Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Block driver for media (i.e., flash cards)
   3 *
   4 * Copyright 2002 Hewlett-Packard Company
   5 * Copyright 2005-2008 Pierre Ossman
   6 *
   7 * Use consistent with the GNU GPL is permitted,
   8 * provided that this copyright notice is
   9 * preserved in its entirety in all copies and derived works.
  10 *
  11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
  12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
  13 * FITNESS FOR ANY PARTICULAR PURPOSE.
  14 *
  15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
  16 *
  17 * Author:  Andrew Christian
  18 *          28 May 2002
  19 */
  20#include <linux/moduleparam.h>
  21#include <linux/module.h>
  22#include <linux/init.h>
  23
  24#include <linux/kernel.h>
  25#include <linux/fs.h>
  26#include <linux/slab.h>
  27#include <linux/errno.h>
  28#include <linux/hdreg.h>
  29#include <linux/kdev_t.h>
  30#include <linux/blkdev.h>
  31#include <linux/cdev.h>
  32#include <linux/mutex.h>
  33#include <linux/scatterlist.h>
  34#include <linux/string_helpers.h>
  35#include <linux/delay.h>
  36#include <linux/capability.h>
  37#include <linux/compat.h>
  38#include <linux/pm_runtime.h>
  39#include <linux/idr.h>
  40#include <linux/debugfs.h>
  41
  42#include <linux/mmc/ioctl.h>
  43#include <linux/mmc/card.h>
  44#include <linux/mmc/host.h>
  45#include <linux/mmc/mmc.h>
  46#include <linux/mmc/sd.h>
  47
  48#include <linux/uaccess.h>
  49
  50#include "queue.h"
  51#include "block.h"
  52#include "core.h"
  53#include "card.h"
  54#include "host.h"
  55#include "bus.h"
  56#include "mmc_ops.h"
  57#include "quirks.h"
  58#include "sd_ops.h"
  59
  60MODULE_ALIAS("mmc:block");
  61#ifdef MODULE_PARAM_PREFIX
  62#undef MODULE_PARAM_PREFIX
  63#endif
  64#define MODULE_PARAM_PREFIX "mmcblk."
  65
  66/*
  67 * Set a 10 second timeout for polling write request busy state. Note, mmc core
  68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
  69 * second software timer to timeout the whole request, so 10 seconds should be
  70 * ample.
  71 */
  72#define MMC_BLK_TIMEOUT_MS  (10 * 1000)
  73#define MMC_SANITIZE_REQ_TIMEOUT 240000
  74#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
  75#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
  76
  77#define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
  78				  (rq_data_dir(req) == WRITE))
  79static DEFINE_MUTEX(block_mutex);
  80
  81/*
  82 * The defaults come from config options but can be overriden by module
  83 * or bootarg options.
  84 */
  85static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
  86
  87/*
  88 * We've only got one major, so number of mmcblk devices is
  89 * limited to (1 << 20) / number of minors per device.  It is also
  90 * limited by the MAX_DEVICES below.
  91 */
  92static int max_devices;
  93
  94#define MAX_DEVICES 256
  95
  96static DEFINE_IDA(mmc_blk_ida);
  97static DEFINE_IDA(mmc_rpmb_ida);
  98
  99/*
 100 * There is one mmc_blk_data per slot.
 101 */
 102struct mmc_blk_data {
 103	spinlock_t	lock;
 104	struct device	*parent;
 105	struct gendisk	*disk;
 106	struct mmc_queue queue;
 107	struct list_head part;
 108	struct list_head rpmbs;
 109
 110	unsigned int	flags;
 111#define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
 112#define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
 113
 114	unsigned int	usage;
 115	unsigned int	read_only;
 116	unsigned int	part_type;
 117	unsigned int	reset_done;
 118#define MMC_BLK_READ		BIT(0)
 119#define MMC_BLK_WRITE		BIT(1)
 120#define MMC_BLK_DISCARD		BIT(2)
 121#define MMC_BLK_SECDISCARD	BIT(3)
 122#define MMC_BLK_CQE_RECOVERY	BIT(4)
 123
 124	/*
 125	 * Only set in main mmc_blk_data associated
 126	 * with mmc_card with dev_set_drvdata, and keeps
 127	 * track of the current selected device partition.
 128	 */
 129	unsigned int	part_curr;
 130	struct device_attribute force_ro;
 131	struct device_attribute power_ro_lock;
 132	int	area_type;
 133
 134	/* debugfs files (only in main mmc_blk_data) */
 135	struct dentry *status_dentry;
 136	struct dentry *ext_csd_dentry;
 137};
 138
 139/* Device type for RPMB character devices */
 140static dev_t mmc_rpmb_devt;
 141
 142/* Bus type for RPMB character devices */
 143static struct bus_type mmc_rpmb_bus_type = {
 144	.name = "mmc_rpmb",
 145};
 146
 147/**
 148 * struct mmc_rpmb_data - special RPMB device type for these areas
 149 * @dev: the device for the RPMB area
 150 * @chrdev: character device for the RPMB area
 151 * @id: unique device ID number
 152 * @part_index: partition index (0 on first)
 153 * @md: parent MMC block device
 154 * @node: list item, so we can put this device on a list
 155 */
 156struct mmc_rpmb_data {
 157	struct device dev;
 158	struct cdev chrdev;
 159	int id;
 160	unsigned int part_index;
 161	struct mmc_blk_data *md;
 162	struct list_head node;
 163};
 164
 165static DEFINE_MUTEX(open_lock);
 166
 167module_param(perdev_minors, int, 0444);
 168MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
 169
 170static inline int mmc_blk_part_switch(struct mmc_card *card,
 171				      unsigned int part_type);
 172
 173static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
 174{
 175	struct mmc_blk_data *md;
 176
 177	mutex_lock(&open_lock);
 178	md = disk->private_data;
 179	if (md && md->usage == 0)
 180		md = NULL;
 181	if (md)
 182		md->usage++;
 183	mutex_unlock(&open_lock);
 184
 185	return md;
 186}
 187
 188static inline int mmc_get_devidx(struct gendisk *disk)
 189{
 190	int devidx = disk->first_minor / perdev_minors;
 191	return devidx;
 192}
 193
 194static void mmc_blk_put(struct mmc_blk_data *md)
 195{
 196	mutex_lock(&open_lock);
 197	md->usage--;
 198	if (md->usage == 0) {
 199		int devidx = mmc_get_devidx(md->disk);
 200		blk_put_queue(md->queue.queue);
 201		ida_simple_remove(&mmc_blk_ida, devidx);
 202		put_disk(md->disk);
 203		kfree(md);
 204	}
 205	mutex_unlock(&open_lock);
 206}
 207
 208static ssize_t power_ro_lock_show(struct device *dev,
 209		struct device_attribute *attr, char *buf)
 210{
 211	int ret;
 212	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 213	struct mmc_card *card = md->queue.card;
 214	int locked = 0;
 215
 216	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
 217		locked = 2;
 218	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
 219		locked = 1;
 220
 221	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
 222
 223	mmc_blk_put(md);
 224
 225	return ret;
 226}
 227
 228static ssize_t power_ro_lock_store(struct device *dev,
 229		struct device_attribute *attr, const char *buf, size_t count)
 230{
 231	int ret;
 232	struct mmc_blk_data *md, *part_md;
 233	struct mmc_queue *mq;
 234	struct request *req;
 235	unsigned long set;
 236
 237	if (kstrtoul(buf, 0, &set))
 238		return -EINVAL;
 239
 240	if (set != 1)
 241		return count;
 242
 243	md = mmc_blk_get(dev_to_disk(dev));
 244	mq = &md->queue;
 245
 246	/* Dispatch locking to the block layer */
 247	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, __GFP_RECLAIM);
 248	if (IS_ERR(req)) {
 249		count = PTR_ERR(req);
 250		goto out_put;
 251	}
 252	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
 253	blk_execute_rq(mq->queue, NULL, req, 0);
 254	ret = req_to_mmc_queue_req(req)->drv_op_result;
 255	blk_put_request(req);
 256
 257	if (!ret) {
 258		pr_info("%s: Locking boot partition ro until next power on\n",
 259			md->disk->disk_name);
 260		set_disk_ro(md->disk, 1);
 261
 262		list_for_each_entry(part_md, &md->part, part)
 263			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
 264				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
 265				set_disk_ro(part_md->disk, 1);
 266			}
 267	}
 268out_put:
 269	mmc_blk_put(md);
 270	return count;
 271}
 272
 273static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
 274			     char *buf)
 275{
 276	int ret;
 277	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 278
 279	ret = snprintf(buf, PAGE_SIZE, "%d\n",
 280		       get_disk_ro(dev_to_disk(dev)) ^
 281		       md->read_only);
 282	mmc_blk_put(md);
 283	return ret;
 284}
 285
 286static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
 287			      const char *buf, size_t count)
 288{
 289	int ret;
 290	char *end;
 291	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 292	unsigned long set = simple_strtoul(buf, &end, 0);
 293	if (end == buf) {
 294		ret = -EINVAL;
 295		goto out;
 296	}
 297
 298	set_disk_ro(dev_to_disk(dev), set || md->read_only);
 299	ret = count;
 300out:
 301	mmc_blk_put(md);
 302	return ret;
 303}
 304
 305static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
 306{
 307	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
 308	int ret = -ENXIO;
 309
 310	mutex_lock(&block_mutex);
 311	if (md) {
 312		if (md->usage == 2)
 313			check_disk_change(bdev);
 314		ret = 0;
 315
 316		if ((mode & FMODE_WRITE) && md->read_only) {
 317			mmc_blk_put(md);
 318			ret = -EROFS;
 319		}
 320	}
 321	mutex_unlock(&block_mutex);
 322
 323	return ret;
 324}
 325
 326static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
 327{
 328	struct mmc_blk_data *md = disk->private_data;
 329
 330	mutex_lock(&block_mutex);
 331	mmc_blk_put(md);
 332	mutex_unlock(&block_mutex);
 333}
 334
 335static int
 336mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 337{
 338	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
 339	geo->heads = 4;
 340	geo->sectors = 16;
 341	return 0;
 342}
 343
 344struct mmc_blk_ioc_data {
 345	struct mmc_ioc_cmd ic;
 346	unsigned char *buf;
 347	u64 buf_bytes;
 348	struct mmc_rpmb_data *rpmb;
 349};
 350
 351static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
 352	struct mmc_ioc_cmd __user *user)
 353{
 354	struct mmc_blk_ioc_data *idata;
 355	int err;
 356
 357	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
 358	if (!idata) {
 359		err = -ENOMEM;
 360		goto out;
 361	}
 362
 363	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
 364		err = -EFAULT;
 365		goto idata_err;
 366	}
 367
 368	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
 369	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
 370		err = -EOVERFLOW;
 371		goto idata_err;
 372	}
 373
 374	if (!idata->buf_bytes) {
 375		idata->buf = NULL;
 376		return idata;
 377	}
 378
 379	idata->buf = memdup_user((void __user *)(unsigned long)
 380				 idata->ic.data_ptr, idata->buf_bytes);
 381	if (IS_ERR(idata->buf)) {
 382		err = PTR_ERR(idata->buf);
 383		goto idata_err;
 384	}
 385
 386	return idata;
 387
 388idata_err:
 389	kfree(idata);
 390out:
 391	return ERR_PTR(err);
 392}
 393
 394static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
 395				      struct mmc_blk_ioc_data *idata)
 396{
 397	struct mmc_ioc_cmd *ic = &idata->ic;
 398
 399	if (copy_to_user(&(ic_ptr->response), ic->response,
 400			 sizeof(ic->response)))
 401		return -EFAULT;
 402
 403	if (!idata->ic.write_flag) {
 404		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
 405				 idata->buf, idata->buf_bytes))
 406			return -EFAULT;
 407	}
 408
 409	return 0;
 410}
 411
 412static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
 413				       u32 retries_max)
 414{
 415	int err;
 416	u32 retry_count = 0;
 417
 418	if (!status || !retries_max)
 419		return -EINVAL;
 420
 421	do {
 422		err = __mmc_send_status(card, status, 5);
 423		if (err)
 424			break;
 425
 426		if (!R1_STATUS(*status) &&
 427				(R1_CURRENT_STATE(*status) != R1_STATE_PRG))
 428			break; /* RPMB programming operation complete */
 429
 430		/*
 431		 * Rechedule to give the MMC device a chance to continue
 432		 * processing the previous command without being polled too
 433		 * frequently.
