Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
   3 * Copyright (c) 2006, 2007  Maciej W. Rozycki
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version 2
   8 * of the License, or (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  17 *
  18 *
  19 * This driver is designed for the Broadcom SiByte SOC built-in
  20 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
  21 *
  22 * Updated to the driver model and the PHY abstraction layer
  23 * by Maciej W. Rozycki.
  24 */
  25
  26#include <linux/bug.h>
  27#include <linux/module.h>
  28#include <linux/kernel.h>
  29#include <linux/string.h>
  30#include <linux/timer.h>
  31#include <linux/errno.h>
  32#include <linux/ioport.h>
  33#include <linux/slab.h>
  34#include <linux/interrupt.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/skbuff.h>
  38#include <linux/bitops.h>
  39#include <linux/err.h>
  40#include <linux/ethtool.h>
  41#include <linux/mii.h>
  42#include <linux/phy.h>
  43#include <linux/platform_device.h>
  44#include <linux/prefetch.h>
  45
  46#include <asm/cache.h>
  47#include <asm/io.h>
  48#include <asm/processor.h>	/* Processor type for cache alignment. */
  49
  50/* Operational parameters that usually are not changed. */
  51
  52#define CONFIG_SBMAC_COALESCE
  53
  54/* Time in jiffies before concluding the transmitter is hung. */
  55#define TX_TIMEOUT  (2*HZ)
  56
  57
  58MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
  59MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
  60
  61/* A few user-configurable values which may be modified when a driver
  62   module is loaded. */
  63
  64/* 1 normal messages, 0 quiet .. 7 verbose. */
  65static int debug = 1;
  66module_param(debug, int, 0444);
  67MODULE_PARM_DESC(debug, "Debug messages");
  68
  69#ifdef CONFIG_SBMAC_COALESCE
  70static int int_pktcnt_tx = 255;
  71module_param(int_pktcnt_tx, int, 0444);
  72MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
  73
  74static int int_timeout_tx = 255;
  75module_param(int_timeout_tx, int, 0444);
  76MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
  77
  78static int int_pktcnt_rx = 64;
  79module_param(int_pktcnt_rx, int, 0444);
  80MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
  81
  82static int int_timeout_rx = 64;
  83module_param(int_timeout_rx, int, 0444);
  84MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
  85#endif
  86
  87#include <asm/sibyte/board.h>
  88#include <asm/sibyte/sb1250.h>
  89#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
  90#include <asm/sibyte/bcm1480_regs.h>
  91#include <asm/sibyte/bcm1480_int.h>
  92#define R_MAC_DMA_OODPKTLOST_RX	R_MAC_DMA_OODPKTLOST
  93#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
  94#include <asm/sibyte/sb1250_regs.h>
  95#include <asm/sibyte/sb1250_int.h>
  96#else
  97#error invalid SiByte MAC configuration
  98#endif
  99#include <asm/sibyte/sb1250_scd.h>
 100#include <asm/sibyte/sb1250_mac.h>
 101#include <asm/sibyte/sb1250_dma.h>
 102
 103#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
 104#define UNIT_INT(n)		(K_BCM1480_INT_MAC_0 + ((n) * 2))
 105#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
 106#define UNIT_INT(n)		(K_INT_MAC_0 + (n))
 107#else
 108#error invalid SiByte MAC configuration
 109#endif
 110
 111#ifdef K_INT_PHY
 112#define SBMAC_PHY_INT			K_INT_PHY
 113#else
 114#define SBMAC_PHY_INT			PHY_POLL
 115#endif
 116
 117/**********************************************************************
 118 *  Simple types
 119 ********************************************************************* */
 120
 121enum sbmac_speed {
 122	sbmac_speed_none = 0,
 123	sbmac_speed_10 = SPEED_10,
 124	sbmac_speed_100 = SPEED_100,
 125	sbmac_speed_1000 = SPEED_1000,
 126};
 127
 128enum sbmac_duplex {
 129	sbmac_duplex_none = -1,
 130	sbmac_duplex_half = DUPLEX_HALF,
 131	sbmac_duplex_full = DUPLEX_FULL,
 132};
 133
 134enum sbmac_fc {
 135	sbmac_fc_none,
 136	sbmac_fc_disabled,
 137	sbmac_fc_frame,
 138	sbmac_fc_collision,
 139	sbmac_fc_carrier,
 140};
 141
 142enum sbmac_state {
 143	sbmac_state_uninit,
 144	sbmac_state_off,
 145	sbmac_state_on,
 146	sbmac_state_broken,
 147};
 148
 149
 150/**********************************************************************
 151 *  Macros
 152 ********************************************************************* */
 153
 154
 155#define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
 156			  (d)->sbdma_dscrtable : (d)->f+1)
 157
 158
 159#define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
 160
 161#define SBMAC_MAX_TXDESCR	256
 162#define SBMAC_MAX_RXDESCR	256
 163
 164#define ENET_PACKET_SIZE	1518
 165/*#define ENET_PACKET_SIZE	9216 */
 166
 167/**********************************************************************
 168 *  DMA Descriptor structure
 169 ********************************************************************* */
 170
 171struct sbdmadscr {
 172	uint64_t  dscr_a;
 173	uint64_t  dscr_b;
 174};
 175
 176/**********************************************************************
 177 *  DMA Controller structure
 178 ********************************************************************* */
 179
 180struct sbmacdma {
 181
 182	/*
 183	 * This stuff is used to identify the channel and the registers
 184	 * associated with it.
 185	 */
 186	struct sbmac_softc	*sbdma_eth;	/* back pointer to associated
 187						   MAC */
 188	int			sbdma_channel;	/* channel number */
 189	int			sbdma_txdir;	/* direction (1=transmit) */
 190	int			sbdma_maxdescr;	/* total # of descriptors
 191						   in ring */
 192#ifdef CONFIG_SBMAC_COALESCE
 193	int			sbdma_int_pktcnt;
 194						/* # descriptors rx/tx
 195						   before interrupt */
 196	int			sbdma_int_timeout;
 197						/* # usec rx/tx interrupt */
 198#endif
 199	void __iomem		*sbdma_config0;	/* DMA config register 0 */
 200	void __iomem		*sbdma_config1;	/* DMA config register 1 */
 201	void __iomem		*sbdma_dscrbase;
 202						/* descriptor base address */
 203	void __iomem		*sbdma_dscrcnt;	/* descriptor count register */
 204	void __iomem		*sbdma_curdscr;	/* current descriptor
 205						   address */
 206	void __iomem		*sbdma_oodpktlost;
 207						/* pkt drop (rx only) */
 208
 209	/*
 210	 * This stuff is for maintenance of the ring
 211	 */
 212	void			*sbdma_dscrtable_unaligned;
 213	struct sbdmadscr	*sbdma_dscrtable;
 214						/* base of descriptor table */
 215	struct sbdmadscr	*sbdma_dscrtable_end;
 216						/* end of descriptor table */
 217	struct sk_buff		**sbdma_ctxtable;
 218						/* context table, one
 219						   per descr */
 220	dma_addr_t		sbdma_dscrtable_phys;
 221						/* and also the phys addr */
 222	struct sbdmadscr	*sbdma_addptr;	/* next dscr for sw to add */
 223	struct sbdmadscr	*sbdma_remptr;	/* next dscr for sw
 224						   to remove */
 225};
 226
 227
 228/**********************************************************************
 229 *  Ethernet softc structure
 230 ********************************************************************* */
 231
 232struct sbmac_softc {
 233
 234	/*
 235	 * Linux-specific things
 236	 */
 237	struct net_device	*sbm_dev;	/* pointer to linux device */
 238	struct napi_struct	napi;
 239	struct phy_device	*phy_dev;	/* the associated PHY device */
 240	struct mii_bus		*mii_bus;	/* the MII bus */
 241	spinlock_t		sbm_lock;	/* spin lock */
 242	int			sbm_devflags;	/* current device flags */
 243
 244	/*
 245	 * Controller-specific things
 246	 */
 247	void __iomem		*sbm_base;	/* MAC's base address */
 248	enum sbmac_state	sbm_state;	/* current state */
 249
 250	void __iomem		*sbm_macenable;	/* MAC Enable Register */
 251	void __iomem		*sbm_maccfg;	/* MAC Config Register */
 252	void __iomem		*sbm_fifocfg;	/* FIFO Config Register */
 253	void __iomem		*sbm_framecfg;	/* Frame Config Register */
 254	void __iomem		*sbm_rxfilter;	/* Receive Filter Register */
 255	void __iomem		*sbm_isr;	/* Interrupt Status Register */
 256	void __iomem		*sbm_imr;	/* Interrupt Mask Register */
 257	void __iomem		*sbm_mdio;	/* MDIO Register */
 258
 259	enum sbmac_speed	sbm_speed;	/* current speed */
 260	enum sbmac_duplex	sbm_duplex;	/* current duplex */
 261	enum sbmac_fc		sbm_fc;		/* cur. flow control setting */
 262	int			sbm_pause;	/* current pause setting */
 263	int			sbm_link;	/* current link state */
 264
 265	unsigned char		sbm_hwaddr[ETH_ALEN];
 266
 267	struct sbmacdma		sbm_txdma;	/* only channel 0 for now */
 268	struct sbmacdma		sbm_rxdma;
 269	int			rx_hw_checksum;
 270	int			sbe_idx;
 271};
 272
 273
 274/**********************************************************************
 275 *  Externs
 276 ********************************************************************* */
 277
 278/**********************************************************************
 279 *  Prototypes
 280 ********************************************************************* */
 281
 282static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
 283			  int txrx, int maxdescr);
 284static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
 285static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
 286			       struct sk_buff *m);
 287static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
 288static void sbdma_emptyring(struct sbmacdma *d);
 289static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
 290static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
 291			    int work_to_do, int poll);
 292static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
 293			     int poll);
 294static int sbmac_initctx(struct sbmac_softc *s);
 295static void sbmac_channel_start(struct sbmac_softc *s);
 296static void sbmac_channel_stop(struct sbmac_softc *s);
 297static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
 298						enum sbmac_state);
 299static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
 300static uint64_t sbmac_addr2reg(unsigned char *ptr);
 301static irqreturn_t sbmac_intr(int irq, void *dev_instance);
 302static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
 303static void sbmac_setmulti(struct sbmac_softc *sc);
 304static int sbmac_init(struct platform_device *pldev, long long base);
 305static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
 306static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
 307			    enum sbmac_fc fc);
 308
 309static int sbmac_open(struct net_device *dev);
 310static void sbmac_tx_timeout (struct net_device *dev);
 311static void sbmac_set_rx_mode(struct net_device *dev);
 312static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 313static int sbmac_close(struct net_device *dev);
 314static int sbmac_poll(struct napi_struct *napi, int budget);
 315
 316static void sbmac_mii_poll(struct net_device *dev);
 317static int sbmac_mii_probe(struct net_device *dev);
 318
 319static void sbmac_mii_sync(void __iomem *sbm_mdio);
 320static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
 321			       int bitcnt);
 322static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
 323static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
 324			   u16 val);
 325
 326
 327/**********************************************************************
 328 *  Globals
 329 ********************************************************************* */
 330
 331static char sbmac_string[] = "sb1250-mac";
 332
 333static char sbmac_mdio_string[] = "sb1250-mac-mdio";
 334
 335
 336/**********************************************************************
 337 *  MDIO constants
 338 ********************************************************************* */
 339
 340#define	MII_COMMAND_START	0x01
 341#define	MII_COMMAND_READ	0x02
 342#define	MII_COMMAND_WRITE	0x01
 343#define	MII_COMMAND_ACK		0x02
 344
 345#define M_MAC_MDIO_DIR_OUTPUT	0		/* for clarity */
 346
 347#define ENABLE 		1
 348#define DISABLE		0
 349
 350/**********************************************************************
 351 *  SBMAC_MII_SYNC(sbm_mdio)
 352 *
 353 *  Synchronize with the MII - send a pattern of bits to the MII
 354 *  that will guarantee that it is ready to accept a command.
