah->dynack.enabled) {
1120		acktimeout = ah->dynack.ackto;
1121		ctstimeout = acktimeout;
1122		slottime = (acktimeout - 3) / 2;
1123	} else {
1124		ah->dynack.ackto = acktimeout;
1125	}
1126
1127	ath9k_hw_set_sifs_time(ah, sifstime);
1128	ath9k_hw_setslottime(ah, slottime);
1129	ath9k_hw_set_ack_timeout(ah, acktimeout);
1130	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1131	if (ah->globaltxtimeout != (u32) -1)
1132		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1133
1134	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1135	REG_RMW(ah, AR_USEC,
1136		(common->clockrate - 1) |
1137		SM(rx_lat, AR_USEC_RX_LAT) |
1138		SM(tx_lat, AR_USEC_TX_LAT),
1139		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1140
1141	if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
1142		REG_RMW(ah, AR_TXSIFS,
1143			sifstime | SM(ack_shift, AR_TXSIFS_ACK_SHIFT),
1144			(AR_TXSIFS_TIME | AR_TXSIFS_ACK_SHIFT));
1145}
1146EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1147
1148void ath9k_hw_deinit(struct ath_hw *ah)
1149{
1150	struct ath_common *common = ath9k_hw_common(ah);
1151
1152	if (common->state < ATH_HW_INITIALIZED)
1153		return;
1154
1155	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
 
 
 
1156}
1157EXPORT_SYMBOL(ath9k_hw_deinit);
1158
1159/*******/
1160/* INI */
1161/*******/
1162
1163u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1164{
1165	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1166
1167	if (IS_CHAN_2GHZ(chan))
 
 
1168		ctl |= CTL_11G;
1169	else
1170		ctl |= CTL_11A;
1171
1172	return ctl;
1173}
1174
1175/****************************************/
1176/* Reset and Channel Switching Routines */
1177/****************************************/
1178
1179static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1180{
1181	struct ath_common *common = ath9k_hw_common(ah);
1182	int txbuf_size;
1183
1184	ENABLE_REGWRITE_BUFFER(ah);
1185
1186	/*
1187	 * set AHB_MODE not to do cacheline prefetches
1188	*/
1189	if (!AR_SREV_9300_20_OR_LATER(ah))
1190		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1191
1192	/*
1193	 * let mac dma reads be in 128 byte chunks
1194	 */
1195	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1196
1197	REGWRITE_BUFFER_FLUSH(ah);
1198
1199	/*
1200	 * Restore TX Trigger Level to its pre-reset value.
1201	 * The initial value depends on whether aggregation is enabled, and is
1202	 * adjusted whenever underruns are detected.
1203	 */
1204	if (!AR_SREV_9300_20_OR_LATER(ah))
1205		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1206
1207	ENABLE_REGWRITE_BUFFER(ah);
1208
1209	/*
1210	 * let mac dma writes be in 128 byte chunks
1211	 */
1212	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1213
1214	/*
1215	 * Setup receive FIFO threshold to hold off TX activities
1216	 */
1217	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1218
1219	if (AR_SREV_9300_20_OR_LATER(ah)) {
1220		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1221		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1222
1223		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1224			ah->caps.rx_status_len);
1225	}
1226
1227	/*
1228	 * reduce the number of usable entries in PCU TXBUF to avoid
1229	 * wrap around issues.
1230	 */
1231	if (AR_SREV_9285(ah)) {
1232		/* For AR9285 the number of Fifos are reduced to half.
1233		 * So set the usable tx buf size also to half to
1234		 * avoid data/delimiter underruns
1235		 */
1236		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1237	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1238		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1239		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1240	} else {
1241		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1242	}
1243
1244	if (!AR_SREV_9271(ah))
1245		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1246
1247	REGWRITE_BUFFER_FLUSH(ah);
1248
1249	if (AR_SREV_9300_20_OR_LATER(ah))
1250		ath9k_hw_reset_txstatus_ring(ah);
1251}
1252
1253static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1254{
1255	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1256	u32 set = AR_STA_ID1_KSRCH_MODE;
1257
1258	ENABLE_REG_RMW_BUFFER(ah);
1259	switch (opmode) {
1260	case NL80211_IFTYPE_ADHOC:
1261		if (!AR_SREV_9340_13(ah)) {
1262			set |= AR_STA_ID1_ADHOC;
1263			REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1264			break;
1265		}
1266		/* fall through */
1267	case NL80211_IFTYPE_OCB:
1268	case NL80211_IFTYPE_MESH_POINT:
 
 
 
1269	case NL80211_IFTYPE_AP:
1270		set |= AR_STA_ID1_STA_AP;
1271		/* fall through */
1272	case NL80211_IFTYPE_STATION:
1273		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1274		break;
1275	default:
1276		if (!ah->is_monitoring)
1277			set = 0;
1278		break;
1279	}
1280	REG_RMW(ah, AR_STA_ID1, set, mask);
1281	REG_RMW_BUFFER_FLUSH(ah);
1282}
1283
1284void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1285				   u32 *coef_mantissa, u32 *coef_exponent)
1286{
1287	u32 coef_exp, coef_man;
1288
1289	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1290		if ((coef_scaled >> coef_exp) & 0x1)
1291			break;
1292
1293	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1294
1295	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1296
1297	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1298	*coef_exponent = coef_exp - 16;
1299}
1300
1301/* AR9330 WAR:
1302 * call external reset function to reset WMAC if:
1303 * - doing a cold reset
1304 * - we have pending frames in the TX queues.
1305 */
1306static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1307{
1308	int i, npend = 0;
1309
1310	for (i = 0; i < AR_NUM_QCU; i++) {
1311		npend = ath9k_hw_numtxpending(ah, i);
1312		if (npend)
1313			break;
1314	}
1315
1316	if (ah->external_reset &&
1317	    (npend || type == ATH9K_RESET_COLD)) {
1318		int reset_err = 0;
1319
1320		ath_dbg(ath9k_hw_common(ah), RESET,
1321			"reset MAC via external reset\n");
1322
1323		reset_err = ah->external_reset();
1324		if (reset_err) {
1325			ath_err(ath9k_hw_common(ah),
1326				"External reset failed, err=%d\n",
1327				reset_err);
1328			return false;
1329		}
1330
1331		REG_WRITE(ah, AR_RTC_RESET, 1);
1332	}
1333
1334	return true;
1335}
1336
1337static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1338{
1339	u32 rst_flags;
1340	u32 tmpReg;
1341
1342	if (AR_SREV_9100(ah)) {
1343		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1344			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1345		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1346	}
1347
1348	ENABLE_REGWRITE_BUFFER(ah);
1349
1350	if (AR_SREV_9300_20_OR_LATER(ah)) {
1351		REG_WRITE(ah, AR_WA, ah->WARegVal);
1352		udelay(10);
1353	}
1354
1355	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1356		  AR_RTC_FORCE_WAKE_ON_INT);
1357
1358	if (AR_SREV_9100(ah)) {
1359		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1360			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1361	} else {
1362		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1363		if (AR_SREV_9340(ah))
1364			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1365		else
1366			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1367				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1368
1369		if (tmpReg) {
1370			u32 val;
1371			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1372
1373			val = AR_RC_HOSTIF;
1374			if (!AR_SREV_9300_20_OR_LATER(ah))
1375				val |= AR_RC_AHB;
1376			REG_WRITE(ah, AR_RC, val);
1377
1378		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1379			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1380
1381		rst_flags = AR_RTC_RC_MAC_WARM;
1382		if (type == ATH9K_RESET_COLD)
1383			rst_flags |= AR_RTC_RC_MAC_COLD;
1384	}
1385
1386	if (AR_SREV_9330(ah)) {
1387		if (!ath9k_hw_ar9330_reset_war(ah, type))
1388			return false;
1389	}
 
 
 
 
 
1390
1391	if (ath9k_hw_mci_is_enabled(ah))
1392		ar9003_mci_check_gpm_offset(ah);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1393
1394	/* DMA HALT added to resolve ar9300 and ar9580 bus error during
1395	 * RTC_RC reg read
1396	 */
1397	if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) {
1398		REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1399		ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK,
1400			      20 * AH_WAIT_TIMEOUT);
1401		REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1402	}
1403
1404	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1405
1406	REGWRITE_BUFFER_FLUSH(ah);
1407
1408	if (AR_SREV_9300_20_OR_LATER(ah))
1409		udelay(50);
1410	else if (AR_SREV_9100(ah))
1411		mdelay(10);
1412	else
1413		udelay(100);
1414
1415	REG_WRITE(ah, AR_RTC_RC, 0);
1416	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1417		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
 