 434		 */
 435		usleep_range(1000, 5000);
 436	} while (++retry_count < retries_max);
 437
 438	if (retry_count == retries_max)
 439		err = -EPERM;
 440
 441	return err;
 442}
 443
 444static int ioctl_do_sanitize(struct mmc_card *card)
 445{
 446	int err;
 447
 448	if (!mmc_can_sanitize(card)) {
 449			pr_warn("%s: %s - SANITIZE is not supported\n",
 450				mmc_hostname(card->host), __func__);
 451			err = -EOPNOTSUPP;
 452			goto out;
 453	}
 454
 455	pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
 456		mmc_hostname(card->host), __func__);
 457
 458	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 459					EXT_CSD_SANITIZE_START, 1,
 460					MMC_SANITIZE_REQ_TIMEOUT);
 461
 462	if (err)
 463		pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
 464		       mmc_hostname(card->host), __func__, err);
 465
 466	pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
 467					     __func__);
 468out:
 469	return err;
 470}
 471
 472static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
 473			       struct mmc_blk_ioc_data *idata)
 474{
 475	struct mmc_command cmd = {};
 476	struct mmc_data data = {};
 477	struct mmc_request mrq = {};
 478	struct scatterlist sg;
 479	int err;
 480	unsigned int target_part;
 481	u32 status = 0;
 482
 483	if (!card || !md || !idata)
 484		return -EINVAL;
 485
 486	/*
 487	 * The RPMB accesses comes in from the character device, so we
 488	 * need to target these explicitly. Else we just target the
 489	 * partition type for the block device the ioctl() was issued
 490	 * on.
 491	 */
 492	if (idata->rpmb) {
 493		/* Support multiple RPMB partitions */
 494		target_part = idata->rpmb->part_index;
 495		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
 496	} else {
 497		target_part = md->part_type;
 498	}
 499
 500	cmd.opcode = idata->ic.opcode;
 501	cmd.arg = idata->ic.arg;
 502	cmd.flags = idata->ic.flags;
 503
 504	if (idata->buf_bytes) {
 505		data.sg = &sg;
 506		data.sg_len = 1;
 507		data.blksz = idata->ic.blksz;
 508		data.blocks = idata->ic.blocks;
 509
 510		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
 511
 512		if (idata->ic.write_flag)
 513			data.flags = MMC_DATA_WRITE;
 514		else
 515			data.flags = MMC_DATA_READ;
 516
 517		/* data.flags must already be set before doing this. */
 518		mmc_set_data_timeout(&data, card);
 519
 520		/* Allow overriding the timeout_ns for empirical tuning. */
 521		if (idata->ic.data_timeout_ns)
 522			data.timeout_ns = idata->ic.data_timeout_ns;
 523
 524		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
 525			/*
 526			 * Pretend this is a data transfer and rely on the
 527			 * host driver to compute timeout.  When all host
 528			 * drivers support cmd.cmd_timeout for R1B, this
 529			 * can be changed to:
 530			 *
 531			 *     mrq.data = NULL;
 532			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
 533			 */
 534			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
 535		}
 536
 537		mrq.data = &data;
 538	}
 539
 540	mrq.cmd = &cmd;
 541
 542	err = mmc_blk_part_switch(card, target_part);
 543	if (err)
 544		return err;
 545
 546	if (idata->ic.is_acmd) {
 547		err = mmc_app_cmd(card->host, card);
 548		if (err)
 549			return err;
 550	}
 551
 552	if (idata->rpmb) {
 553		err = mmc_set_blockcount(card, data.blocks,
 554			idata->ic.write_flag & (1 << 31));
 555		if (err)
 556			return err;
 557	}
 558
 559	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
 560	    (cmd.opcode == MMC_SWITCH)) {
 561		err = ioctl_do_sanitize(card);
 562
 563		if (err)
 564			pr_err("%s: ioctl_do_sanitize() failed. err = %d",
 565			       __func__, err);
 566
 567		return err;
 568	}
 569
 570	mmc_wait_for_req(card->host, &mrq);
 571
 572	if (cmd.error) {
 573		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
 574						__func__, cmd.error);
 575		return cmd.error;
 576	}
 577	if (data.error) {
 578		dev_err(mmc_dev(card->host), "%s: data error %d\n",
 579						__func__, data.error);
 580		return data.error;
 581	}
 582
 583	/*
 584	 * Make sure the cache of the PARTITION_CONFIG register and
 585	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
 586	 * changed it successfully.
 587	 */
 588	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
 589	    (cmd.opcode == MMC_SWITCH)) {
 590		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 591		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
 592
 593		/*
 594		 * Update cache so the next mmc_blk_part_switch call operates
 595		 * on up-to-date data.
 596		 */
 597		card->ext_csd.part_config = value;
 598		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
 599	}
 600
 601	/*
 602	 * According to the SD specs, some commands require a delay after
 603	 * issuing the command.
 604	 */
 605	if (idata->ic.postsleep_min_us)
 606		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
 607
 608	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
 609
 610	if (idata->rpmb) {
 611		/*
 612		 * Ensure RPMB command has completed by polling CMD13
 613		 * "Send Status".
 614		 */
 615		err = ioctl_rpmb_card_status_poll(card, &status, 5);
 616		if (err)
 617			dev_err(mmc_dev(card->host),
 618					"%s: Card Status=0x%08X, error %d\n",
 619					__func__, status, err);
 620	}
 621
 622	return err;
 623}
 624
 625static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
 626			     struct mmc_ioc_cmd __user *ic_ptr,
 627			     struct mmc_rpmb_data *rpmb)
 628{
 629	struct mmc_blk_ioc_data *idata;
 630	struct mmc_blk_ioc_data *idatas[1];
 631	struct mmc_queue *mq;
 632	struct mmc_card *card;
 633	int err = 0, ioc_err = 0;
 634	struct request *req;
 635
 636	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
 637	if (IS_ERR(idata))
 638		return PTR_ERR(idata);
 639	/* This will be NULL on non-RPMB ioctl():s */
 640	idata->rpmb = rpmb;
 641
 642	card = md->queue.card;
 643	if (IS_ERR(card)) {
 644		err = PTR_ERR(card);
 645		goto cmd_done;
 646	}
 647
 648	/*
 649	 * Dispatch the ioctl() into the block request queue.
 650	 */
 651	mq = &md->queue;
 652	req = blk_get_request(mq->queue,
 653		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
 654		__GFP_RECLAIM);
 655	if (IS_ERR(req)) {
 656		err = PTR_ERR(req);
 657		goto cmd_done;
 658	}
 659	idatas[0] = idata;
 660	req_to_mmc_queue_req(req)->drv_op =
 661		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 662	req_to_mmc_queue_req(req)->drv_op_data = idatas;
 663	req_to_mmc_queue_req(req)->ioc_count = 1;
 664	blk_execute_rq(mq->queue, NULL, req, 0);
 665	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 666	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
 667	blk_put_request(req);
 668
 669cmd_done:
 670	kfree(idata->buf);
 671	kfree(idata);
 672	return ioc_err ? ioc_err : err;
 673}
 674
 675static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
 676				   struct mmc_ioc_multi_cmd __user *user,
 677				   struct mmc_rpmb_data *rpmb)
 678{
 679	struct mmc_blk_ioc_data **idata = NULL;
 680	struct mmc_ioc_cmd __user *cmds = user->cmds;
 681	struct mmc_card *card;
 682	struct mmc_queue *mq;
 683	int i, err = 0, ioc_err = 0;
 684	__u64 num_of_cmds;
 685	struct request *req;
 686
 687	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
 688			   sizeof(num_of_cmds)))
 689		return -EFAULT;
 690
 691	if (!num_of_cmds)
 692		return 0;
 693
 694	if (num_of_cmds > MMC_IOC_MAX_CMDS)
 695		return -EINVAL;
 696
 697	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
 698	if (!idata)
 699		return -ENOMEM;
 700
 701	for (i = 0; i < num_of_cmds; i++) {
 702		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
 703		if (IS_ERR(idata[i])) {
 704			err = PTR_ERR(idata[i]);
 705			num_of_cmds = i;
 706			goto cmd_err;
 707		}
 708		/* This will be NULL on non-RPMB ioctl():s */
 709		idata[i]->rpmb = rpmb;
 710	}
 711
 712	card = md->queue.card;
 713	if (IS_ERR(card)) {
 714		err = PTR_ERR(card);
 715		goto cmd_err;
 716	}
 717
 718
 719	/*
 720	 * Dispatch the ioctl()s into the block request queue.
 721	 */
 722	mq = &md->queue;
 723	req = blk_get_request(mq->queue,
 724		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
 725		__GFP_RECLAIM);
 726	if (IS_ERR(req)) {
 727		err = PTR_ERR(req);
 728		goto cmd_err;
 729	}
 730	req_to_mmc_queue_req(req)->drv_op =
 731		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 732	req_to_mmc_queue_req(req)->drv_op_data = idata;
 733	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
 734	blk_execute_rq(mq->queue, NULL, req, 0);
 735	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 736
 737	/* copy to user if data and response */
 738	for (i = 0; i < num_of_cmds && !err; i++)
 739		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
 740
 741	blk_put_request(req);
 742
 743cmd_err:
 744	for (i = 0; i < num_of_cmds; i++) {
 745		kfree(idata[i]->buf);
 746		kfree(idata[i]);
 747	}
 748	kfree(idata);
 749	return ioc_err ? ioc_err : err;
 750}
 751
 752static int mmc_blk_check_blkdev(struct block_device *bdev)
 753{
 754	/*
 755	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
 756	 * whole block device, not on a partition.  This prevents overspray
 757	 * between sibling partitions.
