Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2011-2013 Solarflare Communications Inc.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms of the GNU General Public License version 2 as published
   7 * by the Free Software Foundation, incorporated herein by reference.
   8 */
   9
  10/* Theory of operation:
  11 *
  12 * PTP support is assisted by firmware running on the MC, which provides
  13 * the hardware timestamping capabilities.  Both transmitted and received
  14 * PTP event packets are queued onto internal queues for subsequent processing;
  15 * this is because the MC operations are relatively long and would block
  16 * block NAPI/interrupt operation.
  17 *
  18 * Receive event processing:
  19 *	The event contains the packet's UUID and sequence number, together
  20 *	with the hardware timestamp.  The PTP receive packet queue is searched
  21 *	for this UUID/sequence number and, if found, put on a pending queue.
  22 *	Packets not matching are delivered without timestamps (MCDI events will
  23 *	always arrive after the actual packet).
  24 *	It is important for the operation of the PTP protocol that the ordering
  25 *	of packets between the event and general port is maintained.
  26 *
  27 * Work queue processing:
  28 *	If work waiting, synchronise host/hardware time
  29 *
  30 *	Transmit: send packet through MC, which returns the transmission time
  31 *	that is converted to an appropriate timestamp.
  32 *
  33 *	Receive: the packet's reception time is converted to an appropriate
  34 *	timestamp.
  35 */
  36#include <linux/ip.h>
  37#include <linux/udp.h>
  38#include <linux/time.h>
  39#include <linux/ktime.h>
  40#include <linux/module.h>
  41#include <linux/net_tstamp.h>
  42#include <linux/pps_kernel.h>
  43#include <linux/ptp_clock_kernel.h>
  44#include "net_driver.h"
  45#include "efx.h"
  46#include "mcdi.h"
  47#include "mcdi_pcol.h"
  48#include "io.h"
  49#include "farch_regs.h"
  50#include "nic.h"
  51
  52/* Maximum number of events expected to make up a PTP event */
  53#define	MAX_EVENT_FRAGS			3
  54
  55/* Maximum delay, ms, to begin synchronisation */
  56#define	MAX_SYNCHRONISE_WAIT_MS		2
  57
  58/* How long, at most, to spend synchronising */
  59#define	SYNCHRONISE_PERIOD_NS		250000
  60
  61/* How often to update the shared memory time */
  62#define	SYNCHRONISATION_GRANULARITY_NS	200
  63
  64/* Minimum permitted length of a (corrected) synchronisation time */
  65#define	DEFAULT_MIN_SYNCHRONISATION_NS	120
  66
  67/* Maximum permitted length of a (corrected) synchronisation time */
  68#define	MAX_SYNCHRONISATION_NS		1000
  69
  70/* How many (MC) receive events that can be queued */
  71#define	MAX_RECEIVE_EVENTS		8
  72
  73/* Length of (modified) moving average. */
  74#define	AVERAGE_LENGTH			16
  75
  76/* How long an unmatched event or packet can be held */
  77#define PKT_EVENT_LIFETIME_MS		10
  78
  79/* Offsets into PTP packet for identification.  These offsets are from the
  80 * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
  81 * PTP V2 permit the use of IPV4 options.
  82 */
  83#define PTP_DPORT_OFFSET	22
  84
  85#define PTP_V1_VERSION_LENGTH	2
  86#define PTP_V1_VERSION_OFFSET	28
  87
  88#define PTP_V1_UUID_LENGTH	6
  89#define PTP_V1_UUID_OFFSET	50
  90
  91#define PTP_V1_SEQUENCE_LENGTH	2
  92#define PTP_V1_SEQUENCE_OFFSET	58
  93
  94/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
  95 * includes IP header.
  96 */
  97#define	PTP_V1_MIN_LENGTH	64
  98
  99#define PTP_V2_VERSION_LENGTH	1
 100#define PTP_V2_VERSION_OFFSET	29
 101
 102#define PTP_V2_UUID_LENGTH	8
 103#define PTP_V2_UUID_OFFSET	48
 104
 105/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
 106 * the MC only captures the last six bytes of the clock identity. These values
 107 * reflect those, not the ones used in the standard.  The standard permits
 108 * mapping of V1 UUIDs to V2 UUIDs with these same values.
 109 */
 110#define PTP_V2_MC_UUID_LENGTH	6
 111#define PTP_V2_MC_UUID_OFFSET	50
 112
 113#define PTP_V2_SEQUENCE_LENGTH	2
 114#define PTP_V2_SEQUENCE_OFFSET	58
 115
 116/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
 117 * includes IP header.
 118 */
 119#define	PTP_V2_MIN_LENGTH	63
 120
 121#define	PTP_MIN_LENGTH		63
 122
 123#define PTP_ADDRESS		0xe0000181	/* 224.0.1.129 */
 124#define PTP_EVENT_PORT		319
 125#define PTP_GENERAL_PORT	320
 126
 127/* Annoyingly the format of the version numbers are different between
 128 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
 129 */
 130#define	PTP_VERSION_V1		1
 131
 132#define	PTP_VERSION_V2		2
 133#define	PTP_VERSION_V2_MASK	0x0f
 134
 135enum ptp_packet_state {
 136	PTP_PACKET_STATE_UNMATCHED = 0,
 137	PTP_PACKET_STATE_MATCHED,
 138	PTP_PACKET_STATE_TIMED_OUT,
 139	PTP_PACKET_STATE_MATCH_UNWANTED
 140};
 141
 142/* NIC synchronised with single word of time only comprising
 143 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
 144 */
 145#define	MC_NANOSECOND_BITS	30
 146#define	MC_NANOSECOND_MASK	((1 << MC_NANOSECOND_BITS) - 1)
 147#define	MC_SECOND_MASK		((1 << (32 - MC_NANOSECOND_BITS)) - 1)
 148
 149/* Maximum parts-per-billion adjustment that is acceptable */
 150#define MAX_PPB			1000000
 151
 152/* Precalculate scale word to avoid long long division at runtime */
 153/* This is equivalent to 2^66 / 10^9. */
 154#define PPB_SCALE_WORD  ((1LL << (57)) / 1953125LL)
 155
 156/* How much to shift down after scaling to convert to FP40 */
 157#define PPB_SHIFT_FP40		26
 158/* ... and FP44. */
 159#define PPB_SHIFT_FP44		22
 160
 161#define PTP_SYNC_ATTEMPTS	4
 162
 163/**
 164 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
 165 * @words: UUID and (partial) sequence number
 166 * @expiry: Time after which the packet should be delivered irrespective of
 167 *            event arrival.
 168 * @state: The state of the packet - whether it is ready for processing or
 169 *         whether that is of no interest.
 170 */
 171struct efx_ptp_match {
 172	u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
 173	unsigned long expiry;
 174	enum ptp_packet_state state;
 175};
 176
 177/**
 178 * struct efx_ptp_event_rx - A PTP receive event (from MC)
 179 * @seq0: First part of (PTP) UUID
 180 * @seq1: Second part of (PTP) UUID and sequence number
 181 * @hwtimestamp: Event timestamp
 182 */
 183struct efx_ptp_event_rx {
 184	struct list_head link;
 185	u32 seq0;
 186	u32 seq1;
 187	ktime_t hwtimestamp;
 188	unsigned long expiry;
 189};
 190
 191/**
 192 * struct efx_ptp_timeset - Synchronisation between host and MC
 193 * @host_start: Host time immediately before hardware timestamp taken
 194 * @major: Hardware timestamp, major
 195 * @minor: Hardware timestamp, minor
 196 * @host_end: Host time immediately after hardware timestamp taken
 197 * @wait: Number of NIC clock ticks between hardware timestamp being read and
 198 *          host end time being seen
 199 * @window: Difference of host_end and host_start
 200 * @valid: Whether this timeset is valid
 201 */
 202struct efx_ptp_timeset {
 203	u32 host_start;
 204	u32 major;
 205	u32 minor;
 206	u32 host_end;
 207	u32 wait;
 208	u32 window;	/* Derived: end - start, allowing for wrap */
 209};
 210
 211/**
 212 * struct efx_ptp_data - Precision Time Protocol (PTP) state
 213 * @efx: The NIC context
 214 * @channel: The PTP channel (Siena only)
 215 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
 216 *	separate events)
 217 * @rxq: Receive SKB queue (awaiting timestamps)
 218 * @txq: Transmit SKB queue
 219 * @evt_list: List of MC receive events awaiting packets
 220 * @evt_free_list: List of free events
 221 * @evt_lock: Lock for manipulating evt_list and evt_free_list
 222 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
 223 * @workwq: Work queue for processing pending PTP operations
 224 * @work: Work task
 225 * @reset_required: A serious error has occurred and the PTP task needs to be
 226 *                  reset (disable, enable).
 227 * @rxfilter_event: Receive filter when operating
 228 * @rxfilter_general: Receive filter when operating
 229 * @config: Current timestamp configuration
 230 * @enabled: PTP operation enabled
 231 * @mode: Mode in which PTP operating (PTP version)
 232 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
 233 * @nic_to_kernel_time: Function to convert from NIC to kernel time
 234 * @nic_time.minor_max: Wrap point for NIC minor times
 235 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
 236 * in packet prefix and last MCDI time sync event i.e. how much earlier than
 237 * the last sync event time a packet timestamp can be.
