Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
   3 *           auto carrier detecting ethernet driver.  Also known as the
   4 *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
   5 *
   6 * Copyright (C) 1996, 1998, 1999, 2002, 2003,
   7 *		2006, 2008 David S. Miller (davem@davemloft.net)
   8 *
   9 * Changes :
  10 * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
  11 *   - port to non-sparc architectures. Tested only on x86 and
  12 *     only currently works with QFE PCI cards.
  13 *   - ability to specify the MAC address at module load time by passing this
  14 *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
  15 */
  16
  17#include <linux/module.h>
  18#include <linux/kernel.h>
  19#include <linux/types.h>
  20#include <linux/fcntl.h>
  21#include <linux/interrupt.h>
  22#include <linux/ioport.h>
  23#include <linux/in.h>
  24#include <linux/slab.h>
  25#include <linux/string.h>
  26#include <linux/delay.h>
  27#include <linux/init.h>
  28#include <linux/ethtool.h>
  29#include <linux/mii.h>
  30#include <linux/crc32.h>
  31#include <linux/random.h>
  32#include <linux/errno.h>
  33#include <linux/netdevice.h>
  34#include <linux/etherdevice.h>
  35#include <linux/skbuff.h>
  36#include <linux/mm.h>
  37#include <linux/bitops.h>
  38#include <linux/dma-mapping.h>
  39
  40#include <asm/io.h>
  41#include <asm/dma.h>
  42#include <asm/byteorder.h>
  43
  44#ifdef CONFIG_SPARC
  45#include <linux/of.h>
  46#include <linux/of_device.h>
  47#include <asm/idprom.h>
  48#include <asm/openprom.h>
  49#include <asm/oplib.h>
  50#include <asm/prom.h>
  51#include <asm/auxio.h>
  52#endif
  53#include <linux/uaccess.h>
  54
  55#include <asm/pgtable.h>
  56#include <asm/irq.h>
  57
  58#ifdef CONFIG_PCI
  59#include <linux/pci.h>
  60#endif
  61
  62#include "sunhme.h"
  63
  64#define DRV_NAME	"sunhme"
  65#define DRV_VERSION	"3.10"
  66#define DRV_RELDATE	"August 26, 2008"
  67#define DRV_AUTHOR	"David S. Miller (davem@davemloft.net)"
  68
  69static char version[] =
  70	DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
  71
  72MODULE_VERSION(DRV_VERSION);
  73MODULE_AUTHOR(DRV_AUTHOR);
  74MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
  75MODULE_LICENSE("GPL");
  76
  77static int macaddr[6];
  78
  79/* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
  80module_param_array(macaddr, int, NULL, 0);
  81MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
  82
  83#ifdef CONFIG_SBUS
  84static struct quattro *qfe_sbus_list;
  85#endif
  86
  87#ifdef CONFIG_PCI
  88static struct quattro *qfe_pci_list;
  89#endif
  90
  91#undef HMEDEBUG
  92#undef SXDEBUG
  93#undef RXDEBUG
  94#undef TXDEBUG
  95#undef TXLOGGING
  96
  97#ifdef TXLOGGING
  98struct hme_tx_logent {
  99	unsigned int tstamp;
 100	int tx_new, tx_old;
 101	unsigned int action;
 102#define TXLOG_ACTION_IRQ	0x01
 103#define TXLOG_ACTION_TXMIT	0x02
 104#define TXLOG_ACTION_TBUSY	0x04
 105#define TXLOG_ACTION_NBUFS	0x08
 106	unsigned int status;
 107};
 108#define TX_LOG_LEN	128
 109static struct hme_tx_logent tx_log[TX_LOG_LEN];
 110static int txlog_cur_entry;
 111static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
 112{
 113	struct hme_tx_logent *tlp;
 114	unsigned long flags;
 115
 116	local_irq_save(flags);
 117	tlp = &tx_log[txlog_cur_entry];
 118	tlp->tstamp = (unsigned int)jiffies;
 119	tlp->tx_new = hp->tx_new;
 120	tlp->tx_old = hp->tx_old;
 121	tlp->action = a;
 122	tlp->status = s;
 123	txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
 124	local_irq_restore(flags);
 125}
 126static __inline__ void tx_dump_log(void)
 127{
 128	int i, this;
 129
 130	this = txlog_cur_entry;
 131	for (i = 0; i < TX_LOG_LEN; i++) {
 132		printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
 133		       tx_log[this].tstamp,
 134		       tx_log[this].tx_new, tx_log[this].tx_old,
 135		       tx_log[this].action, tx_log[this].status);
 136		this = (this + 1) & (TX_LOG_LEN - 1);
 137	}
 138}
 139static __inline__ void tx_dump_ring(struct happy_meal *hp)
 140{
 141	struct hmeal_init_block *hb = hp->happy_block;
 142	struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
 143	int i;
 144
 145	for (i = 0; i < TX_RING_SIZE; i+=4) {
 146		printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
 147		       i, i + 4,
 148		       le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
 149		       le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
 150		       le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
 151		       le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
 152	}
 153}
 154#else
 155#define tx_add_log(hp, a, s)		do { } while(0)
 156#define tx_dump_log()			do { } while(0)
 157#define tx_dump_ring(hp)		do { } while(0)
 158#endif
 159
 160#ifdef HMEDEBUG
 161#define HMD(x)  printk x
 162#else
 163#define HMD(x)
 164#endif
 165
 166/* #define AUTO_SWITCH_DEBUG */
 167
 168#ifdef AUTO_SWITCH_DEBUG
 169#define ASD(x)  printk x
 170#else
 171#define ASD(x)
 172#endif
 173
 174#define DEFAULT_IPG0      16 /* For lance-mode only */
 175#define DEFAULT_IPG1       8 /* For all modes */
 176#define DEFAULT_IPG2       4 /* For all modes */
 177#define DEFAULT_JAMSIZE    4 /* Toe jam */
 178
 179/* NOTE: In the descriptor writes one _must_ write the address
 180 *	 member _first_.  The card must not be allowed to see
 181 *	 the updated descriptor flags until the address is
 182 *	 correct.  I've added a write memory barrier between
 183 *	 the two stores so that I can sleep well at night... -DaveM
 184 */
 185
 186#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
 187static void sbus_hme_write32(void __iomem *reg, u32 val)
 188{
 189	sbus_writel(val, reg);
 190}
 191
 192static u32 sbus_hme_read32(void __iomem *reg)
 193{
 194	return sbus_readl(reg);
 195}
 196
 197static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
 198{
 199	rxd->rx_addr = (__force hme32)addr;
 200	dma_wmb();
 201	rxd->rx_flags = (__force hme32)flags;
 202}
 203
 204static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
 205{
 206	txd->tx_addr = (__force hme32)addr;
 207	dma_wmb();
 208	txd->tx_flags = (__force hme32)flags;
 209}
 210
 211static u32 sbus_hme_read_desc32(hme32 *p)
 212{
 213	return (__force u32)*p;
 214}
 215
 216static void pci_hme_write32(void __iomem *reg, u32 val)
 217{
 218	writel(val, reg);
 219}
 220
 221static u32 pci_hme_read32(void __iomem *reg)
 222{
 223	return readl(reg);
 224}
 225
 226static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
 227{
 228	rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
 229	dma_wmb();
 230	rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
 231}
 232
 233static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
 234{
 235	txd->tx_addr = (__force hme32)cpu_to_le32(addr);
 236	dma_wmb();
 237	txd->tx_flags = (__force hme32)cpu_to_le32(flags);
 238}
 239
 240static u32 pci_hme_read_desc32(hme32 *p)
 241{
 242	return le32_to_cpup((__le32 *)p);
 243}
 244
 245#define hme_write32(__hp, __reg, __val) \
 246	((__hp)->write32((__reg), (__val)))
 247#define hme_read32(__hp, __reg) \
 248	((__hp)->read32(__reg))
 249#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
 250	((__hp)->write_rxd((__rxd), (__flags), (__addr)))
 251#define hme_write_txd(__hp, __txd, __flags, __addr) \
 252	((__hp)->write_txd((__txd), (__flags), (__addr)))
 253#define hme_read_desc32(__hp, __p) \
 254	((__hp)->read_desc32(__p))
 255#define hme_dma_map(__hp, __ptr, __size, __dir) \
 256	((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir)))
 257#define hme_dma_unmap(__hp, __addr, __size, __dir) \
 258	((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir)))
 259#define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
 260	((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)))
 261#define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
 262	((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)))
 263#else
 264#ifdef CONFIG_SBUS
 265/* SBUS only compilation */
 266#define hme_write32(__hp, __reg, __val) \
 267	sbus_writel((__val), (__reg))
 268#define hme_read32(__hp, __reg) \
 269	sbus_readl(__reg)
 270#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
 271do {	(__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
 272	dma_wmb(); \
 273	(__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
 274} while(0)
 275#define hme_write_txd(__hp, __txd, __flags, __addr) \
 276do {	(__txd)->tx_addr = (__force hme32)(u32)(__addr); \
 277	dma_wmb(); \
 278	(__txd)->tx_flags = (__force hme32)(u32)(__flags); \
 279} while(0)
 280#define hme_read_desc32(__hp, __p)	((__force u32)(hme32)*(__p))
 281#define hme_dma_map(__hp, __ptr, __size, __dir) \
 282	dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
 283#define hme_dma_unmap(__hp, __addr, __size, __dir) \
 284	dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
 285#define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
 286	dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
 287#define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
 288	dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
 289#else
 290/* PCI only compilation */
 291#define hme_write32(__hp, __reg, __val) \
 292	writel((__val), (__reg))
 293#define hme_read32(__hp, __reg) \
 294	readl(__reg)
 295#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
 296do {	(__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
 297	dma_wmb(); \
 298	(__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
 299} while(0)
 300#define hme_write_txd(__hp, __txd, __flags, __addr) \
 301do {	(__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
 302	dma_wmb(); \
 303	(__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
 304} while(0)
 305static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
 306{
 307	return le32_to_cpup((__le32 *)p);
 308}
 309#define hme_dma_map(__hp, __ptr, __size, __dir) \
 310	pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
 311#define hme_dma_unmap(__hp, __addr, __size, __dir) \
 312	pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
 313#define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
 314	pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
 315#define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
 316	pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
 317#endif
 318#endif
 319
 320
 321/* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
 322static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
 323{
 324	hme_write32(hp, tregs + TCVR_BBDATA, bit);
 325	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
 326	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
 327}
 328
 329#if 0
 330static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
 331{
 332	u32 ret;
 333
 334	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
 335	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
 336	ret = hme_read32(hp, tregs + TCVR_CFG);
 337	if (internal)
 338		ret &= TCV_CFG_MDIO0;
 339	else
 340		ret &= TCV_CFG_MDIO1;
 341
 342	return ret;
 343}
 344#endif
 345
 346static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
 347{
 348	u32 retval;
 349
 350	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
 351	udelay(1);
 352	retval = hme_read32(hp, tregs + TCVR_CFG);
 353	if (internal)
 354		retval &= TCV_CFG_MDIO0;
 355	else
 356		retval &= TCV_CFG_MDIO1;
 357	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
 358
 359	return retval;
 360}
 361
 362#define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
 363
 364static int happy_meal_bb_read(struct happy_meal *hp,
 365			      void __iomem *tregs, int reg)
 366{
 367	u32 tmp;
 368	int retval = 0;
 369	int i;
 370
 371	ASD(("happy_meal_bb_read: reg=%d ", reg));
 372
 373	/* Enable the MIF BitBang outputs. */
 374	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
 375
 376	/* Force BitBang into the idle state. */
 377	for (i = 0; i < 32; i++)
 378		BB_PUT_BIT(hp, tregs, 1);
 379
 380	/* Give it the read sequence. */
 381	BB_PUT_BIT(hp, tregs, 0);
 382	BB_PUT_BIT(hp, tregs, 1);
 383	BB_PUT_BIT(hp, tregs, 1);
 384	BB_PUT_BIT(hp, tregs, 0);
 385
 386	/* Give it the PHY address. */
 387	tmp = hp->paddr & 0xff;
 388	for (i = 4; i >= 0; i--)
 389		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 390
 391	/* Tell it what register we want to read. */
 392	tmp = (reg & 0xff);
 393	for (i = 4; i >= 0; i--)
 394		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 395
 396	/* Close down the MIF BitBang outputs. */
 397	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
 398
 399	/* Now read in the value. */
 400	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 401	for (i = 15; i >= 0; i--)
 402		retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 403	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 404	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 405	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 406	ASD(("value=%x\n", retval));
 407	return retval;
 408}
 409
 410static void happy_meal_bb_write(struct happy_meal *hp,
 411				void __iomem *tregs, int reg,
 412				unsigned short value)
 413{
 414	u32 tmp;
 415	int i;
 416
 417	ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
 418
 419	/* Enable the MIF BitBang outputs. */
 420	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
 421
 422	/* Force BitBang into the idle state. */
 423	for (i = 0; i < 32; i++)
 424		BB_PUT_BIT(hp, tregs, 1);
 425
 426	/* Give it write sequence. */
 427	BB_PUT_BIT(hp, tregs, 0);
 428	BB_PUT_BIT(hp, tregs, 1);
 429	BB_PUT_BIT(hp, tregs, 0);
 430	BB_PUT_BIT(hp, tregs, 1);
 431
 432	/* Give it the PHY address. */
 433	tmp = (hp->paddr & 0xff);
 434	for (i = 4; i >= 0; i--)
 435		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 436
 437	/* Tell it what register we will be writing. */
 438	tmp = (reg & 0xff);
 439	for (i = 4; i >= 0; i--)
 440		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 441
 442	/* Tell it to become ready for the bits. */
 443	BB_PUT_BIT(hp, tregs, 1);
 444	BB_PUT_BIT(hp, tregs, 0);
 445
 446	for (i = 15; i >= 0; i--)
 447		BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
 448
 449	/* Close down the MIF BitBang outputs. */
 450	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
 451}
 452
 453#define TCVR_READ_TRIES   16
 454
 455static int happy_meal_tcvr_read(struct happy_meal *hp,
 456				void __iomem *tregs, int reg)
 457{
 458	int tries = TCVR_READ_TRIES;
 459	int retval;
 460
 461	ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
 462	if (hp->tcvr_type == none) {
 463		ASD(("no transceiver, value=TCVR_FAILURE\n"));
 464		return TCVR_FAILURE;
 465	}
 466
 467	if (!(hp->happy_flags & HFLAG_FENABLE)) {
 468		ASD(("doing bit bang\n"));
 469		return happy_meal_bb_read(hp, tregs, reg);
 470	}
 471
 472	hme_write32(hp, tregs + TCVR_FRAME,
 473		    (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
 474	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
 475		udelay(20);
 476	if (!tries) {
 477		printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
 478		return TCVR_FAILURE;
 479	}
 480	retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
 481	ASD(("value=%04x\n", retval));
 482	return retval;
 483}
 484
 485#define TCVR_WRITE_TRIES  16
 486
 487static void happy_meal_tcvr_write(struct happy_meal *hp,
 488				  void __iomem *tregs, int reg,
 489				  unsigned short value)
 490{
 491	int tries = TCVR_WRITE_TRIES;
 492
 493	ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
 494
 495	/* Welcome to Sun Microsystems, can I take your order please? */
 496	if (!(hp->happy_flags & HFLAG_FENABLE)) {
 497		happy_meal_bb_write(hp, tregs, reg, value);
 498		return;
 499	}
 500
 501	/* Would you like fries with that? */
 502	hme_write32(hp, tregs + TCVR_FRAME,
 503		    (FRAME_WRITE | (hp->paddr << 23) |
 504		     ((reg & 0xff) << 18) | (value & 0xffff)));
 505	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
 506		udelay(20);
 507
 508	/* Anything else? */
 509	if (!tries)
 510		printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
 511
 512	/* Fifty-two cents is your change, have a nice day. */
 513}
 514
 515/* Auto negotiation.  The scheme is very simple.  We have a timer routine
 516 * that keeps watching the auto negotiation process as it progresses.