 758	 */
 759	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
 760		return -EPERM;
 761	return 0;
 762}
 763
 764static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
 765	unsigned int cmd, unsigned long arg)
 766{
 767	struct mmc_blk_data *md;
 768	int ret;
 769
 770	switch (cmd) {
 771	case MMC_IOC_CMD:
 772		ret = mmc_blk_check_blkdev(bdev);
 773		if (ret)
 774			return ret;
 775		md = mmc_blk_get(bdev->bd_disk);
 776		if (!md)
 777			return -EINVAL;
 778		ret = mmc_blk_ioctl_cmd(md,
 779					(struct mmc_ioc_cmd __user *)arg,
 780					NULL);
 781		mmc_blk_put(md);
 782		return ret;
 783	case MMC_IOC_MULTI_CMD:
 784		ret = mmc_blk_check_blkdev(bdev);
 785		if (ret)
 786			return ret;
 787		md = mmc_blk_get(bdev->bd_disk);
 788		if (!md)
 789			return -EINVAL;
 790		ret = mmc_blk_ioctl_multi_cmd(md,
 791					(struct mmc_ioc_multi_cmd __user *)arg,
 792					NULL);
 793		mmc_blk_put(md);
 794		return ret;
 795	default:
 796		return -EINVAL;
 797	}
 798}
 799
 800#ifdef CONFIG_COMPAT
 801static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
 802	unsigned int cmd, unsigned long arg)
 803{
 804	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
 805}
 806#endif
 807
 808static const struct block_device_operations mmc_bdops = {
 809	.open			= mmc_blk_open,
 810	.release		= mmc_blk_release,
 811	.getgeo			= mmc_blk_getgeo,
 812	.owner			= THIS_MODULE,
 813	.ioctl			= mmc_blk_ioctl,
 814#ifdef CONFIG_COMPAT
 815	.compat_ioctl		= mmc_blk_compat_ioctl,
 816#endif
 817};
 818
 819static int mmc_blk_part_switch_pre(struct mmc_card *card,
 820				   unsigned int part_type)
 821{
 822	int ret = 0;
 823
 824	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
 825		if (card->ext_csd.cmdq_en) {
 826			ret = mmc_cmdq_disable(card);
 827			if (ret)
 828				return ret;
 829		}
 830		mmc_retune_pause(card->host);
 831	}
 832
 833	return ret;
 834}
 835
 836static int mmc_blk_part_switch_post(struct mmc_card *card,
 837				    unsigned int part_type)
 838{
 839	int ret = 0;
 840
 841	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
 842		mmc_retune_unpause(card->host);
 843		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
 844			ret = mmc_cmdq_enable(card);
 845	}
 846
 847	return ret;
 848}
 849
 850static inline int mmc_blk_part_switch(struct mmc_card *card,
 851				      unsigned int part_type)
 852{
 853	int ret = 0;
 854	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 855
 856	if (main_md->part_curr == part_type)
 857		return 0;
 858
 859	if (mmc_card_mmc(card)) {
 860		u8 part_config = card->ext_csd.part_config;
 861
 862		ret = mmc_blk_part_switch_pre(card, part_type);
 863		if (ret)
 864			return ret;
 865
 866		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
 867		part_config |= part_type;
 868
 869		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 870				 EXT_CSD_PART_CONFIG, part_config,
 871				 card->ext_csd.part_time);
 872		if (ret) {
 873			mmc_blk_part_switch_post(card, part_type);
 874			return ret;
 875		}
 876
 877		card->ext_csd.part_config = part_config;
 878
 879		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
 880	}
 881
 882	main_md->part_curr = part_type;
 883	return ret;
 884}
 885
 886static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
 887{
 888	int err;
 889	u32 result;
 890	__be32 *blocks;
 891
 892	struct mmc_request mrq = {};
 893	struct mmc_command cmd = {};
 894	struct mmc_data data = {};
 895
 896	struct scatterlist sg;
 897
 898	cmd.opcode = MMC_APP_CMD;
 899	cmd.arg = card->rca << 16;
 900	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
 901
 902	err = mmc_wait_for_cmd(card->host, &cmd, 0);
 903	if (err)
 904		return err;
 905	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
 906		return -EIO;
 907
 908	memset(&cmd, 0, sizeof(struct mmc_command));
 909
 910	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
 911	cmd.arg = 0;
 912	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
 913
 914	data.blksz = 4;
 915	data.blocks = 1;
 916	data.flags = MMC_DATA_READ;
 917	data.sg = &sg;
 918	data.sg_len = 1;
 919	mmc_set_data_timeout(&data, card);
 920
 921	mrq.cmd = &cmd;
 922	mrq.data = &data;
 923
 924	blocks = kmalloc(4, GFP_KERNEL);
 925	if (!blocks)
 926		return -ENOMEM;
 927
 928	sg_init_one(&sg, blocks, 4);
 929
 930	mmc_wait_for_req(card->host, &mrq);
 931
 932	result = ntohl(*blocks);
 933	kfree(blocks);
 934
 935	if (cmd.error || data.error)
 936		return -EIO;
 937
 938	*written_blocks = result;
 939
 940	return 0;
 941}
 942
 943static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
 944{
 945	if (host->actual_clock)
 946		return host->actual_clock / 1000;
 947
 948	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
 949	if (host->ios.clock)
 950		return host->ios.clock / 2000;
 951
 952	/* How can there be no clock */
 953	WARN_ON_ONCE(1);
 954	return 100; /* 100 kHz is minimum possible value */
 955}
 956
 957static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
 958					    struct mmc_data *data)
 959{
 960	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
 961	unsigned int khz;
 962
 963	if (data->timeout_clks) {
 964		khz = mmc_blk_clock_khz(host);
 965		ms += DIV_ROUND_UP(data->timeout_clks, khz);
 966	}
 967
 968	return ms;
 969}
 970
 971static inline bool mmc_blk_in_tran_state(u32 status)
 972{
 973	/*
 974	 * Some cards mishandle the status bits, so make sure to check both the
 975	 * busy indication and the card state.
 976	 */
 977	return status & R1_READY_FOR_DATA &&
 978	       (R1_CURRENT_STATE(status) == R1_STATE_TRAN);
 979}
 980
 981static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
 982			    struct request *req, u32 *resp_errs)
 983{
 984	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
 985	int err = 0;
 986	u32 status;
 987
 988	do {
 989		bool done = time_after(jiffies, timeout);
 990
 991		err = __mmc_send_status(card, &status, 5);
 992		if (err) {
 993			pr_err("%s: error %d requesting status\n",
 994			       req->rq_disk->disk_name, err);
 995			return err;
 996		}
 997
 998		/* Accumulate any response error bits seen */
 999		if (resp_errs)
1000			*resp_errs |= status;
1001
1002		/*
1003		 * Timeout if the device never becomes ready for data and never
1004		 * leaves the program state.
1005		 */
1006		if (done) {
1007			pr_err("%s: Card stuck in wrong state! %s %s status: %#x\n",
1008				mmc_hostname(card->host),
1009				req->rq_disk->disk_name, __func__, status);
1010			return -ETIMEDOUT;
1011		}
1012
1013		/*
1014		 * Some cards mishandle the status bits,
1015		 * so make sure to check both the busy
1016		 * indication and the card state.
1017		 */
1018	} while (!mmc_blk_in_tran_state(status));
1019
1020	return err;
1021}
1022
1023static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1024			 int type)
1025{
1026	int err;
1027
1028	if (md->reset_done & type)
1029		return -EEXIST;
1030
1031	md->reset_done |= type;
1032	err = mmc_hw_reset(host);
1033	/* Ensure we switch back to the correct partition */
1034	if (err != -EOPNOTSUPP) {
1035		struct mmc_blk_data *main_md =
1036			dev_get_drvdata(&host->card->dev);
1037		int part_err;
1038
1039		main_md->part_curr = main_md->part_type;
1040		part_err = mmc_blk_part_switch(host->card, md->part_type);
1041		if (part_err) {
1042			/*
1043			 * We have failed to get back into the correct
1044			 * partition, so we need to abort the whole request.
1045			 */
1046			return -ENODEV;
1047		}
1048	}
1049	return err;
1050}
1051
1052static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1053{
1054	md->reset_done &= ~type;
1055}
1056
1057/*
1058 * The non-block commands come back from the block layer after it queued it and
1059 * processed it with all other requests and then they get issued in this
1060 * function.
1061 */
1062static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1063{
1064	struct mmc_queue_req *mq_rq;
1065	struct mmc_card *card = mq->card;
1066	struct mmc_blk_data *md = mq->blkdata;
1067	struct mmc_blk_ioc_data **idata;
1068	bool rpmb_ioctl;
1069	u8 **ext_csd;
1070	u32 status;
1071	int ret;
1072	int i;
1073
1074	mq_rq = req_to_mmc_queue_req(req);
1075	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1076
1077	switch (mq_rq->drv_op) {
1078	case MMC_DRV_OP_IOCTL:
1079	case MMC_DRV_OP_IOCTL_RPMB:
1080		idata = mq_rq->drv_op_data;
1081		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1082			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1083			if (ret)
1084				break;
1085		}
1086		/* Always switch back to main area after RPMB access */
1087		if (rpmb_ioctl)
1088			mmc_blk_part_switch(card, 0);
1089		break;
1090	case MMC_DRV_OP_BOOT_WP:
1091		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1092				 card->ext_csd.boot_ro_lock |
1093				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1094				 card->ext_csd.part_time);
1095		if (ret)
1096			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1097			       md->disk->disk_name, ret);
1098		else
1099			card->ext_csd.boot_ro_lock |=
1100				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1101		break;
1102	case MMC_DRV_OP_GET_CARD_STATUS:
1103		ret = mmc_send_status(card, &status);
1104		if (!ret)
1105			ret = status;
1106		break;
1107	case MMC_DRV_OP_GET_EXT_CSD:
1108		ext_csd = mq_rq->drv_op_data;
1109		ret = mmc_get_ext_csd(card, ext_csd);
1110		break;
1111	default:
1112		pr_err("%s: unknown driver specific operation\n",
1113		       md->disk->disk_name);
1114		ret = -EINVAL;
1115		break;
1116	}
1117	mq_rq->drv_op_result = ret;
1118	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1119}
1120
1121static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1122{
1123	struct mmc_blk_data *md = mq->blkdata;
1124	struct mmc_card *card = md->queue.card;
1125	unsigned int from, nr, arg;
1126	int err = 0, type = MMC_BLK_DISCARD;
1127	blk_status_t status = BLK_STS_OK;
1128
1129	if (!mmc_can_erase(card)) {
1130		status = BLK_STS_NOTSUPP;
1131		goto fail;
1132	}
1133
1134	from = blk_rq_pos(req);
1135	nr = blk_rq_sectors(req);
1136
1137	if (mmc_can_discard(card))
1138		arg = MMC_DISCARD_ARG;
1139	else if (mmc_can_trim(card))
1140		arg = MMC_TRIM_ARG;
1141	else
1142		arg = MMC_ERASE_ARG;
1143	do {
1144		err = 0;
1145		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1146			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1147					 INAND_CMD38_ARG_EXT_CSD,
1148					 arg == MMC_TRIM_ARG ?
1149					 INAND_CMD38_ARG_TRIM :
1150					 INAND_CMD38_ARG_ERASE,
1151					 0);
1152		}
1153		if (!err)
1154			err = mmc_erase(card, from, nr, arg);
1155	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1156	if (err)
1157		status = BLK_STS_IOERR;
1158	else
1159		mmc_blk_reset_success(md, type);
1160fail:
1161	blk_mq_end_request(req, status);
1162}
1163
1164static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1165				       struct request *req)
1166{
1167	struct mmc_blk_data *md = mq->blkdata;
1168	struct mmc_card *card = md->queue.card;
1169	unsigned int from, nr, arg;
1170	int err = 0, type = MMC_BLK_SECDISCARD;
1171	blk_status_t status = BLK_STS_OK;
1172
1173	if (!(mmc_can_secure_erase_trim(card))) {
1174		status = BLK_STS_NOTSUPP;
1175		goto out;
1176	}
1177
1178	from = blk_rq_pos(req);
1179	nr = blk_rq_sectors(req);
1180
1181	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1182		arg = MMC_SECURE_TRIM1_ARG;
1183	else
1184		arg = MMC_SECURE_ERASE_ARG;
1185
1186retry:
1187	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1188		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1189				 INAND_CMD38_ARG_EXT_CSD,
1190				 arg == MMC_SECURE_TRIM1_ARG ?