 355 *
 356 *  Input parameters:
 357 *  	   sbm_mdio - address of the MAC's MDIO register
 358 *
 359 *  Return value:
 360 *  	   nothing
 361 ********************************************************************* */
 362
 363static void sbmac_mii_sync(void __iomem *sbm_mdio)
 364{
 365	int cnt;
 366	uint64_t bits;
 367	int mac_mdio_genc;
 368
 369	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 370
 371	bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
 372
 373	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 374
 375	for (cnt = 0; cnt < 32; cnt++) {
 376		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
 377		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 378	}
 379}
 380
 381/**********************************************************************
 382 *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
 383 *
 384 *  Send some bits to the MII.  The bits to be sent are right-
 385 *  justified in the 'data' parameter.
 386 *
 387 *  Input parameters:
 388 *  	   sbm_mdio - address of the MAC's MDIO register
 389 *  	   data     - data to send
 390 *  	   bitcnt   - number of bits to send
 391 ********************************************************************* */
 392
 393static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
 394			       int bitcnt)
 395{
 396	int i;
 397	uint64_t bits;
 398	unsigned int curmask;
 399	int mac_mdio_genc;
 400
 401	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 402
 403	bits = M_MAC_MDIO_DIR_OUTPUT;
 404	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 405
 406	curmask = 1 << (bitcnt - 1);
 407
 408	for (i = 0; i < bitcnt; i++) {
 409		if (data & curmask)
 410			bits |= M_MAC_MDIO_OUT;
 411		else bits &= ~M_MAC_MDIO_OUT;
 412		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 413		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
 414		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 415		curmask >>= 1;
 416	}
 417}
 418
 419
 420
 421/**********************************************************************
 422 *  SBMAC_MII_READ(bus, phyaddr, regidx)
 423 *  Read a PHY register.
 424 *
 425 *  Input parameters:
 426 *  	   bus     - MDIO bus handle
 427 *  	   phyaddr - PHY's address
 428 *  	   regnum  - index of register to read
 429 *
 430 *  Return value:
 431 *  	   value read, or 0xffff if an error occurred.
 432 ********************************************************************* */
 433
 434static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
 435{
 436	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
 437	void __iomem *sbm_mdio = sc->sbm_mdio;
 438	int idx;
 439	int error;
 440	int regval;
 441	int mac_mdio_genc;
 442
 443	/*
 444	 * Synchronize ourselves so that the PHY knows the next
 445	 * thing coming down is a command
 446	 */
 447	sbmac_mii_sync(sbm_mdio);
 448
 449	/*
 450	 * Send the data to the PHY.  The sequence is
 451	 * a "start" command (2 bits)
 452	 * a "read" command (2 bits)
 453	 * the PHY addr (5 bits)
 454	 * the register index (5 bits)
 455	 */
 456	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
 457	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
 458	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
 459	sbmac_mii_senddata(sbm_mdio, regidx, 5);
 460
 461	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 462
 463	/*
 464	 * Switch the port around without a clock transition.
 465	 */
 466	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 467
 468	/*
 469	 * Send out a clock pulse to signal we want the status
 470	 */
 471	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 472		     sbm_mdio);
 473	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 474
 475	/*
 476	 * If an error occurred, the PHY will signal '1' back
 477	 */
 478	error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
 479
 480	/*
 481	 * Issue an 'idle' clock pulse, but keep the direction
 482	 * the same.
 483	 */
 484	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 485		     sbm_mdio);
 486	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 487
 488	regval = 0;
 489
 490	for (idx = 0; idx < 16; idx++) {
 491		regval <<= 1;
 492
 493		if (error == 0) {
 494			if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
 495				regval |= 1;
 496		}
 497
 498		__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 499			     sbm_mdio);
 500		__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 501	}
 502
 503	/* Switch back to output */
 504	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
 505
 506	if (error == 0)
 507		return regval;
 508	return 0xffff;
 509}
 510
 511
 512/**********************************************************************
 513 *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
 514 *
 515 *  Write a value to a PHY register.
 516 *
 517 *  Input parameters:
 518 *  	   bus     - MDIO bus handle
 519 *  	   phyaddr - PHY to use
 520 *  	   regidx  - register within the PHY
 521 *  	   regval  - data to write to register
 522 *
 523 *  Return value:
 524 *  	   0 for success
 525 ********************************************************************* */
 526
 527static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
 528			   u16 regval)
 529{
 530	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
 531	void __iomem *sbm_mdio = sc->sbm_mdio;
 532	int mac_mdio_genc;
 533
 534	sbmac_mii_sync(sbm_mdio);
 535
 536	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
 537	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
 538	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
 539	sbmac_mii_senddata(sbm_mdio, regidx, 5);
 540	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
 541	sbmac_mii_senddata(sbm_mdio, regval, 16);
 542
 543	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 544
 545	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
 546
 547	return 0;
 548}
 549
 550
 551
 552/**********************************************************************
 553 *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
 554 *
 555 *  Initialize a DMA channel context.  Since there are potentially
 556 *  eight DMA channels per MAC, it's nice to do this in a standard
 557 *  way.
 558 *
 559 *  Input parameters:
 560 *  	   d - struct sbmacdma (DMA channel context)
 561 *  	   s - struct sbmac_softc (pointer to a MAC)
 562 *  	   chan - channel number (0..1 right now)
 563 *  	   txrx - Identifies DMA_TX or DMA_RX for channel direction
 564 *      maxdescr - number of descriptors
 565 *
 566 *  Return value:
 567 *  	   nothing
 568 ********************************************************************* */
 569
 570static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
 571			  int txrx, int maxdescr)
 572{
 573#ifdef CONFIG_SBMAC_COALESCE
 574	int int_pktcnt, int_timeout;
 575#endif
 576
 577	/*
 578	 * Save away interesting stuff in the structure
 579	 */
 580
 581	d->sbdma_eth       = s;
 582	d->sbdma_channel   = chan;
 583	d->sbdma_txdir     = txrx;
 584
 585#if 0
 586	/* RMON clearing */
 587	s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
 588#endif
 589
 590	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
 591	__raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
 592	__raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
 593	__raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
 594	__raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
 595	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
 596	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
 597	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
 598	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
 599	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
 600	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
 601	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
 602	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
 603	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
 604	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
 605	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
 606	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
 607	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
 608	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
 609	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
 610	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
 611
 612	/*
 613	 * initialize register pointers
 614	 */
 615
 616	d->sbdma_config0 =
 617		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
 618	d->sbdma_config1 =
 619		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
 620	d->sbdma_dscrbase =
 621		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
 622	d->sbdma_dscrcnt =
 623		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
 624	d->sbdma_curdscr =
 625		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
 626	if (d->sbdma_txdir)
 627		d->sbdma_oodpktlost = NULL;
 628	else
 629		d->sbdma_oodpktlost =
 630			s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
 631
 632	/*
 633	 * Allocate memory for the ring
 634	 */
 635
 636	d->sbdma_maxdescr = maxdescr;
 637
 638	d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
 639					       sizeof(*d->sbdma_dscrtable),
 640					       GFP_KERNEL);
 641
 642	/*
 643	 * The descriptor table must be aligned to at least 16 bytes or the
 644	 * MAC will corrupt it.