 238 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
 239 * in packet prefix and last MCDI time sync event i.e. how much later than
 240 * the last sync event time a packet timestamp can be.
 241 * @nic_time.sync_event_minor_shift: Shift required to make minor time from
 242 * field in MCDI time sync event.
 243 * @min_synchronisation_ns: Minimum acceptable corrected sync window
 244 * @capabilities: Capabilities flags from the NIC
 245 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
 246 *                         timestamps
 247 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
 248 *                         timestamps
 249 * @ts_corrections.pps_out: PPS output error (information only)
 250 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
 251 * @ts_corrections.general_tx: Required driver correction of general packet
 252 *                             transmit timestamps
 253 * @ts_corrections.general_rx: Required driver correction of general packet
 254 *                             receive timestamps
 255 * @evt_frags: Partly assembled PTP events
 256 * @evt_frag_idx: Current fragment number
 257 * @evt_code: Last event code
 258 * @start: Address at which MC indicates ready for synchronisation
 259 * @host_time_pps: Host time at last PPS
 260 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
 261 * frequency adjustment into a fixed point fractional nanosecond format.
 262 * @current_adjfreq: Current ppb adjustment.
 263 * @phc_clock: Pointer to registered phc device (if primary function)
 264 * @phc_clock_info: Registration structure for phc device
 265 * @pps_work: pps work task for handling pps events
 266 * @pps_workwq: pps work queue
 267 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
 268 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
 269 *         allocations in main data path).
 270 * @good_syncs: Number of successful synchronisations.
 271 * @fast_syncs: Number of synchronisations requiring short delay
 272 * @bad_syncs: Number of failed synchronisations.
 273 * @sync_timeouts: Number of synchronisation timeouts
 274 * @no_time_syncs: Number of synchronisations with no good times.
 275 * @invalid_sync_windows: Number of sync windows with bad durations.
 276 * @undersize_sync_windows: Number of corrected sync windows that are too small
 277 * @oversize_sync_windows: Number of corrected sync windows that are too large
 278 * @rx_no_timestamp: Number of packets received without a timestamp.
 279 * @timeset: Last set of synchronisation statistics.
 280 * @xmit_skb: Transmit SKB function.
 281 */
 282struct efx_ptp_data {
 283	struct efx_nic *efx;
 284	struct efx_channel *channel;
 285	bool rx_ts_inline;
 286	struct sk_buff_head rxq;
 287	struct sk_buff_head txq;
 288	struct list_head evt_list;
 289	struct list_head evt_free_list;
 290	spinlock_t evt_lock;
 291	struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
 292	struct workqueue_struct *workwq;
 293	struct work_struct work;
 294	bool reset_required;
 295	u32 rxfilter_event;
 296	u32 rxfilter_general;
 297	bool rxfilter_installed;
 298	struct hwtstamp_config config;
 299	bool enabled;
 300	unsigned int mode;
 301	void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
 302	ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
 303				      s32 correction);
 304	struct {
 305		u32 minor_max;
 306		u32 sync_event_diff_min;
 307		u32 sync_event_diff_max;
 308		unsigned int sync_event_minor_shift;
 309	} nic_time;
 310	unsigned int min_synchronisation_ns;
 311	unsigned int capabilities;
 312	struct {
 313		s32 ptp_tx;
 314		s32 ptp_rx;
 315		s32 pps_out;
 316		s32 pps_in;
 317		s32 general_tx;
 318		s32 general_rx;
 319	} ts_corrections;
 320	efx_qword_t evt_frags[MAX_EVENT_FRAGS];
 321	int evt_frag_idx;
 322	int evt_code;
 323	struct efx_buffer start;
 324	struct pps_event_time host_time_pps;
 325	unsigned int adjfreq_ppb_shift;
 326	s64 current_adjfreq;
 327	struct ptp_clock *phc_clock;
 328	struct ptp_clock_info phc_clock_info;
 329	struct work_struct pps_work;
 330	struct workqueue_struct *pps_workwq;
 331	bool nic_ts_enabled;
 332	_MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
 333
 334	unsigned int good_syncs;
 335	unsigned int fast_syncs;
 336	unsigned int bad_syncs;
 337	unsigned int sync_timeouts;
 338	unsigned int no_time_syncs;
 339	unsigned int invalid_sync_windows;
 340	unsigned int undersize_sync_windows;
 341	unsigned int oversize_sync_windows;
 342	unsigned int rx_no_timestamp;
 343	struct efx_ptp_timeset
 344	timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
 345	void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
 346};
 347
 348static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
 349static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
 350static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
 351static int efx_phc_settime(struct ptp_clock_info *ptp,
 352			   const struct timespec64 *e_ts);
 353static int efx_phc_enable(struct ptp_clock_info *ptp,
 354			  struct ptp_clock_request *request, int on);
 355
 356bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
 357{
 358	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 359
 360	return ((efx_nic_rev(efx) >= EFX_REV_HUNT_A0) &&
 361		(nic_data->datapath_caps2 &
 362		 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_MAC_TIMESTAMPING_LBN)
 363		));
 364}
 365
 366/* PTP 'extra' channel is still a traffic channel, but we only create TX queues
 367 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
 368 */
 369static bool efx_ptp_want_txqs(struct efx_channel *channel)
 370{
 371	return efx_ptp_use_mac_tx_timestamps(channel->efx);
 372}
 373
 374#define PTP_SW_STAT(ext_name, field_name)				\
 375	{ #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
 376#define PTP_MC_STAT(ext_name, mcdi_name)				\
 377	{ #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
 378static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
 379	PTP_SW_STAT(ptp_good_syncs, good_syncs),
 380	PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
 381	PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
 382	PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
 383	PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
 384	PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
 385	PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
 386	PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
 387	PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
 388	PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
 389	PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
 390	PTP_MC_STAT(ptp_timestamp_packets, TS),
 391	PTP_MC_STAT(ptp_filter_matches, FM),
 392	PTP_MC_STAT(ptp_non_filter_matches, NFM),
 393};
 394#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
 395static const unsigned long efx_ptp_stat_mask[] = {
 396	[0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
 397};
 398
 399size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
 400{
 401	if (!efx->ptp_data)
 402		return 0;
 403
 404	return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 405				      efx_ptp_stat_mask, strings);
 406}
 407
 408size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
 409{
 410	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
 411	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
 412	size_t i;
 413	int rc;
 414
 415	if (!efx->ptp_data)
 416		return 0;
 417
 418	/* Copy software statistics */
 419	for (i = 0; i < PTP_STAT_COUNT; i++) {
 420		if (efx_ptp_stat_desc[i].dma_width)
 421			continue;
 422		stats[i] = *(unsigned int *)((char *)efx->ptp_data +
 423					     efx_ptp_stat_desc[i].offset);
 424	}
 425
 426	/* Fetch MC statistics.  We *must* fill in all statistics or
 427	 * risk leaking kernel memory to userland, so if the MCDI
 428	 * request fails we pretend we got zeroes.
 429	 */
 430	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
 431	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 432	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 433			  outbuf, sizeof(outbuf), NULL);
 434	if (rc)
 435		memset(outbuf, 0, sizeof(outbuf));
 436	efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 437			     efx_ptp_stat_mask,
 438			     stats, _MCDI_PTR(outbuf, 0), false);
 439
 440	return PTP_STAT_COUNT;
 441}
 442
 443/* For Siena platforms NIC time is s and ns */
 444static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
 445{
 446	struct timespec64 ts = ns_to_timespec64(ns);
 447	*nic_major = (u32)ts.tv_sec;
 448	*nic_minor = ts.tv_nsec;
 449}
 450
 451static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
 452						s32 correction)
 453{
 454	ktime_t kt = ktime_set(nic_major, nic_minor);
 455	if (correction >= 0)
 456		kt = ktime_add_ns(kt, (u64)correction);
 457	else
 458		kt = ktime_sub_ns(kt, (u64)-correction);
 459	return kt;
 460}
 461
 462/* To convert from s27 format to ns we multiply then divide by a power of 2.
 463 * For the conversion from ns to s27, the operation is also converted to a
 464 * multiply and shift.
 465 */
 466#define S27_TO_NS_SHIFT	(27)
 467#define NS_TO_S27_MULT	(((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
 468#define NS_TO_S27_SHIFT	(63 - S27_TO_NS_SHIFT)
 469#define S27_MINOR_MAX	(1 << S27_TO_NS_SHIFT)
 470
 471/* For Huntington platforms NIC time is in seconds and fractions of a second
 472 * where the minor register only uses 27 bits in units of 2^-27s.
 473 */
 474static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
 475{
 476	struct timespec64 ts = ns_to_timespec64(ns);
 477	u32 maj = (u32)ts.tv_sec;
 478	u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
 479			 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
 480
 481	/* The conversion can result in the minor value exceeding the maximum.
 482	 * In this case, round up to the next second.