 517 * The DP83840 is first told to start doing it's thing, we set up the time
 518 * and place the timer state machine in it's initial state.
 519 *
 520 * Here the timer peeks at the DP83840 status registers at each click to see
 521 * if the auto negotiation has completed, we assume here that the DP83840 PHY
 522 * will time out at some point and just tell us what (didn't) happen.  For
 523 * complete coverage we only allow so many of the ticks at this level to run,
 524 * when this has expired we print a warning message and try another strategy.
 525 * This "other" strategy is to force the interface into various speed/duplex
 526 * configurations and we stop when we see a link-up condition before the
 527 * maximum number of "peek" ticks have occurred.
 528 *
 529 * Once a valid link status has been detected we configure the BigMAC and
 530 * the rest of the Happy Meal to speak the most efficient protocol we could
 531 * get a clean link for.  The priority for link configurations, highest first
 532 * is:
 533 *                 100 Base-T Full Duplex
 534 *                 100 Base-T Half Duplex
 535 *                 10 Base-T Full Duplex
 536 *                 10 Base-T Half Duplex
 537 *
 538 * We start a new timer now, after a successful auto negotiation status has
 539 * been detected.  This timer just waits for the link-up bit to get set in
 540 * the BMCR of the DP83840.  When this occurs we print a kernel log message
 541 * describing the link type in use and the fact that it is up.
 542 *
 543 * If a fatal error of some sort is signalled and detected in the interrupt
 544 * service routine, and the chip is reset, or the link is ifconfig'd down
 545 * and then back up, this entire process repeats itself all over again.
 546 */
 547static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
 548{
 549	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 550
 551	/* Downgrade from full to half duplex.  Only possible
 552	 * via ethtool.
 553	 */
 554	if (hp->sw_bmcr & BMCR_FULLDPLX) {
 555		hp->sw_bmcr &= ~(BMCR_FULLDPLX);
 556		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 557		return 0;
 558	}
 559
 560	/* Downgrade from 100 to 10. */
 561	if (hp->sw_bmcr & BMCR_SPEED100) {
 562		hp->sw_bmcr &= ~(BMCR_SPEED100);
 563		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 564		return 0;
 565	}
 566
 567	/* We've tried everything. */
 568	return -1;
 569}
 570
 571static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
 572{
 573	printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
 574	if (hp->tcvr_type == external)
 575		printk("external ");
 576	else
 577		printk("internal ");
 578	printk("transceiver at ");
 579	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
 580	if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
 581		if (hp->sw_lpa & LPA_100FULL)
 582			printk("100Mb/s, Full Duplex.\n");
 583		else
 584			printk("100Mb/s, Half Duplex.\n");
 585	} else {
 586		if (hp->sw_lpa & LPA_10FULL)
 587			printk("10Mb/s, Full Duplex.\n");
 588		else
 589			printk("10Mb/s, Half Duplex.\n");
 590	}
 591}
 592
 593static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
 594{
 595	printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
 596	if (hp->tcvr_type == external)
 597		printk("external ");
 598	else
 599		printk("internal ");
 600	printk("transceiver at ");
 601	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 602	if (hp->sw_bmcr & BMCR_SPEED100)
 603		printk("100Mb/s, ");
 604	else
 605		printk("10Mb/s, ");
 606	if (hp->sw_bmcr & BMCR_FULLDPLX)
 607		printk("Full Duplex.\n");
 608	else
 609		printk("Half Duplex.\n");
 610}
 611
 612static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
 613{
 614	int full;
 615
 616	/* All we care about is making sure the bigmac tx_cfg has a
 617	 * proper duplex setting.
 618	 */
 619	if (hp->timer_state == arbwait) {
 620		hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
 621		if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
 622			goto no_response;
 623		if (hp->sw_lpa & LPA_100FULL)
 624			full = 1;
 625		else if (hp->sw_lpa & LPA_100HALF)
 626			full = 0;
 627		else if (hp->sw_lpa & LPA_10FULL)
 628			full = 1;
 629		else
 630			full = 0;
 631	} else {
 632		/* Forcing a link mode. */
 633		hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 634		if (hp->sw_bmcr & BMCR_FULLDPLX)
 635			full = 1;
 636		else
 637			full = 0;
 638	}
 639
 640	/* Before changing other bits in the tx_cfg register, and in
 641	 * general any of other the TX config registers too, you
 642	 * must:
 643	 * 1) Clear Enable
 644	 * 2) Poll with reads until that bit reads back as zero
 645	 * 3) Make TX configuration changes
 646	 * 4) Set Enable once more
 647	 */
 648	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 649		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
 650		    ~(BIGMAC_TXCFG_ENABLE));
 651	while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
 652		barrier();
 653	if (full) {
 654		hp->happy_flags |= HFLAG_FULL;
 655		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 656			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
 657			    BIGMAC_TXCFG_FULLDPLX);
 658	} else {
 659		hp->happy_flags &= ~(HFLAG_FULL);
 660		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 661			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
 662			    ~(BIGMAC_TXCFG_FULLDPLX));
 663	}
 664	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 665		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
 666		    BIGMAC_TXCFG_ENABLE);
 667	return 0;
 668no_response:
 669	return 1;
 670}
 671
 672static int happy_meal_init(struct happy_meal *hp);
 673
 674static int is_lucent_phy(struct happy_meal *hp)
 675{
 676	void __iomem *tregs = hp->tcvregs;
 677	unsigned short mr2, mr3;
 678	int ret = 0;
 679
 680	mr2 = happy_meal_tcvr_read(hp, tregs, 2);
 681	mr3 = happy_meal_tcvr_read(hp, tregs, 3);
 682	if ((mr2 & 0xffff) == 0x0180 &&
 683	    ((mr3 & 0xffff) >> 10) == 0x1d)
 684		ret = 1;
 685
 686	return ret;
 687}
 688
 689static void happy_meal_timer(struct timer_list *t)
 690{
 691	struct happy_meal *hp = from_timer(hp, t, happy_timer);
 692	void __iomem *tregs = hp->tcvregs;
 693	int restart_timer = 0;
 694
 695	spin_lock_irq(&hp->happy_lock);
 696
 697	hp->timer_ticks++;
 698	switch(hp->timer_state) {
 699	case arbwait:
 700		/* Only allow for 5 ticks, thats 10 seconds and much too
 701		 * long to wait for arbitration to complete.
 702		 */
 703		if (hp->timer_ticks >= 10) {
 704			/* Enter force mode. */
 705	do_force_mode:
 706			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 707			printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
 708			       hp->dev->name);
 709			hp->sw_bmcr = BMCR_SPEED100;
 710			happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 711
 712			if (!is_lucent_phy(hp)) {
 713				/* OK, seems we need do disable the transceiver for the first
 714				 * tick to make sure we get an accurate link state at the
 715				 * second tick.
 716				 */
 717				hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
 718				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
 719				happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
 720			}
 721			hp->timer_state = ltrywait;
 722			hp->timer_ticks = 0;
 723			restart_timer = 1;
 724		} else {
 725			/* Anything interesting happen? */
 726			hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 727			if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
 728				int ret;
 729
 730				/* Just what we've been waiting for... */
 731				ret = set_happy_link_modes(hp, tregs);
 732				if (ret) {
 733					/* Ooops, something bad happened, go to force
 734					 * mode.
 735					 *
 736					 * XXX Broken hubs which don't support 802.3u
 737					 * XXX auto-negotiation make this happen as well.
 738					 */
 739					goto do_force_mode;
 740				}
 741
 742				/* Success, at least so far, advance our state engine. */
 743				hp->timer_state = lupwait;
 744				restart_timer = 1;
 745			} else {
 746				restart_timer = 1;
 747			}
 748		}
 749		break;
 750
 751	case lupwait:
 752		/* Auto negotiation was successful and we are awaiting a
 753		 * link up status.  I have decided to let this timer run
 754		 * forever until some sort of error is signalled, reporting
 755		 * a message to the user at 10 second intervals.
 756		 */
 757		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 758		if (hp->sw_bmsr & BMSR_LSTATUS) {
 759			/* Wheee, it's up, display the link mode in use and put
 760			 * the timer to sleep.
 761			 */
 762			display_link_mode(hp, tregs);
 763			hp->timer_state = asleep;
 764			restart_timer = 0;
 765		} else {
 766			if (hp->timer_ticks >= 10) {
 767				printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
 768				       "not completely up.\n", hp->dev->name);
 769				hp->timer_ticks = 0;
 770				restart_timer = 1;
 771			} else {
 772				restart_timer = 1;
 773			}
 774		}
 775		break;
 776
 777	case ltrywait:
 778		/* Making the timeout here too long can make it take
 779		 * annoyingly long to attempt all of the link mode
 780		 * permutations, but then again this is essentially
 781		 * error recovery code for the most part.
 782		 */
 783		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 784		hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
 785		if (hp->timer_ticks == 1) {
 786			if (!is_lucent_phy(hp)) {
 787				/* Re-enable transceiver, we'll re-enable the transceiver next
 788				 * tick, then check link state on the following tick.
 789				 */
 790				hp->sw_csconfig |= CSCONFIG_TCVDISAB;
 791				happy_meal_tcvr_write(hp, tregs,
 792						      DP83840_CSCONFIG, hp->sw_csconfig);
 793			}
 794			restart_timer = 1;
 795			break;
 796		}
 797		if (hp->timer_ticks == 2) {
 798			if (!is_lucent_phy(hp)) {
 799				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
 800				happy_meal_tcvr_write(hp, tregs,
 801						      DP83840_CSCONFIG, hp->sw_csconfig);
 802			}
 803			restart_timer = 1;
 804			break;
 805		}
 806		if (hp->sw_bmsr & BMSR_LSTATUS) {
 807			/* Force mode selection success. */
 808			display_forced_link_mode(hp, tregs);
 809			set_happy_link_modes(hp, tregs); /* XXX error? then what? */
 810			hp->timer_state = asleep;
 811			restart_timer = 0;
 812		} else {
 813			if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
 814				int ret;
 815
 816				ret = try_next_permutation(hp, tregs);
 817				if (ret == -1) {
 818					/* Aieee, tried them all, reset the
 819					 * chip and try all over again.