1418		return false;
1419	}
1420
1421	if (!AR_SREV_9100(ah))
1422		REG_WRITE(ah, AR_RC, 0);
1423
1424	if (AR_SREV_9100(ah))
1425		udelay(50);
1426
1427	return true;
1428}
1429
1430static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1431{
1432	ENABLE_REGWRITE_BUFFER(ah);
1433
1434	if (AR_SREV_9300_20_OR_LATER(ah)) {
1435		REG_WRITE(ah, AR_WA, ah->WARegVal);
1436		udelay(10);
1437	}
1438
1439	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1440		  AR_RTC_FORCE_WAKE_ON_INT);
1441
1442	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1443		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1444
1445	REG_WRITE(ah, AR_RTC_RESET, 0);
1446
1447	REGWRITE_BUFFER_FLUSH(ah);
1448
1449	udelay(2);
 
1450
1451	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1452		REG_WRITE(ah, AR_RC, 0);
1453
1454	REG_WRITE(ah, AR_RTC_RESET, 1);
1455
1456	if (!ath9k_hw_wait(ah,
1457			   AR_RTC_STATUS,
1458			   AR_RTC_STATUS_M,
1459			   AR_RTC_STATUS_ON,
1460			   AH_WAIT_TIMEOUT)) {
1461		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
 
1462		return false;
1463	}
1464
1465	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1466}
1467
1468static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1469{
1470	bool ret = false;
1471
1472	if (AR_SREV_9300_20_OR_LATER(ah)) {
1473		REG_WRITE(ah, AR_WA, ah->WARegVal);
1474		udelay(10);
1475	}
1476
1477	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1478		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1479
1480	if (!ah->reset_power_on)
1481		type = ATH9K_RESET_POWER_ON;
1482
1483	switch (type) {
1484	case ATH9K_RESET_POWER_ON:
1485		ret = ath9k_hw_set_reset_power_on(ah);
1486		if (ret)
1487			ah->reset_power_on = true;
1488		break;
1489	case ATH9K_RESET_WARM:
1490	case ATH9K_RESET_COLD:
1491		ret = ath9k_hw_set_reset(ah, type);
1492		break;
1493	default:
1494		break;
1495	}
1496
1497	return ret;
1498}
1499
1500static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1501				struct ath9k_channel *chan)
1502{
1503	int reset_type = ATH9K_RESET_WARM;
1504
1505	if (AR_SREV_9280(ah)) {
1506		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1507			reset_type = ATH9K_RESET_POWER_ON;
1508		else
1509			reset_type = ATH9K_RESET_COLD;
1510	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1511		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1512		reset_type = ATH9K_RESET_COLD;
1513
1514	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1515		return false;
1516
1517	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1518		return false;
1519
1520	ah->chip_fullsleep = false;
1521
1522	if (AR_SREV_9330(ah))
1523		ar9003_hw_internal_regulator_apply(ah);
1524	ath9k_hw_init_pll(ah, chan);
 
1525
1526	return true;
1527}
1528
1529static bool ath9k_hw_channel_change(struct ath_hw *ah,
1530				    struct ath9k_channel *chan)
1531{
 
1532	struct ath_common *common = ath9k_hw_common(ah);
1533	struct ath9k_hw_capabilities *pCap = &ah->caps;
1534	bool band_switch = false, mode_diff = false;
1535	u8 ini_reloaded = 0;
1536	u32 qnum;
1537	int r;
1538
1539	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1540		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1541		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1542		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1543	}
1544
1545	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1546		if (ath9k_hw_numtxpending(ah, qnum)) {
1547			ath_dbg(common, QUEUE,
1548				"Transmit frames pending on queue %d\n", qnum);
1549			return false;
1550		}
1551	}
1552
1553	if (!ath9k_hw_rfbus_req(ah)) {
1554		ath_err(common, "Could not kill baseband RX\n");
1555		return false;
1556	}
1557
1558	if (band_switch || mode_diff) {
1559		ath9k_hw_mark_phy_inactive(ah);
1560		udelay(5);
1561
1562		if (band_switch)
1563			ath9k_hw_init_pll(ah, chan);
1564
1565		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1566			ath_err(common, "Failed to do fast channel change\n");
1567			return false;
1568		}
1569	}
1570
1571	ath9k_hw_set_channel_regs(ah, chan);
1572
1573	r = ath9k_hw_rf_set_freq(ah, chan);
1574	if (r) {
1575		ath_err(common, "Failed to set channel\n");
1576		return false;
1577	}
1578	ath9k_hw_set_clockrate(ah);
1579	ath9k_hw_apply_txpower(ah, chan, false);
1580
1581	ath9k_hw_set_delta_slope(ah, chan);
1582	ath9k_hw_spur_mitigate_freq(ah, chan);
 
 
 