 483	 */
 484	if (min >= S27_MINOR_MAX) {
 485		min -= S27_MINOR_MAX;
 486		maj++;
 487	}
 488
 489	*nic_major = maj;
 490	*nic_minor = min;
 491}
 492
 493static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
 494{
 495	u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
 496			(1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
 497	return ktime_set(nic_major, ns);
 498}
 499
 500static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
 501					       s32 correction)
 502{
 503	/* Apply the correction and deal with carry */
 504	nic_minor += correction;
 505	if ((s32)nic_minor < 0) {
 506		nic_minor += S27_MINOR_MAX;
 507		nic_major--;
 508	} else if (nic_minor >= S27_MINOR_MAX) {
 509		nic_minor -= S27_MINOR_MAX;
 510		nic_major++;
 511	}
 512
 513	return efx_ptp_s27_to_ktime(nic_major, nic_minor);
 514}
 515
 516/* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
 517static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
 518{
 519	struct timespec64 ts = ns_to_timespec64(ns);
 520
 521	*nic_major = (u32)ts.tv_sec;
 522	*nic_minor = ts.tv_nsec * 4;
 523}
 524
 525static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
 526						 s32 correction)
 527{
 528	ktime_t kt;
 529
 530	nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
 531	correction = DIV_ROUND_CLOSEST(correction, 4);
 532
 533	kt = ktime_set(nic_major, nic_minor);
 534
 535	if (correction >= 0)
 536		kt = ktime_add_ns(kt, (u64)correction);
 537	else
 538		kt = ktime_sub_ns(kt, (u64)-correction);
 539	return kt;
 540}
 541
 542struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
 543{
 544	return efx->ptp_data ? efx->ptp_data->channel : NULL;
 545}
 546
 547static u32 last_sync_timestamp_major(struct efx_nic *efx)
 548{
 549	struct efx_channel *channel = efx_ptp_channel(efx);
 550	u32 major = 0;
 551
 552	if (channel)
 553		major = channel->sync_timestamp_major;
 554	return major;
 555}
 556
 557/* The 8000 series and later can provide the time from the MAC, which is only
 558 * 48 bits long and provides meta-information in the top 2 bits.
 559 */
 560static ktime_t
 561efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
 562				    struct efx_ptp_data *ptp,
 563				    u32 nic_major, u32 nic_minor,
 564				    s32 correction)
 565{
 566	ktime_t kt = { 0 };
 567
 568	if (!(nic_major & 0x80000000)) {
 569		WARN_ON_ONCE(nic_major >> 16);
 570		/* Use the top bits from the latest sync event. */
 571		nic_major &= 0xffff;
 572		nic_major |= (last_sync_timestamp_major(efx) & 0xffff0000);
 573
 574		kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
 575					     correction);
 576	}
 577	return kt;
 578}
 579
 580ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
 581{
 582	struct efx_nic *efx = tx_queue->efx;
 583	struct efx_ptp_data *ptp = efx->ptp_data;
 584	ktime_t kt;
 585
 586	if (efx_ptp_use_mac_tx_timestamps(efx))
 587		kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
 588				tx_queue->completed_timestamp_major,
 589				tx_queue->completed_timestamp_minor,
 590				ptp->ts_corrections.general_tx);
 591	else
 592		kt = ptp->nic_to_kernel_time(
 593				tx_queue->completed_timestamp_major,
 594				tx_queue->completed_timestamp_minor,
 595				ptp->ts_corrections.general_tx);
 596	return kt;
 597}
 598
 599/* Get PTP attributes and set up time conversions */
 600static int efx_ptp_get_attributes(struct efx_nic *efx)
 601{
 602	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
 603	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
 604	struct efx_ptp_data *ptp = efx->ptp_data;
 605	int rc;
 606	u32 fmt;
 607	size_t out_len;
 608
 609	/* Get the PTP attributes. If the NIC doesn't support the operation we
 610	 * use the default format for compatibility with older NICs i.e.
 611	 * seconds and nanoseconds.
 612	 */
 613	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
 614	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 615	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 616				outbuf, sizeof(outbuf), &out_len);
 617	if (rc == 0) {
 618		fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
 619	} else if (rc == -EINVAL) {
 620		fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
 621	} else if (rc == -EPERM) {
 622		netif_info(efx, probe, efx->net_dev, "no PTP support\n");
 623		return rc;
 624	} else {
 625		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
 626				       outbuf, sizeof(outbuf), rc);
 627		return rc;
 628	}
 629
 630	switch (fmt) {
 631	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
 632		ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
 633		ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
 634		ptp->nic_time.minor_max = 1 << 27;
 635		ptp->nic_time.sync_event_minor_shift = 19;
 636		break;
 637	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
 638		ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
 639		ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
 640		ptp->nic_time.minor_max = 1000000000;
 641		ptp->nic_time.sync_event_minor_shift = 22;
 642		break;
 643	case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
 644		ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
 645		ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
 646		ptp->nic_time.minor_max = 4000000000UL;
 647		ptp->nic_time.sync_event_minor_shift = 24;
 648		break;
 649	default:
 650		return -ERANGE;
 651	}
 652
 653	/* Precalculate acceptable difference between the minor time in the
 654	 * packet prefix and the last MCDI time sync event. We expect the
 655	 * packet prefix timestamp to be after of sync event by up to one
 656	 * sync event interval (0.25s) but we allow it to exceed this by a
 657	 * fuzz factor of (0.1s)
 658	 */
 659	ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
 660		- (ptp->nic_time.minor_max / 10);
 661	ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
 662		+ (ptp->nic_time.minor_max / 10);
 663
 664	/* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
 665	 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
 666	 * a value to use for the minimum acceptable corrected synchronization
 667	 * window and may return further capabilities.
 668	 * If we have the extra information store it. For older firmware that
 669	 * does not implement the extended command use the default value.
 670	 */
 671	if (rc == 0 &&
 672	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
 673		ptp->min_synchronisation_ns =
 674			MCDI_DWORD(outbuf,
 675				   PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
 676	else
 677		ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
 678
 679	if (rc == 0 &&
 680	    out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
 681		ptp->capabilities = MCDI_DWORD(outbuf,
 682					PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
 683	else
 684		ptp->capabilities = 0;
 685
 686	/* Set up the shift for conversion between frequency
 687	 * adjustments in parts-per-billion and the fixed-point
 688	 * fractional ns format that the adapter uses.
 689	 */
 690	if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
 691		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
 692	else
 693		ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
 694
 695	return 0;
 696}
 697
 698/* Get PTP timestamp corrections */
 699static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
 700{
 701	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
 702	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
 703	int rc;
 704	size_t out_len;
 705
 706	/* Get the timestamp corrections from the NIC. If this operation is
 707	 * not supported (older NICs) then no correction is required.
 708	 */
 709	MCDI_SET_DWORD(inbuf, PTP_IN_OP,
 710		       MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
 711	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 712
 713	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 714				outbuf, sizeof(outbuf), &out_len);
 715	if (rc == 0) {
 716		efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
 717			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
 718		efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
 719			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
 720		efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
 721			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
 722		efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
 723			PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
 724
 725		if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
 726			efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
 727				outbuf,
 728				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
 729			efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
 730				outbuf,
 731				PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
 732		} else {
 733			efx->ptp_data->ts_corrections.general_tx =
 734				efx->ptp_data->ts_corrections.ptp_tx;
 735			efx->ptp_data->ts_corrections.general_rx =
 736				efx->ptp_data->ts_corrections.ptp_rx;
 737		}
 738	} else if (rc == -EINVAL) {
 739		efx->ptp_data->ts_corrections.ptp_tx = 0;
 740		efx->ptp_data->ts_corrections.ptp_rx = 0;
 741		efx->ptp_data->ts_corrections.pps_out = 0;
 742		efx->ptp_data->ts_corrections.pps_in = 0;
 743		efx->ptp_data->ts_corrections.general_tx = 0;
 744		efx->ptp_data->ts_corrections.general_rx = 0;
 745	} else {
 746		efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
 747				       sizeof(outbuf), rc);
 748		return rc;
 749	}
 750
 751	return 0;
 752}
 753
 754/* Enable MCDI PTP support. */
 755static int efx_ptp_enable(struct efx_nic *efx)
 756{
 757	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
 758	MCDI_DECLARE_BUF_ERR(outbuf);
 759	int rc;
 760
 761	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
 762	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 763	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
 764		       efx->ptp_data->channel ?
 765		       efx->ptp_data->channel->channel : 0);
 766	MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
 767
 768	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 769				outbuf, sizeof(outbuf), NULL);
 770	rc = (rc == -EALREADY) ? 0 : rc;
 771	if (rc)
 772		efx_mcdi_display_error(efx, MC_CMD_PTP,
 773				       MC_CMD_PTP_IN_ENABLE_LEN,
 774				       outbuf, sizeof(outbuf), rc);
 775	return rc;
 776}
 777
 778/* Disable MCDI PTP support.
 779 *
 780 * Note that this function should never rely on the presence of ptp_data -
 781 * may be called before that exists.