 645	 */
 646	d->sbdma_dscrtable = (struct sbdmadscr *)
 647			     ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
 648				   sizeof(*d->sbdma_dscrtable));
 649
 650	d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
 651
 652	d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
 653
 654	/*
 655	 * And context table
 656	 */
 657
 658	d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
 659				    sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
 660
 661#ifdef CONFIG_SBMAC_COALESCE
 662	/*
 663	 * Setup Rx/Tx DMA coalescing defaults
 664	 */
 665
 666	int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
 667	if ( int_pktcnt ) {
 668		d->sbdma_int_pktcnt = int_pktcnt;
 669	} else {
 670		d->sbdma_int_pktcnt = 1;
 671	}
 672
 673	int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
 674	if ( int_timeout ) {
 675		d->sbdma_int_timeout = int_timeout;
 676	} else {
 677		d->sbdma_int_timeout = 0;
 678	}
 679#endif
 680
 681}
 682
 683/**********************************************************************
 684 *  SBDMA_CHANNEL_START(d)
 685 *
 686 *  Initialize the hardware registers for a DMA channel.
 687 *
 688 *  Input parameters:
 689 *  	   d - DMA channel to init (context must be previously init'd
 690 *         rxtx - DMA_RX or DMA_TX depending on what type of channel
 691 *
 692 *  Return value:
 693 *  	   nothing
 694 ********************************************************************* */
 695
 696static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
 697{
 698	/*
 699	 * Turn on the DMA channel
 700	 */
 701
 702#ifdef CONFIG_SBMAC_COALESCE
 703	__raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
 704		       0, d->sbdma_config1);
 705	__raw_writeq(M_DMA_EOP_INT_EN |
 706		       V_DMA_RINGSZ(d->sbdma_maxdescr) |
 707		       V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
 708		       0, d->sbdma_config0);
 709#else
 710	__raw_writeq(0, d->sbdma_config1);
 711	__raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
 712		       0, d->sbdma_config0);
 713#endif
 714
 715	__raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
 716
 717	/*
 718	 * Initialize ring pointers
 719	 */
 720
 721	d->sbdma_addptr = d->sbdma_dscrtable;
 722	d->sbdma_remptr = d->sbdma_dscrtable;
 723}
 724
 725/**********************************************************************
 726 *  SBDMA_CHANNEL_STOP(d)
 727 *
 728 *  Initialize the hardware registers for a DMA channel.
 729 *
 730 *  Input parameters:
 731 *  	   d - DMA channel to init (context must be previously init'd
 732 *
 733 *  Return value:
 734 *  	   nothing
 735 ********************************************************************* */
 736
 737static void sbdma_channel_stop(struct sbmacdma *d)
 738{
 739	/*
 740	 * Turn off the DMA channel
 741	 */
 742
 743	__raw_writeq(0, d->sbdma_config1);
 744
 745	__raw_writeq(0, d->sbdma_dscrbase);
 746
 747	__raw_writeq(0, d->sbdma_config0);
 748
 749	/*
 750	 * Zero ring pointers
 751	 */
 752
 753	d->sbdma_addptr = NULL;
 754	d->sbdma_remptr = NULL;
 755}
 756
 757static inline void sbdma_align_skb(struct sk_buff *skb,
 758				   unsigned int power2, unsigned int offset)
 759{
 760	unsigned char *addr = skb->data;
 761	unsigned char *newaddr = PTR_ALIGN(addr, power2);
 762
 763	skb_reserve(skb, newaddr - addr + offset);
 764}
 765
 766
 767/**********************************************************************
 768 *  SBDMA_ADD_RCVBUFFER(d,sb)
 769 *
 770 *  Add a buffer to the specified DMA channel.   For receive channels,
 771 *  this queues a buffer for inbound packets.
 772 *
 773 *  Input parameters:
 774 *	   sc - softc structure
 775 *  	    d - DMA channel descriptor
 776 * 	   sb - sk_buff to add, or NULL if we should allocate one
 777 *
 778 *  Return value:
 779 *  	   0 if buffer could not be added (ring is full)
 780 *  	   1 if buffer added successfully
 781 ********************************************************************* */
 782
 783
 784static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
 785			       struct sk_buff *sb)
 786{
 787	struct net_device *dev = sc->sbm_dev;
 788	struct sbdmadscr *dsc;
 789	struct sbdmadscr *nextdsc;
 790	struct sk_buff *sb_new = NULL;
 791	int pktsize = ENET_PACKET_SIZE;
 792
 793	/* get pointer to our current place in the ring */
 794
 795	dsc = d->sbdma_addptr;
 796	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
 797
 798	/*
 799	 * figure out if the ring is full - if the next descriptor
 800	 * is the same as the one that we're going to remove from
 801	 * the ring, the ring is full
 802	 */
 803
 804	if (nextdsc == d->sbdma_remptr) {
 805		return -ENOSPC;
 806	}
 807
 808	/*
 809	 * Allocate a sk_buff if we don't already have one.
 810	 * If we do have an sk_buff, reset it so that it's empty.
 811	 *
 812	 * Note: sk_buffs don't seem to be guaranteed to have any sort
 813	 * of alignment when they are allocated.  Therefore, allocate enough
 814	 * extra space to make sure that:
 815	 *
 816	 *    1. the data does not start in the middle of a cache line.
 817	 *    2. The data does not end in the middle of a cache line
 818	 *    3. The buffer can be aligned such that the IP addresses are
 819	 *       naturally aligned.
 820	 *
 821	 *  Remember, the SOCs MAC writes whole cache lines at a time,
 822	 *  without reading the old contents first.  So, if the sk_buff's
 823	 *  data portion starts in the middle of a cache line, the SOC
 824	 *  DMA will trash the beginning (and ending) portions.
 825	 */
 826
 827	if (sb == NULL) {
 828		sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
 829					       SMP_CACHE_BYTES * 2 +
 830					       NET_IP_ALIGN);
 831		if (sb_new == NULL)
 832			return -ENOBUFS;
 833
 834		sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
 835	}
 836	else {
 837		sb_new = sb;
 838		/*
 839		 * nothing special to reinit buffer, it's already aligned
 840		 * and sb->data already points to a good place.
 841		 */
 842	}
 843
 844	/*
 845	 * fill in the descriptor
 846	 */
 847
 848#ifdef CONFIG_SBMAC_COALESCE
 849	/*
 850	 * Do not interrupt per DMA transfer.
 851	 */
 852	dsc->dscr_a = virt_to_phys(sb_new->data) |
 853		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
 854#else
 855	dsc->dscr_a = virt_to_phys(sb_new->data) |
 856		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
 857		M_DMA_DSCRA_INTERRUPT;
 858#endif
 859
 860	/* receiving: no options */
 861	dsc->dscr_b = 0;
 862
 863	/*
 864	 * fill in the context
 865	 */
 866
 867	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
 868
 869	/*
 870	 * point at next packet
 871	 */
 872
 873	d->sbdma_addptr = nextdsc;
 874
 875	/*
 876	 * Give the buffer to the DMA engine.
 877	 */
 878
 879	__raw_writeq(1, d->sbdma_dscrcnt);
 880
 881	return 0;					/* we did it */
 882}
 883
 884/**********************************************************************
 885 *  SBDMA_ADD_TXBUFFER(d,sb)
 886 *
 887 *  Add a transmit buffer to the specified DMA channel, causing a
 888 *  transmit to start.
 889 *
 890 *  Input parameters:
 891 *  	   d - DMA channel descriptor
 892 * 	   sb - sk_buff to add
 893 *
 894 *  Return value:
 895 *  	   0 transmit queued successfully
 896 *  	   otherwise error code
 897 ********************************************************************* */
 898
 899
 900static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
 901{
 902	struct sbdmadscr *dsc;
 903	struct sbdmadscr *nextdsc;
 904	uint64_t phys;
 905	uint64_t ncb;
 906	int length;
 907
 908	/* get pointer to our current place in the ring */
 909
 910	dsc = d->sbdma_addptr;
 911	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
 912
 913	/*
 914	 * figure out if the ring is full - if the next descriptor
 915	 * is the same as the one that we're going to remove from
 916	 * the ring, the ring is full
 917	 */
 918
 919	if (nextdsc == d->sbdma_remptr) {
 920		return -ENOSPC;
 921	}
 922
 923	/*
 924	 * Under Linux, it's not necessary to copy/coalesce buffers
 925	 * like it is on NetBSD.  We think they're all contiguous,
 926	 * but that may not be true for GBE.
 927	 */
 928
 929	length = sb->len;
 930
 931	/*
 932	 * fill in the descriptor.  Note that the number of cache
 933	 * blocks in the descriptor is the number of blocks
 934	 * *spanned*, so we need to add in the offset (if any)
 935	 * while doing the calculation.
 936	 */
 937
 938	phys = virt_to_phys(sb->data);
 939	ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
 940
 941	dsc->dscr_a = phys |
 942		V_DMA_DSCRA_A_SIZE(ncb) |
 943#ifndef CONFIG_SBMAC_COALESCE
 944		M_DMA_DSCRA_INTERRUPT |
 945#endif
 946		M_DMA_ETHTX_SOP;
 947
 948	/* transmitting: set outbound options and length */
 949
 950	dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
 951		V_DMA_DSCRB_PKT_SIZE(length);
 952
 953	/*
 954	 * fill in the context
 955	 */
 956
 957	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
 958
 959	/*
 960	 * point at next packet
 961	 */
 962
 963	d->sbdma_addptr = nextdsc;
 964
 965	/*
 966	 * Give the buffer to the DMA engine.