 
1583
1584	if (band_switch || ini_reloaded)
1585		ah->eep_ops->set_board_values(ah, chan);
1586
1587	ath9k_hw_init_bb(ah, chan);
1588	ath9k_hw_rfbus_done(ah);
1589
1590	if (band_switch || ini_reloaded) {
1591		ah->ah_flags |= AH_FASTCC;
1592		ath9k_hw_init_cal(ah, chan);
1593		ah->ah_flags &= ~AH_FASTCC;
1594	}
1595
1596	return true;
1597}
1598
1599static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1600{
1601	u32 gpio_mask = ah->gpio_mask;
1602	int i;
1603
1604	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1605		if (!(gpio_mask & 1))
1606			continue;
1607
1608		ath9k_hw_gpio_request_out(ah, i, NULL,
1609					  AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1610		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1611		ath9k_hw_gpio_free(ah, i);
1612	}
1613}
1614
1615void ath9k_hw_check_nav(struct ath_hw *ah)
1616{
1617	struct ath_common *common = ath9k_hw_common(ah);
1618	u32 val;
1619
1620	val = REG_READ(ah, AR_NAV);
1621	if (val != 0xdeadbeef && val > 0x7fff) {
1622		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1623		REG_WRITE(ah, AR_NAV, 0);
1624	}
1625}
1626EXPORT_SYMBOL(ath9k_hw_check_nav);
1627
1628bool ath9k_hw_check_alive(struct ath_hw *ah)
1629{
1630	int count = 50;
1631	u32 reg, last_val;
1632
1633	/* Check if chip failed to wake up */
1634	if (REG_READ(ah, AR_CFG) == 0xdeadbeef)
1635		return false;
1636
1637	if (AR_SREV_9300(ah))
1638		return !ath9k_hw_detect_mac_hang(ah);
1639
1640	if (AR_SREV_9285_12_OR_LATER(ah))
1641		return true;
1642
1643	last_val = REG_READ(ah, AR_OBS_BUS_1);
1644	do {
1645		reg = REG_READ(ah, AR_OBS_BUS_1);
1646		if (reg != last_val)
1647			return true;
1648
1649		udelay(1);
1650		last_val = reg;
1651		if ((reg & 0x7E7FFFEF) == 0x00702400)
1652			continue;
1653
1654		switch (reg & 0x7E000B00) {
1655		case 0x1E000000:
1656		case 0x52000B00:
1657		case 0x18000B00:
1658			continue;
1659		default:
1660			return true;
1661		}
1662	} while (count-- > 0);
1663
1664	return false;
1665}
1666EXPORT_SYMBOL(ath9k_hw_check_alive);
1667
1668static void ath9k_hw_init_mfp(struct ath_hw *ah)
1669{
1670	/* Setup MFP options for CCMP */
1671	if (AR_SREV_9280_20_OR_LATER(ah)) {
1672		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1673		 * frames when constructing CCMP AAD. */
1674		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1675			      0xc7ff);
1676		if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1677			ah->sw_mgmt_crypto_tx = true;
1678		else
1679			ah->sw_mgmt_crypto_tx = false;
1680		ah->sw_mgmt_crypto_rx = false;
1681	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1682		/* Disable hardware crypto for management frames */
1683		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1684			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1685		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1686			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1687		ah->sw_mgmt_crypto_tx = true;
1688		ah->sw_mgmt_crypto_rx = true;
1689	} else {
1690		ah->sw_mgmt_crypto_tx = true;
1691		ah->sw_mgmt_crypto_rx = true;
1692	}
1693}
1694
1695static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1696				  u32 macStaId1, u32 saveDefAntenna)
1697{
1698	struct ath_common *common = ath9k_hw_common(ah);
1699
1700	ENABLE_REGWRITE_BUFFER(ah);
1701
1702	REG_RMW(ah, AR_STA_ID1, macStaId1
1703		  | AR_STA_ID1_RTS_USE_DEF
1704		  | ah->sta_id1_defaults,
1705		  ~AR_STA_ID1_SADH_MASK);
1706	ath_hw_setbssidmask(common);
1707	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1708	ath9k_hw_write_associd(ah);
1709	REG_WRITE(ah, AR_ISR, ~0);
1710	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1711
1712	REGWRITE_BUFFER_FLUSH(ah);
1713
1714	ath9k_hw_set_operating_mode(ah, ah->opmode);
1715}
1716
1717static void ath9k_hw_init_queues(struct ath_hw *ah)
1718{
1719	int i;
1720
1721	ENABLE_REGWRITE_BUFFER(ah);
1722
1723	for (i = 0; i < AR_NUM_DCU; i++)
1724		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1725
1726	REGWRITE_BUFFER_FLUSH(ah);
1727
1728	ah->intr_txqs = 0;
1729	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1730		ath9k_hw_resettxqueue(ah, i);
1731}
1732
1733/*
1734 * For big endian systems turn on swapping for descriptors
1735 */
1736static void ath9k_hw_init_desc(struct ath_hw *ah)
1737{
1738	struct ath_common *common = ath9k_hw_common(ah);
1739
1740	if (AR_SREV_9100(ah)) {
1741		u32 mask;
1742		mask = REG_READ(ah, AR_CFG);
1743		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1744			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1745				mask);
1746		} else {
1747			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1748			REG_WRITE(ah, AR_CFG, mask);
1749			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1750				REG_READ(ah, AR_CFG));
1751		}
1752	} else {
1753		if (common->bus_ops->ath_bus_type == ATH_USB) {
1754			/* Configure AR9271 target WLAN */
1755			if (AR_SREV_9271(ah))
1756				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1757			else
1758				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1759		}
1760#ifdef __BIG_ENDIAN
1761		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1762			 AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1763			 AR_SREV_9561(ah))
1764			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1765		else
1766			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1767#endif
1768	}
1769}
1770
1771/*
1772 * Fast channel change:
1773 * (Change synthesizer based on channel freq without resetting chip)
1774 */
1775static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1776{
1777	struct ath_common *common = ath9k_hw_common(ah);
1778	struct ath9k_hw_capabilities *pCap = &ah->caps;
1779	int ret;
1780
1781	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1782		goto fail;
1783
1784	if (ah->chip_fullsleep)
1785		goto fail;
1786
1787	if (!ah->curchan)
1788		goto fail;
1789
1790	if (chan->channel == ah->curchan->channel)
1791		goto fail;
1792
1793	if ((ah->curchan->channelFlags | chan->channelFlags) &
1794	    (CHANNEL_HALF | CHANNEL_QUARTER))
1795		goto fail;
1796
1797	/*
1798	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1799	 */
1800	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1801	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1802		goto fail;
1803
1804	if (!ath9k_hw_check_alive(ah))
1805		goto fail;
1806
1807	/*
1808	 * For AR9462, make sure that calibration data for
1809	 * re-using are present.
1810	 */
1811	if (AR_SREV_9462(ah) && (ah->caldata &&
1812				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1813				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1814				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1815		goto fail;
1816
1817	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1818		ah->curchan->channel, chan->channel);
1819
1820	ret = ath9k_hw_channel_change(ah, chan);
1821	if (!ret)
1822		goto fail;
1823
1824	if (ath9k_hw_mci_is_enabled(ah))
1825		ar9003_mci_2g5g_switch(ah, false);
1826
1827	ath9k_hw_loadnf(ah, ah->curchan);
1828	ath9k_hw_start_nfcal(ah, true);
1829
1830	if (AR_SREV_9271(ah))
1831		ar9002_hw_load_ani_reg(ah, chan);
1832
1833	return 0;
1834fail:
1835	return -EINVAL;
1836}
1837
1838u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur)
1839{
1840	struct timespec ts;
1841	s64 usec;
1842
1843	if (!cur) {
1844		getrawmonotonic(&ts);
1845		cur = &ts;
1846	}
1847
1848	usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1849	usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1850
1851	return (u32) usec;
1852}
1853EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1854
1855int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1856		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1857{
1858	struct ath_common *common = ath9k_hw_common(ah);
1859	u32 saveLedState;
 
1860	u32 saveDefAntenna;
1861	u32 macStaId1;
1862	struct timespec tsf_ts;
1863	u32 tsf_offset;
1864	u64 tsf = 0;
1865	int r;
1866	bool start_mci_reset = false;
1867	bool save_fullsleep = ah->chip_fullsleep;
1868
1869	if (ath9k_hw_mci_is_enabled(ah)) {
1870		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1871		if (start_mci_reset)
1872			return 0;
1873	}
1874
1875	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1876		return -EIO;
1877
1878	if (ah->curchan && !ah->chip_fullsleep)
1879		ath9k_hw_getnf(ah, ah->curchan);
1880
1881	ah->caldata = caldata;
1882	if (caldata && (chan->channel != caldata->channel ||
1883			chan->channelFlags != caldata->channelFlags)) {
 
 
1884		/* Operating channel changed, reset channel calibration data */
1885		memset(caldata, 0, sizeof(*caldata));
1886		ath9k_init_nfcal_hist_buffer(ah, chan);
1887	} else if (caldata) {
1888		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1889	}
1890	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1891
1892	if (fastcc) {
1893		r = ath9k_hw_do_fastcc(ah, chan);
1894		if (!r)
1895			return r;
 
 
 
 
 
 
 
 
 
 
 
1896	}
1897
1898	if (ath9k_hw_mci_is_enabled(ah))
1899		ar9003_mci_stop_bt(ah, save_fullsleep);
1900
1901	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1902	if (saveDefAntenna == 0)
1903		saveDefAntenna = 1;
1904
1905	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1906
1907	/* Save TSF before chip reset, a cold reset clears it */
1908	getrawmonotonic(&tsf_ts);
1909	tsf = ath9k_hw_gettsf64(ah);
 
1910
1911	saveLedState = REG_READ(ah, AR_CFG_LED) &
1912		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1913		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1914
1915	ath9k_hw_mark_phy_inactive(ah);
1916
1917	ah->paprd_table_write_done = false;
1918
1919	/* Only required on the first reset */
1920	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1921		REG_WRITE(ah,
1922			  AR9271_RESET_POWER_DOWN_CONTROL,
1923			  AR9271_RADIO_RF_RST);
1924		udelay(50);
1925	}
1926
1927	if (!ath9k_hw_chip_reset(ah, chan)) {
1928		ath_err(common, "Chip reset failed\n");
1929		return -EINVAL;
1930	}
1931
1932	/* Only required on the first reset */
1933	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1934		ah->htc_reset_init = false;
1935		REG_WRITE(ah,
1936			  AR9271_RESET_POWER_DOWN_CONTROL,
1937			  AR9271_GATE_MAC_CTL);
1938		udelay(50);
1939	}
1940
1941	/* Restore TSF */
1942	tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1943	ath9k_hw_settsf64(ah, tsf + tsf_offset);
1944
1945	if (AR_SREV_9280_20_OR_LATER(ah))
1946		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1947
1948	if (!AR_SREV_9300_20_OR_LATER(ah))
1949		ar9002_hw_enable_async_fifo(ah);
1950
1951	r = ath9k_hw_process_ini(ah, chan);
1952	if (r)
1953		return r;
1954
1955	ath9k_hw_set_rfmode(ah, chan);
1956
1957	if (ath9k_hw_mci_is_enabled(ah))
1958		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1959
1960	/*
1961	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1962	 * right after the chip reset. When that happens, write a new
1963	 * value after the initvals have been applied.
 