 820					 */
 821
 822					/* Let the user know... */
 823					printk(KERN_NOTICE "%s: Link down, cable problem?\n",
 824					       hp->dev->name);
 825
 826					ret = happy_meal_init(hp);
 827					if (ret) {
 828						/* ho hum... */
 829						printk(KERN_ERR "%s: Error, cannot re-init the "
 830						       "Happy Meal.\n", hp->dev->name);
 831					}
 832					goto out;
 833				}
 834				if (!is_lucent_phy(hp)) {
 835					hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
 836									       DP83840_CSCONFIG);
 837					hp->sw_csconfig |= CSCONFIG_TCVDISAB;
 838					happy_meal_tcvr_write(hp, tregs,
 839							      DP83840_CSCONFIG, hp->sw_csconfig);
 840				}
 841				hp->timer_ticks = 0;
 842				restart_timer = 1;
 843			} else {
 844				restart_timer = 1;
 845			}
 846		}
 847		break;
 848
 849	case asleep:
 850	default:
 851		/* Can't happens.... */
 852		printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
 853		       hp->dev->name);
 854		restart_timer = 0;
 855		hp->timer_ticks = 0;
 856		hp->timer_state = asleep; /* foo on you */
 857		break;
 858	}
 859
 860	if (restart_timer) {
 861		hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
 862		add_timer(&hp->happy_timer);
 863	}
 864
 865out:
 866	spin_unlock_irq(&hp->happy_lock);
 867}
 868
 869#define TX_RESET_TRIES     32
 870#define RX_RESET_TRIES     32
 871
 872/* hp->happy_lock must be held */
 873static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
 874{
 875	int tries = TX_RESET_TRIES;
 876
 877	HMD(("happy_meal_tx_reset: reset, "));
 878
 879	/* Would you like to try our SMCC Delux? */
 880	hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
 881	while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
 882		udelay(20);
 883
 884	/* Lettuce, tomato, buggy hardware (no extra charge)? */
 885	if (!tries)
 886		printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
 887
 888	/* Take care. */
 889	HMD(("done\n"));
 890}
 891
 892/* hp->happy_lock must be held */
 893static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
 894{
 895	int tries = RX_RESET_TRIES;
 896
 897	HMD(("happy_meal_rx_reset: reset, "));
 898
 899	/* We have a special on GNU/Viking hardware bugs today. */
 900	hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
 901	while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
 902		udelay(20);
 903
 904	/* Will that be all? */
 905	if (!tries)
 906		printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
 907
 908	/* Don't forget your vik_1137125_wa.  Have a nice day. */
 909	HMD(("done\n"));
 910}
 911
 912#define STOP_TRIES         16
 913
 914/* hp->happy_lock must be held */
 915static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
 916{
 917	int tries = STOP_TRIES;
 918
 919	HMD(("happy_meal_stop: reset, "));
 920
 921	/* We're consolidating our STB products, it's your lucky day. */
 922	hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
 923	while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
 924		udelay(20);
 925
 926	/* Come back next week when we are "Sun Microelectronics". */
 927	if (!tries)
 928		printk(KERN_ERR "happy meal: Fry guys.");
 929
 930	/* Remember: "Different name, same old buggy as shit hardware." */
 931	HMD(("done\n"));
 932}
 933
 934/* hp->happy_lock must be held */
 935static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
 936{
 937	struct net_device_stats *stats = &hp->dev->stats;
 938
 939	stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
 940	hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
 941
 942	stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
 943	hme_write32(hp, bregs + BMAC_UNALECTR, 0);
 944
 945	stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
 946	hme_write32(hp, bregs + BMAC_GLECTR, 0);
 947
 948	stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
 949
 950	stats->collisions +=
 951		(hme_read32(hp, bregs + BMAC_EXCTR) +
 952		 hme_read32(hp, bregs + BMAC_LTCTR));
 953	hme_write32(hp, bregs + BMAC_EXCTR, 0);
 954	hme_write32(hp, bregs + BMAC_LTCTR, 0);
 955}
 956
 957/* hp->happy_lock must be held */
 958static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
 959{
 960	ASD(("happy_meal_poll_stop: "));
 961
 962	/* If polling disabled or not polling already, nothing to do. */
 963	if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
 964	   (HFLAG_POLLENABLE | HFLAG_POLL)) {
 965		HMD(("not polling, return\n"));
 966		return;
 967	}
 968
 969	/* Shut up the MIF. */
 970	ASD(("were polling, mif ints off, "));
 971	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
 972
 973	/* Turn off polling. */
 974	ASD(("polling off, "));
 975	hme_write32(hp, tregs + TCVR_CFG,
 976		    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
 977
 978	/* We are no longer polling. */
 979	hp->happy_flags &= ~(HFLAG_POLL);
 980
 981	/* Let the bits set. */
 982	udelay(200);
 983	ASD(("done\n"));
 984}
 985
 986/* Only Sun can take such nice parts and fuck up the programming interface
 987 * like this.  Good job guys...
 988 */
 989#define TCVR_RESET_TRIES       16 /* It should reset quickly        */
 990#define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
 991
 992/* hp->happy_lock must be held */
 993static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
 994{
 995	u32 tconfig;
 996	int result, tries = TCVR_RESET_TRIES;
 997
 998	tconfig = hme_read32(hp, tregs + TCVR_CFG);
 999	ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
1000	if (hp->tcvr_type == external) {
1001		ASD(("external<"));
1002		hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1003		hp->tcvr_type = internal;
1004		hp->paddr = TCV_PADDR_ITX;
1005		ASD(("ISOLATE,"));
1006		happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1007				      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1008		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1009		if (result == TCVR_FAILURE) {
1010			ASD(("phyread_fail>\n"));
1011			return -1;
1012		}
1013		ASD(("phyread_ok,PSELECT>"));
1014		hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1015		hp->tcvr_type = external;
1016		hp->paddr = TCV_PADDR_ETX;
1017	} else {
1018		if (tconfig & TCV_CFG_MDIO1) {
1019			ASD(("internal<PSELECT,"));
1020			hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1021			ASD(("ISOLATE,"));
1022			happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1023					      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1024			result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1025			if (result == TCVR_FAILURE) {
1026				ASD(("phyread_fail>\n"));
1027				return -1;
1028			}
1029			ASD(("phyread_ok,~PSELECT>"));
1030			hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1031			hp->tcvr_type = internal;
1032			hp->paddr = TCV_PADDR_ITX;
1033		}
1034	}
1035
1036	ASD(("BMCR_RESET "));
1037	happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1038
1039	while (--tries) {
1040		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1041		if (result == TCVR_FAILURE)
1042			return -1;
1043		hp->sw_bmcr = result;
1044		if (!(result & BMCR_RESET))
1045			break;
1046		udelay(20);
1047	}
1048	if (!tries) {
1049		ASD(("BMCR RESET FAILED!\n"));
1050		return -1;
1051	}
1052	ASD(("RESET_OK\n"));
1053
1054	/* Get fresh copies of the PHY registers. */
1055	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1056	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1057	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1058	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1059
1060	ASD(("UNISOLATE"));
1061	hp->sw_bmcr &= ~(BMCR_ISOLATE);
1062	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1063
1064	tries = TCVR_UNISOLATE_TRIES;
1065	while (--tries) {
1066		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1067		if (result == TCVR_FAILURE)
1068			return -1;
1069		if (!(result & BMCR_ISOLATE))
1070			break;
1071		udelay(20);
1072	}
1073	if (!tries) {
1074		ASD((" FAILED!\n"));
1075		return -1;
1076	}
1077	ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1078	if (!is_lucent_phy(hp)) {
1079		result = happy_meal_tcvr_read(hp, tregs,
1080					      DP83840_CSCONFIG);
1081		happy_meal_tcvr_write(hp, tregs,
1082				      DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1083	}
1084	return 0;
1085}
1086
1087/* Figure out whether we have an internal or external transceiver.
1088 *
1089 * hp->happy_lock must be held
1090 */
1091static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1092{
1093	unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1094
1095	ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1096	if (hp->happy_flags & HFLAG_POLL) {
1097		/* If we are polling, we must stop to get the transceiver type. */
1098		ASD(("<polling> "));
1099		if (hp->tcvr_type == internal) {
1100			if (tconfig & TCV_CFG_MDIO1) {
1101				ASD(("<internal> <poll stop> "));
1102				happy_meal_poll_stop(hp, tregs);
1103				hp->paddr = TCV_PADDR_ETX;
1104				hp->tcvr_type = external;
1105				ASD(("<external>\n"));
1106				tconfig &= ~(TCV_CFG_PENABLE);
1107				tconfig |= TCV_CFG_PSELECT;
1108				hme_write32(hp, tregs + TCVR_CFG, tconfig);
1109			}
1110		} else {
1111			if (hp->tcvr_type == external) {
1112				ASD(("<external> "));
1113				if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1114					ASD(("<poll stop> "));
1115					happy_meal_poll_stop(hp, tregs);
1116					hp->paddr = TCV_PADDR_ITX;
1117					hp->tcvr_type = internal;
1118					ASD(("<internal>\n"));
1119					hme_write32(hp, tregs + TCVR_CFG,
1120						    hme_read32(hp, tregs + TCVR_CFG) &
1121						    ~(TCV_CFG_PSELECT));
1122				}
1123				ASD(("\n"));
1124			} else {
1125				ASD(("<none>\n"));
1126			}
1127		}
1128	} else {
1129		u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1130
1131		/* Else we can just work off of the MDIO bits. */
1132		ASD(("<not polling> "));
1133		if (reread & TCV_CFG_MDIO1) {
1134			hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1135			hp->paddr = TCV_PADDR_ETX;
1136			hp->tcvr_type = external;
1137			ASD(("<external>\n"));
1138		} else {
1139			if (reread & TCV_CFG_MDIO0) {
1140				hme_write32(hp, tregs + TCVR_CFG,
1141					    tconfig & ~(TCV_CFG_PSELECT));
1142				hp->paddr = TCV_PADDR_ITX;
1143				hp->tcvr_type = internal;
1144				ASD(("<internal>\n"));
1145			} else {
1146				printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1147				hp->tcvr_type = none; /* Grrr... */
1148				ASD(("<none>\n"));
1149			}
1150		}
1151	}
1152}
1153
1154/* The receive ring buffers are a bit tricky to get right.  Here goes...
1155 *
1156 * The buffers we dma into must be 64 byte aligned.  So we use a special
1157 * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1158 * we really need.
1159 *
1160 * We use skb_reserve() to align the data block we get in the skb.  We
1161 * also program the etxregs->cfg register to use an offset of 2.  This
1162 * imperical constant plus the ethernet header size will always leave
1163 * us with a nicely aligned ip header once we pass things up to the
1164 * protocol layers.
1165 *
1166 * The numbers work out to:
1167 *
1168 *         Max ethernet frame size         1518
1169 *         Ethernet header size              14
1170 *         Happy Meal base offset             2
1171 *
1172 * Say a skb data area is at 0xf001b010, and its size alloced is
1173 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1174 *
1175 * First our alloc_skb() routine aligns the data base to a 64 byte
1176 * boundary.  We now have 0xf001b040 as our skb data address.  We
1177 * plug this into the receive descriptor address.
1178 *
1179 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1180 * So now the data we will end up looking at starts at 0xf001b042.  When
1181 * the packet arrives, we will check out the size received and subtract
1182 * this from the skb->length.  Then we just pass the packet up to the
1183 * protocols as is, and allocate a new skb to replace this slot we have
1184 * just received from.
1185 *
1186 * The ethernet layer will strip the ether header from the front of the
1187 * skb we just sent to it, this leaves us with the ip header sitting
1188 * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
1189 * Happy Meal has even checksummed the tcp/udp data for us.  The 16
1190 * bit checksum is obtained from the low bits of the receive descriptor
1191 * flags, thus:
1192 *
1193 * 	skb->csum = rxd->rx_flags & 0xffff;
1194 * 	skb->ip_summed = CHECKSUM_COMPLETE;
1195 *
1196 * before sending off the skb to the protocols, and we are good as gold.
1197 */
1198static void happy_meal_clean_rings(struct happy_meal *hp)
1199{
1200	int i;
1201
1202	for (i = 0; i < RX_RING_SIZE; i++) {
1203		if (hp->rx_skbs[i] != NULL) {
1204			struct sk_buff *skb = hp->rx_skbs[i];
1205			struct happy_meal_rxd *rxd;
1206			u32 dma_addr;
1207
1208			rxd = &hp->happy_block->happy_meal_rxd[i];
1209			dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1210			dma_unmap_single(hp->dma_dev, dma_addr,
1211					 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1212			dev_kfree_skb_any(skb);
1213			hp->rx_skbs[i] = NULL;
1214		}
1215	}
1216
1217	for (i = 0; i < TX_RING_SIZE; i++) {
1218		if (hp->tx_skbs[i] != NULL) {
1219			struct sk_buff *skb = hp->tx_skbs[i];
1220			struct happy_meal_txd *txd;
1221			u32 dma_addr;
1222			int frag;
1223
1224			hp->tx_skbs[i] = NULL;
1225
1226			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1227				txd = &hp->happy_block->happy_meal_txd[i];
1228				dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1229				if (!frag)
1230					dma_unmap_single(hp->dma_dev, dma_addr,
1231							 (hme_read_desc32(hp, &txd->tx_flags)
1232							  & TXFLAG_SIZE),
1233							 DMA_TO_DEVICE);
1234				else
1235					dma_unmap_page(hp->dma_dev, dma_addr,
1236							 (hme_read_desc32(hp, &txd->tx_flags)
1237							  & TXFLAG_SIZE),
1238							 DMA_TO_DEVICE);
1239
1240				if (frag != skb_shinfo(skb)->nr_frags)
1241					i++;
1242			}
1243
1244			dev_kfree_skb_any(skb);
1245		}
1246	}
1247}
1248
1249/* hp->happy_lock must be held */
1250static void happy_meal_init_rings(struct happy_meal *hp)
1251{
1252	struct hmeal_init_block *hb = hp->happy_block;
1253	int i;
1254
1255	HMD(("happy_meal_init_rings: counters to zero, "));
1256	hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1257
1258	/* Free any skippy bufs left around in the rings. */
1259	HMD(("clean, "));
1260	happy_meal_clean_rings(hp);
1261
1262	/* Now get new skippy bufs for the receive ring. */
1263	HMD(("init rxring, "));
1264	for (i = 0; i < RX_RING_SIZE; i++) {
1265		struct sk_buff *skb;
1266		u32 mapping;
1267
1268		skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1269		if (!skb) {
1270			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1271			continue;
1272		}
1273		hp->rx_skbs[i] = skb;
1274
1275		/* Because we reserve afterwards. */
1276		skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1277		mapping = dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
1278					 DMA_FROM_DEVICE);
1279		if (dma_mapping_error(hp->dma_dev, mapping)) {
1280			dev_kfree_skb_any(skb);
1281			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1282			continue;
1283		}
1284		hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1285			      (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1286			      mapping);
1287		skb_reserve(skb, RX_OFFSET);
1288	}
1289
1290	HMD(("init txring, "));
1291	for (i = 0; i < TX_RING_SIZE; i++)
1292		hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1293
1294	HMD(("done\n"));
1295}
1296
1297/* hp->happy_lock must be held */
1298static void
1299happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1300				  void __iomem *tregs,
1301				  const struct ethtool_link_ksettings *ep)
1302{
1303	int timeout;
1304
1305	/* Read all of the registers we are interested in now. */
1306	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1307	hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1308	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1309	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1310
1311	/* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1312
1313	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1314	if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1315		/* Advertise everything we can support. */
1316		if (hp->sw_bmsr & BMSR_10HALF)
1317			hp->sw_advertise |= (ADVERTISE_10HALF);
1318		else
1319			hp->sw_advertise &= ~(ADVERTISE_10HALF);
1320
1321		if (hp->sw_bmsr & BMSR_10FULL)
1322			hp->sw_advertise |= (ADVERTISE_10FULL);
1323		else
1324			hp->sw_advertise &= ~(ADVERTISE_10FULL);
1325		if (hp->sw_bmsr & BMSR_100HALF)
1326			hp->sw_advertise |= (ADVERTISE_100HALF);
1327		else
1328			hp->sw_advertise &= ~(ADVERTISE_100HALF);
1329		if (hp->sw_bmsr & BMSR_100FULL)
1330			hp->sw_advertise |= (ADVERTISE_100FULL);
1331		else
1332			hp->sw_advertise &= ~(ADVERTISE_100FULL);
1333		happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1334
1335		/* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1336		 * XXX and this is because the DP83840 does not support it, changes
1337		 * XXX would need to be made to the tx/rx logic in the driver as well
1338		 * XXX so I completely skip checking for it in the BMSR for now.