 782 */
 783static int efx_ptp_disable(struct efx_nic *efx)
 784{
 785	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
 786	MCDI_DECLARE_BUF_ERR(outbuf);
 787	int rc;
 788
 789	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
 790	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 791	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 792				outbuf, sizeof(outbuf), NULL);
 793	rc = (rc == -EALREADY) ? 0 : rc;
 794	/* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
 795	 * should only have been called during probe.
 796	 */
 797	if (rc == -ENOSYS || rc == -EPERM)
 798		netif_info(efx, probe, efx->net_dev, "no PTP support\n");
 799	else if (rc)
 800		efx_mcdi_display_error(efx, MC_CMD_PTP,
 801				       MC_CMD_PTP_IN_DISABLE_LEN,
 802				       outbuf, sizeof(outbuf), rc);
 803	return rc;
 804}
 805
 806static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
 807{
 808	struct sk_buff *skb;
 809
 810	while ((skb = skb_dequeue(q))) {
 811		local_bh_disable();
 812		netif_receive_skb(skb);
 813		local_bh_enable();
 814	}
 815}
 816
 817static void efx_ptp_handle_no_channel(struct efx_nic *efx)
 818{
 819	netif_err(efx, drv, efx->net_dev,
 820		  "ERROR: PTP requires MSI-X and 1 additional interrupt"
 821		  "vector. PTP disabled\n");
 822}
 823
 824/* Repeatedly send the host time to the MC which will capture the hardware
 825 * time.
 826 */
 827static void efx_ptp_send_times(struct efx_nic *efx,
 828			       struct pps_event_time *last_time)
 829{
 830	struct pps_event_time now;
 831	struct timespec64 limit;
 832	struct efx_ptp_data *ptp = efx->ptp_data;
 833	int *mc_running = ptp->start.addr;
 834
 835	pps_get_ts(&now);
 836	limit = now.ts_real;
 837	timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
 838
 839	/* Write host time for specified period or until MC is done */
 840	while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
 841	       READ_ONCE(*mc_running)) {
 842		struct timespec64 update_time;
 843		unsigned int host_time;
 844
 845		/* Don't update continuously to avoid saturating the PCIe bus */
 846		update_time = now.ts_real;
 847		timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
 848		do {
 849			pps_get_ts(&now);
 850		} while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
 851			 READ_ONCE(*mc_running));
 852
 853		/* Synchronise NIC with single word of time only */
 854		host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
 855			     now.ts_real.tv_nsec);
 856		/* Update host time in NIC memory */
 857		efx->type->ptp_write_host_time(efx, host_time);
 858	}
 859	*last_time = now;
 860}
 861
 862/* Read a timeset from the MC's results and partial process. */
 863static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
 864				 struct efx_ptp_timeset *timeset)
 865{
 866	unsigned start_ns, end_ns;
 867
 868	timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
 869	timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
 870	timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
 871	timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
 872	timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
 873
 874	/* Ignore seconds */
 875	start_ns = timeset->host_start & MC_NANOSECOND_MASK;
 876	end_ns = timeset->host_end & MC_NANOSECOND_MASK;
 877	/* Allow for rollover */
 878	if (end_ns < start_ns)
 879		end_ns += NSEC_PER_SEC;
 880	/* Determine duration of operation */
 881	timeset->window = end_ns - start_ns;
 882}
 883
 884/* Process times received from MC.
 885 *
 886 * Extract times from returned results, and establish the minimum value
 887 * seen.  The minimum value represents the "best" possible time and events
 888 * too much greater than this are rejected - the machine is, perhaps, too
 889 * busy. A number of readings are taken so that, hopefully, at least one good
 890 * synchronisation will be seen in the results.
 891 */
 892static int
 893efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
 894		      size_t response_length,
 895		      const struct pps_event_time *last_time)
 896{
 897	unsigned number_readings =
 898		MCDI_VAR_ARRAY_LEN(response_length,
 899				   PTP_OUT_SYNCHRONIZE_TIMESET);
 900	unsigned i;
 901	unsigned ngood = 0;
 902	unsigned last_good = 0;
 903	struct efx_ptp_data *ptp = efx->ptp_data;
 904	u32 last_sec;
 905	u32 start_sec;
 906	struct timespec64 delta;
 907	ktime_t mc_time;
 908
 909	if (number_readings == 0)
 910		return -EAGAIN;
 911
 912	/* Read the set of results and find the last good host-MC
 913	 * synchronization result. The MC times when it finishes reading the
 914	 * host time so the corrected window time should be fairly constant
 915	 * for a given platform. Increment stats for any results that appear
 916	 * to be erroneous.
 917	 */
 918	for (i = 0; i < number_readings; i++) {
 919		s32 window, corrected;
 920		struct timespec64 wait;
 921
 922		efx_ptp_read_timeset(
 923			MCDI_ARRAY_STRUCT_PTR(synch_buf,
 924					      PTP_OUT_SYNCHRONIZE_TIMESET, i),
 925			&ptp->timeset[i]);
 926
 927		wait = ktime_to_timespec64(
 928			ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
 929		window = ptp->timeset[i].window;
 930		corrected = window - wait.tv_nsec;
 931
 932		/* We expect the uncorrected synchronization window to be at
 933		 * least as large as the interval between host start and end
 934		 * times. If it is smaller than this then this is mostly likely
 935		 * to be a consequence of the host's time being adjusted.
 936		 * Check that the corrected sync window is in a reasonable
 937		 * range. If it is out of range it is likely to be because an
 938		 * interrupt or other delay occurred between reading the system
 939		 * time and writing it to MC memory.
 940		 */
 941		if (window < SYNCHRONISATION_GRANULARITY_NS) {
 942			++ptp->invalid_sync_windows;
 943		} else if (corrected >= MAX_SYNCHRONISATION_NS) {
 944			++ptp->oversize_sync_windows;
 945		} else if (corrected < ptp->min_synchronisation_ns) {
 946			++ptp->undersize_sync_windows;
 947		} else {
 948			ngood++;
 949			last_good = i;
 950		}
 951	}
 952
 953	if (ngood == 0) {
 954		netif_warn(efx, drv, efx->net_dev,
 955			   "PTP no suitable synchronisations\n");
 956		return -EAGAIN;
 957	}
 958
 959	/* Calculate delay from last good sync (host time) to last_time.
 960	 * It is possible that the seconds rolled over between taking
 961	 * the start reading and the last value written by the host.  The
 962	 * timescales are such that a gap of more than one second is never
 963	 * expected.  delta is *not* normalised.
 964	 */
 965	start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
 966	last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
 967	if (start_sec != last_sec &&
 968	    ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
 969		netif_warn(efx, hw, efx->net_dev,
 970			   "PTP bad synchronisation seconds\n");
 971		return -EAGAIN;
 972	}
 973	delta.tv_sec = (last_sec - start_sec) & 1;
 974	delta.tv_nsec =
 975		last_time->ts_real.tv_nsec -
 976		(ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
 977
 978	/* Convert the NIC time at last good sync into kernel time.
 979	 * No correction is required - this time is the output of a
 980	 * firmware process.
 981	 */
 982	mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
 983					  ptp->timeset[last_good].minor, 0);
 984
 985	/* Calculate delay from NIC top of second to last_time */
 986	delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
 987
 988	/* Set PPS timestamp to match NIC top of second */
 989	ptp->host_time_pps = *last_time;
 990	pps_sub_ts(&ptp->host_time_pps, delta);
 991
 992	return 0;
 993}
 994
 995/* Synchronize times between the host and the MC */
 996static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
 997{
 998	struct efx_ptp_data *ptp = efx->ptp_data;
 999	MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
1000	size_t response_length;
1001	int rc;
1002	unsigned long timeout;
1003	struct pps_event_time last_time = {};
1004	unsigned int loops = 0;
1005	int *start = ptp->start.addr;
1006
1007	MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
1008	MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
1009	MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
1010		       num_readings);
1011	MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
1012		       ptp->start.dma_addr);
1013
1014	/* Clear flag that signals MC ready */
1015	WRITE_ONCE(*start, 0);
1016	rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
1017				MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
1018	EFX_WARN_ON_ONCE_PARANOID(rc);
1019
1020	/* Wait for start from MCDI (or timeout) */
1021	timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
1022	while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
1023		udelay(20);	/* Usually start MCDI execution quickly */
1024		loops++;
1025	}
1026
1027	if (loops <= 1)
1028		++ptp->fast_syncs;
1029	if (!time_before(jiffies, timeout))
1030		++ptp->sync_timeouts;
1031
1032	if (READ_ONCE(*start))
1033		efx_ptp_send_times(efx, &last_time);
1034
1035	/* Collect results */
1036	rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
1037				 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
1038				 synch_buf, sizeof(synch_buf),
1039				 &response_length);
1040	if (rc == 0) {
1041		rc = efx_ptp_process_times(efx, synch_buf, response_length,
1042					   &last_time);
1043		if (rc == 0)
1044			++ptp->good_syncs;
1045		else
1046			++ptp->no_time_syncs;
1047	}
1048
1049	/* Increment the bad syncs counter if the synchronize fails, whatever
1050	 * the reason.