 967	 */
 968
 969	__raw_writeq(1, d->sbdma_dscrcnt);
 970
 971	return 0;					/* we did it */
 972}
 973
 974
 975
 976
 977/**********************************************************************
 978 *  SBDMA_EMPTYRING(d)
 979 *
 980 *  Free all allocated sk_buffs on the specified DMA channel;
 981 *
 982 *  Input parameters:
 983 *  	   d  - DMA channel
 984 *
 985 *  Return value:
 986 *  	   nothing
 987 ********************************************************************* */
 988
 989static void sbdma_emptyring(struct sbmacdma *d)
 990{
 991	int idx;
 992	struct sk_buff *sb;
 993
 994	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
 995		sb = d->sbdma_ctxtable[idx];
 996		if (sb) {
 997			dev_kfree_skb(sb);
 998			d->sbdma_ctxtable[idx] = NULL;
 999		}
1000	}
1001}
1002
1003
1004/**********************************************************************
1005 *  SBDMA_FILLRING(d)
1006 *
1007 *  Fill the specified DMA channel (must be receive channel)
1008 *  with sk_buffs
1009 *
1010 *  Input parameters:
1011 *	   sc - softc structure
1012 *  	    d - DMA channel
1013 *
1014 *  Return value:
1015 *  	   nothing
1016 ********************************************************************* */
1017
1018static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1019{
1020	int idx;
1021
1022	for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1023		if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1024			break;
1025	}
1026}
1027
1028#ifdef CONFIG_NET_POLL_CONTROLLER
1029static void sbmac_netpoll(struct net_device *netdev)
1030{
1031	struct sbmac_softc *sc = netdev_priv(netdev);
1032	int irq = sc->sbm_dev->irq;
1033
1034	__raw_writeq(0, sc->sbm_imr);
1035
1036	sbmac_intr(irq, netdev);
1037
1038#ifdef CONFIG_SBMAC_COALESCE
1039	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1040	((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1041	sc->sbm_imr);
1042#else
1043	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1044	(M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1045#endif
1046}
1047#endif
1048
1049/**********************************************************************
1050 *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1051 *
1052 *  Process "completed" receive buffers on the specified DMA channel.
1053 *
1054 *  Input parameters:
1055 *            sc - softc structure
1056 *  	       d - DMA channel context
1057 *    work_to_do - no. of packets to process before enabling interrupt
1058 *                 again (for NAPI)
1059 *          poll - 1: using polling (for NAPI)
1060 *
1061 *  Return value:
1062 *  	   nothing
1063 ********************************************************************* */
1064
1065static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1066			    int work_to_do, int poll)
1067{
1068	struct net_device *dev = sc->sbm_dev;
1069	int curidx;
1070	int hwidx;
1071	struct sbdmadscr *dsc;
1072	struct sk_buff *sb;
1073	int len;
1074	int work_done = 0;
1075	int dropped = 0;
1076
1077	prefetch(d);
1078
1079again:
1080	/* Check if the HW dropped any frames */
1081	dev->stats.rx_fifo_errors
1082	    += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1083	__raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1084
1085	while (work_to_do-- > 0) {
1086		/*
1087		 * figure out where we are (as an index) and where
1088		 * the hardware is (also as an index)
1089		 *
1090		 * This could be done faster if (for example) the
1091		 * descriptor table was page-aligned and contiguous in
1092		 * both virtual and physical memory -- you could then
1093		 * just compare the low-order bits of the virtual address
1094		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1095		 */
1096
1097		dsc = d->sbdma_remptr;
1098		curidx = dsc - d->sbdma_dscrtable;
1099
1100		prefetch(dsc);
1101		prefetch(&d->sbdma_ctxtable[curidx]);
1102
1103		hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1104			 d->sbdma_dscrtable_phys) /
1105			sizeof(*d->sbdma_dscrtable);
1106
1107		/*
1108		 * If they're the same, that means we've processed all
1109		 * of the descriptors up to (but not including) the one that
1110		 * the hardware is working on right now.
1111		 */
1112
1113		if (curidx == hwidx)
1114			goto done;
1115
1116		/*
1117		 * Otherwise, get the packet's sk_buff ptr back
1118		 */
1119
1120		sb = d->sbdma_ctxtable[curidx];
1121		d->sbdma_ctxtable[curidx] = NULL;
1122
1123		len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1124
1125		/*
1126		 * Check packet status.  If good, process it.
1127		 * If not, silently drop it and put it back on the
1128		 * receive ring.
1129		 */
1130
1131		if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1132
1133			/*
1134			 * Add a new buffer to replace the old one.  If we fail
1135			 * to allocate a buffer, we're going to drop this
1136			 * packet and put it right back on the receive ring.
1137			 */
1138
1139			if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1140				     -ENOBUFS)) {
1141				dev->stats.rx_dropped++;
1142				/* Re-add old buffer */
1143				sbdma_add_rcvbuffer(sc, d, sb);
1144				/* No point in continuing at the moment */
1145				printk(KERN_ERR "dropped packet (1)\n");
1146				d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1147				goto done;
1148			} else {
1149				/*
1150				 * Set length into the packet
1151				 */
1152				skb_put(sb,len);
1153
1154				/*
1155				 * Buffer has been replaced on the
1156				 * receive ring.  Pass the buffer to
1157				 * the kernel
1158				 */
1159				sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1160				/* Check hw IPv4/TCP checksum if supported */
1161				if (sc->rx_hw_checksum == ENABLE) {
1162					if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1163					    !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1164						sb->ip_summed = CHECKSUM_UNNECESSARY;
1165						/* don't need to set sb->csum */
1166					} else {
1167						skb_checksum_none_assert(sb);
1168					}
1169				}
1170				prefetch(sb->data);
1171				prefetch((const void *)(((char *)sb->data)+32));
1172				if (poll)
1173					dropped = netif_receive_skb(sb);
1174				else
1175					dropped = netif_rx(sb);
1176
1177				if (dropped == NET_RX_DROP) {
1178					dev->stats.rx_dropped++;
1179					d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1180					goto done;
1181				}
1182				else {
1183					dev->stats.rx_bytes += len;
1184					dev->stats.rx_packets++;
1185				}
1186			}
1187		} else {
1188			/*
1189			 * Packet was mangled somehow.  Just drop it and
1190			 * put it back on the receive ring.
1191			 */
1192			dev->stats.rx_errors++;
1193			sbdma_add_rcvbuffer(sc, d, sb);
1194		}
1195
1196
1197		/*
1198		 * .. and advance to the next buffer.
1199		 */
1200
1201		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1202		work_done++;
1203	}
1204	if (!poll) {
1205		work_to_do = 32;
1206		goto again; /* collect fifo drop statistics again */
1207	}
1208done:
1209	return work_done;
1210}
1211
1212/**********************************************************************
1213 *  SBDMA_TX_PROCESS(sc,d)
1214 *
1215 *  Process "completed" transmit buffers on the specified DMA channel.
1216 *  This is normally called within the interrupt service routine.
1217 *  Note that this isn't really ideal for priority channels, since
1218 *  it processes all of the packets on a given channel before
1219 *  returning.
1220 *
1221 *  Input parameters:
1222 *      sc - softc structure
1223 *  	 d - DMA channel context
1224 *    poll - 1: using polling (for NAPI)
1225 *
1226 *  Return value:
1227 *  	   nothing
1228 ********************************************************************* */
1229
1230static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1231			     int poll)
1232{
1233	struct net_device *dev = sc->sbm_dev;
1234	int curidx;
1235	int hwidx;
1236	struct sbdmadscr *dsc;
1237	struct sk_buff *sb;
1238	unsigned long flags;
1239	int packets_handled = 0;
1240
1241	spin_lock_irqsave(&(sc->sbm_lock), flags);
1242
1243	if (d->sbdma_remptr == d->sbdma_addptr)
1244	  goto end_unlock;
1245
1246	hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1247		 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1248
1249	for (;;) {
1250		/*
1251		 * figure out where we are (as an index) and where
1252		 * the hardware is (also as an index)
1253		 *
1254		 * This could be done faster if (for example) the
1255		 * descriptor table was page-aligned and contiguous in
1256		 * both virtual and physical memory -- you could then
1257		 * just compare the low-order bits of the virtual address
1258		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1259		 */
1260
1261		curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1262
1263		/*
1264		 * If they're the same, that means we've processed all
1265		 * of the descriptors up to (but not including) the one that
1266		 * the hardware is working on right now.
1267		 */
1268
1269		if (curidx == hwidx)
1270			break;
1271
1272		/*
1273		 * Otherwise, get the packet's sk_buff ptr back
1274		 */
1275
1276		dsc = &(d->sbdma_dscrtable[curidx]);
1277		sb = d->sbdma_ctxtable[curidx];
1278		d->sbdma_ctxtable[curidx] = NULL;
1279
1280		/*
1281		 * Stats
1282		 */
1283
1284		dev->stats.tx_bytes += sb->len;
1285		dev->stats.tx_packets++;
1286
1287		/*
1288		 * for transmits, we just free buffers.
1289		 */
1290
1291		dev_kfree_skb_irq(sb);
1292
1293		/*
1294		 * .. and advance to the next buffer.
1295		 */
1296
1297		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1298
1299		packets_handled++;
1300
1301	}
1302
1303	/*
1304	 * Decide if we should wake up the protocol or not.
1305	 * Other drivers seem to do this when we reach a low
1306	 * watermark on the transmit queue.