1339		 */
1340
1341#ifdef AUTO_SWITCH_DEBUG
1342		ASD(("%s: Advertising [ ", hp->dev->name));
1343		if (hp->sw_advertise & ADVERTISE_10HALF)
1344			ASD(("10H "));
1345		if (hp->sw_advertise & ADVERTISE_10FULL)
1346			ASD(("10F "));
1347		if (hp->sw_advertise & ADVERTISE_100HALF)
1348			ASD(("100H "));
1349		if (hp->sw_advertise & ADVERTISE_100FULL)
1350			ASD(("100F "));
1351#endif
1352
1353		/* Enable Auto-Negotiation, this is usually on already... */
1354		hp->sw_bmcr |= BMCR_ANENABLE;
1355		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1356
1357		/* Restart it to make sure it is going. */
1358		hp->sw_bmcr |= BMCR_ANRESTART;
1359		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1360
1361		/* BMCR_ANRESTART self clears when the process has begun. */
1362
1363		timeout = 64;  /* More than enough. */
1364		while (--timeout) {
1365			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1366			if (!(hp->sw_bmcr & BMCR_ANRESTART))
1367				break; /* got it. */
1368			udelay(10);
1369		}
1370		if (!timeout) {
1371			printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1372			       "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1373			printk(KERN_NOTICE "%s: Performing force link detection.\n",
1374			       hp->dev->name);
1375			goto force_link;
1376		} else {
1377			hp->timer_state = arbwait;
1378		}
1379	} else {
1380force_link:
1381		/* Force the link up, trying first a particular mode.
1382		 * Either we are here at the request of ethtool or
1383		 * because the Happy Meal would not start to autoneg.
1384		 */
1385
1386		/* Disable auto-negotiation in BMCR, enable the duplex and
1387		 * speed setting, init the timer state machine, and fire it off.
1388		 */
1389		if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1390			hp->sw_bmcr = BMCR_SPEED100;
1391		} else {
1392			if (ep->base.speed == SPEED_100)
1393				hp->sw_bmcr = BMCR_SPEED100;
1394			else
1395				hp->sw_bmcr = 0;
1396			if (ep->base.duplex == DUPLEX_FULL)
1397				hp->sw_bmcr |= BMCR_FULLDPLX;
1398		}
1399		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1400
1401		if (!is_lucent_phy(hp)) {
1402			/* OK, seems we need do disable the transceiver for the first
1403			 * tick to make sure we get an accurate link state at the
1404			 * second tick.
1405			 */
1406			hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1407							       DP83840_CSCONFIG);
1408			hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1409			happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1410					      hp->sw_csconfig);
1411		}
1412		hp->timer_state = ltrywait;
1413	}
1414
1415	hp->timer_ticks = 0;
1416	hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
1417	add_timer(&hp->happy_timer);
1418}
1419
1420/* hp->happy_lock must be held */
1421static int happy_meal_init(struct happy_meal *hp)
1422{
1423	void __iomem *gregs        = hp->gregs;
1424	void __iomem *etxregs      = hp->etxregs;
1425	void __iomem *erxregs      = hp->erxregs;
1426	void __iomem *bregs        = hp->bigmacregs;
1427	void __iomem *tregs        = hp->tcvregs;
1428	u32 regtmp, rxcfg;
1429	unsigned char *e = &hp->dev->dev_addr[0];
1430
1431	/* If auto-negotiation timer is running, kill it. */
1432	del_timer(&hp->happy_timer);
1433
1434	HMD(("happy_meal_init: happy_flags[%08x] ",
1435	     hp->happy_flags));
1436	if (!(hp->happy_flags & HFLAG_INIT)) {
1437		HMD(("set HFLAG_INIT, "));
1438		hp->happy_flags |= HFLAG_INIT;
1439		happy_meal_get_counters(hp, bregs);
1440	}
1441
1442	/* Stop polling. */
1443	HMD(("to happy_meal_poll_stop\n"));
1444	happy_meal_poll_stop(hp, tregs);
1445
1446	/* Stop transmitter and receiver. */
1447	HMD(("happy_meal_init: to happy_meal_stop\n"));
1448	happy_meal_stop(hp, gregs);
1449
1450	/* Alloc and reset the tx/rx descriptor chains. */
1451	HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1452	happy_meal_init_rings(hp);
1453
1454	/* Shut up the MIF. */
1455	HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1456	     hme_read32(hp, tregs + TCVR_IMASK)));
1457	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1458
1459	/* See if we can enable the MIF frame on this card to speak to the DP83840. */
1460	if (hp->happy_flags & HFLAG_FENABLE) {
1461		HMD(("use frame old[%08x], ",
1462		     hme_read32(hp, tregs + TCVR_CFG)));
1463		hme_write32(hp, tregs + TCVR_CFG,
1464			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1465	} else {
1466		HMD(("use bitbang old[%08x], ",
1467		     hme_read32(hp, tregs + TCVR_CFG)));
1468		hme_write32(hp, tregs + TCVR_CFG,
1469			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1470	}
1471
1472	/* Check the state of the transceiver. */
1473	HMD(("to happy_meal_transceiver_check\n"));
1474	happy_meal_transceiver_check(hp, tregs);
1475
1476	/* Put the Big Mac into a sane state. */
1477	HMD(("happy_meal_init: "));
1478	switch(hp->tcvr_type) {
1479	case none:
1480		/* Cannot operate if we don't know the transceiver type! */
1481		HMD(("AAIEEE no transceiver type, EAGAIN"));
1482		return -EAGAIN;
1483
1484	case internal:
1485		/* Using the MII buffers. */
1486		HMD(("internal, using MII, "));
1487		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1488		break;
1489
1490	case external:
1491		/* Not using the MII, disable it. */
1492		HMD(("external, disable MII, "));
1493		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1494		break;
1495	}
1496
1497	if (happy_meal_tcvr_reset(hp, tregs))
1498		return -EAGAIN;
1499
1500	/* Reset the Happy Meal Big Mac transceiver and the receiver. */
1501	HMD(("tx/rx reset, "));
1502	happy_meal_tx_reset(hp, bregs);
1503	happy_meal_rx_reset(hp, bregs);
1504
1505	/* Set jam size and inter-packet gaps to reasonable defaults. */
1506	HMD(("jsize/ipg1/ipg2, "));
1507	hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1508	hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1509	hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1510
1511	/* Load up the MAC address and random seed. */
1512	HMD(("rseed/macaddr, "));
1513
1514	/* The docs recommend to use the 10LSB of our MAC here. */
1515	hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1516
1517	hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1518	hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1519	hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1520
1521	HMD(("htable, "));
1522	if ((hp->dev->flags & IFF_ALLMULTI) ||
1523	    (netdev_mc_count(hp->dev) > 64)) {
1524		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1525		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1526		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1527		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1528	} else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1529		u16 hash_table[4];
1530		struct netdev_hw_addr *ha;
1531		u32 crc;
1532
1533		memset(hash_table, 0, sizeof(hash_table));
1534		netdev_for_each_mc_addr(ha, hp->dev) {
1535			crc = ether_crc_le(6, ha->addr);
1536			crc >>= 26;
1537			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1538		}
1539		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1540		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1541		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1542		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1543	} else {
1544		hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1545		hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1546		hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1547		hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1548	}
1549
1550	/* Set the RX and TX ring ptrs. */
1551	HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1552	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1553	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1554	hme_write32(hp, erxregs + ERX_RING,
1555		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1556	hme_write32(hp, etxregs + ETX_RING,
1557		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1558
1559	/* Parity issues in the ERX unit of some HME revisions can cause some
1560	 * registers to not be written unless their parity is even.  Detect such
1561	 * lost writes and simply rewrite with a low bit set (which will be ignored
1562	 * since the rxring needs to be 2K aligned).
1563	 */
1564	if (hme_read32(hp, erxregs + ERX_RING) !=
1565	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1566		hme_write32(hp, erxregs + ERX_RING,
1567			    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1568			    | 0x4);
1569
1570	/* Set the supported burst sizes. */
1571	HMD(("happy_meal_init: old[%08x] bursts<",
1572	     hme_read32(hp, gregs + GREG_CFG)));
1573
1574#ifndef CONFIG_SPARC
1575	/* It is always PCI and can handle 64byte bursts. */
1576	hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1577#else
1578	if ((hp->happy_bursts & DMA_BURST64) &&
1579	    ((hp->happy_flags & HFLAG_PCI) != 0
1580#ifdef CONFIG_SBUS
1581	     || sbus_can_burst64()
1582#endif
1583	     || 0)) {
1584		u32 gcfg = GREG_CFG_BURST64;
1585
1586		/* I have no idea if I should set the extended
1587		 * transfer mode bit for Cheerio, so for now I
1588		 * do not.  -DaveM
1589		 */
1590#ifdef CONFIG_SBUS
1591		if ((hp->happy_flags & HFLAG_PCI) == 0) {
1592			struct platform_device *op = hp->happy_dev;
1593			if (sbus_can_dma_64bit()) {
1594				sbus_set_sbus64(&op->dev,
1595						hp->happy_bursts);
1596				gcfg |= GREG_CFG_64BIT;
1597			}
1598		}
1599#endif
1600
1601		HMD(("64>"));
1602		hme_write32(hp, gregs + GREG_CFG, gcfg);
1603	} else if (hp->happy_bursts & DMA_BURST32) {
1604		HMD(("32>"));
1605		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1606	} else if (hp->happy_bursts & DMA_BURST16) {
1607		HMD(("16>"));
1608		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1609	} else {
1610		HMD(("XXX>"));
1611		hme_write32(hp, gregs + GREG_CFG, 0);
1612	}
1613#endif /* CONFIG_SPARC */
1614
1615	/* Turn off interrupts we do not want to hear. */
1616	HMD((", enable global interrupts, "));
1617	hme_write32(hp, gregs + GREG_IMASK,
1618		    (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1619		     GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1620
1621	/* Set the transmit ring buffer size. */
1622	HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1623	     hme_read32(hp, etxregs + ETX_RSIZE)));
1624	hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1625
1626	/* Enable transmitter DVMA. */
1627	HMD(("tx dma enable old[%08x], ",
1628	     hme_read32(hp, etxregs + ETX_CFG)));
1629	hme_write32(hp, etxregs + ETX_CFG,
1630		    hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1631
1632	/* This chip really rots, for the receiver sometimes when you
1633	 * write to its control registers not all the bits get there
1634	 * properly.  I cannot think of a sane way to provide complete
1635	 * coverage for this hardware bug yet.
1636	 */
1637	HMD(("erx regs bug old[%08x]\n",
1638	     hme_read32(hp, erxregs + ERX_CFG)));
1639	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1640	regtmp = hme_read32(hp, erxregs + ERX_CFG);
1641	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1642	if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1643		printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1644		printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1645		       ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1646		/* XXX Should return failure here... */
1647	}
1648
1649	/* Enable Big Mac hash table filter. */
1650	HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1651	     hme_read32(hp, bregs + BMAC_RXCFG)));
1652	rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1653	if (hp->dev->flags & IFF_PROMISC)
1654		rxcfg |= BIGMAC_RXCFG_PMISC;
1655	hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1656
1657	/* Let the bits settle in the chip. */
1658	udelay(10);
1659
1660	/* Ok, configure the Big Mac transmitter. */
1661	HMD(("BIGMAC init, "));
1662	regtmp = 0;
1663	if (hp->happy_flags & HFLAG_FULL)
1664		regtmp |= BIGMAC_TXCFG_FULLDPLX;
1665
1666	/* Don't turn on the "don't give up" bit for now.  It could cause hme
1667	 * to deadlock with the PHY if a Jabber occurs.