1051	 */
1052	if (rc != 0)
1053		++ptp->bad_syncs;
1054
1055	return rc;
1056}
1057
1058/* Transmit a PTP packet via the dedicated hardware timestamped queue. */
1059static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
1060{
1061	struct efx_ptp_data *ptp_data = efx->ptp_data;
1062	struct efx_tx_queue *tx_queue;
1063	u8 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
1064
1065	tx_queue = &ptp_data->channel->tx_queue[type];
1066	if (tx_queue && tx_queue->timestamping) {
1067		efx_enqueue_skb(tx_queue, skb);
1068	} else {
1069		WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1070		dev_kfree_skb_any(skb);
1071	}
1072}
1073
1074/* Transmit a PTP packet, via the MCDI interface, to the wire. */
1075static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
1076{
1077	struct efx_ptp_data *ptp_data = efx->ptp_data;
1078	struct skb_shared_hwtstamps timestamps;
1079	int rc = -EIO;
1080	MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
1081	size_t len;
1082
1083	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
1084	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
1085	MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
1086	if (skb_shinfo(skb)->nr_frags != 0) {
1087		rc = skb_linearize(skb);
1088		if (rc != 0)
1089			goto fail;
1090	}
1091
1092	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1093		rc = skb_checksum_help(skb);
1094		if (rc != 0)
1095			goto fail;
1096	}
1097	skb_copy_from_linear_data(skb,
1098				  MCDI_PTR(ptp_data->txbuf,
1099					   PTP_IN_TRANSMIT_PACKET),
1100				  skb->len);
1101	rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
1102			  ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
1103			  txtime, sizeof(txtime), &len);
1104	if (rc != 0)
1105		goto fail;
1106
1107	memset(&timestamps, 0, sizeof(timestamps));
1108	timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
1109		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
1110		MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
1111		ptp_data->ts_corrections.ptp_tx);
1112
1113	skb_tstamp_tx(skb, &timestamps);
1114
1115	rc = 0;
1116
1117fail:
1118	dev_kfree_skb_any(skb);
1119
1120	return;
1121}
1122
1123static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
1124{
1125	struct efx_ptp_data *ptp = efx->ptp_data;
1126	struct list_head *cursor;
1127	struct list_head *next;
1128
1129	if (ptp->rx_ts_inline)
1130		return;
1131
1132	/* Drop time-expired events */
1133	spin_lock_bh(&ptp->evt_lock);
1134	if (!list_empty(&ptp->evt_list)) {
1135		list_for_each_safe(cursor, next, &ptp->evt_list) {
1136			struct efx_ptp_event_rx *evt;
1137
1138			evt = list_entry(cursor, struct efx_ptp_event_rx,
1139					 link);
1140			if (time_after(jiffies, evt->expiry)) {
1141				list_move(&evt->link, &ptp->evt_free_list);
1142				netif_warn(efx, hw, efx->net_dev,
1143					   "PTP rx event dropped\n");
1144			}
1145		}
1146	}
1147	spin_unlock_bh(&ptp->evt_lock);
1148}
1149
1150static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
1151					      struct sk_buff *skb)
1152{
1153	struct efx_ptp_data *ptp = efx->ptp_data;
1154	bool evts_waiting;
1155	struct list_head *cursor;
1156	struct list_head *next;
1157	struct efx_ptp_match *match;
1158	enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
1159
1160	WARN_ON_ONCE(ptp->rx_ts_inline);
1161
1162	spin_lock_bh(&ptp->evt_lock);
1163	evts_waiting = !list_empty(&ptp->evt_list);
1164	spin_unlock_bh(&ptp->evt_lock);
1165
1166	if (!evts_waiting)
1167		return PTP_PACKET_STATE_UNMATCHED;
1168
1169	match = (struct efx_ptp_match *)skb->cb;
1170	/* Look for a matching timestamp in the event queue */
1171	spin_lock_bh(&ptp->evt_lock);
1172	list_for_each_safe(cursor, next, &ptp->evt_list) {
1173		struct efx_ptp_event_rx *evt;
1174
1175		evt = list_entry(cursor, struct efx_ptp_event_rx, link);
1176		if ((evt->seq0 == match->words[0]) &&
1177		    (evt->seq1 == match->words[1])) {
1178			struct skb_shared_hwtstamps *timestamps;
1179
1180			/* Match - add in hardware timestamp */
1181			timestamps = skb_hwtstamps(skb);
1182			timestamps->hwtstamp = evt->hwtimestamp;
1183
1184			match->state = PTP_PACKET_STATE_MATCHED;
1185			rc = PTP_PACKET_STATE_MATCHED;
1186			list_move(&evt->link, &ptp->evt_free_list);
1187			break;
1188		}
1189	}
1190	spin_unlock_bh(&ptp->evt_lock);
1191
1192	return rc;
1193}
1194
1195/* Process any queued receive events and corresponding packets
1196 *
1197 * q is returned with all the packets that are ready for delivery.
1198 */
1199static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1200{
1201	struct efx_ptp_data *ptp = efx->ptp_data;
1202	struct sk_buff *skb;
1203
1204	while ((skb = skb_dequeue(&ptp->rxq))) {
1205		struct efx_ptp_match *match;
1206
1207		match = (struct efx_ptp_match *)skb->cb;
1208		if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1209			__skb_queue_tail(q, skb);
1210		} else if (efx_ptp_match_rx(efx, skb) ==
1211			   PTP_PACKET_STATE_MATCHED) {
1212			__skb_queue_tail(q, skb);
1213		} else if (time_after(jiffies, match->expiry)) {
1214			match->state = PTP_PACKET_STATE_TIMED_OUT;
1215			++ptp->rx_no_timestamp;
1216			__skb_queue_tail(q, skb);
1217		} else {
1218			/* Replace unprocessed entry and stop */
1219			skb_queue_head(&ptp->rxq, skb);
1220			break;
1221		}
1222	}
1223}
1224
1225/* Complete processing of a received packet */
1226static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1227{
1228	local_bh_disable();
1229	netif_receive_skb(skb);
1230	local_bh_enable();
1231}
1232
1233static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
1234{
1235	struct efx_ptp_data *ptp = efx->ptp_data;
1236
1237	if (ptp->rxfilter_installed) {
1238		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1239					  ptp->rxfilter_general);
1240		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1241					  ptp->rxfilter_event);
1242		ptp->rxfilter_installed = false;
1243	}
1244}
1245
1246static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1247{
1248	struct efx_ptp_data *ptp = efx->ptp_data;
1249	struct efx_filter_spec rxfilter;
1250	int rc;
1251
1252	if (!ptp->channel || ptp->rxfilter_installed)
1253		return 0;
1254
1255	/* Must filter on both event and general ports to ensure
1256	 * that there is no packet re-ordering.