1191				 INAND_CMD38_ARG_SECTRIM1 :
1192				 INAND_CMD38_ARG_SECERASE,
1193				 0);
1194		if (err)
1195			goto out_retry;
1196	}
1197
1198	err = mmc_erase(card, from, nr, arg);
1199	if (err == -EIO)
1200		goto out_retry;
1201	if (err) {
1202		status = BLK_STS_IOERR;
1203		goto out;
1204	}
1205
1206	if (arg == MMC_SECURE_TRIM1_ARG) {
1207		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1208			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1209					 INAND_CMD38_ARG_EXT_CSD,
1210					 INAND_CMD38_ARG_SECTRIM2,
1211					 0);
1212			if (err)
1213				goto out_retry;
1214		}
1215
1216		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1217		if (err == -EIO)
1218			goto out_retry;
1219		if (err) {
1220			status = BLK_STS_IOERR;
1221			goto out;
1222		}
1223	}
1224
1225out_retry:
1226	if (err && !mmc_blk_reset(md, card->host, type))
1227		goto retry;
1228	if (!err)
1229		mmc_blk_reset_success(md, type);
1230out:
1231	blk_mq_end_request(req, status);
1232}
1233
1234static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1235{
1236	struct mmc_blk_data *md = mq->blkdata;
1237	struct mmc_card *card = md->queue.card;
1238	int ret = 0;
1239
1240	ret = mmc_flush_cache(card);
1241	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1242}
1243
1244/*
1245 * Reformat current write as a reliable write, supporting
1246 * both legacy and the enhanced reliable write MMC cards.
1247 * In each transfer we'll handle only as much as a single
1248 * reliable write can handle, thus finish the request in
1249 * partial completions.
1250 */
1251static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1252				    struct mmc_card *card,
1253				    struct request *req)
1254{
1255	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1256		/* Legacy mode imposes restrictions on transfers. */
1257		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1258			brq->data.blocks = 1;
1259
1260		if (brq->data.blocks > card->ext_csd.rel_sectors)
1261			brq->data.blocks = card->ext_csd.rel_sectors;
1262		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1263			brq->data.blocks = 1;
1264	}
1265}
1266
1267#define CMD_ERRORS_EXCL_OOR						\
1268	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1269	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1270	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1271	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1272	 R1_CC_ERROR |		/* Card controller error */		\
1273	 R1_ERROR)		/* General/unknown error */
1274
1275#define CMD_ERRORS							\
1276	(CMD_ERRORS_EXCL_OOR |						\
1277	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1278
1279static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1280{
1281	u32 val;
1282
1283	/*
1284	 * Per the SD specification(physical layer version 4.10)[1],
1285	 * section 4.3.3, it explicitly states that "When the last
1286	 * block of user area is read using CMD18, the host should
1287	 * ignore OUT_OF_RANGE error that may occur even the sequence
1288	 * is correct". And JESD84-B51 for eMMC also has a similar
1289	 * statement on section 6.8.3.
1290	 *
1291	 * Multiple block read/write could be done by either predefined
1292	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1293	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1294	 *
1295	 * However the spec[1] doesn't tell us whether we should also
1296	 * ignore that for predefined method. But per the spec[1], section
1297	 * 4.15 Set Block Count Command, it says"If illegal block count
1298	 * is set, out of range error will be indicated during read/write
1299	 * operation (For example, data transfer is stopped at user area
1300	 * boundary)." In another word, we could expect a out of range error
1301	 * in the response for the following CMD18/25. And if argument of
1302	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1303	 * we could also expect to get a -ETIMEDOUT or any error number from
1304	 * the host drivers due to missing data response(for write)/data(for
1305	 * read), as the cards will stop the data transfer by itself per the
1306	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1307	 */
1308
1309	if (!brq->stop.error) {
1310		bool oor_with_open_end;
1311		/* If there is no error yet, check R1 response */
1312
1313		val = brq->stop.resp[0] & CMD_ERRORS;
1314		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1315
1316		if (val && !oor_with_open_end)
1317			brq->stop.error = -EIO;
1318	}
1319}
1320
1321static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1322			      int disable_multi, bool *do_rel_wr_p,
1323			      bool *do_data_tag_p)
1324{
1325	struct mmc_blk_data *md = mq->blkdata;
1326	struct mmc_card *card = md->queue.card;
1327	struct mmc_blk_request *brq = &mqrq->brq;
1328	struct request *req = mmc_queue_req_to_req(mqrq);
1329	bool do_rel_wr, do_data_tag;
1330
1331	/*
1332	 * Reliable writes are used to implement Forced Unit Access and
1333	 * are supported only on MMCs.
1334	 */
1335	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1336		    rq_data_dir(req) == WRITE &&
1337		    (md->flags & MMC_BLK_REL_WR);
1338
1339	memset(brq, 0, sizeof(struct mmc_blk_request));
1340
1341	brq->mrq.data = &brq->data;
1342	brq->mrq.tag = req->tag;
1343
1344	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1345	brq->stop.arg = 0;
1346
1347	if (rq_data_dir(req) == READ) {
1348		brq->data.flags = MMC_DATA_READ;
1349		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1350	} else {
1351		brq->data.flags = MMC_DATA_WRITE;
1352		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1353	}
1354
1355	brq->data.blksz = 512;
1356	brq->data.blocks = blk_rq_sectors(req);
1357	brq->data.blk_addr = blk_rq_pos(req);
1358
1359	/*
1360	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1361	 * The eMMC will give "high" priority tasks priority over "simple"
1362	 * priority tasks. Here we always set "simple" priority by not setting
1363	 * MMC_DATA_PRIO.
1364	 */
1365
1366	/*
1367	 * The block layer doesn't support all sector count
1368	 * restrictions, so we need to be prepared for too big
1369	 * requests.
1370	 */
1371	if (brq->data.blocks > card->host->max_blk_count)
1372		brq->data.blocks = card->host->max_blk_count;
1373
1374	if (brq->data.blocks > 1) {
1375		/*
1376		 * After a read error, we redo the request one sector
1377		 * at a time in order to accurately determine which
1378		 * sectors can be read successfully.
1379		 */
1380		if (disable_multi)
1381			brq->data.blocks = 1;
1382
1383		/*
1384		 * Some controllers have HW issues while operating
1385		 * in multiple I/O mode
1386		 */
1387		if (card->host->ops->multi_io_quirk)
1388			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1389						(rq_data_dir(req) == READ) ?
1390						MMC_DATA_READ : MMC_DATA_WRITE,
1391						brq->data.blocks);
1392	}
1393
1394	if (do_rel_wr) {
1395		mmc_apply_rel_rw(brq, card, req);
1396		brq->data.flags |= MMC_DATA_REL_WR;
1397	}
1398
1399	/*
1400	 * Data tag is used only during writing meta data to speed
1401	 * up write and any subsequent read of this meta data
1402	 */
1403	do_data_tag = card->ext_csd.data_tag_unit_size &&
1404		      (req->cmd_flags & REQ_META) &&
1405		      (rq_data_dir(req) == WRITE) &&
1406		      ((brq->data.blocks * brq->data.blksz) >=
1407		       card->ext_csd.data_tag_unit_size);
1408
1409	if (do_data_tag)
1410		brq->data.flags |= MMC_DATA_DAT_TAG;
1411
1412	mmc_set_data_timeout(&brq->data, card);
1413
1414	brq->data.sg = mqrq->sg;
1415	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1416
1417	/*
1418	 * Adjust the sg list so it is the same size as the
1419	 * request.
1420	 */
1421	if (brq->data.blocks != blk_rq_sectors(req)) {
1422		int i, data_size = brq->data.blocks << 9;
1423		struct scatterlist *sg;
1424
1425		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1426			data_size -= sg->length;
1427			if (data_size <= 0) {
1428				sg->length += data_size;
1429				i++;
1430				break;
1431			}
1432		}
1433		brq->data.sg_len = i;
1434	}
1435
1436	if (do_rel_wr_p)
1437		*do_rel_wr_p = do_rel_wr;
1438
1439	if (do_data_tag_p)
1440		*do_data_tag_p = do_data_tag;
1441}
1442
1443#define MMC_CQE_RETRIES 2
1444
1445static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1446{
1447	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1448	struct mmc_request *mrq = &mqrq->brq.mrq;
1449	struct request_queue *q = req->q;
1450	struct mmc_host *host = mq->card->host;
1451	unsigned long flags;
1452	bool put_card;
1453	int err;
1454
1455	mmc_cqe_post_req(host, mrq);
1456
1457	if (mrq->cmd && mrq->cmd->error)
1458		err = mrq->cmd->error;
1459	else if (mrq->data && mrq->data->error)
1460		err = mrq->data->error;
1461	else
1462		err = 0;
1463
1464	if (err) {
1465		if (mqrq->retries++ < MMC_CQE_RETRIES)
1466			blk_mq_requeue_request(req, true);
1467		else
1468			blk_mq_end_request(req, BLK_STS_IOERR);
1469	} else if (mrq->data) {
1470		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1471			blk_mq_requeue_request(req, true);
1472		else
1473			__blk_mq_end_request(req, BLK_STS_OK);
1474	} else {
1475		blk_mq_end_request(req, BLK_STS_OK);
1476	}
1477
1478	spin_lock_irqsave(q->queue_lock, flags);
1479
1480	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1481
1482	put_card = (mmc_tot_in_flight(mq) == 0);
1483
1484	mmc_cqe_check_busy(mq);
1485
1486	spin_unlock_irqrestore(q->queue_lock, flags);
1487
1488	if (!mq->cqe_busy)
1489		blk_mq_run_hw_queues(q, true);
1490
1491	if (put_card)
1492		mmc_put_card(mq->card, &mq->ctx);
1493}
1494
1495void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1496{
1497	struct mmc_card *card = mq->card;
1498	struct mmc_host *host = card->host;
1499	int err;
1500
1501	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1502
1503	err = mmc_cqe_recovery(host);
1504	if (err)
1505		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1506	else
1507		mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1508
1509	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1510}
1511
1512static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1513{
1514	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1515						  brq.mrq);
1516	struct request *req = mmc_queue_req_to_req(mqrq);
1517	struct request_queue *q = req->q;
1518	struct mmc_queue *mq = q->queuedata;
1519
1520	/*
1521	 * Block layer timeouts race with completions which means the normal
1522	 * completion path cannot be used during recovery.