1668	 */
1669	hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1670
1671	/* Give up after 16 TX attempts. */
1672	hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1673
1674	/* Enable the output drivers no matter what. */
1675	regtmp = BIGMAC_XCFG_ODENABLE;
1676
1677	/* If card can do lance mode, enable it. */
1678	if (hp->happy_flags & HFLAG_LANCE)
1679		regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1680
1681	/* Disable the MII buffers if using external transceiver. */
1682	if (hp->tcvr_type == external)
1683		regtmp |= BIGMAC_XCFG_MIIDISAB;
1684
1685	HMD(("XIF config old[%08x], ",
1686	     hme_read32(hp, bregs + BMAC_XIFCFG)));
1687	hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1688
1689	/* Start things up. */
1690	HMD(("tx old[%08x] and rx [%08x] ON!\n",
1691	     hme_read32(hp, bregs + BMAC_TXCFG),
1692	     hme_read32(hp, bregs + BMAC_RXCFG)));
1693
1694	/* Set larger TX/RX size to allow for 802.1q */
1695	hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1696	hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1697
1698	hme_write32(hp, bregs + BMAC_TXCFG,
1699		    hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1700	hme_write32(hp, bregs + BMAC_RXCFG,
1701		    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1702
1703	/* Get the autonegotiation started, and the watch timer ticking. */
1704	happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1705
1706	/* Success. */
1707	return 0;
1708}
1709
1710/* hp->happy_lock must be held */
1711static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1712{
1713	void __iomem *tregs	= hp->tcvregs;
1714	void __iomem *bregs	= hp->bigmacregs;
1715	void __iomem *gregs	= hp->gregs;
1716
1717	happy_meal_stop(hp, gregs);
1718	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1719	if (hp->happy_flags & HFLAG_FENABLE)
1720		hme_write32(hp, tregs + TCVR_CFG,
1721			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1722	else
1723		hme_write32(hp, tregs + TCVR_CFG,
1724			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1725	happy_meal_transceiver_check(hp, tregs);
1726	switch(hp->tcvr_type) {
1727	case none:
1728		return;
1729	case internal:
1730		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1731		break;
1732	case external:
1733		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1734		break;
1735	}
1736	if (happy_meal_tcvr_reset(hp, tregs))
1737		return;
1738
1739	/* Latch PHY registers as of now. */
1740	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1741	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1742
1743	/* Advertise everything we can support. */
1744	if (hp->sw_bmsr & BMSR_10HALF)
1745		hp->sw_advertise |= (ADVERTISE_10HALF);
1746	else
1747		hp->sw_advertise &= ~(ADVERTISE_10HALF);
1748
1749	if (hp->sw_bmsr & BMSR_10FULL)
1750		hp->sw_advertise |= (ADVERTISE_10FULL);
1751	else
1752		hp->sw_advertise &= ~(ADVERTISE_10FULL);
1753	if (hp->sw_bmsr & BMSR_100HALF)
1754		hp->sw_advertise |= (ADVERTISE_100HALF);
1755	else
1756		hp->sw_advertise &= ~(ADVERTISE_100HALF);
1757	if (hp->sw_bmsr & BMSR_100FULL)
1758		hp->sw_advertise |= (ADVERTISE_100FULL);
1759	else
1760		hp->sw_advertise &= ~(ADVERTISE_100FULL);
1761
1762	/* Update the PHY advertisement register. */
1763	happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1764}
1765
1766/* Once status is latched (by happy_meal_interrupt) it is cleared by
1767 * the hardware, so we cannot re-read it and get a correct value.
1768 *
1769 * hp->happy_lock must be held
1770 */
1771static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1772{
1773	int reset = 0;
1774
1775	/* Only print messages for non-counter related interrupts. */
1776	if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1777		      GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1778		      GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1779		      GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1780		      GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1781		      GREG_STAT_SLVPERR))
1782		printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1783		       hp->dev->name, status);
1784
1785	if (status & GREG_STAT_RFIFOVF) {
1786		/* Receive FIFO overflow is harmless and the hardware will take
1787		   care of it, just some packets are lost. Who cares. */
1788		printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1789	}
1790
1791	if (status & GREG_STAT_STSTERR) {
1792		/* BigMAC SQE link test failed. */
1793		printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1794		reset = 1;
1795	}
1796
1797	if (status & GREG_STAT_TFIFO_UND) {
1798		/* Transmit FIFO underrun, again DMA error likely. */
1799		printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1800		       hp->dev->name);
1801		reset = 1;
1802	}
1803
1804	if (status & GREG_STAT_MAXPKTERR) {
1805		/* Driver error, tried to transmit something larger
1806		 * than ethernet max mtu.
1807		 */
1808		printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1809		reset = 1;
1810	}
1811
1812	if (status & GREG_STAT_NORXD) {
1813		/* This is harmless, it just means the system is
1814		 * quite loaded and the incoming packet rate was
1815		 * faster than the interrupt handler could keep up
1816		 * with.
1817		 */
1818		printk(KERN_INFO "%s: Happy Meal out of receive "
1819		       "descriptors, packet dropped.\n",
1820		       hp->dev->name);
1821	}
1822
1823	if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1824		/* All sorts of DMA receive errors. */
1825		printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1826		if (status & GREG_STAT_RXERR)
1827			printk("GenericError ");
1828		if (status & GREG_STAT_RXPERR)
1829			printk("ParityError ");
1830		if (status & GREG_STAT_RXTERR)
1831			printk("RxTagBotch ");
1832		printk("]\n");
1833		reset = 1;
1834	}
1835
1836	if (status & GREG_STAT_EOPERR) {
1837		/* Driver bug, didn't set EOP bit in tx descriptor given
1838		 * to the happy meal.
1839		 */
1840		printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1841		       hp->dev->name);
1842		reset = 1;
1843	}
1844
1845	if (status & GREG_STAT_MIFIRQ) {
1846		/* MIF signalled an interrupt, were we polling it? */
1847		printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1848	}
1849
1850	if (status &
1851	    (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1852		/* All sorts of transmit DMA errors. */
1853		printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1854		if (status & GREG_STAT_TXEACK)
1855			printk("GenericError ");
1856		if (status & GREG_STAT_TXLERR)
1857			printk("LateError ");
1858		if (status & GREG_STAT_TXPERR)
1859			printk("ParityError ");
1860		if (status & GREG_STAT_TXTERR)
1861			printk("TagBotch ");
1862		printk("]\n");
1863		reset = 1;
1864	}
1865
1866	if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1867		/* Bus or parity error when cpu accessed happy meal registers
1868		 * or it's internal FIFO's.  Should never see this.
1869		 */
1870		printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1871		       hp->dev->name,
1872		       (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1873		reset = 1;
1874	}
1875
1876	if (reset) {
1877		printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1878		happy_meal_init(hp);
1879		return 1;
1880	}
1881	return 0;
1882}
1883
1884/* hp->happy_lock must be held */
1885static void happy_meal_mif_interrupt(struct happy_meal *hp)
1886{
1887	void __iomem *tregs = hp->tcvregs;
1888
1889	printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1890	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1891	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1892
1893	/* Use the fastest transmission protocol possible. */
1894	if (hp->sw_lpa & LPA_100FULL) {
1895		printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1896		hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1897	} else if (hp->sw_lpa & LPA_100HALF) {
1898		printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1899		hp->sw_bmcr |= BMCR_SPEED100;
1900	} else if (hp->sw_lpa & LPA_10FULL) {
1901		printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1902		hp->sw_bmcr |= BMCR_FULLDPLX;
1903	} else {
1904		printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1905	}
1906	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1907
1908	/* Finally stop polling and shut up the MIF. */
1909	happy_meal_poll_stop(hp, tregs);
1910}
1911
1912#ifdef TXDEBUG
1913#define TXD(x) printk x
1914#else
1915#define TXD(x)
1916#endif
1917
1918/* hp->happy_lock must be held */
1919static void happy_meal_tx(struct happy_meal *hp)
1920{
1921	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1922	struct happy_meal_txd *this;
1923	struct net_device *dev = hp->dev;
1924	int elem;
1925
1926	elem = hp->tx_old;
1927	TXD(("TX<"));
1928	while (elem != hp->tx_new) {
1929		struct sk_buff *skb;
1930		u32 flags, dma_addr, dma_len;
1931		int frag;
1932
1933		TXD(("[%d]", elem));
1934		this = &txbase[elem];
1935		flags = hme_read_desc32(hp, &this->tx_flags);
1936		if (flags & TXFLAG_OWN)
1937			break;
1938		skb = hp->tx_skbs[elem];
1939		if (skb_shinfo(skb)->nr_frags) {
1940			int last;
1941
1942			last = elem + skb_shinfo(skb)->nr_frags;
1943			last &= (TX_RING_SIZE - 1);
1944			flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1945			if (flags & TXFLAG_OWN)
1946				break;
1947		}
1948		hp->tx_skbs[elem] = NULL;
1949		dev->stats.tx_bytes += skb->len;
1950
1951		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1952			dma_addr = hme_read_desc32(hp, &this->tx_addr);
1953			dma_len = hme_read_desc32(hp, &this->tx_flags);
1954
1955			dma_len &= TXFLAG_SIZE;
1956			if (!frag)
1957				dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1958			else
1959				dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1960
1961			elem = NEXT_TX(elem);
1962			this = &txbase[elem];
1963		}
1964
1965		dev_kfree_skb_irq(skb);
1966		dev->stats.tx_packets++;
1967	}
1968	hp->tx_old = elem;
1969	TXD((">"));
1970
1971	if (netif_queue_stopped(dev) &&
1972	    TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1973		netif_wake_queue(dev);
1974}
1975
1976#ifdef RXDEBUG
1977#define RXD(x) printk x
1978#else
1979#define RXD(x)
1980#endif
1981
1982/* Originally I used to handle the allocation failure by just giving back just
1983 * that one ring buffer to the happy meal.  Problem is that usually when that
1984 * condition is triggered, the happy meal expects you to do something reasonable
1985 * with all of the packets it has DMA'd in.  So now I just drop the entire
1986 * ring when we cannot get a new skb and give them all back to the happy meal,
1987 * maybe things will be "happier" now.
1988 *
1989 * hp->happy_lock must be held
1990 */
1991static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1992{
1993	struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1994	struct happy_meal_rxd *this;
1995	int elem = hp->rx_new, drops = 0;
1996	u32 flags;
1997
1998	RXD(("RX<"));
1999	this = &rxbase[elem];
2000	while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
2001		struct sk_buff *skb;
2002		int len = flags >> 16;
2003		u16 csum = flags & RXFLAG_CSUM;
2004		u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
2005
2006		RXD(("[%d ", elem));
2007
2008		/* Check for errors. */
2009		if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2010			RXD(("ERR(%08x)]", flags));
2011			dev->stats.rx_errors++;
2012			if (len < ETH_ZLEN)
2013				dev->stats.rx_length_errors++;
2014			if (len & (RXFLAG_OVERFLOW >> 16)) {
2015				dev->stats.rx_over_errors++;
2016				dev->stats.rx_fifo_errors++;
2017			}
2018
2019			/* Return it to the Happy meal. */
2020	drop_it:
2021			dev->stats.rx_dropped++;
2022			hme_write_rxd(hp, this,
2023				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2024				      dma_addr);
2025			goto next;
2026		}
2027		skb = hp->rx_skbs[elem];
2028		if (len > RX_COPY_THRESHOLD) {
2029			struct sk_buff *new_skb;
2030			u32 mapping;
2031
2032			/* Now refill the entry, if we can. */
2033			new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2034			if (new_skb == NULL) {
2035				drops++;
2036				goto drop_it;
2037			}
2038			skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
2039			mapping = dma_map_single(hp->dma_dev, new_skb->data,
2040						 RX_BUF_ALLOC_SIZE,
2041						 DMA_FROM_DEVICE);
2042			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2043				dev_kfree_skb_any(new_skb);
2044				drops++;
2045				goto drop_it;
2046			}
2047
2048			dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
2049			hp->rx_skbs[elem] = new_skb;
2050			hme_write_rxd(hp, this,
2051				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2052				      mapping);
2053			skb_reserve(new_skb, RX_OFFSET);
2054
2055			/* Trim the original skb for the netif. */
2056			skb_trim(skb, len);
2057		} else {
2058			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
2059
2060			if (copy_skb == NULL) {
2061				drops++;
2062				goto drop_it;
2063			}
2064
2065			skb_reserve(copy_skb, 2);
2066			skb_put(copy_skb, len);
2067			dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2068			skb_copy_from_linear_data(skb, copy_skb->data, len);
2069			dma_sync_single_for_device(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2070			/* Reuse original ring buffer. */
2071			hme_write_rxd(hp, this,
2072				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2073				      dma_addr);
2074
2075			skb = copy_skb;
2076		}
2077
2078		/* This card is _fucking_ hot... */
2079		skb->csum = csum_unfold(~(__force __sum16)htons(csum));
2080		skb->ip_summed = CHECKSUM_COMPLETE;
2081
2082		RXD(("len=%d csum=%4x]", len, csum));
2083		skb->protocol = eth_type_trans(skb, dev);
2084		netif_rx(skb);
2085
2086		dev->stats.rx_packets++;
2087		dev->stats.rx_bytes += len;
2088	next:
2089		elem = NEXT_RX(elem);
2090		this = &rxbase[elem];
2091	}
2092	hp->rx_new = elem;
2093	if (drops)
2094		printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2095	RXD((">"));
2096}
2097
2098static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2099{
2100	struct net_device *dev = dev_id;
2101	struct happy_meal *hp  = netdev_priv(dev);
2102	u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2103
2104	HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2105
2106	spin_lock(&hp->happy_lock);
2107
2108	if (happy_status & GREG_STAT_ERRORS) {
2109		HMD(("ERRORS "));
2110		if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2111			goto out;
2112	}
2113
2114	if (happy_status & GREG_STAT_MIFIRQ) {
2115		HMD(("MIFIRQ "));
2116		happy_meal_mif_interrupt(hp);
2117	}
2118
2119	if (happy_status & GREG_STAT_TXALL) {
2120		HMD(("TXALL "));
2121		happy_meal_tx(hp);
2122	}
2123
2124	if (happy_status & GREG_STAT_RXTOHOST) {
2125		HMD(("RXTOHOST "));
2126		happy_meal_rx(hp, dev);
2127	}
2128
2129	HMD(("done\n"));
2130out:
2131	spin_unlock(&hp->happy_lock);
2132
2133	return IRQ_HANDLED;
2134}
2135
2136#ifdef CONFIG_SBUS
2137static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2138{
2139	struct quattro *qp = (struct quattro *) cookie;
2140	int i;
2141
2142	for (i = 0; i < 4; i++) {
2143		struct net_device *dev = qp->happy_meals[i];
2144		struct happy_meal *hp  = netdev_priv(dev);
2145		u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2146
2147		HMD(("quattro_interrupt: status=%08x ", happy_status));
2148
2149		if (!(happy_status & (GREG_STAT_ERRORS |
2150				      GREG_STAT_MIFIRQ |
2151				      GREG_STAT_TXALL |
2152				      GREG_STAT_RXTOHOST)))
2153			continue;
2154
2155		spin_lock(&hp->happy_lock);
2156
2157		if (happy_status & GREG_STAT_ERRORS) {
2158			HMD(("ERRORS "));
2159			if (happy_meal_is_not_so_happy(hp, happy_status))
2160				goto next;
2161		}
2162
2163		if (happy_status & GREG_STAT_MIFIRQ) {
2164			HMD(("MIFIRQ "));
2165			happy_meal_mif_interrupt(hp);
2166		}
2167
2168		if (happy_status & GREG_STAT_TXALL) {
2169			HMD(("TXALL "));
2170			happy_meal_tx(hp);
2171		}
2172
2173		if (happy_status & GREG_STAT_RXTOHOST) {
2174			HMD(("RXTOHOST "));
2175			happy_meal_rx(hp, dev);
2176		}
2177
2178	next:
2179		spin_unlock(&hp->happy_lock);
2180	}
2181	HMD(("done\n"));
2182
2183	return IRQ_HANDLED;
2184}
2185#endif
2186
2187static int happy_meal_open(struct net_device *dev)
2188{
2189	struct happy_meal *hp = netdev_priv(dev);
2190	int res;
2191
2192	HMD(("happy_meal_open: "));
2193
2194	/* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2195	 * into a single source which we register handling at probe time.