1257	 */
1258	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1259			   efx_rx_queue_index(
1260				   efx_channel_get_rx_queue(ptp->channel)));
1261	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1262				       htonl(PTP_ADDRESS),
1263				       htons(PTP_EVENT_PORT));
1264	if (rc != 0)
1265		return rc;
1266
1267	rc = efx_filter_insert_filter(efx, &rxfilter, true);
1268	if (rc < 0)
1269		return rc;
1270	ptp->rxfilter_event = rc;
1271
1272	efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1273			   efx_rx_queue_index(
1274				   efx_channel_get_rx_queue(ptp->channel)));
1275	rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1276				       htonl(PTP_ADDRESS),
1277				       htons(PTP_GENERAL_PORT));
1278	if (rc != 0)
1279		goto fail;
1280
1281	rc = efx_filter_insert_filter(efx, &rxfilter, true);
1282	if (rc < 0)
1283		goto fail;
1284	ptp->rxfilter_general = rc;
1285
1286	ptp->rxfilter_installed = true;
1287	return 0;
1288
1289fail:
1290	efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1291				  ptp->rxfilter_event);
1292	return rc;
1293}
1294
1295static int efx_ptp_start(struct efx_nic *efx)
1296{
1297	struct efx_ptp_data *ptp = efx->ptp_data;
1298	int rc;
1299
1300	ptp->reset_required = false;
1301
1302	rc = efx_ptp_insert_multicast_filters(efx);
1303	if (rc)
1304		return rc;
1305
1306	rc = efx_ptp_enable(efx);
1307	if (rc != 0)
1308		goto fail;
1309
1310	ptp->evt_frag_idx = 0;
1311	ptp->current_adjfreq = 0;
1312
1313	return 0;
1314
1315fail:
1316	efx_ptp_remove_multicast_filters(efx);
1317	return rc;
1318}
1319
1320static int efx_ptp_stop(struct efx_nic *efx)
1321{
1322	struct efx_ptp_data *ptp = efx->ptp_data;
1323	struct list_head *cursor;
1324	struct list_head *next;
1325	int rc;
1326
1327	if (ptp == NULL)
1328		return 0;
1329
1330	rc = efx_ptp_disable(efx);
1331
1332	efx_ptp_remove_multicast_filters(efx);
1333
1334	/* Make sure RX packets are really delivered */
1335	efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1336	skb_queue_purge(&efx->ptp_data->txq);
1337
1338	/* Drop any pending receive events */
1339	spin_lock_bh(&efx->ptp_data->evt_lock);
1340	list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
1341		list_move(cursor, &efx->ptp_data->evt_free_list);
1342	}
1343	spin_unlock_bh(&efx->ptp_data->evt_lock);
1344
1345	return rc;
1346}
1347
1348static int efx_ptp_restart(struct efx_nic *efx)
1349{
1350	if (efx->ptp_data && efx->ptp_data->enabled)
1351		return efx_ptp_start(efx);
1352	return 0;
1353}
1354
1355static void efx_ptp_pps_worker(struct work_struct *work)
1356{
1357	struct efx_ptp_data *ptp =
1358		container_of(work, struct efx_ptp_data, pps_work);
1359	struct efx_nic *efx = ptp->efx;
1360	struct ptp_clock_event ptp_evt;
1361
1362	if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1363		return;
1364
1365	ptp_evt.type = PTP_CLOCK_PPSUSR;
1366	ptp_evt.pps_times = ptp->host_time_pps;
1367	ptp_clock_event(ptp->phc_clock, &ptp_evt);
1368}
1369
1370static void efx_ptp_worker(struct work_struct *work)
1371{
1372	struct efx_ptp_data *ptp_data =
1373		container_of(work, struct efx_ptp_data, work);
1374	struct efx_nic *efx = ptp_data->efx;
1375	struct sk_buff *skb;
1376	struct sk_buff_head tempq;
1377
1378	if (ptp_data->reset_required) {
1379		efx_ptp_stop(efx);
1380		efx_ptp_start(efx);
1381		return;
1382	}
1383
1384	efx_ptp_drop_time_expired_events(efx);
1385
1386	__skb_queue_head_init(&tempq);
1387	efx_ptp_process_events(efx, &tempq);
1388
1389	while ((skb = skb_dequeue(&ptp_data->txq)))
1390		ptp_data->xmit_skb(efx, skb);
1391
1392	while ((skb = __skb_dequeue(&tempq)))
1393		efx_ptp_process_rx(efx, skb);
1394}
1395
1396static const struct ptp_clock_info efx_phc_clock_info = {
1397	.owner		= THIS_MODULE,
1398	.name		= "sfc",
1399	.max_adj	= MAX_PPB,
1400	.n_alarm	= 0,
1401	.n_ext_ts	= 0,
1402	.n_per_out	= 0,
1403	.n_pins		= 0,
1404	.pps		= 1,
1405	.adjfreq	= efx_phc_adjfreq,
1406	.adjtime	= efx_phc_adjtime,
1407	.gettime64	= efx_phc_gettime,
1408	.settime64	= efx_phc_settime,
1409	.enable		= efx_phc_enable,
1410};
1411
1412/* Initialise PTP state. */
1413int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1414{
1415	struct efx_ptp_data *ptp;
1416	int rc = 0;
1417	unsigned int pos;
1418
1419	ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1420	efx->ptp_data = ptp;
1421	if (!efx->ptp_data)
1422		return -ENOMEM;
1423
1424	ptp->efx = efx;
1425	ptp->channel = channel;
1426	ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1427
1428	rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1429	if (rc != 0)
1430		goto fail1;
1431
1432	skb_queue_head_init(&ptp->rxq);
1433	skb_queue_head_init(&ptp->txq);
1434	ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1435	if (!ptp->workwq) {
1436		rc = -ENOMEM;
1437		goto fail2;
1438	}
1439
1440	if (efx_ptp_use_mac_tx_timestamps(efx)) {
1441		ptp->xmit_skb = efx_ptp_xmit_skb_queue;
1442		/* Request sync events on this channel. */
1443		channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
1444	} else {
1445		ptp->xmit_skb = efx_ptp_xmit_skb_mc;
1446	}
1447
1448	INIT_WORK(&ptp->work, efx_ptp_worker);
1449	ptp->config.flags = 0;
1450	ptp->config.tx_type = HWTSTAMP_TX_OFF;
1451	ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1452	INIT_LIST_HEAD(&ptp->evt_list);
1453	INIT_LIST_HEAD(&ptp->evt_free_list);
1454	spin_lock_init(&ptp->evt_lock);
1455	for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1456		list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
1457
1458	/* Get the NIC PTP attributes and set up time conversions */
1459	rc = efx_ptp_get_attributes(efx);
1460	if (rc < 0)
1461		goto fail3;
1462
1463	/* Get the timestamp corrections */
1464	rc = efx_ptp_get_timestamp_corrections(efx);
1465	if (rc < 0)
1466		goto fail3;
1467
1468	if (efx->mcdi->fn_flags &
1469	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1470		ptp->phc_clock_info = efx_phc_clock_info;
1471		ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1472						    &efx->pci_dev->dev);
1473		if (IS_ERR(ptp->phc_clock)) {
1474			rc = PTR_ERR(ptp->phc_clock);
1475			goto fail3;
1476		} else if (ptp->phc_clock) {
1477			INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1478			ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1479			if (!ptp->pps_workwq) {
1480				rc = -ENOMEM;
1481				goto fail4;
1482			}
1483		}
1484	}
1485	ptp->nic_ts_enabled = false;
1486
1487	return 0;
1488fail4:
1489	ptp_clock_unregister(efx->ptp_data->phc_clock);
1490
1491fail3:
1492	destroy_workqueue(efx->ptp_data->workwq);
1493
1494fail2:
1495	efx_nic_free_buffer(efx, &ptp->start);
1496
1497fail1:
1498	kfree(efx->ptp_data);
1499	efx->ptp_data = NULL;
1500
1501	return rc;
1502}
1503
1504/* Initialise PTP channel.
1505 *
1506 * Setting core_index to zero causes the queue to be initialised and doesn't
1507 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1508 */
1509static int efx_ptp_probe_channel(struct efx_channel *channel)
1510{
1511	struct efx_nic *efx = channel->efx;
1512	int rc;
1513
1514	channel->irq_moderation_us = 0;
1515	channel->rx_queue.core_index = 0;
1516
1517	rc = efx_ptp_probe(efx, channel);
1518	/* Failure to probe PTP is not fatal; this channel will just not be
1519	 * used for anything.
1520	 * In the case of EPERM, efx_ptp_probe will print its own message (in
1521	 * efx_ptp_get_attributes()), so we don't need to.
1522	 */
1523	if (rc && rc != -EPERM)
1524		netif_warn(efx, drv, efx->net_dev,
1525			   "Failed to probe PTP, rc=%d\n", rc);
1526	return 0;
1527}
1528
1529void efx_ptp_remove(struct efx_nic *efx)
1530{
1531	if (!efx->ptp_data)
1532		return;
1533
1534	(void)efx_ptp_disable(efx);
1535
1536	cancel_work_sync(&efx->ptp_data->work);
1537	cancel_work_sync(&efx->ptp_data->pps_work);
1538
1539	skb_queue_purge(&efx->ptp_data->rxq);
1540	skb_queue_purge(&efx->ptp_data->txq);
1541
1542	if (efx->ptp_data->phc_clock) {
1543		destroy_workqueue(efx->ptp_data->pps_workwq);
1544		ptp_clock_unregister(efx->ptp_data->phc_clock);
1545	}
1546
1547	destroy_workqueue(efx->ptp_data->workwq);
1548
1549	efx_nic_free_buffer(efx, &efx->ptp_data->start);
1550	kfree(efx->ptp_data);
1551	efx->ptp_data = NULL;
1552}
1553
1554static void efx_ptp_remove_channel(struct efx_channel *channel)
1555{
1556	efx_ptp_remove(channel->efx);
1557}
1558
1559static void efx_ptp_get_channel_name(struct efx_channel *channel,
1560				     char *buf, size_t len)
1561{
1562	snprintf(buf, len, "%s-ptp", channel->efx->name);
1563}
1564
1565/* Determine whether this packet should be processed by the PTP module
1566 * or transmitted conventionally.
1567 */
1568bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1569{
1570	return efx->ptp_data &&
1571		efx->ptp_data->enabled &&
1572		skb->len >= PTP_MIN_LENGTH &&
1573		skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1574		likely(skb->protocol == htons(ETH_P_IP)) &&
1575		skb_transport_header_was_set(skb) &&
1576		skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1577		ip_hdr(skb)->protocol == IPPROTO_UDP &&
1578		skb_headlen(skb) >=
1579		skb_transport_offset(skb) + sizeof(struct udphdr) &&
1580		udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1581}
1582
1583/* Receive a PTP packet.  Packets are queued until the arrival of
1584 * the receive timestamp from the MC - this will probably occur after the
1585 * packet arrival because of the processing in the MC.