1964	 */
1965	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1966		tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1967		ath9k_hw_settsf64(ah, tsf + tsf_offset);
1968	}
1969
1970	ath9k_hw_init_mfp(ah);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1971
1972	ath9k_hw_set_delta_slope(ah, chan);
1973	ath9k_hw_spur_mitigate_freq(ah, chan);
1974	ah->eep_ops->set_board_values(ah, chan);
1975
1976	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1977
1978	r = ath9k_hw_rf_set_freq(ah, chan);
1979	if (r)
1980		return r;
1981
1982	ath9k_hw_set_clockrate(ah);
1983
1984	ath9k_hw_init_queues(ah);
 
 
 
 
 
 
 
 
 
 
1985	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1986	ath9k_hw_ani_cache_ini_regs(ah);
1987	ath9k_hw_init_qos(ah);
1988
1989	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1990		ath9k_hw_gpio_request_in(ah, ah->rfkill_gpio, "ath9k-rfkill");
1991
1992	ath9k_hw_init_global_settings(ah);
1993
1994	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1995		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1996			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1997		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1998			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1999		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2000			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2001	}
2002
2003	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2004
2005	ath9k_hw_set_dma(ah);
2006
2007	if (!ath9k_hw_mci_is_enabled(ah))
2008		REG_WRITE(ah, AR_OBS, 8);
2009
2010	ENABLE_REG_RMW_BUFFER(ah);
2011	if (ah->config.rx_intr_mitigation) {
2012		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
2013		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
2014	}
2015
2016	if (ah->config.tx_intr_mitigation) {
2017		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2018		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2019	}
2020	REG_RMW_BUFFER_FLUSH(ah);
2021
2022	ath9k_hw_init_bb(ah, chan);
2023
2024	if (caldata) {
2025		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
2026		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
2027	}
2028	if (!ath9k_hw_init_cal(ah, chan))
2029		return -EIO;
2030
2031	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2032		return -EIO;
2033
2034	ENABLE_REGWRITE_BUFFER(ah);
2035
2036	ath9k_hw_restore_chainmask(ah);
2037	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2038
2039	REGWRITE_BUFFER_FLUSH(ah);
2040
2041	ath9k_hw_gen_timer_start_tsf2(ah);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2042
2043	ath9k_hw_init_desc(ah);
2044
2045	if (ath9k_hw_btcoex_is_enabled(ah))
2046		ath9k_hw_btcoex_enable(ah);
2047
2048	if (ath9k_hw_mci_is_enabled(ah))
2049		ar9003_mci_check_bt(ah);
2050
2051	if (AR_SREV_9300_20_OR_LATER(ah)) {
2052		ath9k_hw_loadnf(ah, chan);
2053		ath9k_hw_start_nfcal(ah, true);
2054	}
2055
2056	if (AR_SREV_9300_20_OR_LATER(ah))
2057		ar9003_hw_bb_watchdog_config(ah);
2058
2059	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2060		ar9003_hw_disable_phy_restart(ah);
 
2061
2062	ath9k_hw_apply_gpio_override(ah);
2063
2064	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2065		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2066
2067	if (ah->hw->conf.radar_enabled) {
2068		/* set HW specific DFS configuration */
2069		ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2070		ath9k_hw_set_radar_params(ah);
2071	}
2072
2073	return 0;
2074}
2075EXPORT_SYMBOL(ath9k_hw_reset);
2076
2077/******************************/
2078/* Power Management (Chipset) */
2079/******************************/
2080
2081/*
2082 * Notify Power Mgt is disabled in self-generated frames.
2083 * If requested, force chip to sleep.
2084 */
2085static void ath9k_set_power_sleep(struct ath_hw *ah)
2086{
2087	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
 
 
 
 
 
 
 
 
 
2088
2089	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2090		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2091		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2092		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2093		/* xxx Required for WLAN only case ? */
2094		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2095		udelay(100);
2096	}
2097
2098	/*
2099	 * Clear the RTC force wake bit to allow the
2100	 * mac to go to sleep.
2101	 */
2102	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2103
2104	if (ath9k_hw_mci_is_enabled(ah))
2105		udelay(100);
2106
2107	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2108		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2109
2110	/* Shutdown chip. Active low */
2111	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2112		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2113		udelay(2);
2114	}
2115
2116	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2117	if (AR_SREV_9300_20_OR_LATER(ah))
2118		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
 
2119}
2120
2121/*
2122 * Notify Power Management is enabled in self-generating
2123 * frames. If request, set power mode of chip to
2124 * auto/normal.  Duration in units of 128us (1/8 TU).
2125 */
2126static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2127{
2128	struct ath9k_hw_capabilities *pCap = &ah->caps;
2129
2130	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
 
 
2131
2132	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2133		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2134		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2135			  AR_RTC_FORCE_WAKE_ON_INT);
2136	} else {
2137
2138		/* When chip goes into network sleep, it could be waken
2139		 * up by MCI_INT interrupt caused by BT's HW messages
2140		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2141		 * rate (~100us). This will cause chip to leave and
2142		 * re-enter network sleep mode frequently, which in
2143		 * consequence will have WLAN MCI HW to generate lots of
2144		 * SYS_WAKING and SYS_SLEEPING messages which will make
2145		 * BT CPU to busy to process.
2146		 */
2147		if (ath9k_hw_mci_is_enabled(ah))
2148			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2149				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2150		/*
2151		 * Clear the RTC force wake bit to allow the
2152		 * mac to go to sleep.
2153		 */
2154		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2155
2156		if (ath9k_hw_mci_is_enabled(ah))
2157			udelay(30);
2158	}
2159
2160	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2161	if (AR_SREV_9300_20_OR_LATER(ah))
2162		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2163}
2164
2165static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2166{
2167	u32 val;
2168	int i;
2169
2170	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2171	if (AR_SREV_9300_20_OR_LATER(ah)) {
2172		REG_WRITE(ah, AR_WA, ah->WARegVal);
2173		udelay(10);
2174	}
2175
2176	if ((REG_READ(ah, AR_RTC_STATUS) &
2177	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2178		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2179			return false;
 
 
 
 
 
2180		}
2181		if (!AR_SREV_9300_20_OR_LATER(ah))
2182			ath9k_hw_init_pll(ah, NULL);
2183	}
2184	if (AR_SREV_9100(ah))
2185		REG_SET_BIT(ah, AR_RTC_RESET,
2186			    AR_RTC_RESET_EN);
2187
2188	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2189		    AR_RTC_FORCE_WAKE_EN);
2190	if (AR_SREV_9100(ah))
2191		mdelay(10);
2192	else
2193		udelay(50);
2194
2195	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2196		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2197		if (val == AR_RTC_STATUS_ON)
2198			break;
2199		udelay(50);
2200		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2201			    AR_RTC_FORCE_WAKE_EN);
2202	}
2203	if (i == 0) {
2204		ath_err(ath9k_hw_common(ah),
2205			"Failed to wakeup in %uus\n",
2206			POWER_UP_TIME / 20);
2207		return false;
 
2208	}
2209
2210	if (ath9k_hw_mci_is_enabled(ah))
2211		ar9003_mci_set_power_awake(ah);
2212
2213	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2214
2215	return true;
2216}
2217
2218bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2219{
2220	struct ath_common *common = ath9k_hw_common(ah);
2221	int status = true;
2222	static const char *modes[] = {
2223		"AWAKE",
2224		"FULL-SLEEP",
2225		"NETWORK SLEEP",
2226		"UNDEFINED"
2227	};
2228
2229	if (ah->power_mode == mode)
2230		return status;
2231
2232	ath_dbg(common, RESET, "%s -> %s\n",
2233		modes[ah->power_mode], modes[mode]);
2234
2235	switch (mode) {
2236	case ATH9K_PM_AWAKE:
2237		status = ath9k_hw_set_power_awake(ah);
2238		break;
2239	case ATH9K_PM_FULL_SLEEP:
2240		if (ath9k_hw_mci_is_enabled(ah))
2241			ar9003_mci_set_full_sleep(ah);
2242
2243		ath9k_set_power_sleep(ah);
2244		ah->chip_fullsleep = true;
2245		break;
2246	case ATH9K_PM_NETWORK_SLEEP:
2247		ath9k_set_power_network_sleep(ah);
2248		break;
2249	default:
2250		ath_err(common, "Unknown power mode %u\n", mode);
2251		return false;
2252	}
2253	ah->power_mode = mode;
2254
2255	/*
2256	 * XXX: If this warning never comes up after a while then
2257	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2258	 * ath9k_hw_setpower() return type void.
2259	 */
2260
2261	if (!(ah->ah_flags & AH_UNPLUGGED))
2262		ATH_DBG_WARN_ON_ONCE(!status);
2263
2264	return status;
2265}
2266EXPORT_SYMBOL(ath9k_hw_setpower);
2267
2268/*******************/
2269/* Beacon Handling */
2270/*******************/
2271
2272void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2273{
2274	int flags = 0;
2275
2276	ENABLE_REGWRITE_BUFFER(ah);
2277
2278	switch (ah->opmode) {
2279	case NL80211_IFTYPE_ADHOC:
 