1523	 */
1524	if (mq->in_recovery)
1525		mmc_blk_cqe_complete_rq(mq, req);
1526	else
1527		blk_mq_complete_request(req);
1528}
1529
1530static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1531{
1532	mrq->done		= mmc_blk_cqe_req_done;
1533	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1534
1535	return mmc_cqe_start_req(host, mrq);
1536}
1537
1538static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1539						 struct request *req)
1540{
1541	struct mmc_blk_request *brq = &mqrq->brq;
1542
1543	memset(brq, 0, sizeof(*brq));
1544
1545	brq->mrq.cmd = &brq->cmd;
1546	brq->mrq.tag = req->tag;
1547
1548	return &brq->mrq;
1549}
1550
1551static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1552{
1553	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1554	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1555
1556	mrq->cmd->opcode = MMC_SWITCH;
1557	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1558			(EXT_CSD_FLUSH_CACHE << 16) |
1559			(1 << 8) |
1560			EXT_CSD_CMD_SET_NORMAL;
1561	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1562
1563	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1564}
1565
1566static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1567{
1568	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1569
1570	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1571
1572	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1573}
1574
1575static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1576			       struct mmc_card *card,
1577			       int disable_multi,
1578			       struct mmc_queue *mq)
1579{
1580	u32 readcmd, writecmd;
1581	struct mmc_blk_request *brq = &mqrq->brq;
1582	struct request *req = mmc_queue_req_to_req(mqrq);
1583	struct mmc_blk_data *md = mq->blkdata;
1584	bool do_rel_wr, do_data_tag;
1585
1586	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1587
1588	brq->mrq.cmd = &brq->cmd;
1589
1590	brq->cmd.arg = blk_rq_pos(req);
1591	if (!mmc_card_blockaddr(card))
1592		brq->cmd.arg <<= 9;
1593	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1594
1595	if (brq->data.blocks > 1 || do_rel_wr) {
1596		/* SPI multiblock writes terminate using a special
1597		 * token, not a STOP_TRANSMISSION request.
1598		 */
1599		if (!mmc_host_is_spi(card->host) ||
1600		    rq_data_dir(req) == READ)
1601			brq->mrq.stop = &brq->stop;
1602		readcmd = MMC_READ_MULTIPLE_BLOCK;
1603		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1604	} else {
1605		brq->mrq.stop = NULL;
1606		readcmd = MMC_READ_SINGLE_BLOCK;
1607		writecmd = MMC_WRITE_BLOCK;
1608	}
1609	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1610
1611	/*
1612	 * Pre-defined multi-block transfers are preferable to
1613	 * open ended-ones (and necessary for reliable writes).
1614	 * However, it is not sufficient to just send CMD23,
1615	 * and avoid the final CMD12, as on an error condition
1616	 * CMD12 (stop) needs to be sent anyway. This, coupled
1617	 * with Auto-CMD23 enhancements provided by some
1618	 * hosts, means that the complexity of dealing
1619	 * with this is best left to the host. If CMD23 is
1620	 * supported by card and host, we'll fill sbc in and let
1621	 * the host deal with handling it correctly. This means
1622	 * that for hosts that don't expose MMC_CAP_CMD23, no
1623	 * change of behavior will be observed.
1624	 *
1625	 * N.B: Some MMC cards experience perf degradation.
1626	 * We'll avoid using CMD23-bounded multiblock writes for
1627	 * these, while retaining features like reliable writes.
1628	 */
1629	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1630	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1631	     do_data_tag)) {
1632		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1633		brq->sbc.arg = brq->data.blocks |
1634			(do_rel_wr ? (1 << 31) : 0) |
1635			(do_data_tag ? (1 << 29) : 0);
1636		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1637		brq->mrq.sbc = &brq->sbc;
1638	}
1639}
1640
1641#define MMC_MAX_RETRIES		5
1642#define MMC_DATA_RETRIES	2
1643#define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1644
1645static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1646{
1647	struct mmc_command cmd = {
1648		.opcode = MMC_STOP_TRANSMISSION,
1649		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1650		/* Some hosts wait for busy anyway, so provide a busy timeout */
1651		.busy_timeout = timeout,
1652	};
1653
1654	return mmc_wait_for_cmd(card->host, &cmd, 5);
1655}
1656
1657static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1658{
1659	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1660	struct mmc_blk_request *brq = &mqrq->brq;
1661	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1662	int err;
1663
1664	mmc_retune_hold_now(card->host);
1665
1666	mmc_blk_send_stop(card, timeout);
1667
1668	err = card_busy_detect(card, timeout, req, NULL);
1669
1670	mmc_retune_release(card->host);
1671
1672	return err;
1673}
1674
1675#define MMC_READ_SINGLE_RETRIES	2
1676
1677/* Single sector read during recovery */
1678static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1679{
1680	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1681	struct mmc_request *mrq = &mqrq->brq.mrq;
1682	struct mmc_card *card = mq->card;
1683	struct mmc_host *host = card->host;
1684	blk_status_t error = BLK_STS_OK;
1685	int retries = 0;
1686
1687	do {
1688		u32 status;
1689		int err;
1690
1691		mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1692
1693		mmc_wait_for_req(host, mrq);
1694
1695		err = mmc_send_status(card, &status);
1696		if (err)
1697			goto error_exit;
1698
1699		if (!mmc_host_is_spi(host) &&
1700		    !mmc_blk_in_tran_state(status)) {
1701			err = mmc_blk_fix_state(card, req);
1702			if (err)
1703				goto error_exit;
1704		}
1705
1706		if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1707			continue;
1708
1709		retries = 0;
1710
1711		if (mrq->cmd->error ||
1712		    mrq->data->error ||
1713		    (!mmc_host_is_spi(host) &&
1714		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1715			error = BLK_STS_IOERR;
1716		else
1717			error = BLK_STS_OK;
1718
1719	} while (blk_update_request(req, error, 512));
1720
1721	return;
1722
1723error_exit:
1724	mrq->data->bytes_xfered = 0;
1725	blk_update_request(req, BLK_STS_IOERR, 512);
1726	/* Let it try the remaining request again */
1727	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1728		mqrq->retries = MMC_MAX_RETRIES - 1;
1729}
1730
1731static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1732{
1733	return !!brq->mrq.sbc;
1734}
1735
1736static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1737{
1738	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1739}
1740
1741/*
1742 * Check for errors the host controller driver might not have seen such as
1743 * response mode errors or invalid card state.
1744 */
1745static bool mmc_blk_status_error(struct request *req, u32 status)
1746{
1747	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1748	struct mmc_blk_request *brq = &mqrq->brq;
1749	struct mmc_queue *mq = req->q->queuedata;
1750	u32 stop_err_bits;
1751
1752	if (mmc_host_is_spi(mq->card->host))
1753		return false;
1754
1755	stop_err_bits = mmc_blk_stop_err_bits(brq);
1756
1757	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1758	       brq->stop.resp[0] & stop_err_bits ||
1759	       status            & stop_err_bits ||
1760	       (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status));
1761}
1762
1763static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1764{
1765	return !brq->sbc.error && !brq->cmd.error &&
1766	       !(brq->cmd.resp[0] & CMD_ERRORS);
1767}
1768
1769/*
1770 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1771 * policy:
1772 * 1. A request that has transferred at least some data is considered
1773 * successful and will be requeued if there is remaining data to
1774 * transfer.
1775 * 2. Otherwise the number of retries is incremented and the request
1776 * will be requeued if there are remaining retries.
1777 * 3. Otherwise the request will be errored out.
1778 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1779 * mqrq->retries. So there are only 4 possible actions here:
1780 *	1. do not accept the bytes_xfered value i.e. set it to zero
1781 *	2. change mqrq->retries to determine the number of retries
1782 *	3. try to reset the card
1783 *	4. read one sector at a time
1784 */
1785static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1786{
1787	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1788	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1789	struct mmc_blk_request *brq = &mqrq->brq;
1790	struct mmc_blk_data *md = mq->blkdata;
1791	struct mmc_card *card = mq->card;
1792	u32 status;
1793	u32 blocks;
1794	int err;
1795
1796	/*
1797	 * Some errors the host driver might not have seen. Set the number of
1798	 * bytes transferred to zero in that case.
1799	 */
1800	err = __mmc_send_status(card, &status, 0);
1801	if (err || mmc_blk_status_error(req, status))
1802		brq->data.bytes_xfered = 0;
1803
1804	mmc_retune_release(card->host);
1805
1806	/*
1807	 * Try again to get the status. This also provides an opportunity for
1808	 * re-tuning.
1809	 */
1810	if (err)
1811		err = __mmc_send_status(card, &status, 0);
1812
1813	/*
1814	 * Nothing more to do after the number of bytes transferred has been
1815	 * updated and there is no card.
1816	 */
1817	if (err && mmc_detect_card_removed(card->host))
1818		return;
1819
1820	/* Try to get back to "tran" state */
1821	if (!mmc_host_is_spi(mq->card->host) &&
1822	    (err || !mmc_blk_in_tran_state(status)))
1823		err = mmc_blk_fix_state(mq->card, req);
1824
1825	/*
1826	 * Special case for SD cards where the card might record the number of
1827	 * blocks written.
1828	 */
1829	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1830	    rq_data_dir(req) == WRITE) {
1831		if (mmc_sd_num_wr_blocks(card, &blocks))
1832			brq->data.bytes_xfered = 0;
1833		else
1834			brq->data.bytes_xfered = blocks << 9;
1835	}
1836
1837	/* Reset if the card is in a bad state */
1838	if (!mmc_host_is_spi(mq->card->host) &&
1839	    err && mmc_blk_reset(md, card->host, type)) {
1840		pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1841		mqrq->retries = MMC_NO_RETRIES;
1842		return;
1843	}
1844
1845	/*
1846	 * If anything was done, just return and if there is anything remaining
1847	 * on the request it will get requeued.
1848	 */
1849	if (brq->data.bytes_xfered)
1850		return;
1851
1852	/* Reset before last retry */
1853	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1854		mmc_blk_reset(md, card->host, type);
1855
1856	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1857	if (brq->sbc.error || brq->cmd.error)
1858		return;
1859
1860	/* Reduce the remaining retries for data errors */
1861	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1862		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1863		return;
1864	}
1865
1866	/* FIXME: Missing single sector read for large sector size */
1867	if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1868	    brq->data.blocks > 1) {
1869		/* Read one sector at a time */
1870		mmc_blk_read_single(mq, req);
1871		return;
1872	}
1873}
1874
1875static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1876{
1877	mmc_blk_eval_resp_error(brq);
1878
1879	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1880	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1881}
1882
1883static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1884{
1885	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1886	u32 status = 0;
1887	int err;
1888
1889	if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1890		return 0;
1891
1892	err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, req, &status);
1893
1894	/*
1895	 * Do not assume data transferred correctly if there are any error bits
1896	 * set.