1307	 */
1308
1309	if (packets_handled)
1310		netif_wake_queue(d->sbdma_eth->sbm_dev);
1311
1312end_unlock:
1313	spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1314
1315}
1316
1317
1318
1319/**********************************************************************
1320 *  SBMAC_INITCTX(s)
1321 *
1322 *  Initialize an Ethernet context structure - this is called
1323 *  once per MAC on the 1250.  Memory is allocated here, so don't
1324 *  call it again from inside the ioctl routines that bring the
1325 *  interface up/down
1326 *
1327 *  Input parameters:
1328 *  	   s - sbmac context structure
1329 *
1330 *  Return value:
1331 *  	   0
1332 ********************************************************************* */
1333
1334static int sbmac_initctx(struct sbmac_softc *s)
1335{
1336
1337	/*
1338	 * figure out the addresses of some ports
1339	 */
1340
1341	s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1342	s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1343	s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1344	s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1345	s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1346	s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1347	s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1348	s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1349
1350	/*
1351	 * Initialize the DMA channels.  Right now, only one per MAC is used
1352	 * Note: Only do this _once_, as it allocates memory from the kernel!
1353	 */
1354
1355	sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1356	sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1357
1358	/*
1359	 * initial state is OFF
1360	 */
1361
1362	s->sbm_state = sbmac_state_off;
1363
1364	return 0;
1365}
1366
1367
1368static void sbdma_uninitctx(struct sbmacdma *d)
1369{
1370	kfree(d->sbdma_dscrtable_unaligned);
1371	d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1372
1373	kfree(d->sbdma_ctxtable);
1374	d->sbdma_ctxtable = NULL;
1375}
1376
1377
1378static void sbmac_uninitctx(struct sbmac_softc *sc)
1379{
1380	sbdma_uninitctx(&(sc->sbm_txdma));
1381	sbdma_uninitctx(&(sc->sbm_rxdma));
1382}
1383
1384
1385/**********************************************************************
1386 *  SBMAC_CHANNEL_START(s)
1387 *
1388 *  Start packet processing on this MAC.
1389 *
1390 *  Input parameters:
1391 *  	   s - sbmac structure
1392 *
1393 *  Return value:
1394 *  	   nothing
1395 ********************************************************************* */
1396
1397static void sbmac_channel_start(struct sbmac_softc *s)
1398{
1399	uint64_t reg;
1400	void __iomem *port;
1401	uint64_t cfg,fifo,framecfg;
1402	int idx, th_value;
1403
1404	/*
1405	 * Don't do this if running
1406	 */
1407
1408	if (s->sbm_state == sbmac_state_on)
1409		return;
1410
1411	/*
1412	 * Bring the controller out of reset, but leave it off.
1413	 */
1414
1415	__raw_writeq(0, s->sbm_macenable);
1416
1417	/*
1418	 * Ignore all received packets
1419	 */
1420
1421	__raw_writeq(0, s->sbm_rxfilter);
1422
1423	/*
1424	 * Calculate values for various control registers.
1425	 */
1426
1427	cfg = M_MAC_RETRY_EN |
1428		M_MAC_TX_HOLD_SOP_EN |
1429		V_MAC_TX_PAUSE_CNT_16K |
1430		M_MAC_AP_STAT_EN |
1431		M_MAC_FAST_SYNC |
1432		M_MAC_SS_EN |
1433		0;
1434
1435	/*
1436	 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1437	 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1438	 * Use a larger RD_THRSH for gigabit
1439	 */
1440	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1441		th_value = 28;
1442	else
1443		th_value = 64;
1444
1445	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
1446		((s->sbm_speed == sbmac_speed_1000)
1447		 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1448		V_MAC_TX_RL_THRSH(4) |
1449		V_MAC_RX_PL_THRSH(4) |
1450		V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
1451		V_MAC_RX_RL_THRSH(8) |
1452		0;
1453
1454	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1455		V_MAC_MAX_FRAMESZ_DEFAULT |
1456		V_MAC_BACKOFF_SEL(1);
1457
1458	/*
1459	 * Clear out the hash address map
1460	 */
1461
1462	port = s->sbm_base + R_MAC_HASH_BASE;
1463	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1464		__raw_writeq(0, port);
1465		port += sizeof(uint64_t);
1466	}
1467
1468	/*
1469	 * Clear out the exact-match table
1470	 */
1471
1472	port = s->sbm_base + R_MAC_ADDR_BASE;
1473	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1474		__raw_writeq(0, port);
1475		port += sizeof(uint64_t);
1476	}
1477
1478	/*
1479	 * Clear out the DMA Channel mapping table registers
1480	 */
1481
1482	port = s->sbm_base + R_MAC_CHUP0_BASE;
1483	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1484		__raw_writeq(0, port);
1485		port += sizeof(uint64_t);
1486	}
1487
1488
1489	port = s->sbm_base + R_MAC_CHLO0_BASE;
1490	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1491		__raw_writeq(0, port);
1492		port += sizeof(uint64_t);
1493	}
1494
1495	/*
1496	 * Program the hardware address.  It goes into the hardware-address
1497	 * register as well as the first filter register.
1498	 */
1499
1500	reg = sbmac_addr2reg(s->sbm_hwaddr);
1501
1502	port = s->sbm_base + R_MAC_ADDR_BASE;
1503	__raw_writeq(reg, port);
1504	port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1505
1506	__raw_writeq(reg, port);
1507
1508	/*
1509	 * Set the receive filter for no packets, and write values
1510	 * to the various config registers
1511	 */
1512
1513	__raw_writeq(0, s->sbm_rxfilter);
1514	__raw_writeq(0, s->sbm_imr);
1515	__raw_writeq(framecfg, s->sbm_framecfg);
1516	__raw_writeq(fifo, s->sbm_fifocfg);
1517	__raw_writeq(cfg, s->sbm_maccfg);
1518
1519	/*
1520	 * Initialize DMA channels (rings should be ok now)
1521	 */
1522
1523	sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1524	sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1525
1526	/*
1527	 * Configure the speed, duplex, and flow control
1528	 */
1529
1530	sbmac_set_speed(s,s->sbm_speed);
1531	sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1532
1533	/*
1534	 * Fill the receive ring
1535	 */
1536
1537	sbdma_fillring(s, &(s->sbm_rxdma));
1538
1539	/*
1540	 * Turn on the rest of the bits in the enable register
1541	 */
1542
1543#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1544	__raw_writeq(M_MAC_RXDMA_EN0 |
1545		       M_MAC_TXDMA_EN0, s->sbm_macenable);
1546#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1547	__raw_writeq(M_MAC_RXDMA_EN0 |
1548		       M_MAC_TXDMA_EN0 |
1549		       M_MAC_RX_ENABLE |
1550		       M_MAC_TX_ENABLE, s->sbm_macenable);
1551#else
1552#error invalid SiByte MAC configuration
1553#endif
1554
1555#ifdef CONFIG_SBMAC_COALESCE
1556	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1557		       ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1558#else
1559	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1560		       (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1561#endif
1562
1563	/*
1564	 * Enable receiving unicasts and broadcasts
1565	 */
1566
1567	__raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1568
1569	/*
1570	 * we're running now.
1571	 */
1572
1573	s->sbm_state = sbmac_state_on;
1574
1575	/*
1576	 * Program multicast addresses
1577	 */
1578
1579	sbmac_setmulti(s);
1580
1581	/*
1582	 * If channel was in promiscuous mode before, turn that on
1583	 */
1584
1585	if (s->sbm_devflags & IFF_PROMISC) {
1586		sbmac_promiscuous_mode(s,1);
1587	}
1588
1589}
1590
1591
1592/**********************************************************************
1593 *  SBMAC_CHANNEL_STOP(s)
1594 *
1595 *  Stop packet processing on this MAC.