1586 */
1587static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1588{
1589	struct efx_nic *efx = channel->efx;
1590	struct efx_ptp_data *ptp = efx->ptp_data;
1591	struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1592	u8 *match_data_012, *match_data_345;
1593	unsigned int version;
1594	u8 *data;
1595
1596	match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1597
1598	/* Correct version? */
1599	if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1600		if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1601			return false;
1602		}
1603		data = skb->data;
1604		version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1605		if (version != PTP_VERSION_V1) {
1606			return false;
1607		}
1608
1609		/* PTP V1 uses all six bytes of the UUID to match the packet
1610		 * to the timestamp
1611		 */
1612		match_data_012 = data + PTP_V1_UUID_OFFSET;
1613		match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
1614	} else {
1615		if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1616			return false;
1617		}
1618		data = skb->data;
1619		version = data[PTP_V2_VERSION_OFFSET];
1620		if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1621			return false;
1622		}
1623
1624		/* The original V2 implementation uses bytes 2-7 of
1625		 * the UUID to match the packet to the timestamp. This
1626		 * discards two of the bytes of the MAC address used
1627		 * to create the UUID (SF bug 33070).  The PTP V2
1628		 * enhanced mode fixes this issue and uses bytes 0-2
1629		 * and byte 5-7 of the UUID.
1630		 */
1631		match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
1632		if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1633			match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
1634		} else {
1635			match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
1636			BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1637		}
1638	}
1639
1640	/* Does this packet require timestamping? */
1641	if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1642		match->state = PTP_PACKET_STATE_UNMATCHED;
1643
1644		/* We expect the sequence number to be in the same position in
1645		 * the packet for PTP V1 and V2
1646		 */
1647		BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1648		BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1649
1650		/* Extract UUID/Sequence information */
1651		match->words[0] = (match_data_012[0]         |
1652				   (match_data_012[1] << 8)  |
1653				   (match_data_012[2] << 16) |
1654				   (match_data_345[0] << 24));
1655		match->words[1] = (match_data_345[1]         |
1656				   (match_data_345[2] << 8)  |
1657				   (data[PTP_V1_SEQUENCE_OFFSET +
1658					 PTP_V1_SEQUENCE_LENGTH - 1] <<
1659				    16));
1660	} else {
1661		match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1662	}
1663
1664	skb_queue_tail(&ptp->rxq, skb);
1665	queue_work(ptp->workwq, &ptp->work);
1666
1667	return true;
1668}
1669
1670/* Transmit a PTP packet.  This has to be transmitted by the MC
1671 * itself, through an MCDI call.  MCDI calls aren't permitted
1672 * in the transmit path so defer the actual transmission to a suitable worker.
1673 */
1674int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1675{
1676	struct efx_ptp_data *ptp = efx->ptp_data;
1677
1678	skb_queue_tail(&ptp->txq, skb);
1679
1680	if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1681	    (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1682		efx_xmit_hwtstamp_pending(skb);
1683	queue_work(ptp->workwq, &ptp->work);
1684
1685	return NETDEV_TX_OK;
1686}
1687
1688int efx_ptp_get_mode(struct efx_nic *efx)
1689{
1690	return efx->ptp_data->mode;
1691}
1692
1693int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1694			unsigned int new_mode)
1695{
1696	if ((enable_wanted != efx->ptp_data->enabled) ||
1697	    (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1698		int rc = 0;
1699
1700		if (enable_wanted) {
1701			/* Change of mode requires disable */
1702			if (efx->ptp_data->enabled &&
1703			    (efx->ptp_data->mode != new_mode)) {
1704				efx->ptp_data->enabled = false;
1705				rc = efx_ptp_stop(efx);
1706				if (rc != 0)
1707					return rc;
1708			}
1709
1710			/* Set new operating mode and establish
1711			 * baseline synchronisation, which must
1712			 * succeed.
1713			 */
1714			efx->ptp_data->mode = new_mode;
1715			if (netif_running(efx->net_dev))
1716				rc = efx_ptp_start(efx);
1717			if (rc == 0) {
1718				rc = efx_ptp_synchronize(efx,
1719							 PTP_SYNC_ATTEMPTS * 2);
1720				if (rc != 0)
1721					efx_ptp_stop(efx);
1722			}
1723		} else {
1724			rc = efx_ptp_stop(efx);
1725		}
1726
1727		if (rc != 0)
1728			return rc;
1729
1730		efx->ptp_data->enabled = enable_wanted;
1731	}
1732
1733	return 0;
1734}
1735
1736static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1737{
1738	int rc;
1739
1740	if (init->flags)
1741		return -EINVAL;
1742
1743	if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1744	    (init->tx_type != HWTSTAMP_TX_ON))
1745		return -ERANGE;
1746
1747	rc = efx->type->ptp_set_ts_config(efx, init);
1748	if (rc)
1749		return rc;
1750
1751	efx->ptp_data->config = *init;
1752	return 0;
1753}
1754
1755void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1756{
1757	struct efx_ptp_data *ptp = efx->ptp_data;
1758	struct efx_nic *primary = efx->primary;
1759
1760	ASSERT_RTNL();
1761
1762	if (!ptp)
1763		return;
1764
1765	ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1766				     SOF_TIMESTAMPING_RX_HARDWARE |
1767				     SOF_TIMESTAMPING_RAW_HARDWARE);
1768	/* Check licensed features.  If we don't have the license for TX
1769	 * timestamps, the NIC will not support them.
1770	 */
1771	if (efx_ptp_use_mac_tx_timestamps(efx)) {
1772		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1773
1774		if (!(nic_data->licensed_features &
1775		      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
1776			ts_info->so_timestamping &=
1777				~SOF_TIMESTAMPING_TX_HARDWARE;
1778	}
1779	if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1780		ts_info->phc_index =
1781			ptp_clock_index(primary->ptp_data->phc_clock);
1782	ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1783	ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1784}
1785
1786int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1787{
1788	struct hwtstamp_config config;
1789	int rc;
1790
1791	/* Not a PTP enabled port */
1792	if (!efx->ptp_data)
1793		return -EOPNOTSUPP;
1794
1795	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1796		return -EFAULT;
1797
1798	rc = efx_ptp_ts_init(efx, &config);
1799	if (rc != 0)
1800		return rc;
1801
1802	return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1803		? -EFAULT : 0;
1804}
1805
1806int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1807{
1808	if (!efx->ptp_data)
1809		return -EOPNOTSUPP;
1810
1811	return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1812			    sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1813}
1814
1815static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1816{
1817	struct efx_ptp_data *ptp = efx->ptp_data;
1818
1819	netif_err(efx, hw, efx->net_dev,
1820		"PTP unexpected event length: got %d expected %d\n",
1821		ptp->evt_frag_idx, expected_frag_len);
1822	ptp->reset_required = true;
1823	queue_work(ptp->workwq, &ptp->work);
1824}
1825
1826/* Process a completed receive event.  Put it on the event queue and
1827 * start worker thread.  This is required because event and their
1828 * correspoding packets may come in either order.
1829 */
1830static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1831{
1832	struct efx_ptp_event_rx *evt = NULL;
1833
1834	if (WARN_ON_ONCE(ptp->rx_ts_inline))
1835		return;
1836
1837	if (ptp->evt_frag_idx != 3) {
1838		ptp_event_failure(efx, 3);
1839		return;
1840	}
1841
1842	spin_lock_bh(&ptp->evt_lock);
1843	if (!list_empty(&ptp->evt_free_list)) {
1844		evt = list_first_entry(&ptp->evt_free_list,
1845				       struct efx_ptp_event_rx, link);
1846		list_del(&evt->link);
1847
1848		evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1849		evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1850					     MCDI_EVENT_SRC)        |
1851			     (EFX_QWORD_FIELD(ptp->evt_frags[1],
1852					      MCDI_EVENT_SRC) << 8) |
1853			     (EFX_QWORD_FIELD(ptp->evt_frags[0],
1854					      MCDI_EVENT_SRC) << 16));
1855		evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
1856			EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1857			EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
1858			ptp->ts_corrections.ptp_rx);
1859		evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1860		list_add_tail(&evt->link, &ptp->evt_list);
1861
1862		queue_work(ptp->workwq, &ptp->work);
1863	} else if (net_ratelimit()) {
1864		/* Log a rate-limited warning message. */
1865		netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1866	}
1867	spin_unlock_bh(&ptp->evt_lock);
1868}
1869
1870static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1871{
1872	int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1873	if (ptp->evt_frag_idx != 1) {
1874		ptp_event_failure(efx, 1);
1875		return;
1876	}
1877
1878	netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1879}
1880
1881static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1882{
1883	if (ptp->nic_ts_enabled)
1884		queue_work(ptp->pps_workwq, &ptp->pps_work);
1885}
1886
1887void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1888{
1889	struct efx_ptp_data *ptp = efx->ptp_data;
1890	int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1891
1892	if (!ptp) {
1893		if (!efx->ptp_warned) {
1894			netif_warn(efx, drv, efx->net_dev,
1895				   "Received PTP event but PTP not set up\n");
1896			efx->ptp_warned = true;
1897		}
1898		return;
1899	}
1900
1901	if (!ptp->enabled)
1902		return;
1903
1904	if (ptp->evt_frag_idx == 0) {
1905		ptp->evt_code = code;
1906	} else if (ptp->evt_code != code) {
1907		netif_err(efx, hw, efx->net_dev,
1908			  "PTP out of sequence event %d\n", code);
1909		ptp->evt_frag_idx = 0;
1910	}
1911
1912	ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1913	if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1914		/* Process resulting event */
1915		switch (code) {
1916		case MCDI_EVENT_CODE_PTP_RX:
1917			ptp_event_rx(efx, ptp);
1918			break;
1919		case MCDI_EVENT_CODE_PTP_FAULT:
1920			ptp_event_fault(efx, ptp);
1921			break;
1922		case MCDI_EVENT_CODE_PTP_PPS:
1923			ptp_event_pps(efx, ptp);
1924			break;
1925		default:
1926			netif_err(efx, hw, efx->net_dev,
1927				  "PTP unknown event %d\n", code);
1928			break;
1929		}
1930		ptp->evt_frag_idx = 0;
1931	} else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1932		netif_err(efx, hw, efx->net_dev,
1933			  "PTP too many event fragments\n");
1934		ptp->evt_frag_idx = 0;
1935	}
1936}
1937
1938void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
1939{
1940	struct efx_nic *efx = channel->efx;
1941	struct efx_ptp_data *ptp = efx->ptp_data;
1942
1943	/* When extracting the sync timestamp minor value, we should discard
1944	 * the least significant two bits. These are not required in order
1945	 * to reconstruct full-range timestamps and they are optionally used
1946	 * to report status depending on the options supplied when subscribing
1947	 * for sync events.