1897	 */
1898	if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1899		mqrq->brq.data.bytes_xfered = 0;
1900		err = err ? err : -EIO;
1901	}
1902
1903	/* Copy the exception bit so it will be seen later on */
1904	if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1905		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1906
1907	return err;
1908}
1909
1910static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1911					    struct request *req)
1912{
1913	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1914
1915	mmc_blk_reset_success(mq->blkdata, type);
1916}
1917
1918static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1919{
1920	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1921	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1922
1923	if (nr_bytes) {
1924		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1925			blk_mq_requeue_request(req, true);
1926		else
1927			__blk_mq_end_request(req, BLK_STS_OK);
1928	} else if (!blk_rq_bytes(req)) {
1929		__blk_mq_end_request(req, BLK_STS_IOERR);
1930	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1931		blk_mq_requeue_request(req, true);
1932	} else {
1933		if (mmc_card_removed(mq->card))
1934			req->rq_flags |= RQF_QUIET;
1935		blk_mq_end_request(req, BLK_STS_IOERR);
1936	}
1937}
1938
1939static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1940					struct mmc_queue_req *mqrq)
1941{
1942	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1943	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1944		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1945}
1946
1947static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1948				 struct mmc_queue_req *mqrq)
1949{
1950	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1951		mmc_start_bkops(mq->card, true);
1952}
1953
1954void mmc_blk_mq_complete(struct request *req)
1955{
1956	struct mmc_queue *mq = req->q->queuedata;
1957
1958	if (mq->use_cqe)
1959		mmc_blk_cqe_complete_rq(mq, req);
1960	else
1961		mmc_blk_mq_complete_rq(mq, req);
1962}
1963
1964static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1965				       struct request *req)
1966{
1967	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1968	struct mmc_host *host = mq->card->host;
1969
1970	if (mmc_blk_rq_error(&mqrq->brq) ||
1971	    mmc_blk_card_busy(mq->card, req)) {
1972		mmc_blk_mq_rw_recovery(mq, req);
1973	} else {
1974		mmc_blk_rw_reset_success(mq, req);
1975		mmc_retune_release(host);
1976	}
1977
1978	mmc_blk_urgent_bkops(mq, mqrq);
1979}
1980
1981static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1982{
1983	struct request_queue *q = req->q;
1984	unsigned long flags;
1985	bool put_card;
1986
1987	spin_lock_irqsave(q->queue_lock, flags);
1988
1989	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1990
1991	put_card = (mmc_tot_in_flight(mq) == 0);
1992
1993	spin_unlock_irqrestore(q->queue_lock, flags);
1994
1995	if (put_card)
1996		mmc_put_card(mq->card, &mq->ctx);
1997}
1998
1999static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
2000{
2001	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2002	struct mmc_request *mrq = &mqrq->brq.mrq;
2003	struct mmc_host *host = mq->card->host;
2004
2005	mmc_post_req(host, mrq, 0);
2006
2007	/*
2008	 * Block layer timeouts race with completions which means the normal
2009	 * completion path cannot be used during recovery.
2010	 */
2011	if (mq->in_recovery)
2012		mmc_blk_mq_complete_rq(mq, req);
2013	else
2014		blk_mq_complete_request(req);
2015
2016	mmc_blk_mq_dec_in_flight(mq, req);
2017}
2018
2019void mmc_blk_mq_recovery(struct mmc_queue *mq)
2020{
2021	struct request *req = mq->recovery_req;
2022	struct mmc_host *host = mq->card->host;
2023	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2024
2025	mq->recovery_req = NULL;
2026	mq->rw_wait = false;
2027
2028	if (mmc_blk_rq_error(&mqrq->brq)) {
2029		mmc_retune_hold_now(host);
2030		mmc_blk_mq_rw_recovery(mq, req);
2031	}
2032
2033	mmc_blk_urgent_bkops(mq, mqrq);
2034
2035	mmc_blk_mq_post_req(mq, req);
2036}
2037
2038static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2039					 struct request **prev_req)
2040{
2041	if (mmc_host_done_complete(mq->card->host))
2042		return;
2043
2044	mutex_lock(&mq->complete_lock);
2045
2046	if (!mq->complete_req)
2047		goto out_unlock;
2048
2049	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2050
2051	if (prev_req)
2052		*prev_req = mq->complete_req;
2053	else
2054		mmc_blk_mq_post_req(mq, mq->complete_req);
2055
2056	mq->complete_req = NULL;
2057
2058out_unlock:
2059	mutex_unlock(&mq->complete_lock);
2060}
2061
2062void mmc_blk_mq_complete_work(struct work_struct *work)
2063{
2064	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2065					    complete_work);
2066
2067	mmc_blk_mq_complete_prev_req(mq, NULL);
2068}
2069
2070static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2071{
2072	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2073						  brq.mrq);
2074	struct request *req = mmc_queue_req_to_req(mqrq);
2075	struct request_queue *q = req->q;
2076	struct mmc_queue *mq = q->queuedata;
2077	struct mmc_host *host = mq->card->host;
2078	unsigned long flags;
2079
2080	if (!mmc_host_done_complete(host)) {
2081		bool waiting;
2082
2083		/*
2084		 * We cannot complete the request in this context, so record
2085		 * that there is a request to complete, and that a following
2086		 * request does not need to wait (although it does need to
2087		 * complete complete_req first).
2088		 */
2089		spin_lock_irqsave(q->queue_lock, flags);
2090		mq->complete_req = req;
2091		mq->rw_wait = false;
2092		waiting = mq->waiting;
2093		spin_unlock_irqrestore(q->queue_lock, flags);
2094
2095		/*
2096		 * If 'waiting' then the waiting task will complete this
2097		 * request, otherwise queue a work to do it. Note that
2098		 * complete_work may still race with the dispatch of a following
2099		 * request.
2100		 */
2101		if (waiting)
2102			wake_up(&mq->wait);
2103		else
2104			kblockd_schedule_work(&mq->complete_work);
2105
2106		return;
2107	}
2108
2109	/* Take the recovery path for errors or urgent background operations */
2110	if (mmc_blk_rq_error(&mqrq->brq) ||
2111	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2112		spin_lock_irqsave(q->queue_lock, flags);
2113		mq->recovery_needed = true;
2114		mq->recovery_req = req;
2115		spin_unlock_irqrestore(q->queue_lock, flags);
2116		wake_up(&mq->wait);
2117		schedule_work(&mq->recovery_work);
2118		return;
2119	}
2120
2121	mmc_blk_rw_reset_success(mq, req);
2122
2123	mq->rw_wait = false;
2124	wake_up(&mq->wait);
2125
2126	mmc_blk_mq_post_req(mq, req);
2127}
2128
2129static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2130{
2131	struct request_queue *q = mq->queue;
2132	unsigned long flags;
2133	bool done;
2134
2135	/*
2136	 * Wait while there is another request in progress, but not if recovery
2137	 * is needed. Also indicate whether there is a request waiting to start.
2138	 */
2139	spin_lock_irqsave(q->queue_lock, flags);
2140	if (mq->recovery_needed) {
2141		*err = -EBUSY;
2142		done = true;
2143	} else {
2144		done = !mq->rw_wait;
2145	}
2146	mq->waiting = !done;
2147	spin_unlock_irqrestore(q->queue_lock, flags);
2148
2149	return done;
2150}
2151
2152static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2153{
2154	int err = 0;
2155
2156	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2157
2158	/* Always complete the previous request if there is one */
2159	mmc_blk_mq_complete_prev_req(mq, prev_req);
2160
2161	return err;
2162}
2163
2164static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2165				  struct request *req)
2166{
2167	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2168	struct mmc_host *host = mq->card->host;
2169	struct request *prev_req = NULL;
2170	int err = 0;
2171
2172	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2173
2174	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2175
2176	mmc_pre_req(host, &mqrq->brq.mrq);
2177
2178	err = mmc_blk_rw_wait(mq, &prev_req);
2179	if (err)
2180		goto out_post_req;
2181
2182	mq->rw_wait = true;
2183
2184	err = mmc_start_request(host, &mqrq->brq.mrq);
2185
2186	if (prev_req)
2187		mmc_blk_mq_post_req(mq, prev_req);
2188
2189	if (err)
2190		mq->rw_wait = false;
2191
2192	/* Release re-tuning here where there is no synchronization required */
2193	if (err || mmc_host_done_complete(host))
2194		mmc_retune_release(host);
2195
2196out_post_req:
2197	if (err)
2198		mmc_post_req(host, &mqrq->brq.mrq, err);
2199
2200	return err;
2201}
2202
2203static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2204{
2205	if (mq->use_cqe)
2206		return host->cqe_ops->cqe_wait_for_idle(host);
2207
2208	return mmc_blk_rw_wait(mq, NULL);
2209}
2210
2211enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2212{
2213	struct mmc_blk_data *md = mq->blkdata;
2214	struct mmc_card *card = md->queue.card;
2215	struct mmc_host *host = card->host;
2216	int ret;
2217
2218	ret = mmc_blk_part_switch(card, md->part_type);
2219	if (ret)
2220		return MMC_REQ_FAILED_TO_START;
2221
2222	switch (mmc_issue_type(mq, req)) {
2223	case MMC_ISSUE_SYNC:
2224		ret = mmc_blk_wait_for_idle(mq, host);
2225		if (ret)
2226			return MMC_REQ_BUSY;
2227		switch (req_op(req)) {
2228		case REQ_OP_DRV_IN:
2229		case REQ_OP_DRV_OUT:
2230			mmc_blk_issue_drv_op(mq, req);
2231			break;
2232		case REQ_OP_DISCARD:
2233			mmc_blk_issue_discard_rq(mq, req);
2234			break;
2235		case REQ_OP_SECURE_ERASE:
2236			mmc_blk_issue_secdiscard_rq(mq, req);
2237			break;
2238		case REQ_OP_FLUSH:
2239			mmc_blk_issue_flush(mq, req);
2240			break;
2241		default:
2242			WARN_ON_ONCE(1);
2243			return MMC_REQ_FAILED_TO_START;
2244		}
2245		return MMC_REQ_FINISHED;
2246	case MMC_ISSUE_DCMD:
2247	case MMC_ISSUE_ASYNC:
2248		switch (req_op(req)) {
2249		case REQ_OP_FLUSH:
2250			ret = mmc_blk_cqe_issue_flush(mq, req);
2251			break;
2252		case REQ_OP_READ:
2253		case REQ_OP_WRITE:
2254			if (mq->use_cqe)
2255				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2256			else
2257				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2258			break;
2259		default:
2260			WARN_ON_ONCE(1);
2261			ret = -EINVAL;
2262		}
2263		if (!ret)
2264			return MMC_REQ_STARTED;
2265		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2266	default:
2267		WARN_ON_ONCE(1);
2268		return MMC_REQ_FAILED_TO_START;
2269	}
2270}
2271
2272static inline int mmc_blk_readonly(struct mmc_card *card)
2273{
2274	return mmc_card_readonly(card) ||
2275	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2276}
2277
2278static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2279					      struct device *parent,
2280					      sector_t size,
2281					      bool default_ro,
2282					      const char *subname,
2283					      int area_type)
2284{
2285	struct mmc_blk_data *md;
2286	int devidx, ret;
2287
2288	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2289	if (devidx < 0) {
2290		/*
2291		 * We get -ENOSPC because there are no more any available
2292		 * devidx. The reason may be that, either userspace haven't yet
2293		 * unmounted the partitions, which postpones mmc_blk_release()
2294		 * from being called, or the device has more partitions than
2295		 * what we support.
2296		 */
2297		if (devidx == -ENOSPC)
2298			dev_err(mmc_dev(card->host),
2299				"no more device IDs available\n");
2300
2301		return ERR_PTR(devidx);
2302	}
2303
2304	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2305	if (!md) {
2306		ret = -ENOMEM;
2307		goto out;
2308	}
2309
2310	md->area_type = area_type;
2311
2312	/*
2313	 * Set the read-only status based on the supported commands
2314	 * and the write protect switch.