1596 *
1597 *  Input parameters:
1598 *  	   s - sbmac structure
1599 *
1600 *  Return value:
1601 *  	   nothing
1602 ********************************************************************* */
1603
1604static void sbmac_channel_stop(struct sbmac_softc *s)
1605{
1606	/* don't do this if already stopped */
1607
1608	if (s->sbm_state == sbmac_state_off)
1609		return;
1610
1611	/* don't accept any packets, disable all interrupts */
1612
1613	__raw_writeq(0, s->sbm_rxfilter);
1614	__raw_writeq(0, s->sbm_imr);
1615
1616	/* Turn off ticker */
1617
1618	/* XXX */
1619
1620	/* turn off receiver and transmitter */
1621
1622	__raw_writeq(0, s->sbm_macenable);
1623
1624	/* We're stopped now. */
1625
1626	s->sbm_state = sbmac_state_off;
1627
1628	/*
1629	 * Stop DMA channels (rings should be ok now)
1630	 */
1631
1632	sbdma_channel_stop(&(s->sbm_rxdma));
1633	sbdma_channel_stop(&(s->sbm_txdma));
1634
1635	/* Empty the receive and transmit rings */
1636
1637	sbdma_emptyring(&(s->sbm_rxdma));
1638	sbdma_emptyring(&(s->sbm_txdma));
1639
1640}
1641
1642/**********************************************************************
1643 *  SBMAC_SET_CHANNEL_STATE(state)
1644 *
1645 *  Set the channel's state ON or OFF
1646 *
1647 *  Input parameters:
1648 *  	   state - new state
1649 *
1650 *  Return value:
1651 *  	   old state
1652 ********************************************************************* */
1653static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1654						enum sbmac_state state)
1655{
1656	enum sbmac_state oldstate = sc->sbm_state;
1657
1658	/*
1659	 * If same as previous state, return
1660	 */
1661
1662	if (state == oldstate) {
1663		return oldstate;
1664	}
1665
1666	/*
1667	 * If new state is ON, turn channel on
1668	 */
1669
1670	if (state == sbmac_state_on) {
1671		sbmac_channel_start(sc);
1672	}
1673	else {
1674		sbmac_channel_stop(sc);
1675	}
1676
1677	/*
1678	 * Return previous state
1679	 */
1680
1681	return oldstate;
1682}
1683
1684
1685/**********************************************************************
1686 *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1687 *
1688 *  Turn on or off promiscuous mode
1689 *
1690 *  Input parameters:
1691 *  	   sc - softc
1692 *      onoff - 1 to turn on, 0 to turn off
1693 *
1694 *  Return value:
1695 *  	   nothing
1696 ********************************************************************* */
1697
1698static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1699{
1700	uint64_t reg;
1701
1702	if (sc->sbm_state != sbmac_state_on)
1703		return;
1704
1705	if (onoff) {
1706		reg = __raw_readq(sc->sbm_rxfilter);
1707		reg |= M_MAC_ALLPKT_EN;
1708		__raw_writeq(reg, sc->sbm_rxfilter);
1709	}
1710	else {
1711		reg = __raw_readq(sc->sbm_rxfilter);
1712		reg &= ~M_MAC_ALLPKT_EN;
1713		__raw_writeq(reg, sc->sbm_rxfilter);
1714	}
1715}
1716
1717/**********************************************************************
1718 *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1719 *
1720 *  Set the iphdr offset as 15 assuming ethernet encapsulation
1721 *
1722 *  Input parameters:
1723 *  	   sc - softc
1724 *
1725 *  Return value:
1726 *  	   nothing
1727 ********************************************************************* */
1728
1729static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1730{
1731	uint64_t reg;
1732
1733	/* Hard code the off set to 15 for now */
1734	reg = __raw_readq(sc->sbm_rxfilter);
1735	reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1736	__raw_writeq(reg, sc->sbm_rxfilter);
1737
1738	/* BCM1250 pass1 didn't have hardware checksum.  Everything
1739	   later does.  */
1740	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1741		sc->rx_hw_checksum = DISABLE;
1742	} else {
1743		sc->rx_hw_checksum = ENABLE;
1744	}
1745}
1746
1747
1748/**********************************************************************
1749 *  SBMAC_ADDR2REG(ptr)
1750 *
1751 *  Convert six bytes into the 64-bit register value that
1752 *  we typically write into the SBMAC's address/mcast registers
1753 *
1754 *  Input parameters:
1755 *  	   ptr - pointer to 6 bytes
1756 *
1757 *  Return value:
1758 *  	   register value
1759 ********************************************************************* */
1760
1761static uint64_t sbmac_addr2reg(unsigned char *ptr)
1762{
1763	uint64_t reg = 0;
1764
1765	ptr += 6;
1766
1767	reg |= (uint64_t) *(--ptr);
1768	reg <<= 8;
1769	reg |= (uint64_t) *(--ptr);
1770	reg <<= 8;
1771	reg |= (uint64_t) *(--ptr);
1772	reg <<= 8;
1773	reg |= (uint64_t) *(--ptr);
1774	reg <<= 8;
1775	reg |= (uint64_t) *(--ptr);
1776	reg <<= 8;
1777	reg |= (uint64_t) *(--ptr);
1778
1779	return reg;
1780}
1781
1782
1783/**********************************************************************
1784 *  SBMAC_SET_SPEED(s,speed)
1785 *
1786 *  Configure LAN speed for the specified MAC.
1787 *  Warning: must be called when MAC is off!
1788 *
1789 *  Input parameters:
1790 *  	   s - sbmac structure
1791 *  	   speed - speed to set MAC to (see enum sbmac_speed)
1792 *
1793 *  Return value:
1794 *  	   1 if successful
1795 *      0 indicates invalid parameters
1796 ********************************************************************* */
1797
1798static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1799{
1800	uint64_t cfg;
1801	uint64_t framecfg;
1802
1803	/*
1804	 * Save new current values
1805	 */
1806
1807	s->sbm_speed = speed;
1808
1809	if (s->sbm_state == sbmac_state_on)
1810		return 0;	/* save for next restart */
1811
1812	/*
1813	 * Read current register values
1814	 */
1815
1816	cfg = __raw_readq(s->sbm_maccfg);
1817	framecfg = __raw_readq(s->sbm_framecfg);
1818
1819	/*
1820	 * Mask out the stuff we want to change
1821	 */
1822
1823	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1824	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1825		      M_MAC_SLOT_SIZE);
1826
1827	/*
1828	 * Now add in the new bits
1829	 */
1830
1831	switch (speed) {
1832	case sbmac_speed_10:
1833		framecfg |= V_MAC_IFG_RX_10 |
1834			V_MAC_IFG_TX_10 |
1835			K_MAC_IFG_THRSH_10 |
1836			V_MAC_SLOT_SIZE_10;
1837		cfg |= V_MAC_SPEED_SEL_10MBPS;
1838		break;
1839
1840	case sbmac_speed_100:
1841		framecfg |= V_MAC_IFG_RX_100 |
1842			V_MAC_IFG_TX_100 |
1843			V_MAC_IFG_THRSH_100 |
1844			V_MAC_SLOT_SIZE_100;
1845		cfg |= V_MAC_SPEED_SEL_100MBPS ;
1846		break;
1847
1848	case sbmac_speed_1000:
1849		framecfg |= V_MAC_IFG_RX_1000 |
1850			V_MAC_IFG_TX_1000 |
1851			V_MAC_IFG_THRSH_1000 |
1852			V_MAC_SLOT_SIZE_1000;
1853		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1854		break;
1855
1856	default:
1857		return 0;
1858	}
1859
1860	/*
1861	 * Send the bits back to the hardware
1862	 */
1863
1864	__raw_writeq(framecfg, s->sbm_framecfg);
1865	__raw_writeq(cfg, s->sbm_maccfg);
1866
1867	return 1;
1868}
1869
1870/**********************************************************************
1871 *  SBMAC_SET_DUPLEX(s,duplex,fc)
1872 *
1873 *  Set Ethernet duplex and flow control options for this MAC
1874 *  Warning: must be called when MAC is off!
1875 *
1876 *  Input parameters:
1877 *  	   s - sbmac structure
1878 *  	   duplex - duplex setting (see enum sbmac_duplex)
1879 *  	   fc - flow control setting (see enum sbmac_fc)
1880 *
1881 *  Return value:
1882 *  	   1 if ok
1883 *  	   0 if an invalid parameter combination was specified
1884 ********************************************************************* */
1885
1886static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1887			    enum sbmac_fc fc)
1888{
1889	uint64_t cfg;
1890
1891	/*
1892	 * Save new current values
1893	 */
1894
1895	s->sbm_duplex = duplex;
1896	s->sbm_fc = fc;
1897
1898	if (s->sbm_state == sbmac_state_on)
1899		return 0;	/* save for next restart */
1900
1901	/*
1902	 * Read current register values
1903	 */
1904
1905	cfg = __raw_readq(s->sbm_maccfg);
1906
1907	/*
1908	 * Mask off the stuff we're about to change
1909	 */
1910
1911	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1912
1913
1914	switch (duplex) {
1915	case sbmac_duplex_half:
1916		switch (fc) {
1917		case sbmac_fc_disabled:
1918			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1919			break;
1920
1921		case sbmac_fc_collision:
1922			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1923			break;
1924
1925		case sbmac_fc_carrier:
1926			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1927			break;
1928
1929		case sbmac_fc_frame:		/* not valid in half duplex */
1930		default:			/* invalid selection */
1931			return 0;
1932		}
1933		break;
1934
1935	case sbmac_duplex_full:
1936		switch (fc) {
1937		case sbmac_fc_disabled:
1938			cfg |= V_MAC_FC_CMD_DISABLED;
1939			break;
1940
1941		case sbmac_fc_frame:
1942			cfg |= V_MAC_FC_CMD_ENABLED;
1943			break;
1944
1945		case sbmac_fc_collision:	/* not valid in full duplex */
1946		case sbmac_fc_carrier:		/* not valid in full duplex */
1947		default:
1948			return 0;
1949		}
1950		break;
1951	default:
1952		return 0;
1953	}
1954
1955	/*
1956	 * Send the bits back to the hardware
1957	 */
1958
1959	__raw_writeq(cfg, s->sbm_maccfg);
1960
1961	return 1;
1962}
1963
1964
1965
1966
1967/**********************************************************************
1968 *  SBMAC_INTR()
1969 *
1970 *  Interrupt handler for MAC interrupts
1971 *
1972 *  Input parameters:
1973 *  	   MAC structure
1974 *
1975 *  Return value:
1976 *  	   nothing
1977 ********************************************************************* */
1978static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1979{
1980	struct net_device *dev = (struct net_device *) dev_instance;
1981	struct sbmac_softc *sc = netdev_priv(dev);
1982	uint64_t isr;
1983	int handled = 0;
1984
1985	/*
1986	 * Read the ISR (this clears the bits in the real
1987	 * register, except for counter addr)
1988	 */
1989
1990	isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
1991
1992	if (isr == 0)
1993		return IRQ_RETVAL(0);
1994	handled = 1;
1995
1996	/*
1997	 * Transmits on channel 0
1998	 */
1999
2000	if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2001		sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2002
2003	if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2004		if (napi_schedule_prep(&sc->napi)) {
2005			__raw_writeq(0, sc->sbm_imr);
2006			__napi_schedule(&sc->napi);
2007			/* Depend on the exit from poll to reenable intr */
2008		}
2009		else {
2010			/* may leave some packets behind */
2011			sbdma_rx_process(sc,&(sc->sbm_rxdma),
2012					 SBMAC_MAX_RXDESCR * 2, 0);
2013		}
2014	}
2015	return IRQ_RETVAL(handled);
2016}
2017
2018/**********************************************************************
2019 *  SBMAC_START_TX(skb,dev)
2020 *
2021 *  Start output on the specified interface.  Basically, we
2022 *  queue as many buffers as we can until the ring fills up, or
2023 *  we run off the end of the queue, whichever comes first.