2280		REG_SET_BIT(ah, AR_TXCFG,
2281			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2282	case NL80211_IFTYPE_MESH_POINT:
 
 
2283	case NL80211_IFTYPE_AP:
2284		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2285		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2286			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2287		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2288			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2289		flags |=
2290			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2291		break;
2292	default:
2293		ath_dbg(ath9k_hw_common(ah), BEACON,
2294			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
 
2295		return;
2296		break;
2297	}
2298
2299	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2300	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2301	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
 
2302
2303	REGWRITE_BUFFER_FLUSH(ah);
2304
2305	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2306}
2307EXPORT_SYMBOL(ath9k_hw_beaconinit);
2308
2309void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2310				    const struct ath9k_beacon_state *bs)
2311{
2312	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2313	struct ath9k_hw_capabilities *pCap = &ah->caps;
2314	struct ath_common *common = ath9k_hw_common(ah);
2315
2316	ENABLE_REGWRITE_BUFFER(ah);
2317
2318	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2319	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2320	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
 
 
 
2321
2322	REGWRITE_BUFFER_FLUSH(ah);
2323
2324	REG_RMW_FIELD(ah, AR_RSSI_THR,
2325		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2326
2327	beaconintval = bs->bs_intval;
2328
2329	if (bs->bs_sleepduration > beaconintval)
2330		beaconintval = bs->bs_sleepduration;
2331
2332	dtimperiod = bs->bs_dtimperiod;
2333	if (bs->bs_sleepduration > dtimperiod)
2334		dtimperiod = bs->bs_sleepduration;
2335
2336	if (beaconintval == dtimperiod)
2337		nextTbtt = bs->bs_nextdtim;
2338	else
2339		nextTbtt = bs->bs_nexttbtt;
2340
2341	ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim);
2342	ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt);
2343	ath_dbg(common, BEACON, "beacon period %u\n", beaconintval);
2344	ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod);
2345
2346	ENABLE_REGWRITE_BUFFER(ah);
2347
2348	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2349	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
 
2350
2351	REG_WRITE(ah, AR_SLEEP1,
2352		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2353		  | AR_SLEEP1_ASSUME_DTIM);
2354
2355	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2356		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2357	else
2358		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2359
2360	REG_WRITE(ah, AR_SLEEP2,
2361		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2362
2363	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2364	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2365
2366	REGWRITE_BUFFER_FLUSH(ah);
2367
2368	REG_SET_BIT(ah, AR_TIMER_MODE,
2369		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2370		    AR_DTIM_TIMER_EN);
2371
2372	/* TSF Out of Range Threshold */
2373	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2374}
2375EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2376
2377/*******************/
2378/* HW Capabilities */
2379/*******************/
2380
2381static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2382{
2383	eeprom_chainmask &= chip_chainmask;
2384	if (eeprom_chainmask)
2385		return eeprom_chainmask;
2386	else
2387		return chip_chainmask;
2388}
2389
2390/**
2391 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2392 * @ah: the atheros hardware data structure
2393 *
2394 * We enable DFS support upstream on chipsets which have passed a series
2395 * of tests. The testing requirements are going to be documented. Desired
2396 * test requirements are documented at:
2397 *
2398 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2399 *
2400 * Once a new chipset gets properly tested an individual commit can be used
2401 * to document the testing for DFS for that chipset.
2402 */
2403static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2404{
2405
2406	switch (ah->hw_version.macVersion) {
2407	/* for temporary testing DFS with 9280 */
2408	case AR_SREV_VERSION_9280:
2409	/* AR9580 will likely be our first target to get testing on */
2410	case AR_SREV_VERSION_9580:
2411		return true;
2412	default:
2413		return false;
2414	}
2415}
2416
2417static void ath9k_gpio_cap_init(struct ath_hw *ah)
2418{
2419	struct ath9k_hw_capabilities *pCap = &ah->caps;
2420
2421	if (AR_SREV_9271(ah)) {
2422		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2423		pCap->gpio_mask = AR9271_GPIO_MASK;
2424	} else if (AR_DEVID_7010(ah)) {
2425		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2426		pCap->gpio_mask = AR7010_GPIO_MASK;
2427	} else if (AR_SREV_9287(ah)) {
2428		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2429		pCap->gpio_mask = AR9287_GPIO_MASK;
2430	} else if (AR_SREV_9285(ah)) {
2431		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2432		pCap->gpio_mask = AR9285_GPIO_MASK;
2433	} else if (AR_SREV_9280(ah)) {
2434		pCap->num_gpio_pins = AR9280_NUM_GPIO;
2435		pCap->gpio_mask = AR9280_GPIO_MASK;
2436	} else if (AR_SREV_9300(ah)) {
2437		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2438		pCap->gpio_mask = AR9300_GPIO_MASK;
2439	} else if (AR_SREV_9330(ah)) {
2440		pCap->num_gpio_pins = AR9330_NUM_GPIO;
2441		pCap->gpio_mask = AR9330_GPIO_MASK;
2442	} else if (AR_SREV_9340(ah)) {
2443		pCap->num_gpio_pins = AR9340_NUM_GPIO;
2444		pCap->gpio_mask = AR9340_GPIO_MASK;
2445	} else if (AR_SREV_9462(ah)) {
2446		pCap->num_gpio_pins = AR9462_NUM_GPIO;
2447		pCap->gpio_mask = AR9462_GPIO_MASK;
2448	} else if (AR_SREV_9485(ah)) {
2449		pCap->num_gpio_pins = AR9485_NUM_GPIO;
2450		pCap->gpio_mask = AR9485_GPIO_MASK;
2451	} else if (AR_SREV_9531(ah)) {
2452		pCap->num_gpio_pins = AR9531_NUM_GPIO;
2453		pCap->gpio_mask = AR9531_GPIO_MASK;
2454	} else if (AR_SREV_9550(ah)) {
2455		pCap->num_gpio_pins = AR9550_NUM_GPIO;
2456		pCap->gpio_mask = AR9550_GPIO_MASK;
2457	} else if (AR_SREV_9561(ah)) {
2458		pCap->num_gpio_pins = AR9561_NUM_GPIO;
2459		pCap->gpio_mask = AR9561_GPIO_MASK;
2460	} else if (AR_SREV_9565(ah)) {
2461		pCap->num_gpio_pins = AR9565_NUM_GPIO;
2462		pCap->gpio_mask = AR9565_GPIO_MASK;
2463	} else if (AR_SREV_9580(ah)) {
2464		pCap->num_gpio_pins = AR9580_NUM_GPIO;
2465		pCap->gpio_mask = AR9580_GPIO_MASK;
2466	} else {
2467		pCap->num_gpio_pins = AR_NUM_GPIO;
2468		pCap->gpio_mask = AR_GPIO_MASK;
2469	}
2470}
2471
2472int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2473{
2474	struct ath9k_hw_capabilities *pCap = &ah->caps;
2475	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2476	struct ath_common *common = ath9k_hw_common(ah);
 
 
2477
2478	u16 eeval;
2479	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2480
2481	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2482	regulatory->current_rd = eeval;
2483
 
 
 
 
 
2484	if (ah->opmode != NL80211_IFTYPE_AP &&
2485	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2486		if (regulatory->current_rd == 0x64 ||
2487		    regulatory->current_rd == 0x65)
2488			regulatory->current_rd += 5;
2489		else if (regulatory->current_rd == 0x41)
2490			regulatory->current_rd = 0x43;
2491		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2492			regulatory->current_rd);
2493	}
2494
2495	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2496
2497	if (eeval & AR5416_OPFLAGS_11A) {
2498		if (ah->disable_5ghz)
2499			ath_warn(common, "disabling 5GHz band\n");
2500		else
2501			pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2502	}
2503
2504	if (eeval & AR5416_OPFLAGS_11G) {
2505		if (ah->disable_2ghz)
2506			ath_warn(common, "disabling 2GHz band\n");
2507		else
2508			pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2509	}
2510
2511	if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2512		ath_err(common, "both bands are disabled\n");
2513		return -EINVAL;
2514	}
2515
2516	ath9k_gpio_cap_init(ah);
 