2315	 */
2316	md->read_only = mmc_blk_readonly(card);
2317
2318	md->disk = alloc_disk(perdev_minors);
2319	if (md->disk == NULL) {
2320		ret = -ENOMEM;
2321		goto err_kfree;
2322	}
2323
2324	spin_lock_init(&md->lock);
2325	INIT_LIST_HEAD(&md->part);
2326	INIT_LIST_HEAD(&md->rpmbs);
2327	md->usage = 1;
2328
2329	ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2330	if (ret)
2331		goto err_putdisk;
2332
2333	md->queue.blkdata = md;
2334
2335	/*
2336	 * Keep an extra reference to the queue so that we can shutdown the
2337	 * queue (i.e. call blk_cleanup_queue()) while there are still
2338	 * references to the 'md'. The corresponding blk_put_queue() is in
2339	 * mmc_blk_put().
2340	 */
2341	if (!blk_get_queue(md->queue.queue)) {
2342		mmc_cleanup_queue(&md->queue);
2343		ret = -ENODEV;
2344		goto err_putdisk;
2345	}
2346
2347	md->disk->major	= MMC_BLOCK_MAJOR;
2348	md->disk->first_minor = devidx * perdev_minors;
2349	md->disk->fops = &mmc_bdops;
2350	md->disk->private_data = md;
2351	md->disk->queue = md->queue.queue;
2352	md->parent = parent;
2353	set_disk_ro(md->disk, md->read_only || default_ro);
2354	md->disk->flags = GENHD_FL_EXT_DEVT;
2355	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2356		md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2357
2358	/*
2359	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2360	 *
2361	 * - be set for removable media with permanent block devices
2362	 * - be unset for removable block devices with permanent media
2363	 *
2364	 * Since MMC block devices clearly fall under the second
2365	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2366	 * should use the block device creation/destruction hotplug
2367	 * messages to tell when the card is present.
2368	 */
2369
2370	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2371		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2372
2373	if (mmc_card_mmc(card))
2374		blk_queue_logical_block_size(md->queue.queue,
2375					     card->ext_csd.data_sector_size);
2376	else
2377		blk_queue_logical_block_size(md->queue.queue, 512);
2378
2379	set_capacity(md->disk, size);
2380
2381	if (mmc_host_cmd23(card->host)) {
2382		if ((mmc_card_mmc(card) &&
2383		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2384		    (mmc_card_sd(card) &&
2385		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2386			md->flags |= MMC_BLK_CMD23;
2387	}
2388
2389	if (mmc_card_mmc(card) &&
2390	    md->flags & MMC_BLK_CMD23 &&
2391	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2392	     card->ext_csd.rel_sectors)) {
2393		md->flags |= MMC_BLK_REL_WR;
2394		blk_queue_write_cache(md->queue.queue, true, true);
2395	}
2396
2397	return md;
2398
2399 err_putdisk:
2400	put_disk(md->disk);
2401 err_kfree:
2402	kfree(md);
2403 out:
2404	ida_simple_remove(&mmc_blk_ida, devidx);
2405	return ERR_PTR(ret);
2406}
2407
2408static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2409{
2410	sector_t size;
2411
2412	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2413		/*
2414		 * The EXT_CSD sector count is in number or 512 byte
2415		 * sectors.
2416		 */
2417		size = card->ext_csd.sectors;
2418	} else {
2419		/*
2420		 * The CSD capacity field is in units of read_blkbits.
2421		 * set_capacity takes units of 512 bytes.
2422		 */
2423		size = (typeof(sector_t))card->csd.capacity
2424			<< (card->csd.read_blkbits - 9);
2425	}
2426
2427	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2428					MMC_BLK_DATA_AREA_MAIN);
2429}
2430
2431static int mmc_blk_alloc_part(struct mmc_card *card,
2432			      struct mmc_blk_data *md,
2433			      unsigned int part_type,
2434			      sector_t size,
2435			      bool default_ro,
2436			      const char *subname,
2437			      int area_type)
2438{
2439	char cap_str[10];
2440	struct mmc_blk_data *part_md;
2441
2442	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2443				    subname, area_type);
2444	if (IS_ERR(part_md))
2445		return PTR_ERR(part_md);
2446	part_md->part_type = part_type;
2447	list_add(&part_md->part, &md->part);
2448
2449	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2450			cap_str, sizeof(cap_str));
2451	pr_info("%s: %s %s partition %u %s\n",
2452	       part_md->disk->disk_name, mmc_card_id(card),
2453	       mmc_card_name(card), part_md->part_type, cap_str);
2454	return 0;
2455}
2456
2457/**
2458 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2459 * @filp: the character device file
2460 * @cmd: the ioctl() command
2461 * @arg: the argument from userspace
2462 *
2463 * This will essentially just redirect the ioctl()s coming in over to
2464 * the main block device spawning the RPMB character device.
2465 */
2466static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2467			   unsigned long arg)
2468{
2469	struct mmc_rpmb_data *rpmb = filp->private_data;
2470	int ret;
2471
2472	switch (cmd) {
2473	case MMC_IOC_CMD:
2474		ret = mmc_blk_ioctl_cmd(rpmb->md,
2475					(struct mmc_ioc_cmd __user *)arg,
2476					rpmb);
2477		break;
2478	case MMC_IOC_MULTI_CMD:
2479		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2480					(struct mmc_ioc_multi_cmd __user *)arg,
2481					rpmb);
2482		break;
2483	default:
2484		ret = -EINVAL;
2485		break;
2486	}
2487
2488	return ret;
2489}
2490
2491#ifdef CONFIG_COMPAT
2492static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2493			      unsigned long arg)
2494{
2495	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2496}
2497#endif
2498
2499static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2500{
2501	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2502						  struct mmc_rpmb_data, chrdev);
2503
2504	get_device(&rpmb->dev);
2505	filp->private_data = rpmb;
2506	mmc_blk_get(rpmb->md->disk);
2507
2508	return nonseekable_open(inode, filp);
2509}
2510
2511static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2512{
2513	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2514						  struct mmc_rpmb_data, chrdev);
2515
2516	put_device(&rpmb->dev);
2517	mmc_blk_put(rpmb->md);
2518
2519	return 0;
2520}
2521
2522static const struct file_operations mmc_rpmb_fileops = {
2523	.release = mmc_rpmb_chrdev_release,
2524	.open = mmc_rpmb_chrdev_open,
2525	.owner = THIS_MODULE,
2526	.llseek = no_llseek,
2527	.unlocked_ioctl = mmc_rpmb_ioctl,
2528#ifdef CONFIG_COMPAT
2529	.compat_ioctl = mmc_rpmb_ioctl_compat,
2530#endif
2531};
2532
2533static void mmc_blk_rpmb_device_release(struct device *dev)
2534{
2535	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2536
2537	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2538	kfree(rpmb);
2539}
2540
2541static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2542				   struct mmc_blk_data *md,
2543				   unsigned int part_index,
2544				   sector_t size,
2545				   const char *subname)
2546{
2547	int devidx, ret;
2548	char rpmb_name[DISK_NAME_LEN];
2549	char cap_str[10];
2550	struct mmc_rpmb_data *rpmb;
2551
2552	/* This creates the minor number for the RPMB char device */
2553	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2554	if (devidx < 0)
2555		return devidx;
2556
2557	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2558	if (!rpmb) {
2559		ida_simple_remove(&mmc_rpmb_ida, devidx);
2560		return -ENOMEM;
2561	}
2562
2563	snprintf(rpmb_name, sizeof(rpmb_name),
2564		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2565
2566	rpmb->id = devidx;
2567	rpmb->part_index = part_index;
2568	rpmb->dev.init_name = rpmb_name;
2569	rpmb->dev.bus = &mmc_rpmb_bus_type;
2570	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2571	rpmb->dev.parent = &card->dev;
2572	rpmb->dev.release = mmc_blk_rpmb_device_release;
2573	device_initialize(&rpmb->dev);
2574	dev_set_drvdata(&rpmb->dev, rpmb);
2575	rpmb->md = md;
2576
2577	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2578	rpmb->chrdev.owner = THIS_MODULE;
2579	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2580	if (ret) {
2581		pr_err("%s: could not add character device\n", rpmb_name);
2582		goto out_put_device;
2583	}
2584
2585	list_add(&rpmb->node, &md->rpmbs);
2586
2587	string_get_size((u64)size, 512, STRING_UNITS_2,
2588			cap_str, sizeof(cap_str));
2589
2590	pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2591		rpmb_name, mmc_card_id(card),
2592		mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2593		MAJOR(mmc_rpmb_devt), rpmb->id);
2594
2595	return 0;
2596
2597out_put_device:
2598	put_device(&rpmb->dev);
2599	return ret;
2600}
2601
2602static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2603
2604{
2605	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2606	put_device(&rpmb->dev);
2607}
2608
2609/* MMC Physical partitions consist of two boot partitions and
2610 * up to four general purpose partitions.
2611 * For each partition enabled in EXT_CSD a block device will be allocatedi
2612 * to provide access to the partition.
2613 */
2614
2615static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2616{
2617	int idx, ret;
2618
2619	if (!mmc_card_mmc(card))
2620		return 0;
2621
2622	for (idx = 0; idx < card->nr_parts; idx++) {
2623		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2624			/*
2625			 * RPMB partitions does not provide block access, they
2626			 * are only accessed using ioctl():s. Thus create
2627			 * special RPMB block devices that do not have a
2628			 * backing block queue for these.
2629			 */
2630			ret = mmc_blk_alloc_rpmb_part(card, md,
2631				card->part[idx].part_cfg,
2632				card->part[idx].size >> 9,
2633				card->part[idx].name);
2634			if (ret)
2635				return ret;
2636		} else if (card->part[idx].size) {
2637			ret = mmc_blk_alloc_part(card, md,
2638				card->part[idx].part_cfg,
2639				card->part[idx].size >> 9,
2640				card->part[idx].force_ro,
2641				card->part[idx].name,
2642				card->part[idx].area_type);
2643			if (ret)
2644				return ret;
2645		}
2646	}
2647
2648	return 0;
2649}
2650
2651static void mmc_blk_remove_req(struct mmc_blk_data *md)
2652{
2653	struct mmc_card *card;
2654
2655	if (md) {
2656		/*
2657		 * Flush remaining requests and free queues. It
2658		 * is freeing the queue that stops new requests
2659		 * from being accepted.