2196	 */
2197	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2198		res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED,
2199				  dev->name, dev);
2200		if (res) {
2201			HMD(("EAGAIN\n"));
2202			printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2203			       hp->irq);
2204
2205			return -EAGAIN;
2206		}
2207	}
2208
2209	HMD(("to happy_meal_init\n"));
2210
2211	spin_lock_irq(&hp->happy_lock);
2212	res = happy_meal_init(hp);
2213	spin_unlock_irq(&hp->happy_lock);
2214
2215	if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2216		free_irq(hp->irq, dev);
2217	return res;
2218}
2219
2220static int happy_meal_close(struct net_device *dev)
2221{
2222	struct happy_meal *hp = netdev_priv(dev);
2223
2224	spin_lock_irq(&hp->happy_lock);
2225	happy_meal_stop(hp, hp->gregs);
2226	happy_meal_clean_rings(hp);
2227
2228	/* If auto-negotiation timer is running, kill it. */
2229	del_timer(&hp->happy_timer);
2230
2231	spin_unlock_irq(&hp->happy_lock);
2232
2233	/* On Quattro QFE cards, all hme interrupts are concentrated
2234	 * into a single source which we register handling at probe
2235	 * time and never unregister.
2236	 */
2237	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2238		free_irq(hp->irq, dev);
2239
2240	return 0;
2241}
2242
2243#ifdef SXDEBUG
2244#define SXD(x) printk x
2245#else
2246#define SXD(x)
2247#endif
2248
2249static void happy_meal_tx_timeout(struct net_device *dev)
2250{
2251	struct happy_meal *hp = netdev_priv(dev);
2252
2253	printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2254	tx_dump_log();
2255	printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2256		hme_read32(hp, hp->gregs + GREG_STAT),
2257		hme_read32(hp, hp->etxregs + ETX_CFG),
2258		hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2259
2260	spin_lock_irq(&hp->happy_lock);
2261	happy_meal_init(hp);
2262	spin_unlock_irq(&hp->happy_lock);
2263
2264	netif_wake_queue(dev);
2265}
2266
2267static void unmap_partial_tx_skb(struct happy_meal *hp, u32 first_mapping,
2268				 u32 first_len, u32 first_entry, u32 entry)
2269{
2270	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
2271
2272	dma_unmap_single(hp->dma_dev, first_mapping, first_len, DMA_TO_DEVICE);
2273
2274	first_entry = NEXT_TX(first_entry);
2275	while (first_entry != entry) {
2276		struct happy_meal_txd *this = &txbase[first_entry];
2277		u32 addr, len;
2278
2279		addr = hme_read_desc32(hp, &this->tx_addr);
2280		len = hme_read_desc32(hp, &this->tx_flags);
2281		len &= TXFLAG_SIZE;
2282		dma_unmap_page(hp->dma_dev, addr, len, DMA_TO_DEVICE);
2283	}
2284}
2285
2286static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
2287					 struct net_device *dev)
2288{
2289	struct happy_meal *hp = netdev_priv(dev);
2290 	int entry;
2291 	u32 tx_flags;
2292
2293	tx_flags = TXFLAG_OWN;
2294	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2295		const u32 csum_start_off = skb_checksum_start_offset(skb);
2296		const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2297
2298		tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2299			    ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2300			    ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2301	}
2302
2303	spin_lock_irq(&hp->happy_lock);
2304
2305 	if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2306		netif_stop_queue(dev);
2307		spin_unlock_irq(&hp->happy_lock);
2308		printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2309		       dev->name);
2310		return NETDEV_TX_BUSY;
2311	}
2312
2313	entry = hp->tx_new;
2314	SXD(("SX<l[%d]e[%d]>", len, entry));
2315	hp->tx_skbs[entry] = skb;
2316
2317	if (skb_shinfo(skb)->nr_frags == 0) {
2318		u32 mapping, len;
2319
2320		len = skb->len;
2321		mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2322		if (unlikely(dma_mapping_error(hp->dma_dev, mapping)))
2323			goto out_dma_error;
2324		tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2325		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2326			      (tx_flags | (len & TXFLAG_SIZE)),
2327			      mapping);
2328		entry = NEXT_TX(entry);
2329	} else {
2330		u32 first_len, first_mapping;
2331		int frag, first_entry = entry;
2332
2333		/* We must give this initial chunk to the device last.
2334		 * Otherwise we could race with the device.
2335		 */
2336		first_len = skb_headlen(skb);
2337		first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2338					       DMA_TO_DEVICE);
2339		if (unlikely(dma_mapping_error(hp->dma_dev, first_mapping)))
2340			goto out_dma_error;
2341		entry = NEXT_TX(entry);
2342
2343		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2344			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2345			u32 len, mapping, this_txflags;
2346
2347			len = skb_frag_size(this_frag);
2348			mapping = skb_frag_dma_map(hp->dma_dev, this_frag,
2349						   0, len, DMA_TO_DEVICE);
2350			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2351				unmap_partial_tx_skb(hp, first_mapping, first_len,
2352						     first_entry, entry);
2353				goto out_dma_error;
2354			}
2355			this_txflags = tx_flags;
2356			if (frag == skb_shinfo(skb)->nr_frags - 1)
2357				this_txflags |= TXFLAG_EOP;
2358			hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2359				      (this_txflags | (len & TXFLAG_SIZE)),
2360				      mapping);
2361			entry = NEXT_TX(entry);
2362		}
2363		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2364			      (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2365			      first_mapping);
2366	}
2367
2368	hp->tx_new = entry;
2369
2370	if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2371		netif_stop_queue(dev);
2372
2373	/* Get it going. */
2374	hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2375
2376	spin_unlock_irq(&hp->happy_lock);
2377
2378	tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2379	return NETDEV_TX_OK;
2380
2381out_dma_error:
2382	hp->tx_skbs[hp->tx_new] = NULL;
2383	spin_unlock_irq(&hp->happy_lock);
2384
2385	dev_kfree_skb_any(skb);
2386	dev->stats.tx_dropped++;
2387	return NETDEV_TX_OK;
2388}
2389
2390static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2391{
2392	struct happy_meal *hp = netdev_priv(dev);
2393
2394	spin_lock_irq(&hp->happy_lock);
2395	happy_meal_get_counters(hp, hp->bigmacregs);
2396	spin_unlock_irq(&hp->happy_lock);
2397
2398	return &dev->stats;
2399}
2400
2401static void happy_meal_set_multicast(struct net_device *dev)
2402{
2403	struct happy_meal *hp = netdev_priv(dev);
2404	void __iomem *bregs = hp->bigmacregs;
2405	struct netdev_hw_addr *ha;
2406	u32 crc;
2407
2408	spin_lock_irq(&hp->happy_lock);
2409
2410	if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
2411		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2412		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2413		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2414		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2415	} else if (dev->flags & IFF_PROMISC) {
2416		hme_write32(hp, bregs + BMAC_RXCFG,
2417			    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2418	} else {
2419		u16 hash_table[4];
2420
2421		memset(hash_table, 0, sizeof(hash_table));
2422		netdev_for_each_mc_addr(ha, dev) {
2423			crc = ether_crc_le(6, ha->addr);
2424			crc >>= 26;
2425			hash_table[crc >> 4] |= 1 << (crc & 0xf);
2426		}
2427		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2428		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2429		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2430		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2431	}
2432
2433	spin_unlock_irq(&hp->happy_lock);
2434}
2435
2436/* Ethtool support... */
2437static int hme_get_link_ksettings(struct net_device *dev,
2438				  struct ethtool_link_ksettings *cmd)
2439{
2440	struct happy_meal *hp = netdev_priv(dev);
2441	u32 speed;
2442	u32 supported;
2443
2444	supported =
2445		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2446		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2447		 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2448
2449	/* XXX hardcoded stuff for now */
2450	cmd->base.port = PORT_TP; /* XXX no MII support */
2451	cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2452
2453	/* Record PHY settings. */
2454	spin_lock_irq(&hp->happy_lock);
2455	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2456	hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2457	spin_unlock_irq(&hp->happy_lock);
2458
2459	if (hp->sw_bmcr & BMCR_ANENABLE) {
2460		cmd->base.autoneg = AUTONEG_ENABLE;
2461		speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2462			 SPEED_100 : SPEED_10);
2463		if (speed == SPEED_100)
2464			cmd->base.duplex =
2465				(hp->sw_lpa & (LPA_100FULL)) ?
2466				DUPLEX_FULL : DUPLEX_HALF;
2467		else
2468			cmd->base.duplex =
2469				(hp->sw_lpa & (LPA_10FULL)) ?
2470				DUPLEX_FULL : DUPLEX_HALF;
2471	} else {
2472		cmd->base.autoneg = AUTONEG_DISABLE;
2473		speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
2474		cmd->base.duplex =
2475			(hp->sw_bmcr & BMCR_FULLDPLX) ?
2476			DUPLEX_FULL : DUPLEX_HALF;
2477	}
2478	cmd->base.speed = speed;
2479	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2480						supported);
2481
2482	return 0;
2483}
2484
2485static int hme_set_link_ksettings(struct net_device *dev,
2486				  const struct ethtool_link_ksettings *cmd)
2487{
2488	struct happy_meal *hp = netdev_priv(dev);
2489
2490	/* Verify the settings we care about. */
2491	if (cmd->base.autoneg != AUTONEG_ENABLE &&
2492	    cmd->base.autoneg != AUTONEG_DISABLE)
2493		return -EINVAL;
2494	if (cmd->base.autoneg == AUTONEG_DISABLE &&
2495	    ((cmd->base.speed != SPEED_100 &&
2496	      cmd->base.speed != SPEED_10) ||
2497	     (cmd->base.duplex != DUPLEX_HALF &&
2498	      cmd->base.duplex != DUPLEX_FULL)))
2499		return -EINVAL;
2500
2501	/* Ok, do it to it. */
2502	spin_lock_irq(&hp->happy_lock);
2503	del_timer(&hp->happy_timer);
2504	happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2505	spin_unlock_irq(&hp->happy_lock);
2506
2507	return 0;
2508}
2509
2510static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2511{
2512	struct happy_meal *hp = netdev_priv(dev);
2513
2514	strlcpy(info->driver, "sunhme", sizeof(info->driver));
2515	strlcpy(info->version, "2.02", sizeof(info->version));
2516	if (hp->happy_flags & HFLAG_PCI) {
2517		struct pci_dev *pdev = hp->happy_dev;
2518		strlcpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info));
2519	}
2520#ifdef CONFIG_SBUS
2521	else {
2522		const struct linux_prom_registers *regs;
2523		struct platform_device *op = hp->happy_dev;
2524		regs = of_get_property(op->dev.of_node, "regs", NULL);
2525		if (regs)
2526			snprintf(info->bus_info, sizeof(info->bus_info),
2527				"SBUS:%d",
2528				regs->which_io);
2529	}
2530#endif
2531}
2532
2533static u32 hme_get_link(struct net_device *dev)
2534{
2535	struct happy_meal *hp = netdev_priv(dev);
2536
2537	spin_lock_irq(&hp->happy_lock);
2538	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2539	spin_unlock_irq(&hp->happy_lock);
2540
2541	return hp->sw_bmsr & BMSR_LSTATUS;
2542}
2543
2544static const struct ethtool_ops hme_ethtool_ops = {
2545	.get_drvinfo		= hme_get_drvinfo,
2546	.get_link		= hme_get_link,
2547	.get_link_ksettings	= hme_get_link_ksettings,
2548	.set_link_ksettings	= hme_set_link_ksettings,
2549};
2550
2551static int hme_version_printed;
2552
2553#ifdef CONFIG_SBUS
2554/* Given a happy meal sbus device, find it's quattro parent.