2517
2518	if (AR_SREV_9485(ah) ||
2519	    AR_SREV_9285(ah) ||
2520	    AR_SREV_9330(ah) ||
2521	    AR_SREV_9565(ah))
2522		pCap->chip_chainmask = 1;
2523	else if (!AR_SREV_9280_20_OR_LATER(ah))
2524		pCap->chip_chainmask = 7;
2525	else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2526		 AR_SREV_9340(ah) ||
2527		 AR_SREV_9462(ah) ||
2528		 AR_SREV_9531(ah))
2529		pCap->chip_chainmask = 3;
2530	else
2531		pCap->chip_chainmask = 7;
2532
2533	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2534	/*
2535	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2536	 * the EEPROM.
2537	 */
2538	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2539	    !(eeval & AR5416_OPFLAGS_11A) &&
2540	    !(AR_SREV_9271(ah)))
2541		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2542		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2543	else if (AR_SREV_9100(ah))
2544		pCap->rx_chainmask = 0x7;
2545	else
2546		/* Use rx_chainmask from EEPROM. */
2547		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2548
2549	pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2550	pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2551	ah->txchainmask = pCap->tx_chainmask;
2552	ah->rxchainmask = pCap->rx_chainmask;
2553
2554	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2555
2556	/* enable key search for every frame in an aggregate */
2557	if (AR_SREV_9300_20_OR_LATER(ah))
2558		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2559
2560	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2561
2562	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2563		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2564	else
2565		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2566
2567	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
 
 
 
 
 
 
 
 
 
 
 
 
2568		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2569	else
2570		pCap->rts_aggr_limit = (8 * 1024);
 
2571
2572#ifdef CONFIG_ATH9K_RFKILL
2573	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2574	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2575		ah->rfkill_gpio =
2576			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2577		ah->rfkill_polarity =
2578			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2579
2580		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2581	}
2582#endif
2583	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2584		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2585	else
2586		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2587
2588	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2589		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2590	else
2591		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2593	if (AR_SREV_9300_20_OR_LATER(ah)) {
2594		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2595		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2596		    !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2597			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2598
2599		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2600		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2601		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2602		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2603		pCap->txs_len = sizeof(struct ar9003_txs);
 
 
 
2604	} else {
2605		pCap->tx_desc_len = sizeof(struct ath_desc);
2606		if (AR_SREV_9280_20(ah))
2607			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2608	}
2609
2610	if (AR_SREV_9300_20_OR_LATER(ah))
2611		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2612
2613	if (AR_SREV_9561(ah))
2614		ah->ent_mode = 0x3BDA000;
2615	else if (AR_SREV_9300_20_OR_LATER(ah))
2616		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2617
2618	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2619		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2620
2621	if (AR_SREV_9285(ah)) {
2622		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2623			ant_div_ctl1 =
2624				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2625			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2626				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2627				ath_info(common, "Enable LNA combining\n");
2628			}
2629		}
2630	}
2631
2632	if (AR_SREV_9300_20_OR_LATER(ah)) {
2633		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2634			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2635	}
2636
2637	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
 
2638		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2639		if ((ant_div_ctl1 >> 0x6) == 0x3) {
 
 
 
 
 
 
 
 
 
 
 
2640			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2641			ath_info(common, "Enable LNA combining\n");
2642		}
2643	}
2644
2645	if (ath9k_hw_dfs_tested(ah))
2646		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
 
 
2647
2648	tx_chainmask = pCap->tx_chainmask;
2649	rx_chainmask = pCap->rx_chainmask;
2650	while (tx_chainmask || rx_chainmask) {
2651		if (tx_chainmask & BIT(0))
2652			pCap->max_txchains++;
2653		if (rx_chainmask & BIT(0))
2654			pCap->max_rxchains++;
2655
2656		tx_chainmask >>= 1;
2657		rx_chainmask >>= 1;
2658	}
2659
2660	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2661		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2662			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2663
2664		if (AR_SREV_9462_20_OR_LATER(ah))
2665			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2666	}
2667
2668	if (AR_SREV_9300_20_OR_LATER(ah) &&
2669	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2670			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2671
2672#ifdef CONFIG_ATH9K_WOW
2673	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2674		ah->wow.max_patterns = MAX_NUM_PATTERN;
2675	else
2676		ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2677#endif
2678
2679	return 0;
2680}
2681
2682/****************************/
2683/* GPIO / RFKILL / Antennae */
2684/****************************/
2685
2686static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type)
 
2687{
2688	int addr;
2689	u32 gpio_shift, tmp;
2690
2691	if (gpio > 11)
2692		addr = AR_GPIO_OUTPUT_MUX3;
2693	else if (gpio > 5)
2694		addr = AR_GPIO_OUTPUT_MUX2;
2695	else
2696		addr = AR_GPIO_OUTPUT_MUX1;
2697
2698	gpio_shift = (gpio % 6) * 5;
2699
2700	if (AR_SREV_9280_20_OR_LATER(ah) ||
2701	    (addr != AR_GPIO_OUTPUT_MUX1)) {
2702		REG_RMW(ah, addr, (type << gpio_shift),
2703			(0x1f << gpio_shift));
2704	} else {
2705		tmp = REG_READ(ah, addr);
2706		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2707		tmp &= ~(0x1f << gpio_shift);
2708		tmp |= (type << gpio_shift);
2709		REG_WRITE(ah, addr, tmp);
2710	}
2711}
2712
2713/* BSP should set the corresponding MUX register correctly.
2714 */
2715static void ath9k_hw_gpio_cfg_soc(struct ath_hw *ah, u32 gpio, bool out,
2716				  const char *label)
2717{
2718	if (ah->caps.gpio_requested & BIT(gpio))
2719		return;
2720
2721	/* may be requested by BSP, free anyway */
2722	gpio_free(gpio);
2723
2724	if (gpio_request_one(gpio, out ? GPIOF_OUT_INIT_LOW : GPIOF_IN, label))
 
 
 
 
2725		return;
 
2726
2727	ah->caps.gpio_requested |= BIT(gpio);
 
 
 
 
2728}
 
2729
2730static void ath9k_hw_gpio_cfg_wmac(struct ath_hw *ah, u32 gpio, bool out,
2731				   u32 ah_signal_type)
2732{
2733	u32 gpio_set, gpio_shift = gpio;
 
 
 
 
2734
2735	if (AR_DEVID_7010(ah)) {
2736		gpio_set = out ?
2737			AR7010_GPIO_OE_AS_OUTPUT : AR7010_GPIO_OE_AS_INPUT;
2738		REG_RMW(ah, AR7010_GPIO_OE, gpio_set << gpio_shift,
2739			AR7010_GPIO_OE_MASK << gpio_shift);
2740	} else if (AR_SREV_SOC(ah)) {
2741		gpio_set = out ? 1 : 0;
2742		REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2743			gpio_set << gpio_shift);
2744	} else {
2745		gpio_shift = gpio << 1;
2746		gpio_set = out ?
2747			AR_GPIO_OE_OUT_DRV_ALL : AR_GPIO_OE_OUT_DRV_NO;
2748		REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2749			AR_GPIO_OE_OUT_DRV << gpio_shift);
2750
2751		if (out)
2752			ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2753	}
2754}
 
2755
2756static void ath9k_hw_gpio_request(struct ath_hw *ah, u32 gpio, bool out,
2757				  const char *label, u32 ah_signal_type)
2758{
2759	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2760
2761	if (BIT(gpio) & ah->caps.gpio_mask)
2762		ath9k_hw_gpio_cfg_wmac(ah, gpio, out, ah_signal_type);
2763	else if (AR_SREV_SOC(ah))
2764		ath9k_hw_gpio_cfg_soc(ah, gpio, out, label);
2765	else
2766		WARN_ON(1);
2767}
2768
2769void ath9k_hw_gpio_request_in(struct ath_hw *ah, u32 gpio, const char *label)
2770{
2771	ath9k_hw_gpio_request(ah, gpio, false, label, 0);
 
 
 