2024 *
2025 *  Input parameters:
2026 *
2027 *
2028 *  Return value:
2029 *  	   nothing
2030 ********************************************************************* */
2031static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2032{
2033	struct sbmac_softc *sc = netdev_priv(dev);
2034	unsigned long flags;
2035
2036	/* lock eth irq */
2037	spin_lock_irqsave(&sc->sbm_lock, flags);
2038
2039	/*
2040	 * Put the buffer on the transmit ring.  If we
2041	 * don't have room, stop the queue.
2042	 */
2043
2044	if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2045		/* XXX save skb that we could not send */
2046		netif_stop_queue(dev);
2047		spin_unlock_irqrestore(&sc->sbm_lock, flags);
2048
2049		return NETDEV_TX_BUSY;
2050	}
2051
2052	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2053
2054	return NETDEV_TX_OK;
2055}
2056
2057/**********************************************************************
2058 *  SBMAC_SETMULTI(sc)
2059 *
2060 *  Reprogram the multicast table into the hardware, given
2061 *  the list of multicasts associated with the interface
2062 *  structure.
2063 *
2064 *  Input parameters:
2065 *  	   sc - softc
2066 *
2067 *  Return value:
2068 *  	   nothing
2069 ********************************************************************* */
2070
2071static void sbmac_setmulti(struct sbmac_softc *sc)
2072{
2073	uint64_t reg;
2074	void __iomem *port;
2075	int idx;
2076	struct netdev_hw_addr *ha;
2077	struct net_device *dev = sc->sbm_dev;
2078
2079	/*
2080	 * Clear out entire multicast table.  We do this by nuking
2081	 * the entire hash table and all the direct matches except
2082	 * the first one, which is used for our station address
2083	 */
2084
2085	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2086		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2087		__raw_writeq(0, port);
2088	}
2089
2090	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2091		port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2092		__raw_writeq(0, port);
2093	}
2094
2095	/*
2096	 * Clear the filter to say we don't want any multicasts.
2097	 */
2098
2099	reg = __raw_readq(sc->sbm_rxfilter);
2100	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2101	__raw_writeq(reg, sc->sbm_rxfilter);
2102
2103	if (dev->flags & IFF_ALLMULTI) {
2104		/*
2105		 * Enable ALL multicasts.  Do this by inverting the
2106		 * multicast enable bit.
2107		 */
2108		reg = __raw_readq(sc->sbm_rxfilter);
2109		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2110		__raw_writeq(reg, sc->sbm_rxfilter);
2111		return;
2112	}
2113
2114
2115	/*
2116	 * Progam new multicast entries.  For now, only use the
2117	 * perfect filter.  In the future we'll need to use the
2118	 * hash filter if the perfect filter overflows
2119	 */
2120
2121	/* XXX only using perfect filter for now, need to use hash
2122	 * XXX if the table overflows */
2123
2124	idx = 1;		/* skip station address */
2125	netdev_for_each_mc_addr(ha, dev) {
2126		if (idx == MAC_ADDR_COUNT)
2127			break;
2128		reg = sbmac_addr2reg(ha->addr);
2129		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2130		__raw_writeq(reg, port);
2131		idx++;
2132	}
2133
2134	/*
2135	 * Enable the "accept multicast bits" if we programmed at least one
2136	 * multicast.
2137	 */
2138
2139	if (idx > 1) {
2140		reg = __raw_readq(sc->sbm_rxfilter);
2141		reg |= M_MAC_MCAST_EN;
2142		__raw_writeq(reg, sc->sbm_rxfilter);
2143	}
2144}
2145
2146static const struct net_device_ops sbmac_netdev_ops = {
2147	.ndo_open		= sbmac_open,
2148	.ndo_stop		= sbmac_close,
2149	.ndo_start_xmit		= sbmac_start_tx,
2150	.ndo_set_rx_mode	= sbmac_set_rx_mode,
2151	.ndo_tx_timeout		= sbmac_tx_timeout,
2152	.ndo_do_ioctl		= sbmac_mii_ioctl,
2153	.ndo_validate_addr	= eth_validate_addr,
2154	.ndo_set_mac_address	= eth_mac_addr,
2155#ifdef CONFIG_NET_POLL_CONTROLLER
2156	.ndo_poll_controller	= sbmac_netpoll,
2157#endif
2158};
2159
2160/**********************************************************************
2161 *  SBMAC_INIT(dev)
2162 *
2163 *  Attach routine - init hardware and hook ourselves into linux
2164 *
2165 *  Input parameters:
2166 *  	   dev - net_device structure
2167 *
2168 *  Return value:
2169 *  	   status
2170 ********************************************************************* */
2171
2172static int sbmac_init(struct platform_device *pldev, long long base)
2173{
2174	struct net_device *dev = platform_get_drvdata(pldev);
2175	int idx = pldev->id;
2176	struct sbmac_softc *sc = netdev_priv(dev);
2177	unsigned char *eaddr;
2178	uint64_t ea_reg;
2179	int i;
2180	int err;
2181
2182	sc->sbm_dev = dev;
2183	sc->sbe_idx = idx;
2184
2185	eaddr = sc->sbm_hwaddr;
2186
2187	/*
2188	 * Read the ethernet address.  The firmware left this programmed
2189	 * for us in the ethernet address register for each mac.
2190	 */
2191
2192	ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2193	__raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2194	for (i = 0; i < 6; i++) {
2195		eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2196		ea_reg >>= 8;
2197	}
2198
2199	for (i = 0; i < 6; i++) {
2200		dev->dev_addr[i] = eaddr[i];
2201	}
2202
2203	/*
2204	 * Initialize context (get pointers to registers and stuff), then
2205	 * allocate the memory for the descriptor tables.
2206	 */
2207
2208	sbmac_initctx(sc);
2209
2210	/*
2211	 * Set up Linux device callins
2212	 */
2213
2214	spin_lock_init(&(sc->sbm_lock));
2215
2216	dev->netdev_ops = &sbmac_netdev_ops;
2217	dev->watchdog_timeo = TX_TIMEOUT;
2218	dev->min_mtu = 0;
2219	dev->max_mtu = ENET_PACKET_SIZE;
2220
2221	netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2222
2223	dev->irq		= UNIT_INT(idx);
2224
2225	/* This is needed for PASS2 for Rx H/W checksum feature */
2226	sbmac_set_iphdr_offset(sc);
2227
2228	sc->mii_bus = mdiobus_alloc();
2229	if (sc->mii_bus == NULL) {
2230		err = -ENOMEM;
2231		goto uninit_ctx;
2232	}
2233
2234	sc->mii_bus->name = sbmac_mdio_string;
2235	snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2236		pldev->name, idx);
2237	sc->mii_bus->priv = sc;
2238	sc->mii_bus->read = sbmac_mii_read;
2239	sc->mii_bus->write = sbmac_mii_write;
2240
2241	sc->mii_bus->parent = &pldev->dev;
2242	/*
2243	 * Probe PHY address
2244	 */
2245	err = mdiobus_register(sc->mii_bus);
2246	if (err) {
2247		printk(KERN_ERR "%s: unable to register MDIO bus\n",
2248		       dev->name);
2249		goto free_mdio;
2250	}
2251	platform_set_drvdata(pldev, sc->mii_bus);
2252
2253	err = register_netdev(dev);
2254	if (err) {
2255		printk(KERN_ERR "%s.%d: unable to register netdev\n",
2256		       sbmac_string, idx);
2257		goto unreg_mdio;
2258	}
2259
2260	pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2261
2262	if (sc->rx_hw_checksum == ENABLE)
2263		pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2264
2265	/*
2266	 * Display Ethernet address (this is called during the config
2267	 * process so we need to finish off the config message that
2268	 * was being displayed)
2269	 */
2270	pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2271	       dev->name, base, eaddr);
2272
2273	return 0;
2274unreg_mdio:
2275	mdiobus_unregister(sc->mii_bus);
2276free_mdio:
2277	mdiobus_free(sc->mii_bus);
2278uninit_ctx:
2279	sbmac_uninitctx(sc);
2280	return err;
2281}
2282
2283
2284static int sbmac_open(struct net_device *dev)
2285{
2286	struct sbmac_softc *sc = netdev_priv(dev);
2287	int err;
2288
2289	if (debug > 1)
2290		pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2291
2292	/*
2293	 * map/route interrupt (clear status first, in case something
2294	 * weird is pending; we haven't initialized the mac registers
2295	 * yet)
2296	 */
2297
2298	__raw_readq(sc->sbm_isr);
2299	err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2300	if (err) {
2301		printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2302		       dev->irq);
2303		goto out_err;
2304	}
2305
2306	sc->sbm_speed = sbmac_speed_none;
2307	sc->sbm_duplex = sbmac_duplex_none;
2308	sc->sbm_fc = sbmac_fc_none;
2309	sc->sbm_pause = -1;
2310	sc->sbm_link = 0;
2311
2312	/*
2313	 * Attach to the PHY
2314	 */
2315	err = sbmac_mii_probe(dev);
2316	if (err)
2317		goto out_unregister;
2318
2319	/*
2320	 * Turn on the channel
2321	 */
2322
2323	sbmac_set_channel_state(sc,sbmac_state_on);