2555 * If none exist, allocate and return a new one.
2556 *
2557 * Return NULL on failure.
2558 */
2559static struct quattro *quattro_sbus_find(struct platform_device *child)
2560{
2561	struct device *parent = child->dev.parent;
2562	struct platform_device *op;
2563	struct quattro *qp;
2564
2565	op = to_platform_device(parent);
2566	qp = platform_get_drvdata(op);
2567	if (qp)
2568		return qp;
2569
2570	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2571	if (qp != NULL) {
2572		int i;
2573
2574		for (i = 0; i < 4; i++)
2575			qp->happy_meals[i] = NULL;
2576
2577		qp->quattro_dev = child;
2578		qp->next = qfe_sbus_list;
2579		qfe_sbus_list = qp;
2580
2581		platform_set_drvdata(op, qp);
2582	}
2583	return qp;
2584}
2585
2586/* After all quattro cards have been probed, we call these functions
2587 * to register the IRQ handlers for the cards that have been
2588 * successfully probed and skip the cards that failed to initialize
2589 */
2590static int __init quattro_sbus_register_irqs(void)
2591{
2592	struct quattro *qp;
2593
2594	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2595		struct platform_device *op = qp->quattro_dev;
2596		int err, qfe_slot, skip = 0;
2597
2598		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2599			if (!qp->happy_meals[qfe_slot])
2600				skip = 1;
2601		}
2602		if (skip)
2603			continue;
2604
2605		err = request_irq(op->archdata.irqs[0],
2606				  quattro_sbus_interrupt,
2607				  IRQF_SHARED, "Quattro",
2608				  qp);
2609		if (err != 0) {
2610			printk(KERN_ERR "Quattro HME: IRQ registration "
2611			       "error %d.\n", err);
2612			return err;
2613		}
2614	}
2615
2616	return 0;
2617}
2618
2619static void quattro_sbus_free_irqs(void)
2620{
2621	struct quattro *qp;
2622
2623	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2624		struct platform_device *op = qp->quattro_dev;
2625		int qfe_slot, skip = 0;
2626
2627		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2628			if (!qp->happy_meals[qfe_slot])
2629				skip = 1;
2630		}
2631		if (skip)
2632			continue;
2633
2634		free_irq(op->archdata.irqs[0], qp);
2635	}
2636}
2637#endif /* CONFIG_SBUS */
2638
2639#ifdef CONFIG_PCI
2640static struct quattro *quattro_pci_find(struct pci_dev *pdev)
2641{
2642	struct pci_dev *bdev = pdev->bus->self;
2643	struct quattro *qp;
2644
2645	if (!bdev) return NULL;
2646	for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2647		struct pci_dev *qpdev = qp->quattro_dev;
2648
2649		if (qpdev == bdev)
2650			return qp;
2651	}
2652	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2653	if (qp != NULL) {
2654		int i;
2655
2656		for (i = 0; i < 4; i++)
2657			qp->happy_meals[i] = NULL;
2658
2659		qp->quattro_dev = bdev;
2660		qp->next = qfe_pci_list;
2661		qfe_pci_list = qp;
2662
2663		/* No range tricks necessary on PCI. */
2664		qp->nranges = 0;
2665	}
2666	return qp;
2667}
2668#endif /* CONFIG_PCI */
2669
2670static const struct net_device_ops hme_netdev_ops = {
2671	.ndo_open		= happy_meal_open,
2672	.ndo_stop		= happy_meal_close,
2673	.ndo_start_xmit		= happy_meal_start_xmit,
2674	.ndo_tx_timeout		= happy_meal_tx_timeout,
2675	.ndo_get_stats		= happy_meal_get_stats,
2676	.ndo_set_rx_mode	= happy_meal_set_multicast,
2677	.ndo_set_mac_address 	= eth_mac_addr,
2678	.ndo_validate_addr	= eth_validate_addr,
2679};
2680
2681#ifdef CONFIG_SBUS
2682static int happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe)
2683{
2684	struct device_node *dp = op->dev.of_node, *sbus_dp;
2685	struct quattro *qp = NULL;
2686	struct happy_meal *hp;
2687	struct net_device *dev;
2688	int i, qfe_slot = -1;
2689	int err = -ENODEV;
2690
2691	sbus_dp = op->dev.parent->of_node;
2692
2693	/* We can match PCI devices too, do not accept those here. */
2694	if (strcmp(sbus_dp->name, "sbus") && strcmp(sbus_dp->name, "sbi"))
2695		return err;
2696
2697	if (is_qfe) {
2698		qp = quattro_sbus_find(op);
2699		if (qp == NULL)
2700			goto err_out;
2701		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2702			if (qp->happy_meals[qfe_slot] == NULL)
2703				break;
2704		if (qfe_slot == 4)
2705			goto err_out;
2706	}
2707
2708	err = -ENOMEM;
2709	dev = alloc_etherdev(sizeof(struct happy_meal));
2710	if (!dev)
2711		goto err_out;
2712	SET_NETDEV_DEV(dev, &op->dev);
2713
2714	if (hme_version_printed++ == 0)
2715		printk(KERN_INFO "%s", version);
2716
2717	/* If user did not specify a MAC address specifically, use
2718	 * the Quattro local-mac-address property...
2719	 */
2720	for (i = 0; i < 6; i++) {
2721		if (macaddr[i] != 0)
2722			break;
2723	}
2724	if (i < 6) { /* a mac address was given */
2725		for (i = 0; i < 6; i++)
2726			dev->dev_addr[i] = macaddr[i];
2727		macaddr[5]++;
2728	} else {
2729		const unsigned char *addr;
2730		int len;
2731
2732		addr = of_get_property(dp, "local-mac-address", &len);
2733
2734		if (qfe_slot != -1 && addr && len == ETH_ALEN)
2735			memcpy(dev->dev_addr, addr, ETH_ALEN);
2736		else
2737			memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
2738	}
2739
2740	hp = netdev_priv(dev);
2741
2742	hp->happy_dev = op;
2743	hp->dma_dev = &op->dev;
2744
2745	spin_lock_init(&hp->happy_lock);
2746
2747	err = -ENODEV;
2748	if (qp != NULL) {
2749		hp->qfe_parent = qp;
2750		hp->qfe_ent = qfe_slot;
2751		qp->happy_meals[qfe_slot] = dev;
2752	}
2753
2754	hp->gregs = of_ioremap(&op->resource[0], 0,
2755			       GREG_REG_SIZE, "HME Global Regs");
2756	if (!hp->gregs) {
2757		printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2758		goto err_out_free_netdev;
2759	}
2760
2761	hp->etxregs = of_ioremap(&op->resource[1], 0,
2762				 ETX_REG_SIZE, "HME TX Regs");
2763	if (!hp->etxregs) {
2764		printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2765		goto err_out_iounmap;
2766	}
2767
2768	hp->erxregs = of_ioremap(&op->resource[2], 0,
2769				 ERX_REG_SIZE, "HME RX Regs");
2770	if (!hp->erxregs) {
2771		printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2772		goto err_out_iounmap;
2773	}
2774
2775	hp->bigmacregs = of_ioremap(&op->resource[3], 0,
2776				    BMAC_REG_SIZE, "HME BIGMAC Regs");
2777	if (!hp->bigmacregs) {
2778		printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2779		goto err_out_iounmap;
2780	}
2781
2782	hp->tcvregs = of_ioremap(&op->resource[4], 0,
2783				 TCVR_REG_SIZE, "HME Tranceiver Regs");
2784	if (!hp->tcvregs) {
2785		printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2786		goto err_out_iounmap;
2787	}
2788
2789	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2790	if (hp->hm_revision == 0xff)
2791		hp->hm_revision = 0xa0;
2792
2793	/* Now enable the feature flags we can. */
2794	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2795		hp->happy_flags = HFLAG_20_21;
2796	else if (hp->hm_revision != 0xa0)
2797		hp->happy_flags = HFLAG_NOT_A0;
2798
2799	if (qp != NULL)
2800		hp->happy_flags |= HFLAG_QUATTRO;
2801
2802	/* Get the supported DVMA burst sizes from our Happy SBUS. */
2803	hp->happy_bursts = of_getintprop_default(sbus_dp,
2804						 "burst-sizes", 0x00);
2805
2806	hp->happy_block = dma_alloc_coherent(hp->dma_dev,
2807					     PAGE_SIZE,
2808					     &hp->hblock_dvma,
2809					     GFP_ATOMIC);
2810	err = -ENOMEM;
2811	if (!hp->happy_block)
2812		goto err_out_iounmap;
2813
2814	/* Force check of the link first time we are brought up. */
2815	hp->linkcheck = 0;
2816
2817	/* Force timer state to 'asleep' with count of zero. */
2818	hp->timer_state = asleep;
2819	hp->timer_ticks = 0;
2820
2821	timer_setup(&hp->happy_timer, happy_meal_timer, 0);
2822
2823	hp->dev = dev;
2824	dev->netdev_ops = &hme_netdev_ops;
2825	dev->watchdog_timeo = 5*HZ;
2826	dev->ethtool_ops = &hme_ethtool_ops;
2827
2828	/* Happy Meal can do it all... */
2829	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2830	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2831
2832	hp->irq = op->archdata.irqs[0];
2833
2834#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2835	/* Hook up SBUS register/descriptor accessors. */
2836	hp->read_desc32 = sbus_hme_read_desc32;
2837	hp->write_txd = sbus_hme_write_txd;
2838	hp->write_rxd = sbus_hme_write_rxd;
2839	hp->read32 = sbus_hme_read32;
2840	hp->write32 = sbus_hme_write32;
2841#endif
2842
2843	/* Grrr, Happy Meal comes up by default not advertising
2844	 * full duplex 100baseT capabilities, fix this.