2772}
2773EXPORT_SYMBOL(ath9k_hw_gpio_request_in);
2774
2775void ath9k_hw_gpio_request_out(struct ath_hw *ah, u32 gpio, const char *label,
2776			       u32 ah_signal_type)
2777{
2778	ath9k_hw_gpio_request(ah, gpio, true, label, ah_signal_type);
2779}
2780EXPORT_SYMBOL(ath9k_hw_gpio_request_out);
2781
2782void ath9k_hw_gpio_free(struct ath_hw *ah, u32 gpio)
2783{
2784	if (!AR_SREV_SOC(ah))
2785		return;
2786
2787	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2788
2789	if (ah->caps.gpio_requested & BIT(gpio)) {
2790		gpio_free(gpio);
2791		ah->caps.gpio_requested &= ~BIT(gpio);
2792	}
2793}
2794EXPORT_SYMBOL(ath9k_hw_gpio_free);
2795
2796u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2797{
2798	u32 val = 0xffffffff;
2799
2800#define MS_REG_READ(x, y) \
2801	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & BIT(y))
2802
2803	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2804
2805	if (BIT(gpio) & ah->caps.gpio_mask) {
2806		if (AR_SREV_9271(ah))
2807			val = MS_REG_READ(AR9271, gpio);
2808		else if (AR_SREV_9287(ah))
2809			val = MS_REG_READ(AR9287, gpio);
2810		else if (AR_SREV_9285(ah))
2811			val = MS_REG_READ(AR9285, gpio);
2812		else if (AR_SREV_9280(ah))
2813			val = MS_REG_READ(AR928X, gpio);
2814		else if (AR_DEVID_7010(ah))
2815			val = REG_READ(ah, AR7010_GPIO_IN) & BIT(gpio);
2816		else if (AR_SREV_9300_20_OR_LATER(ah))
2817			val = REG_READ(ah, AR_GPIO_IN) & BIT(gpio);
2818		else
2819			val = MS_REG_READ(AR, gpio);
2820	} else if (BIT(gpio) & ah->caps.gpio_requested) {
2821		val = gpio_get_value(gpio) & BIT(gpio);
2822	} else {
2823		WARN_ON(1);
2824	}
2825
2826	return !!val;
2827}
2828EXPORT_SYMBOL(ath9k_hw_gpio_get);
2829
2830void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2831{
2832	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2833
2834	if (AR_DEVID_7010(ah) || AR_SREV_9271(ah))
2835		val = !val;
2836	else
2837		val = !!val;
2838
2839	if (BIT(gpio) & ah->caps.gpio_mask) {
2840		u32 out_addr = AR_DEVID_7010(ah) ?
2841			AR7010_GPIO_OUT : AR_GPIO_IN_OUT;
2842
2843		REG_RMW(ah, out_addr, val << gpio, BIT(gpio));
2844	} else if (BIT(gpio) & ah->caps.gpio_requested) {
2845		gpio_set_value(gpio, val);
2846	} else {
2847		WARN_ON(1);
2848	}
2849}
2850EXPORT_SYMBOL(ath9k_hw_set_gpio);
2851
2852void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2853{
2854	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2855}
2856EXPORT_SYMBOL(ath9k_hw_setantenna);
2857
2858/*********************/
2859/* General Operation */
2860/*********************/
2861
2862u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2863{
2864	u32 bits = REG_READ(ah, AR_RX_FILTER);
2865	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2866
2867	if (phybits & AR_PHY_ERR_RADAR)
2868		bits |= ATH9K_RX_FILTER_PHYRADAR;
2869	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2870		bits |= ATH9K_RX_FILTER_PHYERR;
2871
2872	return bits;
2873}
2874EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2875
2876void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2877{
2878	u32 phybits;
2879
2880	ENABLE_REGWRITE_BUFFER(ah);
2881
2882	REG_WRITE(ah, AR_RX_FILTER, bits);
2883
2884	phybits = 0;
2885	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2886		phybits |= AR_PHY_ERR_RADAR;
2887	if (bits & ATH9K_RX_FILTER_PHYERR)
2888		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2889	REG_WRITE(ah, AR_PHY_ERR, phybits);
2890
2891	if (phybits)
2892		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2893	else
2894		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2895
2896	REGWRITE_BUFFER_FLUSH(ah);
2897}
2898EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2899
2900bool ath9k_hw_phy_disable(struct ath_hw *ah)
2901{
2902	if (ath9k_hw_mci_is_enabled(ah))
2903		ar9003_mci_bt_gain_ctrl(ah);
2904
2905	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2906		return false;
2907
2908	ath9k_hw_init_pll(ah, NULL);
2909	ah->htc_reset_init = true;
2910	return true;
2911}
2912EXPORT_SYMBOL(ath9k_hw_phy_disable);
2913
2914bool ath9k_hw_disable(struct ath_hw *ah)
2915{
2916	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2917		return false;
2918
2919	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2920		return false;
2921
2922	ath9k_hw_init_pll(ah, NULL);
2923	return true;
2924}
2925EXPORT_SYMBOL(ath9k_hw_disable);
2926
2927static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2928{
2929	enum eeprom_param gain_param;
2930
2931	if (IS_CHAN_2GHZ(chan))
2932		gain_param = EEP_ANTENNA_GAIN_2G;
2933	else
2934		gain_param = EEP_ANTENNA_GAIN_5G;
2935
2936	return ah->eep_ops->get_eeprom(ah, gain_param);
2937}
2938
2939void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2940			    bool test)
2941{
2942	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2943	struct ieee80211_channel *channel;
2944	int chan_pwr, new_pwr;
2945
2946	if (!chan)
2947		return;
2948
2949	channel = chan->chan;
2950	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2951	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2952
2953	ah->eep_ops->set_txpower(ah, chan,
2954				 ath9k_regd_get_ctl(reg, chan),
2955				 get_antenna_gain(ah, chan), new_pwr, test);
2956}
2957
2958void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2959{
2960	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2961	struct ath9k_channel *chan = ah->curchan;
2962	struct ieee80211_channel *channel = chan->chan;
2963
2964	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2965	if (test)
2966		channel->max_power = MAX_RATE_POWER / 2;
2967
2968	ath9k_hw_apply_txpower(ah, chan, test);
2969
2970	if (test)
2971		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
 
 
2972}
2973EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2974
2975void ath9k_hw_setopmode(struct ath_hw *ah)
2976{
2977	ath9k_hw_set_operating_mode(ah, ah->opmode);
2978}
2979EXPORT_SYMBOL(ath9k_hw_setopmode);
2980
2981void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2982{
2983	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2984	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2985}
2986EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2987
2988void ath9k_hw_write_associd(struct ath_hw *ah)
2989{
2990	struct ath_common *common = ath9k_hw_common(ah);
2991
2992	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2993	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2994		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2995}
2996EXPORT_SYMBOL(ath9k_hw_write_associd);
2997
2998#define ATH9K_MAX_TSF_READ 10
2999
3000u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3001{
3002	u32 tsf_lower, tsf_upper1, tsf_upper2;
3003	int i;
3004
3005	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
3006	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
3007		tsf_lower = REG_READ(ah, AR_TSF_L32);
3008		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
3009		if (tsf_upper2 == tsf_upper1)
3010			break;
3011		tsf_upper1 = tsf_upper2;
3012	}
3013
3014	WARN_ON( i == ATH9K_MAX_TSF_READ );
3015
3016	return (((u64)tsf_upper1 << 32) | tsf_lower);
3017}
3018EXPORT_SYMBOL(ath9k_hw_gettsf64);
3019
3020void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3021{
3022	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3023	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3024}
3025EXPORT_SYMBOL(ath9k_hw_settsf64);
3026
3027void ath9k_hw_reset_tsf(struct ath_hw *ah)
3028{
3029	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3030			   AH_TSF_WRITE_TIMEOUT))
3031		ath_dbg(ath9k_hw_common(ah), RESET,
3032			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3033
3034	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3035}
3036EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3037
3038void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
3039{
3040	if (set)
3041		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3042	else
3043		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3044}
3045EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3046
3047void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
3048{
 