2660		 */
2661		card = md->queue.card;
2662		if (md->disk->flags & GENHD_FL_UP) {
2663			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2664			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2665					card->ext_csd.boot_ro_lockable)
2666				device_remove_file(disk_to_dev(md->disk),
2667					&md->power_ro_lock);
2668
2669			del_gendisk(md->disk);
2670		}
2671		mmc_cleanup_queue(&md->queue);
2672		mmc_blk_put(md);
2673	}
2674}
2675
2676static void mmc_blk_remove_parts(struct mmc_card *card,
2677				 struct mmc_blk_data *md)
2678{
2679	struct list_head *pos, *q;
2680	struct mmc_blk_data *part_md;
2681	struct mmc_rpmb_data *rpmb;
2682
2683	/* Remove RPMB partitions */
2684	list_for_each_safe(pos, q, &md->rpmbs) {
2685		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2686		list_del(pos);
2687		mmc_blk_remove_rpmb_part(rpmb);
2688	}
2689	/* Remove block partitions */
2690	list_for_each_safe(pos, q, &md->part) {
2691		part_md = list_entry(pos, struct mmc_blk_data, part);
2692		list_del(pos);
2693		mmc_blk_remove_req(part_md);
2694	}
2695}
2696
2697static int mmc_add_disk(struct mmc_blk_data *md)
2698{
2699	int ret;
2700	struct mmc_card *card = md->queue.card;
2701
2702	device_add_disk(md->parent, md->disk);
2703	md->force_ro.show = force_ro_show;
2704	md->force_ro.store = force_ro_store;
2705	sysfs_attr_init(&md->force_ro.attr);
2706	md->force_ro.attr.name = "force_ro";
2707	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2708	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2709	if (ret)
2710		goto force_ro_fail;
2711
2712	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2713	     card->ext_csd.boot_ro_lockable) {
2714		umode_t mode;
2715
2716		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2717			mode = S_IRUGO;
2718		else
2719			mode = S_IRUGO | S_IWUSR;
2720
2721		md->power_ro_lock.show = power_ro_lock_show;
2722		md->power_ro_lock.store = power_ro_lock_store;
2723		sysfs_attr_init(&md->power_ro_lock.attr);
2724		md->power_ro_lock.attr.mode = mode;
2725		md->power_ro_lock.attr.name =
2726					"ro_lock_until_next_power_on";
2727		ret = device_create_file(disk_to_dev(md->disk),
2728				&md->power_ro_lock);
2729		if (ret)
2730			goto power_ro_lock_fail;
2731	}
2732	return ret;
2733
2734power_ro_lock_fail:
2735	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2736force_ro_fail:
2737	del_gendisk(md->disk);
2738
2739	return ret;
2740}
2741
2742#ifdef CONFIG_DEBUG_FS
2743
2744static int mmc_dbg_card_status_get(void *data, u64 *val)
2745{
2746	struct mmc_card *card = data;
2747	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2748	struct mmc_queue *mq = &md->queue;
2749	struct request *req;
2750	int ret;
2751
2752	/* Ask the block layer about the card status */
2753	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM);
2754	if (IS_ERR(req))
2755		return PTR_ERR(req);
2756	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2757	blk_execute_rq(mq->queue, NULL, req, 0);
2758	ret = req_to_mmc_queue_req(req)->drv_op_result;
2759	if (ret >= 0) {
2760		*val = ret;
2761		ret = 0;
2762	}
2763	blk_put_request(req);
2764
2765	return ret;
2766}
2767DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2768		NULL, "%08llx\n");
2769
2770/* That is two digits * 512 + 1 for newline */
2771#define EXT_CSD_STR_LEN 1025
2772
2773static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2774{
2775	struct mmc_card *card = inode->i_private;
2776	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2777	struct mmc_queue *mq = &md->queue;
2778	struct request *req;
2779	char *buf;
2780	ssize_t n = 0;
2781	u8 *ext_csd;
2782	int err, i;
2783
2784	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2785	if (!buf)
2786		return -ENOMEM;
2787
2788	/* Ask the block layer for the EXT CSD */
2789	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM);
2790	if (IS_ERR(req)) {
2791		err = PTR_ERR(req);
2792		goto out_free;
2793	}
2794	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2795	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2796	blk_execute_rq(mq->queue, NULL, req, 0);
2797	err = req_to_mmc_queue_req(req)->drv_op_result;
2798	blk_put_request(req);
2799	if (err) {
2800		pr_err("FAILED %d\n", err);
2801		goto out_free;
2802	}
2803
2804	for (i = 0; i < 512; i++)
2805		n += sprintf(buf + n, "%02x", ext_csd[i]);
2806	n += sprintf(buf + n, "\n");
2807
2808	if (n != EXT_CSD_STR_LEN) {
2809		err = -EINVAL;
2810		kfree(ext_csd);
2811		goto out_free;
2812	}
2813
2814	filp->private_data = buf;
2815	kfree(ext_csd);
2816	return 0;
2817
2818out_free:
2819	kfree(buf);
2820	return err;
2821}
2822
2823static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2824				size_t cnt, loff_t *ppos)
2825{
2826	char *buf = filp->private_data;
2827
2828	return simple_read_from_buffer(ubuf, cnt, ppos,
2829				       buf, EXT_CSD_STR_LEN);
2830}
2831
2832static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2833{
2834	kfree(file->private_data);
2835	return 0;
2836}
2837
2838static const struct file_operations mmc_dbg_ext_csd_fops = {
2839	.open		= mmc_ext_csd_open,
2840	.read		= mmc_ext_csd_read,
2841	.release	= mmc_ext_csd_release,
2842	.llseek		= default_llseek,
2843};
2844
2845static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2846{
2847	struct dentry *root;
2848
2849	if (!card->debugfs_root)
2850		return 0;
2851
2852	root = card->debugfs_root;
2853
2854	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2855		md->status_dentry =
2856			debugfs_create_file("status", S_IRUSR, root, card,
2857					    &mmc_dbg_card_status_fops);
2858		if (!md->status_dentry)
2859			return -EIO;
2860	}
2861
2862	if (mmc_card_mmc(card)) {
2863		md->ext_csd_dentry =
2864			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2865					    &mmc_dbg_ext_csd_fops);
2866		if (!md->ext_csd_dentry)
2867			return -EIO;
2868	}
2869
2870	return 0;
2871}
2872
2873static void mmc_blk_remove_debugfs(struct mmc_card *card,
2874				   struct mmc_blk_data *md)
2875{
2876	if (!card->debugfs_root)
2877		return;
2878
2879	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2880		debugfs_remove(md->status_dentry);
2881		md->status_dentry = NULL;
2882	}
2883
2884	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2885		debugfs_remove(md->ext_csd_dentry);
2886		md->ext_csd_dentry = NULL;
2887	}
2888}
2889
2890#else
2891
2892static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2893{
2894	return 0;
2895}
2896
2897static void mmc_blk_remove_debugfs(struct mmc_card *card,
2898				   struct mmc_blk_data *md)
2899{
2900}
2901
2902#endif /* CONFIG_DEBUG_FS */
2903
2904static int mmc_blk_probe(struct mmc_card *card)
2905{
2906	struct mmc_blk_data *md, *part_md;
2907	char cap_str[10];
2908
2909	/*
2910	 * Check that the card supports the command class(es) we need.
2911	 */
2912	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2913		return -ENODEV;
2914
2915	mmc_fixup_device(card, mmc_blk_fixups);
2916
2917	md = mmc_blk_alloc(card);
2918	if (IS_ERR(md))
2919		return PTR_ERR(md);
2920
2921	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2922			cap_str, sizeof(cap_str));
2923	pr_info("%s: %s %s %s %s\n",
2924		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2925		cap_str, md->read_only ? "(ro)" : "");
2926
2927	if (mmc_blk_alloc_parts(card, md))
2928		goto out;
2929
2930	dev_set_drvdata(&card->dev, md);
2931
2932	if (mmc_add_disk(md))
2933		goto out;
2934
2935	list_for_each_entry(part_md, &md->part, part) {
2936		if (mmc_add_disk(part_md))
2937			goto out;
2938	}
2939
2940	/* Add two debugfs entries */
2941	mmc_blk_add_debugfs(card, md);
2942
2943	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2944	pm_runtime_use_autosuspend(&card->dev);
2945
2946	/*
2947	 * Don't enable runtime PM for SD-combo cards here. Leave that
2948	 * decision to be taken during the SDIO init sequence instead.
2949	 */
2950	if (card->type != MMC_TYPE_SD_COMBO) {
2951		pm_runtime_set_active(&card->dev);
2952		pm_runtime_enable(&card->dev);
2953	}
2954
2955	return 0;
2956
2957 out:
2958	mmc_blk_remove_parts(card, md);
2959	mmc_blk_remove_req(md);
2960	return 0;
2961}
2962
2963static void mmc_blk_remove(struct mmc_card *card)
2964{
2965	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2966
2967	mmc_blk_remove_debugfs(card, md);
2968	mmc_blk_remove_parts(card, md);
2969	pm_runtime_get_sync(&card->dev);
2970	mmc_claim_host(card->host);
2971	mmc_blk_part_switch(card, md->part_type);
2972	mmc_release_host(card->host);
2973	if (card->type != MMC_TYPE_SD_COMBO)
2974		pm_runtime_disable(&card->dev);
2975	pm_runtime_put_noidle(&card->dev);
2976	mmc_blk_remove_req(md);
2977	dev_set_drvdata(&card->dev, NULL);
2978}
2979
2980static int _mmc_blk_suspend(struct mmc_card *card)
2981{
2982	struct mmc_blk_data *part_md;
2983	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2984
2985	if (md) {
2986		mmc_queue_suspend(&md->queue);
2987		list_for_each_entry(part_md, &md->part, part) {
2988			mmc_queue_suspend(&part_md->queue);
2989		}
2990	}
2991	return 0;
2992}
2993
2994static void mmc_blk_shutdown(struct mmc_card *card)
2995{
2996	_mmc_blk_suspend(card);
2997}
2998
2999#ifdef CONFIG_PM_SLEEP
3000static int mmc_blk_suspend(struct device *dev)
3001{
3002	struct mmc_card *card = mmc_dev_to_card(dev);
3003
3004	return _mmc_blk_suspend(card);
3005}
3006
3007static int mmc_blk_resume(struct device *dev)
3008{
3009	struct mmc_blk_data *part_md;
3010	struct mmc_blk_data *md = dev_get_drvdata(dev);
3011
3012	if (md) {
3013		/*
3014		 * Resume involves the card going into idle state,
3015		 * so current partition is always the main one.
3016		 */
3017		md->part_curr = md->part_type;
3018		mmc_queue_resume(&md->queue);
3019		list_for_each_entry(part_md, &md->part, part) {
3020			mmc_queue_resume(&part_md->queue);
3021		}
3022	}
3023	return 0;
3024}
3025#endif
3026
3027static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3028
3029static struct mmc_driver mmc_driver = {
3030	.drv		= {
3031		.name	= "mmcblk",
3032		.pm	= &mmc_blk_pm_ops,
3033	},
3034	.probe		= mmc_blk_probe,
3035	.remove		= mmc_blk_remove,
3036	.shutdown	= mmc_blk_shutdown,
3037};
3038
3039static int __init mmc_blk_init(void)
3040{
3041	int res;
3042
3043	res  = bus_register(&mmc_rpmb_bus_type);
3044	if (res < 0) {
3045		pr_err("mmcblk: could not register RPMB bus type\n");
3046		return res;
3047	}
3048	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3049	if (res < 0) {
3050		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3051		goto out_bus_unreg;
3052	}
3053
3054	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3055		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3056
3057	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3058
3059	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3060	if (res)
3061		goto out_chrdev_unreg;
3062
3063	res = mmc_register_driver(&mmc_driver);
3064	if (res)
3065		goto out_blkdev_unreg;
3066
3067	return 0;
3068
3069out_blkdev_unreg:
3070	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3071out_chrdev_unreg:
3072	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3073out_bus_unreg:
3074	bus_unregister(&mmc_rpmb_bus_type);
3075	return res;
3076}
3077
3078static void __exit mmc_blk_exit(void)
3079{
3080	mmc_unregister_driver(&mmc_driver);
3081	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3082	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3083	bus_unregister(&mmc_rpmb_bus_type);
3084}
3085
3086module_init(mmc_blk_init);
3087module_exit(mmc_blk_exit);
3088
3089MODULE_LICENSE("GPL");
3090MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3091