2845	 */
2846	spin_lock_irq(&hp->happy_lock);
2847	happy_meal_set_initial_advertisement(hp);
2848	spin_unlock_irq(&hp->happy_lock);
2849
2850	err = register_netdev(hp->dev);
2851	if (err) {
2852		printk(KERN_ERR "happymeal: Cannot register net device, "
2853		       "aborting.\n");
2854		goto err_out_free_coherent;
2855	}
2856
2857	platform_set_drvdata(op, hp);
2858
2859	if (qfe_slot != -1)
2860		printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2861		       dev->name, qfe_slot);
2862	else
2863		printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2864		       dev->name);
2865
2866	printk("%pM\n", dev->dev_addr);
2867
2868	return 0;
2869
2870err_out_free_coherent:
2871	dma_free_coherent(hp->dma_dev,
2872			  PAGE_SIZE,
2873			  hp->happy_block,
2874			  hp->hblock_dvma);
2875
2876err_out_iounmap:
2877	if (hp->gregs)
2878		of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
2879	if (hp->etxregs)
2880		of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
2881	if (hp->erxregs)
2882		of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
2883	if (hp->bigmacregs)
2884		of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
2885	if (hp->tcvregs)
2886		of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
2887
2888	if (qp)
2889		qp->happy_meals[qfe_slot] = NULL;
2890
2891err_out_free_netdev:
2892	free_netdev(dev);
2893
2894err_out:
2895	return err;
2896}
2897#endif
2898
2899#ifdef CONFIG_PCI
2900#ifndef CONFIG_SPARC
2901static int is_quattro_p(struct pci_dev *pdev)
2902{
2903	struct pci_dev *busdev = pdev->bus->self;
2904	struct pci_dev *this_pdev;
2905	int n_hmes;
2906
2907	if (busdev == NULL ||
2908	    busdev->vendor != PCI_VENDOR_ID_DEC ||
2909	    busdev->device != PCI_DEVICE_ID_DEC_21153)
2910		return 0;
2911
2912	n_hmes = 0;
2913	list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) {
2914		if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2915		    this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2916			n_hmes++;
2917	}
2918
2919	if (n_hmes != 4)
2920		return 0;
2921
2922	return 1;
2923}
2924
2925/* Fetch MAC address from vital product data of PCI ROM. */
2926static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2927{
2928	int this_offset;
2929
2930	for (this_offset = 0x20; this_offset < len; this_offset++) {
2931		void __iomem *p = rom_base + this_offset;
2932
2933		if (readb(p + 0) != 0x90 ||
2934		    readb(p + 1) != 0x00 ||
2935		    readb(p + 2) != 0x09 ||
2936		    readb(p + 3) != 0x4e ||
2937		    readb(p + 4) != 0x41 ||
2938		    readb(p + 5) != 0x06)
2939			continue;
2940
2941		this_offset += 6;
2942		p += 6;
2943
2944		if (index == 0) {
2945			int i;
2946
2947			for (i = 0; i < 6; i++)
2948				dev_addr[i] = readb(p + i);
2949			return 1;
2950		}
2951		index--;
2952	}
2953	return 0;
2954}
2955
2956static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2957{
2958	size_t size;
2959	void __iomem *p = pci_map_rom(pdev, &size);
2960
2961	if (p) {
2962		int index = 0;
2963		int found;
2964
2965		if (is_quattro_p(pdev))
2966			index = PCI_SLOT(pdev->devfn);
2967
2968		found = readb(p) == 0x55 &&
2969			readb(p + 1) == 0xaa &&
2970			find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2971		pci_unmap_rom(pdev, p);
2972		if (found)
2973			return;
2974	}
2975
2976	/* Sun MAC prefix then 3 random bytes. */
2977	dev_addr[0] = 0x08;
2978	dev_addr[1] = 0x00;
2979	dev_addr[2] = 0x20;
2980	get_random_bytes(&dev_addr[3], 3);
2981}
2982#endif /* !(CONFIG_SPARC) */
2983
2984static int happy_meal_pci_probe(struct pci_dev *pdev,
2985				const struct pci_device_id *ent)
2986{
2987	struct quattro *qp = NULL;
2988#ifdef CONFIG_SPARC
2989	struct device_node *dp;
2990#endif
2991	struct happy_meal *hp;
2992	struct net_device *dev;
2993	void __iomem *hpreg_base;
2994	unsigned long hpreg_res;
2995	int i, qfe_slot = -1;
2996	char prom_name[64];
2997	int err;
2998
2999	/* Now make sure pci_dev cookie is there. */
3000#ifdef CONFIG_SPARC
3001	dp = pci_device_to_OF_node(pdev);
3002	strcpy(prom_name, dp->name);
3003#else
3004	if (is_quattro_p(pdev))
3005		strcpy(prom_name, "SUNW,qfe");
3006	else
3007		strcpy(prom_name, "SUNW,hme");
3008#endif
3009
3010	err = -ENODEV;
3011
3012	if (pci_enable_device(pdev))
3013		goto err_out;
3014	pci_set_master(pdev);
3015
3016	if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
3017		qp = quattro_pci_find(pdev);
3018		if (qp == NULL)
3019			goto err_out;
3020		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
3021			if (qp->happy_meals[qfe_slot] == NULL)
3022				break;
3023		if (qfe_slot == 4)
3024			goto err_out;
3025	}
3026
3027	dev = alloc_etherdev(sizeof(struct happy_meal));
3028	err = -ENOMEM;
3029	if (!dev)
3030		goto err_out;
3031	SET_NETDEV_DEV(dev, &pdev->dev);
3032
3033	if (hme_version_printed++ == 0)
3034		printk(KERN_INFO "%s", version);
3035
3036	hp = netdev_priv(dev);
3037
3038	hp->happy_dev = pdev;
3039	hp->dma_dev = &pdev->dev;
3040
3041	spin_lock_init(&hp->happy_lock);
3042
3043	if (qp != NULL) {
3044		hp->qfe_parent = qp;
3045		hp->qfe_ent = qfe_slot;
3046		qp->happy_meals[qfe_slot] = dev;
3047	}
3048
3049	hpreg_res = pci_resource_start(pdev, 0);
3050	err = -ENODEV;
3051	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3052		printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3053		goto err_out_clear_quattro;
3054	}
3055	if (pci_request_regions(pdev, DRV_NAME)) {
3056		printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3057		       "aborting.\n");
3058		goto err_out_clear_quattro;
3059	}
3060
3061	if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) {
3062		printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3063		goto err_out_free_res;
3064	}
3065
3066	for (i = 0; i < 6; i++) {
3067		if (macaddr[i] != 0)
3068			break;
3069	}
3070	if (i < 6) { /* a mac address was given */
3071		for (i = 0; i < 6; i++)
3072			dev->dev_addr[i] = macaddr[i];
3073		macaddr[5]++;
3074	} else {
3075#ifdef CONFIG_SPARC
3076		const unsigned char *addr;
3077		int len;
3078
3079		if (qfe_slot != -1 &&
3080		    (addr = of_get_property(dp, "local-mac-address", &len))
3081			!= NULL &&
3082		    len == 6) {
3083			memcpy(dev->dev_addr, addr, ETH_ALEN);
3084		} else {
3085			memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
3086		}
3087#else
3088		get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3089#endif
3090	}
3091
3092	/* Layout registers. */
3093	hp->gregs      = (hpreg_base + 0x0000UL);
3094	hp->etxregs    = (hpreg_base + 0x2000UL);
3095	hp->erxregs    = (hpreg_base + 0x4000UL);
3096	hp->bigmacregs = (hpreg_base + 0x6000UL);
3097	hp->tcvregs    = (hpreg_base + 0x7000UL);
3098
3099#ifdef CONFIG_SPARC
3100	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3101	if (hp->hm_revision == 0xff)
3102		hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3103#else
3104	/* works with this on non-sparc hosts */
3105	hp->hm_revision = 0x20;
3106#endif
3107
3108	/* Now enable the feature flags we can. */
3109	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3110		hp->happy_flags = HFLAG_20_21;
3111	else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3112		hp->happy_flags = HFLAG_NOT_A0;
3113
3114	if (qp != NULL)
3115		hp->happy_flags |= HFLAG_QUATTRO;
3116
3117	/* And of course, indicate this is PCI. */
3118	hp->happy_flags |= HFLAG_PCI;
3119
3120#ifdef CONFIG_SPARC
3121	/* Assume PCI happy meals can handle all burst sizes. */
3122	hp->happy_bursts = DMA_BURSTBITS;
3123#endif
3124
3125	hp->happy_block = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3126					     &hp->hblock_dvma, GFP_KERNEL);
3127	err = -ENODEV;
3128	if (!hp->happy_block)
3129		goto err_out_iounmap;
3130
3131	hp->linkcheck = 0;
3132	hp->timer_state = asleep;
3133	hp->timer_ticks = 0;
3134
3135	timer_setup(&hp->happy_timer, happy_meal_timer, 0);
3136
3137	hp->irq = pdev->irq;
3138	hp->dev = dev;
3139	dev->netdev_ops = &hme_netdev_ops;
3140	dev->watchdog_timeo = 5*HZ;
3141	dev->ethtool_ops = &hme_ethtool_ops;
3142
3143	/* Happy Meal can do it all... */
3144	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
3145	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
3146
3147#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3148	/* Hook up PCI register/descriptor accessors. */
3149	hp->read_desc32 = pci_hme_read_desc32;
3150	hp->write_txd = pci_hme_write_txd;
3151	hp->write_rxd = pci_hme_write_rxd;
3152	hp->read32 = pci_hme_read32;
3153	hp->write32 = pci_hme_write32;
3154#endif
3155
3156	/* Grrr, Happy Meal comes up by default not advertising
3157	 * full duplex 100baseT capabilities, fix this.
3158	 */
3159	spin_lock_irq(&hp->happy_lock);
3160	happy_meal_set_initial_advertisement(hp);
3161	spin_unlock_irq(&hp->happy_lock);
3162
3163	err = register_netdev(hp->dev);
3164	if (err) {
3165		printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3166		       "aborting.\n");
3167		goto err_out_iounmap;
3168	}
3169
3170	pci_set_drvdata(pdev, hp);
3171
3172	if (!qfe_slot) {
3173		struct pci_dev *qpdev = qp->quattro_dev;
3174
3175		prom_name[0] = 0;
3176		if (!strncmp(dev->name, "eth", 3)) {
3177			int i = simple_strtoul(dev->name + 3, NULL, 10);
3178			sprintf(prom_name, "-%d", i + 3);
3179		}
3180		printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3181		if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3182		    qpdev->device == PCI_DEVICE_ID_DEC_21153)
3183			printk("DEC 21153 PCI Bridge\n");
3184		else
3185			printk("unknown bridge %04x.%04x\n",
3186				qpdev->vendor, qpdev->device);
3187	}
3188
3189	if (qfe_slot != -1)
3190		printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3191		       dev->name, qfe_slot);
3192	else
3193		printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3194		       dev->name);
3195
3196	printk("%pM\n", dev->dev_addr);
3197
3198	return 0;
3199
3200err_out_iounmap:
3201	iounmap(hp->gregs);
3202
3203err_out_free_res:
3204	pci_release_regions(pdev);
3205
3206err_out_clear_quattro:
3207	if (qp != NULL)
3208		qp->happy_meals[qfe_slot] = NULL;
3209
3210	free_netdev(dev);
3211
3212err_out:
3213	return err;
3214}
3215
3216static void happy_meal_pci_remove(struct pci_dev *pdev)
3217{
3218	struct happy_meal *hp = pci_get_drvdata(pdev);
3219	struct net_device *net_dev = hp->dev;
3220
3221	unregister_netdev(net_dev);
3222
3223	dma_free_coherent(hp->dma_dev, PAGE_SIZE,
3224			  hp->happy_block, hp->hblock_dvma);
3225	iounmap(hp->gregs);
3226	pci_release_regions(hp->happy_dev);
3227
3228	free_netdev(net_dev);
3229}
3230
3231static const struct pci_device_id happymeal_pci_ids[] = {
3232	{ PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3233	{ }			/* Terminating entry */
3234};
3235
3236MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3237
3238static struct pci_driver hme_pci_driver = {
3239	.name		= "hme",
3240	.id_table	= happymeal_pci_ids,
3241	.probe		= happy_meal_pci_probe,
3242	.remove		= happy_meal_pci_remove,
3243};
3244
3245static int __init happy_meal_pci_init(void)
3246{
3247	return pci_register_driver(&hme_pci_driver);
3248}
3249
3250static void happy_meal_pci_exit(void)
3251{
3252	pci_unregister_driver(&hme_pci_driver);
3253
3254	while (qfe_pci_list) {
3255		struct quattro *qfe = qfe_pci_list;
3256		struct quattro *next = qfe->next;
3257
3258		kfree(qfe);
3259
3260		qfe_pci_list = next;
3261	}
3262}
3263
3264#endif
3265
3266#ifdef CONFIG_SBUS
3267static const struct of_device_id hme_sbus_match[];
3268static int hme_sbus_probe(struct platform_device *op)
3269{
3270	const struct of_device_id *match;
3271	struct device_node *dp = op->dev.of_node;
3272	const char *model = of_get_property(dp, "model", NULL);
3273	int is_qfe;
3274
3275	match = of_match_device(hme_sbus_match, &op->dev);
3276	if (!match)
3277		return -EINVAL;
3278	is_qfe = (match->data != NULL);
3279
3280	if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3281		is_qfe = 1;
3282
3283	return happy_meal_sbus_probe_one(op, is_qfe);
3284}
3285
3286static int hme_sbus_remove(struct platform_device *op)
3287{
3288	struct happy_meal *hp = platform_get_drvdata(op);
3289	struct net_device *net_dev = hp->dev;
3290
3291	unregister_netdev(net_dev);
3292
3293	/* XXX qfe parent interrupt... */
3294
3295	of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
3296	of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
3297	of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
3298	of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
3299	of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
3300	dma_free_coherent(hp->dma_dev,
3301			  PAGE_SIZE,
3302			  hp->happy_block,
3303			  hp->hblock_dvma);
3304
3305	free_netdev(net_dev);
3306
3307	return 0;
3308}
3309
3310static const struct of_device_id hme_sbus_match[] = {
3311	{
3312		.name = "SUNW,hme",
3313	},
3314	{
3315		.name = "SUNW,qfe",
3316		.data = (void *) 1,
3317	},
3318	{
3319		.name = "qfe",
3320		.data = (void *) 1,
3321	},
3322	{},
3323};
3324
3325MODULE_DEVICE_TABLE(of, hme_sbus_match);
3326
3327static struct platform_driver hme_sbus_driver = {
3328	.driver = {
3329		.name = "hme",
3330		.of_match_table = hme_sbus_match,
3331	},
3332	.probe		= hme_sbus_probe,
3333	.remove		= hme_sbus_remove,
3334};
3335
3336static int __init happy_meal_sbus_init(void)
3337{
3338	int err;
3339
3340	err = platform_driver_register(&hme_sbus_driver);
3341	if (!err)
3342		err = quattro_sbus_register_irqs();
3343
3344	return err;
3345}
3346
3347static void happy_meal_sbus_exit(void)
3348{
3349	platform_driver_unregister(&hme_sbus_driver);
3350	quattro_sbus_free_irqs();
3351
3352	while (qfe_sbus_list) {
3353		struct quattro *qfe = qfe_sbus_list;
3354		struct quattro *next = qfe->next;
3355
3356		kfree(qfe);
3357
3358		qfe_sbus_list = next;
3359	}
3360}
3361#endif
3362
3363static int __init happy_meal_probe(void)
3364{
3365	int err = 0;
3366
3367#ifdef CONFIG_SBUS
3368	err = happy_meal_sbus_init();
3369#endif
3370#ifdef CONFIG_PCI
3371	if (!err) {
3372		err = happy_meal_pci_init();
3373#ifdef CONFIG_SBUS
3374		if (err)
3375			happy_meal_sbus_exit();
3376#endif
3377	}
3378#endif
3379
3380	return err;
3381}
3382
3383
3384static void __exit happy_meal_exit(void)
3385{
3386#ifdef CONFIG_SBUS
3387	happy_meal_sbus_exit();
3388#endif
3389#ifdef CONFIG_PCI
3390	happy_meal_pci_exit();
3391#endif
3392}
3393
3394module_init(happy_meal_probe);
3395module_exit(happy_meal_exit);