3049	u32 macmode;
3050
3051	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
3052		macmode = AR_2040_JOINED_RX_CLEAR;
3053	else
3054		macmode = 0;
3055
3056	REG_WRITE(ah, AR_2040_MODE, macmode);
3057}
3058
3059/* HW Generic timers configuration */
3060
3061static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3062{
3063	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3064	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3065	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3066	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3067	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3068	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3069	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3070	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3071	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3072	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3073				AR_NDP2_TIMER_MODE, 0x0002},
3074	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3075				AR_NDP2_TIMER_MODE, 0x0004},
3076	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3077				AR_NDP2_TIMER_MODE, 0x0008},
3078	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3079				AR_NDP2_TIMER_MODE, 0x0010},
3080	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3081				AR_NDP2_TIMER_MODE, 0x0020},
3082	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3083				AR_NDP2_TIMER_MODE, 0x0040},
3084	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3085				AR_NDP2_TIMER_MODE, 0x0080}
3086};
3087
3088/* HW generic timer primitives */
3089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3090u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3091{
3092	return REG_READ(ah, AR_TSF_L32);
3093}
3094EXPORT_SYMBOL(ath9k_hw_gettsf32);
3095
3096void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
3097{
3098	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3099
3100	if (timer_table->tsf2_enabled) {
3101		REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
3102		REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
3103	}
3104}
3105
3106struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3107					  void (*trigger)(void *),
3108					  void (*overflow)(void *),
3109					  void *arg,
3110					  u8 timer_index)
3111{
3112	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3113	struct ath_gen_timer *timer;
3114
3115	if ((timer_index < AR_FIRST_NDP_TIMER) ||
3116	    (timer_index >= ATH_MAX_GEN_TIMER))
3117		return NULL;
3118
3119	if ((timer_index > AR_FIRST_NDP_TIMER) &&
3120	    !AR_SREV_9300_20_OR_LATER(ah))
3121		return NULL;
3122
3123	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3124	if (timer == NULL)
3125		return NULL;
 
3126
3127	/* allocate a hardware generic timer slot */
3128	timer_table->timers[timer_index] = timer;
3129	timer->index = timer_index;
3130	timer->trigger = trigger;
3131	timer->overflow = overflow;
3132	timer->arg = arg;
3133
3134	if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3135		timer_table->tsf2_enabled = true;
3136		ath9k_hw_gen_timer_start_tsf2(ah);
3137	}
3138
3139	return timer;
3140}
3141EXPORT_SYMBOL(ath_gen_timer_alloc);
3142
3143void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3144			      struct ath_gen_timer *timer,
3145			      u32 timer_next,
3146			      u32 timer_period)
3147{
3148	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3149	u32 mask = 0;
 
 
 
 
3150
3151	timer_table->timer_mask |= BIT(timer->index);
 
 
 
 
 
 
3152
3153	/*
3154	 * Program generic timer registers
3155	 */
3156	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3157		 timer_next);
3158	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3159		  timer_period);
3160	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3161		    gen_tmr_configuration[timer->index].mode_mask);
3162
3163	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3164		/*
3165		 * Starting from AR9462, each generic timer can select which tsf
3166		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3167		 * 8 - 15  use tsf2.
3168		 */
3169		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3170			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3171				       (1 << timer->index));
3172		else
3173			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3174				       (1 << timer->index));
3175	}
3176
3177	if (timer->trigger)
3178		mask |= SM(AR_GENTMR_BIT(timer->index),
3179			   AR_IMR_S5_GENTIMER_TRIG);
3180	if (timer->overflow)
3181		mask |= SM(AR_GENTMR_BIT(timer->index),
3182			   AR_IMR_S5_GENTIMER_THRESH);
3183
3184	REG_SET_BIT(ah, AR_IMR_S5, mask);
3185
3186	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3187		ah->imask |= ATH9K_INT_GENTIMER;
3188		ath9k_hw_set_interrupts(ah);
3189	}
3190}
3191EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3192
3193void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3194{
3195	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3196
 
 
 
 
 
3197	/* Clear generic timer enable bits. */
3198	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3199			gen_tmr_configuration[timer->index].mode_mask);
3200
3201	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3202		/*
3203		 * Need to switch back to TSF if it was using TSF2.
3204		 */
3205		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3206			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3207				    (1 << timer->index));
3208		}
3209	}
3210
3211	/* Disable both trigger and thresh interrupt masks */
3212	REG_CLR_BIT(ah, AR_IMR_S5,
3213		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3214		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3215
3216	timer_table->timer_mask &= ~BIT(timer->index);
3217
3218	if (timer_table->timer_mask == 0) {
3219		ah->imask &= ~ATH9K_INT_GENTIMER;
3220		ath9k_hw_set_interrupts(ah);
3221	}
3222}
3223EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3224
3225void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3226{
3227	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3228
3229	/* free the hardware generic timer slot */
3230	timer_table->timers[timer->index] = NULL;
3231	kfree(timer);
3232}
3233EXPORT_SYMBOL(ath_gen_timer_free);
3234
3235/*
3236 * Generic Timer Interrupts handling
3237 */
3238void ath_gen_timer_isr(struct ath_hw *ah)
3239{
3240	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3241	struct ath_gen_timer *timer;
3242	unsigned long trigger_mask, thresh_mask;
3243	unsigned int index;
3244
3245	/* get hardware generic timer interrupt status */
3246	trigger_mask = ah->intr_gen_timer_trigger;
3247	thresh_mask = ah->intr_gen_timer_thresh;
3248	trigger_mask &= timer_table->timer_mask;
3249	thresh_mask &= timer_table->timer_mask;
3250
3251	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
 
 
 
3252		timer = timer_table->timers[index];
3253		if (!timer)
3254		    continue;
3255		if (!timer->overflow)
3256		    continue;
3257
3258		trigger_mask &= ~BIT(index);
3259		timer->overflow(timer->arg);
3260	}
3261
3262	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
 
3263		timer = timer_table->timers[index];
3264		if (!timer)
3265		    continue;
3266		if (!timer->trigger)
3267		    continue;
3268		timer->trigger(timer->arg);
3269	}
3270}
3271EXPORT_SYMBOL(ath_gen_timer_isr);
3272
3273/********/
3274/* HTC  */
3275/********/
3276
 
 
 
 
 
 
3277static struct {
3278	u32 version;
3279	const char * name;
3280} ath_mac_bb_names[] = {
3281	/* Devices with external radios */
3282	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3283	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3284	{ AR_SREV_VERSION_9100,		"9100" },
3285	{ AR_SREV_VERSION_9160,		"9160" },
3286	/* Single-chip solutions */
3287	{ AR_SREV_VERSION_9280,		"9280" },
3288	{ AR_SREV_VERSION_9285,		"9285" },
3289	{ AR_SREV_VERSION_9287,         "9287" },
3290	{ AR_SREV_VERSION_9271,         "9271" },
3291	{ AR_SREV_VERSION_9300,         "9300" },
3292	{ AR_SREV_VERSION_9330,         "9330" },
3293	{ AR_SREV_VERSION_9340,		"9340" },
3294	{ AR_SREV_VERSION_9485,         "9485" },
3295	{ AR_SREV_VERSION_9462,         "9462" },
3296	{ AR_SREV_VERSION_9550,         "9550" },
3297	{ AR_SREV_VERSION_9565,         "9565" },
3298	{ AR_SREV_VERSION_9531,         "9531" },
3299	{ AR_SREV_VERSION_9561,         "9561" },
3300};
3301
3302/* For devices with external radios */
3303static struct {
3304	u16 version;
3305	const char * name;
3306} ath_rf_names[] = {
3307	{ 0,				"5133" },
3308	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3309	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3310	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3311	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3312};
3313
3314/*
3315 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3316 */
3317static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3318{
3319	int i;
3320
3321	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3322		if (ath_mac_bb_names[i].version == mac_bb_version) {
3323			return ath_mac_bb_names[i].name;
3324		}
3325	}
3326
3327	return "????";
3328}
3329
3330/*
3331 * Return the RF name. "????" is returned if the RF is unknown.
3332 * Used for devices with external radios.
3333 */
3334static const char *ath9k_hw_rf_name(u16 rf_version)
3335{
3336	int i;
3337
3338	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3339		if (ath_rf_names[i].version == rf_version) {
3340			return ath_rf_names[i].name;
3341		}
3342	}
3343
3344	return "????";
3345}
3346
3347void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3348{
3349	int used;
3350
3351	/* chipsets >= AR9280 are single-chip */
3352	if (AR_SREV_9280_20_OR_LATER(ah)) {
3353		used = scnprintf(hw_name, len,
3354				 "Atheros AR%s Rev:%x",
3355				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3356				 ah->hw_version.macRev);
3357	}
3358	else {
3359		used = scnprintf(hw_name, len,
3360				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3361				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3362				 ah->hw_version.macRev,
3363				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3364						  & AR_RADIO_SREV_MAJOR)),
3365				 ah->hw_version.phyRev);
3366	}
3367
3368	hw_name[used] = '\0';
3369}
3370EXPORT_SYMBOL(ath9k_hw_name);