2324
2325	netif_start_queue(dev);
2326
2327	sbmac_set_rx_mode(dev);
2328
2329	phy_start(sc->phy_dev);
2330
2331	napi_enable(&sc->napi);
2332
2333	return 0;
2334
2335out_unregister:
2336	free_irq(dev->irq, dev);
2337out_err:
2338	return err;
2339}
2340
2341static int sbmac_mii_probe(struct net_device *dev)
2342{
2343	struct sbmac_softc *sc = netdev_priv(dev);
2344	struct phy_device *phy_dev;
2345
2346	phy_dev = phy_find_first(sc->mii_bus);
2347	if (!phy_dev) {
2348		printk(KERN_ERR "%s: no PHY found\n", dev->name);
2349		return -ENXIO;
2350	}
2351
2352	phy_dev = phy_connect(dev, dev_name(&phy_dev->mdio.dev),
2353			      &sbmac_mii_poll, PHY_INTERFACE_MODE_GMII);
2354	if (IS_ERR(phy_dev)) {
2355		printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2356		return PTR_ERR(phy_dev);
2357	}
2358
2359	/* Remove any features not supported by the controller */
2360	phy_dev->supported &= SUPPORTED_10baseT_Half |
2361			      SUPPORTED_10baseT_Full |
2362			      SUPPORTED_100baseT_Half |
2363			      SUPPORTED_100baseT_Full |
2364			      SUPPORTED_1000baseT_Half |
2365			      SUPPORTED_1000baseT_Full |
2366			      SUPPORTED_Autoneg |
2367			      SUPPORTED_MII |
2368			      SUPPORTED_Pause |
2369			      SUPPORTED_Asym_Pause;
2370
2371	phy_attached_info(phy_dev);
2372
2373	phy_dev->advertising = phy_dev->supported;
2374
2375	sc->phy_dev = phy_dev;
2376
2377	return 0;
2378}
2379
2380
2381static void sbmac_mii_poll(struct net_device *dev)
2382{
2383	struct sbmac_softc *sc = netdev_priv(dev);
2384	struct phy_device *phy_dev = sc->phy_dev;
2385	unsigned long flags;
2386	enum sbmac_fc fc;
2387	int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2388
2389	link_chg = (sc->sbm_link != phy_dev->link);
2390	speed_chg = (sc->sbm_speed != phy_dev->speed);
2391	duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2392	pause_chg = (sc->sbm_pause != phy_dev->pause);
2393
2394	if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2395		return;					/* Hmmm... */
2396
2397	if (!phy_dev->link) {
2398		if (link_chg) {
2399			sc->sbm_link = phy_dev->link;
2400			sc->sbm_speed = sbmac_speed_none;
2401			sc->sbm_duplex = sbmac_duplex_none;
2402			sc->sbm_fc = sbmac_fc_disabled;
2403			sc->sbm_pause = -1;
2404			pr_info("%s: link unavailable\n", dev->name);
2405		}
2406		return;
2407	}
2408
2409	if (phy_dev->duplex == DUPLEX_FULL) {
2410		if (phy_dev->pause)
2411			fc = sbmac_fc_frame;
2412		else
2413			fc = sbmac_fc_disabled;
2414	} else
2415		fc = sbmac_fc_collision;
2416	fc_chg = (sc->sbm_fc != fc);
2417
2418	pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2419		phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2420
2421	spin_lock_irqsave(&sc->sbm_lock, flags);
2422
2423	sc->sbm_speed = phy_dev->speed;
2424	sc->sbm_duplex = phy_dev->duplex;
2425	sc->sbm_fc = fc;
2426	sc->sbm_pause = phy_dev->pause;
2427	sc->sbm_link = phy_dev->link;
2428
2429	if ((speed_chg || duplex_chg || fc_chg) &&
2430	    sc->sbm_state != sbmac_state_off) {
2431		/*
2432		 * something changed, restart the channel
2433		 */
2434		if (debug > 1)
2435			pr_debug("%s: restarting channel "
2436				 "because PHY state changed\n", dev->name);
2437		sbmac_channel_stop(sc);
2438		sbmac_channel_start(sc);
2439	}
2440
2441	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2442}
2443
2444
2445static void sbmac_tx_timeout (struct net_device *dev)
2446{
2447	struct sbmac_softc *sc = netdev_priv(dev);
2448	unsigned long flags;
2449
2450	spin_lock_irqsave(&sc->sbm_lock, flags);
2451
2452
2453	netif_trans_update(dev); /* prevent tx timeout */
2454	dev->stats.tx_errors++;
2455
2456	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2457
2458	printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2459}
2460
2461
2462
2463
2464static void sbmac_set_rx_mode(struct net_device *dev)
2465{
2466	unsigned long flags;
2467	struct sbmac_softc *sc = netdev_priv(dev);
2468
2469	spin_lock_irqsave(&sc->sbm_lock, flags);
2470	if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2471		/*
2472		 * Promiscuous changed.
2473		 */
2474
2475		if (dev->flags & IFF_PROMISC) {
2476			sbmac_promiscuous_mode(sc,1);
2477		}
2478		else {
2479			sbmac_promiscuous_mode(sc,0);
2480		}
2481	}
2482	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2483
2484	/*
2485	 * Program the multicasts.  Do this every time.
2486	 */
2487
2488	sbmac_setmulti(sc);
2489
2490}
2491
2492static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2493{
2494	struct sbmac_softc *sc = netdev_priv(dev);
2495
2496	if (!netif_running(dev) || !sc->phy_dev)
2497		return -EINVAL;
2498
2499	return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2500}
2501
2502static int sbmac_close(struct net_device *dev)
2503{
2504	struct sbmac_softc *sc = netdev_priv(dev);
2505
2506	napi_disable(&sc->napi);
2507
2508	phy_stop(sc->phy_dev);
2509
2510	sbmac_set_channel_state(sc, sbmac_state_off);
2511
2512	netif_stop_queue(dev);
2513
2514	if (debug > 1)
2515		pr_debug("%s: Shutting down ethercard\n", dev->name);
2516
2517	phy_disconnect(sc->phy_dev);
2518	sc->phy_dev = NULL;
2519	free_irq(dev->irq, dev);
2520
2521	sbdma_emptyring(&(sc->sbm_txdma));
2522	sbdma_emptyring(&(sc->sbm_rxdma));
2523
2524	return 0;
2525}
2526
2527static int sbmac_poll(struct napi_struct *napi, int budget)
2528{
2529	struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2530	int work_done;
2531
2532	work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2533	sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2534
2535	if (work_done < budget) {
2536		napi_complete_done(napi, work_done);
2537
2538#ifdef CONFIG_SBMAC_COALESCE
2539		__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2540			     ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2541			     sc->sbm_imr);
2542#else
2543		__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2544			     (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2545#endif
2546	}
2547
2548	return work_done;
2549}
2550
2551
2552static int sbmac_probe(struct platform_device *pldev)
2553{
2554	struct net_device *dev;
2555	struct sbmac_softc *sc;
2556	void __iomem *sbm_base;
2557	struct resource *res;
2558	u64 sbmac_orig_hwaddr;
2559	int err;
2560
2561	res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2562	BUG_ON(!res);
2563	sbm_base = ioremap_nocache(res->start, resource_size(res));
2564	if (!sbm_base) {
2565		printk(KERN_ERR "%s: unable to map device registers\n",
2566		       dev_name(&pldev->dev));
2567		err = -ENOMEM;
2568		goto out_out;
2569	}
2570
2571	/*
2572	 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2573	 * value for us by the firmware if we're going to use this MAC.
2574	 * If we find a zero, skip this MAC.
2575	 */
2576	sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2577	pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2578		 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2579	if (sbmac_orig_hwaddr == 0) {
2580		err = 0;
2581		goto out_unmap;
2582	}
2583
2584	/*
2585	 * Okay, cool.  Initialize this MAC.
2586	 */
2587	dev = alloc_etherdev(sizeof(struct sbmac_softc));
2588	if (!dev) {
2589		err = -ENOMEM;
2590		goto out_unmap;
2591	}
2592
2593	platform_set_drvdata(pldev, dev);
2594	SET_NETDEV_DEV(dev, &pldev->dev);
2595
2596	sc = netdev_priv(dev);
2597	sc->sbm_base = sbm_base;
2598
2599	err = sbmac_init(pldev, res->start);
2600	if (err)
2601		goto out_kfree;
2602
2603	return 0;
2604
2605out_kfree:
2606	free_netdev(dev);
2607	__raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2608
2609out_unmap:
2610	iounmap(sbm_base);
2611
2612out_out:
2613	return err;
2614}
2615
2616static int sbmac_remove(struct platform_device *pldev)
2617{
2618	struct net_device *dev = platform_get_drvdata(pldev);
2619	struct sbmac_softc *sc = netdev_priv(dev);
2620
2621	unregister_netdev(dev);
2622	sbmac_uninitctx(sc);
2623	mdiobus_unregister(sc->mii_bus);
2624	mdiobus_free(sc->mii_bus);
2625	iounmap(sc->sbm_base);
2626	free_netdev(dev);
2627
2628	return 0;
2629}
2630
2631static struct platform_driver sbmac_driver = {
2632	.probe = sbmac_probe,
2633	.remove = sbmac_remove,
2634	.driver = {
2635		.name = sbmac_string,
2636	},
2637};
2638
2639module_platform_driver(sbmac_driver);
2640MODULE_LICENSE("GPL");