1948	 */
1949	channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
1950	channel->sync_timestamp_minor =
1951		(MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
1952			<< ptp->nic_time.sync_event_minor_shift;
1953
1954	/* if sync events have been disabled then we want to silently ignore
1955	 * this event, so throw away result.
1956	 */
1957	(void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
1958		       SYNC_EVENTS_VALID);
1959}
1960
1961static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
1962{
1963#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1964	return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
1965#else
1966	const u8 *data = eh + efx->rx_packet_ts_offset;
1967	return (u32)data[0]       |
1968	       (u32)data[1] << 8  |
1969	       (u32)data[2] << 16 |
1970	       (u32)data[3] << 24;
1971#endif
1972}
1973
1974void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
1975				   struct sk_buff *skb)
1976{
1977	struct efx_nic *efx = channel->efx;
1978	struct efx_ptp_data *ptp = efx->ptp_data;
1979	u32 pkt_timestamp_major, pkt_timestamp_minor;
1980	u32 diff, carry;
1981	struct skb_shared_hwtstamps *timestamps;
1982
1983	if (channel->sync_events_state != SYNC_EVENTS_VALID)
1984		return;
1985
1986	pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
1987
1988	/* get the difference between the packet and sync timestamps,
1989	 * modulo one second
1990	 */
1991	diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
1992	if (pkt_timestamp_minor < channel->sync_timestamp_minor)
1993		diff += ptp->nic_time.minor_max;
1994
1995	/* do we roll over a second boundary and need to carry the one? */
1996	carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
1997		1 : 0;
1998
1999	if (diff <= ptp->nic_time.sync_event_diff_max) {
2000		/* packet is ahead of the sync event by a quarter of a second or
2001		 * less (allowing for fuzz)
2002		 */
2003		pkt_timestamp_major = channel->sync_timestamp_major + carry;
2004	} else if (diff >= ptp->nic_time.sync_event_diff_min) {
2005		/* packet is behind the sync event but within the fuzz factor.
2006		 * This means the RX packet and sync event crossed as they were
2007		 * placed on the event queue, which can sometimes happen.
2008		 */
2009		pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
2010	} else {
2011		/* it's outside tolerance in both directions. this might be
2012		 * indicative of us missing sync events for some reason, so
2013		 * we'll call it an error rather than risk giving a bogus
2014		 * timestamp.
2015		 */
2016		netif_vdbg(efx, drv, efx->net_dev,
2017			  "packet timestamp %x too far from sync event %x:%x\n",
2018			  pkt_timestamp_minor, channel->sync_timestamp_major,
2019			  channel->sync_timestamp_minor);
2020		return;
2021	}
2022
2023	/* attach the timestamps to the skb */
2024	timestamps = skb_hwtstamps(skb);
2025	timestamps->hwtstamp =
2026		ptp->nic_to_kernel_time(pkt_timestamp_major,
2027					pkt_timestamp_minor,
2028					ptp->ts_corrections.general_rx);
2029}
2030
2031static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
2032{
2033	struct efx_ptp_data *ptp_data = container_of(ptp,
2034						     struct efx_ptp_data,
2035						     phc_clock_info);
2036	struct efx_nic *efx = ptp_data->efx;
2037	MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
2038	s64 adjustment_ns;
2039	int rc;
2040
2041	if (delta > MAX_PPB)
2042		delta = MAX_PPB;
2043	else if (delta < -MAX_PPB)
2044		delta = -MAX_PPB;
2045
2046	/* Convert ppb to fixed point ns taking care to round correctly. */
2047	adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
2048			 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
2049			ptp_data->adjfreq_ppb_shift;
2050
2051	MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2052	MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
2053	MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
2054	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
2055	MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
2056	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
2057			  NULL, 0, NULL);
2058	if (rc != 0)
2059		return rc;
2060
2061	ptp_data->current_adjfreq = adjustment_ns;
2062	return 0;
2063}
2064
2065static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
2066{
2067	u32 nic_major, nic_minor;
2068	struct efx_ptp_data *ptp_data = container_of(ptp,
2069						     struct efx_ptp_data,
2070						     phc_clock_info);
2071	struct efx_nic *efx = ptp_data->efx;
2072	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
2073
2074	efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
2075
2076	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2077	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2078	MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
2079	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
2080	MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
2081	return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2082			    NULL, 0, NULL);
2083}
2084
2085static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
2086{
2087	struct efx_ptp_data *ptp_data = container_of(ptp,
2088						     struct efx_ptp_data,
2089						     phc_clock_info);
2090	struct efx_nic *efx = ptp_data->efx;
2091	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
2092	MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
2093	int rc;
2094	ktime_t kt;
2095
2096	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
2097	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2098
2099	rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2100			  outbuf, sizeof(outbuf), NULL);
2101	if (rc != 0)
2102		return rc;
2103
2104	kt = ptp_data->nic_to_kernel_time(
2105		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
2106		MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
2107	*ts = ktime_to_timespec64(kt);
2108	return 0;
2109}
2110
2111static int efx_phc_settime(struct ptp_clock_info *ptp,
2112			   const struct timespec64 *e_ts)
2113{
2114	/* Get the current NIC time, efx_phc_gettime.
2115	 * Subtract from the desired time to get the offset
2116	 * call efx_phc_adjtime with the offset
2117	 */
2118	int rc;
2119	struct timespec64 time_now;
2120	struct timespec64 delta;
2121
2122	rc = efx_phc_gettime(ptp, &time_now);
2123	if (rc != 0)
2124		return rc;
2125
2126	delta = timespec64_sub(*e_ts, time_now);
2127
2128	rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
2129	if (rc != 0)
2130		return rc;
2131
2132	return 0;
2133}
2134
2135static int efx_phc_enable(struct ptp_clock_info *ptp,
2136			  struct ptp_clock_request *request,
2137			  int enable)
2138{
2139	struct efx_ptp_data *ptp_data = container_of(ptp,
2140						     struct efx_ptp_data,
2141						     phc_clock_info);
2142	if (request->type != PTP_CLK_REQ_PPS)
2143		return -EOPNOTSUPP;
2144
2145	ptp_data->nic_ts_enabled = !!enable;
2146	return 0;
2147}
2148
2149static const struct efx_channel_type efx_ptp_channel_type = {
2150	.handle_no_channel	= efx_ptp_handle_no_channel,
2151	.pre_probe		= efx_ptp_probe_channel,
2152	.post_remove		= efx_ptp_remove_channel,
2153	.get_name		= efx_ptp_get_channel_name,
2154	/* no copy operation; there is no need to reallocate this channel */
2155	.receive_skb		= efx_ptp_rx,
2156	.want_txqs		= efx_ptp_want_txqs,
2157	.keep_eventq		= false,
2158};
2159
2160void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
2161{
2162	/* Check whether PTP is implemented on this NIC.  The DISABLE
2163	 * operation will succeed if and only if it is implemented.
2164	 */
2165	if (efx_ptp_disable(efx) == 0)
2166		efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
2167			&efx_ptp_channel_type;
2168}
2169
2170void efx_ptp_start_datapath(struct efx_nic *efx)
2171{
2172	if (efx_ptp_restart(efx))
2173		netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
2174	/* re-enable timestamping if it was previously enabled */
2175	if (efx->type->ptp_set_ts_sync_events)
2176		efx->type->ptp_set_ts_sync_events(efx, true, true);
2177}
2178
2179void efx_ptp_stop_datapath(struct efx_nic *efx)
2180{
2181	/* temporarily disable timestamping */
2182	if (efx->type->ptp_set_ts_sync_events)
2183		efx->type->ptp_set_ts_sync_events(efx, false, true);
2184	efx_ptp_stop(efx);
2185}